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We consider noise-induced reciprocating motion on the nanoscale and its rectification to directed motion
using a simple model in which transitions between two fluctuating states occur through two reaction channels
with fluctuating transition rates. The fluctuations of states and transition rates arise from equilibrium thermal
and external nonthermal noise which is in either case position-dependent. The model is equivalent to a Brownian
particle hopping in a periodic double-well potential which randomly switches between two profiles. With a
nonequilibrium noise, a generalized driving force may be regarded as the sum of two forces: one resulting
from energy fluctuations and the other from fluctuations of the spatial dependence of the transition rates. This
suggests two mechanisms, energetic and informational, by which the motion occurs. The reciprocating motion
results in directed motion if rectified by asymmetric fluctuations of potential barriers. The energy conversion
efficiency is calculated and the conditions to maximize it are established.

I. Introduction

Unbiased nonequilibrium fluctuations produced by a chemical
reaction or any other external process can cause directed motion
in small-scale systems. The problem of noise-induced transport
has been discussed in different contexts by approaches of
varying rigor and sophistication.1-6 Investigations in this area
are primarily aimed at gaining insight into the operation
principles of molecular motor proteins7 and ion pumps.8 Another
motivation comes from artificial molecular9 and nanoscale
machinery design:10 this rapidly developing field calls for
synthetic structures which, if supplied with energy and informa-
tion, can controllably move molecular-level systems and
interface them with the macroscopic world.6

Unbiased nonequilibrium fluctuations in an intrinsically
structured and conformationally flexible system can induce
oppositely directed motions in different conformations. If the
system is symmetric, such motions are mutually canceled so
that no net motion occurs. The input energy, though converted
to the mechanical energy of undirected motion on the nano
length/time scale, is finally dissipated as heat. In what follows,
motion of this kind (resembling a futile circle in biochemistry11)
will be referred to as reciprocating motion. Provided a sym-
metry-breaking rectification mechanism is present, the recip-
rocating motion can be partially converted to directed motion.
With this strategy, energy conversion involves two steps, by
analogy with a macroscopic combustion engine: the energy
supplied by a nonequilibrium source is first converted to
reciprocating mechanical motion at the nanolevel, which is then
rectified.

The present paper addresses the theory of the above-
mentioned two-step energy conversion. Unlike previous studies12,13

invoking the continuous Fokker-Planck description, here we
attack the problem by using the discrete chemical kinetic
method5,14-20 which is analytically easier and often provides
exact solutions for complex stochastic models in terms of
transition rates between the accessible states of the system. We
refine the previously developed model21 by incorporating the
position dependence of the interconformation transition rate
constants. With this generalization, the model22 includes the
spatial dependence of the system reactivity that fundamentally
improves its biological relevance. We show that the reciprocat-
ing motion is caused not only by well and barrier fluctuations
but also by fluctuations of the spatial dependence of the
transition rates. The energetic and the entropic contributions to
the driving force suggest two mechanisms of the motion
generation: energetic and informational. We also show that the
directed motion arises due to a rectifying effect of asymmetric
fluctuations of potential barriers.

The general kinetic analysis of the model is presented in
section II. The derived expressions for the net circulation and
reciprocating fluxes are discussed in terms of an equivalent
flashing potential model in section III. For the antisymmetric
version of the model (see section IV), explicit formulas are
obtained for both the fluxes, the rectification coefficient, and
the energy conversion efficiency. This allows us to reveal some
interesting regularities, as for instance, the conditions for high-
efficiency operation of the Brownian motor under study.

II. General Kinetic Model

Consider a system with two spatially separated states A and
B, each having two randomly interchanging conformations “+”
and “-”. Assume that intraconformational transitions occur
through two reaction channels R and �, with rate constants
R(�)AB

( and R(�)BA
( (see Figure 1a), and are caused by equilib-
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rium (thermal) fluctuations only. Assume also that interconfor-
mational jumps are due to both thermal and nonthermal
(external) noise and characterized by certain rate constants γA,B

( ,
each specified by the corresponding state and conformation. Let
FA
( and FB

( denote the respective probabilities for the system to
be in states A and B, with regard to the conformations involved.

The reciprocating motion between A and B can easily be
conceived if the system has the only reaction channel R. Then
the probability flux through channel R between states A and B
as well as the fluxes between the + and - conformations within
A and B appear as (see Figure 1 neglecting channel �):

JR
( ) RAB

( FA
( - RBA

( FB
(, JB ) γB

+FB
+ - γB

-FB
-,

JA ) γA
-FA

- - γA
+FA

+ (1)

In a steady-state regime, state populations do not vary with time
(dFA

(/dt ) dFB
(/dt ) 0), so that JA ) JR

+ ) -JR
- ) JB. It is natural

to define the reciprocating flux between states A and B as Jr )
JA ) JB. The net circulation flux J ) JR

+ + JR
- is nullified thus

ruling out directed circulation.
The second reaction channel �, with the corresponding

transition rate constants �AB
( and �BA

( (see Figure 1a), gives rise
to an additional flux J�

( ) �BA
( FB

( - �AB
( FA

(. Then the steady-
state relations between the fluxes read JA ) JR

+ - J�
+ ) JB and

JB ) J�
- - JR

- ) JA (see Figure 1b). The reciprocating flux is
found as before, whereas the net circulation flux is now given
by J ) JR

+ + JR
- ) J�

+ + J�
-. The latter suggests that two reaction

channels permit the emergence of directed circular motion under
nonequilibrium conditions,21 which is especially evident when
one conformation has the only reaction channel R and the other
the only alternative channel � (e.g., J�

+ ) 0 and JR
- ) 0). In this

case, the reverse fluxes are blocked and reciprocating motion
is completely rectified. Generally, when motion is induced by
unbiased nonequilibrium noise, it is reasonable to introduce the
rectification coefficient κ defined as the ratio of circulation to
reciprocating flux:

κ ≡ J/Jr (2)

The coefficient κ characterizes the degree of conversion from
reciprocating to directed motion. It should be emphasized that
such a definition (and, moreover, our two-step approach to
energy conversion, which implies κ e 1) becomes meaningless
if the fluxes J and Jr have different origins (an example of such
situation is presented below).

Expressions for the quantities of interest in terms of the
transition rate constants are derived from the stationary

solution of the master equation for the probabilities FA(B)
( (see

Appendix 1):

J ) ∆-1 ∑
σ′*σ)(

[(RAB
σ′ �BA

σ′ - RBA
σ′ �AB

σ′ )(�B
σγA

σ + �A
σ γB

σ +

γA
σ γB

σ) + (RAB
σ �BA

σ′ - RBA
σ′ �AB

σ )γA
σ′γB

σ] (3)

Jr ) ∆-1(�A
+�B

-γB
+γA

- - �B
+�A

-γA
+γB

-) (4)

where ∆ is defined by formula (A1.5) and the following notation
is used:

�A
( ) RAB

( + �AB
( , �B

( ) RBA
( + �BA

( (5)

Note that the expression for the net circulation flux, eq 3, in
fact coincides with the solution for the mean velocity of a
particle moving along two periodic parallel coupled chains with
four different cites in each period obtained in ref 18 (see eq 11
there), where the same kinetic model was considered to study
its dynamical properties, such as mean velocity and diffusion
coefficient.

It is readily seen from eqs 3 and 4 that both J and Jr vanish
if the detailed balance conditions are satisfied (the transitions
are driven by thermal noise only):

RAB
( �BA

( - RBA
( �AB

( ) 0, �A
+�B

-γB
+γA

- - �B
+�A

-γA
+γB

- ) 0
(6)

Condition 1 specifies equilibrium within either conformation
and condition 2 between the conformations. When imposed
together, the two conditions imply a fully equilibrium state of
the system under study.

Note that if the rate constants of the R and � channels are
the same for both conformations, then fluxes 3 and 4 take the
form

J )
RAB�BA - RBA�AB

�A + �B
(7)

Jr )
�A�B(γB

+γA
- - γA

+γB
-)

(�A + �B)[�B(γA
+ + γA

-) + �A(γB
+ + γB

-) +

(γA
+ + γA

-)(γB
+ + γB

-)]
(8)

In this case, it follows from eq 7 that directed motion (i) does
not depend on γA

( and γB
(; (ii) can occur only in a nonequilibrium

state within either conformation (caused, e.g., by a generalized
external force); and (iii) requires the existence of two reaction
channels. On the other hand, eq 8 shows that reciprocating
motion (i) can occur only in the absence of interconformational
equilibrium, i.e., at such state-dependent rate constants γA

( and
γB
( that γA

( * γB
( and γB

+γA
- - γA

+γB
- * 0; and (ii) requires the

only reaction channel (R or �). Note that the fluxes J and Jr

have different origins. So the case of nonfluctuating rate
constants R’s and �’s is an example where the two-step approach
to energy conversion is inapplicable (see remark after eq 2).

In what follows, we exploit the results of this section to treat
not only the fluxes but also energy conversion efficiency (the
ratio of mechanical energy output to energy input). We then
proceed to determine explicit expressions for the R- and
�-channel rate constants in terms of conformation potential
profiles.

III. Flashing Potential Model

The above-presented general kinetic model can be well
illustrated by an equivalent model of Brownian particle motion

Figure 1. Schematic representation of a kinetic model in which
transitions between two states A and B, each having two randomly
interchanging conformations + and -, occur through two reaction
channels with fluctuating transition rates R( and �(. The interconfor-
mational transitions are characterized by rate constants γA,B

( , each
specified by the corresponding state and conformation. Panels (a) and
(b) show diagrams for the rate constants and the corresponding fluxes,
respectively.

1960 J. Phys. Chem. B, Vol. 114, No. 5, 2010 Rozenbaum et al.

http://pubs.acs.org/action/showImage?doi=10.1021/jp910508t&iName=master.img-000.jpg&w=209&h=95


in a fluctuating periodic two-well potential. With the kinetic
approach, the particle can be found in either conformation-
dependent potential well corresponding to state A or B, and it
can surmount interwell barriers, with two conformation-de-
pendent heights, just as the reaction in the kinetic model can
proceed through two reaction channels R and � (see Figure 2).
The potential minima and maxima fluctuate between two value
sets, by analogy with the fluctuations of the states A and B and
the R- and �-channel rate constants. The principal difference
between the present model and the models of this type proposed
earlier15,21,23 is that here not only the intraconformational but
also the interconformational rate constants are position depend-
ent, i.e., γA

( * γB
(.

According to the Arrhenius law, the rate constants are written
in the exponential form: a negative exponent is equal to the
ratio of the energy barrier to be surmounted by the particle to
the thermal energy kBT (kB is the Boltzmann constant and T is
the absolute temperature) and a pre-exponent (defined for
various motion regimes in terms of the Kramers theory24)
determines an attempt frequency of barrier-crossing. We can
thus present the multiplicative form of the rate constants
concerned (see Appendix 2):

RAB
( ) uA

(VR
(�AR, RBA

( ) uB
(VR

(�BR,

�AB
( ) uA

(V�
(�A�, �BA

( ) uB
(V�

(�B� (9)

We use the shorthand symbols for combinations of model
parameters, each having clear physical meaning: VR( and V�

( are
determined solely by the maxima of the potential profile for
the conformations + and -, which correspond to the barriers
R and �; uA

( and uB
( are specified by the minima of potential

wells A and B and by some other well parameters (their
curvature etc.); � account for the effect of external forces (a
load force or a concentration gradient) on the transition rate
constants in the conformations + and - (they are labeled by a
pair of indices for the certain potential well and the neighboring
potential barrier). As an example, the parameters uA

( and VR(
designate kA

( exp(UA
(/kBT) and exp(-UR

(/kBT), respectively,
where UA

( and UR
( are the minimum and the maximum of the (

potential profile for well A and barrier R [for simplicity, we
assume that the pre-exponents are unchanged under conforma-
tional transformations, i.e., kA

+ ) kA
- and kB

+ ) kB
- (see the last

paragraph in Appendix 2)]. As an example for the parameter
�, consider �AR ) exp(-FlAR/kBT), where -F is the load force
and lAR ) xR - xA, where xA and xR are the positions of the
well A bottom and the barrier R top on the x-axis. As is seen,
the parameter �AR represents a reduction of the rate constants
RAB
( due to load-force-induced increase in the corresponding

potential barrier height. So in shorthand form, the factor RAB
(

�BA
( - RBA

( �AB
( , which is a direct measure of detailed balance

breaking in either conformation (see eq 6), can be written as

RAB
( �BA

( - RBA
( �AB

( ) uA
(uB

(VR
(V�

(�BR�A�[exp(-FL/kBT) - 1]

(10)

Here we have used the equalities �RB ) (�BR)-1, ��A ) (�A�)-1,
and �AR�RB�B���A ) exp(-FL/kBT), where L ) lAR + lRB +
lB� + l�A is the potential period. As follows from eq 10, in the
unloaded regime, F ) 0, there is equilibrium in either
conformation (but not in the whole system) (cf. eq 6).

Consider the unloaded regime in more detail. First, note that
all parameters � become unity and expressions 3 and 4 for the
fluxes J and Jr are significantly simplified on substituting the
R- and �-channel rate constants in multiplicative form 9:

J ) ∆-1(VR
+V�

- - VR
-V�

+)uB
+uA

-γA
+γB

-[exp(µS/kBT) - 1]

Jr ) ∆-1(VR
+ + V�

+)(VR
- + V�

-)uB
+uA

-γA
+γB

-[exp(µS/kBT) - 1]

∆ ) ∑
σ′*σ)(

{(uA
σ′ + uB

σ′)(VR
σ′ + V�

σ′)[(VR
σ + V�

σ) ×

(uB
σγA

σ + uA
σ γB

σ) + γA
σ γB

σ] + [uA
σ (VR

σ + V�
σ) +

uB
σ′(VR

σ′ + V�
σ′)]γA

σ′γB
σ}

(11)

Here we have introduced the quantity

µS ) kBT ln(uA
+uB

-γB
+γA

-

uB
+uA

-γA
+γB

-) (12)

which, as demonstrated in Appendix 2, specifies the chemical
potential of the unbalance source.

The meaning of µS becomes more clear when it is written in
terms of the model parameters:

µS ) UB
- - UB

+ - UA
- + UA

+ + kBT ln
γB
+γA

-

γA
+γB

- (13)

The equilibrium state implies thermal noise driven transitions
only, so that the interconformational rate constant ratios are γA(B)

+ /
γA(B)
- ) exp[(-UA(B)

+ + UA(B)
- )/kBT] and hence at equilibrium µS

) 0. Equation 11 shows that both the reciprocating and directed
fluxes are proportional to [exp(µS/kBT) - 1]. So nonzero values
of µS destroy the system equilibrium and determine the direction
and magnitude of the emerging fluxes. The sum (UB

- - UB
+ -

UA
- + UA

+) in eq 13 is the energetic contribution due to
fluctuations of well minima, and the last term in this equation
can be associated with the entropic contribution induced by the
state dependence of the rate constants. This suggests two
mechanisms by which the motion occurs: the energetic mech-
anism, in which the energy fed into the system in each transition
from one state to the other is converted into the particle potential
energy and then used to push the particle forward or back upon
relaxation, and the informational mechanism, which makes
nonequilibrium noise act as a source or sink of physical
information about the particle position. The observation that
there are two quite different mechanisms underlying the model
operation is one of the main findings of this work. Noteworthy
is that the concept of two mechanisms (energetic and informa-
tional) has been often used to study noise-induced transport in
several contexts.9,13,25-28 Here we focus not only on directed
motion but also on the reciprocating motion generation.

Figure 2. Juxtaposition of the flashing potential model to the simple
kinetic model presented in Figure 1.
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In the unloaded regime, the flux ratio giving motion rectifica-
tion coefficient, eq 2, reads

κ )
VR
+V�

- - VR
-V�

+

(VR
+ + V�

+)(VR
- + V�

-)
(14)

The fact that the rectification coefficient depends solely on
barrier parameters is another one of the main results of the
present paper. As eq 14 indicates, (i) |κ| e 1, as it should be,
and (ii) the motion rectification is only possible provided that
barrier fluctuations are asymmetric. The rectification coefficient
rises together with fluctuation asymmetry. For the κ value to
reach its maximum (unity), one of the barriers should be
infinitely high and its position should fluctuate by half a period
of the potential profile (V�

+ ) 0 , VR- ) 0). Then the reverse
particle flux is blocked in either conformation.

The important role of externally induced barrier fluctuations
was first recognized in studies of enzymatic catalysis14 and the
active transport of ions through cell membranes.29 The idea that
directed motion can be provided by appropriately raising and
lowering potential barriers and wells, with fluctuating barriers
acting as a series of gates, was later discussed in various
contexts.3,26 A different approach to exploit asynchronously
oscillating barriers for directed transport has been recently
suggested.30 The present work focuses on the rectifying effect
of asymmetric fluctuations of potential barriers. Importantly,
eq 14 holds true not only for the energy-driven motion
mechanism induced by potential well fluctuations but also in
the case similar to “chemical Maxwell demon”31 when the
motion is caused by the informational mechanism.

Now let us return to the general case, with nonzero value of
the load force, and discuss efficiency of energy conversion.
Alongside with the widely accepted efficiency definition based
on the thermodynamic consideration,31,32 various alternative
efficiencies (Stokes efficiency,33 efficiency at maximum power
output,34 Peclet number,35 etc.) and related quantities (like
entropy production) have been introduced and discussed in the
literature.36 We follow the thermodynamic definition: the
efficiency is given by the ratio of the mechanical work per unit
time done by the motor against the external force (power output)
to the free energy supplied per time unit by the source of
nonequilibrium (power input). In our model, the power output
is Pout ) FL J and the power input is Pin ) µS Jr (see eq A2.7
in Appendix 2), so that the efficiency reads

η ) FLJ
µSJr

) FL
µS

κ (15)

Note that η is proportional to the rectification coefficient, as
one would expect. Generally, the expression for the efficiency,
eq 15, is a rather complicated function of the model parameters.
A particular simple case, which can be treated easily, is that
where one of the barriers is infinitely high, so that V�

+ ) VR- )
0 , the fluxes J and Jr are equal and proportional to exp[(µS -
FL)/kBT] - 1, and the rectification coefficient becomes unity.
As the load force rises from zero to Fs, where Fs ) µS/L is the
stopping force in this case, the energy conversion efficiency
linearly increases and approaches unity in the vicinity of Fs. A
detailed analysis of the efficiency near the stopping point can
be performed in the limit of high (but not infinitely high) barrier
in a way similar to that proposed for the case with state-
independent rate constants.21

IV. The Antisymmetric Case

In order to obtain explicit expressions for the quantities of
interest, we reduce a number of independent parameters by

taking advantage of the antisymmetric version of the model.
Note that the antisymmetric model is characterized by the
highest energy conversion efficiency.21,23 Within the antisym-
metric model, wells A and B have the same curvatures in the
vicinity of their minima which are equidistant by L/4 from
neighboring maxima; the potential profiles of the + and -
conformations are mutually shifted by half a period L (see Figure
2). The above-introduced parameters are concretized for the
antisymmetric case as follows:

uA
+ ) uB

- ) k0e
u, uB

+ ) uA
- ) k0e

-u,

VR
+ ) V�

- ) e-V, V�
+ ) VR

- ) e-V,

�AR ) �RB ) �B� ) ��A ) e-f,

f ) FL/4kBT, u + f < V < V,

γA
- ) γB

+, γB
- ) γA

+, � ) k0e
-V/√γB

+γA
+

(16)

The parameter k0 characterizes the oscillation frequency of a
particle in the potential well; u, V, and V are the energies of
potential minima and maxima in units of kBT; f is a change in
potential barrier heights caused by a load force; the parameter
� determines the average number of low-barrier crossings during
the average lifetime of the + and - conformations. The
inequality f < V - u restricts the values of the force applied
such that the positions of potential extrema remain unchanged.
The state-dependent rate constants γA

( and γB
( are assumed to

be antisymmetrized as well. Substituting eq 16 into eqs 3, 4,
and 15, we get

J ) k0e
-V

sinh(w - f) - e-V+V[sinh(w + f) +
2� sinh(2f)]

(γA
+ + γB

+)/√γA
+γB

+ + 2�[cosh(u - f) +

e-V+V cosh(u + f)]

κ )

sinh(w - f) - e-V+V[sinh(w + f) +
2� sinh(2f)]

sinh(w - f) + e-V+V sinh(w + f)
, η ) f

w
κ

(17)

where

w )
µS

4kBT
) u + 1

2
ln(γB

+

γA
+) (18)

As eq 17 indicates, κ e 1, in accordance with its physical
meaning.

These expressions generalize eqs 12 and 21 of our previous
work23 to the case of position-dependent rate constants for
transitions between the + and - conformations. The principal
result of such generalization is an additional mechanism of
noise-induced motion. Indeed, if the conformational transitions
rate constants are state-independent, γA

+ ) γB
+ ) γ, there is the

only contribution u ) u0 in w, eq 18, due to fluctuations of
potential well minima. In this particular case the motor operates
via the energetic mechanism and eqs 17 and 18 reproduce the
results obtained for the simplified model.23 However, the model
under consideration generates directed motion even without the
energy fluctuations, u ) 0, in contrast to the simplified model.
The rectification coefficient and the efficiency (but not the
fluxes) are the same, as in the previous case, provided γA

+ ) γ
exp(-u0) and γB

+ ) γ exp(u0). This occurs due to fluctuations
of the state-dependent rate constants responsible for intercon-
formation transitions (informational mechanism). Generally,
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when u * 0 and γA
+ * γB

+, there are two contributions in the
driving force (see the previous section), and both mechanisms,
energetic and informational, are operative.

Figure 3a demonstrates the characteristic dependences of both
fluxes on the load force at various values of model parameters.
One can see that the directed flux is always less than the
reciprocating one and hence its positivity region lies entirely
within that of the latter. As the entropic contribution increases
and the system moves further away from equilibrium (i.e., as
the ratio γB

+/γA
+ rises together with the parameter w varying from

2 to 4 for curves 4,2,1), the fluxes are enhanced whereas the
efficiency is reduced (Figure 3, a and b). It is interesting to
compare curves 2 and 3 which represent the physically important
limiting cases, where only one from the motion-inducing
mechanisms is operative. Both of them are calculated for the
same values of w and �[γA

+γB
+], but in the former case we have

taken u ) 3 and identical rate constants γA
+ and γB

+, while in
the latter these parameters are u ) 0 and γA

+ * γB
+. So curves

2 and 3 can be associated with the energetic and information
mechanism, respectively. These curves coincide in Figure 3b,
but they are different from each other in Figure 3a. In the case
of the energetic mechanism, the plots of J(f) and Jr(f) exhibit a
negative curvature. In contrast, the corresponding curves for

the informational mechanism are concave functions of f. For
the parameter values chosen, curve 2 in Figure 3a lies higher
than curve 3 at all f; however, generally, the answer on the
question which mechanism is preferable for the current (at given
value of the efficiency) depends on particular values of the
model parameters. For example, at f ) 0 and � > [1 + exp(-V
+ V)] the informational mechanism provides higher velocity of
motion than energetic one.

In the unloaded regime (f ) 0), the rectification coefficient
takes a particularly simple form: κ ) tanh [(V - V)/2]. It
decreases monotonically with the rising load force and becomes
zero at f ) fs, where fs is the stopping force defined by a root
of the numerator of J (or κ) in eq 17. At � exp(-V + V) . 1
(i.e., when the values of γA

+γB
+ are small enough), we obtain fs

≈ (4�)-1[exp(V - V) - 1]sinh w. If the inverse inequality holds
together with the condition ε ≡ 2e-V+V sinh(2w)/w , 1, then
the stopping point of the motor is determined by the approximate
relation fs ≈ [1 -(1/2 + �)ε]w. As far as the kinetic approach
is concerned, the interconformation transitions should be slow
enough, which implies that �[γA

+γB
+] is lesser than the inverse

time D/L2 of the particle diffusion over distances of the order L
(where D is the diffusion coefficient). Nevertheless, this
restriction allows for values � , 1 if k0e-V , �[γA

+γB
+] , D/L2.

Figure 3. Net circulation (solid lines) and reciprocating (dashed lines) fluxes (panel a) as well as efficiency (panel b) versus the load force (see
eq 17). For curves 1, 2, and 4: u ) 3 and γA

+ ) 1 s-1, γB
+ ) e2 ≈ 7.39 s-1 (curve 1); γA

+ ) γB
+ ) 5 s-1 (curve 2), γA

+ ≈ 7.39 s-1, γB
+ ) 1 s-1 (curve

4). For curve 3, u ) 0 and γA
+ ) 5e-3 ≈ 0.25 s-1, γB

+ ) 5e3 ≈ 100 s-1. Curves 2 and 3, with the same values of w ) 3 and �[γA
+γB

+] ) 5, represent
the energetic (γA

+ ) γB
+) and the informational (u ) 0) mechanisms. For all curves V ) 12, V ) 5.5, k0 ) 1000 s-1.
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On the condition V > V + 2w, the reciprocating flux Jr ) J/κ
vanishes at the point f0 specified by the equation tanh f0 ) tanh
w/tanh[(V - V)/2]. Since it is always so that fs < w < f0, both
fluxes and the efficiency are positive in the operational region
of the motor (0 e f < fs). As already mentioned, the maximum
efficiency is reached near the stopping force fs. In this region,
the efficiency can be estimated at ε , 1 and ε� , 1 using the
approximate expression

η ≈ f
w

fs - f

f0 - f
(19)

which suggests that the maximum of the efficiency is given by

ηm ≈ 1 - 2√(1 + �)ε, fm ≈ [1 - √(1 + �)ε]w < fs

(20)

These asymptotic results confirm the above-stated regularity:
high efficiency is implemented provided the barrier height V is
sufficient to block the reverse flux. Efficiency is the higher, the
smaller the parameter w and the closer the system to the
equilibrium state. We emphasize again that such effect results
from the specificity of the two-well potential profile fluctuating
by half a period and containing a sufficiently high barrier to
rule out the reverse motion. An alternative high-efficiency
mechanism acting far from equilibrium is typical of strongly
asymmetric potentials shaped identically on both half-periods
which are largely shifted in energy relative to each other.37 In
terms of the kinetic approach, this mechanism is probable at
large values of parameters V, V, and w, mutually related as V )
V + 2w.

V. Conclusions

This paper is devoted to the development of the theory of
two-step energy conversion into directed mechanical motion on
the nanoscale: first, a part of the free energy coming from a
source of nonequilibrium is converted to induced reciprocating
motion, which is then rectified by a symmetry-breaking mech-
anism. To illustrate this approach, we have considered a simple
kinetic model, in which the system fluctuates between two states
through two reaction channels with fluctuating transition rates.
The distinctive feature of the model is that not only the
intraconformational, but also the interconformational rate con-
stants are position dependent. A notable observation is that the
generalized driving force of the reciprocating motion is caused
by two sources: the energy contribution due to energy fluctua-
tions between states (the energetic mechanism) and the entropic
contribution due to fluctuations of state-dependent transition rate
constants (the informational mechanism). The induced recip-
rocating motion is rectified by the asymmetric fluctuations of
reaction-channel rate constants or, in terms of the flashing
potential model, of potential barriers. For the antisymmetric
version of the model, simple explicit expressions have been
derived for reciprocating and net fluxes as well as for the
efficiency with which the energy of nonequilibrium fluctuations
is converted to useful work. As the system moves further away
from equilibrium, both reciprocating and net circulation fluxes
are enhanced whereas the efficiency is reduced. The highest
efficiency values are reached in the vicinity of the stopping point
when one of the fluctuating barriers is much higher than the
other and blocks the reverse flux. The present approach offers
more generality than those employed before, as it extends all
the relationships relevant to directed motion emergence (includ-
ing the conditions for high-efficiency motor operation) to the
informational mechanism as well.
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Appendix 1

Within the kinetic approach, a master equation for the
probabilities FA(B)

( to find the system in states A((B() can be
written in the form

d
dt(FA

+

FB
+

FA
-

FB
- ) ) (JA + J�

+ - JR
+

JR
+ - J�

+ - JB

J�
- - JR

- - JA

JB + JR
- - J�

- ) (A1.1)

where the fluxes entering into the right-hand side of the matrix
equation are shown in Figure 1b and defined by eq 1. With
these definitions and notation 5, we obtain the system of
equations for the steady-state regime (dFA(B)

( /dt ) 0):

(-�A
+ - γA

+ -�B
+ γA

- 0

�A
+ -�B

+ - γB
+ 0 γB

-

γA
+ 0 -�A

- - γA
- �B

-

0 γB
+ �A

- -�B
- - γB

- )(FA
+

FB
+

FA
-

FB
- ) ) 0

(A1.2)

Taking into account the normalization condition

FA
+ + FB

+ + FA
- + FB

- ) 1 (A1.3)

the solution of eq A1.2 appears as

(FA
+

FB
+

FA
-

FB
- ) ) ∆-1(�B

+�B
-γA

- + �B
+�A

-γB
- + �B

-γB
+γA

- + �B
+γA

-γB
-

�A
+�B

-γA
- + �A

+�A
-γB

- + �A
-γA

+γB
- + �A

+γA
-γB

-

�B
+�B

-γA
+ + �A

+�B
-γB

+ + �B
+γA

+γB
- + �B

-γA
+γB

+

�B
+�A

-γA
+ + �A

+�A
-γB

+ + �A
-γA

+γB
+ + �A

+γB
+γA

- )
(A1.4)

where

∆ ) ∑
σ′*σ)(

[(�A
σ′ + �B

σ′)(�B
σγA

σ + �A
σ γB

σ + γA
σ γB

σ) + (�A
σ +

�B
σ′)γA

σ′γB
σ] (A1.5)

Substituting solution A1.4 into the definitions of the fluxes
desired we arrive at eqs 3 and 4.

Appendix 2

The reduction of the continuous description to a kinetic one
implies that the particle motion dynamics can be subdivided
into a fast and a slow component.38 The separation of the two
time scales is possible if a particle moves in the potential with
interwell barrier heights exceeding the particle thermal energy
kBT and if potential fluctuation frequencies are much less than
the inverse time D/L2 of the particle diffusion over the potential
period L.39 Here we provide a basis for the calculation of the
motor efficiency in terms of the kinetic approach and multiplica-
tive representation of rate constants (9). To this end, we use
the method previously developed to analyze energetics of
reciprocating motion on the nanoscale.13 For periodic potential

1964 J. Phys. Chem. B, Vol. 114, No. 5, 2010 Rozenbaum et al.



profiles U((x) and position-dependent rate constants γ((x), the
steady-state free energy supplied to the system per unit time
by a nonequilibrium source reads

Pin ) ∫0

L
dx µS(x)[γ+(x)F+(x) - γ-(x)F-(x)]

(A2.1)

Here the chemical potential of the “effective fuel” is13

µS(x) ) µ-
0 - µ+

0 + U-(x) - U+(x) + kBT ln
γ+(x)

γ-(x)
(A2.2)

with µ(
0 ) µ(

0 (T) denoting position-independent standard chemi-
cal potentials, and the following conditions are adopted for
normalization and integral balance:

∫0

L
dx [F+(x) + F-(x)] ) 1, ∫0

L
dx [γ+(x)F+(x) -

γ-(x)F-(x)] ) 0 (A2.3)

Assume that potentials U((x) contain two wells per the period
and interwell barriers are high relative to the thermal energy
kBT. For definiteness, let the barriers be positioned at the points
x ) 0, L/2,L and the wells on the intervals (0, L/2) and (L/2, L).
We are concerned with the probabilities that the particle is in
potential well A or B

FA
( ) ∫0

L/2
F((x) dx, FB

( ) ∫L/2

L
F((x) dx, ∑

σ)(
∑

i)A,B

Fi
σ ) 1

(A2.4)

If rate constants γ((x) do not change within potential wells (i.e.,
γ((x) ) γA

( at 0 < x < L/2 and γ((x) ) γB
( at L/2 < x < L) and

conformation lifetimes [γ((x)]-1 are much longer than the
particle diffusion time through the potential period L2/D, then
local equilibrium can be established in either well and the
distribution function is expressible in the form:39

F((x) ≈

{FA
( exp(-Ũ((x)/kBT)/ ∫0

L/2
dx' exp(-Ũ((x')/kBT), 0 < x < L/2

FB
( exp(-Ũ((x)/kBT)/ ∫L/2

L
dx' exp(-Ũ((x')/kBT), L/2 < x < L

(A2.5)

where Ũ((x) ) U((x) + Fx is the full potential energy of the
system including the contribution from the load force -F.
Nonequilibrium probabilities A2.4 satisfy eq A1.2 containing
rate constants of the R and � channels which appear as follows:

RAB
( ) D

∫L/4

3L/4
eŨ((x)/kBT dx∫0

L/2
e-Ũ((x)/kBT dx

,

RBA
( ) D

∫L/4

3L/2
eŨ((x)/kBT dx∫L/2

L
e-Ũ((x)/kBT dx

,

�AB
( ) D

∫-L/4

L/4
eŨ((x)/kBT dx∫0

L/2
e-Ũ((x)/kBT dx

,

�BA
( ) D

∫-L/4

L/4
eŨ((x)/kBT dx∫-L

0
e-Ũ((x)/kBT dx

(A2.6)

and can be represented in multiplicative form 9. Thus, suf-
ficiently slow switching and sufficiently high (compared to kBT)
barriers provide the prerequisites for a convenient description

of the model dynamics in terms of the kinetic approach (see
solutions for the fluxes given by eqs 3 and 4 or 11 and 12).

To apply the kinetic method to the analysis of the
energetics of the model, an additional condition has to be
introduced. When the particle jumps from any potential well
of one conformation to the corresponding well of the other
conformation, certain energy losses occur in the relaxation
of the distribution function from the initial to the final well
shape. Evidently, relaxation processes can hardly be taken
into account by the coarse-grained kinetic method. To
eliminate the relaxation-induced energy losses, a restriction
is imposed on potential shape fluctuations such that only
relative shifts of the potential are allowed on switching
between the + and - conformations, with the near-bottom
well shapes retained. Then eqs A2.1 and A2.2 become

Pin ) µSJr (A2.7)

where

µS ) µS(xB) - µS(xA) ) UB
- - UB

+ - UA
- + UA

+ +

kBT ln
γB
+γA

-

γA
+γB

- (A2.8)

Since uA
( ) kA exp(UA

(/kBT) and uA
( ) kB exp(UB

(/kBT), eq 13
is obtained.
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