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Using Computational Methodology to Price European 

Options with Time Variant Distributions 

Abstract. Most option pricing methods use mathematical distributions to 

approximate underlying asset behavior. However, pure mathematical distribution 

approaches have difficulty approximating the actual distribution. This study first 

introduces an innovative computational method for pricing European options based 

on time variant distributions of the underlying asset. The distribution can be either 

mathematically generated or simply apply real payoff distributions. Moreover, 

this computational approach can also be applied to applications related to expected 

value computation that require actual distributions rather than mathematical 

distributions. This study makes the following contributions: a) solving the risk 

neutral issue related to price options with none-mathematical distributions; b) 

proposing a simple method for adjusting standard deviation based on the need to 

apply short term volatility to real world applications; c) demonstrating option 

pricing algorithms that are easy to apply to cross field applications; d) helping 

traders to generate their own distributions to price new derivative instruments 

without the difficulty of deriving new closed form formulas. 

Keywords: Option pricing, actual distribution, expected value, implied volatility  
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1. Introduction 

An option is a tradable contract that confers the right, but not the obligation, to buy (call) or sell 

(put) an underlying asset at an agreed-upon price during a certain period or on a specific date. 

The value of such a contract is termed the option price or option value. Thus, an option price is 

the expected return of the underlying asset’s final settlement price larger (call) or lesser (put) 

than the desired value (the agreed-upon price). Because option value is the expected return of a 

usually unpredictable underlying asset, option pricing methodologies have been widely 

adopted by cross fields applications that need to obtain the target’s expected value under 

uncertainties. For example, the real options analysis (ROA) approach has been widely adopted 

for assessing information technology investments since the early 1990s [1][2]. Thus, 

improvements in option pricing methodology can significantly benefit expected value related 

applications. 

Option pricing methods have been widely researched since the development of the 

Black-Scholes model (BS model) in 1973 [3]. Numerous studies have attempted to relax the 

restrictive assumptions of the BS model by using various methodologies to approximate the 

real payoff distribution on assets in a risk-neutral manner and thus obtain the fair option price. 

Although it seems natural to obtain the option price based on real asset payoff distribution, this 

idea has rarely been implemented because the actual distribution never behaves risk-neutrally. 

This characteristic limits the adoption of option pricing methodology in certain 

non-mathematical distribution applications because real world behavior frequently disobeys 
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mathematical distributions. Furthermore, the time value decreasing speed of an option 

accelerates considerably (non-linearly) as the maturity date approaches, yielding large pricing 

error, but high-frequency (time interval less than 1 minute) pricing methodologies have 

received little attention. This non-linear variation characteristic also limits high frequency 

applications. For example, applications with time to maturity less than one day are not suitable 

for traditional option pricing methodologies because its expected value varies significantly as 

the settlement time approaches. If an option pricing model can remove the above limitations, it 

will be more applicable not only in finance but also in cross field applications. 

Accordingly, this study proposes a computational model for pricing European options (whose 

exercise is only permitted on expiry) using time variant distributions of the underlying asset, 

and verifies the high-frequency pricing performance based on empirical investigation. 

Experimental results indicate not only that the proposed method can use actual distribution for 

pricing options which outperforms the BS model, but also that modern computational methods 

can be adopted to implement option pricing applications rather than using mathematical 

distributions via closed form formulas. According to the test results, the proposed model 

contributes significantly to overcoming the limitations of traditional options pricing models 

when adopted by numerous cross field applications. For example, researchers must determine 

whether their target index exhibits geometric Brownian motion with lognormal returns when 

integrating the BS model (or most option pricing models) to calculate the desired expected 

values, as Benaroch did in his research on IT investment risks [4]. However, there is no need to 

justify the target’s distribution when using the proposed computational model. Moreover, 

traders can generate their own distributions to emulate the real world behaviour of any 

underlying asset without the help of mathematicians to derive closed form formulas while it is 

also possible that no closed form formula existed in some situations.   
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The rest of this paper is organized as follows. Section 2 briefly discusses the traditional option 

pricing methodologies. Section 3 then discusses observations of asset real payoff distribution 

and the feasibility of applying the actual distribution map to price European options. The 

pricing methodology and algorithms are also presented in this section. Next, section 4 conducts 

an empirical study to verify effectiveness of applying real payoff distribution to price European 

options with the proposed methodology. Finally, conclusions and future research directions are 

presented in section 5. 

2. Backgrounds on option pricing 

Before constructing option pricing models, it is important to realize basic concepts about option 

and its fair price, option pricing models, and risk-neutral distributions. 

2.1 Options and fair prices 

An option is a tradable contract that confers the right, but not the obligation, to buy (call) or sell 

(put) an underlying asset at an agreed-upon price during a certain period or on a specific date.  

There are two major types of options existed: plain vanilla option, exotic options. Plain vanilla 

option is the first generation options, for example, European options and American options. 

American option allows early exercise which enables an investor executes his privilege before 

final settlement date. On the contrary, European option does not allow early exercise. Finally, 

the payoff of a plain vanilla option is determined by the final settlement price of the underlying 

asset at maturity. 

Besides plain vanilla options, there are three types of exotic options [5]: 1) path-dependent 

options, 2) multi-factor options and 3) time-dependent options (illustrated in Table 1). The 

option price of a path-dependent option is determined by the “path” of the underlying asset 
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before maturity. The multi-factor option’s price is determined by two or more underlying assets. 

The time-dependent option determines the price by time and the underlying asset’s current 

value.  

Table 1 Types of exotic options 

Path-dependent options Multi-factor options Time-dependent & other options 

Average rate option (Asian 

option) 

Barrier option 

Lookback option 

Ladder option 

Shout option 

Rainbow option 

Quanto option 

Basket option 

Chooser option 

Forward start option 

Binary option 

Compound option 

Pay-later option 

Bermudan option 

 

This study focuses on developing a pricing model for European options because it can be 

modified to price American options. Moreover, cross field applications such as Real Option 

Analysis (ROA) often apply option pricing models related to European options as well. 

For a typical European option, the contract is issued with a certain underlying asset to be 

settled after T days with an agreed upon price K to buy (call) or sell (put) a predetermined 

amount of the underlying asset. Suppose the current value of the underlying asset is S0, the 

relationship among put value, call value, time to maturity T, and volatility is demonstrated in 

Figure 1. For European options, the contract holder must keep the contract until its final 

settlement day and then evaluate the underlying asset’s price to determine whether the 

contract should be executed or not. It is obvious that the option price must be determined in a 

fair manner to deliver an unbiased insight of the contract’s value. Thus, it is important to 

realize the “fair value” of options. That is the reason why almost all option pricing models 
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focus on obtaining a theoretical fair price of a certain option to provide traders with a rational 

basis that can be used to judge whether actual option prices in the marketplace are reasonable, 

and to help investors determine where to place bids and offers.  

Option
Cones

Expected
Payoff

V
olatility

S0
timeT

Call
value

Put
value

K

Price

Option
Cones

Expected
Payoff

V
olatility

S0
timeT

Call
value

Put
value

K

Price

 

Figure 1. Relationship between option values and time to maturity 

The fair value of an option is basically determined by market participants. Also, a theoretical 

option price must be fair in order not to benefit any participant or introduce arbitrage 

opportunities. That is, the fair price allows no exploitation by traders or investors for a profit 

when the option value is efficiently priced by the market [6]. As a result, a fair option price 

must: a) generate no arbitrage opportunities, b) make no profit for both buyers and writers. 

a) Generates no arbitrage opportunities: If there is any arbitrage opportunity exists, market 

participants will execute arbitrage strategies in order to obtain riskless profits. As a result, 

biased prices will be influenced by investors and no more arbitrage opportunities exist. Thus a 

fair value must promise no arbitrage opportunities that are widely known as put-call parity. 

Put-call parity is a strong arbitrage relation first identified by Stoll [7], that between the prices 

of European put and call options having same underlying with the same strike and expiry, the 

combinations of options can create positions that are the same as holding the underlying itself. 

Thus, the call price C, put price P, strike price K and underlying stock price S must satisfy the 
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following equation: C - P = S - PV(Dividends) - K e(-r T) , where T is the option holding period, 

r is a continuously compounded interest rate and PV(Dividends) is the present value of the 

dividends received by the stock owner over the holding period. Although put-call parity 

identifies the relationship between options and underlying assets, in real world scenario, it is 

hard to duplicate a stock index with limited stock positions. However, the stock index can be 

easily duplicated with its relative futures. If there simultaneously exists both options and 

futures contract of the same underlying asset with the same strike and expiry, put-call parity 

becomes C - P = FP - PV(Dividends) - K e(-r T) where FP is the futures price of the relative 

underlying asset. 

b) Makes no profit for both buyers and writers: If the theoretical option price is always 

under priced then there will be no option writers selling options with that theoretical value 

because no one wants to lose money; if the theoretical price is always overpriced then there 

will be no option buyers purchase that option with theoretical value. A fair option price must 

also promise an unbiased value that it is equally fair to buy or write an option contract.  

To sum up, a fair option price guarantees equal profits to all market participants and make no 

arbitrage opportunities. As a result, every participant in the market will earn only riskless 

interest rate if the price is fair. 

2.2 Risk-neutral distributions 

Cox and Ross (1976) established the option price as the expected payoff value discounted at the 

risk-free interest rate over the risk-neutral distribution of the underlying asset [8]. Nowadays, 

almost all option pricing models apply risk neutral mathematical distributions to obtain the 

fair option price. Thus, it is important to realize what a risk neutral distribution is.  

Risk-neutral means that investors are not risk-averse but instead they do not demand a 

discounting of the price to take account of risk. With this regard, most option pricing 



12 

methodologies estimate the future distribution of the underlying asset in terms of risks, but the 

pricing models take the average expected price to be the same as holding a riskless bond [9].  

The term risk-neutral probability distribution is used to refer to probability distributions which 

when used as weights in an expected-value calculation will reproduce the market value of 

financial instruments [10]. Generally speaking, risk-neutral probabilities differ from 

real-world probabilities because the market price of the underlying asset does not assign value 

in the same way that a risk-neutral individual would. A risk-neutral distribution must satisfy 

the following formula [11]: 0 = E(pn – p0) where E(.) denotes the expected value, pn is the 

future value of the underlying asset, and p0 is the current value of the underlying asset. More 

practically, if the mean value µ of a payoff distribution equals zero then this distribution is 

risk-neutral.  

 

2.3 Option pricing models 

As discussed before, option price is the expected payoff value discounted at the risk-free 

interest rate over the risk-neutral distribution of the underlying asset. However, applying none 

risk-neutral distributions like the real payoff distribution rather than mathematical risk-neutral 

distributions is difficult because such distributions rarely behaves in a risk-neutral manner. 

Applying a distribution with non risk-neutral characteristic will violate put-call parity rules [7] 

because of the arbitrage possibilities associated with the derived put and call prices. This 

characteristic limits the use of applying practical distribution to price options. Also, a 

researcher cannot justify if it is worthy to develop closed form formulas to price options with 

new types of distributions. A simple example is that if a distribution is risk-neutral then the 

mean value µ must equal zero. However, the µ in a actual distribution rarely equals zero. 

Another example is that if a researcher wants to integrate 2 or 3 mathematical distributions to 
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price an option, he may use normal distribution random number generator to produce the 

simulated distribution space but it does not work because the mean value of randomly 

generated samples will not be zero. Another example of demonstrating difficulty in applying 

actual distribution is that it needs different distribution maps for different time to maturity 

(because this study demonstrates that the actual payoff distribution is time variant, which will 

be illustrated in the next section). For example, at least n different distribution maps are needed 

to valuate the option price if it is n days before maturity. Thus, if the sampling data is huge then 

the pricing speed will be too slow for practical use. Moreover, short-term asset volatility is 

rarely consistent with that implied by the actual distribution map, leading to significant pricing 

errors. Consequently, even traders want to apply real asset return distributions, it cannot be 

practically used to obtain the option price, encouraging researchers to apply mathematically 

risk-neutral distributions instead. The most classical of these approaches is the BS model, 

which assumes that the payoff of the underlying asset follows the geometric Brownian motion 

and has a lognormal distribution with constant volatility and risk-free interest rate before 

maturity [3]. Since the development of the BS model, more realistic option pricing 

methodologies have been developed, including: (a) the stochastic interest-rate/volatility option 

model [12][13][14]; (b) jump-diffusion related models [15][16]; (c) Markovian models 

[17][18]; and (d) stochastic-volatility jump-diffusion models [19][20]. However, all these 

models focus on identifying the “right” distributions and pricing options using close form 

formulas. Consequently, the mathematical distribution never perfectly fits any underlying 

asset’s actual payoff distribution. 

Recently, researchers addressed two related empirical phenomena to demonstrate that the 

real-world distribution do not follow the basic assumption of Black-Scholes model. As a 

result, researchers forward continuous improvement of pricing methodologies. The first 
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phenomena is the asymmetric leptokurtic features indicating the return distribution is skewed 

to the left side and accompanied with a higher peak and two fat tails than those in normal 

distribution. The second is ‘volatility smile’ which discloses that the implied volatility curve is 

a convex curve of the strike price while the implied volatility should be constant in 

Black-Scholes model. In order to deal with the asymmetric leptokurtic features mentioned 

above, numerous models have been proposed. For example, chaos theory fractal Brownian 

motion and stable processes [21][22], generalized hyperbolic models[23][24], and 

time-changed Brownian motions[16][25][22][27]. These models might demonstrate some 

analytical formulae for standard European call and put options, but they may be unrealistic to 

obtain analytical solutions for option prices.  

Meanwhile, different models are also propose to tackle the “volatility smile” in option pricing 

include: (1) stochastic volatility and ARCH models[28][29][30], (2) constant elasticity model 

[8][31], (3) normal jump models[12], (4) affine stochastic-volatility and affine jump-diffusion 

models[32][33][34], (5) implied binomial trees methods[35][36]. These models might not be 

easy to address analytical solutions for option pricing. Moreover, some of these modes may 

not solve the asymmetric leptokurtic feature. 
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In computer science, attempts have also been made to price options using artificial intelligence 

models to improve options pricing performance. The most popular of these methods is the 

neural network approach. Unlike classical mathematical methodologies, a neural network is a 

non-parametric estimation technique which does not make any distributional assumptions 

regarding the underlying asset. Instead, this approach develops a model using sets of unknown 

parameters and lets the optimization routine seek the best fitting parameters to obtain the 

desired results. For example, Hutchinson-Lo-Poggio demonstrated that the neural network 

approach can be used to price S&P future options [37]. Andrew Carverhill followed this line of 

research and examined the best method of establishing and train a multi-layer perceptron neural 

network for option pricing and hedging [38]. Meissner-Kawano also trained neural networks 

using option prices to address the smiling effect [39] associated with options’ implied 

volatilities. All these works demonstrate that modern computational theories can offer 

alternative options pricing methods. In the real world, deriving closed form formulas to price 

options is time consuming, which decelerates the speed of construction new derivative 

instruments. Moreover, user may use random number generator to produce a payoff 

distribution to emulate real assets or simply apply actual distributions instead. However, no 

solutions for pricing options with user defined distributions existed. Thus, this study focused 

on determining options price using user defined distributions. Moreover, the proposed model 

also supports time variant distributions in order to maximize the flexibility of pricing 

performance. This study also introduces the “real” payoff distribution obtained from a 

historical sample of Taiwan stock market to demonstrate the proposed model can handle none 

risk-neutral distributions [58].   
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2.4 Studies on implied volatility 

In order to observe the real behaviour of an underlying asset, this study introduces a 

normalization method associated with implied volatility distributions and futures prices. Thus, 

this section briefly discusses various research topics about implied volatility and future prices.  

Most financial texts confer that the futures markets aggregate diverse information and 

expectations regarding the future prices of underlying assets, and thus provide a common 

reference price which is known as the price discovery function of futures. For example, three 

topics are commonly discussed in relation to the price discovery function of futures. The first 

topic deals with the lead-lag relationship and information transmission between the prices of 

national markets, or between different securities [40][41]. The second topic involves the 

discussion of volatility spillovers, since volatility is also a source of information [42][43]. The 

third topic relates to the phenomenon of information transmission between stock index and 

index futures markets [44][45][46][47]. 

Similar to futures markets, options markets may also provide a common reference of 

subsequent real volatility (RV) by calculating the implied volatilities (IV). Early research on the 

predictive capability of IV found that IV explains variation in future volatilities better than that 

in historical volatilities (HV). For example, Lantane and Rendleman [48] found that actual 

option valuations were better explained by actual volatility over the life of the contract than by 

historical volatility. Chiras and Manaster [49] also tried to compare the predictive power of IV 

and HV using the CBOE data, and found that IV has superior forecasting power to HV. 

However, subsequent studies applying time serious methodologies to study the predictive 

power of implied volatility have yielded mixed results. Some studies have found that IV is a 

poor method of forecasting subsequent RV, while other studies have found that IV is a good 

method of forecasting RV. For example, Canina and Figlewski [50] found virtually no relation 
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between the IV and subsequent RV throughout the remaining life of S&P 100 index options 

before maturity date. Moreover, Day and Lewis [51] and Lamoureux and Lastrapes [52] both 

found that GARCH associated with HV is better able to predict RV than IV. Meanwhile, other 

studies have found that IVs provide reasonably good information on the subsequent RVs of the 

underlying asset. For example, Harvey and Whaley [53] tested and rejected the hypothesis that 

volatility changes are unpredictable. Moreover, Fleming [54] examined the performance of the 

implied volatility of the S&P 100 for forecasting future stock market volatility, and found that 

although IV has an upward bias but it contains relevant information regarding future volatility.  

 

3. Computational approach for pricing European 

options 

This study uses actual distributions to demonstrate the effectiveness of applying the proposed 

model to price European options. For this reason, this section first discusses observations on 

actual distributions. Next, this section proposes a computational method of pricing European 

options with distribution maps saved in databases. In order to prove the effectiveness of the 

proposed model, this study uses high frequency time interval with one minute time ticks to 

compute empirical samples. High frequency examples are used to obtain large samples for 

verification purposes if the execution efficiency of this computation method can feasibly be 

applied to real world applications. The same concept can also be applied to price European 

options regardless of time interval.  
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3.1 Observations regarding actual payoff distributions 

Most option pricing models use mathematical distributions. For example, the BS model 

assumes that underlying assets follow a geometric Brownian motion with lognormal returns. 

Meanwhile, other sophisticated option pricing methodologies like the stochastic volatility 

model apply a flexible distributional structure in which the correlation between volatility 

shocks and underlying stock returns controls the level of skewness, and use the volatility 

variation coefficient to control the kurtosis level [19][20]. However, none of these 

mathematical distributions can precisely describe underlying asset behaviour in the real world. 

To observe the real behaviour of the underlying assets, this study uses sampling data for the 

period 01/01/1991 to 09/03/2007 from the Taiwan Stock Exchange Capitalization Weighted 

Stock Index (TAIEX). Because most mathematical option pricing models discuss the 

underlying asset return distribution using lognormal related distributions (or with certain 

modifications), this study calculates the asset return rate as )ln(
0P

Pt  with different times to 

maturity where P0 is the original price and Pt represents the price after t days. The actual 

distributions are compared with the normal distributions as listed in Table 2. 

 

Table 2. The actual distribution maps compared to the normal distributions. 
1. The X-Axis is the nature log asset return rate in % and the Y-Axis is the possibility value in %.  

2. The histograms represent the real payoff distribution and the curve lines represent the normal distribution.
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From Table 2, the real payoff distribution of the asset (TAIEX) varies with days-to-maturity. 

That is, the actual distribution is time variant. The most interesting finding is that the actual 

distribution exhibits twin-peak phenomenon in 30, 40 and 50 days to maturity distribution maps. 

Restated, when days to maturity exceeds 30, the real asset return rate distribution displays two 

peaks. This twin peak phenomenon has received little attention from academics.  
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The actual distribution clearly shows that mathematical distribution approaches have difficulty 

obtaining precise option price (at least for the Taiwan stock market), because the actual 

distribution varies according to time to maturity. The time variant distribution issue limits the 

use of fixed mathematical distribution pattern across the entire time to maturity range because 

variation in time to maturity requires the option pricing model to apply time variant 

distributions. However, it is difficult for mathematical models to apply different distributions 

for different time to maturity. Furthermore, behavior may differ among assets and markets, so a 

mathematical model must apply different distributions to maximize its pricing performance for 

different assets or different markets. Another issue is that the actual payoff distributions, like 

the time variant distributions with twin peak phenomenon, which are difficult to be described 

by using mathematical distributions. This issue also limits the cross-field applications of using 

the traditional option pricing models. 

Finally, the standard deviation of each distribution map from D1 to D250 is plotted in Figure 

2.  
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Figure 2. Standard deviations of actual distributions 

3.2 Observations regarding implied volatilities 

In order to observe actual payoff behaviors associated with implied volatilities, this study 

designs a method to demonstrate the relationship between implied volatilities and the 

underlying asset’s final settlement value. Most researches related to market price observation 

among various options written on the same underlying asset used to estimate a single 

volatility with at-the-money or near-the-money options since they are more sensitive to 

volatility changes and least susceptible to the effect of the bid-ask spread [55]. Beckers [56] 

and Canina and Figlewski [50] suggests that the option that near the money are better 

predictors to future real volatility than the IVs of deep in or out of the money options. Thus, 

this research uses only the daily close price of near-the-money nearby options contract having 

same underlying with the same strike and expiry for verification.  

List 1. Notations used in this paper 

Notations List: 

 C = Call Price 
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 P = Put Price 

 σ = Volatility 

 r = Interest Rate 

 S = Spot Price 

 K = Exercise Price 

 T = Time to Mature in years 

 t = Time to Mature in days 

 N() = Cumulative Standard Normal Distribution Function 

 Nd(μ,σ) = Normal Distribution Function with mean equals μ and standard deviation 

equalsσ 

 IV = Implied Volatility, yearly 

 Vt = Implied Volatility of t days. 

 FP = Futures Price 

 SP = Final Settlement value 

 

According to Black-Scholes model, the call price C and put price P of a European option can 

be calculated as follows: 

)()( 21 dNKedSNC rT−−=  (3.1) 
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This paper modified the calculation method of deriving implied volatility in order to generate 

an unbiased probability space. Traditionally, computing an implied volatility (IV) requires 
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solving (3.1) or (3.2) repeatedly with different trial values for the volatility input. However, 

the derived IV of a call option (3.1) is rarely equal to the value obtained from a put option (3.2) 

with the same exercise price and thus most IV related researches use only call or put option 

into discussions. However, with the relationship indicated in put-call parity, the FP, C and P 

of the same underlying with the same strike and expiry are tightly coupled with each other 

that any slight price change of one item will immediately cause the price moves of the other 

two items. Thus, in order to verify the possibility space formed by FP and IV, this study 

combines both put and call IVs into a single value IV, namely, the union IV (IVu). Combining 

(3.1) and (3.2), the IVu can be solved with the following formula: 

)()()()( 1221 dSNdNKedNKedSNPC rTrT −−−+−=+ −−
 (3.5) 

Let Oc = {C1, C2, …, Cn} denotes the historical near-the-money call options prices in time 

interval I, Op = {P1, P2, …, Pn} denotes the historical near-the-money put options prices in 

I and F = {FP1, FP2, …, FPn} represents the futures prices in I. For the ith historical data 

in I, using (Ci, Pi, FPi) to generate the ith sampling distribution space and the actual final 

settlement value of (Ci, Pi) is SPi.  

Consider the ith historical data in I, take Ci and Pi into (3.5), the yearly IVu of the ith day in I 

can be solved. Let V = {V1, V2, …, Vn} denotes the IVu in I. Transfer the yearly IVu into 

days to mature scale, let vt denotes the union implied volatility of t days to mature: 

365

2
i

t
Vtv ×

=
 (3.6) 

Suppose SPi and FPi is the relative final settlement value and future price of the ith historical 

data in I, the actual SP is located at di standard deviations of an Nd(μ,σ) = N(FPi, vt) 
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distribution space: 

t

i

i

i v
FP
SP

d
)ln(

=
 (3.7) 

Thus, for each historical record in I an associated di can be calculated, the collection of di 

forms a sampling space of standard deviations D = {d1, d2,…, dn}. If the final settlement 

value follows a normal distribution of Nd(μ,σ) = Nd(FPi, vt), the distribution of D will be a 

standard normal distribution, Nd(μ,σ) = Nd(0, 1).  

Implied Volatility Possibility Space

ln(Underlying Asset's Value)

Possibility

 

Figure 3: Market Expected Possibility Space generated by (FP, Vt) 

 

To observe the behaviors of (FP, IV), this study uses the option and futures prices of Taiwan 

Stock Exchange Capitalization Weighted Stock Index (TX) from 24/12/2001 to 31/12/2006 in 

order to testify the results, I=[24/12/2001,31/12/2006].  

The risk-less interest rate r applied is monthly fixed deposit interest rate collected from the 

Central Bank of Taiwan. The calculation results of D are accumulated into Figure 4 in order 

to compare to normal distribution Nd(0, 1), the (mean, standard deviation) of D is (0.0755, 

1.1066) respectively. 

σ = Vt σ =Vt

μ = FP 
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Implied Volatility Distribution Map
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Figure 4: The actual implied volatility distribution map of (FP, IV) compared to the normal distribution, 

D(µ,σ,skewness,kurtosis) = D(0.0755, 1.1066) 

Figure 4 exhibits that the distribution of D is roughly similar to Nd(0,1) and is skewed left 

and peaked compared to Nd(0.0755, 1.1066) but slightly flatter and skewed right compared to 

Nd(0,1) with thicker tails. In another words, the actual final settlement values of Taiwan Stock 

Index futures and options roughly follow the behavior of market expectation formed by FP 

and IV with slightly larger volatilities. Another interesting observation is that there are two 

possibility peaks located at +0.5 and -0.5 standard deviations. This phenomenon indicates that 

the final settlement value of the underlying asset tends to bias half an implied volatility in (FP, 

IV) distributions.  

Using the close price of stock index instead of the FP in (3.7), this study generates another 

possibility space formed by IV only. Let D’ = {d’1, d’2,…, d’n}, the (3.7) becomes: 
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The computed result of D’ in I are summarized into Figure 5. Compared to normal 

distribution Nd(0, 1), the (mean, standard deviation) of D’ is (0.046030, 1.057034) 

respectively. 

 

Implied Volatility Distribution Map
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Figure 5: The market implied volatility distribution map of (S, IV) compared to the normal distribution, D’(µ,σ) 

= D’(0.046030, 1.057034) 

Figure 5 exhibits that the distribution of D’ is more similar to Nd(0,1) than D and is skewed 

left and peaked compared to Nd(0.046030, 1.057034) but slightly flatter and skewed right 

compared to Nd(0,1) with thicker tails. Comparing D and D’, the actual final settlement 

values of Taiwan Stock Index futures and options roughly follow the behavior of the 

distribution map formed by FP and IV but even closer with the expectation of S and IV.  

The cumulative possibility distributions from interval ±σ to ±3σ of normal distribution, D 

and D’ are listed below: 

Table 3: The cumulative possibility distributions 
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 ±σ ±2σ ±3σ 

Normal Distribution Value 0.6827 0.9545 0.9973 

Value 0.6290 0.9303 0.9888 
Distribution of D(FP, IV) 

Delta (%) -7.87 -2.54 -0.85 

Value 0.6611 0.9407 0.9952 
Distribution of D’(S, IV) 

Delta (%) -3.18 -1.41 -0.23 

Table 3 shows that the cumulative possibility of D is smaller than normal distribution about 

7.87% in plus minus one standard deviation while 0.85% smaller in ±3σ. D’ is even closer to 

normal distribution in our testing example, however, both D and D’ clearly indicates that the 

option price is slightly under estimated. Observing Figure 4, Figure 5 and Table 3, this study 

concludes that the behavior of TX does not follow normal distributions. However, this 

conclusion also suggests that an investor can roughly expect the final settlement value of a 

stock index will locate at the futures price with a standard deviation equals to the implied 

volatility derived from option price. With this conclusion, investors can expect the price 

behavior of their stock positions will roughly follow the price behavior of holding both 

futures and options combinations but most likely having an expectation bias of ±0.5 implied 

volatilities. Another observation in this research also suggests that (S, IV) combinations are 

more close to the price behaviors of a stock index than (FP, IV) combinations, that is, 

applying options only may obtain better risk management performance than using both 

options and futures combinations. 

Observing the testing results in section 3.1 and 3.2, this study concludes that the actual 

behavior of TX does not follow any mathematical distributions. More precisely, it is difficult 

to approximate an underlying asset like stocks by applying mathematical distribution 
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combinations. With this conclusion, this study first introduces the idea to price options with 

actual distributions. 

 

3.3 The computational approach 

Option price is the expected value of the payoff discounted at the risk-free interest rate over the 

risk-neutral distribution of the underlying asset. Thus, given the price S and an agreed-upon 

price K for the underlying asset applicable during a certain period T, the option value can be 

described as follows: 

C = E(Max(S-K, 0)) 

P = E(Max(K-S, 0)) 

Where C denotes the call option price, P represents the put option price, and E(.) is the expected 

value.  

In the real world the price of most assets varies continuously, and this variation is described as 

volatility σ. An option pricing model calculates C or P of the underlying asset under the 

circumstances (S, K, σ, T, r). The proposed computational model applies actual distribution 

maps to calculate the desired option price as illustrated in Figure 6. 
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Figure 6. The core concept of the proposed model 

 

Assume I days of sampling data, with each day containing J time ticks. Then for each sample of 

ith day and jth time tick Xi,j, the tick payoff rate Ri,j is  
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Notably, Ri,j can also be represented as ln((Xi+1,1- Xi,j )/Xi,j) or ln((Xi+1,n- Xi,j )/Xi,j) based on the 

assumptions of the BS model. However, the difference of applying logarithm or simple payoff 

rate is minor for high frequency applications. This study avoids unnecessary use of floating 

point functions to increase execution speed.  

When using this computational approach to price options, the Ri,j should be modified as: 

⎪
⎪
⎩

⎪
⎪

⎨

⎧

−

−

=
+

+

day settlement final  theon price closing by the determined is price settlement final  theif ,
)(

day settlement final  theon price opening by the determined is price settlement final  theif ,
)(

,

,,1

,

,1,1

,

ji

jini

ji

jii

ji

X
XXPV

X
XXPV

R
 where 

PV(.) denotes the present value associated with riskless interest rates. Notably, it makes 
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virtually no difference to calculate PV(.) for less than 50 days to maturity because the impact 

on interest rates is minor for short term options.  

The payoff rate can be preprocessed and stored in a database table for further use in achieving a 

reasonable execution speed when calculating option prices for practical use. 

Assume an option matures the next day and has strike price S, final settlement price St, exercise 

price K and current time-tick j. Given m sampling days (which can only generate m-1 sample 

entries), the call price C can be approximated as follows: 
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Similarly, the Put price P can be approximated as follows: 
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Consider the riskless interest rate r with time to maturity τ, the Call/Put price can be represented 

as: 
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However, when attempting to determine the option price using (3.9) and (3.10), it quickly 

becomes obvious that the calculated price does not follow the put-call parity rule because the 

mean value µ of a actual distribution does not equal zero (implying the actual distribution is not 

risk-neutral). Notably, arbitraging opportunities occur when the distribution is not risk-neutral. 

Furthermore, the actual distribution has its own volatility which is difficult to change. For 

example, if a real payoff distribution is formed based on a ten year period of sample data and 
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has a standard deviation σ1, but the forecasted volatility of the target option is σ2, then the option 

must be priced using a distribution with a standard deviation σ2 rather than σ1. If the intrinsic 

volatility of the actual payoff distribution cannot be transformed to fit the short term volatility, 

the pricing error will be too large for practical use. Given the difficulty of changing the mean 

value without influence the variance, this study established a computational method for 

adjusting both the mean value and variance of an existing distribution to obtain the desired 

values while maintaining a similar distribution to the original. 

To obtain risk-neutral characteristics based on the actual distribution, the mean µ of the 

sampling data must be zero. By observing the actual distribution, if the µ changes from a 

positive value to zero, the occurrence probability of rightmost (larger) sampling data reduces 

while the leftmost (smaller) sampling data increases. Based on this phenomenon, a 

computational method can be developed for adjusting the mean value of the actual distributions 

by altering the sample occurrence possibilities.  

The first step is attaching a weighting factor wi to each sampled payoff rate Ri,j. Each wi is 

assigned an original value 1.0, indicating that it has a “sampling count” of 1. The Call and Put 

prices thus can be represented as 
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(Note that Ri,j’ is the standard deviation transformed payoff rate in 3.15) 

For each set of sampling data, the mean value µ’ and standard deviation σ’ can be calculated as: 
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 for the jth tick to maturity 

The second step is to adjust the weighting factors to transform the actual distribution into a 

risk-neutral manner. To achieve this, it is first necessary to sort the sampled payoff rates and 

position them on the X-axis with weighting factor 1. Assuming that the sample appearance 

probability changes linearly, the weighting factors can be rotated to modify the distribution, as 

illustrated in Figure 7. Consequently, by fixing the rotation point to X = 0, the weighting factors 

can be rotated clockwise to decrease the mean values or anti-clockwise to increase them. 

 

 

Figure 7. Rotating the factor weights clockwise decreases the mean value of the distribution 
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steps: 
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 (3.11) 

Let ma denote the slope of the weighting factors for Ri,j ≥ 0, while mb represents the slope of the 

weighting factors for Ri,j < 0. 

Weighting factor value

Ri,j0 

w = 1.0
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Thus, the weighting factor can be transformed as follows: 
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Combining (3.12) and (3.13) yields the following weighting formula: 
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 (3.14) 

This computational method can transform any distribution into a risk-neutral distribution while 

largely preserving the characteristics of the original, as shown in Figure 8.  
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Transformed Distribution Map
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Figure. 8 The transformed distribution after rotated the weighting factors 

 

After transforming the actual distribution into a risk-neutral distribution, the next step is to 

adjust its standard deviation. If the standard deviation after applying formula (3.14) is v, the 

desired standard deviation of the distribution map is v’; formula (3.14) then can be rewritten as: 
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Notably, v’ must be measured using the time to maturity scale (most option pricing applications 

use annual volatility). Supposing t days (t is a real number) to maturity and anticipated annual 

volatility is σ, v’ can be estimated by: 
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 (3.16) 

Formula (3.15) can transform the actual distribution into the desired volatility without affecting 

its mean value while maintaining a similar shape to the original distribution. Figure 9 shows the 
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transformed distribution. The option price thus can be determined via (3.9a), (3.10a), (3.11), 

(3.15) and (3.16). 

Transformed Distribution Map
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Figure 9. Transformed payoff distribution after applying formula (3.15) 

With the same concept, daily option price can also be calculated by the same formulas. Here 

is a short example to illustrate the calculating process. 

Example 1.  

Today, suppose TX = 6416. There are 10 days before maturity. The risk-less interest rate = 

0.02 and the current call option price on K=6400 is 76. We want to purchase a call option 

at K = 6400 tomorrow (days to maturity = 9). 

 

Using the following steps to obtain the Call price with the proposed model: 

 Step1: Selecting desired distribution DT-1 according to time to maturity T 

 Step2: Using formula (3.14) to adjust selected distribution risk-neutrally 

 Step3: Using binary search to obtain v’  

 Step4: Applying formula (3.14) to obtain the risk-neutral distribution DT 
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 Step5: Using v’ (in 3.15) to transform distribution DT and apply (3.9a) to get the price 

The calculating processes of this example are described as follows: 

 Step 1: Get distribution map of D10, which can use standard SQL to select the desired 

distribution map. 

SELECT PayoffRate, 1.0 as w  

 FROM DistributionMap 

 WHERE DayCount = 10 

 Step 2: Applying (3.14) to adjust the selected distribution risk-neutrally, the weighting 

factors are listed below: 

PayOffRate w
-1.174731 1.647186
-0.700737 1.386052
-0.621213 1.342241
-0.617936 1.340435
-0.59823 1.329579

-0.571291 1.314737
-0.566551 1.312126
-0.564137 1.310796
-0.561379 1.309276

0.5123461 0.783126
0.5461306 0.768825
0.5617606 0.762209
0.564909 0.760877

0.5651684 0.760767
0.6291424 0.733687
0.7492108 0.682862
0.8516793 0.639488  

• Step 3: Using binary search to obtain v’ of D10 

(applying 3.9a) on D10, v’= 0.1468  
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 Step 4: Applying formula (3.14) to obtain the risk-neutral distribution D9 

Now, pricing the desired option by D9, select the desired distribution map: 

SELECT Rat, 1.0 as w  

 FROM DistributionMap 

 WHERE DayCount = 9 

Then, applying (3.14) to adjust D9 distribution risk-neutrally. 

 Step5: Using v’ (in 3.15) to transform distribution D9 and apply (3.9a) to get the 

price. 

Calculate v of D9, v = 0.07;  

Apply (v’, v) = (0.1468, 0.07) into (3.15) and (3.9a), Call Price = 69.66 

 

In practical use, if a trader or researcher wants to generate a user defined distribution for 

option pricing, he can use the following steps: 

Step 1. Choose a random number generator: 

 Properly choose a random number generator for generating samples. 
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Step 2. Design distribution maps: 

 Figure out the desired distribution shape, and then use random generators to produce 

samples. For example, if a researcher wants to generate a twin peak distribution located at 

exactly 0.5 and -0.5 stand deviations. He can generate 5,000 samples with Max(N(0.5, 1), 0) 

and then produce another 5,000 samples with Min(N(-0.5, 1), 0). It is almost sure that the 

generated distribution map is not risk-neutral because the mean value of the samples does not 

equal to zero. However, the researcher may safely apply the proposed model to obtain 

unbiased option values that follows put-call parity. 

Step 3. Modify distribution maps: 

If the researcher does not satisfy with the produced distribution map, he may generate 

other sampling data and mixes them into the existed distribution maps. For example, if the 

researcher wants to increase the thickness of the tail at +0.9 standard deviation and -0.9 

standard deviation, he may simply generate 50 samples of N(0.9, 1) and N(-0.9, 1) and mixes 

them with the pre-generated samples. 

 

3.4 The pricing algorithm 

The full pricing algorithm comprises two parts. The first part is the algorithm for preparing the 

distribution map, while the second part is the pricing algorithm.  

 

3.4.1 The actual distribution generating algorithm 

This algorithm is used to generate the actual distribution map to accelerate the calculation 

process. Because the actual distribution is repeatedly reused for the pricing algorithm, it is 

optimum to insert new sampling data into the existing distribution maps at the beginning of 

every trading day (or after trading hours). This algorithm requires minimal execution time if 
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updates are daily performed. SettlePrice indicates the opening or closing price for the asset 

(depending on whether the final settlement price is determined based on the opening or closing 

price on the final settlement day) on the specified date TransactionDate. The sampling data for 

the previous day are gathered in a data set {TimeTicks, TickPrice} that contains the time tick 

count and tick price of the underlying asset. The results are stored in the DistributionMap table 

with the primary index set to (Transaction_date, Time_Ticks). The Transaction_date field 

represents the sampling date, the Time_Ticks field indicates the time tick counts of the sample, 

and the Return_Rate field stores the asset return rate.  

 

Algorithm MakeRealDistribution 

Input: SettlePrice, TransactionDate, {TimeTicks, TickPrice} of previous trading day 

Output: DistributionMap(Transaction_date, Time_Ticks, Return_Rate) 

Begin  

 /* Clear old data to prevent duplication */ 

DELETE FROM DistributionMap  

 WHERE Transaction_date = TransactionDate  

/* Insert new data */ 

 For Each element pair in {TimeTicks, TickPrice} 

INSERT INTO DistributionMap (Transaction_date, Time_Ticks, Return_Rate) 

VALUES (TransactionDate, TimeTicks, SettlePrice/TickPrice) 

 End For 

End Algorithm 

 

In practical use of the DistributionMap, end users can also write their own programs to generate 
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any desired mathematical distribution (or combinations) and store the generated samples into 

the DistributionMap table for the pricing algorithm to calculate the desired option price. For 

example, a researcher may use two lognormal distributions to simulate the twin-peak 

distribution as observed for the Taiwan stock market to verify whether it is worthwhile to apply 

two lognormal distributions to the BS model to improve the pricing performance. Researchers 

do not need to worry whether the two distribution combinations disobey the risk neutral 

characteristic before deriving sophisticated mathematical solutions. This characteristic 

increases the versatility of the pricing algorithm for cross field applications.  

 

 

3.4.2 The pricing algorithm 

This algorithm is used to price a European option with DistributionMap table generated by 

MakeRealDistribution. Suppose that the parameter set (S, K, σ, T, r) used to calculate the option 

price is (SpotPrice, ExercisePrice, Volatility, TimeTicks, RisklessInterestRate), the pricing 

algorithm can be described as follows: 

 

Algorithm GetOptionPrice 

Input: SpotPrice, ExercisePrice, Volatility, TimeTicks, RisklessInterestRate, TimeTicks  

Referenced Table: DistributionMap 

Output: CallValue, PutValue 

Begin 

Define TargetRate = ExcPri/CrnPri – 1 

Define TargetMeanVaue = 0 //Suppose that the transformed distribution is //Risk-Neutral 
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SELECT Return_Rate, 1.0 as Weight   

FROM DistributionMap 

WHERE DistributionMap.Time_Ticks = TimeTicks 

INTO CURSOR TmpCursor ORDER BY Return_Rate ASC 

//Generate Weighting Factors 

 

 Let Cnt = record counts of TmpCursor 

 

Summation from TmpCursor  

Let A = ΣReturn_Rate for Return_Rate ≥ 0 

Let B = ΣReturn_Rate for Return_Rate <0  

Let A2 = Σ(Return_Rate ^2) for Return_Rate ≥ 0 

Let B2 = Σ(Return_Rate ^2) for Return_Rate < 0 

End Summation   //Formula (3.11) 

 

Let OriginalSD = the standard deviation of Weight in TmpCursor 

Let DaysToMarurity = transfer Timeticks to days to maturity 

 

Let TransformedVolatility = Square Root of (DaysToMaturity*Volatility^2)/365  

     //Formula (3.16) 

  

For Each record in TmpCursor  

Replace Weight With (TransformedVolatility/OriginalSD) * (1 – (( A + B) * B/( B * A2-A * 

B2)) * Return_Rate)For Return_Rate ≥ 0 



42 

Replace Weight With (TransformedVolatility/OriginalSD) * (1 + (( A + B) * A/( B * A2 - A 

* B2)) * Return_Rate)For Return_Rate < 0 

End For     //Formula (3.15) 

 

SELECT SUM(Weight * (SpotPrice * (1 + Return_Rate) - ExercisePrice))/Cnt 

 FROM TmpCursor 

 WHERE TmpCursor.Weight >= TargetRate 

 INTO VARIABLE CallValue  //Formula (3.9a), processed by SQL 

 

 SELECT SUM(Weight * (ExercisePrice - SpotPrice * (1 + Return_Rate)))/Cnt ; 

FROM TmpCur  

WHERE TmpCursor.Weight < TargetRate 

INTO VARIABLE PutValue  //Formula (3.10a), processed by SQL 

 RETURN CallValue, PutValue 

End Algorithm 

 

The above algorithm is carefully optimized for modern database applications involving SQL 

syntax and summarizing operations. The elimination of unnecessary floating point functions 

also increases the execution speed.  

4. Empirical tests and future studies 

This session first performs an empirical test and then discusses future studies of the proposed 

pricing model. 
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4.1 Empirical test 

This study uses tick price data for the period from 03/01/2001 to 17/12/2003 to verify the 

feasibility of using the proposed computational methods to price TAIEX options using real 

payoff distributions. There were 270 data recorded for each sampling day, and given the sample 

data set contained 216,810 entries. Data for the period 03/01/2001 to 31/12/2002 were adopted 

as the initial distribution map, and pricing errors in high frequency transactions were verified on 

the last trading day of each month during 2003. The trading hours of the TAIEX run from 9:00 

to 13:00. The final settlement price was taken to be the opening price of the final settlement day. 

The verification procedure is presented below: 

 

Step 1: Generate the initial distribution map. 

 Filter out incorrect and duplicated data in the database, generate the distribution map using 

the MakeRealDistribution algorithm, and store it in a database table DistributionMap 

(Transaction_date, Time_Ticks, Return_Rate) that gives market price data on a per-minute basis 

between 03/01/2001 and 31/12/2002. Because the trading hours are 9:00 to 13:30, the first 

minute (9:01) is taken as Time_Ticks = 1 while the last (13:30) is Time_Ticks = 270. The 

Return_Rate Ri,j equals the tick price of the TAIEX divided by the opening price for the 

following day: 

ji

i
ji X

X
R

,

1,1
,

+=  

 

Step 2: Determine the option price. 

 This study uses an out-of-sample strategy to verify the pricing performance. The nearest 

three in-the-money and out-of-the-money call/put option prices were then calculated and priced 
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using the GetOptionPrice algorithm for every time tick. The same option prices were also 

calculated using the BS model as a comparison. The riskless interest rate was the monthly fixed 

deposit interest rate used by the Central Bank of Taiwan.  

 

Step 3: Estimate the pricing efficiency. 

 The option price is the expected value of St > K for a call option, or St < K for a put option 

at maturity. Restated, for an ideal call price C = MAX(St – K, 0), the put price should be P = 

MAX(K – St, 0). Consequently, if an individual spends C dollars to purchase a call option, they 

should obtain C dollars by holding the option until maturity. The returning ratios Rc and Rp 

were calculated for each option price to determine the pricing efficiency where the ideal value 

is 1.0:  

∑
∑ −

=
C

KS
Rc t )0,max(  for call options, and 

∑
∑ −

=
P

SK
Rp t )0,max(  for put options. 

 

Table 4 lists the final results. According to the empirical test, the computational method 

outperforms the traditional BS model in pricing performance. 

 

Table 4. Pricing error. 
 Computational Method Black-Scholes Method

Call Option, Rc 

Pricing Error 

        0.9290

7.10%

        0.9037

9.63%

Put Option, Rp 

Pricing Error 

        0.9874

1.26%

        0.9081

9.19%

 

Besides the pricing performance test, the execution speed was tested using Microsoft Visual 

FoxPro. The computational option model examined in this study is sufficiently efficient to price 
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1,000 option prices in 16 seconds (approximately 0.02 seconds each) where the distribution 

map contains 216,810 sample data, and is run on a 1GB RAM Intel Pentium4 2.6 GHz CPU 

personal computer system. All analytical results indicate that this computational method 

provides good pricing performance and efficient execution speeds when run on modern 

personal computer systems. 

 

4.2 Future studies 

Theoretically, pricing options must apply risk-neutral concepts in order to obtain unbiased 

prices. However, there always exist the needs to price options by user’s personal speculations. 

This session briefly discusses future studies about determining option pricing via both 

risk-neutral and none risk-neutral view points. 

Most option pricing theories suggest the use of risk-neutral distributions to price options. The 

reason is simple because those models assume that the underlying asset’s price is 

unpredictable. In another words, if everyone can predict the future price, there will be no one 

lost money. Because the future price is unpredictable, most pricing models describe the 

underlying asset’s behavior as “Random Walk”. According to random walk hypothesis, the 

future price of an underlying asset is independent to its historical price while the future price 

is dependent only to the current price. For example, if one person tosses a fair coin that he 

wins 10 dollars if upper side appears or losses 10 dollars if opposite side occurs. If that person 

owns 100 dollars, the next state he will own either 90 dollars or 110 dollars. That is, the future 

is unpredictable but the next state is dependant to the current state. For that reason, traditional 

option pricing theories suggest the use of risk-neutral distributions for option pricing. 

However, it also lefts a mysterious question: which volatility is correct? Even most option 

pricing models apply risk-neutral distributions; however, investors have to decide the right 
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volatility value used for pricing. Thus, investors are bewildered of choosing the correct 

volatility value for risk-neutral pricing while it is also difficult to select the “right” volatility 

because it also varies consistently as illustrated in Figure 10. 
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Figure 10. 30 days sliding window volatility of TX 

In order to obtain the right volatility used in option pricing models, the most famous 

methodologies may be ARCH [63] or GARCH [64] approaches. Those methodologies have 

been proved that they can predict future volatility with an acceptable level [40][65]. For future 

studies on the proposed computational model, it may combine the use of ARCH or GARCH 

models to predict future volatilities in order to obtain more accurate prices. Also, artificial 

intelligence (AI) related models may be applied to forecast future volatilities for obtaining 

more precise prices with the proposed model. 

Additionally, the proposed model uses actual distributions instead of mathematical 

distributions. Thus, it is also feasible to use “proper” periods of sampling data to dynamically 

construct the desired distribution maps. With this approach, it is possible to use pattern 
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matching techniques to determine which period of past samples best fits current conditions. 

And then, uses only properly fitted samples to build up the distribution maps for calculating. 

To sum up, it is possible to risk-neutrally optimize the proposed model by optimizing 

forecasted volatilities or sampling periods. 

For example, if current volatility change looks like the blue area illustrated in Figure 11, users 

may use pattern matching technique or other methodologies to determine the most similar 

areas in the past (as in red periods). Using only similar periods as the sampling data, the SQL 

may be look like: 

SELECT * FROM DistributionMap  

WHERE DistributionMap.SamplingDate IN RedPeriod AND DistributionMap.DayCount = 

DaysToMaturity 

 

Figure 11. Selecting proper sampling period according to volatility change 

Although it is vital for theoretical option pricing models to obey risk-neutral perspectives, it is 

also equally important for individual investor to have his personal view to the future behavior 

of the underlying asset. However, if the investor has his own perspective, the derived option 

prices will not behave risk-neutrally. That is, the put-call parity will be violated if the investor 

applies his personal views. Figure 12 demonstrates the TX index values from 1/1/2001 to 

9/3/2007. It is also clear that the underlying asset’s price behaves differently from volatility 
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values. 
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Figure 12. TX index values 

If an investor has his personal viewpoints to the future, it is worth to use pattern matching 

techniques to decide which interval of the historical period may reflect the future prices. And 

then, applies the selected samples as the distribution map and turn off the weighting factor 

rotating mechanism to price the options. However, this methodology cannot provide 

risk-neutral prices.  

 

Figure 13. Selecting proper sampling period according to current pricesc 
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For example, current price is marked in blue color as illustrated in Figure 13, users may use 

pattern matching techniques to determine the most similar periods of the past as the desired 

distribution map. The SQL command may look like this: 

SELECT * FROM DistributionMap  

WHERE DistributionMap.SamplingDate IN RedPeriod AND DistributionMap.DayCount = 

DaysToMaturity 

It is also worth mention that applying piecewise linear regression (PLR) methodologies may 

be applicable for pattern matching. Because PLR uses limited regression lines to describe a 

certain system characteristics, it is ideal to match different patterns by minimizing mean 

square errors between different set of PLRs.  

Here is a simple example to demonstrate the applicable usage of PLR. The observations on 

actual payoff distributions have been discussed in the previous paragraphs. However, there 

still lacks detailed analysis. In order to provide in-depth information about the actual 

distributions, this study applies piecewise linear regression to generalize discrete distributions 

gathered from historical samples. 

When observing actual distributions, the distribution is displayed with X-axis represents 

payoff rate and Y-axis indicates frequency ratio as illustrated in Figure 14.  
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        50 Days Payoff Distribution
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Figure 14. 50 days payoff distribution with 40 intervals 

In order to generate Figure 14, a researcher must first determine the intervals to cumulate 

sample counts. In this case, the interval counts equals 40. The reason to apply 40 intervals is 

because this study first testified several interval counts and then chose a smoother looking one. 

However, this method can only illustrate a rough shape of a certain distribution. The subtle 

behavior of such distribution is enclosed in histograms. For example, the same distribution 

map of Figure 14 will become into Figure 15 if applying 120 intervals. 
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50 Days Payoff Distributions
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Figure 15. 50 days payoff distribution with 120 intervals 

By observing Figure 15, it is obvious that it requires applying certain methodologies to 

describe a distribution in a more meaningful way. Among various possible methodologies, 

this study demonstrates the use of PLR methodology. The term “piecewise” is to propose 

different lines over different intervals of a system with scattered (or polynomial) set of X-Y 

data. For a piecewise system, using linear regression lines for representing different intervals 

is called piecewise linear regression as illustrated in Figure 16. Although it is sophisticated to 

optimize the regression line (for example, Tanaka [59][60] and improved by Yu [61][62]), this 

uses simple piecewise linear regression (without break-point optimization) for a preliminary 

analysis. 
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Figure 16. Piecewise linear function concept 

Here is the question: what shape does all payoff distribution change related to days to 

maturity? In order to observe all distribution maps in the same scale, the payoff rates are 

transferred into counts of standard deviations: 
)(

'
Ω

=
Std

RR  where Ω∈{D1, D2, …Dn}. 

Note that the standard deviation of every transformed distribution becomes 1.0 so that it will 

be easier to observe the frequency peak value of each distribution. Now, it is obvious that if 

all the distributions have the same standard deviation then the distributions with higher peak 

value will be narrow and sharp around their mean value.  

The formulas used for linear regression is: 

Y’ = a + bX 

where Y’ represents the estimated Y value (frequency count), X is deviation count, a is 

intercept and b is slope.  

Piecewise

Piecewise Linear Function Lines
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This study uses 17 piecewise linear regression lines to approximate the actual distribution. 

That is, each line contains 8 intervals. A sample piecewise linear regression approximation is 

listed in Figure 15. 

        50 Days to Maturity by Piecewise Linear Regression
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ActualFrequency Piecewise Linear Regression

 

Figure 17. A piecewise linear regression sample 

In Figure 17, the frequency of D50 peaks at (-0.12539, 0.0274542). Collects every peak value 

of each day to maturity distribution map, the results can be summarized in Figure 16. Note 

that the number pairs in Figure 16 denote (Days to Maturity, Highest Frequency). For 

example, (4,0.04462502) means that the highest frequency is 0.04462502 in the payoff 

distribution of 4 days to maturity (D4).  
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Figure 18. Frequency peak values of different days to maturity 

Observing Figure 18, it is obvious that the frequency peak value of actual distributions varies 

with time to maturity. However, in the real world (at least in Taiwan stock market), short term 

options always have larger transaction amount. Long term options with days to maturity less 

than one month generally have less liquidity. For that reason, investors tend to apply short 

term options (less than one month) for hedging purpose. According to Figure 16, it is obvious 

that the frequency peak value changes according to days to maturity. A distribution with 

standard deviation equals 1.0 with higher peak values means that such distribution is sharp 

around central points. The highest peak occurs around 4 to 5 days to maturity, that is, the final 

week is most important. The lowest peak occurs around 15 days or half a month before 

maturity. Another interesting finding is that the actual payoff distribution is flattest at half a 

year to maturity (183 days).  
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5. Conclusions 

It is important to obtain fair option prices because it is useful to deliver a theoretical fair price 

of a certain option to provide traders with a rational basis that can be used to judge whether 

actual option prices in the marketplace are reasonable, and to help investors determine where 

to place bids and offers. Furthermore, cross field application such as Real Option Analysis 

must apply option pricing models. As a result, almost all expected value related applications 

will benefit from option pricing models. 

Most modern option pricing models apply mathematical distributions to approximate 

underlying asset behavior and attempt to calculate the desired option price using close form 

formulas. However, limitations on current option pricing models also decline the use of 

mathematical option pricing models. For example, the limitations may be a) too many 

assumptions, b) mismatch between real payoff distributions and mathematical distributions, 

and c) lack of flexibility & limited application ranges. 

In order to construct a new option pricing model, this study first observes actual payoff 

distributions from the real world. The empirical evidence based on observation of the actual 

payoff distribution suggests that the actual distribution of a stock index is time variant and 

cannot be described using mathematical distributions, meaning the approach of most options 

pricing models is ineffective. To optimize the pricing performance, this study first introduces a 

computational model for pricing European options via time variant distributions and then 

demonstrates its practical feasibility using actual payoff distributions.  

This study solves two key issues in applying user defined distribution to options pricing. First, 

this study uses weighting factors to adjust the mean value of a none-risk-neutral distribution to 

zero while maintaining its distribution characteristics in accordance with the put-call parity rule. 
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Second, this study scales the distribution to adjust its standard deviation to meet the needs 

associated with applying dynamic volatility to practical problems. Solving these two issues 

makes this computational model highly suitable for cross field applications where 

mathematical distribution cannot be used to obtain feasible solutions, particularly for situations 

involving time variant distributions.  

Although the proposed computational method is practical for real world application, room still 

exists for improvement. First, the weighting factor rotating method used to adjust the value of 

the distribution means can be enhanced. This study assumes linearly changing weighting 

factors. Nonlinear modification methodologies require further study. Second, this study uses a 

simple method based on adjusting standard deviation that may not be able to deal with complex 

applications. Third, the computational method must be simplified before it can be applied to 

execution speed critical applications. 
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