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Abstract

In this paper, an adaptive computational technique is applied to solve a set of two-dimensional (2D) drift-diffusion
(DD) equations together with nonlinear trap model in thin-film transistors (TFTs). Different from the conventional DD
equations in metal-oxide-semiconductor field effect transistors, the nonlinear trap model depending on the potential energy
accounts for the effect of grain boundary on the electrical characteristics of low temperature polycrystalline-silicon (LTPS)
TFTs. Our adaptive computing technique is mainly based on Gummel’s decoupling method, a finite volume (FV) approx-
imation, a monotone iterative (MI) method, a posteriori error estimation, and an 1-irregular meshing scheme. Applying
Gummel’s decoupling method to the set of DD equations firstly, each decoupled partial differential equation (PDE) is then
approximated with FV method over 1-irregular mesh. Instead of conventional Newton’s iterative method, the correspond-
ing system of nonlinear algebraic equations is solved with MI method. Variations of the computed solutions, such as
potential and electron density are captured and a posteriori error estimation scheme is adopted to assess the quality of
the computed solutions. The mesh is adaptively refined accordingly. The numerical method converges monotonically in
both MI and Gummel’s iteration loops, respectively. Various cases of simulation have been verified for a typical LTPS
TFT to demonstrate the accuracy and robustness of the method.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Development of low temperature polycrystalline-silicon (LTPS) thin-film transistors (TFTs) has recently
been of great interest in micro- and opto-electronics industries; in particular, for the industry of display panel
[1–6]. Modeling and simulation of semiconductor devices theoretically provide alternative way to the interpre-
tation of experimental results [7–9]. It is known that a set of drift-diffusion (DD) equations consisting of the
Poisson equation, the current continuity equation of electron, and the current continuity equation of hole
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has successfully been applied to explore transport phenomena of electron and hole in semiconductor devices
[1,7–9]. Compared with conventional metal-oxide-semiconductor field effect transistors (MOSFETs), LTPS
TFTs possess significant grain structures in the silicon substrate of TFT shown in Figs. 1 and 2. They then
produce different impurity traps, and affect the charge distribution as well as transport properties
[1–6,10,11]. Therefore, it is necessary to accurately describe grain structures and calculate the effect of grain
boundary on the electrical characteristics when performing technology computer-aided design (TCAD) tools.
However, numerical solution of DD equations together with the nonlinear trap model of LTPS TFTs may
encounter convergence problem due to the equations to be solved is highly nonlinear dependence on the
potential energy.

In this paper, a physical-based nonlinear trap model is introduced which describes the effect of grain topol-
ogies on the intrinsic physical quantities, such as potential energy and electron density for LTPS TFTs. The
nonlinear trap model is solved together with Poisson equation in a set of the two-dimensional (2D) DD equa-
tions. In the numerical solution of nonlinear-trap corrected DD equations for LTPS TFTs, a computationally
cost-effective adaptive computing technique is implemented [12–17]. First of all we decouple the three partial
differential equations (PDEs) in the set of DD equations according to Gummel’s procedure [18,19]. Based on
adaptive 1-irregular mesh [20,21] and finite volume (FV) approximation [12–17,22,23], each decoupled PDE is
discretized and then solved by means of the monotone iterative (MI) method [24–26] instead of Newton’s iter-
ation (NI) method [27]. The method of monotone iteration is a constructive alternative for numerical solutions
of PDEs [25,26]. It has been reported that, compared with NI method, the major features of MI method are (1)
it converges globally with any arbitrary initial guesses; (2) its implementation is much easier than NI method;
and (3) it is inherently ready for parallelization [24]. Furthermore, using a posteriori error estimation, the gain
boundary induced variation of physical quantities, such as electric field and gradient of electron density, are
accurately calculated and automatically tracked. We note that the adaptive computing technique was success-
fully developed in our recent work for various MOSFETs simulation [3,12–17]. Testing on different LTPS
TFTs, the proposed adaptive computing technique shows the simulation accuracy and numerical robustness.
Achieved result shows that our computational approach provides a cost-effective way to solve a set of DD
equations with the nonlinear trap model of grain boundary for advanced LTPS TFTs’ simulation.
gb1 gbl. . . . . . . . . . . . .

gb1
' gbl

'
d

e

f

g

Fig. 2. An illustration of the cross-section view and boundary conditions of grains.
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Fig. 1. A cross-section view of the simulated LTPS TFT.
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This paper is organized as follows. In the Section 2, we introduce the studied transport model for the
numerical simulation of LTPS TFTs. In the Section 3, we state the adaptive computing technique. In the Sec-
tion 4, we report and discuss the results of numerical simulation. In the Section 5, we draw the conclusions.

2. A set of DD equations for LTPS TFTs

In this section, we state a 2D mathematical model of DD equations together with the nonlinear trap model
for LTPS TFTs, shown in Fig. 1. It is known that classical DD equations consist of three coupled PDEs, the
Poisson equation, the current continuity equation of electron, and the current continuity equation of hole
[1,7–9]. By considering the nature of Poly-Si induced grain boundaries [1–6,10,11] in the structure of LTPS
TFTs, a set of 2D DD equations is give by
D/ ¼ q
es
ðn� p þ Dðx; yÞ þ BT ð/ÞÞ; ð1Þ

BT ð/Þ ¼ NAtfp0 exp �/� /E

V T

� �
; ð2Þ

1

q
r � ð�qlnnr/þ qDnrnÞ ¼ Rðn; pÞ; ð3Þ
and
1

q
r � ð�qlppr/þ qDprpÞ ¼ �Rðn; pÞ: ð4Þ
Eq. (1) is the so-called Poisson equation, where the unknown / = /(x,y) to be solved in the domain, shown in
Fig. 1, is the electrostatic potential. Eqs. (3) and (4) are the current continuity equations of electron and hole,
respectively, where the unknowns n and p to be solved are the densities of electron and hole. In Eq. (1), q is the
elementary charge, es is the silicon permittivity, and D(x, y) is the spatial-dependent doping profile [1]. Eq. (2)

is a distribution function of the grain boundary which occurs on the grain boundaries gbigb0i; i ¼ 1; . . . ; l,
where l is the number of grain boundaries, shown in Fig. 2. BT(/) in Eq. (2) is a nonlinear equation of elec-
trostatic potential / and is solved together with the Poisson equation in Eq. (1). NAt is the concentration of

acceptor trap and fp0 exp � /�/E
V T

� �
is the occupation probabilities of hole. /E is assumed to be the periodical

energy band structure along the conducting channel in the neighborhood of the grain boundaries. fp0 is an
initial probability of hole. ln and lp in Eqs. (3) and (4) are the mobilities of electron and hole. Dn and Dp

are the diffusion coefficients of electron and hole, and R(n, p) is the term of generation-recombination of elec-
tron and hole [1].

Eqs. (1)–(4) are subject to proper boundary conditions for /, n, and p [1,7–9,13], shown in Fig. 1. The
boundaries cd, fh, and aj are specified by the type of Dirichlet boundary condition for /, n, and p, respec-
tively. In order to guarantee that the simulated LTPS TFT is self contained, the boundaries ac and hj are
assumed to be the homogeneous Neumann boundary condition for /, n, and p, respectively. On the interfaces
of Si and SiO2, the boundaries df and eg, Gauss’s law in differential form must be obeyed for /. For the cur-
rent continuity equations of electron and hole, we assume that the Si2 and glass are perfect insulators, and that
the surface recombination rate is zero. Under these circumstances, the normal components of the electron and
hole currents vanish on the interfaces, the boundaries df and eg. It results in the homogeneous Neumann
boundary condition for n and p.
3. Adaptive computing technique

The implemented adaptive computing technique for LTPS TFT simulation is mainly based on Gummel’s
decoupling method [7–9,18,19], FV approximation [9,13–17,24,27], MI method [24–26], a posteriori error esti-
mation [13], and an 1-irregular meshing scheme [12–15]. This simulation methodology has recently been devel-
oped for different MOSFET’s simulation [3,12–17]. To explore the transport behavior of LTPS TFTs, the
three coupled PDEs are numerically solved with Gummel’s decoupling method. With a given initial guess
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(/(0), n(0), p(0)) and for each Gummel’s iteration index g, g = 0,1, . . . , we first solve the nonlinear Poisson
equation
D/ðgþ1Þ ¼ q
es
ðnðgÞ � pðgÞ þ Dðx; yÞ þ BT ð/ðgþ1ÞÞÞ: ð5Þ
The nonlinear Poisson equation is solved for /(g+1) given the previous states n(g) and p(g). The current conti-
nuity equation of electron is then solved for n(g+1), with now the known functions /(g+1) and p(g)
1

q
r � ð�qlnnðgþ1Þr/ðgÞ þ qDðgþ1Þ

n rðgþ1Þ
n Þ ¼ Rðnðgþ1Þ; pðgÞÞ: ð6Þ
Finally, we solve the current continuity equation of hole with both /(g+1) and n(g+1) known
1

q
r � ð�qlppðgþ1Þr/ðgþ1Þ þ qDðgþ1Þ

p rðgþ1Þ
p Þ ¼ �Rðnðgþ1Þ; pðgþ1ÞÞ ð7Þ
for p(g+1) until all preset stopping criteria are satisfied. Eqs. (5)–(7) are associated with proper boundary con-
dition, respectively. We note that Eqs. (5)–(7) are now three individual semilinear PDEs to be solved for each
Gummel’s iteration. An outer iteration in the procedure of LTPS TFT simulation is then defined by Gummel’s
decoupling method. We note that analyses of Gummel’s decoupling method in MOSFET simulation have
been reported [7,8,19].

The Gummel’s decoupling method

Begin
While /, n, and p in outer loop (Gummel’s loop) are not convergent

If / is convergent
Solve the nonlinear Poisson equation
with adaptive computing technique.

End If
If n is convergent

Solve the current continuity equation of electron
with adaptive computing technique.

End If
If p is convergent

Solve the current continuity equation of hole
with adaptive computing technique.

End If
End While
Call for next calculation.

End The Gummel’s decoupling algorithm

A computational procedure for Gummel’s decoupling method is shown above, where we solve each decou-
pled PDE with adaptive computing technique. In the adaptive computing technique, each PDE is approxi-
mated with FV method over 1-irregular mesh. The corresponding system of nonlinear algebraic equations
of FV discretization of PDE is solved with MI method. In error estimation and mesh refinement, a posteriori
error estimation scheme is applied to assess the quality of computed solutions. The adaptive mechanism bases
on an estimation of the variation of computed solutions, such as the electric field, the gradient of electron den-
sity, and the lateral current density. A posteriori error estimation is applied to provide local error indicators
for incorporation into the mesh refinement strategy. The local error indicators guide the adaptive refinement
process.

For each PDE, shown in Eqs. (5)–(7), by directly considering a problem of semilinear elliptic PDE, we
briefly state a MI method for the numerical solution of the boundary value problem. Over a ceratin partition
of simulation domain, applying the adopted discretization method, the finite volume approximation to the
explored semilinear elliptic PDE together with its mixed-type boundary condition, we obtain a system of non-
linear algebraic equations in a compact form
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AZ ¼ �F ðZÞ; ð8Þ

where A is an M · M matrix, Z � (w1, . . . ,wM)T is an unknown vector, and F(Z) � (F1(Z), . . . ,FM(Z))T is a
vector associated with the functions appearing in the right hand side of PDE and boundary condition. It is
sufficient to consider a specified solution method for solving the system of nonlinear algebraic equations.
Starting with a given initial vector Z(0) for Eq. (8), MI method generates a sequence of iterates {Z(n)},
n = 0,1, . . . , by solving
AZðnþ1Þ þ KZðnþ1Þ ¼ �F ðZðnÞÞ þ KZðnÞ; ð9Þ

where K is a nonnegative diagonal matrix in which its entries kkk, k = 1, . . . ,M, are parameters that are deter-
mined principally by the property of nonlinear function in the right hand side of PDE. Under various condi-
tions on the matrices A and K, or equivalently on the discretization and the nonlinear function in the right
hand side of PDE, it is known that the sequence {Z(n)} generated by Eq. (9) converges monotonically to a
solution of (8). Obviously, the convergence behavior of MI process (9) is essentially dictated by these param-
eters. There are some variants of MI form (9), such as Jacobi, Seidel, and block MI methods [26]. For LTPS
TFTs simulation, we use in particular the Jacobi method
ðDþ KÞZðnþ1Þ ¼ ðLþ UÞZðnÞ � F ðZðnÞÞ þ KZðnÞ ð10Þ
where D, L, and U are diagonal, lower triangular, and upper triangular matrices of A, respectively. The es-
sence and convergence of the monotone iterative method for the numerical solution of PDE in MOSFET sim-
ulation has been studied in our recent work [24].

Once an approximated solution is computed, we perform a posteriori error analysis to assess its quality,
and the error analysis produces error indicators and an error estimator. If the estimator is less than a specified
error tolerance (TOL), the adaptive process will be terminated and the approximated solution can be output
for post-process and analysis. Otherwise, we employ a scheme to refine current elements depending on the
magnitude of the error indicator. A finer partition of the domain is thus created, and a new solution procedure
is repeated iteratively. We note that for FV approximation, control volumes have to select with respect to their
dual elements. According to our classification, different pattern of boundary of control volume in the reference
element is identified by verifying the number and location of irregular nodes appearing in that element [13].
A computational procedure of the adaptive computing technique is summarized as follows.

The adaptive computing technique for decoupled PDE

Begin
Let a decoupled PDE and a specified error tolerance (TOL) are given;
Perform discretization of the simulation domain;
Perform FV approximation;
Construct the system of nonlinear algebraic Eq. (8);
Solve the nonlinear system with MI method by Eq. (10);
Compute the maximum error (Err) of the computed solution;
If Err > TOL

Run 1-irregular mesh refinement and
Go to the step of domain discretization and repeat the steps,

Else
Post-process.

End If
End The adaptive computing technique

4. Results and discussion

We now present numerical results to demonstrate effect of the proposed physical model and performance of
the adaptive computing technique in LTPS TFT simulation. As shown in Fig. 1, the simulated TFT device is
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with aj ¼ 4 lm, be ¼ gi ¼ 1 lm, and ac ¼ hj ¼ 0:5 lm. The gate oxide thickness of the SiO2 layer is equal to
10 nm. The junction depth is with bc ¼ hi ¼ 0:05 lm. The channel length df ¼ eg ¼ 2 lm. The 0.2 lm grain
size is considered in this work [10,11]. Hence, there are ten grain boundaries along the direction of channel.
The LTPS TFT is assumed to have an elliptical-shaped Gaussian doping profile, where the peak concentration
is equal to 2 · 1020 cm�3. Fig. 3 shows the used spatial-dependent doping profile D(y, x) in the LTPS TFT
simulation.

Figs. 4–6 show the process of mesh refinements in a MI loop. The mechanism of 1-irregular mesh refine-
ment is based on the estimation of solution error element by element. Fig. 4 is the initial mesh which contains
25 nodes, Fig. 5 is the 4th refined mesh containing 729 nodes, and Fig. 6 contains 3868 nodes is the 7th mesh.
We note that the process of mesh refinement is guided by the result of error estimation automatically. As
shown in Fig. 6, at the 7th refined level we find that most of refined meshes are intensively located near the
surface of channel and the junction of the drain side due to large variation of the solution gradient. The dis-
tribution of refined mesh is consistent with the profile of computed electrostatic potential, shown in Fig. 7.

The number of nodes (and elements) versus the number of levels of mesh refinement is shown in Fig. 8. The
simulations are with and without including the nonlinear trap model to account for the effect of grain bound-
ary. The number of refined elements and nodes is increased as the refinement levels are increased. At the begin-
ning, the number of refined nodes (and elements) is increased fast due to significant variations of computed
solution. After several refinements and solution processes, the increasing rate of the number of nodes (and
elements) gradually becomes slow when the refinements are increased. It eventually reaches to a saturated
condition.

Figs. 9 and 10 show the convergence behavior of Gummel’s (outer) and MI (inner) loops when solving the
electrostatic potential with (w/) and without (w/o) including the trap model of grain boundary in the simulated
TFT device. Here, we also defined an additional linear trap model of grain boundary by setting BT(/) = NAt.
Fig. 3. An illustration of the doping profile used in the numerical simulation of LTPS TFTs.



Fig. 4. The initial mesh used for starting the solution process. It contains 25 nodes.

Fig. 5. The 4th refined 1-irregular mesh which contains 729 nodes.

Fig. 6. The 7th refined mesh which contains 3868 nodes.
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Fig. 7. The simulated electrostatic potential at the 7th level. The LTPS TFT is biased at VD = VG = 1.0 V.

Fig. 8. The number of nodes and elements versus the refinement levels with and without considering the trap models of grain boundary.
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The biasing conditions in all simulation cases are VD = 1.0 V and VG = 1.0 V. The stopping criteria for the
inner and outer iteration loops are 1e�6 and 1e�3, respectively, for all computed physical quantities. We
found that the case of DD simulation without considering any trap models of grain boundary converges
quickly among three testing cases. However, the cases of DD simulation with the linear and nonlinear trap
models of grain boundary have a similar convergence behavior.



Fig. 9. A convergence property of Gummel’s loop for the numerical solution of DD equations with and without including the trap models
of grain boundary, where VD = VG = 1.0 V.

Fig. 10. A convergence behavior of MI loop for the numerical solution of Poisson equation in the set of DD equations with and without
including the trap models of grain boundary, where VD = VG = 1.0 V.
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To explore the effect of grain boundary on the physical characteristics of simulated LTPS TFT, we examine
the computed electrostatic potential and electron density along the channel direction (x direction) shown in
Figs. 11 and 12, respectively. The upper figure of Fig. 11 shows the computed potential profile for the device
under bias conditions VD = 0.5 V and VG = 0.5 V, and the lower one in Fig. 11 is a cross-sectional view of the
circled region in the upper figure. The upper figure of Fig. 12 shows the electron density and the lower one in
Fig. 12 is a cross-sectional view of the circled region in the upper figure. Along the channel region of the
device, obviously, the simulated potential profile and electron density significantly reveal the effect of grain
boundary on the computed physical quantities.

As shown in Fig. 13, we compare the computed electrostatic potential with different trap models of grain
boundary at VD = VG = 0.5 V. The case of DD simulation with the nonlinear trap model of grain boundary



Fig. 11. The upper figure is the simulated potential of the LTPS TFT with VD = VG = 0.5 V. The lower one is a cross-sectional view of the
circled region in the upper figure.
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faithfully describes the traps effect on the charge distribution compared with DD simulation including only the
linear trap model. The case of DD simulation without including any trap models does not reflect the effect of
grain boundary on the computed potential. We further compute the terminal characteristics of current–volt-
age (I–V) for the investigated LTPS TFT. As shown in Fig. 14, it indicates the difference of the I–V charac-
teristics among DD simulation with the linear trap model of grain boundary, with the nonlinear trap model of
grain boundary, and without any trap models. Due to larger variation of the electron density along the chan-
nel of TFT, DD simulation together with the nonlinear trap model of grain boundary produces largest current
level among three cases.



Fig. 12. The upper figure is the simulated electron density of the LTPS TFT with VD = VG = 0.5 V. The lower one is a cross-sectional view
of the circled region in the upper figure.
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5. Conclusions

In this paper, we have successfully applied the adaptive computing technique to the 2D simulation of LTPS
TFTs. The implemented solution methodology mainly relies on Gummel’s decoupling method, the adaptive
finite volume method on the 1-irregular mesh, and the monotone iterative method. A nonlinear trap model
has been introduced in the set of 2D DD equations to describe the effect of grain boundary on the electrical



Fig. 13. Comparison of the computed electrostatic potential for the 2D DD simulation with three different trap models of grain boundary,
where VD = VG = 0.5 V.
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characteristics of LTPS TFT. Computed physical quantities, such as potential distribution and electron den-
sity, and drain current have demonstrated the effect of traps on the device properties. We have computation-
ally found significant difference on the device performance for the LTPS TFT with and without grain traps.
Obtained simulations between the refined mesh and the computed potential have demonstrated very good con-
sistency of adaptivity for the testing cases. Convergence and benchmark examinations have been reported to
show the robustness and efficiency of the adaptive computing technique for a typical LTPS TFT. We believe
the modeling and simulation presented here may benefit the development of TCAD tools for LTPS TFT
device simulation in modern industry of display panel.
Fig. 14. Comparison of the calculated I–V curves for the studied LTPS TFT with the 2D DD simulation with three different trap models
of grain boundary, where VG = 1.0 V.
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