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摘  要 

 

決策者偏好常受到背景資訊的影響，本研究發展一套決策球系統，提供決策者視覺

化資訊及相似性分析，將決策資訊視覺化，以輔助決策。 此一決策球系統分為法蘭克

運算、對等交換、成對比較、群集分析四模式。 法蘭克運算模式是用於單一方案取捨

的決策問題， 對等交換及成對比較模式主要是解決多個替選方案的排序問題，而群集

分析模式是應用於替選案的分群問題。 本研究成果可廣泛應用於經營管理決策及財務

投資決策等。 

 

關鍵字 : 決策球，視覺化，決策，偏好，不一致性 
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ABSTRACT 

Decision makers’ preferences are often influenced by background information. This 

study develops a Decision Ball system to provide visual context and similarity analysis to 

help decision makers to reach a better decision. The proposed Decision Ball system includes 

four types of Decision Ball models:  Franklin’s Moral Algebra models, Even Swap models, 

Pairwise Comparison models, and Classification models. Franklin’s Moral Algebra Decision 

Ball models solve “Yes” or “No” decision problem. Even Swap and Pairwise Comparison 

Decision Ball models are for ranking problems with multiple alternatives. Classification 

Decision Ball models treat group problem. The proposed approach can be applied in a variety 

of decision problems. For instance, a Decision Ball system can assist decision makers in 

personal decision-making problem, operational and managerial decision problems, and 

financial decision problems, etc. 

 

Keywords: Decision Balls, Visualization, Decision-Making, Preference, Inconsistency 
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Chapter 1  Introduction 

Ranking and grouping alternatives are two of major challenges in decision-making. The 

more decision alternatives and criteria are being considered, the more difficulties the decision 

maker (DM) has to face. Therefore, how to assist the decision maker make a more reliable 

and knowledgeable decision is a very important issue. 

 

1.1   Research Motivation and Purposes 

Consumer choice theories show that consumer choice is often affected by context 

(Seiford and Zhu, 2003). For instance, a circle appears large when surrounded by small circles 

and small when surrounded by larger ones, as shown in Figure 1.1(a). Similarly, a product 

may appear attractive against a background of less attractive alternatives and unattractive 

when compared to more attractive alternatives (Simonson and Tversky, 1992). Tversky and 

Simonson (1993) showed the relative attractiveness of x compared to y often depends on the 

presence or absence of a third option z. In addition, Keeney (2002) identified 12 important 

mistakes frequently made that limit one’s ability to determine useful value trade-offs, in 

which “not understanding the Decision Context” is the first critical mistake.  

Even animals’ choice is heavily affected by what visual background they have seen. In 

a famous experiment (Waite, 2001), a biologist set up an experiment for a gray jay as shown 
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in Figure 1.1(b). There are three options: A, B and C. A is for one raisin in a short tube. B is 

for two raisins in a medium length tube, and C is for three raisins in a long tube. When 

displaying A and B to a jay, it will choose A. When displaying B and C to a jay, it prefers B. 

However, by displaying A and C to a jay, it prefers C. If the choices, A, B and C could be 

displayed to the gray jay simultaneously, it might make a better decision. Therefore, how to 

assist decision makers visualize the background information is an important issue in 

decision-making.  

Ranking alternatives is one of the most important challenges in decision-making, 

especially when involving inconsistencies. If a decision maker’s judgment is highly 

inconsistent, different ranking methods may produce wildly different priorities. That is, the 

decision maker may not make a reliable decision. Hence, how to assist the decision makers 

detect and improve these inconsistencies is another important issue in decision-making. 

This study proposes Decision Ball models to provide visual representation of ranks of 

and similarities among alternatives, thus to help the decision makers make a more 

Figure 1.1  Visual background in decision environment (a) Influence of visual 
background  (b) Gray jay’s choice 

A C

A B

B C

Choose A

Choose B A 

Choose C

 A 

(a) (b) 
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knowledgeable decision. Four types of Decision Ball models are constructed to meet the 

decision makers with different decision preferences and requirements. In addition, this study 

tries to help a decision maker improve the quality of his/her decision-making by reducing 

serious inconsistencies in judgment. 

The major advantages of the proposed approach for a decision maker are summarized as 

below: 

(i) Make a more knowledgeable decision through visualizing background information and 

decision processes. 

(ii) Make a more reliable decision by improving inconsistencies iteratively. 

(iii) Select a type of Decision Ball models based on his/her decision preferences and 

requirements. 

(iv) Observe the ranks of and similarities among alternatives on Decision Balls directly. 

(v) See the grouping relationships among alternatives layer-by-layer on Decision Balls, and 

perceive the benchmark alternatives if the DM would like to upgrade the performance of 

an alternative from one group to another. 

 

1.2  Advantages of Decision Balls 

Decision Ball models display alternatives on the surface of a ball. The arc length 

between two alternatives is used to represent the dissimilarity between them: the larger the 
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difference, the longer the arc length. In addition, the alternative with a higher score is 

designed to be closer to the North Pole so that alternatives will be located on the concentric 

circles in the order of rank from top view. 

The advantages of Decision Balls are illustrated as follows: 

(i) Comparing with 2-Dimensional plane models, Decision Balls can depict three points that 

do not obey the triangular inequality (i.e. the total length of any two edges must be larger 

than the length of the third edge). For instance, given three options A, B, and C. Suppose 

the distance between A and B is 3; the distance between B and C is 1; the distance 

between A and C is 6.  We cannot draw three lines to connect A, B and C (Figure 

Figure 1.2  Advantages of Decision Balls (a) Display line segments on a 
2-D plane (b) Display curves on a ball (c) Display four points that are not 
on the same plane (d) Display points in a 3-D cube (e) Display points on 

the surface of a ball 

A C B 3 1 

6 

A

B C

6

1
3

A

B C 

D

(a) (b) (c) 

(e)(d) 
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1.2(a)). However, it is convenient to draw three arcs on the surface of a ball to illustrate 

their relationships (Figure 1.2(b)).  

(ii) Decision Ball models are better than 2-Dimensional plane models because the former 

can show four points which are not on the same plane, as shown in Figure 1.2(c). 

(iii) Comparing with 3-Dimensional cube models (Figure 1.2(d)), Decision Ball models are 

easier for a decision maker to observe the relationship among alternatives than 

3-Dimensional cube models because the former can exhibit points on the surface of a 

ball, as shown in Figure1.2 (d) and (e). 

(iv) Decision Ball models can depict inconsistencies in the decision makers’ judgments. 

(Discussed in Chapter 5 and 6). 

(v) A Decision Ball can display both ranks of and similarities among alternatives. 

(vi) A Decision Ball involves no edges. 

 

1.3   Framework of the Proposed Decision Ball System 

Different decision makers may have various decision preferences and requirements 

because of personality of a decision maker, complexity of a decision problem, availability of 

decision data, …etc. This study summarizes four popular types of decision patterns and 

proposes corresponding Decision Ball models as follows: (Figure 1.3) 

(i) Type I Pattern 
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Types of Decision 
Patterns 

The decision makers are assumed to make a binary choice, or a “Yes or No” decision 

problem. This is the simplest decision pattern because the decision makers have not to 

estimate the value of each criterion for each alternative in advance. 

Franklin (1956) proposed a process to help a decision maker make a rational choice under 

this decision pattern, called Franklin’s Moral or Prudential Algebra. Franklin’s Moral Algebra 

for making choices was first to divide a sheet of paper into two columns; one for pro, and 

another for con. Then, write down the various motives, for or against the choice. If a reason 

pro equaled a reason con, then both would be crossed out. If a reason pro equaled two reasons 

      I 
 
Solving 
problem: 

Yes/No 
Decision 
Problem 

 
Preference 
specification: 

Pairwise 
comparisons 
between 
Pros and 
Cons 
 

Model 1 
Moral Algebra 
Decision Ball 

Models 
 

(Fig. 4.3) 

Model 2
Even Swap 

Decision Ball 
Models 

 
(Fig. 5.7) 

Model 3
Pairwise 

Comparison 
Decision Ball 

Models 
(Fig. 6.3) 

Model 4 
Classification 
 Decison Ball 

Models 
 

(Fig. 7.6) 

II
 
Solving 
Problem: 

Ranking for
Multiple 
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Preference 
Specification: 

Trade-offs 
among 
attributes 

III
 
Solving 
Problem: 

Ranking for
Multiple 
Alternatives

 
Preference 
Specification: 

Pairwise 
comparisons 
between 
alternatives 
using score 
ratio

IV 
 
Solving 
Problem: 

Classifying 
Alternatives 

 
 
Preference 
Specification:  

No 
preference 
is given 

 

Figure 1.3  Framework of the proposed Decision Ball System 
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con, the three were crossed out. After a day or two of consideration, if nothing new came to 

mind for either side, the decision maker could then come to a determination.  

Franklin’s Moral Algebra is an intelligent way of simplifying the complexity of a 

decision. However, it is not easy for a decision maker to tell explicitly which pro(s) and con(s) 

can be eliminated simultaneously.  

This study proposes Moral Algebra Decision Ball models to improve the insufficiencies 

of Franklin’s Moral Algebra. Decision makers are assumed to be able to make pairwise 

comparisons between pro and con reasons with words such as “equally important”, “slightly 

more important”, “more important” and “significantly more important”. By visualizing the 

relationships between pros and cons on Decision Balls, the decision makers can make a more 

knowledgeable decision. 

(ii) Type II Pattern 

Ranking for multiple alternatives is the major type of decision problem considered here. 

This pattern is sophisticated because the decision makers must be capable of making clear 

trade-offs among a range of criteria across a range of alternatives. 

Hammond et al. (1998) developed a mechanism of Even Swaps to provide a useful way 

of making trade-offs. “Even” implies equivalence and “Swap” represents exchange. An even 

swap increases the value of one criterion while decreasing the value by an equivalent amount 

in terms of another criterion. By iteratively crossing out equally rated criteria to reduce the 
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number of criteria, the most preferred alternative could be found. 

Even swap approach is a rational and practically useful way in finding the best 

alternative. However, the ranks of rest of alternatives are not known, and there may exist large 

inconsistencies among even swaps that the DM could not know. 

This study presents Even Swap Decision Ball models to assist the DM observe the ranks 

of and similarities among alternatives on the Decision Ball. The superiority relationship 

between alternatives can be observed by checking the longitude of alternatives. The 

inconsistencies between even swaps can also be known by checking the latitude of 

alternatives.  

(iii) Type III Pattern 

Ranking for multiple alternatives is the type of decision problem solved in this pattern 

too. However, instead of making trade-offs explicitly among values of criteria in Type II 

pattern, the decision makers of this decision pattern make pairwise comparisons between 

alternatives using score ratios. 

The analytic hierarchy process (AHP)(Saaty, 1977, 1980; Saaty and Vargas, 1984, 1994) 

has been used widely to determine relative ranking of the decision alternatives through the 

pairwise comparison of alternatives at each level of the hierarchy. However, if perturbations 

from consistency are large, the information available cannot be used to derive a reliable 

answer (Saaty, 1977). That is, different ranking methods may produce wildly different 
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priorities if a preference matrix is highly inconsistent. Hence, how to help the decision makers 

detect and adjust these inconsistencies becomes an important issue in this decision pattern. 

This study illustrates Pairwise Comparison Decision Ball models to help the DM make a 

more reliable decision by detecting and improving inconsistencies in judgments. In addition 

to the ranks of and similarities among alternatives, the DM can observe the suggestions for 

effectively reducing inconsistencies on Decision Balls. 

(iv) Type IV pattern 

In this decision pattern, the decision makers do not have personal preferences about 

alternatives. They are interested in classifying alternatives more than ranking alternatives. 

Discriminant Analysis (DA) is a statistical technique and popular method for predicting 

group membership. The GP (Goal Programming)-based DA, first proposed by Freed and 

Glover (1981), can estimate weights of criteria by minimizing sum of deviations (MSD, Freed 

and Glover, 1986) or minimizing misclassified alternatives (MMO, Banks and Abad, 1991). 

Those weights yield an evaluation score, which is compared with a threshold value for 

classifying alternatives. Sueyoshi (1999) first proposed a DEA-DA analysis incorporating the 

non-parametric feature of Data Envelopment Analysis (DEA, Charnes et al., 1978) into the 

DA. DEA-DA approach can effectively improve hit rates. However, it includes too many 

binary variables, and the decision makers cannot “see” the grouping relationships via 

graphical representation. 
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This study presents Classification Decision Ball models to aid the decision makers 

observe the grouping relationships on Decision Balls layer by layer. In addition to the ranks of 

and similarities among alternatives, the DMs can perceive the benchmark alternatives if the 

DMs would like to upgrade the performance of an alternative from one group to another. The 

number of binary variables can also be reduced significantly.  

The framework of the proposed Decision Ball system is shown in Figure 1.3. Each type 

of decision patterns is illustrated as solving problem and preference specification parts. The 

corresponding Decision Ball models are depicted in the lower part of Figure 1.3. 

 

1.4  Structure of the dissertation 

The structure of this dissertation is depicted in Figure 1.4 and briefly introduced as 

follows: 

Chapter 2 reviews two popular visualization tools: Multidimensional Scaling (Cox and 

Cox, 2000) and Gower Plots (Gower, 1977; Genest and Zhang, 1996). Their advantages and 

insufficiencies are also discussed. 

Chapter 3 introduces Decision Ball techniques. The properties of additive score 

functions and multiplicative score functions are discussed first. Then, the Decision Ball 

techniques, based on the concept of Multidimensional Scaling, are presented. How to display 

alternatives on Decision Balls is demonstrated as an illustrative example. 
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Chapter 4 presents Model 1 – Moral Algebra Decision Ball models for Type I decision 

pattern. The process of Franklin’s Moral Algebra is described first. Moral Algebra Decision 

Ball models are then constructed. An example of a CEO’s dilemma is illustrated to 

demonstrate the decision processes. 

Chapter 5 discusses Model 2 – Even Swap Decision Ball models for Type II decision 

pattern. The method of Even Swaps is introduced. Then corresponding Even Swap Decision 

Ball models are built. An office-renting problem is used as an illustrative example. Chapter 6 

addresses Model 3 – Pairwise Comparison Decision Ball models for Type III decision pattern. 

(Ch. 4) 
Model 1 

Moral Algebra 
Decision Ball 

Models 
 

(Ch. 5)
Model 2 

Even Swap 
Decision Ball 

Models 

(Ch. 6)
Model 3 
Pairwise 

Comparison 
Decision Ball 

Models

(Ch. 1)
Introduction 

 

(Ch. 2)
Review of 

visualization tools

(Ch. 8)
Concluding 

Remarks 

(Ch. 3)
Decision Ball 

techniques 

Figure 1.4  Structure of the dissertation 

(Ch. 7) 
Model 4 

Classification 
Decision Ball 

Models 
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This chapter first describes the basic concept of pairwise comparison, and then creates 

Pairwise Comparison Decision Ball models. Gower Plots are adopted to detect alternatives 

causing major inconsistencies. Optimization models are proposed to help the DM improve 

these inconsistencies conveniently. Two examples, investment in mutual funds and selection 

of universities, are demonstrated in this chapter.  

Chapter 7 presents Model 4 – Classification Decision Ball models for Type IV decision 

pattern. DEA-DA analysis is introduced, and the Classification Decision Ball models are 

formed. Then, a corporate bankruptcy example and an example of Japanese banks are 

demonstrated. Chapter 8 presents concluding remarks and suggests directions for future 

research. 
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Chapter 2  Review of Visualization Tools 

Several graphical techniques have been developed to aid the DM visualize background 

information. For instance, Li (1999) used deduction graphs to treat decision problems 

associated with expanding competence sets. Gower (1977), Genest and Zhang (1996) 

proposed a powerful graphical tool, the so-called Gower Plot, to detect the cardinal and 

ordinal inconsistencies in decision maker’s preferences. Multidimensional Scaling (Borg and 

Groenen, 1997; Cox and Cox, 2000) is a classical technique used to provide a visual 

representation of similarities among a set of alternatives. 

This chapter briefly reviews two popular visualization techniques, Multidimensional 

Scaling techniques and Gower Plots, which are adopted and compared in this study.  

The structure of this chapter is organized as follows. Section 2.1 illustrates the 

Multidimensional Scaling technique. Section 2.2 briefly reviews Gower Plots method.  

Summary of this chapter is made in Section 2.3. 

 

2.1  Review of Multidimensional Scaling (MDS) Techniques 

Multidimensional Scaling (Borg and Groenen, 1997; Cox and Cox, 2000) is a classical 

technique to provide a visual representation of similarities among a set of alternatives, which 

allows one to map similarities between points in a high dimensional space into a lower 
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dimensional space (usually Euclidean).  

There are two major forms of MDS: metric and non-metric MDS. In metric scaling, the 

dissimilarities between all objects are known numbers, which can be approximated by 

distances directly. In non-metric MDS, only the rank order of the dissimilarities is 

approximated: the larger the dissimilarity, the longer the distance. Several MDS models (Cox 

and Cox, 2000) have been developed. One of commonly used model is proposed by Kruskal 

(1964a, 1964b). He developed a numerical measure of the closeness between the 

dissimilarities in the lower dimensional and the original spaces, called Stress. Denote di,j as 

distance and ji ,δ  as dissimilarity between alternative Ai and Aj. Stress can be formulated as 

∑∑

∑∑

>

>

−

=

i ij
ji

i ij
jiji

d

fd

2
,

2
,, ))((

Stress
δ

,                            (2.1)                   

where  )( , jif δ is the transformation of the  , jiδ . In metric scaling,  )( , jif δ is a linear 

transformation of  , jiδ . In non-metric scaling,  )( , jif δ is a weakly monotonic 

transformation of  , jiδ . That is, if  , jiδ <  ,qpδ , )( )( ,, qpji ff δδ ≤ .  The Stress has a value 

between 0 and 1, with 0 indicating perfect fit and 1 implying worst possible fit. The rule of 

thumb for the value of Stress is that anything under 0.1 is excellent and over 0.15 is 

unacceptable. Based on Kruskal’s approach, an initial configuration is randomly specified. 

Then an iterative procedure based on the steepest descent method is applied to move toward a 

local optimum by minimizing (2.1). 

 14 
 



⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

1355
3124
5212
5421

1R

-0.6

-0.4

-0.2

0

0.2

0.4

-1 -0.5 0 0.5 1

Dimension 1

D
im

en
si

on
 2

A1
A

A2 A3

4

Figure 2.1  Displaying a distance matrix R1 by non-metric MDS 
techniques 

For instance, a distance matrix R1, with four alternative A1, A2, A3, and A4, can be 

visualized by non-metric MDS techniques as shown in Figure 2.1. The Stress of this visual 

presentation is 0.57%. 

Conventional MDS models, including Kruskal’s approach, can effectively provide a 

visual representation of dissimilarities among objects. However, the conventional 

multidimensional scaling technique cannot show the ranks of alternatives and is incapable of 

detecting and adjusting inconsistencies in the decision makers’ preferences. 

 

2.2  Review of Gower Plots 

Genest and Zhang (1996) proposed a graphical method, which is close in spirit to MDS, 

to graph a skew-symmetric matrix on a 2-Dimensional plane. Their method, based on the 
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work of Gower (Gower, 1977), can display both the inconsistencies of data matrix and the 

ranks of alternatives. This section briefly introduces the mathematical properties of Gower 

Plots. The detail explanations of Gower Plots can refer to Genest and Zhang (1996). 

The singular values of a matrix M of rank n are the positive square roots of the 

eigenvalues of the symmetric matrix MTM, where MT stands for transposition of M.  If M is 

skew-symmetric, i.e. MT = -M, the singular values of the matrix M are equal to the norm of 

its purely imaginary eigenvalues. 

Let 01 ≥≥≥ mλλ K  (and 01 =+mλ  if n is an odd number) represent those singular 

values, with m indicating the integer part of n/2.  Using singular value decomposition (Horn 

and Johnson, 1985), a skew-symmetric matrix M can be decomposed into the form  

)( 122212
1

T
jj

T
jj

m

j
j −−

=

−= ∑ UUUUM λ ,                                (2.2) 

where U2j-1 and U2j are orthonormal eigenvectors of MTM corresponding to . 2
jλ

The matrix  with U = U)VUUVM TT* −= (1λ 1 and V= U2 provides the best 

approximation of a skew-symmetric matrix M of rank two, because the first term of M gives 

the best least-squares fit of rank two to M (Eckart and Young, 1936).  Let U = (u1, …, un)T 

and V = (v1, …, vn)T as n points Pj = (uj, vj) in the plane. A Gower Plot of a skew-symmetric 

matrix M is a two-dimensional graph composed of all Pj, nj ≤≤1 , on the graph. 

The measure of the faithfulness of the graphical representation of M is provided by 
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variability
∑
=

== m

j
j

1

2

2
1

λ

λ
M

M*

.                                      (2.3) 

Consider a set of n alternatives A1, A2, …, An. Denote ri,j as the ratio of the weights of Ai 

to that of Aj, specified as, 

ji
j

i
ji e

w
w

r ,, = ,                                               (2.4) 

where wi is the weight of Ai, wi > 0, for all .  is a multiplicative term accounting for 

inconsistencies.  It is assumed that r

i jie ,

i,j = 
ijr ,

1 , as illustrated in AHP (Saaty, 1977).  Let R = 

(ri,j), for all ji, , be a  preference matrix. Following Genest and Zhang (1996), a 

tournament matrix T = (t

nn×

i,j) corresponding to R, is defined as ti,j = 1 if ri,j > 1; ti,j = 0 if ri,j = 1;  

ti,j =  if r1− i,j < 1. 

Since T is a skew-symmetric matrix, a Gower Plot based on T can be depicted, called 

the ordinal Gower Plot of R. From the work of Genest and Zhang (1996), we summarize the 

following rules to detect the ordinal consistency of R.  Examining the ordinal Gower Plot of 

R, R is close to be ordinal consistent, if  (i) the location of alternatives (points P1, …, Pn ) 

are equidistant from origin within a 180 degree arc; (ii) the angles between consecutive points 

are equal to 180/n degrees; (iii) the faithfulness of the graphical representation is 

demonstrated by variability factor, expressed in (2.3), being approximately 1. The points are 

arranged counter-clock-wise in the order of preference. 

Let S = (si,j), for all i,j, where si,j = ln(ri,j). S is then a skew symmetric matrix. A Gower 
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Plot based on S can be depicted, called the cardinal Gower Plot of R. Examining the cardinal 

Gower Plot of R, R is close to be cardinal consistent, if  (i) P1, …, Pn are collinear, and (ii) 

variability factor is approximately 1. The first condition means that , for all 

 

*
,

*
,

*
, jijkki sss =+

njki ≤≤ ,,1 .

 For instance, suppose a DM specifies a preference matrix as R2. T2 is the tournament 

matrix corresponding to R2.  The ordinal Gower Plot is depicted in Figure 2.2(a).  

Examining the ordinal Gower Plot, the matrix R2 is ordinal consistent because (i) all its points 

are located on a half-circle; (ii) the angles between every two consecutive points are equal to 

180/n degrees; (iii) variability factor = 97.1%.  Let S2 = ln(R2), the cardinal Gower Plot of 

R2 is depicted in Fig. 2.2(b) representing 99.9% variability.  The matrix R2 is not cardinal 

consistent because A4 is away from the collinear line. The ranking of alternatives is A1 f  A2  
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f fA3  f  A4  (“ ” means superior to). 

Gower Plots are powerful tools for detecting inconsistencies in data matrix, and can also 

display ranks of alternatives. However, it can neither show the similarities among alternatives 

nor provide any suggestions about how to adjust inconsistencies. In addition, a Gower Plot 

can be drawn only if the preference matrix is complete (discussed in Chapter 6). 
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2.3  Summary 

A decision maker’s choice is often affected by background information. This chapter 

briefly reviews two commonly used visualization techniques, Multidimensional Scaling and 

Gower Plots, and illustrates their advantages and insufficiencies.  
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Chapter 3  Decision Ball Techniques 

This chapter illustrates the Decision Ball techniques with additive and multiplicative 

score functions respectively, based on the concept of Multidimensional Scaling techniques.  

An additive score function is the most commonly used form in practice (Belton and 

Stewart, 2002) since it is more understandable for the decision maker. However, the linear 

additive score function is restricted to a fixed rate of substitution between criteria. A 

multiplicative score function is good at reflecting reasonable marginal rate of substitution, but 

is more complicated than the additive one. Both score functions are provided here to allow a 

decision maker to choose a proper one. 

The structure of this chapter is organized as follows. Section 3.1 introduces the 

properties of additive score functions. Section 3.2 illustrates the properties of multiplicative 

score functions. Section 3.3 proposes the Decision Ball techniques with additive and 

multiplicative score functions respectively. Section 3.4 uses an example to demonstrate how 

to display alternatives on Decision Balls. Summary of this chapter is made in Section 3.5. 

 

3.1  Properties of Additive Score Functions 

Let A = {A1, A2, …, An} be a set of n alternatives for solving a decision problem, where 

each alternative contains m criteria. An alternative Ai is expressed as Ai (ci,1, …, ci,m). Denote 
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wk as the weight of criterion k. In order to make sure all weights of criteria are positive, a 

criterion ci,k with cost feature (i.e., a DM likes to keep it as small as possible) is transformed 

from ci,k to ( kik cc ,− ) in advance, where kc  is the largest value of criterion k.  

Notation 3.1  The score function of Ai is assumed in an additive form, expressed below 

∑
= −

−
=

m

k kk

kki
ki cc

cc
wS

1

,)(w ,                                        (3.1) 

where (i)  and ∑ . kwk ∀≥   ,0
=

=
m

k
kw

1

1 ),,,( 21 mwww K=w  is a weight vector obtained by 

other decision methods in advance, (ii) kc  and kc  are respectively the largest and smallest 

values of a criterion k. (iii) 1)(0 ≤≤ wiS .  

Notation 3.2  The dissimilarity between Ai and Aj is defined as 

∑
= −

−
=

m

k kk

kjki
kji cc

cc
w

1

,,
,

||
)(wδ ,                                     (3.2)          

where 1)(0 , ≤≤ wjiδ  and )()( ,, ww ijji δδ = . 

For the purpose of comparison, we define an ideal alternative , where *A

),,,( 21** mcccAA K=  and .  is designed to be located at the north pole of a ball 

(radius = 1) with coordinate  = (0, 1, 0). Denote 

 1* =S *A

),,( *** zyx ,*iδ ,  as the dissimilarity, 

distance between A

,*id

i and  respectively. We then have following propositions: *A

Proposition 3.1  )(1)(,* ww ii S−=δ                                  (3.3) 

<Proof>  ∑ ∑
= = −

−−−
=

−

−
=

m

k

m

k kk

kkikk
k

kk

kki
ki cc

cccc
w

cc

cc
w

1 1

,,
,*

)()(||
)(wδ  
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Notation 3.3  Denote the Euclidean distance between Ai and Aj as 

   jijid ,, 2δ= ,                                             (3.4) 

such that if ji,δ  = 0 then di,j = 0 and if ji,δ  = 1 then di,j = 2 , where 2  is used  because 

the distance between the north pole and equator is 2  when radius = 1. The relationship 

between yi and Si is expressed as 

Proposition 3.2                                      (3.5) .2 2
iii SSy −=

<Proof> Following Proposition 3.1 and Notation 3.3,  

.  22
,*

2222
,* )1(22)0()1()0( iiiiii Szyxd −==−+−+−= δ

Therefore, we can obtain  .2 2
iii SSy −=

Assume the weights of criteria are obtained from other decision methods in advance. The 

scores of and dissimilarities among alternatives can be calculated based on Notation 3.1 and 

3.2. From Proposition 3.2, if Si = 0, then yi = 0; if Si =1, then yi = 1. That is, the alternative 

with a higher score is located to be closer to the North Pole. 

 

3.2  Properties of Multiplicative Score Functions 

Before applying multiplicative score functions, all criterion values have to be normalized 

into interval [1, 10] with 10  and ,1 == kk cc . 

Notation 3.4 The multiplicative score function of Ai is assumed in a non-linear Cobb-Douglas 
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(1928) form with constant return to scale, expressed below 

mw
mi

w
i

w
ii cccwS ,2,1,0

21)( K=w ,                                   (3.6) 

where w0, w1, …, wm  0 and .  ≥ ∑
=

=
m

k
kw

1
1

Let , then w101 ≤≤ Si 0 =1. 

Notation 3.5  The dissimilarity between Ai and Aj is expressed as 

         mw

mjmi

mjmiw

ji

ji
ji ccMin

ccMax
ccMin
ccMax

]
},{
},{

[]
},{
},{

[)(
,,

,,

1,1,

1,1,
,

1 ××= Lwδ ,     (3.7) 

where )()( ,, ww ijji δδ =  and 10)(1 , ≤≤ wjiδ .  

Notation 3.6  Let the Euclidean distance between Ai and Aj be  

di,j  = 
)10ln(

)ln(2 , jiδ ,                                      (3.8) 

such that if 0 then 1 ,, == jiji dδ  and if 2 then 10 ,, == jiji dδ .  

Because 
)10ln(

)),{ln()),{(ln((2
1

,,,,

,

∑
=

−
=

m

k
kjkikjkik

ji

ccMinccMaxw
d , the relationship between 

 and S,*id i can be expressed as 

)
)10ln(
)ln(

1(2
)10ln(

))ln()10(ln(2
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)))ln()(ln((2
1

,
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k
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i
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−
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−
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∑
= .   (3.9) 

We then have following proposition: 

Proposition 3.3  2)
)10ln(
)ln(

(
)10ln(
)ln(2 ii

i
SS

y −=                              (3.10) 

<Proof>  Since 22
,*

222 )
)10ln(
)ln(

1(2)1( i
iiii

S
dzyx −==+−+ , 

then 2)
)10ln(
)ln(

(
)10ln(
)ln(2 ii

i
SS

y −= . 

From Proposition 3.3, if Si = 1, then yi = 0; if Si = 10, then yi =1.  

 23 
 



 

3.3  Display Techniques 

From the basis of Multidimensional Scaling techniques, this section proposes Decision 

Ball techniques to provide spatial relationships among alternatives. The arc length between 

two alternatives is used to represent the dissimilarity between them: the larger the difference, 

the longer the arc length. However, because the arc length is monotonically related to the 

Euclidean distance between two points and both approximation methods make little difference 

to the resulting configuration (Cox and Cox, 1991), the Euclidean distance is used here for 

simplification. 

In addition, the alternative with a higher score is designed to be closer to the North Pole 

so that alternatives will be located on the concentric circles in the order of rank from the top 

view. 

Let , where )(ˆ
,, jiji fd δ= )( , jif δ  is a monotonic transformation of ji ,δ  (i.e. if 

qpji ,, δδ < , then ).  A Decision Ball technique with additive score functions is 

developed as follows. 

qpji dd ,,
ˆˆ <

Model 3.1 (A Decision Ball model – An additive score function) 

Min    =  ∑∑
= >

−
n

i

n

ij
jiji dd

1

2
,, )ˆ(

s.t.   ,                                           (3.11) iSSy iii ∀−=    ,2 2

qpjiqpji dd ,,,,   , ˆˆ δδε <∀−≤ ,                                  (3.12) 
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      ,                    (3.13) jizzyyxxd jijijiji ,   ,)()()( 2222
, ∀−+−+−=

      ,                                       (3.14) izyx iii ∀=++     , 1222

      1,1 ≤≤− ii zx , , 10 ≤≤ iy i∀ , ε  is a tolerable error.            (3.15) 

The objective function of Model 3.1 is to minimize the sum of difference between di,j 

and . (3.11) is from Proposition 3.2. (3.12) is the monotonic transformation from jid ,
ˆ

ji ,δ  to 

.  All alternatives are graphed on the surface of a semi-sphere (3.14)(3.15). jid ,
ˆ

The stress value can be measured by  

Stress = 
∑∑
= >

n

i

n

ij
jid

1

2
,

                                       (3.16) 

If a decision maker chooses to use a multiplicative score function, Model 3.1 can be 

reformulated as follows. 

 

Model 3.2 (A Decision Ball model – A multiplicative score function) 

Min       = ∑∑  
= >

−
n

i

n

ij
jiji dd

1

2
,, )ˆ(

s.t.      2)
)10ln(
)ln(

(
)10ln(
)ln(2 ii

i
SS

y −= ,                                 (3.17) 

         (3.12) ~ (3.15). 

Expression (3.17) is from Proposition 3.3. 
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3.4  An Illustrative Example – Visualization on Decision Balls 

This section uses a numerical example to demonstrate how to display alternatives on 

Decision Balls with additive and multiplicative score functions respectively. 

<Example 3.1>  Visualization on Decision Balls 

Suppose a decision maker has three criteria (c1, c2, and c3) to fulfill. He hopes all criteria 

values to be as large as possible.  Assume the weights of criteria are known as follows: (w1, 

w2, w3) = (0.2, 0.5, 0.3). Four alternatives are under considerations as listed in Table 3.1. 

Assume the decision maker chooses to use an additive score function. Following 

Notation 3.1, the scores of alternatives can be obtained as (S1, S2, S3, S4) = (0.3, 0.66, 0.45, 

0.8). The dissimilarities among alternatives are calculated based on Notation 3.2, as listed in 

Table 3.2 (a). Applying Model 3.1 to this example yields the coordinate of each alternative, as 

Table 3.1  Data matrix of Example 3.1 

c i,k c 1 c 2 c 3

A1 20 100 1.2

A2 35 165 0.8

A3 40 140 0.6

A4 30 180 1

(a) (b) 

Table 3.2  Results of Example 3.1 with an additive score function 
 (a) dissimilarity (b) coordinates of alternatives 

A1 A2 A3 A4

A1 0.76 0.75 0.70

A2 0.31 0.24

A3 0.55

A4

ji,δ x y z
A1 -0.78 0.52 -0.34

A2 -0.40 0.89 0.21

A3 -0.60 0.71 0.37

A4 -0.28 0.96 -0.02
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Figure 3.1  The Decision Ball of Example 3.1 with an additive score  
function 

listed in Table 3.2(b). The corresponding Decision Ball is shown in Figure 3.1. 

 Assume the decision maker selects a multiplicative score function in Example 3.1. From 

Notation 3.4, the scores of alternatives are (S1, S2, S3, S4) = (1.06, 4.06, 3.19, 4.45). Based on 

Notation 3.5, the dissimilarities among alternatives are calculated, as listed Table 3.3(a). 

Applying Model 3.2 to the example yields the coordinates of alternatives, as listed in Table 

3.3(b). The Decision Ball with a multiplicative score function is depicted in Figure 3.2. 

 

 

(a) (b) 

A1 A2 A3 A4

A1 0.00 1.62 1.67 1.54

A2 0.00 0.00 1.22 1.15

A3 0.00 0.00 0.00 1.40

A4 0.00 0.00 0.00 0.00

ji,δ x y z
A1 -0.92 0.06 -0.39

A2 -0.52 0.86 -0.01

A3 -0.61 0.74 0.27

A4 -0.41 0.87 -0.29

Table 3.3  Results of Example 3.1 with a multiplicative score function  
(a) dissimilarity (b) coordinates of alternatives 
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Figure 3.2  The Decision Ball of Example 3.1 with a multiplicative score 
function  

 

3.5  Summary 

This section proposes Decision Ball techniques with additive and multiplicative score 

functions respectively to provide a useful visual representation of ranks and similarities 

among alternatives. An illustrative example is also demonstrated about how to display 

alternatives on Decision Balls. 
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Chapter 4  Model 1: Moral Algebra Decision Ball Models 

This chapter presents Model 1 – Moral Algebra Decision Ball models for Type I decision 

pattern. The decision problems solved in this pattern are Yes/No decision problems. This is 

the simplest decision pattern because the decision makers have not to estimate the value of 

each criterion for each alternative in advance. Decision makers are assumed to be capable of 

making pairwise comparisons between pro and con reasons. Based on Franklin’s Moral 

Algebra, this study develops a mechanism to visualize the decision alternatives and processes 

on Decision Balls. 

The structure of this chapter is organized as follows. Section 4.1 introduces the concept 

of Franklin’s Moral Algebra. Section 4.2 constructs Moral Algebra Decision Ball models. 

Section 4.3 uses an example to demonstrate how to apply Moral Algebra on Decision Balls. 

Summary of this chapter is made in Section 4.4. 

 

4.1  Introduction to Franklin’s Moral Algebra 

More than 230 years ago, Joseph Priestly, a noted scientist, asked for advice from 

Benjamin Franklin about what option to choose when making a decision. Franklin replied to 

his friend that he could not advise what to determine, but would like to tell how. Franklin 

called his method of choices a Moral or Prudential Algebra, which had brought him great 
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success in making rational decisions. (The letter from Benjamin Franklin to Joseph Priestly is 

listed in the Appendix) 

Franklin thought, the difficulty of making decision was because the reasons pro and con 

were not present in the mind at the same time; sometimes one set present themselves, and at 

other times another, while the first was out of sight. 

Franklin’s Moral Algebra for making choices was first to divide a sheet of paper into 

two columns; one for pro, and another for con. Then, write down the various motives, for or 

against the choice. Franklin then attempted to estimate the respective weights of these reasons 

at one time. If a reason pro equaled a reason con, then both would be crossed out. If a reason 

pro equaled two reasons con, the three were crossed out. After a day or two of consideration, 

if nothing new came to mind for either side, Franklin would then come to a determination. 

Franklin thought that since all the reasons lay before him, and since each reason was 

considered separately and comparatively; he could judge better, and was less liable to make a 

rash choice. In fact, Franklin benefited a lot from this kind of choice method. 

Franklin’s Moral Algebra is an intelligent way of simplifying the complexity of a 

decision. By eliminating reasons pro and con step-by-step, the original list of pros and cons 

can be replaced with an equivalent but compact list. Then, a clear choice can then be reached. 

However, this algebra is not used widely today because of the following facts. 

First, Franklin’s Moral Algebra requires a decision maker to list equivalent pros and cons. 
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However, it is not easy for a decision maker to tell explicitly which pro(s) and con(s) can be 

eliminated simultaneously. Second, the key point in Franklin’s Moral Algebra is to present all 

the pros and cons to the mind at the same time, the decision maker therefore can make whole 

comparisons about these pros and cons. However, the table listing may not be a proper way to 

display complete information to a decision maker. Since a table can only list the items of pros 

and cons but can not tell the similarities or differences between them. 

This study therefore proposes Moral Algebra Decision Ball models to visualize and 

enrich Franklin’s Moral Algebra. The merits of this approach in making choices are listed 

below: 

(i) The decision maker is not required to directly list equivalent pros and cons. But to 

roughly express the comparisons between pros and cons with words such as “equally 

important”, “slightly more important”, “more important” and “significantly more 

important”.  

(ii) After making the comparisons, the differences of importance between pros and cons are 

displayed on the surface of a ball. By examining the ball, the decision maker can detect 

the closest sets of pros and cons, and then eliminate them simultaneously. 

(iii) The whole decision process can now be visualized. By “seeing and choosing”, the 

decision maker is more confident when making comparisons, updating preferences, 

eliminating pros and cons, simplifying complexity, and finally reaching a decision. 
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4.2  Construction of Moral Algebra Decision Ball Models 

To illustrate the relationship between pros and cons, we can compare the differences 

between them. Suppose an option represents a pro or a con. If two options are equally 

important, then the difference of importance between them should be small. If one option is 

slightly more important than the other, then their difference becomes larger. If one option is 

much more important than the other, then their difference is significantly larger. To visualize 

the difference of importance means to convert them into physical distances. 

Two rules of allocating all options on the surface of a ball are as follows: 

Rule 1 : The more the difference of importance between two options, the longer the physical 

distance between them. 

Rule 2 : The more important an option is, the closer it is to the north pole. 

  

The decision maker’s preferences between two options A and B are classified and 

expressed in Table 4.1. 

Preference between A and B Expression 

A is equally important as B A ≈  B 

A is slightly more important than B A f  B 

A is more important than B A ff  B 

A is significantly more important than B A fff  B 

Table 4.1  The relationship between two options 
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 The essence of Franklin’s Moral Algebra is to simultaneously display the complete 

information of pros and cons to the decision maker. This study intends to utilize computer 

graphic technologies to develop a decision support system to visualize a decision maker’s 

preferences on a ball.  

On the surface of a Decision Ball, the distance between two reasons is designed to be the 

relationship between them: the more the difference of importance, the longer the distance. The 

relationship between relationship type and distance is defined as listed in Table 4.2.  

Table 4.2  The mapping table of relationship type and distance 

Relationship Type 

( ) jir ,

Minimum 

Distance ( '
, jid )

Target 
 

 Distance ( )'
, jid

Maximum 

Distance ( '
, jid )

1 ≈  0 0×q 0.2×q 

2 ×q 0.2f  1×q 2×q 

3 1×q ff  2×q 3×q 

4 2×q 3×q fff  4×q 

In Table 4.2, q is a scaling constant, and  is the relationship type between two 

options i and j. There are four relationship types, including “

jir ,

≈ ”, “ ”, “ ”and “ ”.  

Each type of relationship is mapped to a target distance , with upper and lower bound 

f ff fff

'
, jid

'
, jid  and '

, jid  respectively. Let di,j be the actual distance between reason i and reason j, and 

(xi, yi, zi) be the mapping coordinates of reason i on the Decision Ball. For simplicity, let the 
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radius of the Decision Ball be 1. The Decision Ball is formulated as follows: 

Model 4.1  A Pro-Con Decision Ball Model  

Min         

s.t.       ,                      (4.1) φ≠∀≤−≤− jijiji rdd ,
'
,, ,       

φ≠∀≤≤ jijijiji rddd ,
'
,,

'
,    , ,                             (4.2) 

          ,                 (4.3) }"","","{" if   , , ffffff∈+≥ jiji rgyy

          qqgg ≥≥    , ,                                     (4.4) 

          (3.13) ~ (3.15), 

where qg   ,  are lower bounds of g and q respectively.  

The objective is to minimize the difference between the actual distance and target 

distance (4.1). Expression (4.2) is used to set the upper and lower bound of di,j. The latitudes 

of Pro or Con reasons stand for the order of importance. If a reason Pi is important than Pj, the 

latitude of Pi is designed to be higher than that of Pj, as listed in Expression (4.3), where g is a 

gap in y coordinate between two reasons with different importance. The lower bounds of g 

and q are set in (4.4) in order to avoid all reasons located too close to each other. The 

suggested values are g = 0.1, q  = 0.25. 

 

4.3  An illustrative Example – A CEO’s Dilemma 

<Example 4.1>  A CEO’s Dilemma 
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Here we use an example, called a CEO’s dilemma, to illustrate the process of utilizing a 

Decision Ball to assist a manager in making choices. 

Imagine a manager, David, who faces a difficult choice. David is the department director 

of SOFTCOM, a famous software company with 2000 employees. David came to the U.S.A 

from Shanghai, China. After obtaining his PhD from Wharton business School, David was 

recruited by SOFTCOM. Because of his outstanding ability in analysis, he has been promoted 

to a senior position in SOFTCOM. David has a lovely family, his wife Lisa and two children 

Ivy and Paul. Ivy is 10 and Paul is 6.  

Because of the boom in the Chinese market, SOFTCOM plans to establish a subsidiary 

in Shanghai. One week ago, David was asked to be the CEO of the China subsidiary of 

SOFTCOM. The rewards of this new position are quite promising. The salary will be doubled, 

and David may be promoted to the Asia’s director of SOFTCOM in the future. In addition, 

David can take care of his old parents in Shanghai. However, Lisa, Ivy and Paul do not want 

to leave. After staying at home for 5 years to take care of kids, Lisa cherishes her current job. 

Ivy and Paul love their current schools very much. In addition, Ivy and Paul cannot speak 

Chinese and may not make many friends in China. David is very excited about the new 

position; however, he does not want to be separated from his family. David needs to choose 

this week. How can he make this decision? 

Many quantitative tools learned from school do not seem useful for David’s decision, 
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since all of these tools ask David to specify explicitly the trade-offs between “job and family” 

or between “money and love”. David does not like it. Now we assist David to make his 

decision via a Decision Ball. 

There are five steps of making a choice: 

Step 1  Listing of Pros and Cons 

Suppose David lists five pros in order of importance (roughly) for accepting the new 

position. First, this is a great promotion opportunity. If he accepts this new position, it is very 

possible he will be promoted to be the director of Asia in three years. Second, David’s parents 

live in Shanghai. Both of them are over 75 years old. He can give his aging parents attention 

if he moves back to China. Third, the salary of the new position is more than twice as high as 

his salary now. Fourth, to be the CEO of a Chinese subsidiary, he could make more 

contributions to his homeland. Last, David has an aggressive personality and likes a career 

that offers a challenge. To be a CEO of Chinese subsidiary is an exciting challenge for him. 

David also lists five cons in order of importance (roughly). First, both kids were born in 

the U.S.A. They cannot speak Chinese. They may have a tough time transforming to a new 

culture. Besides, both kids enjoy their American-style school life very much and object to 

leaving. Second, David’s wife is an accountant. Lisa has worked hard and has recently got a 

promotion to section manager. She is not willing to quit her job. Third, the population density 

is very high in China, which results in a polluted environment. Fourth, the family just bought 

 36 
 



a new house in the U.S.A. one year ago. The house has a great view and a beautiful yard. The 

family likes the house very much and they are not willing to move out. Finally, David and 

Lisa have lived in the U.S.A. for over 16 years. Most of their friends are in the U.S.A. They 

cherish their friendships very much. 

 The summary of pros and cons are listed in Table 4.3.  

Table 4.3  David’s list of pros and cons for accepting the new position 

Step 2  Comparison of Pros 

David selects some pros for comparison, as listed in Figure 4.1(a).  

z Comparing Career promotion (P1) with other pros, David thinks career promotion is 

equally important as Care for parents (P2), more important than High salary (P3), more 

important than Working for the homeland (P4), and significantly more important than a 

New challenge (P5). These preferences are expressed as P1 ≈P2, P1ff P3, P1ff P4, and 

P1fff

f

            Pros            Cons 

P5. 

P1 Career promotion C1 Children’s education 
P2 Parents’ care C2 Lisa’s job 
P3 High salary C3 Polluted environment  
P4 Working homeland C4 Abandoning new house 
P5 New challenge C5 Loss of friendships 

z Comparing Parents’ care (P2) with other pros, David thinks it is slightly more important 

compared to a High salary (P3) as well as Working for homeland (P4), denoted as P2fP3 

and P2 P4. 
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       P1 P2 P3 P4 P5

P1 : Career 
   promotion  ≈  ff ff fff

P2 : Parents’ 
    care   f f  

P3 : High salary 
    f  

P4 : Working 
homeland     ff

P5 : New 
Challenge      

P5

P4
P3

P2

P1

Figure 4.1  Pro Ball of Example 4.1 (a) Relationships among pros (b) 
David’s Pro Ball 

(a) (b) 

≈ :  equally important;    f : slightly more important; 
ff : more important;   fff : significantly more important.

z Comparing High salary (P3) with other pros, David is unclear about the comparison of 

High salary (P3) and Working for homeland (P4). What he can sure is High salary (P3) is 

slightly more important than a New challenge (P5 ) (P3fP5). Working for homeland (P4) 

seems more important than a New challenge (P5) (P4ff P5). 

After David finishes filling out preferences in Figure 4.1(a), the Decision Ball system 

then maps David’s preferences into a Pro Ball in Figure 4.1(b). Figure 4.1(b) illustrates the 

relationships among the five pros. The arc length between two pros indicates their differences 

of importance: the longer the distance, the larger the difference. For instance, because the 

importance of Career promotion (P1) over a New challenge (P5) is higher than that of Career 

promotion (P1) over High salary (P3), the distance between P1 and P5 is much longer than that 

of P1 and P3. Moreover, the latitude of a pro stands for the order of importance. For example, 

because the importance of Career promotion (P1) is higher than a New challenge (P5), the 
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latitude of P1 is much higher than P5. 

Figure 4.1(b) shows that Career promotion (P1) and Parents’ care (P2) are the closest to 

each other, and Career promotion (P1) and a New challenge (P5) are the longest distance apart; 

which fit the preference values in Figure 4.1(a). It is noteworthy that High salary (P3) and 

Working for homeland (P4) are close to each other, which implies P3 and P4 may be of similar 

importance. This relationship was not realized by David before; but it is visually illustrated by 

the ball. Moreover, David could also choose to revise the relationship between pro reasons in 

Figure 4.1(a) to modify his Pro-Ball iteratively. 

Step 3  Comparison of Cons 

 David selects some cons for comparisons, as listed in Figure 4.2(a). 

z Considering his Children’s education (C1), it seems slightly more important than Lisa’s 

job (C2) (C1fC2), because David thinks Ivy and Paul can only have a childhood once. 

 C1 C2 C3 C4 C5

C1: Children’s  
education  f  f fff

C2 : Lisa’s job 
   f  

C3 : Polluted 
environment     ff

C4 : Abandoning 
new house     ff

C5 : Loss of 
friendships      

C4

C5

C3

C2

C1

Figure 4.2  Con Ball of Example 4.1(a) Relationships among con reasons  
(b) David’s Con Ball 

(a) (b) 

≈ :  equally important;    f : slightly more important; 
ff : more important;   fff : significantly more important. 
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His children’s education is slightly more important than a Polluted environment (C3), and 

is significantly more important than Loss of friendships (C5) (C1fC3, C1fffC5). 

z Lisa’s job (C2) is slightly more important than Abandoning their new house (C4). 

z Both a Polluted environment (C3) and Abandoning new house (C4) are more important 

than the Loss of friendships (C5). 

A Con Ball associated with Figure 4.2(a) is depicted in Figure 4.2(b). 

Step 4  Comparison between Pro(s) and Con(s) 

Next, David needs to specify the relationship between pro and con reasons, as listed in 

Figure 4.3(a).  

z Since Lisa had stayed at home for 5 years to care for the kids before she got her current 

job, the job means a lot to her. David therefore thinks his Promotion opportunity (P1) is 

equally important as Lisa’s job (C2). 

z It is difficult to compare Care for parents (P2) with any con. David therefore does not 

make any comparison here. 

z Working for homeland (P4) is equally important as the problems caused by a Polluted 

environment (C3). 

z David thinks his family’s emotional reluctance to Abandon their new house (C4) is 

slightly more important than the pleasure due to a Higher salary (P3), denoted as P3p C4. 

After filling out Figure 4.3(a), the system generates a Pro-Con Ball (Figure 4.3(b)), 
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which merges the Pro-Ball in Figure 4.1(b) and the Con-Ball in Figure 4.2(b). During the 

merging process, the system reallocates all pros and cons in order to let Career promotion (P1) 

and Lisa’s job (C2), Working for homeland (P4) and a Polluted environment (C3) be as close as 

possible, to let the latitude of Abandoning the house (C4) be higher than that of a High salary 

(P3). This is because David feels P1 ≈C2, P4 ≈C3, and P3 p C4, as specified in Figure 4.3(a). 

Step 5  Swapping Equivalent Pros and Cons 

By examining the Pro-Con Ball in Figure 4.3(b), David finds that Career promotion (P1) 

and Lisa’s job (C2) are very close to each other, that means P1 and C2 are equally important 

(as specified in Figure 4.3(a)); therefore, P1 and C2 can be eliminated (marked with a dash 

oval in Figure 4.3(b)). Similarly, a Polluted environment (C3) and Working for homeland (P4) 

can be eliminated. It is worthy to notice that Loss of friendships (C5) and a New challenge (P5) 

are also close to each other, which means they may be of similar importance although David 

did not realize it in Figure 4.3(a). This can only be visualized on a ball. Suppose David 

decides to eliminate a New challenge (P5) and the Loss of friendship (C5). The final Decision 

Ball is displayed in Figure 4.3(c). 
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 C1 : Children’s
    education

C2 : Lisa’s 
 job 

C3 : Polluted
environment

C4:Abandoning 
new house 

C5 : Loss of 
friendship

P1 : Career 
  promotion  ≈     

P2 : Parents’ 
    care      

P3 : High salary    p   

P4 : Working 
homeland   ≈    

P5 : New 
challenge      

(b) 

Figure 4.3  Pro-Con Ball of Example 4.1 (a) Relationships between pros and 
cons (b) David’s Pro-Con Ball  

(c) 

P5

P4

C4

P3

C5

C3

P2
C2
P1

C1

P5

P4
P3

P2

P1

C4

C5

C3

C2
 C1

Cross out P1 and C2, P4 and C3

(a) 
≈ :  equally important;    f : slightly more important; 
ff : more important;   fff : significantly more important.

Merge Figs. 4.1(b) and 4.2(b) into 
Fig. 4.3(b) with P1 C2, P4≈ ≈ C3, 
C4f P3

C4

P2

P3

C1



 

By checking the latitude of the rest of the reasons in Figure 4.3(c), we can see that 

Children’s education (C1) is more important than Parents’ care (P2) and Abandoning the house 

(C4) is more important than a High salary (P3), where C4 Pf 3 is already shown in Figure 

4.3(a). David now is quite clear about his mindset: Children’s education (C1) seems more 

urgent than Parents’ care (P2). He did not realize this before his Decision Ball showed him. 

Because the reasons con are more significant than the reasons pro as illustrated in Figure 

4.3(c). David therefore decides not to accept the new position. 

 

4.4  Summary 

From the basis of Franklin’s Moral Algebra, this study proposes Moral Algebra Decision 

Ball models to assist a manager make choice more confidently. By presenting all pros and 

cons related to a choice on a ball simultaneously, a decision maker can make a more 

knowledgeable decision. 

The merits of this approach in making choices are listed below: 

(i) The decision maker is not required to directly list equivalent pros and cons. But to 

roughly express the comparisons between pros and cons. 

(ii) By examining the ball, the decision maker can detect the closest sets of pros and cons, 

and then eliminate them simultaneously. 
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(iii) By “seeing and choosing”, the decision maker is more confident when making 

comparisons, updating preferences, eliminating pros and cons, simplifying complexity, 

and finally reaching a decision. 

(iv) Comparing with traditional 2-dimentional plane models, the proposed approach is more 

flexible because it can display points not on the same plane. For instance, as shown in 

Figure 4.3(b), there are 10 points, which are not on the same plane. 

(v) Comparing with traditional 3-dimensional cube models, the decision maker can observe 

the difference of importance and priority of importance between pro and con reasons on 

Decision Balls more easily because all points are displayed on the surface of balls. 
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Chapter 5  Model 2 : Even Swap Decision Ball Models 

This chapter introduces Model 2 – Even Swap Decision Ball models for Type II decision 

pattern. Ranking for multiple alternatives is the major decision problem considered here. This 

decision pattern is sophisticated because the decision makers are assumed to be capable of 

making clear trade-offs among a range of criteria across a group of alternatives. Even Swaps 

(Hammond et. al., 1998) processes are adopted here for making comparisons among 

alternatives. The whole decision processes are visualized on Decision Balls. 

The structure of this chapter is organized as follows. Section 5.1 introduces the Even 

Swap processes. Section 5.2 builds Even Swap Decision Ball models. Section 5.3 uses an 

office-renting example to demonstrate the decision processes. Summary of this chapter is 

made in Section 5.4. 

 

5.1  Introduction to Even Swap Processes 

From the basis of Franklin’s moral algebra, Hammond, Keeney and Raiffa (1998) 

developed a reliable mechanism for making trade-offs among a range of objectives across a 

group of alternatives. “Even” implies equivalence and “Swap” represents exchange. An Even 

Swap increases the value of one criterion while decreasing the value by an equivalent amount 

in terms of another criterion. By iteratively crossing out equally rated criteria to reduce the 
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number of criteria, the most preferred alternative could be found.   

Given a set of n alternatives A1, A2, …, An , where each alternative Ai contains multiple 

criteria. The conventional even-swap method (Hammond et al., 1998) begins with creating a 

consequences table, specified by the DM. Such a table contains the consequences that the 

alternatives have for the given criteria. The DM can find the best alternative based on the 

following three steps. 

Step 1  Eliminating dominated alternatives. 

The even-swap method intends to eliminate the alternatives as many as possible. Since 

the fewer the alternatives, the fewer trade-offs the DM has to make. Ai is said to dominate Aj if 

alternative Ai is better than Aj in some criteria and no worse than Aj in all other criteria. All 

dominated alternatives are eliminated first.  

Step 2  Choosing a target criterion 

After eliminating dominated alternatives, the even-swap method suggests the DM to 

choose a target criterion where the values of this criterion for all alternatives are ready to be 

adjusted as the same. Normally, a criterion with close values for most of alternatives is 

considered as a target criterion. 

Step 3  Making Even Swaps 

Choosing another criterion ready for compensating the changes in the target criterion. 

Assessing what changes in this criterion would compensate for the needed change in the 
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target criterion. Make the Even Swaps, and cancel out the target criterion. 

Steps 1 through Step 3 are applied iteratively until the best alternative is chosen. 

Even Swap approach is a rational and practically useful way in finding the best 

alternative. However, current Even Swap method has following drawbacks remained to be 

improved: 

(i) Only the best alternative is found. Other alternatives are not ranked. In actual decision 

environment, the DM may like to know the second best and/or the third best alternatives.  

(ii) Various trade-off values among alternatives, which are specified by the DM, may not 

consist with each other. Current methods have no mechanism to check the consistency 

among these trade-offs. 

(iii) The dissimilarities among alternatives are not taken into account. Actually, the DM 

hopes to know not only the ranks of alternatives but also the dissimilarities among 

alternatives. 

In order to improve the insufficiencies of the conventional Even Swap method, this study 

proposes Even Swap Decision Ball models to rank and display alternatives. The DM can see 

the ranks of and differences among all alternatives on a Decision Ball. In addition, by 

examining the moving trajectories of alternatives on a Decision Ball, the DM can check the 

consistency among Even Swaps. 
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5.2  Construction of Even Swap Decision Ball Models 

By mapping all Ai into the points (denoted as Pi) on a ball, the spatial relationships 

among these points are discussed below: 

Notation 5.1 Given two alternatives Ai (ci,1, …, ci,m) and Aj (cj,1, …, cj,m), Ai “dominates” Aj, 

denoted as  if (i)  and (ii) there is at least a k such that . ji AA f kcc kjki   allfor    ,, ≥ kjki cc ,, >

Consider the following propositions. 

Proposition 5.1 Suppose there are two alternatives Ai and Aj with Si > Sj.  , P*P i and Pj are 

on the same longitude if and only if )()()( ,*,*, www ijji ddd −= . 

<Proof>  If , P*

   

P i and Pj are on the same longitude with Si > Sj, then 

 =   -  . That is, the value of     +   -    is minimal for known S         i 

and Sj. Since the arc length is monotonically related to Euclidean distance between two 

points,  is minimal. Because )()()( *,,*, www jjii ddd −+ 0)()()( *,,*, ≥−+ www jjii ddd , we then 

have . On the other hand, since d)()()( ,*,*, www ijji ddd −= i,*(w) and dj,*(w) are expressed as 

*PPi  and *PPj  which are monotonically related to      and      respectively, if 

, then , P)()()( ,*,*, www ijji ddd −= *P i and Pj are located on the same arc along the great 

circle. That is, , P*P i and Pj are on the same longitude. 

Proposition 5.2 Consider a DB(w, I) with two alternatives Ai and Aj only, i.e., I = {i,  j}.  If 

dominance exists between Ai and Aj (i.e.  or ), then Pji AA f ij AA f i and Pj are on the same 

longitude. 

PiPj  P*Pj  P*Pi 

PiP*   

   
PjP*  

P*Pi PiPj P*Pj  
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<Proof>   implies .  ji AA f kcc kjki   allfor  , ,, ≥
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From Proposition 5.1, , P*P i and Pj are on the same longitude. 

Proposition 5.3  For a DB(w, I) for I = {i, j}. If Si(w) > Sj(w), and Pi and Pj are on the same 

longitude, then . ji AA f

<Proof> Since Si(w) > Sj(w) and Pi , Pj are on the same longitude,  

      . )()()( ,*,*, www ijji ddd −=

(i) For an additive score function, from (3.3) and (3.4), 
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Both (i) and (ii) imply . That is . kcc kjki   allfor  , ,, ≥ ji AA f

We then deduce following theorem: 

Theorem 5.1  Given Ai and Aj where . Let P)()( ww ji SS > i and Pj be the mapping points of 

Ai and Aj on a DB(w, I), I = {i, j}. If and only if dominance exists between Ai and Aj (i.e. 

 or ), then Pji AA f ij AA f i and Pj are on the same longitude of the ball connecting , P*P i 

and Pj.  

Notation 5.2  DS(i1, i2, …, ip) is denoted as a dominant set composed of p alternatives with 

dominant relationships .  
piii AAA fLff

21

Proposition 5.4  Consider a dominant set DS(1, 2, …, k), let DB(w, I), I = {1, 2, …, k} be 

the corresponding Decision Ball for the alternatives A1, A2, …, Ak , where . 

Connecting points , P

kAAA fKff 21

*P 1, P2, …, Pk forms a longitude on the surface of this Decision Ball. 

That implies  for i = 1, 2, …, k, where a and c are constants. 0=+ ii czax

<Proof> Similar to Propositions 5.2 and 5.3. 

Notation 5.3  Given an alternative set A = (A1, A2, …, An) and a weighted vector w, a 

corresponding Decision Ball of A and w is denoted as 

DB(w, I) = {(xi, yi, zi)| }},,2,1{I ni K=∈ , where (xi, yi, zi) are obtained by solving 

following models. 

Model 5.1 (Even Swap -- Decision Ball model with an additive score function) 

Min      =  ∑∑
= >

−
n

i

n

ij
jiji dd

1

2
,, )ˆ(
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s.t.      , jiijji AAzxzx f∀=    , ji,∀ ,                           (5.1) 

(3.11) ~ (3.15). 

The objective of Model 5.1 is to minimize the sum of difference between di,j and .  

(5.1) is from Proposition 5.4.  

jid ,
ˆ

Model 5.2 (Even Swap --Decision Ball model with a multiplicative score function) 

Min      =  ∑∑
= >

−
n

i

n

ij
jiji dd

1

2
,, )ˆ(

s.t.     2)
)10ln(
)ln(

(
)10ln(
)ln(2 ii

i
SS

y −= , i∀ ,                              (5.2) 

        (5.1), and (3.12) ~ (3.15), 

where (5.2) is from Proposition 3.3. 

Notation 5.4  Let  be the alternative converted from A'
iA i by the DM through making Even 

Swaps, Ai and  are called concurrent alternatives. P'
iA i and , which are mapping points of 

A

'
iP

i and , are called concurrent points. '
iA

Remark 5.1  Given two alternatives Ai and Aj, suppose the DM can stably make Even Swaps, 

then Pj can be converted into another concurrent point '
jP  such that , P*P i and  are on the 

same longitude.  

'
jP

We can use Figure 5.1 to interpret Remark 5.1. Here  but Aji SS ≥ i does not dominate 

Aj. Via Even Swap processes, we can convert Aj to  where . From Theorem 5.1, P'
jA '

ji AA f j 

therefore can be moved to a concurrent point  where , P'
jP *P i and  are on the same 

longitude. 

'
jP

 51 
 



Ai

AjAj
’

Aj
’’

Figure 5.1  Moving trajectory of concurrent points 

Notation 5.5  Ai is said consistently even swapped into  if '
iA ε≤

−

i

ii

S

SS '

, where ε  is a 

tolerable error. Normally we may set 05.0≤ε .  

Theorem 5.2  Given Ai with its concurrent alternative , and P'
iA i with its concurrent point 

,  A'
iP i is consistently even swapped into  if and only if P'

iA i and  are on the same 

latitude. 

'
iP

<Proof> 

(i) If Ai is consistently even swapped into , then , it implies  (referred to 

Proposition 3.2 or 3.3). Therefore, P

'
iA '

ii SS = '
ii yy =

i and  are on the same latitude. '
iP

(ii) If Pi and  are on the same latitude, then  which implies .  

therefore is consistently even swapped from A

'
iP '

ii yy = '
ii SS = '

iA

i . 

Theorem 5.2 is useful in checking the consistency of Even Swap processes made by the 

DM. Take Figure 5.1 for instance, Aj is consistently even swapped into , however,  is '
jA ''

jA
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not even swapped from Aj consistently. The more inconsistent swap the DM has made, the 

bigger differences in score before and after even swap. That is, the difference between 

coordinate yj and  is bigger. '
jy

Both Theorem 5.1 and Theorem 5.2 are utilized in this study to develop a mechanism to 

visualize the Even Swap processes via Decision Balls. By examining the moving trajectories 

of related points on a Decision Ball, the DM can rank the alternatives more confidently. 

The solving processes are summarized as follows: 

Step 1  (Initialization) The system asks the DM to input a consequence table, to select 

criteria with cost feature, to quantify the non-numerical criteria, to choose a type of score 

function, and to specify the initial weights w(J) for J = 0. A dominant set is initialized as 

DS(J) = φ , for J = 0.  

Step 2  (Computing scores) Based on w(J), the system computes Si(w) and di,j(w). 

Step 3  (Displaying a Decision Ball) A Decision Ball DB(w, I) is displayed to the DM after 

solving Model 5.1 or 5.2. The alternative Ai ∉  DS(J) with the highest score is chosen as the 

next swap alternative by the system. The process stops if all alternatives are in DS(J) or the 

DM ceases to make further even swaps. 

Step 4  (Making Even Swaps) The DM makes even swaps between Ai and alternatives in 

DS(J). Ai is changed to a concurrent alternative .  '
iA

Step 5  (Weight adjustment) For each even swap, the system computes the related weights 
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by solving following linear programs: 

Model 5.3 (Weight adjustment model with an additive score function) 

Min  α                                                        

s.t.   α≤−+− )()( '
,,

'
,, qiqiqpipip ccwccw ,  for an even swap (cp, cq) in Ai,   (5.3) 

    ∑ ,                                                 (5.4) 
=

=
m

k
kw

1
1

kwk ∀≥    ,0 ,                                               (5.5) 

where  ci,k  and  are the value of criterion k of A'
,kic i before and after the even swap 

respectively. The weights of unadjusted criteria are kept the same as previous step. J = J+1. 

The weight adjustment model with a multiplicative score function can be formulated as 

follows: 

Model 5.4 (Weight adjustment model with a multiplicative score function) 

Min  α                                                         

s.t.   α≤−+− ))ln()(ln())ln()(ln( '
,,

'
,, qiqiqpipip ccwccw ,                (5.6) 

 for an even swap (cp, cq) in Ai, 

(5.4) ~ (5.5). 

Step 6  (Updating the dominant set) Ai is added into DS(J). Reiterate Step 2 to Step 6.  

 

5.3  An Illustrative Example – An Office-Renting Problem 

<Example 5.1>  An office-renting problem 
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This example is slightly modified from Harvard Business Review (Hammond et al., 

1998), which describes a business problem for determining where to rent an office.  The DM 

has five major decision criteria to fulfill (Table 5.1): (c1) a short commute time from home to 

office, (c2) good access to his clients, (c3) good office services, (c4) sufficient space, and (c5) 

low costs.  The commuting time is the average time in minutes needed to travel to work 

during rush hour. The percentage of his clients within an hour’s drive of the office is used to 

measure the access to clients.  A simple three-letter scale is used to describe the office 

services provided: “A” indicates full service; “B” means partial service; and “C” implies no 

service available.  Office size is measured in square feet, and cost is measured by monthly 

rent.  Five alternative locations from A1 through A5 are under considerations. 

The 1st iteration:  At Step 1 of the first iteration, the DM inputs his consequences table, 

maximal and minimal values of each criterion (Table 5.1), where c1, c5 are criteria with cost 

feature (The DM would like it as small as possible). The DM chooses a multiplicative score 

function. The system asks the DM to answer some questions. Suppose the dialogue is as 

Table 5.1  The consequence table of Example 1 ( )52 AA f  

A1 A2 A3 A4 A5 Max Min

 c 1
Commute
(Mins) 45 25 20 25 30 60 0

c 2
Customer
Access (%) 50 80 70 85 75 100 0

c 3
Office
Services A B C A C A C

c 4
Office Size
(Square Feet) 800 700 500 950 700 1200 500

c 5
Monthly
Cost ($) 1850 1700 1500 1900 1750 2000 1500

Alternative
Criteria

Alternative
Criteria
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follows: 

<Q1>  Consider criterion c3, how do you quantify the values of service level A, B and C?   

<A1>  4, 2, 1.  

<Q2>  Input the initial weights for c1, c2, c3 , c4 and c5.  <A2>  0.2, 0.2, 0.2, 0.2, 0.2. 

At Step 2, based on the initial weights, the similarities among alternatives and scores of 

alternatives are calculated. At Step 3, a Decision Ball (Figure 5.2(a)) is displayed to the DM. 

The figure illustrates that because A2 Af

2

2 24

5 (Table 5.1), A2 and A5 are on the same longitude. 

At Step 4, the DM are suggested to make even swaps between A2 and A4 first because A2 and 

A4 yield the highest score. Suppose the dialogue is as follows. 

<Q3>  Consider Figure 5.2(a), now A2 needs to be moved to a new point  which has the 

same longitude of A

'A

4. Please choose a target criterion of A2 from {c2, c3, c4, c5}, and 

adjust its value.  <A3> c5 and 1900. 

<Q4>  Consider A2, to compensate the increase of c5 from 1700 to 1900, choose one 

criterion from {c2, c3, c4 } and specify the value being adjusted.  <A4>  c4 and 850  

(A2 is changed to a concurrent point , and ). 'A 'AA f

The weights of criteria are adjusted as (w1 , w2, w3 , w4, w5 ) =(0.2, 0.2, 0.2, 0.263, 0.137). 

The criteria values and scores of alternatives after even swap are listed in Figure 5.2(b). 

The 2nd iteration:  A Decision Ball is shown in Figure 5.3(a). A1, which has the higher score 

than A5 and A3, is then chosen as the next swap alternative. At Step 4, the system asks the DM 
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following sample questions. 

<Q5>  Consider Figure 5.3(a), here A1 needs to be moved to  which has the same 

longitude of A

'
1A

4 and .  Firstly, c'A2 3 of A1 is adjusted to B. To compensate the increase 

of c3 from A to B, choose one criterion from {c1, c2, c4, c5} and specify the value you 

want to adjust.  <A5>  c2 and 75.  

<Q6>  Do you want to adjust another criterion pair of A1 ?  <A6>  Yes. 

<Q7>  Consider A1, choose a target criterion from {c1, c2, c4, c5}, and specify the equated 

value.  <A7>  c5, and 1900. 

<Q8>  Consider A1, to compensate the increase of c5 from 1850 to 1900, choose one 

criterion from {c1, c2, c4} and specify value being adjusted.  <A8>  c4 and 850.  

(A1 is changed to a concurrent point , and ). '
1A '

1
'
24 AAA ff

The weights of criteria become w = (0.2, 0.291, 0.109, 0.277, 0.123).  

The 3rd iteration:  A Decision Ball (Figure 5.4(a)) is displayed to the DM, where A5 is then 

chosen as a swap alternative. Suppose the DM equates an increase in c3 from C to B with a 

200 increase in c5, and equates an increase in c1 from 30 to 45 with a 100 increase in c4. The 

consequences table after even swaps is listed in Fig. 5.4(b). The weights become w = (0.176, 

0.291, 0.101, 0.301, 0.131).  

The 4th iteration: Figure 5.5(a) is displayed to the DM. A3 is chosen as a swap alternative. 

Suppose the consequences table after even swaps is listed in Figure 5.5(b). The final weights 
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on criteria become w = (0.178, 0.291, 0.099, 0.232, 0.2). Since all alternatives are on the same 

longitude, the process is terminated. The final Decision Ball and consequences table are 

depicted in Figure 5.6(a) and (b). The ranks for these alternatives are A4 fA2 fA1 f fA5 A3 . 

The moving trajectories of concurrent points A3 and A4 for the whole processes are 

shown in Figure 5.7, where  stands for concurrent point of Ai3 3 after the ist iteration. The 

most inconsistent even swaps the DM has made are at Iteration 2 and 5 because  and  

are furthest away from the latitude formed by all . The DM can therefore examine the 

moving trajectories of A

23 53

i3

3 and A4 to discover and update these inconsistencies. The system 

may also warn the DM about these inconsistencies, thus to help the DM to update his 

preferences at the Iteration 2 and 5. 

 58 
 



 

Weight A1 A5 A5

 c 1
Commute
(Mins) 0.176 45 30 45

c 2
Customer
Access (%) 0.291 75 75 75

c 3
Office
Services 0.101 B C

c 4
Office Size
(Square Feet) 0.301 850 700 800

c 5
Monthly
Cost ($) 0.131 1900 1750

Score 4.91 4.48 4.49

B

1950

Alternative
CriteriaCriteriaCriteriaCriteriaCriteriaCriteriaCriteriaCriteriaCriteriaCriteriaCriteriaCriteriaCriteriaCriteria

Figure 5.4  The decision ball and even swaps after Iteration 3 

4 

1 
2 

5 
3 

, 
, 

, ,

(a) (b) 

Weight A2 A1 A1

 c 1
Commute
(Mins) 0.200 25 45 45

c 2
Customer
Access (%) 0.291 80 50 75

c 3
Office
Services 0.109 B A B

c 4
Office Size
(Square Feet) 0.277 850 800

c 5
Monthl

850

y
Cost ($) 0.123 1900 1850

Score 5.63 5.11 4.86

1900

Alternative
CriteriaCriteriaCriteriaCriteriaCriteriaCriteriaCriteriaCriteriaCriteria

Figure 5.3  The decision ball and even swaps after Iteration 2 
(a) (b) 

4 
1 2 

5 
3 

, 

, ,

Weight A4 A2 A2

 c 1
Commute
(Mins) 0.2 25 25 25

c 2
Customer
Access (%) 0.2 85 80 80

c 3
Office
Services 0.2 A B B

c 4
Office Size
(Square Feet) 0.263 950 700 850

c 5
Monthly
Cost ($) 0.137 1900 1700 1900

Score 6.71 5.42 5.23

Alternative
CriteriaCriteriaCriteriaCriteriaCriteria

Figure 5.2  The decision ball and even swaps after Iteration 1. The shaded area 
is the swap inputted by the DM 

,

4 
1 2 

5 
3 

(a) (b) 
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Figure 5.6  The final decision ball and consequences table 
 

Figure 5.7  The moving trajectories of A3 and A4 after even swaps 
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Weight A5 A3 A3

 c 1
Commute
(Mins) 0.178 45 20 45

c 2
Customer
Access (%) 0.291 75 70 70

c 3
Office
Services 0.099 B C B

c 4
Office Size
(Square Feet) 0.232 800 500

c 5
Monthly
Cost ($) 0.200 1950 1500

Score 4.21 3.40 4.00

750

1950

Alternative
CriteriaCriteriaCriteriaCriteriaCriteriaCriteriaCriteriaCriteriaCriteriaCriteriaCriteriaCriteriaCriteriaCriteriaCriteriaCriteriaCriteriaCriteriaCriteriaCriteria

Figure 5.5  The decision ball and even swaps after Iteration 4 
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Weight A1 A2 A3 A4 A5

 c 1
Commute
(Mins) 0.178 45 25 45 25 45

c 2
Customer
Access (%) 0.291 75 80 70 85 75

c 3
Office
Services 0.099 B B B A B

c 4
Office Size
(Square Feet) 0.232 850 850 750 950 800

c 5
Monthly
Cost ($) 0.200 1900 1900 1950 1900 1950

Score 4.68 5.35 4.00 6.24 4.21

AlternativeCriteriaCriteriaCriteriaCriteriaCriteriaCriteriaCriteriaCriteriaCriteriaCriteriaCriteriaCriteriaCriteriaCriteriaCriteriaCriteriaCriteriaCriteriaCriteriaCriteriaCriteriaCriteriaCriteriaCriteriaCriteriaCriteriaCriteria



 

5.4  Summary 

Even Swap method is a straightforward process, which provides a useful way for making 

trades among criteria thus to assist the DM find out the best alternatives. However, only the 

best alternative can be found. The ranks of rest of alternatives are not known. In addition, 

there may exist large inconsistencies among even swaps that the DM could not know.  

This study develops Even Swap Decision Ball models to visualize the Even Swap 

process via a Decision Ball. By mapping the alternatives into the points on the surface of this 

Decision Ball, the Even Swap processes are illustrated as the moving trajectories among 

related points. The DM can examine these trajectories to obtain intelligences below: 

(i) To know the dissimilarities among alternatives. The longer the distance, the larger the 

dissimilarity. 

(ii) To know the superiority (or dominance) relationship between alternatives by checking 

the longitude of alternatives. The alternatives, which are on the same longitude, exist 

dominance relationship. 

(iii) To know the inconsistencies in decision processes by checking the latitude of alternatives. 

The even swap, which causes the alternative the furthest away from the latitude, is the 

most inconsistent one. 

The proposed Decision Ball models can display alternatives on the same longitude and 
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latitude of a sphere to indicate special relationships among alternatives, which are difficult to 

be plotted and examined by traditional 2-dimensional or 3-dimensional models. 
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Chapter 6  Model 3 : Pairwise Comparison Decision Ball Models 

Ranking multiple alternatives with inconsistent preferences is one of the most important 

issues in decision science. This study proposes Pairwise Comparison Decision Ball models for 

Type III decision pattern to help the decision makers improve inconsistent preferences and 

rank alternatives. The decision makers are assumed to be capable of making pairwise 

comparisons between alternatives using score ratios. 

After a decision maker specifies pairwise comparisons between alternatives, an 

Adjusting model will suggest options for adjusting the inconsistent judgments. These options 

are then illustrated on Gower Plots to aid in detecting the causes of any ordinal inconsistency. 

Following that, Decision Ball techniques are used to display the spatial distances among 

alternatives based on their dissimilarities.  

By cycling through the above three steps iteratively, a decision maker can rank decision 

alternatives more confidently. Proposed approach can aid the decision maker detect and 

improve inconsistencies conveniently. In addition, incomplete preference matrix can also be 

treated. 

The structure of this chapter is organized as follows. Section 6.1 briefly introduces the 

concept of pairwise comparisons. Section 6.2 forms Pairwise Comparison Decision Ball 

models. Section 6.3 uses two examples to demonstrate the decision processes. Summary of 
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this chapter is made in Section 6.4. 

 

6.1  Introduction to Pairwise Comparisons 

The Analytic Hierarchy Process (Saaty, 1977) is a popular method for establishing 

priorities in multicriteria decision problems by evaluating the strength of individual 

preferences through the pairwise comparison of alternatives at each level of the hierarchy.  

Let  be a set of n alternatives for solving a decision problem.  

Denote r

{ niAi ,...,1| ==A }

i,j as ji
j

i
ji e

w
w

r ,, ×= , where ei,j is a multiplicative term accounting for inconsistencies. 

The ratio 
j

i

w
w

 measures the relative dominance of Ai over Aj in terms of underlying priority 

weights w1 > 0, …, wn > 0, taken to sum up to one by convention.  Following Saaty, it is 

convenient to let R = (ri,j), { }nji ,...,1, ∈ , be an nn×  preference matrix.  It is assumed that 

ri,j = 
ijr ,

1 .  

Several methods have been proposed (e.g., Saaty, 1977; Jesen, 1984; Genest and Rivest, 

1994) to rank alternatives in AHP. The ranks they yield do not vary much when the decision 

makers’ preferences are consistent. However, if a preference matrix is ordinally inconsistent 

or highly cardinally inconsistent, different ranking methods may produce wildly different 

priorities and rankings.  Hence, how to help the decision makers detect and improve these 

inconsistencies becomes an important issue in pairwise comparison models. 

Consider a set of decision alternatives A = {A1, A2, …, An} for solving a problem, where 
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each Ai contains m criteria ci,1, …, ci,m. Denote Si as the score function of an alternative Ai. Si 

can be either an additive function or a multiplicative function of ci,k. Denote C = (ci,k) as the 

criterion matrix of the decision problem. Assume a decision maker can tell which score 

function to choose, and can specify the ratio of the score of one alternative to another 

alternative in a pairwise fashion.  

Denote R = (ri,j) as a decision maker’s preference matrix where ri,j is the ratio of Si to Sj, 

ri,j = 1/rj,i. If the decision maker is unclear about the ratio of Si to Sj, ri,j is remained blank 

(denoted as ). R is ordinally inconsistent (intransitive) if for some i, j, k∈  {1, 2, 3, …, 

n} there exists r

φ=jir ,

i,j > 1, rj,k > 1, but ri,k  < 1.  R is cardinally inconsistent if for some i, j, k∈  

{1, 2, 3, …, n} there exists kjjiki rrr ,,, ×≠  (Genest and Zhang, 1996). R is incomplete if there 

exists any .  φ=jir ,

The problem in this study is as follows: 

“Given a data set C = (ci,k) and a preference matrix R = (ri,j), how should one rank the 

decision alternatives A1, A2, …, An?”  

If R is complete and ordinally consistent, all Ai can be ranked immediately; otherwise, R 

should be adjusted. This study develops three models to assist the decision maker adjust R = 

(ri,j) and rank A1, A2, …, An, as follows: (Figure 6.1) 

(i) The first model is an Adjusting model used to convert R = (ri,j) into some new complete 

matrix . It also provides some options as to how to adjust .  )( '
, jir='R '

, jir
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Choose a Score 
Function: 
--Additive  
--Multiplicative

<1st  Model > Adjusting Models

Ak

Aj

Ai

-0.60

-0.40

-0.20

0.00

0.20

0.40

0.60

0.80

-0.80 -0.60 -0.40 -0.20 0.00

Ak

Ai Ai

Aj
Aj

Ak

A revised 
preference 
matrix 
 'R = ( '

, jir ) 

<2nd Model> Gower Plots

<3rd Model > Decision 
Ball Techniques 

Before Adjustment After Adjustment 

Option 1 
Other 
options 

Figure 6.1  Solution procedure of Pairwise Comparison Decision Ball models

A data matrix C = (ci,k) 
A1 A2 … An

c 1

c 2 c i,k

c m

M

A preference matrix R r = ( i,j)

A1 A2 … An

A1

A2  r i,j

An

M

A1 A2 … An

A1

A2

An

M

'
, jir



 

(ii) The second model is a Gower Plot model originally developed by Gower (1977) and 

Genest and Zhang (1996). Following an option provided by the first model (i.e., 'R ), a 

Gower Plot model could graphically detect the decision alternative(s) which violates 

ordinal consistency. 

(iii) The third model is a Decision Ball model. The Decision Ball not only shows the ranks of 

alternatives but displays the spatial distances associated with the dissimilarities between 

alternatives following the revised preference matrix 'R .  

Through the iterative operations of (i), (ii) and (iii) the decision maker can finally rank 

alternatives more confidently.  

 

6.2  Construction of Pairwise Comparison Decision Ball Models 

This section develops a systematical approach for ranking and displaying alternatives. 

The approach includes three models: the Adjusting model, the Gower Plot model, and the 

Decision Ball model. 

Given a C = (ci,k) and a R = (ri,j), where R may be incomplete or inconsistent, a model of 

adjusting R with addition score functions is formulated below: 

Model 6.1  (Adjusting model – Additive score functions ) 

}{
Min

kw
   21  +×M
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1 =  ∑∑
= >

n

i

n

ij
jiu

1
,

2 =  ∑∑
= >

n

i

n

ij
ji

1
,α

s.t.   1 and    where  allfor    , )1()1( ,, ≠≠≥×+−×− i,ji,jjiji
j

i rrji,uMr
S
S

φε ,  (6.1) 

1 where allfor    , 0, =≥×+−− i,j jiji ri,j uMSS ,                   (6.2) 

      ,,  ,,, jir
S
S

jiji
j

i ∀≤− α                                     (6.3) 

∑
= −

−
=

m

k kk

kki
ki cc

cc
wS

1

,)(w ,                                      (6.4) 

1
1

=∑
=

m

k
kw ,                                                 (6.5) 

,  , kwww kkk ∀≤≤                                          (6.6) 

      , M is a large value, }1,0{, ∈jiu ε  is a tolerable error.              (6.7) 

The variables in Model 6.1 are (w1, w2, …, wm). The first objective (1) of Model 6.1 is 

to achieve ordinal consistency by minimizing the number of preferences (i.e., ) being 

revised.  The elements of matrix U, u

jir ,

i,,j , are binary variables, i.e. ui,j  = 1 if ri,j is reversed, 

and otherwise ui,j = 0.  Constraint (6.1) means: when φ≠jir ,  and , u1, ≠jir i,j = 0, if (i) 

 )1( and )1( , >> ji
j

i r
S
S

(ii)  )1( and )1( , << ji
j

i r
S
S

; and otherwise ui,j = 1. A tolerable positive 

number ε  is used to avoid 1=
j

i

S
S

. Constraint (6.2) means: when ri,j = 1, ui,j = 0 if Si = Sj; 

and otherwise ui,j = 1. The second objective (2) is to achieve cardinal consistency by 

minimizing the ji,α  values, i.e. to minimize the difference between 
j

i

S
S  and . Since 

ordinal consistency (

jir ,

1) is more important than cardinal consistency (2), 1 is multiplied by 
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a large value M in the objective function. Constraints (6.4) and (6.5) come from Notation 3.1. 

Constraint (6.6) sets the upper and lower bound of weights. 

Model 6.1 is a nonlinear model, which can be converted into the following linear mixed 

0-1 program: 

}{
Min

kw
   21  +×M

1 =  ∑∑
= >

n

i

n

ij
jiu

1
,

2 =  ∑∑
= >

n

i

n

ij
ji

1
,α

s.t.   , (6.8) 1 and    where  allfor    , )1()( ,, ≠≠≥×+−×− i,ji,jjijiji rrji,uMrSS φε

1 where allfor ,, =×≤−≤×− i,j i,jjiji ri,j   uMSSuM ,             (6.9) 

                            (6.10) ,,  ,,, jir SSrS i,jjijii,jjij ∀+×≤≤−× αα

  (6.4) ~ (6.7). 

Where (6.8), (6.9) and (6.10) are converted from (6.1), (6.2) and (6.3) respectively.  

After the weight vector, (w1, w2, …, wn), is found, ∑
= −

−
=

m

k kk

kki
ki cc

cc
wS

1

,)(w  can be 

calculated and a complete matrix can be obtained as 

 ,                                           (6.11) )( '
, jir='R

where 
j

i
ji S

S
r ='

,  if φ=jir ,  or ui,j = 1; otherwise, . jiji rr ,
'
, =

The Adjusting model with multiplicative score functions is formulated as follows. 

Model 6.2  (Adjusting Model –Multiplicative score functions ) 

}{
Min

kw
   21  +×M
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1 =  ∑∑
= >

n

i

n

ij
jiu

1
,

2 =  ∑∑
= >

n

i

n

ij
ji

1
,α

s.t.   1 and    where  allfor   , )ln()ln( ,, ≠≠≥×+× i,ji,jjiji
j

i rrji,uMr
S
S

φε ,   (6.12) 

     1 where allfor     ,0ln , =≥×+− i,j ji
j

i ri,j uM
S
S

,                  (6.13) 

     jijiji
j

i re
S
S

,,, )ln()ln( α≤− , ji,∀ ,                             (6.14) 

     and (6.5)~(6.7). 

Constraints (6.12), (6.13), and (6.14) correspond to constraints (6.1), (6.2) and (6.3) 

respectively. Model 6.2 can be linearized as follows.  
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jiu
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1 and    where  allfor  ≠≠ i,ji,j rrji, φ ,       (6.15) 

jiruMcwcwuM jiji

m

k

m

k
kjkkikji ,  ,1  ,)ln()ln( ,,

1 1
,,, ∀=∀×≤−≤×− ∑ ∑
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,,  ,)ln()ln()ln( ,
1

'
,,,

1
, jiercwcw ji

m

k
jijikjk

m

k
kik ∀≤+−−∑∑

==

α                (6.17) 

(6.5)~(6.7), 

where . )exp( '
,, jiji ee =

'RAfter a complete matrix  is obtained, the ordinal Gower Plots can be used to aid in 
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detecting the causes of any ordinal inconsistency. The concept of Gower Plots refers to 

Section 2.2. The Gower Plot model with a multiplicative score function is the same as that 

with an additive score function. 

At last, Decision Ball techniques, as proposed in Section 3.3, with additive or 

multiplicative score functions are adopted to display ranks and similarities among 

alternatives. 

The solution processes are shown in Figure 6.1 and illustrated below:  

Step 1  The decision maker specifies a data matrix C = (ci,k), chooses a type of score 

function, and inputs a preference matrix R = (r ), where R can be an incomplete matrix. i,j

Step 2  Applying Model 6.1 (if an additive score function is selected) or Model 6.2 (if a 

multiplicative score function is chosen) to the data and preference matrix yields a set of 

weights w, and a revised preference matrix , where  is a complete matrix. )( '
, jir='R 'R

Step 3  Applying Gower Plot model to 'R , the ordinal Gower Plots before and after 

adjustment are displayed based on . 'R

Step 4  Based on the weights w obtained in Step 2, the score of alternatives Si(w) and 

dissimilarities )(, wjiδ  among alternatives are calculated.  

Step 5  Applying Decision Ball techniques (Model 3.1 if an additive score function is chosen; 

or Model 3.2 if a multiplicative score function is chosen) to S (w) and )(, wjiδi  yields the 

coordinates (x , y , z ) of alternatives on the Decision Ball. The Decision Ball is then i i i
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displayed to the decision maker. 

Step 6 The decision maker can observe the ranks and similarities among alternatives on the 

ball. Other options can be obtained through Step 3 to Step 5 by setting some ui,j = 0. The 

decision maker can also adjust preferences in R (Step 1) or 'R  (Step 2) directly based on 

the information provided by Gower Plots and Decision Balls, and observe the corresponding 

changes. 

 

6.3  Illustrative Examples 

Two examples are used to illustrate the Decision Maker’s problem solving processes. 

For simplicity, only additive score functions are illustrated here. 

<Example 6.1>  Investment in Mutual Funds 

The first example is about an investor who would like to invest in mutual funds. The 

investor has four major decision criteria to fulfill: (c ) a high total return, (c1 2) large fund size 

(economies of scale), (c : Beta), and (c ) low turnover. Six alternatives (A) low risk ( β3 4 1, …, 

A ) are under considerations as listed in the C  in Figure 6.2, where c6 1 3 and c4 are cost criteria. 

Suppose the investor chooses to use an additive score function and specifies an incomplete 

preference matrix R  = (r ), where r1 i,j 1,6, r2,3, and r3,6 are left blank because it is difficult for the 

investor to make comparisons between these alternatives. The data set, preference matrix, and 

the solving process are depicted in Figure 6.2. (Here R  can be checked as ordinally 1
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inconsistent since  and  and but .) 12,1 <r 14,2 <r 14,1 >r

Applying Model 6.1 to C  and R  = 3.64, u1 1 yields the solution as 1 = 1, 2 1,4 = 1, (w1, 

w , w , w ) = (0.38, 0.19, 0.05, 0.38), and (S , S , S2 3 4 1 2 3, S , S4 5, S6) = (0.56, 0.65, 0.41, 0.82, 0.58, 

0.35). The values of unspecified preferences can be computed as r
6

1
S
S

3

2
S
S = 1.59, r1,6 = 2,3 =  

= 1.58, and r
4

1
S
S

6

3
S
S  = 1.17.  The system’s results suggest reversing r3,6 = 1,4 from 2 to 0.68 ( ) 

to minimize both ordinal and cardinal inconsistencies. This is regarded as Option 1 of 

adjusting the preferences. The ordinal Gower Plots, with r1,4 >1 and r1,4 <1, are also depicted 

in Figure 6.2. Examining the Gower Plots before reversal (i.e., when ), the preference 

matrix is ordinally inconsistent because A

14,1 >r

 and A lie off the half circle, which implies A1 4  1 and 

A4 are the alternative causing major ordinal inconsistencies. By following the suggestion of 

revising r1,4 as r1,4 <1, the Gower Plot will show the preference matrix is ordinally consistent 

and  the alternatives will be ranked as A4f f f A f  A  A  A f  A .  2 5 1 3 6

Applying a Decision Ball technique (Model 3.1) based on the results of Model 6.1 (Si(w) 

and ))(, wjiδ , …, Ayield a set of coordinates for A1 6, with Stress = 6.9%. The corresponding 

Decision Ball is shown on the left bottom of Figure 6.2. Examining the Decision Ball, the 

investor can observe that (i) if he reverses r1,4 from larger than 1 to smaller than 1, the ranks 

of alternatives is A f  A4 2f f f A  A f  A  A5 1 3 6 from top to down along a latitudinal line (ii) 

A , A4 2 and A5 have higher similarities because they are close to each other. For diversifying 

the investment, the investor may avoid investing A , A  and A  simultaneously.  4 2 5
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If the investor does not like to reverse r1,4, another option can be generated by setting 

u1,4 = 0 in Model 6.1. Applying Model 6.1 (with a new constraint u1,4 = 0) again yields Option 

2 where 1 = 2,   = 3.57, u2 1,2 = 1, u1,5 = 1, (w1, w , w , w ) = (0.63, 0.10, 0.05, 0.22), (S , S2 3 4 1 2, 

S , S , S , S3 4 5 6) = (0.73, 0.70, 0.26, 0.72, 0.53, 0.40). The corresponding Gower Plots and 

Decision Ball (with Stress 5.9%) are shown on the right bottom of Figure 6.2.  

If the investor does not like Option 1 and Option 2, he may modify R1 (or ) directly 

(Option 3) based on the information provided on the Gower Plot about the alternative(s) 

causing major inconsistencies, or based on the information provided on the Decision Ball 

about the scores and similarities among alternatives.  

'R1
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r i,j A1 A2 A3 A4 A5 A6

A1 0.50 2.00 2.00 0.50

A2 0.50 2.00 3.00

A3 0.33 0.25

A4 1.60 2.00

A5 2.00

A6

Option 1 
Reverse r1,4 

(suggested by 
the System) 

Option 2
Revere r1,2 and r1,5
(suggested by the 

System) 

Option 3 
Direct 

adjustment 
(by the DM) 

C1 R1

r1,4 >1 

-0.60

-0.40

-0.20

0.00

0.20

0.40

0.60

0.80
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Figure 6.2  Decision Process of Example 6.1 
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r i,j A1 A2 A3 A4 A5 A6

A1 0.50 2.00 0.50 1.59

A2 1.58 0.50 2.00 3.00

A3 0.33 0.25 1.17

A4 1.60 2.00

A5 2.00

A6

68.0
2

ball (b) ball (d) 

 c k,i A1 A2 A3 A4 A5 A6

c 1: Return 67.76 57.82 20.56 48.30 43.45 42.12
c 2: Size(million) 1,102  1,100  782   2,215 1,522 1,825  
c 3: Beta 1.43 1.41 0.85 1.08 1.45 0.99
c 4: Turnover 305.26 180.97 139.2 127.94 187.48 402.42

A4A2

A5

A3
A6

A1

r i,j A1 A2 A3 A4 A5 A6

A1 1.04 2.00 2.00 1.38 1.84
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<Example 2>  Selection of universities 

Consider a student who needs to enroll in a university. He would like to choose from a 

list of eight candidate universities. The student sets four criteria for choosing a university: (c1) 

rich campus life estimated by size, (c ) high average salary after graduation, (c2 3) high entrance 

score, and (c4) low tuition. Low tuition, c4, is considered to be a cost criterion. An additive 

score function is used to rank the alternatives. The data set C2 and an incomplete preference 

matrix R  are listed as in Figure 6.3.  2

After applying Model 6.1 to the example, three possible ordinally consistent solutions 

are found. Those are, u1,7 = 1 (Option 1), u3,7 = 1 (Option 2), and u1,3 = 1 (Option 3). The 

corresponding Gower Plots and Decision Balls (with Stress 7.2%, 6.7%, and 4.5% 

respectively) are depicted in Figure 6.3. 

Option 1 yields 1 = 1, 2 = 3.51, u1,7 = 1, (w , w , w , w ) = (0.31, 0.59, 0.05, 0.05), (S1 2 3 4 1, 

S , S2 3, S , S , S , S , S4 5 6 7 8) = (0.62, 0.37, 0.52, 0.12, 0.20, 0.34, 0.45, 0.75). Examining Gower 

Plot (a) where r1,7 < 1 to know it is ordinally inconsistent because there are some angles 

between consecutive points not equal to 180/n degrees. Alternatives A , A1 3, and A7 are the 

ordinally inconsistent alternatives. Reversing r1,7  as r1,7 >1 (means A  better than A1 7) 

generates an ordianlly consistent situation with A  A A A A A A Af f f f f f f1 3 7 6 8 2 5 4. The 

related Decision Ball (b) illustrates that considering A8, A , and A , A1 3 8f f A A1 3. However, A3 
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is more similar to A . Therefore, if the student is not accepted by A , A8 8 3 may be a better choice 

than A . 1

Suppose the student chooses to reverse r3,7 as r3,7 <1 (means A  better than A7 3) (Option 

2), the related Decision Ball (d) illustrates the ranks of alternatives are A  A f  A  Af f f8 7 1 3  

A . A  and A  are very close. Thus, if university A2f f f A   A  A6 5 4 1 7 8 is impossible to 

candidate for enrollment then A  as well as A  could be a good choice. 1 7
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C 4 : Tuition 32000 45000 40000 56000 55000 44000 38000 35000

Alternative
Criteria

Figure 6.3  Decision Process of Example 6.2 
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6.4  Summary 

This study develops Pairwise Comparison Decision Ball models to help a decision 

maker improve the quality of decision-making by iteratively reducing ordinal and cardinal 

inconsistencies. Gower Plots are adopted to detect the alternatives causing ordinal 

inconsistencies. An optimization model is then developed to provide suggestions for adjusting 

these inconsistencies conveniently.  

Decision Ball techniques are used to provide a useful visual representation of ranks and 

similarities among alternatives, which are more flexible and easier to observe than traditional 

2-dimensional plane and 3-dimensional cube models respectively. In addition, suggestions 

about how to improve inconsistencies are also shown on the Decision Ball. The decision 

maker can observe the suggested solutions and choose the most acceptable change to reduce 

inconsistencies and to rank alternatives more confidently.  

The proposed approach assists a decision maker make a more reliable decision by 

improving inconsistencies. The improvements in inconsistency can be measured by the 

consistency ratio (CR)(Saaty, 1980), which is briefly illustrated as follows. Given a matrix R 

of rank n, the consistency index (CI) is first calculated to measure the deviation from a 

consistent matrix: 

)1/()( max −− nnλCI = , 
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maxλwhere  is the maximal eigenvalue of R. Then, the consistency ratio (CR) is computed as the 

ratio of the CI to the so-called random index (RI) which is a CI of randomly generated 

matrices:  

CR = CI/RI.  

The CR = 0 indicates perfect consistency. The CR before and after adjustments for 

Example 6.1 and 6.2 are listed in Table 6.1. The CR in both examples can be improved 

significantly. For instance, in Option 1 of Example 6.1, the CR can be significantly improved 

from 0.087 to 0.047. In Option 1 of Example 6.2, the CR can be improved from 0.064 to 

0.049. 

Examples Options CR before 
Adjustment 

CR after 
Adjustment 

Option 1 0.087 0.047 Example 6.1 
Investment in Mutual Funds Option 2 0.078 0.053 

Option 1 0.064 0.049 
Option 2 0.070 0.053 

Example 6.2 
Selection of Universities 

Option 3 0.060 0.055 

Table 6.1  Improvements in inconsistency measured by consistency ratio (CR)
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Chapter 7  Model 4 : Classification Decision Ball Models 

This chapter presents Model 4 – Classification Decision Ball models for Type IV 

decision pattern. The major decision problem solved here is to classify alternatives. That is, 

the decision makers are interested in the grouping relationships of alternatives more than 

individual rank of alternatives. In this decision pattern, no personal preferences are taken into 

account. 

Sueyoshi (1999) first proposed a DEA-DA analysis incorporating the non-parametric 

feature of DEA (Data Envelopment Analysis) into the DA (Discriminant Analysis). However, 

previous DEA-DA methods cannot display the relationships among alternatives. This study 

develops Classification Decision Ball models to visualize the grouping results and 

relationships among alternatives. 

The structure of this chapter is organized as follows. Section 7.1 briefly introduces the 

DEA-DA analysis. Section 7.2 constructs Classification Decision Ball models. Section 7.3 

uses two examples to demonstrate the classification processes. Summary of this chapter is 

made in Section 7.4. 

 

7.1  Introduction to DEA-DA Analysis  

Discriminant Analysis (DA) is a statistical technique for predicting group membership. 
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The GP (Goal Programming)-based DA, first proposed by Freed and Glover (1981), can 

estimate weights of criteria by minimizing sum of deviations (MSD, Freed and Glover, 1986) 

or minimizing misclassified alternatives (MMO, Banks and Abad, 1991). Those weights yield 

an evaluation score, which is compared with a threshold value for classifying alternatives. 

The Data Envelopment Analysis (DEA) first proposed by Charnes et al. (1978) is a 

popular technique for evaluating efficiency of Decision Making Units (DMUs). Sueyoshi 

(1999) first proposed a DEA-DA analysis incorporating the non-parametric feature of DEA 

into the DA. He proposed a two-stage DEA-DA analysis: first identifies the existence of an 

overlap between two groups, and then determines the group membership of an alternative. 

Sueyoshi (2001) extended DEA-DA analysis, known as extended DEA-DA analysis, which 

can deal with the negative value in data. Both approaches estimate weights by minimizing the 

sum of deviation of misclassified alternatives. However, the classification performance is not 

good enough by both methods. 

In order to improve hit rates, Sueyoshi (2004a) developed a mixed integer programming 

(MIP) approach, referred as two-stage MIP approach, which estimates weights by minimizing 

the total number of misclassified alternatives. Sueyoshi (2004b) and Sueyoshi and Hwang 

(2004) dropped the first stage of the two-stage MIP approach, called standard MIP approach, 

to simplify the estimation process of the two-stage MIP approach. Both MIP approaches can 

efficiently improve hit rates. 

 82 
 



This section briefly illustrates the formulations of standard and two-stage MIP 

approaches. Let A = (A , A , …, An1 2 ) be a set of n alternatives for solving a classification 

problem, where each alternative contains m independent factors. An alternative Ai is expressed 

as A ).  Each alternative belongs to one of two groups (G  and G(c , …, c 1 2i i,1 i,m ), and the 

group membership is required to be known before computation. Denote ti as a binary variable, 

which is used to indicate whether A  is correctly classified or not. If Ai i is correctly classified, 

then t = 0; otherwise, t  = 1. The standard MIP approach is formulated as follows: i  i

Standard MIP approach (Sueyoshi, 2004b; Sueyoshi and Hwang, 2004) 

Min                                                  (7.1) ∑∑
∈∈

+
21 Gi

i
Gi

i tt

s.t.   ∑ ,                              (7.2) 
=

∈∀≥+−
m

k
ikik iMtdcw

1
,     ,0 1G

     ∑ ,                             (7.3) 
=

∈∀−≤−−
m

k
ikik iMtdcw

1
,     , 2Gε

∑
=

=
m

k
kw

1

1     ,                                                  (7.4) 

     wk, d: unrestricted, t  = 0/1. i

M andε  are given large and small numbers. The objective is to minimize the total number of 

incorrect classifications. d is the discriminant score and  represents the discriminant 

function. w

∑
=

m

k
kik cw

1
,

 is the weight of factor k, which is unrestricted in sign. Because kwk  is a 

nonlinear term, the whole model can be reformulated as following linear one (Sueyoshi, 

2004b) 
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Min                                                   (7.5) ∑∑
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     d: unrestricted, t  = 0/1,  = 0/1,  = 0/1, and all other variables . +
kδ

−
kδ 0≥i

Each weight wk is separated as ( ), where  and −+ − kk ww 2/)( kkk www +=+ 2/)( kkk www −=− . 

Based on Glen (1999), two binary variables  and  are incorporated into (7.9) ~ (7.11). 

Denote and  as the optimal solutions obtained from optimality of above model. A new 

alternative sample A

+
kδ

−
kδ

*
kw*d

r can be classified by following rule: if ; if 

. The visual structure of the standard MIP approach is 

depicted in Figure 7.1. 

∑
=

∈≥
m

k
rkrk Adcw

1

*
,

*    then , 1G

∑
=

∈−≤
m

k
rkrk Adcw

1

*
,

*    then , 2Gε

In order to increase the number of correct classifications, Sueyoshi (2004a) proposed a 

two-stage MIP approach: the first stage is to identify and minimize the overlap distance; the 

second stage is to minimize the number of incorrect classifications. The two-stage MIP 

approach is formulated as follows. 
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Two-stage MIP approach (Sueyoshi, 2004a)

Stage 1 : Classification and overlap identification 

Min   p                                                        (7.12) 

s.t.   ,                         (7.13) ∑
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D111 CGD −= 222 CGD −= 0* ≥p ∪1 2); 

otherwise,  indicates no overlap. A new sample A0* <p r is classified by the following rule: 

if A ∈ C ∈ G ∈ C ∈G, then A ;  if A , then A ; otherwise, A  1 1 2 2r r r r r belongs to an overlap. To 

handle overlap, the second stage is expressed as follows. 

Stage 2 : Handling overlap  
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where g: unrestricted, t  = 0/1,  = 0/1,  = 0/1, and all other variables .  h is a +
iδ

−
iδ 0≥i

 85 
 



prescribed positive number with mh ≤ . 

The alternatives in the overlap are classified at the second stage as follows: if 

; if . The visual structure of 

the standard MIP approach is depicted in Figure 7.2. 
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,
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Although the two-stage MIP approach has better classification performance than standard 

MIP approach, the former produces two sets of weights (at Stage 1 and 2 respectively), which 

are difficult to make comparisons among all alternatives. Besides, both approaches may result 

in multiple solutions. For instance, there may exist several sets of weight in the standard MIP 

approach to achieve the same optimal objective value in (7.5). Moreover, both approaches 

include too many binary variables. 

Based on the Two-stage MIP approach, this study proposes Classification Decision Ball 

models to group alternatives by a multi-stage MIP approach. Decision Ball techniques are 

used to display alternatives on the surface of a ball, on which the decision maker can observe 

grouping relationships among alternatives layer by layer. In addition, the number of binary 

variables can also be reduced significantly.  

d
ε−d

G1

G2

*d

G1

G2

ε−*d

Figure 7.1  The visual structure of 
the standard MIP approach 
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G1G2

Figure 7.2  The visual structure of 
the two-stage MIP approach 
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7.2  Construction of Classification Decision Ball Models 

The conceptual diagram of Classification Decision Ball models is shown in Figure 7.3. 

Alternatives are displayed on the surface of the Decision Ball. The alternatives with higher 

scores are located closer to the North Pole. The distance between two alternatives indicates 

the similarity between them: the higher the similarity, the shorter the distance.  

The proposed Classification Decision Ball models, based on the concepts of the 

Two-stage MIP approach (Sueyoshi, 2004a), are a multi-stage MIP approach, which can be 

represented as multi-layer Decision Balls. As shown in Figure 7.3(a), the proposed approach 

first finds an overlap region on a first-layer Decision Ball, and then extends this overlap 

region to a second-layer Decision Ball as depicted in Figure 7.3(b). The cutting plane, which 

indicates a discriminant score in the overlap of the first layer Decision Ball (Figure 7.3(a)), is 

rotated into a horizontal plane in the second-layer (Figure 7.3 (b)). 
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 The proposed multi-stage MIP approach includes two models, which are formulated as 

follows: 

Model 7.1  (Standard Classification Model ) 
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Figure 7.3  The conceptual diagram of the multi-layer Classification 
Decision Ball models (a) The first layer (b) The second layer 
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Overlap

*
2d  …

(b) 

 88 
 



The objective of Model 7.1 is to minimize the total number of incorrect classifications. g 

is the discriminant score and  represents the discriminant function. Model 7.1 is 

improved from the Standard MIP approach (Sueyoshi, 2004b) by reducing the number of 

binary variables used for 

∑
=

m

k
kik cw

1
,

kw kkk eww 2+=. Based on the study of Li (1996), we can let . 

From expressions (7.22) ~ (7.26), if wk < 0, then a binary variable uk = 0 and ek = -wk, thus 

; otherwise, if , then u0≥kwkkkk weww −=+= 2 k = 1 and ek = 0, thus 

kkkk weww =+= 2 kw. The total number of binary variables used for  is just half of that 

in Sueyoshi (2004b).  

 

Model 7.2  (Overlap Identification Model ) 

Min   p                                                        (7.27) 

s.t.   ,                         (7.28) ∑
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∈∀≥
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,     , 1G

     ∑ ,                          (7.29) 
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,     , 2G

      (7.22) ~ (7.26) 

      d, p: unrestricted. 

   

Model 7.2 is improved from the Stage 1 of Two-stage MIP approach (Sueyoshi, 2004a) 

by reducing the number of binary variables used for kw . The objective of this model is to 

minimize the overlap region between two groups. Let  ∑
=

+>∈=
m

k
kik pdcwi

1

**
,

* },|{ 11 GC
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∑
=

<∈=
m

k
kik dcwi

1

*
,

* },|{ 22 GC 111 CGD −= 222 CGD −=  and .   indicates the 

existence of an overlap (D

0* ≥p

D ); otherwise,  indicates no overlap.  0* <p∪1 2

The multi-stage classifying processes are shown in Figure 7.4. At the first stage, the 

decision maker inputs the data set and specifies the minimal hit rate, denoted as h . Model 7.1 

is applied to the data set first. If the hit rate is greater than h , then the corresponding Decision 

Ball is displayed to the decision maker, and the processes are terminated. Otherwise, Model 

7.2 is applied to the data set to find the overlap area. The corresponding Decision Ball with an 

overlap area is depicted. Based on the alternatives in the overlap areas, applying Model 7.1 

again to find the new discriminate score and hit rate. Model 7.1 and 7.2 are applied iteratively 

A DM inputs data set (G1 and G2) 
and specifies h . 
Set initial Stage i = 1

Applying Model 7.1

Hit rate h  ≥  

Applying Model 7.2 Display ith layer 
Decision Ball 
based on Model 7.1 

Display ith layer Decision 
Ball based on Model 7.2. 
D1={G1-C1}& D2={G2-C2}

Set Stage i = i+1 
G1= D1 & G2 = D2

Stop 

Yes 

No 

Figure 7.4  The multi-stage classifying processes of the proposed 
Classification Decision Ball models 
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until the hit rate is greater then h . The Decision Ball for the ith stage is called the ith layer 

Decision Ball. 

The Decision Ball techniques used here are slightly different from those in Chapter 3 

because the weight of criteria could be negative. Only additive score functions are discussed 

in this chapter. For simplicity, all factors are normalized to [0,1] scale in advance. Before 

applying Decision Ball Model 3.1, the score and dissimilarity function should be modified as 

follows.  

Then, the additive score function of A  is redefined as i

∑∑
<

=
≥

=

−+=
m

w
k

kik

m

w
k

kiki

kk

cwcwS
0

1
,

0
1

, )1()(w , (7.30) 

where . S  here is called the transferred score. 10 ≤≤ S ii

The dissimilarity between Ai and Aj is redefined as 

∑
=

−=
m

k
kjkikji ccw

1
,,, )(wδ ,                                     (7.31)          

where 1)(0 , ≤≤ wjiδ )()( ,, ww ijji δδ = and . 

 

7.3  Illustrative Examples 

Two examples are used to illustrate the processes of the proposed Classification Decision 

Ball models.  

<Example 7.1>   A corporate bankruptcy example 

This section takes corporate bankruptcy in US electric power industry (Sueyoshi, 2006) 
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as an example to illustrate the proposed approach. As listed in Table 7.1, Alternatives 1~61 are 

61 non-default firms (G ) and alternatives 62~83 are 22 default firms (G1 2). The performance 

of all the firms is measured by 13 financial ratios. Suppose the decision maker sets the 

minimal hit rate as h  = 99%. 

First, the data set in Table 7.1 is normalized to [0,1] scale. Then, let ε  = 0.0001 and M 

= 1000, applying Model 7.1 to the normalized data set yields  = 0 and  = 0.406.  = 0 

implies that there are no alternative misclassified (i.e. hit rate = 100%). The weights of 13 

factors are w = {w

*g

, w , w , w , w , w , w , w , w , w1 2 3 4 5 6 7 8 9 10, w , w11 12, w13} = {0.077, -0.112, 0.069, 

0.047, -0.040, 0, 0.441, 0, 0, -0.029, 0.014, 0.146, 0.024}, where the weights of 6th, 8th and 9th 

factors are equal to 0. 

 

 92 
 



Obs. 1 2 3 4 5 6 7 8 9 10 11 12 13
1 0.03 -0.01 0.25 0.53 0.15 0.01 0.08 8.43 1.7 1.77 16.35 0.88 16.35

2 0 -0.16 0.93 0.29 0.25 0.04 0.1 16.57 1.67 0.32 9.08 3.74 36.22

3 0.07 0.06 0.47 0.28 0.35 0.04 0.13 11.24 1.86 -0.11 15.09 1.7 25.2

4 0.02 -0.02 0.44 0.39 0.31 0.03 0.13 9.66 1.5 -0.02 12.65 2.3 30.36

5 0.01 -0.07 0.43 0.27 0.34 0.05 0.17 14.2 1.73 0.02 12.82 3.46 42.3

6 0.01 -0.12 1.43 0.21 0.17 0.02 0.07 12.19 1.67 -0.11 19.26 3.11 43.53

7 0.04 0.05 2.43 0.29 0.5 0 0.03 7.94 0.86 0.38 4.72 1.21 13.26

8 0.1 0.13 3.43 0 0.42 0.12 -0.11 29.49 1.06 0.64 3.42 2.6 9.4

9 0.02 -0.22 4.43 0.25 0.31 0.05 0.15 17.18 1.79 0.2 8.12 3.45 33.84

10 0.07 0.04 5.43 0.33 0.14 0.03 0.06 21.29 1.77 0.73 7.33 2.11 16.79

11 0.09 0.09 6.43 0.31 0.4 0 0.13 0.49 1.02 0.26 17.04 0.08 16.7

12 0.11 0.14 7.43 0.18 0.46 0.04 0.14 10.24 1.46 0.14 17.11 3.11 43.47

13 0.01 -0.09 8.43 0.29 0.24 0.04 0.11 15.04 1.83 -0.19 12.57 2.78 33.43

14 0.01 -0.11 9.43 0.35 0.29 0.04 0.19 14.31 2.03 0.08 15.47 1.56 21.97

15 0.01 -0.05 10.43 0.4 0.11 -0.03 -0.06 -17.51 1.61 0.42 70.68 -2.53 24.03

16 0.01 -0.21 11.43 0.22 0.21 0.04 0.03 29.87 1.72 0.15 5.34 4.27 24.49

17 0.02 -0.05 0.57 0.32 0.35 0.04 0.31 12.49 1.35 -0.03 12.6 3.21 40.36

18 0.01 -0.12 0.28 0.19 0.29 0.01 0.11 2.14 1.07 0.21 9.76 0.52 26.55

19 0.01 -0.06 0.31 0.34 0.3 0.02 0.03 6.5 1.98 0.1 19.33 2.17 60.1

20 0 0.01 0.28 0.51 0.2 0.05 0.21 26.2 3.71 0.12 14.15 1.81 24.08

21 0 -0.02 0.4 0.37 0.16 -0.05 0.24 -30.27 1.78 0.22 -16.75 -2.75 18.93

22 0.02 -0.02 0.41 0.39 0.24 0.02 0.1 7.17 1.51 -0.16 24.53 2.15 41.94

23 0.01 -0.02 1.23 0.25 0.27 0.04 0.13 15.6 2.44 -0.06 14.65 2.58 39.26

24 0.11 -0.06 0.31 0.34 0.09 0.03 0.04 73.41 4.49 -0.17 -1.34 7.37 15.1

25 0.02 0.02 0.47 0.36 0.27 0.04 0.16 14.63 1.65 0.26 11.07 1.3 14.5

26 0.01 -0.08 0.3 0.35 0.3 0.01 0.05 3.88 1.59 -0.14 27.27 0.59 21

27 0.06 0.05 0.52 0.34 0.3 0.03 0.14 10.53 1.27 0.25 12.75 1.61 18.99

28 0.01 -0.02 0.37 0.28 0.3 0.03 0.14 9.43 1.15 -0.02 11.5 3.18 39.11

29 0.02 -0.02 0.43 0.37 0.24 0.04 0.03 17.21 1.98 -0.06 13.6 4.42 47.88

30 0.01 -0.06 0.21 0.31 0.21 0.02 0.04 8.85 1.64 -0.06 12.49 2.85 34.98

31 0 -0.12 0.49 0.28 0.36 0.04 0.18 12.98 1.66 -0.01 13.06 4.63 56.4

32 0.02 -0.01 0.86 0.23 0.34 0.03 0.02 10.72 1.05 -0.31 13.32 1.93 18.65

33 0.05 -0.45 0.2 0.13 0.11 0.01 0.02 11.59 1.55 0.04 12.91 3.19 40.28

34 0.04 0 0.35 0.24 0.3 0.04 0.25 12.26 1.13 -0.09 8.8 3.33 29.56

35 0.04 -0.06 1.38 0.26 0.24 0.02 0.03 10.24 1.16 0.13 9 1.65 16.02

36 0.01 -0.12 0.54 0.33 0.2 0.01 0.05 6.1 1.37 0.17 22.81 1.03 23.06

37 0.01 0.01 0.67 0.22 0.22 0.02 0.07 12.56 1.1 0.45 9.09 1.97 17.63

38 0.02 -0.12 1.62 0.32 0.22 0.02 0.04 11.2 1.45 -0.11 13.72 2.03 21.05

39 0.03 -0.06 0.23 0.61 0.17 0.02 0.05 11.86 1.42 0.13 11.07 1.36 15.5

40 0.01 -0.11 0.6 0.26 0.25 0 0.06 -0.19 1.88 0.13 186.88 -0.05 44.85

41 0.16 0.14 0.64 0.2 0.43 0.03 -0.03 25.22 1.89 -0.09 -1.98 3 19.24

42 0 -0.05 0.57 0.33 0.31 0.04 0.13 13.1 1.42 -0.07 10.62 3.86 41.85

43 0.01 0.01 0.8 0.33 0.34 0.05 0.14 14.81 1.05 0.39 6.85 3.83 27.95

44 0 -0.02 0.78 0.37 0.34 0.04 0.14 8.96 1.3 -0.03 7.23 1.51 22.57

45 0.08 0.04 0.46 0.44 0.15 0.01 0.08 9.1 2.19 0.35 8.34 1.16 34.85

46 0 0 0.41 0.46 0.29 0.03 0.1 9.02 1.59 -0.03 14.72 2.65 45.03

47 0.01 -0.12 0.33 0.41 0.16 0.03 0.07 18.44 2.13 -0.01 11.37 3.67 42.19

48 0.02 -0.03 0.61 0.38 0.27 0.02 0.01 8.31 1.38 0.1 10.84 1.31 21.89

49 0.01 -0.11 1.51 0.19 0.22 0.03 0.1 13.39 1.17 0.16 13.46 3.17 26.52

50 0.01 0 0.61 0.38 0.34 0.03 0.07 8.91 1.67 0.07 16.35 2 37.6

51 0.03 0 0.44 0.34 0.3 0.07 0.16 24.57 1.37 -0.02 4.97 5.15 27.83

52 0.01 -0.04 0.56 0.41 0.21 0.01 0 1.76 0.89 0.22 376.25 0.34 15.05

53 0.01 -0.05 0.34 0.28 0.27 0.04 0.15 14.02 2.21 -0.35 16.36 1.62 25.35

54 0.02 -0.17 0.39 0.27 0.32 0.05 0.19 15.4 1.9 0.02 11.66 2.26 26.24

55 0.03 -0.08 0.66 0.38 0.19 0.02 0.04 10.57 1.55 -0.19 13.71 3.12 47.15

56 0.13 0.09 0.2 0.37 0.3 0.03 -0.04 9.48 0.95 1.41 11.69 0.57 4.56

57 0.05 -0.02 0.58 0.27 0.27 0.03 0.12 11.87 1.47 0.18 12.89 4.21 51.3

58 0.08 -0.04 0.53 0.29 0.16 0.02 -0.09 14.33 1.48 0.3 9.83 1.83 18.19

59 0.01 0.01 0.47 0.39 0.25 0.03 0.15 10.14 1.27 -0.01 13.19 1.78 22.56

60 0.02 0.03 0.93 0.25 0.27 0.03 0.13 10.84 1.69 -0.03 14.28 2.75 36.55

61 0.02 -0.07 0.52 0.42 0.22 0.03 0.09 12.6 1.54 -0.01 12.06 2.28 27.74

62 0.03 -0.1 0.96 0.72 0.27 -0.28 -0.28 -91.47 0.22 1.13 -0.46 -1.93 0.84

63 0.03 -0.1 0.19 0.01 0.2 0.01 -0.73 -6.36 0.01 -0.22 0.08 -0.23 0.04

64 0.02 -0.05 0.69 0.17 0.33 -0.41 -1.1 -125.38 0.77 0.69 -2.31 -1.07 1.5

65 0.12 0.05 0.53 1.4 -0.57 -0.1 -2.26 20.17 -0.18 0.92 30.83 -1.54 0.93

66 0.02 -0.28 0.43 0.86 -0.22 -0.48 -0.67 220.16 1.99 0.29 -0.67 -10.21 4

67 0.03 -0.08 0.34 0.5 0 -0.07 -0.06 -3720 0.91 0.82 -4 -4.65 4.52

68 0.12 0.15 0.49 1.01 -0.15 -0.41 -0.32 237.02 0.23 -0.71 5.4 -9.67 0.69

69 0.06 0.02 0.45 0.39 0.33 0.01 0.02 4.47 0.37 0.69 5.03 0.47 3.88

70 0.02 0.45 2.89 0.13 0.18 0.01 0.05 8.66 6.12 0.58 61.57 1.22 83.13

71 0 -0.18 7.82 0.22 0.03 -0.01 -0.55 -22.62 5.05 0.04 20.62 -0.54 15.05

72 0 0.05 0.4 0.99 -0.15 -0.47 -0.66 313.7 0.33 0.86 -0.35 -12.65 2.63

73 0.03 -0.17 0.71 0.18 0.26 -0.13 -0.11 -48.87 0.61 1.29 -1.55 -2.3 3.56

74 0.04 0.14 0.48 0.72 -0.53 0.02 -1.02 -2.9 -0.16 1.33 -0.1 0.15 0.81

75 0.19 0.32 1.19 0 0.63 -1.21 -1.76 -193.51 0.12 2.15 -0.19 -6.38 0.74

76 0.02 0.22 1.49 0.06 0.49 -0.21 -0.59 -42.86 0.8 0.69 -0.97 -0.86 0.81

77 0.06 0.31 0.74 0.15 0.07 -0.16 -0.09 -314.34 1.78 0.69 5.4 -9.29 18.25

78 0.04 -0.17 0.55 0.93 -0.2 -0.29 -0.68 142.04 -2.01 0.25 -1.05 -1.74 0.86

79 0.03 -1.1 0.13 0 -0.21 -0.12 -0.74 59.18 -0.01 0.69 -0.02 -1.08 0.02

80 0.01 0.01 0.41 0.5 0.11 -0.13 -0.11 -111.42 0.35 0.51 -0.93 -6.6 3.6

81 0.02 -0.47 1.08 0.35 -0.01 -0.06 -0.09 166.68 -12.31 1.72 -1.36 -3.01 3.19

82 0.01 -0.45 0.43 0.23 -0.08 -0.22 -0.33 274.42 0.85 0.1 -1.05 -1.95 0.88

83 0.01 -0.71 0.14 0 0.15 0.01 -0.1 9.91 0.23 0.72 4.83 0.24 0.58

Table 7.1  Financial performance of 83 firms in US electric power industry. 
1~61 are non-default firms and 62~83 are default firms. (Sueyoshi, 2006) 
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16
34

    Next, we will depict alternatives on the surface of the Decision Ball. In order to reduce 

the complexity of visual presentation (it is easy to get confused and costs lots of 

computational time if too many alternatives are display simultaneously), the decision maker 

can choose some alternatives as target alternatives to be a basis for comparison. Suppose the 

decision maker selects 5 alternatives (16, 21, 34, 43 and 54) from non-default firms and 5 

alternatives (64, 66, 74, 78 and 81) from default firms as target alternatives. From (7.30) and 

(7.31), the transferred scores and dissimilarities of target alternatives can be calculated.  

Applying Model 3.1 to the target alternatives yields coordinates of these alternative with 

Stress = 8.99%, as graphed in Figure 7.5. The area above the dash curves belongs to G1 and 

below the dash curves belongs to G2. The alternative with higher final score is located at the 

higher latitude. In Figure 7.5, the order of 10 target alternatives is 16, 34, 54, 43, 21, 81, 78, 

21
5443

81
78
66 74

64

Figure 7.5  The Decision Ball of 10 target alternatives 
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34

66, 74 and 64 respectively. Moreover, although alternatives 81, 78, 66, 74 and 64 belongs to 

the same group G2, alternative 81 has higher possibility to become G1 because its location is 

very closer to G1. The processes are terminated because the hit rate is greater than minimal hit 

rate h . 

After plotting 10 target alternatives as a basis of comparison, we can classify and 

compare any alternative by checking the Decision Ball. For example, if a decision maker 

would like to check alternative 62, the system computes the dissimilarities among alternative 

62 and 10 selected target alternatives and applies Model 3.1 to the alternative yields the 

location of alternative 62, as shown in Figure 7.6.  By checking Figure 7.6, alternative 62 

belongs to G2, which is the most similar to alternative 81. If alternative 62 would like to 

upgrade itself to G1, the benchmark alternatives are suggested as 21, 54 and 16. Alternative 43 

21
5443

81
7862
66 74

64

Figure 7.6  The Decision Ball of alternative 62 based on the target 
alternatives 
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and 34 are skipped as a benchmark because 54 and 16 have similar similarities but higher 

scores. 

 

<Example 7.2>   Classifying Japanese banks 

The second example is related to 100 Japanese banks, extracted from Sueyoshi (2001). 

All banks are listed by their corporate ranks. The first group G1 contains 50 banks whose 

ranks are from the 1 to 50. The second group G2 contains the remaining 50 banks whose ranks 

are from 51 to 100. Seven financial performance data are chosen as evaluation criteria, 

including return on total assets, equity to total assets, cost-profit rate, return on total domestic 

assets, bad loan ratio, loss ratio of bad loan, and return on equity. Suppose the decision maker 

sets the minimal hit rate = 99 %. 
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1 2 3 4 5 6 7
Return on

total
assets

Equity to
total assets

Cost-Profit
rate

Return on
total domestic

assets

Bad loan
ratio

Loss ratio
of bad loan

Return on
equity

1 0.67 9.28 43.28 0.36 2.08 46.99 18.68
2 1 4.78 61.98 0.94 0.31 155.2 27.26
3 0.65 9.1 50.07 0.52 2.41 48.35 20.9
4 1.67 4.21 51.69 0.88 2.97 80.1 51.24
5 0.91 10.64 59.72 0.72 1.08 78.64 21.44
6 0.62 8.75 51.9 0.35 2.49 46.18 19.83
7 0.71 8.75 53.75 0.52 3.64 51.52 24.87
8 1.06 6.58 59.31 0.93 1.37 47.59 19.56
9 1.02 10.15 58.59 0.81 1.34 65.4 25.79
10 0.87 9.16 61.21 0.84 1.55 77.93 21.45
11 1.13 6.23 58.33 0.95 3.48 37.44 23.78
12 0.82 11.28 61 0.69 1.52 45.85 17.1
13 0.64 9.22 53.15 0.19 4.64 55.55 19.93
14 0.88 11.14 61.84 0.63 1.7 52.2 14.19
15 0.77 9.54 58.62 0.63 0.61 49.62 15.15
16 0.95 9.45 58.77 0.84 3.48 19.53 14.96
17 0.73 9.24 59.93 0.59 1.26 61.95 15.56
18 0.8 10.04 62.9 0.6 2.18 65.03 19.41
19 0.83 9.6 57.83 0.63 2.66 47.66 19.46
20 0.53 8.92 64.13 0.38 3.88 50.26 18.16
21 1.05 6.38 66.56 0.98 3.7 48.67 20.39
22 0.91 10.17 60.03 0.75 2.13 36.63 19.94
23 1.05 8.44 57.93 0.67 2.48 48.67 30.51
24 0.8 9.86 67.12 0.68 1.33 69.61 19.04
25 1.05 4.53 59.6 0.79 3.09 50.72 29.15
26 0.9 9.77 61.37 0.71 2.26 62.25 110
27 0.95 4.41 63.71 0.84 2.8 56.11 35
28 0.69 9.64 70.12 0.49 0.64 85.12 12.77
29 0.78 11.83 67.01 0.49 0.36 58.41 19.4
30 0.56 13.61 66.89 0.34 0.81 51.89 9.43
31 0.79 9.35 68.02 0.66 0.79 59.32 18.46
32 0.73 9.18 66.07 0.58 1.15 66.93 18.82
33 0.86 9.09 61.1 0.6 1.95 47.28 16.97
34 1 11.33 64.34 0.46 1.19 46.54 18.44
35 0.96 5.06 63.42 0.88 4.66 37.96 26.09
36 0.76 9.19 59.35 0.48 1.8 22.89 15.28
37 1.72 4.41 52.91 0.59 6.94 40.62 49.3
38 1.09 9.03 63.24 0.63 4.19 42.17 26.44
39 0.66 9.06 68.22 0.73 1.5 37.58 16.17
40 1.57 4.28 52.91 0.65 6.87 33.21 45.93
41 0.68 10.19 68.76 0.52 0.97 57.65 15.21
42 0.53 8.7 63.42 0.35 2.9 62.7 18.48
43 0.66 9.63 68.17 0.49 1.1 57.2 17.4
44 0.93 4.35 65.66 0.81 1.76 39.3 28.58
45 1.18 8.69 52.83 0.54 6.8 43.16 35
46 0.7 4.72 71.29 0.9 2.39 49.78 18.33
47 0.71 9.35 69.69 0.64 1.84 38.16 16.5
48 0.65 9.11 65.96 0.56 1.42 44.16 16.72
49 0.71 10.54 66.37 0.47 1.43 43.62 14.23
50 0.72 9.47 69.35 0.48 0.86 56.36 15.34

Table 7.2  Financial performance of 100 Japanese Banks.  G1 contains 
ranks 1~50 banks and G2 contains ranks 51~100 banks. (Sueyoshi, 2001) 
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1 2 3 4 5 6 7
Return on

total
assets

Equity to
total assets

Cost-Profit
rate

Return on
total domestic

assets

Bad loan
ratio

Loss ratio
of bad loan

Return on
equity

51 0.71 9.31 66.43 0.51 1.66 52.79 16.04
52 0.69 8.42 67.94 0.55 0.38 45.38 18.42
53 0.55 9.44 70.29 0.43 1.24 74.95 12.59
54 0.51 9.09 61.15 0.24 4.7 68.15 20.74
55 0.6 10.69 66.77 0.41 2.42 40.55 12.41
56 1.1 3.75 62 0.5 2.21 49.9 39.62
57 0.72 4.2 66.99 0.73 1.53 45.88 23
58 0.64 9.63 67.67 0.47 2.82 50.61 18.09
59 0.62 9.26 68.59 0.49 1.51 45.25 16.72
60 0.58 9.82 71.67 0.42 0.89 64.84 14.43
61 0.83 4.96 65.84 0.74 3.65 39.98 23.54
62 0.66 10.85 71.15 0.34 1.19 62.33 13.44
63 0.88 4.28 68.67 0.78 3.93 46.31 26.11
64 0.99 4.37 64.49 0.87 5.48 21.93 26.11
65 0.72 4.54 72.42 0.59 1.54 71.95 21.39
66 0.87 4.25 66.45 0.59 2.18 56.39 28.51
67 0.96 4.02 64.27 0.75 3.59 80.51 44.48
68 0.67 6.06 70.75 0.39 1.42 69.34 13.82
69 0.68 8.76 70.38 0.49 1.34 49.27 16.19
70 0.85 4.24 66.33 0.64 3.03 48.97 28.41
71 0.6 9.2 71.87 0.44 1.09 59.29 16.26
72 0.52 9.08 69.43 0.34 1.52 62.74 14.09
73 0.65 9.22 67.79 0.4 1.47 67.74 16.7
74 0.76 8.13 67.71 0.47 1.71 47.88 19.42
75 0.57 9.63 70.41 0.39 2.72 52.91 12.36
76 0.56 9.43 74.88 0.39 0.54 59.3 15.04
77 0.59 10.55 71.99 0.35 0.89 35.83 11.86
78 0.75 8.42 64.59 0.48 3.1 50.94 20.39
79 0.6 9.02 66.75 1.13 4.65 34.23 18.6
80 0.8 4.16 69.81 0.69 2.62 33.13 26.04
81 0.65 8.29 71.15 0.52 2.23 52.1 16.41
82 0.64 4.11 72.33 0.49 0.86 57.3 20.6
83 0.49 9.05 74.25 0.43 1.61 51.57 10.16
84 1.12 4.24 64.41 0.42 2.71 31.45 32.12
85 0.64 9.03 71.71 0.34 1.3 57.4 16.89
86 0.45 10.43 79.26 0.4 1.28 65.05 10.72
87 0.63 9.7 71.05 0.21 0.68 46.2 13.57
88 0.6 8.4 65.9 0.4 3.09 33.48 20.68
89 0.87 4.77 64.63 0.44 3.16 35.94 25.03
90 0.6 4.83 74.85 0.38 0.27 51.76 15.28
91 0.6 4.11 73.99 0.37 1.12 80.03 17.97
92 0.73 3.46 71.56 0.48 2.18 67.48 24.89
93 0.72 6.88 76.31 0.26 0.56 48.12 14.29
94 0.75 4.47 72.36 0.42 2.46 63.08 20.8
95 0.83 4.13 60.99 0.37 2.63 32.01 28.67
96 0.88 4.13 59.07 0.45 5.88 29 2.49
97 0.82 4.65 65.99 0.47 3.26 28.62 23.28
98 1.01 4.53 63.39 0.3 4.46 43.69 29.04
99 0.4 9.1 74.18 0.33 3.83 54.38 13.98

100 0.54 4.47 78.35 0.49 0.96 46.59 14.63

Table 7.2  (Continued) 
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Figure 7.7  The first layer Decision Ball of Example 7.2, where 33 
alternatives in the overlap 

 

At the first stage, applying Model 7.1 yields a hit rate 96%. Because the hit rate is less 

than 99%, applying Model 7.2 yields a set of weights w = {w , w , w , w , w , w , w1 2 3 4 5 6 7} = 

{-0.03, 0.037, -0.398, 0.127, -0.130, 0.145, -0.134},  = -0.245, and  = 0.038. There 

are 33 alternatives located in the overlap. The first layer Decision Ball is shown in Figure 7.7. 

At the second stage, applying Model 7.1 to the alternatives in the overlap in Figure 7.7 yields 

a hit rate 98%. Since the hit rate is still less than 99%, Model 7.2 is applied again to yield a set 

of weights w = {w

*d *p

, w , w , w , w1 2 3 4 5, w , w6 7} = {-0.018, 0.019, 0.346, -0.077, 0.118, -0.130, 

0.292},  = 0.237, and  = 0.026. The second layer Decision Ball is depicted in Figure 

7.8, where 25 alternatives are located in the overlap region.  

*d *p
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Figure 7.8  The second layer Decision Ball of Example 7.2, where 25 
alternatives in the overlap. 

At the third stage, applying Model 7.1 to the remaining 25 alternatives yields a hit rate 

100%, with w = {w , w , w , w , w , w , w1 2 3 4 5 6 7} = {0.069, -0.031, -0.274, 0.063, -0.075, 0.047, 

-0.442} and = -0.232. The third layer Decision Ball is graphed in Figure 7.9. The 

classifying processes are terminated since the hit rate is greater than 99%.  

*g
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Figure 7.9  The third layer Decision Ball of Example 7.2 

  

7.4  Summary 

This study proposes Classification Decision Ball models, which can assist the decision 

makers visualize the grouping relationships among alternatives.  

The major advantages of the Classification Decision Ball models are summarized as 

follows: 

(i) Classifying alternatives on Decision Balls layer-by-layer. 

(ii) Visualizing the relationships among alternatives, including ranks of, grouping of and 

similarities among alternatives on Decision Balls. 

(iii) Providing benchmark alternatives if an alternative would like to upgrade its performance 

from one group to another. 
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(iv) Reducing the number of binary variables significantly.  

(v) Comparing with traditional 2-dimensional plane and 3-dimensional cube models, the 

proposed approach is more flexible and easier to observe because all alternatives are 

displayed on the surface of a sphere. 
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Chapter 8  Concluding Remarks 

This study proposes four Decision Ball models to display alternatives on spheres, thus to 

make a more knowledgeable decision. Four types of Decision Ball models, including Moral 

Algebra Decision Ball models, Even Swap Decision Ball models, Pairwise Comparison 

Decision Ball models, and Classification Decision Ball models, are constructed to meet 

decision makers with different decision preferences.  

Some future directions for further research are described below. 

(i) Construction of more Decision Ball models: Different decision makers may have 

various types of decision preferences and requirements. More Decision Ball models can 

be constructed for the decision makers with other types of decision patterns. For instance, 

Decision Ball models for the Data Envelopment Analysis (DEA, Charnes et al., 1978), 

decision preferences involving fuzzy concepts, and decision preferences including 

psychological factors, etc. 

(ii) Global optimization of Decision Ball techniques: As shown in Section 3.3, the proposed 

Decision Ball techniques are still non-linear. Hence, how to linearize the Decision Ball 

techniques is an important direction for further research. In addition, because the 

computational time of the proposed models will increase significantly when the number 

of alternatives grows, a distributed computing algorithm could be developed to improve 
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the computational efficiency. 

(iii) Investigation of decision preferences: deeper study of decision behavior to provide a 

customized and visualized decision environment is another important direction for future 

research.  
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Appendix  

A letter from Benjamin Franklin to Joseph Priestly 

London, Sept 19, l772 

Dear Sir, 

In the affair of so much importance to you, wherein you ask my advice, I cannot, for want of 

sufficient premises, advise you what to determine, but if you please I will tell you how. When 

those difficult cases occur, they are difficult, chiefly because while we have them under 

consideration, all the reasons pro and con are not present to the mind at the same time; but 

sometimes one set present themselves, and at other times another, the first being out of sight. 

Hence the various purposes or inclinations that alternatively prevail, and the uncertainty that 

perplexes us. To get over this, my way is to divide half a sheet of paper by a line into two 

columns; writing over the one Pro, and over the other Con. Then, during three or four days 

consideration, I put down under the different heads short hints of the different motives, that at 

different times occur to me, for or against the measure. When I have thus got them all together 

in one view, I endeavor to estimate their respective weights; and where I find two, one on 

each side, that seem equal, I strike them both out. If I find a reason pro equal to some two 

reasons con, I strike out the three. If I judge some two reasons con, equal to three reasons pro, 

I strike out the five; and thus proceeding I find at length where the balance lies; and if, after a 
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day or two of further consideration, nothing new that is of importance occurs on either side, I 

come to a determination accordingly. And, though the weight of the reasons cannot be taken 

with the precision of algebraic quantities, yet when each is thus considered, separately and 

comparatively, and the whole lies before me, I think I can judge better, and am less liable to 

make a rash step, and in fact I have found great advantage from this kind of equation, and 

what might be called moral or prudential algebra. 

Wishing sincerely that you may determine for the best, I am ever, my dear friend, yours most 

affectionately. 

B. Franklin 

From: “Letter to Joseph Priestly”, Benjamin Franklin Sampler, (1956).  
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