
I. Introduction
The problem of implementing load-balancing distributed systems has been studied

extensively. And based on different kinds of architectures in distributed systems, there

are many different methods to solve load-balancing problem.

However, no matter what kinds of environments, load distribution and balancing

are primary functions for improving system performance and users’ comfort. Incoming

tasks’ allocation and remote process execution are main consideration of a well designed

distributed systems in order to achieve performance improvements.

For the purpose of automatically selecting remote execution hosts in a distributed

environment, this paper proposed a user-supervised processor allocation scheduler. It

shows how load-balancing is provided in this model and how to collect information and

disseminate it to support the user decision to select remote execution hosts.

1.1 Motivation and background
With the progress of computer technology and communication service, the

traditional central processing work is gradually replaced by distributed systems’

architecture. This phenomenon is arisen by dropping price of high-performance PC and

dramatically improvement of manufacturing process in microprocessors. According to

the past scholars said, the updating speed of microprocessors is 50% to 100% per year,

and the memory or storage space is increased four times each three years. And this trend

speeds up these few years.

In the past, high-speeding computers are used for computing complex problem or

processing huge data. So the scientists are aimed to develop non time-consuming

computers. And then the massively parallel processors computers were produced. The

concepts include many single-packed chip CPUs, high-speed bus, complex cached, and

cheap RAMs. And this ‘big’ machine serves all requests and computing works. As time

goes by, because

z The quality and bandwidth of network are improved.

z The computing power of Workstation is strengthened.

z The bottleneck of I/O is gradually improved.

1

Network of Workstations（NOWs）,which integrates huge memory, storage space,

and processors, arise in these few years. Its concepts include a group of connected

computers and grouping their computing ability to solve single complex problem. Even

more, some NOWs will dynamically distribute works according to their loading status

to save the computing time and system resources, and some also dynamically

re-distribute works when some machines fail. It indicates how to implement the

distributed systems.

Besides price and stability, the advantages of distributed computing also includes

economics, reliability and scalability. Dandamudi[1995] pointed out the profits of

distributed systems ： They are effectively using resource, better in price/performance

ratio, speed and scalability. Many interests of distributed systems are its

load-distribution characteristics. Using different kinds of load distribution strategies

will affect the performance of distributed systems. Livny[1982] pointed out that in a

distributed system, users can share each others’ resources and they are different in their

equipments. Therefore some machines may always be idle and some may have many

works staying in the queues. So how to solve the loading distribution problem is what

they concern a lot.

Dandamudi pointed out that there are three methods used for load-balancing of

distributed systems. They are stable, dynamic, and adaptive. Stable method is to decide

the works allocation before works come in. Dynamic method is to use the real-time

machines’ information to decide the work allocation. Adaptive method is the hybrid of

the above two, and it can change the allocation strategy based on parameters.

Dynamic loading-balance strategy is what we concern and try to give the optimal

solution to balance the overhead and the real works. And how to gather the real-time

information which supports load distribution is quite important.

Traditional loading-balance algorithms are specified to homogeneous

environments, that is, the same OS and same languages used in each distributed host. It

seems not flexible and extensible for scalable systems. And since the concept of

“Object” grows, different hosts can call same “object” to be implemented via different

languages, as long as this object is implemented in at least one host. This is the basic

2

idea of “CORBA”.

Within the above ideas, we tried to combine CORBA’s characteristics of

cross-platform and a real-time information reporting subsystem to see if the overall

performance is better than other work scheduling algorithms.

1.2 Purpose and Contribution
Enhancing CORBA’s load-balancing while maintaining CORBA’s transparency

and simplicity of application programming is a challenge. Some previous study or

software provided a third party directory service or naming service to handle this

problem, such as smart agent published by Visibroker. Each registered object has its

own name in smart agent’s repository. And once a client issues an object, the smart

agent automatically passed the object’s reference to one of the implemented objects.

This object can be implemented in any host and will return the result of issues. Here the

smart agent works as a directory service to provide objects’ reference to client and what

more, it provides some simple load-balancing algorithm. In Visibroker and other ORB

publishers, this directory service used “Round-Robin” algorithm for load-balancing.

But it will cause the following problems：

z Since “Round-Robin” algorithm only provides works to be distributed to

different hosts based on their arriving time, some hosts may be high-loading at

issued time. So the coming work will be put in its queue or just make the

loading status heavier. And some hosts may be still idle. This problem is further

discussed in Andrea C. Duseau et al. , who proposed a “local scheduler” for

interactive work scheduling in distributed system. They said some interactive

work will be experienced excessive delay by users when using round-robin

scheduling dominantly.

z We said that “distributed systems” should have no central processing work. But

if we assign a machine to provide directory service, all invocations will first

serve in this machine. It may cause some bottleneck problem. Directory naming

lookup operation is a significant factor in system performance.（Leffler et

al.,1984）And there are also some papers proposed to solve this problem, such

3

as David R. Cheriton et al.. They proposed “three-level” directory and

client-side cached technology to alleviate central directory service.

Our design purpose is aimed to solve the problem. By using real-time reporting

information and user-supervised processor allocation scheduler, no central processing

work will be involved and can exactly achieve “loading-balance”.

The Common Object Request Broker Architecture（CORBA）supports applications

that consist of objects distributed across a system, with client objects invoking server

objects that return responses to the client objects after performing the requested operations.

CORBA’s Obejct Request Broker（ORB）acts as an intermediary in the communication

between a client object and a server objects, transcending differences in their programming

language （ language transparency ） and their physical locations （ location

transparency）.CORBA’s TCP/IP-based Internet Inter-ORB Protocol（IIOP） allows a client

object and a server object to communicate, regardless of differences in their respective

operating systems, byte orders and hardware architectures.

1.3 Research Method
1.3.1 Define research direction

We define the whole work is based on “heterogeneous” and connected distributed

environment.

1.3.2 Related works and survey

Distributed environment models and information collection and publishing

methods. And the previous study on “loading –balance” of distributed system.

1.3.3 Problem Definition

What we want to solve is loading-balance in each host of distributed system to

improve the efficiency. And the policy of collecting so-called “real-time” information

but not increase the overhead of executing works.

1.3.4 Design the blueprint

Design the algorithm to solve the above problem. Analyze the algorithm step by

4

step to split every function should be performed.

Point out which subsystems should perform which functions and assemble them

together to form the model. Do some scenario testing works for this model.

1.3.5 Assumption and restriction

Before implementation stage, we should make some assumption and restriction to

make the implementation more specified and clearly.

1.3.6 Implementation

Make the design to be implemented by codes.

1.3.7 Analysis and conclusion

Doing some simulation work based on assumption and analyze the results.

Figure. 1 my research method flow

5

II. Related Work

2.1 CORBA Model
The Common Object Request Broker Architecture (CORBA) allows distributed

applications to interoperate (application to application communication), regardless of

what language they are written in or where these applications reside.

The CORBA specification was adopted by the Object Management Group to address

the complexity and high cost of developing distributed object applications. CORBA uses

an object-oriented approach for creating software components that can be reused and

shared between applications. Each object encapsulates the details of its inner workings

and presents a well defined interface, which reduces application complexity. The cost of

developing applications is reduced, because once an object is implemented and tested, it

can be used over and over again.

The Object Request Broker (ORB) in figure 2. connects a client application with the

objects it wants to use. The client program does not need to know whether the object

implementation it is in communication with resides on the same computer or is located on

a remote computer somewhere on the network. The client program only needs to know

the object's name and understand how to use the object's interface. The ORB takes care of

the details of locating the object, routing the request, and returning the result.

Figure 2. ORB Communication

ORB is the base of CORBA applications, and different venders developed different

ORBs. The ORB itself is not a separate process. It is a collection of libraries and network

resources that integrates within end-user. applications, and allows your client applications

6

to locate and use objects.

z There are a couple of things to note about CORBA architecture and its

computing model: A CORBA-based system is a collection of objects that

isolates the requesters of services (clients) from the providers of services

(servers) by a well-defined encapsulating interface.

z All requests are managed by the ORB. In other words, every invocation

(whether it is local or remote) of a CORBA object is passed to an ORB, as

shown in Figure 2 above.

 The interface between the client and server is simply a contract that specifies what

kind of services are provided by the server and how they can be used by the client.

CORBA interfaces are specified in a special definition language known as the Interface

Definition Language (IDL). Through IDL, a particular object implementation tells its

potential clients what operations are available and how they should be invoked.

From IDL definitions, CORBA objects are mapped into different programming

languages like C, C++, Java, and Smalltalk. This means once you define an interface to

objects in IDL, you are free to implement the object using any suitable programming

language that has IDL mapping. Consequently, if you want to use that object, you can use

any programming language to make remote requests to the object.

2.2 The steps of creating CORBA Applications
Since we address the universal usable characteristics of CORBA, we should create

our application through CORBA procedures. Shown as Figure 3.

7

Figure 3. The development life cycle of CORBA-based systems

2.2.1 Define the remote interface

Define the interface for the remote object using the OMG's interface definition

language. Using IDL instead of the specified language because the IDL compiler（based

on different ORBs and different language mapping we will use）automatically maps from

IDL, generating all specified language stub and skeleton source files, along with the

infrastructure code for connecting to the ORB. Also, by using IDL, it’s possible for

developers to implement clients and servers in any other CORBA-compliant language.

2.2.2 Compile the remote interface

When we run the ORB-specified and language-specified compiler over IDL files , it

generates the language-specified version of the interface, as well as the class code files

for the stubs and skeletons that enable your applications to hook into the ORB.

8

2.2.3 Implement the server

Once we run the IDL compiler, use the skeletons it generates to put together the

server application. In addition to implementing the methods of the remote interface, the

server code includes a mechanism to start the ORB and wait for invocation from a remote

client.

2.2.4 Implement the client

Use the stubs generated by the IDL compiler as the basis of the client application.

The client code builds on the stubs to start its ORB, look up the server using the URL

Naming service provided by its importing library , obtain a reference for the remote

object, and call its method.

2.2.5 Start the applications

Once implement a server and a client, start the server to hook the object IOR with

run-time defined URL string, then run the client.

2.3 Loading balance in distributed system
Here we review some proposed methods to distributing work loading in previous

work. In the distributed computing system, the user can use the other machine to

execute works. This is the benefit of distributed systems, but may become a defect.

That’s because, if one working node’s is full-loading, and the user still use this node to

execute other works, it will affect the performance of former work and the latency will

become too long. Evan more, if the other nodes are waiting the executing result to go on,

the whole execution time will delay unlimitedly.

Siegel[1996] proposed that to complete the distributed computing should consider

these following factorials：1.The transferring time of data in different machines. 2. The

cost of transferring work. 3. The parallel processing ability in a specified application. 4.

The network loading status.

Also, Zaki[1997] mentioned that the probable factorials which affects the

distributed system, includes：

9

z data formats：For different language mapping, the data format must have an

agreement on their data format.

z processors’ features ：Some CPUs are designed for different needs. Some are

suitable for floating-operations, and some are suitable for processing vector

data.

z External loading：In distributed system, besides the invocation method which

we concern, the other usage of machine will affect the performance, especially

when the external loading is huge.

2.3.1 The loading balance method

The loading balance methods can roughly divide into three kinds：static、dynamic

and adaptive.

z Static loading balance：Static loading balance uses some simple system

information, such as average processing time and cycle. According to the

information and some adjusting formulas to assign the work on different

machines. The benefit of this method is simple and doesn’t need gather the

information too often. But it will cause some low-usage machines, because of

not adjusting system’s efficacy dynamically.

z Dynamic loading balance：Dynamic loading balance uses the up-to-now

system status as parameters to allocate works on different nodes. But the

defect of this method is obviously, it will add the additional overhead. But if

we can control the overhead in acceptable range, the performance will be

much better than static one. Also, there are two dynamic loading balance

method：central control v.s. distributed control. Central control is using a

specified node to summarize the loading information and decide how to

allocate works. Distributed control rests on invocators’ need whether

high-loading node transfer the work to the light-loading nodes

（Sender-initiated）, or light-loading node automatically find the high-loading

nodes to share their works（Receiver-initiated）.

z Adaptive loading balance：According to the circumstances, Shivaratri[1992]

used work transferring and nodes’ loading status. When the system is in

10

high-loading state, he used Sender-initiated strategy. When the system is in

light-loading state, he used Receiver-initiated strategy.

 In our design of work, we select “dynamic loading balance” for its dynamic

characteristics. Because we restrict the work to be “none migrating task”, all task

invocation is initiated by requesting one. No transferring of work will occur and

therefore we don’t use “Adaptive loading balance”.

2.4 Gathering real-time information of each node

Since we select “Dynamic loading balance “ method. The key point is how to

gather the real-time information to be the parameters for selecting executing node. One

concern is not to increase the overhead of whole systems. Oltson et al. [19] proposed an

algorithm used to approximate the real time information. The basic idea of it is that not

all applications on the network need so precise value of information. Updating and

transferring real-time information too frequently will cause to increase the overhead and

decrease the performance. Oltson et al. claimed that the information could be reported

as an “interval”, and the target is to lower down the cost. Oltson made a formulas to set

the width of this interval.

2.4.1. The mechanism of interval shrinks

Since the information of real time data is changed by time, it is necessary to

“shrink” the value interval. Two mechanisms are used to adjust the interval. One is

“value-initiated” refresh, and the other is “query-initiated” refresh. “Value-initiated”

refresh is issued by sender, which gathering each updating data(In this paper, “cache”

the updating data). As long as the new updating data went out the value interval, this

initial interval should shrink to cover the new updating data. Most of the time, this

shrink will expand the interval width. “Query-initiated” refresh is issued by the receiver,

who use this data for application use. When the receiver thought this data is not

“precise” enough, it can issue the sender to “shrink” the interval. This kind of shrink

makes the interval “narrow”.

11

2.4.2 The model and algorithm symbols

Table 1 Model and algorithm symbols

Symbol Meaning Note

Cvr Cost of a value-initiated refresh Used to determine cost factor ρ

Cqr Cost of a query-initiated refresh Used to determine cost factorρ

ρ Cost factor defined as 2* Cvr/ Cqr Determines width adjustment

probability

Ω Cost rate (per time step) Metric this algorithm minimizes

W Width of a cached approximation Set adaptively by our algorithm

W* Width that minimizes the costΩ This algorithm converges to W = W*

Pvr Probability of value-initiated refresh Increases with precision

Pqr Probability of query-initiated refresh Decreases with precision

For a given cached approximation with width W, the probability of each type of

refresh can be written as Pvr = K1 / W2 and Pqr = K2 * W, where K1 and K2 are model

parameters that depend on the nature of data and updates, the frequency of queries, and

the distribution of query precision requirements. Now we know how Pvr and Pqr

depend on W, we can rewrite our cost rate Ω in terms of W：

Ω(W) = Cvr‧K1 / W2 + Cqr‧K2‧W

Our goal is to find the minimum value ofΩ(W). Therefore we different this function to

get the optimal value of Ω. The optimal value for W is

W* = (2‧Cvr/Cqr‧K1/K2)(1/ 3) =(ρ‧K1/K2)(1/3)

Setting the interval width W based on this formula for W* is difficult unless update

behavior and query/update workloads are stable and known in advance, since K1 and K2

depend on these factors. This approach is not to monitor these factors at run-time to set

K1 and K2 but using other adjusting algorithm.

2.4.3 The experiments and derived results

Oltson et al.[19] thought that when querying to “shrink”. The cost of query is 2 times of

value-initiated “shrink”, because it needs sending back the new value of interval. Based

12

on this assumption, ρ= 1. In this special case, the optimal values for W occurs exactly

when two types of refreshed are equally likely, showed in Fig 4

Figure 4 : Cost rate and refresh probability when ρ=1 as functions of interval width

From this experiment, we found that when Pvr = Pqr ,the optimal Ω is found.

Therefore, we can compute K1 and K2 to find the optimal W*. In the experiment,

K1 = 1 and K2 = 1/200. W* is computed as 5.85. Noted that this experiment is based on

a query period of 10 seconds, and the interval width is a relative value.

We will use this algorithm and experiment result to solve the precise problem in our

updating information works later.

2.5 Synchronize the clock in each node
Since in our model, we should gather real-time information in each node. It is

important to judge whether the information is out-of-date. Some synchronize works

should be taken into consideration. Here we introduced Cheng Liao et al.[20] ‘s Global

synchronizing clock algorithm to make the clock on each node be synchronized.

In Cheng Liao et al. ‘s algorithm, there exists an “Node 0”, who is responsible for

sending global time and maintaining other nodes’ time to be precise enough. We

summarized this algorithm in some steps：

At Node 0 as clock server :

13

1. Periodically sending its time to other nodes (we use X to mention a specified

node)according to their resynchronized period（each node has different period）

2. Receiving X’s time and compute its time difference between itself. （Tdiff）

3. Finding out which causes made Tdiff exceed the threshold（Network latency or Node

X needs to be re-synchronized）

4. If the latency exceeds the threshold, sending again Node 0’s time and receiving

Node X’s time to update the latency.

5. Sending back Node X its Time difference between Node 0

6. Listening from other nodes error message which contain the time difference

exceeding its threshold.

7. If X has errors exceed threshold, Node 0 should narrow the re-synchronized time

period.

8. Otherwise if Node 0 has not received any error massage from X for a long time,

Node 0 should expand its re-synchronized time period.

At Node X（Which is not the time server）：

1. Receiving re-synchronized message periodically and sending back its time.

2. Receiving from Node 0 the time difference between itself.

3. If this difference exceed its threshold, sending the error message to Node 0 .

4. Calculating its drift rate to self-resynchronize

5. Applying drift rate to Tdiff every re-synchronizing period

After some experiments, this algorithm showed less error （each clock of nodes is

“precise”）and more efficiency（system loading alleviate）.

2.6 WSDL
2.6.1 WSDL（Web Services Description Language）

WSDL is an XML format for describing network services as a set of endpoints

operating on messages containing either document-oriented or procedure-oriented

information. The operations and messages are described abstractly, and then bound to a

concrete network protocol and message format to define an endpoint. Related concrete

14

endpoints are combined into abstract endpoints (services). WSDL is extensible to allow

description of endpoints and their messages regardless of what message formats or

network protocols are used to communicate, however, the only bindings described in

this document describe how to use WSDL in conjunction with SOAP 1.1, HTTP

GET/POST, and MIME.

In this paper, we made the host’s status to be published in its WSDL file. So, each

requesting information node can get return messages via its defined WSDL file, no

matter what language and platform used.

There are several main components should be defined in a WSDL file.

z Types

Types are just wrappers for XML Schema definitions. The purpose of the types is

to enable one to create all the XML definitions that will be referenced by

messages when building up an actual protocol communication.

z Message

Messages are defined at the global level and can be re-used. A message consists of

parts. A part is just a pointer to a piece of XML Schema. WSDL currently supports

referencing XML schema element declarations as well as simpleType and

complexType declarations.

z Operation

The next level of object is the operation. An operation is how one expresses calling

patterns. Each operation XML element can contain an input and output XML

element as well as zero or more fault XML elements.

z portType

Operations XML elements are gathered together inside of a portType XML

element.

z Transferring elements

The intentional goal of WSDL is to enable programs to be written without having

to think about the actual protocols being used to move messages around. One can

write a program expecting a particular portType and not care a whit about what is

happening on the wire. These left two parts are doing such works :

15

� Binding

To actually figure out how to move a particular portType around one has to declare

a WSDL binding. A binding provides instructions on how to encode and transport

the operations and messages defined in a portType.

� Service

The last step, associating an address with a binding is carried out by a service. A

service is a collection of ports. A port is simply an association of an address with a

binding. This means that all the methods (operations) for a particular interface

(portType) are addressed using the same URI..

2.7 Load distribution and balancing support in a workstation based

distributed system

Arrrdondo D. et al.[18] proposed a loading-balance mechanism to equally distribute

work in homogeneous distributed system. Their design is an user-supervised processor

allocation scheduler, shows which information should be

collected and when and how to collect and disseminate it to support the user decision.

2.7.1 THE LOAD BALANCING SYSTEM (LBS)

The load balancing system should supply an information subsystem, a decision

subsystem and an execution subsystem (See Fig. 5).

 Figure 5 Load Balancing System

16

The information subsystem is in charge of collecting and maintaining global

information about each available node in the network and its load condition.

The decision subsystem, by using the output of the information subsystem, is

responsible to evaluate which is the most suitable node for the execution requested by

the user.

The execution subsystem is in charge of executing the user requested program on

the workstation designated by the decision subsystem.

The user interface is restricted to receive execution requests and to return results.

2.7.2 Performance metrics selection

Many performance parameters could be considered to decide what to collect when

seeking for knowledge of system load. Conventional approaches use as a referential

metric the number of processes waiting, locally, for their CPUs (ready queue length,

rql).

On deciding which resources and metrics should be included, issues such as reliable

representation of load condition, computing overhead and distributed control were

extensively considered. we defined mrm consisting of a representative group of mettles

related to basic resources, as follows:

mrm = < CAPP, CMC, DT, NT > where

• CAPP, current available processing power in the node; is a ratio between the

manufacturer declared processing speed (MIPS) and the number of processes currently

serviced by the local CPU.

• CMC, current memory capacity, is the free memory size in the node.

• DT, disk transfers, is the amount of data actually transferred on each disk (internal I/O

traffic).

• NT, network transfers, is the number of I/O packets on each network interface

(external I/O traffic).

The decision based on this criteria is made by decision subsystem. It bases on what

application user will request to evaluate the best execution node. It needs some

historical data to support the decision process.

17

2.7.3 Data gathering strategies

 Aiming to provide recently updated information on system load condition we

proposed a periodic-and-event-based strategy. The basic actions within this strategy

are:

• Every certain prefixed interval, a timer interrupt occurs and, each node broadcasts 5 its

own state (mrm) to the rest of the nodes. Individual intervals are shifted along the global

time to reduce collision rate.

•Each time a job arrives to the system, the entry node checks if every item in MRM was

updated within that prefixed interval (ageing control procedure). If some node update is

beyond this threshold then a request, for updated mrm values, will be sent to that node.

2.7.4 The assumptions and scenario of this design

In this design , there are some restrictions as following：

• Processes to be executed are non migrating processes. Once a process is initiated in a

machine it remains there until completion (it is not allowed to move the process to

another site).

• Processes created by remote tasks execute in the same machine as their parents.

• The network nodes are homogeneous in hardware and operating system.

• Nodes in the network are arranged as a computing pool. Many users, with equal

privileges, can be logged to a single node and nobody is the workstation owner.

Briefly describe the over-all process of one request,

1. User request a remote execution

2. Its load balancing system will automatically assign which host to execute

based on what application and the information it gathered.

3. Successfully request an application and get the return.

4. Piggybacking each other’s information.

5. The periodic gathering is embedded, as a Daemon.

18

2.8 Loading balancing in Visibroker’s smart agent

VisiBroker Edition's Smart Agent (osagent) is a dynamic, distributed directory

service that provides facilities for both client applications and object implementations.

The Smart Agent keeps track of objects that are available on a network, and locates

objects for client applications at invocation time. The Smart Agent locates the specified

implementation so that a connection can be established between the client and the

implementation. The Smart Agent is designed to be a lightweight directory service with

a flat, simple namespace, which can support a small number of well known objects

within a local network.

2.8.1 The loading balance and scalability in smart agent

1. The Smart Agent implements load balancing using a simple round-robin algorithm

on a per agent basis, not on an ORB domain basis. For load balancing between

server replicas, when we have more than one Smart Agent in the ORB domain,

make sure all servers are registered with the same Smart Agent.

2. When a Smart Agent is terminated, all servers that were registered with that agent

attempt to locate another agent with which to register. This process is automatic,

but may take up to two minutes for the server to perform this function. During that

two minute window, the server is not registered in the ORB domain and therefore

is not available to new clients.

3. Server registrations should be limited to less than 100 object instances or POAs per

ORB domain.

4. The Smart Agent keeps track of all clients (not just CORBA servers), so every

client creates a small load on the Smart Agent. Within any 10 minute period, the

client population should generally not exceed 100 clients.

2.9 Comparing Loading balancing algorithm between each other

From the simply review in Section 2.8 and 2.9, we can get some ideas of different

kinds of loading balance strategy. Our design in this paper is aimed to solve the

19

“cross-platform” problem in Section 2.8 and the “scalability” problem in Section 2.9.

See Table 2

In table 2, we can see what the main difference between each other.

Cross-platform means the whole system requires each node with the same platform and

executing language or not. Central work means if this method need some “central

processing” work to allocate the tasks. Distributing strategy is according to Zaki[1997]

to label them. Others are some description that is important to affect our results.

 Table 2 The comparison of each models

 Cross-

platform

Central work Distributing strategy Others

Arrrdondo D. et al. No No Dynamically, using nodes’

loading information to

allocate work

1. No mention about

how to gathering

“dynamical” data of

each node

2. Emphasizing on

evolutionally setting the

criteria of decision

making.

Visibroker’s smart

agnet

Yes In smart agent to

store each node’s

information

Dynamic, Simple

Round-Robin

1. It takes time to make

different smart agents to

communicate

2. Smart agent should

be initiate earlier than

registering objects’

interfaces

Our Design Yes Only Synchronized

work

Dynamically, using

approximate real-time

information to allocate work

1. Using simplified

criteria of selecting

execution host.

2. Considering the

methods

charact.

20

real-time information

gathering and

synchronized problem

III. Model of study

3.1 Define the problem
What we want to emphasize is simple question：How can we dynamically assign

which hosts to execute specified tasks？In the published ORB , this problem is solved

by some “central processing” work. Visibroker’s smart agent is an example for it. Every

host registers its own objects to this agent by object’s name. When one invocates the

object, it first gets the object IOR through this agent. The smart agent will use

“Round-Robin” algorithm to “dynamically” assign object’s IOR on different hosts to

the invocater.

3.1.1 Main Problem

To solve this “central” and “not so dynamically” allocation policy, we would like

to propose a new algorithm for this problem. The main purpose is：

How to alleviate the loading of whole system and therefore improve the

performance without third party’s work？

We use the dynamic loading method (Shivaratri[1992])to solve loading-balance

problem. Dynamic loading method, which fastest reflects the instant system information,

can be used to allocate works more appropriately. But here comes another problem：How

to dynamically assign tasks？What kind of information is necessary to decide the

executing node？

3.1.2 Data Gathering problem

We use resource information based on what application the clients request. Just as

Kunz ‘s[1991] claim, different applications will affect different resource usage. So we

21

used a simple application to choose the resource threshold, that is, big number factorial

computing.

Big number computing operation is most effected by CPU’s usage（ratio）and RAM

available. It uses dynamic information. To simplify the information gathering work, we

use only CPU usage as the parameter o choose the executing host.

3.1.3 Dynamic information

Since we decide to gather the “CPU Usage” as the base to select the executing host,

we should gather this data “up-to-date”. CPU usage is very dynamical information and

hard to be updated and transmitting too often. We use the algorithm Olston et al.

proposed---the interval, to approximate the value.

3.1.4 Synchronizing work

The information we gather should be “up-to-date”. So we need a universal clock for

judge if the data is out-of-date. Here we use Arrrdondo D. et al.’s algorithm. This

algorithm will be less-cost.

3.2 The assumption and solution to simulation restriction
To focus on the problem we want to improve. Some assumptions are made below

z The computation work is done within single host and won’t be transferred to

other hosts. This work is known as non migrating process.

z Every host has ways to gathering their system information, no matter what OS

or language it uses.

z The interval width data is computed in advanced and could be known to each

node.

z The Clock server is stable and the re-synchronizing work is done implicitly

steady. All hosts can self-resynchronize by itself for a long period.

To simulate heterogeneous environment within a single machine. We introduced a

software,“VMWare”. It is used to run more than one operating systems at one single

machine. By using this software, we can simulate at least 2 virtual machines in one real

22

machine.

3.3 The information gathering algorithm
We made the information gathering work as an embed process. And it also contains

the clock synchronizing work. The steps are as followings :

1. Joining the computing network, first synchronize the clock with the clock

server.

2. Setting the time interval of each updating and network latency of one

transmission .

3. Getting its own information currently and caching them to compute the average

in each time interval.

4. Periodically sending out its “interval” information of status.

5. Listening other nodes’ messages and judging whether the data is out-of-date or

accepted.

6. Storing the “approximate” real-time data of other nodes in its local file for

further selecting execution node work.

7. If the message other nodes sent cannot be accepted, it can automatically request

a message about others status information.

8. Go back to step 3

3.4 The scenario and algorithm of one invocation
The steps of one invocation are as following,

1. Looking up the file which stores status information of each node

2. First selecting one most suitable host to execute its invocation.

3. Invocating to this most suitable host with piggybacking its own status

information

23

4. The executing host returns the result and piggybacking its own status

information.

5. Both nodes could look up its status file to update this file.

 Figure 6 The flow of one invocation

3.5 Main idea of this architecture
In this flow, each host in the serving distributed environment will update their

information of each node periodically and check its validity. Therefore it can invocate

the method to known suitable host.（Here we use URL Naming）After the execution,

24

both sides get the updating information about each other. Every time when it invocates

other services or the same service, it can use this information to invocate light-loading

machines, like machine learning.

3.6 Splitting functions to subsystems
If we make whole system implemented under CORBA architecture, it may cause

the clients’ store too many operation stub codes. And it’s hard to define the status

information data type（CORBA uses Any for unknown data source type）. So, we

combined the WSDL concept into this work. CORBA is used to execute invocations

and transferring whole information file（which stored as text file and can be transferring

as string）. And a host’s WSDL service about its own status information is published on

the same URL（but using different file name）.See fig 7 for detail functions and

subsystems.

 Figure 7 The functions and splitting service

25

4 Implementation and experiments

4.1 Hardware and Software used
I only listed information which will affect computing results

4.1.1 Hardware

CPU : Pentium 4 2400 MHZ

RAM : 256 MB DDR RAM

4.1.2 Software and implementing language

OS：Windows 2000 professional

ORB：Visibroker ORB for java

The ORB provider also packed IDL compiler together, which will automatically

generated servant and stub code

Web Server for both URL Naming and WSDL published：Gatekeeper （published by

Borland）. We need a web server which supports HTTP PUT commands for URL

Naming service.

Implementing language and tool kits：Java with J2SDK

4.2 Interface Definition Language
 We need at least three basic interfaces to handle the request.

z Information Transferring interface：Since we stored information in a file,a new

joining node can invocate the information file as a whole. This interface’s

methods should be at every node. The IDL returns a string , it’s information

file’s content. The parameters include：information it used and its own value.

As fig 8 shows part of codes :

26

Figure 8 part of codes in information data transferring interface (IDL)

z Real processing interface：This interface is defined what method we want to

invocate , as mentioned previously, big number factorial computation

operation.

z URL Naming interface：This interface is used to get the IOR of a specified

object through its URL string and ior file name.

4.3 IDL Compiled files
By using Visibroker IDL compiler, one interface will generate seven files. For

filetransfer interface, they are：

z _filetransferstub.java：Stub code for the filetransfer object on the client side.

z filetransfer.java：The filetransfer interface declaration.

z filetransferHelper.java: Declares the filetransferHelper class, which defines

helpful utility methods.

z filetransferHolder.java: Declares the filetransferHolder class, which provides a

holder for passing filetransfer objects.

z filetransferOperation.java: This interface provides declares the method

signatures defined in the filetransfer interface in the idl file.

z filetransferPOA.java: POA servant code (implementation base code) for the

filetransfer object implementation on the server side.

z filetransferPOATie.java: Class used to implement the filetransfer object on the

server side using the tie mechanism.

When implementing all interfaces, we don’t need to change the auto-generated

code. We only need to implement server side operations. And to make server and client

become runnable, we need to write server side and client side codes.

4.4 Big number factorial computation

27

We should define the factorial computing IDL. Fig 9 is what we generated server

side implementing interface by class diagram. And Fig 10 is client side runnable

application which uses IDL auto-generated stub code.

 Figure 9 Server side skeleton implementation class diagram

Fig 9 shows an operation 1 which is computation work. And this implementation is

inhered from POA interface.(Portable Object Adapter). And we include this skeleton in

our server application.

28

Figure 10 Client side stub application

In fig 10 we can see such method as “setCORBAInterface()” and

“setORBConnect()”, which is to bind the object. And “Operation1()” is only a dump

function which contains no implementation but only invocate server’s method.

And this information is kept as a host’s Host_info. This information will be

published through WSDL service.

4.5 Define the host information
We want to use the WSDL service to publish local information. So we must write

the information we provide as a server skeleton and transfer it to an readable WSDL file.

Fig 11 shows this information structure and its methods in JAVA.

29

 We define 4 important values in one data set, hostname、datatype、value、width,

which means the host、what kind of information it gathered、the average value in a

specified time interval and the time interval of one publishing.

Figure11 Information structure

And then we publish it to the web server, which also serves URL Naming service.

The WSDL file is shown in Fig 12. We can see that it defines the message return

by asking this information. And message contains information what we mentioned

before. A client once saw this wsdl file, it can know how to operate information it gets

and where to bind this service.（Binding work and operation stub is written separately in

a package, as Fig 12. Fig 13 shows piece of codes for binding and stub）.

30

After a client get the message, it can use WSDL defined pattern to parse the

message.

<?xml version="1.0" encoding="UTF-8"?>

<wsdl:definitions targetNamespace="http://importservice" xmlns="http://schemas.xmlsoap.org/wsdl/"

xmlns:apachesoap="http://xml.apache.org/xml-soap" >

 <wsdl:types>

 <schema targetNamespace=http://importservice

xmlns="http://www.w3.org/2001/XMLSchema"><import

namespace="http://schemas.xmlsoap.org/soap/encoding/"/>

 <complexType name="entity1"><sequence><element name="hostname" nillable="true"

type="xsd:string"/><element name="type" nillable="true" type="xsd:string"/>

<element name="value" type="xsd:int"/>

<element name="time " type="xsd:int"/></sequence></complexType></schema>

 </wsdl:types>

 <wsdl:message name="getentity1Response">

 <wsdl:part name="getentity1Return" type="intf:entity1"/></wsdl:message>

 <wsdl:message name="getentity1Request"></wsdl:message>

 <wsdl:portType name="Myservice">

 <wsdl:operation name="getentity1">

 <wsdl:input message="intf:getentity1Request" name="getentity1Request"/>

 <wsdl:output message="intf:getentity1Response" name="getentity1Response"/>

 </wsdl:operation></wsdl:portType>

 <wsdl:binding name="MyserviceSoapBinding" type="intf:Myservice">

 <wsdlsoap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>

 <wsdl:operation name="getentity1"> <wsdlsoap:operation soapAction=""/>

 <wsdl:input name="getentity1Request">

 <wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"

namespace="http://importservice" use="encoded"/></wsdl:input><wsdl:output

name="getentity1Response">

<wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"

31

http://importservice/

namespace="http://importservice" use="encoded"/>

</wsdl:output></wsdl:operation></wsdl:binding>

<wsdl:service name="MyserviceService">

<wsdl:port binding="intf:MyserviceSoapBinding" name="Myservice">

<wsdlsoap:address location="http://localhost:8080/myservice/services/Myservice"/>

</wsdl:port></wsdl:service></wsdl:definitions>

Figure 12 WSDL file, defined the operation and type

32

 Figure 13 Generated stub codes for client side

33

From Fig 13, we can see many Entity1Service… method, these methods are stub

codes for client to bind with Server’s published WSDL service. Such as Locator, it is

used to located the service defined in WSDL’s <address location > element. And

BindingStub is doing the work which parse the server’s returned message.

Figure 14 A test case to use a WSDL service

This test case uses Locator to get service entity and then uses BindingStub to parse the

message its get.

4.6 URL Naming interface
Object’s Interoperable Object Reference (IOR) can be obtained via many

mechanisms, such as naming or directory services. But it may cause these machines

block the scalable growth and make “distributed” become “central”. Using the URL

34

Naming allows us to associate a URL (Uniform Resource Locator) with an object's IOR.

Once a URL has been bound to an object, client applications can obtain a reference to

the object by specifying the URL as a string instead of the object's name. The URL

Naming Service is a simple mechanism that lets a server object associate its IOR with a

URL in the form of a string in a file. The URL Naming Service supports the http URL

scheme for registering objects and locating an object by the URL. Also, it enables client

applications to locate objects provided by any vendor.

4.6.1 The IDL of URL Naming

URL Naming service has its own IDL definition. Therefore it can be used under

CORBA. We should use this IDL to understanding how to invocate this method.

It defines a server how to register a service to a URL string and a client how to locate a

service via URL string. It also defines exceptions raised when the service not exists(when

request a service) or invalid URL(when register a service or request a service). Fig 15

shows URL Naming definitions.

module URLNaming {

exception InvalidURL{string reason;};

exception CommFailure{string reason;};

exception ReqFailure{string reason;};

exception AlreadyExists{string reason;};

abstract interface Resolver { // Read Operations

Object locate(in string url_s)

raises (InvalidURL, CommFailure, ReqFailure); // Write Operations

void force_register_url(in string url_s, in Object obj)

raises (InvalidURL, CommFailure, ReqFailure);

void register_url(in string url_s, in Object obj)

raises (InvalidURL, CommFailure, ReqFailure, AlreadyExists);

};

};

Figure .15 IDL Definition of URL Naming

35

5 Simulation Results and Analysis

5.1 WSDL binding time
We should first define the time interval of each updating and the accepted latency

of transferring status information. We measured the binding time of WSDL service to

figure out the latency. Table 2 shows the average binding time for each 10 trials.

Table 3 Average WSDL binding time

Trials 0~10 11~20 21~30 31~40 41~50

Time in sec. 1.973 3.317 1.572 2.93 3.24

This information should be taken for deeper consideration, because we bind to

“local” web server. If we use the real network environment, the time will grow grandly.

5.2 The value interval
We must simulate some patterns of value-initiate and query-initiated value interval

shrinks to decide the most suitable value interval we use. First, we observe that the

value of CPUusage performing a random walk between 10% interval . We made it as a

uniform distribution and simulated a workload having query period Tq = 2 sec. Also, we

think the case of ρ=1. From times of simulation, the W converges to 3.11%. Therefore

we define the value interval as 3.11%.

The simulating result is shown as Fig 19.

36

 Figure 19 Simulation for optimal width

5.3 Time for binding an object with its URL String
First, I tested single character return by using URL Naming service（which involve

no computation）. And the time is shown in Table 3.

Table 4 Average binding time of URL Naming service

Trials 0~10 11~20 21~30 31~40 41~50

Time 3.05 2.149 2.38 1.792 2.01

Compare with URL Naming, we have Visibroker smart agent computing time for the

same service.

Table 5 Average binding time of Visibroker Smart Agent directory service

Trials 0~10 11~20 21~30 31~40 41~50

Time 2.34 3.314 3.18 3.562 3.671

We can find that smart agent did not perform better than URL Naming.Because

smart agent first finds its repository to find the mapping IOR of an object.

37

Real network should also be taken into consideration here. Would Smart Agent

out-perform than URL Naming in real environment？Or this kind of “central”

processing will cause bottleneck of network traffic and then delay the service？

5.4 Overall execution time of big number factorial computation

We used the designed model to test the total time. Compare with Visibroker’s

smart agent and locally execution time（without any mechanism on loading balance）.

This test is tested by 2 servant objects and 1 invocation.

The invocation completed time is shown as follows.(Average of each 10 trials)

Figure 20 The execution time of computation

Summarized the result as table 5（Time of two mechanism model – Time of locally

execution）

Table 6 Summary of the results

Trials 1-10 11-20 21-30 31-40 41-50

Time(Visibroker) 1 1.26 2.01 3 1.85

Time(My model) 0.86 0.66 0.35 0.42 0.55

Because we ran the WSDL service at the same time, it will take additional system

load. We also recorded system load information within one single node in Table 7.

Table 7. The records of System’s resource usage

38

Service CPU usage Min Usage (%) Max Usage Steady State

CORBA servant only 21 100 24

With WSDL service 24 100 26

In Table 7 we can find that, when CORBA object is waiting for invocation, its

average CPU usage is 24 %. The max value appeared when initiating this service. When

we run the WSDL service simultaneously, it won’t increase too much overhead of the

system. Note that the max value is observed when initiating service or the system’s task

manager process takes place.

 5.5 Ease of Programming
Besides the quantified analysis, we should also make the qualified analysis. In

Visibroker’s smart agent, there are several characteristics in programming with

Visibroker (both skeleton and stub). We made it compare with our model.

 Table 8 Qualified analysis of the model

 Characteristics

Models

Know objects

name in advance

at client side

Have Defined

IDL in advance

at client side

Additional

information of

other nodes

Splitting of

loading balance

function with

main invocation

Visibroker Yes Yes No(But Smart

Agent’s location)

Yes. Loading

balance is done

by smart agent

My Model Yes Yes Yes Partially. The

loading balance

function should

be taken when

starting each

invocation

From Table 8, we can see that our model’s usability is almost as good as

Visibroker’s. The only different is our model should do some gathering work. But this

39

work is embedded in each host, so it won’t make the programmer confused. And when

we want to invocate as a client, we must first evaluate the loading status in client side’s

file. Although this evaluation work is done automatically, we should write into our stub

code first. This may cause programmers’ inconvenience.

5.6 Analysis of simulation
Using the proposed model, the executed time is better than Visibroker’s smart

agent. But the following problems should taken into consideration：

z If the system’s scale grows, the efficiency will perform better in our model.

And, Visibroker ORB contains some loading-balance algorithm（round-robin）,

and it may works fine in small scale.

z The parameters of choosing execution hosts：Though we would say that CPU

usage will affect computation most, other factorials will affect its performance,

too, such as memory usage, cache in CPU etc.

z Difference between real world and single machine simulation： In both

Visibroker’s model and my model, it’s necessary to consider the network

status. Asking for directory service to re-direct to true IOR may take longer

time than directly asking service through its IOR as URL String.

40

6. Conclusion and future works

6.1 Conclusion
In the above experiments and tests, we can find that some results are not as good as

we expect. Because in Visibroker, they developed many none-application layer

mechanisms to loading-balance work e. In our model, we only took application-layer

mechanism to do these works. That may cause different performance.

We have discussed some relevant aspects of load distribution and balancing in

distributed systems. The paper presented two main components for supporting them,

which attempt to face some of the known problems.

z The User-Supervised Load Balancing method presented here is part of an

incremental development to be extended as an automatic Load Balancing

System.

z Transparent remote process execution constitute by itself a research area in

distributed systems which is intimately related to those systems supporting

load balancing. The design of the remote execution subsystem proposed here

is an initial step which in a straightforward and simple manner permits to

understand and face most of the relate problems.

6.2 Future works
In our experiment environment, we didn’t take many factorials into consideration,

such as network’s bandwidth. Also, this invocated method can only be completed in

single replica without status transferring. But in the real-world, many tasks in

distributed systems are completed by many hosts’ coordination. If we take these into

our experiments, the results may be closer to the reality.

41

References：

[1] M. Cukier, J. Ren, C. Sabis, W.H. Sanders, D. E. Bakken, M. E. Berman, D. A. Karr, and

R. Schantz. AQuA：”An adaptive architecture that provides dependable distributed objects.”

In Proceedings of IEEE 17th Symposium on Reliable Distributed Systems, pages 245-253,

West Lafayette, IN, October 1998.

[2] P. Felber, R. Guerraoui, and A.Schiper. “The implementation of CORBA object group

service.” Theory and Practice of Object Systems, 4(2):93-105,1998.

[3] http://263.aka.org.cn/Lectures/002/Lecture-2.1.9/Lecture-2.1.9/Corba.html

[4] http://java.sun.com/j2se/1.4.2/docs/api/org/omg/CORBA/package-summary.html

[5] http://www-2.cs.cmu.edu/~priya/fault-tolerance-resources.html

[6] Florin Sultan, Thu Nguyen, Liviu Iftode. “Fault-Tolerant Distributed Shared Memory”

Proceedings of the IEEE/ACM SC2000 Conference .Scalable November, 2000

[7] Greg Bronevetsky, Nadiel Marques, Keshav Pingali, Paul Stodghill.” Collective

Operations in Application-level Fault-tolerant MPI” Proceedings of the 17th annual

international conference on Supercomputing , June,2003

[8] G.Cabillic,G.Muller,I.Puaut.”The Performance of Consistent Checkpointing in Distributed

Shared Memory Systems.Proc.” 14th Symposium on Reliable Distributed Systems

pp.96-105,September 1995.

[9] L.E. Moser and P.M Melliar-Smith. “Strongly Consistent Replication and Recovery of

Fault-Tolerant CORBA Applications”. Theory and Practice of Object Systems, 4(2):81--92,

1998 .

[10] L.E. Moser, P.M. Melliar-Smith, and P. Narasimhan. “Consistent object replication in the

Eternal system”. Theory and Practice of Object Systems, 4(2):81--92, 1998.

[11] Alessio Bechini, Pierfrancesco Foglia and Cosimo Antonio Prete. “Use of CORBA/RMI

Gateway : Characterization of Communication Overhead”. Middleware performance analysis.

pp150-157, 2002/

[12] http://www.cs.huji.ac.il/support/docs/java/vbroker/vbj/pg/frames/vbj_toc.htm

[13] http://www.goland.org/Tech/wsdl.htm

[14]http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnexxml/html/xml10152

001.asp

42

http://263.aka.org.cn/Lectures/002/Lecture-2.1.9/Lecture-2.1.9/Corba.html
http://java.sun.com/j2se/1.4.2/docs/api/org/omg/CORBA/package-summary.html
http://www-2.cs.cmu.edu/~priya/fault-tolerance-resources.html
http://www.cs.huji.ac.il/support/docs/java/vbroker/vbj/pg/frames/vbj_toc.htm
http://www.goland.org/Tech/wsdl.htm

[15] Chris Olston, Jing Jiang, and Jennifer Widom “Adaptive Filters for Continuous Queries

over Distributed Data Streams” Proceedings of the 2002 ACM SIGMOD international

conference on Management of data June 2002

[16] Miron Livny, Myron Melman “Load balancing in homogeneous broadcast distributed

systems” Proceedings of the Computer Network Performance Symposium P. 47 – 55, 1982

[17] A Hac, T Johnson “A study of dynamic load balancing in a distributed system”

Proceedings of the ACM SIGCOMM conference on Communications architectures &

protocols. p.348-356 1986

[18] D. Arredondo, M. Errecalde, F. Piccoli, M. Printista, R. Gallard, s. Flores “Load

distribution and balancing support in a workstation-based distributed system” ACM SIGOPS

Operating Systems Review Volume 31 , April 1997

[19] C. Olston, B. T. Loo, and J. Widom. “Adaptive precision setting for cached approximate

values.” In Proceedings of the ACM SIGMOD International Conference on Management of

Data, pages 355–366, Santa Barbara, California, May 2001.

[20] Cheng Liao, Margaret Martonosi, Douglas W. Clark. “An Adaptive

Globally-Synchronizing Clock Algorithm and its Implementation on a Myrinet-based PC

Cluster”.

43

	Introduction
	Related Work
	Model of study
	Implementation and experiments
	Simulation Results and Analysis
	Conclusion and future works

