146 IEEE SIGNAL PROCESSING LETTERS, VOL. 4, NO. 5, MAY 1997

Fully Static Processor-Optimal Assignment
of Data-Flow Graphs

Yeh-Chin Ho and Jong-Chuang Tsay

Abstract—The data-flow graph (DFG) is an important graph- 01 2 3
theoretic model for multiprocessor implementation of real-time Time A
digital signal processing (DSP) algorithms. Given a time schedule 01 2 3 4 5 &6
; - By | B
for a DFG, we consider the problem of the processor-optimal .
assignment for a fully static schedule. Previously, the solution of A 3 Eva s e B:2| B
this problem was found by solving an integer programming prob- BB BB G
lem. In this letter, we propose a linear programming approach ledRoxiNedNex alc
. 2| C2| C2
to solving the problem. D’
D
0 0 0 0
EIEIE ‘ E Ei| Ei
|. INTRODUCTION
E:| B

HE DATA-FLOW GRAPH (DFG) is an important graph-
theoretic model for multiprocessor implementation of
real-time digital signal processing (DSP) algorithms [1]-[5].
A DFG is expressed a§ = (V, E,t,d), whereV is the set
of vertices, £ is the set of directed edgegy) for v € V' is
the integral execution time for vertex andd(e) for ¢ € E is
the delay count for edge. The ith iteration of vertexy € V
is denoted byv?, which we call acomputation If there is a
directed edge: = (u, v) with delay countd(e) = j — ¢ in G,
then there is a precedence relationship from computation
to computationy’.
A schedulefor a DFG is defined a§ = (7, P) whereT
is thetime scheduleand P is the processor assignmenthe
starting time step and the processor to execute the ComPUta%n 1. (a) Time schedule for theh iteration of a DFG with five vertices. (b)
v* are denoted byZ,) and P!, respectively. A schedul& = Folded time schedule for (a). (c) Assignment graph = (V¢, E¢) for (b).
(7,P) is said to befully-static with unfolding factor» and

time displacemenp if 7, = 77" + p and 7;3 = P,7". FOr candidate, we propose a linear programming model to find a
this time schedul€/’, the iteration periodis L. It is obvious {}’:@cessor assignment for the assignment graph. Then, simple

that the complete schedule can be built by repeating a parigko|ding can be used to obtain a fully static schedule from
schedule ofr consecutive iterations. this processor assignment.

Given a time schedule for a DFG, finding a processor-
optimal assignment for a fully static schedule is an important I
problem in multiprocessor implementation of DSP algorithms.
Previously, finding such a schedule required solving an integer) 4
programming problem [6], [7]. In this paper, we propose Civen a time schedulel = {7} for a DFG G =
a linear programming approach to solving the problem. W&’ £, d) with iteration periodZ,, we build anassignment
first build an assignment graptaccording to the given time 9raph G* = (V*, E*). We first fold the execution interval
schedule, then find a processor-optimal assignment for #& €ach vertex intg0,7, — 1] time slots. This folds each
assignment graph using a binary search for the minimug¥ecution interval into segments within ti%, time slots.

. .. 1 1 —_ a a
number of processors required. For each minimum-numb&e then build an assignment graghf = (V*, E) from
these segments. Vertex sEf consists of a vertex for each
Manuscript received August 7, 1996. This work was supported by ttgegment, and two specific verticas/3. Edge setE® consists
National Science Council of Taiwan, R.O.C. The associate editor coordinatigg gn edge(u v) when the time slots occupied byv c Ve
the review of this manuscript and approving it for publication was Prof. G ’ . o
E. Sobelman. do not overlap andi's time slots precede’s time slots,
The authors are with the Institute of Computer Science and Informand an edge fromx and an edge tg? for every vertex in

tion Engineering, College of Electrical Engineering and Computer Sciencgie _ ., _ 3. For example, we are given a time schedule

@ (b)

. THE ASSIGNMENT GRAPH AND
ITS PROCESSORASSIGNMENT

National Chiao Tung University, Hsinchu 30050, Taiwan, R.O.C. (e-mail;-; . : ; : o
National Chia Tung Universiy, Hsinchu amwan (e-maly; = 7,71 + 3 (iteration periodZ, = 3) for a DFG with five
Publisher Item Identifier S 1070-9908(97)03578-5. verticesA, B, C, D, E. Fig. 1(a) shows théth iteration time

1070-9908/97$10.001 1997 IEEE

HO AND TSAY: DATA-FLOW GRAPHS

147

Processor

W WN o~

i 2 4 5 h | 4

O0& 1T 18 1% W 2

|| A B O ! A B B Y R et | |

z AlFEREFCCC:
y o

2| "IIE e H'i earT A
¢ ¢ | 2| | B El ©

r |

| A [BlF|CICIeC
g ot I el Ml WL B

E FE
E

Priszessor

- I-. .
- 1-:II.

| E
| E
(b)

4 E|E E

| E

i
E|E

=

Fig. 2.

1|
-

[E BB B | ||
aba b I R

(a) Processor-optimal assignment for Fig. 1(c). (b). Fully static schedule with iteration pgried3 and unfolding factor 6.

schedule, Fig. 1(b) is its corresponding folded time schedutiptimal assignment can be found using binary search for the
and Fig. 1(c) is its corresponding assignment graph (edge®cessor numbey’ within the range[l,|V%| — 2], which

in bold lines are described later). From the definition of theequires solvingd(log |V %|) linear programs. The processor-
assignment, we know that all vertices on any path filerto optimal assignment for Fig. 1(c) found by this procedure

[can be assigned to the same processor. is
Given an assignment grapi® = (V*, E*) and number
of processord”?, a processor assignment fot* is a feasible

solution under the following constraints:

co

(—w) = —1 [

{wlvuyeke}
weVi—a—-03 (1)

Ly = 17
{vl(u,v)eEe}

shown in Fig. 2(a). We call it dasic pattern3. The

assignment for processar denoted byB(¢), in Fig. 2(a)

rresponds to a path (e.g., bold lines) frarto 3 in Fig. 1(c).

I. THE FULLY STATIC PROCESSOROPTIMAL ASSIGNMENT

We now consider obtaining a fully static processor-optimal
assignment for the DFG? = (V, E) from its basic pattern.

In the folding step, a vertex € V may be sequentiall
>, Fau=h > (cru)=-P divided into 3 vert?ces (or segmentsz)l,zi,---,vdqe Ve, ’
ueVe—a=p ueVe—a=p . where vertexy; is called thehead vertex vy the tail, and
Tuw =00rl (uv) € B (3) verticesus, vs, - - -, v4_1 the bodyof the vertexv. To obtain a
fully static schedule, we first find independent processor lists

Here, z,, denotes the flow quantity on the edde,v).

Constraints in (1) guarantee that exactly one unit of flofndependent lisisior short) using the following procedure.

enters and leaves every vertexc V¢ — « — /3, respectively.
Constraints in (2) guarantee that there are exaktlynits of
flow from the source vertexx and to the destination vertex
3, respectively. Constraint (3) ensures that the flow on every
edge(u,v) € £ is zero or one unit. We can obviously find a
feasible solution (if it exists) by solving an integer program:
any linear objective function af!,, s under constraints (1)—(3).
Note that each variable.,,, appears in constraints (1)—(2)
exactly twice, once with g+1) coefficient and once with
a (—1) coefficient. Since these constraints establish a totally
unimodular constraint matrix [8], constraint (3) can be relaxed
to0 < z,, < 1and the integer programming can be reduced to

a linear programming. Thus, we can find a feasible processor

assignment by solving a polynomial-time linear programming
problem rather than a nondeterministic polynomial-complete

Step 1: Let all processors be unprocessed and the number
of independent lish = 0.

If there is an unprocessed procesb@nincrement
n; else stop

If there is an unprocessed procesgavithout any
tail or body, then select it; otherwise, select an
unprocessed processprat random.

Add processgrto thenth independent list, and set
processorp as processedf processorp does not
contain any head or bodyhen gotoStep 2.

Select the processgrcontaining the body or tail
following the head or body in processepr If p'

is unprocessedhenlet p = p’ and goto Step 4;
otherwise,goto Step 2.

Since the above procedure processes every processor exactly

Step 2:

Step 3:

Step 4:

Step 5:

(NP-complete) integer programming problem [8]. The lineamnce, the time complexity i€)(F) for P processors. We

programming model can be used to find a feasible processb

pow operation of the above procedure by the example in

assignment for a given number of processb¥s-if there is Fig. 2(a). In Fig. 2(a), verticeB;, C1, andE are the heads in
one; otherwise, more processors are required. A procesgmecessors 1, 2, and 4, respectively. And vertiBgsC>, and

148 IEEE SIGNAL PROCESSING LETTERS, VOL. 4, NO. 5, MAY 1997

E, are the tails in processors 2, 3, and 5, respectively. First, wksix consecutive iterations [shaded region in Fig. 2(b)] every
select processor 1, which does not contain any tail or body§ = Z,, = 6 time steps.

and add it to independent list 1. Next, we add processor 2,

which contains the taiB; following the headB; in processor V. CONCLUSION

1, to independent list 1. Because processor 3 has th&tail . .
. . o Given a time schedule for a DFG, we have proposed an
following the head”; in processor 2, we add it to independent ... e . .
. ;) fficient method for finding a fully static schedule using
list 1. Since processor 3 does not contain any head or body, .. .
.) : minimum number of processors. The processor-optimal
we complete independent list 1 with processors 1, 2, and 3.1In_. . . . ra .
assignment is obtained by solving(log|V*|) polynomial-

erglrll?jr ?shlon,we complete independent list 2 with ProcessQiRe linear programming problems rather than NP-complete

For each independent list with x,, processorsy,is, -, integer programming problems as in the past.
iz,, We can build anassignment pattefncovering z,Z,
time steps, by concatenating sequentially the assignments
B(il),B(ig), - ,B(i%). Then the assignment pattern is re-[1] K. K. Parhi and D. G. Messerschmitt, “Static rate-optimal scheduling

: of iterative data-flow programs via optimum unfoldindBEE Trans.
peated every, 7, time steps to form achedule patternTo Comput, vol. 40, pp. 178-195, Feb. 1991.

obtain a schedule for thesg, processors, each processor is[2] sS. M. Heemstra de Groot, S. H. Gerez, and O. E. Herrmann, “Range-
assigned by the same schedule pattern except for a time lag chart-guided iterative data-flow graph schedulingEE Trans. Circuits

. . . Syst. | vol. 39, pp. 351-364, May 1992.
of IP_ time steps bgtween Consgcu“ve proces;ors. Accordi 9] L. Jeng and L. Chen, “Rate-optimal DSP synthesis by pipeline and
to this procedure, if there arm independent lists, then the minimum unfolding,”IEEE Trans. VLSI Systvol. 2, pp. 81-88, Mar.
obtained schedule is fully static with an unfolding factor _ 1994.
. y . g [4] K. K. Parhi, “High-level algorithm and architecture transformations for
lem(z1,w2,...,7,). In this assignment procedure, since the' ™ pgp synthesis,J. VLSI Signal Processingol. 9, no. 1-2, pp. 121-143,

number of processors; + zs + --- + z, assigned is equal 1995.

; ; ; D. Wang and Y. H. Hu, “Multiprocessor implementation of real-time
to the number of processors assigned in the basic pattern, tivé DSP algorithms "IEEE Trans. VLS! Systvol. 3, pp. 393-403, Sept.

fully static schedule obtained is processor optimal. In Fig. 2(a), 199s,
for example, there are two independent lists with= 3 and [6] L. E.Lucke and K. K. Parhi, “Generalized ILP scheduling and allocation

w2 = 2 processors, respectively. The assignment patterns are for Moh-leve 239'3353;)’3"254'15'1_'5”202 IEEE 1993 Custom Integrated

ABBBBCCCC andUEEEED for independent lists 1 and 2, [7] K. Ito, L. E. Lucke, and K. K. Parhi, “Module selection and data format

respectively. Thus, the obtained schedule is fully static and f%n\gfs?ncfm COtSt-OEFémngDS_P ;ggzheSiS'gg';Cé’21§94 IEEE/ACM
: . . - nt. Conf. Computer-Aided Desig , pp. —329.
processor optimal with an unfolding faCtKWn(ZS, 2) =6.The [|8] A. Schrijver, Theory of Linear and Integer ProgrammingNew York:

complete schedule can be built by repeating a partial schedule wiley, 1986.

REFERENCES

