
146 IEEE SIGNAL PROCESSING LETTERS, VOL. 4, NO. 5, MAY 1997

Fully Static Processor-Optimal Assignment
of Data-Flow Graphs

Yeh-Chin Ho and Jong-Chuang Tsay

Abstract—The data-flow graph (DFG) is an important graph-
theoretic model for multiprocessor implementation of real-time
digital signal processing (DSP) algorithms. Given a time schedule
for a DFG, we consider the problem of the processor-optimal
assignment for a fully static schedule. Previously, the solution of
this problem was found by solving an integer programming prob-
lem. In this letter, we propose a linear programming approach
to solving the problem.

I. INTRODUCTION

T HE DATA-FLOW GRAPH (DFG) is an important graph-
theoretic model for multiprocessor implementation of

real-time digital signal processing (DSP) algorithms [1]–[5].
A DFG is expressed as , where is the set
of vertices, is the set of directed edges, for is
the integral execution time for vertex, and for is
the delay count for edge. The th iteration of vertex
is denoted by , which we call acomputation. If there is a
directed edge with delay count in ,
then there is a precedence relationship from computation
to computation .

A schedulefor a DFG is defined as where
is the time scheduleand is the processor assignment. The
starting time step and the processor to execute the computation

are denoted by and , respectively. A schedule
is said to befully-static with unfolding factor and

time displacement if and . For
this time schedule , the iteration period is . It is obvious
that the complete schedule can be built by repeating a partial
schedule of consecutive iterations.

Given a time schedule for a DFG, finding a processor-
optimal assignment for a fully static schedule is an important
problem in multiprocessor implementation of DSP algorithms.
Previously, finding such a schedule required solving an integer
programming problem [6], [7]. In this paper, we propose
a linear programming approach to solving the problem. We
first build an assignment graphaccording to the given time
schedule, then find a processor-optimal assignment for the
assignment graph using a binary search for the minimum
number of processors required. For each minimum-number

Manuscript received August 7, 1996. This work was supported by the
National Science Council of Taiwan, R.O.C. The associate editor coordinating
the review of this manuscript and approving it for publication was Prof. G.
E. Sobelman.

The authors are with the Institute of Computer Science and Informa-
tion Engineering, College of Electrical Engineering and Computer Science,
National Chiao Tung University, Hsinchu 30050, Taiwan, R.O.C. (e-mail:
jctsay@csie.nctu.edu.tw).

Publisher Item Identifier S 1070-9908(97)03578-5.

(a) (b)

(c)

Fig. 1. (a) Time schedule for the0th iteration of a DFG with five vertices. (b)
Folded time schedule for (a). (c) Assignment graphGa

= (V a; Ea
) for (b).

candidate, we propose a linear programming model to find a
processor assignment for the assignment graph. Then, simple
unfolding can be used to obtain a fully static schedule from
this processor assignment.

II. THE ASSIGNMENT GRAPH AND

ITS PROCESSORASSIGNMENT

Given a time schedule for a DFG
with iteration period , we build anassignment

graph . We first fold the execution interval
for each vertex into time slots. This folds each
execution interval into segments within the time slots.
We then build an assignment graph from
these segments. Vertex set consists of a vertex for each
segment, and two specific vertices . Edge set consists
of an edge when the time slots occupied by
do not overlap and ’s time slots precede ’s time slots,
and an edge from and an edge to for every vertex in

. For example, we are given a time schedule
(iteration period) for a DFG with five

vertices . Fig. 1(a) shows theth iteration time

1070–9908/97$10.00 1997 IEEE

HO AND TSAY: DATA-FLOW GRAPHS 147

(a)

(b)

Fig. 2. (a) Processor-optimal assignment for Fig. 1(c). (b). Fully static schedule with iteration periodIp = 3 and unfolding factor 6.

schedule, Fig. 1(b) is its corresponding folded time schedule,
and Fig. 1(c) is its corresponding assignment graph (edges
in bold lines are described later). From the definition of the
assignment, we know that all vertices on any path fromto

can be assigned to the same processor.
Given an assignment graph and number

of processors , a processor assignment for is a feasible
solution under the following constraints:

(1)

(2)

or (3)

Here, denotes the flow quantity on the edge .
Constraints in (1) guarantee that exactly one unit of flow
enters and leaves every vertex , respectively.
Constraints in (2) guarantee that there are exactlyunits of
flow from the source vertex and to the destination vertex

, respectively. Constraint (3) ensures that the flow on every
edge is zero or one unit. We can obviously find a
feasible solution (if it exists) by solving an integer program:
any linear objective function of under constraints (1)–(3).

Note that each variable appears in constraints (1)–(2)
exactly twice, once with a coefficient and once with
a coefficient. Since these constraints establish a totally
unimodular constraint matrix [8], constraint (3) can be relaxed
to and the integer programming can be reduced to
a linear programming. Thus, we can find a feasible processor
assignment by solving a polynomial-time linear programming
problem rather than a nondeterministic polynomial-complete
(NP-complete) integer programming problem [8]. The linear
programming model can be used to find a feasible processor
assignment for a given number of processors—if there is
one; otherwise, more processors are required. A processor-

optimal assignment can be found using binary search for the
processor number within the range , which
requires solving linear programs. The processor-
optimal assignment for Fig. 1(c) found by this procedure
is shown in Fig. 2(a). We call it abasic pattern . The
assignment for processor, denoted by , in Fig. 2(a)
corresponds to a path (e.g., bold lines) fromto in Fig. 1(c).

III. T HE FULLY STATIC PROCESSOR-OPTIMAL ASSIGNMENT

We now consider obtaining a fully static processor-optimal
assignment for the DFG from its basic pattern.
In the folding step, a vertex may be sequentially
divided into vertices (or segments) ,
where vertex is called thehead, vertex the tail, and
vertices the bodyof the vertex . To obtain a
fully static schedule, we first find independent processor lists
(independent lists, for short) using the following procedure.

Step 1: Let all processors be unprocessed and the number
of independent list .

Step 2: If there is an unprocessed processorthenincrement
; else stop.

Step 3: If there is an unprocessed processorwithout any
tail or body, then select it; otherwise, select an
unprocessed processorat random.

Step 4: Add processorto the th independent list, and set
processor as processed.If processor does not
contain any head or body,then gotoStep 2.

Step 5: Select the processorcontaining the body or tail
following the head or body in processor. If
is unprocessed,then let and goto Step 4;
otherwise,goto Step 2.

Since the above procedure processes every processor exactly
once, the time complexity is for processors. We
show operation of the above procedure by the example in
Fig. 2(a). In Fig. 2(a), vertices , and are the heads in
processors 1, 2, and 4, respectively. And vertices , and

148 IEEE SIGNAL PROCESSING LETTERS, VOL. 4, NO. 5, MAY 1997

are the tails in processors 2, 3, and 5, respectively. First, we
select processor 1, which does not contain any tail or body,
and add it to independent list 1. Next, we add processor 2,
which contains the tail following the head in processor
1, to independent list 1. Because processor 3 has the tail
following the head in processor 2, we add it to independent
list . Since processor 3 does not contain any head or body,
we complete independent list 1 with processors 1, 2, and 3. In
similar fashion, we complete independent list 2 with processors
4 and 5.

For each independent list with processors
, we can build anassignment pattern, covering

time steps, by concatenating sequentially the assignments
. Then the assignment pattern is re-

peated every time steps to form aschedule pattern. To
obtain a schedule for these processors, each processor is
assigned by the same schedule pattern except for a time lag
of time steps between consecutive processors. According
to this procedure, if there are independent lists, then the
obtained schedule is fully static with an unfolding factor

. In this assignment procedure, since the
number of processors assigned is equal
to the number of processors assigned in the basic pattern, the
fully static schedule obtained is processor optimal. In Fig. 2(a),
for example, there are two independent lists with and

processors, respectively. The assignment patterns are
ABBBBCCCC and EEEED for independent lists 1 and 2,
respectively. Thus, the obtained schedule is fully static and
processor optimal with an unfolding factor . The
complete schedule can be built by repeating a partial schedule

of six consecutive iterations [shaded region in Fig. 2(b)] every
time steps.

IV. CONCLUSION

Given a time schedule for a DFG, we have proposed an
efficient method for finding a fully static schedule using
a minimum number of processors. The processor-optimal
assignment is obtained by solving polynomial-
time linear programming problems rather than NP-complete
integer programming problems as in the past.

REFERENCES

[1] K. K. Parhi and D. G. Messerschmitt, “Static rate-optimal scheduling
of iterative data-flow programs via optimum unfolding,”IEEE Trans.
Comput., vol. 40, pp. 178–195, Feb. 1991.

[2] S. M. Heemstra de Groot, S. H. Gerez, and O. E. Herrmann, “Range-
chart-guided iterative data-flow graph scheduling,”IEEE Trans. Circuits
Syst. I, vol. 39, pp. 351–364, May 1992.

[3] L. Jeng and L. Chen, “Rate-optimal DSP synthesis by pipeline and
minimum unfolding,” IEEE Trans. VLSI Syst., vol. 2, pp. 81–88, Mar.
1994.

[4] K. K. Parhi, “High-level algorithm and architecture transformations for
DSP synthesis,”J. VLSI Signal Processing, vol. 9, no. 1–2, pp. 121–143,
1995.

[5] D. Wang and Y. H. Hu, “Multiprocessor implementation of real-time
DSP algorithms,”IEEE Trans. VLSI Syst., vol. 3, pp. 393–403, Sept.
1995.

[6] L. E. Lucke and K. K. Parhi, “Generalized ILP scheduling and allocation
for high-level DSP synthesis,” inProc. IEEE 1993 Custom Integrated
Circuits Conf., 1993, pp. 5.4.1–5.4.4.

[7] K. Ito, L. E. Lucke, and K. K. Parhi, “Module selection and data format
converson for cost-optimal DSP synthesis,” inProc. 1994 IEEE/ACM
Int. Conf. Computer-Aided Design, 1994, pp. 322–329.

[8] A. Schrijver, Theory of Linear and Integer Programming. New York:
Wiley, 1986.

