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Decision Ball Models: Methods and Applications

Student : Li-Ching Ma Advisor: Han-Lin Li

Institute of Information Management

National Chiao Tung University

ABSTRACT

Decision makers’ preferences are often influenced by background information. This
study develops a Decision Ball system to provide visual context and similarity analysis to
help decision makers to reach a better decision. The proposed Decision Ball system includes
four types of Decision Ball models: ' Frankhn’s:Maral Algebra models, Even Swap models,
Pairwise Comparison models, and Classification-models. Franklin’s Moral Algebra Decision
Ball models solve “Yes” or “No” decision problem. Even Swap and Pairwise Comparison
Decision Ball models are for ranking problems with multiple alternatives. Classification
Decision Ball models treat group problem. The proposed approach can be applied in a variety
of decision problems. For instance, a Decision Ball system can assist decision makers in
personal decision-making problem, operational and managerial decision problems, and

financial decision problems, etc.

Keywords: Decision Balls, Visualization, Decision-Making, Preference, Inconsistency
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Chapter 1 Introduction

Ranking and grouping alternatives are two of major challenges in decision-making. The
more decision alternatives and criteria are being considered, the more difficulties the decision
maker (DM) has to face. Therefore, how to assist the decision maker make a more reliable

and knowledgeable decision is a very important issue.

1.1 Research Motivation and Purposes
Consumer choice theories show that consumer choice is often affected by context
(Seiford and Zhu, 2003). For instance, a circle-appears-large when surrounded by small circles
and small when surrounded by larger-‘ones, as shown in Figure 1.1(a). Similarly, a product
may appear attractive against a background of less attractive alternatives and unattractive
when compared to more attractive alternatives (Simonson and Tversky, 1992). Tversky and
Simonson (1993) showed the relative attractiveness of x compared to y often depends on the
presence or absence of a third option z. In addition, Keeney (2002) identified 12 important
mistakes frequently made that limit one’s ability to determine useful value trade-offs, in
which “not understanding the Decision Context” is the first critical mistake.
Even animals’ choice is heavily affected by what visual background they have seen. In

a famous experiment (Waite, 2001), a biologist set up an experiment for a gray jay as shown
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Figure 1.1 Visuf'j)background in decision environment (a) Iﬁfiuence of visual
background (b) Gray jay’s choice
in Figure 1.1(b). There are three options: A, B and C. A is for one raisin in a short tube. B is
for two raisins in a medium length tube, and C is for three raisins in a long tube. When
displaying A and B to a jay, it will choose A. When displaying B and C to a jay, it prefers B.
However, by displaying A and C'to a jay; it prefers C. If the choices, A, B and C could be
displayed to the gray jay simultaneously, it might make a better decision. Therefore, how to
assist decision makers visualize the''background information is an important issue in
decision-making.

Ranking alternatives is one of the most important challenges in decision-making,
especially when involving inconsistencies. If a decision maker’s judgment is highly
inconsistent, different ranking methods may produce wildly different priorities. That is, the
decision maker may not make a reliable decision. Hence, how to assist the decision makers
detect and improve these inconsistencies is another important issue in decision-making.

This study proposes Decision Ball models to provide visual representation of ranks of

and similarities among alternatives, thus to help the decision makers make a more

2



knowledgeable decision. Four types of Decision Ball models are constructed to meet the

decision makers with different decision preferences and requirements. In addition, this study

tries to help a decision maker improve the quality of his/her decision-making by reducing

serious inconsistencies in judgment.
The major advantages of the proposed approach for a decision maker are summarized as

below:

(i) Make a more knowledgeable decision through visualizing background information and
decision processes.

(i) Make a more reliable decision by improving inconsistencies iteratively.

(iii) Select a type of Decision: Ball models based- on his/her decision preferences and
requirements.

(iv) Observe the ranks of and similarities among alternatives on Decision Balls directly.

(v) See the grouping relationships among alternatives layer-by-layer on Decision Balls, and
perceive the benchmark alternatives if the DM would like to upgrade the performance of

an alternative from one group to another.

1.2 Advantages of Decision Balls
Decision Ball models display alternatives on the surface of a ball. The arc length

between two alternatives is used to represent the dissimilarity between them: the larger the



-

(d) (e) |

Figure 1.2 Advantages of Decision Balls (a) Display line segments on a
2-D plane (b) Display curves on a ball (c) Display four points that are not
on the same plane (d) Display pointsin.a 3-D cube (e) Display points on
the surface of a-ball

difference, the longer the arc length. .In‘addition,-the alternative with a higher score is

designed to be closer to the North Pole so that alternatives will be located on the concentric

circles in the order of rank from top view.
The advantages of Decision Balls are illustrated as follows:

(i) Comparing with 2-Dimensional plane models, Decision Balls can depict three points that
do not obey the triangular inequality (i.e. the total length of any two edges must be larger
than the length of the third edge). For instance, given three options A, B, and C. Suppose
the distance between A and B is 3; the distance between B and C is 1; the distance

between A and C is 6. We cannot draw three lines to connect A, B and C (Figure



1.2(a)). However, it is convenient to draw three arcs on the surface of a ball to illustrate
their relationships (Figure 1.2(b)).

(if) Decision Ball models are better than 2-Dimensional plane models because the former
can show four points which are not on the same plane, as shown in Figure 1.2(c).

(iii) Comparing with 3-Dimensional cube models (Figure 1.2(d)), Decision Ball models are
easier for a decision maker to observe the relationship among alternatives than
3-Dimensional cube models because the former can exhibit points on the surface of a
ball, as shown in Figurel.2 (d) and (e).

(iv) Decision Ball models can depict inconsistencies in the decision makers’ judgments.
(Discussed in Chapter 5 and 6):

(v) A Decision Ball can display both ranks of and similarities among alternatives.

(vi) A Decision Ball involves no edges.

1.3  Framework of the Proposed Decision Ball System

Different decision makers may have various decision preferences and requirements
because of personality of a decision maker, complexity of a decision problem, availability of
decision data, ...etc. This study summarizes four popular types of decision patterns and
proposes corresponding Decision Ball models as follows: (Figure 1.3)

(i) Type I Pattern



Types of Decision

Patterns
v v v v
I I i v

Solving Solving Solving Solving
problem: Problem: Problem: Problem:

Yes/No Ranking for Ranking for Classifying

Decision Multiple Multiple Alternatives

Problem Alternatives Alternatives
Preference Preference Preference Preference
specification: Specification: Specification: Specification:

Pairwise Trade-offs Pairwise No

comparisons among comparisons preference

between attributes between is given

Pros and alternatives

Cons using score

ratio
v v \ v

Model 1 Model 2 Model 3 Model 4
Moral Algebra Even Swap Pairwise Classification
Decision Ball Decision Ball Comparison Decison Ball

Models Models Decision Ball Models

. y Models
(Fig. 4.3) (Fig. 5.7) (Fig. 6.3) (Fig. 7.6)

Figure 1.3 Framework of the proposed Decision Ball System

The decision makers are assumed to make a binary choice, or a “Yes or No” decision
problem. This is the simplest decision pattern because the decision makers have not to
estimate the value of each criterion for each alternative in advance.

Franklin (1956) proposed a process to help a decision maker make a rational choice under
this decision pattern, called Franklin’s Moral or Prudential Algebra. Franklin’s Moral Algebra
for making choices was first to divide a sheet of paper into two columns; one for pro, and
another for con. Then, write down the various motives, for or against the choice. If a reason

pro equaled a reason con, then both would be crossed out. If a reason pro equaled two reasons



con, the three were crossed out. After a day or two of consideration, if nothing new came to
mind for either side, the decision maker could then come to a determination.

Franklin’s Moral Algebra is an intelligent way of simplifying the complexity of a
decision. However, it is not easy for a decision maker to tell explicitly which pro(s) and con(s)
can be eliminated simultaneously.

This study proposes Moral Algebra Decision Ball models to improve the insufficiencies
of Franklin’s Moral Algebra. Decision makers are assumed to be able to make pairwise
comparisons between pro and con reasons with words such as “equally important”, “slightly
more important”, “more important’sand “significantly more important”. By visualizing the
relationships between pros and cons:on Decision Balls, the decision makers can make a more
knowledgeable decision.

(if) Type Il Pattern

Ranking for multiple alternatives is the major type of decision problem considered here.
This pattern is sophisticated because the decision makers must be capable of making clear
trade-offs among a range of criteria across a range of alternatives.

Hammond et al. (1998) developed a mechanism of Even Swaps to provide a useful way
of making trade-offs. “Even” implies equivalence and “Swap” represents exchange. An even

swap increases the value of one criterion while decreasing the value by an equivalent amount

in terms of another criterion. By iteratively crossing out equally rated criteria to reduce the



number of criteria, the most preferred alternative could be found.

Even swap approach is a rational and practically useful way in finding the best

alternative. However, the ranks of rest of alternatives are not known, and there may exist large

inconsistencies among even swaps that the DM could not know.

This study presents Even Swap Decision Ball models to assist the DM observe the ranks

of and similarities among alternatives on the Decision Ball. The superiority relationship

between alternatives can be observed by checking the longitude of alternatives. The

inconsistencies between even swaps can also be known by checking the latitude of

alternatives.

(iii) Type I Pattern

Ranking for multiple alternatives is the type.of decision problem solved in this pattern

too. However, instead of making trade-offs explicitly among values of criteria in Type Il

pattern, the decision makers of this decision pattern make pairwise comparisons between

alternatives using score ratios.

The analytic hierarchy process (AHP)(Saaty, 1977, 1980; Saaty and Vargas, 1984, 1994)

has been used widely to determine relative ranking of the decision alternatives through the

pairwise comparison of alternatives at each level of the hierarchy. However, if perturbations

from consistency are large, the information available cannot be used to derive a reliable

answer (Saaty, 1977). That is, different ranking methods may produce wildly different



priorities if a preference matrix is highly inconsistent. Hence, how to help the decision makers

detect and adjust these inconsistencies becomes an important issue in this decision pattern.

This study illustrates Pairwise Comparison Decision Ball models to help the DM make a

more reliable decision by detecting and improving inconsistencies in judgments. In addition

to the ranks of and similarities among alternatives, the DM can observe the suggestions for

effectively reducing inconsistencies on Decision Balls.

(iv) Type IV pattern

In this decision pattern, the decision makers do not have personal preferences about

alternatives. They are interested in classifying alternatives more than ranking alternatives.

Discriminant Analysis (DA) is-a statistical technique and popular method for predicting

group membership. The GP (Goal: Pregramming)-based DA, first proposed by Freed and

Glover (1981), can estimate weights of criteria by minimizing sum of deviations (MSD, Freed

and Glover, 1986) or minimizing misclassified alternatives (MMO, Banks and Abad, 1991).

Those weights yield an evaluation score, which is compared with a threshold value for

classifying alternatives. Sueyoshi (1999) first proposed a DEA-DA analysis incorporating the

non-parametric feature of Data Envelopment Analysis (DEA, Charnes et al., 1978) into the

DA. DEA-DA approach can effectively improve hit rates. However, it includes too many

binary variables, and the decision makers cannot “see” the grouping relationships via

graphical representation.



This study presents Classification Decision Ball models to aid the decision makers

observe the grouping relationships on Decision Balls layer by layer. In addition to the ranks of

and similarities among alternatives, the DMs can perceive the benchmark alternatives if the

DMs would like to upgrade the performance of an alternative from one group to another. The

number of binary variables can also be reduced significantly.

The framework of the proposed Decision Ball system is shown in Figure 1.3. Each type

of decision patterns is illustrated as solving problem and preference specification parts. The

corresponding Decision Ball models are depicted in the lower part of Figure 1.3.

1.4 Structure of the dissértation

The structure of this dissertation+is depicted in Figure 1.4 and briefly introduced as

follows:

Chapter 2 reviews two popular visualization tools: Multidimensional Scaling (Cox and

Cox, 2000) and Gower Plots (Gower, 1977; Genest and Zhang, 1996). Their advantages and

insufficiencies are also discussed.

Chapter 3 introduces Decision Ball techniques. The properties of additive score

functions and multiplicative score functions are discussed first. Then, the Decision Ball

techniques, based on the concept of Multidimensional Scaling, are presented. How to display

alternatives on Decision Balls is demonstrated as an illustrative example.

10



(Ch.1)
Introduction
v
(Ch.2)
Review of
visualization tools
v
(Ch.3)
Decision Ball
techniques
|
v v v v
(Ch. 4) (Ch.5) (Ch. 6) (Ch.7)
Model 1 Model 2 Model 3 Model 4
Moral Algebra Even Swap Pairwise Classification
Decision Ball Decision Ball Comparison Decision Ball
Models Models Decision Ball Models
Models
| | | |
v
(Ch. 8)
Concluding
Remarks

Figure 1.4 Structureof the dissertation

Chapter 4 presents Model 1 — Moral Algebra Decision Ball models for Type | decision

Chapter 5 discusses Model 2 — Even Swap Decision Ball models for Type Il decision

demonstrate the decision processes.

11

pattern. The process of Franklin’s Moral Algebra is described first. Moral Algebra Decision

Ball models are then constructed. An example of a CEO’s dilemma is illustrated to

pattern. The method of Even Swaps is introduced. Then corresponding Even Swap Decision

Ball models are built. An office-renting problem is used as an illustrative example. Chapter 6

addresses Model 3 — Pairwise Comparison Decision Ball models for Type Il decision pattern.




This chapter first describes the basic concept of pairwise comparison, and then creates

Pairwise Comparison Decision Ball models. Gower Plots are adopted to detect alternatives

causing major inconsistencies. Optimization models are proposed to help the DM improve

these inconsistencies conveniently. Two examples, investment in mutual funds and selection

of universities, are demonstrated in this chapter.

Chapter 7 presents Model 4 — Classification Decision Ball models for Type IV decision

pattern. DEA-DA analysis is introduced, and the Classification Decision Ball models are

formed. Then, a corporate bankruptcy example and an example of Japanese banks are

demonstrated. Chapter 8 presents .eoncluding remarks and suggests directions for future

research.

12



Chapter 2 Review of Visualization Tools

Several graphical techniques have been developed to aid the DM visualize background
information. For instance, Li (1999) used deduction graphs to treat decision problems
associated with expanding competence sets. Gower (1977), Genest and Zhang (1996)
proposed a powerful graphical tool, the so-called Gower Plot, to detect the cardinal and
ordinal inconsistencies in decision maker’s preferences. Multidimensional Scaling (Borg and
Groenen, 1997; Cox and Cox, 2000) is a classical technique used to provide a visual
representation of similarities among.a‘set of alternatives.

This chapter briefly reviews stwo popular visualization techniques, Multidimensional
Scaling techniques and Gower Plots, which are-adopted and compared in this study.

The structure of this chapter is organized as follows. Section 2.1 illustrates the
Multidimensional Scaling technique. Section 2.2 briefly reviews Gower Plots method.

Summary of this chapter is made in Section 2.3.

2.1 Review of Multidimensional Scaling (MDS) Techniques
Multidimensional Scaling (Borg and Groenen, 1997; Cox and Cox, 2000) is a classical
technique to provide a visual representation of similarities among a set of alternatives, which

allows one to map similarities between points in a high dimensional space into a lower

13



dimensional space (usually Euclidean).

There are two major forms of MDS: metric and non-metric MDS. In metric scaling, the
dissimilarities between all objects are known numbers, which can be approximated by
distances directly. In non-metric MDS, only the rank order of the dissimilarities is
approximated: the larger the dissimilarity, the longer the distance. Several MDS models (Cox
and Cox, 2000) have been developed. One of commonly used model is proposed by Kruskal
(1964a, 1964b). He developed a numerical measure of the closeness between the

dissimilarities in the lower dimensional and the original spaces, called Stress. Denote d;; as

distance and o, ; as dissimilarity between alternative A; and A;. Stress can be formulated as

IPMCIE ( Gk

Stress= | : (2.1)

. >.dZ

TS

where f(&,;) is the transformation of the &;; . In metric scaling, f(&;;) is a linear
transformation of ¢&;; . In non-metric scaling, f(6,;) is a weakly monotonic
transformation of &, ; . Thatis, if 6,; < &,, , f(5;;)<f(5,,). The Stress has a value
between 0 and 1, with O indicating perfect fit and 1 implying worst possible fit. The rule of
thumb for the value of Stress is that anything under 0.1 is excellent and over 0.15 is
unacceptable. Based on Kruskal’s approach, an initial configuration is randomly specified.
Then an iterative procedure based on the steepest descent method is applied to move toward a

local optimum by minimizing (2.1).

14
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Figure 2.1 Displaying a distance matrix R; by non-metric MDS
techniques

For instance, a distance matrix. R4, with: four alternative A;, A;, As, and A4, can be
visualized by non-metric MDS techniques as shown-in Figure 2.1. The Stress of this visual
presentation is 0.57%.

Conventional MDS models, including Kruskal’s approach, can effectively provide a
visual representation of dissimilarities among objects. However, the conventional
multidimensional scaling technique cannot show the ranks of alternatives and is incapable of

detecting and adjusting inconsistencies in the decision makers’ preferences.

2.2 Review of Gower Plots
Genest and Zhang (1996) proposed a graphical method, which is close in spirit to MDS,

to graph a skew-symmetric matrix on a 2-Dimensional plane. Their method, based on the

15



work of Gower (Gower, 1977), can display both the inconsistencies of data matrix and the
ranks of alternatives. This section briefly introduces the mathematical properties of Gower
Plots. The detail explanations of Gower Plots can refer to Genest and Zhang (1996).

The singular values of a matrix M of rank n are the positive square roots of the
eigenvalues of the symmetric matrix MM, where M" stands for transposition of M. If M is
skew-symmetric, i.e. M" = -M, the singular values of the matrix M are equal to the norm of
its purely imaginary eigenvalues.

Let 4, >...24,2>20 (and A,,,=0 if nis an odd number) represent those singular
values, with m indicating the integerspart of n/2.:» Using singular value decomposition (Horn

and Johnson, 1985), a skew-symmetric matrix-M can be decomposed into the form

Mzgzj(uzj_lugj ~U,,05.), (2.2)
where U1 and Uy; are orthonormal eigenvectors of M'M corresponding to /ﬁ.

The matrix M™ =2 (UVT-VU") with U = U; and V= U, provides the best
approximation of a skew-symmetric matrix M of rank two, because the first term of M gives
the best least-squares fit of rank two to M (Eckart and Young, 1936). Let U = (ug, ..., uy)"
and V = (vy, ..., vp)' as n points P; = (uj, vj) in the plane. A Gower Plot of a skew-symmetric

matrix M is a two-dimensional graph composed of all P;, 1< j <n, on the graph.

The measure of the faithfulness of the graphical representation of M is provided by

16



M” 2
variability:“—— 4 . (2.3)

M3
2.4

Consider a set of n alternatives As, A, ..., An. Denote r;; as the ratio of the weights of A;
to that of A;, specified as,
i=—-e. (2.4)

where w; is the weight of A;, w; > 0, for all i. e

.; Is a multiplicative term accounting for

inconsistencies. It is assumed that r; = i, as illustrated in AHP (Saaty, 1977). LetR =
ji

(rij), for all i,j, be a nxn preference matrix. Following Genest and Zhang (1996), a

tournament matrix T = (ti;) corresponding t0 R, is.defined as ti; = 1if ri; > 1; t;; =0 if r;; = 1;

tj= -1 ifr;<1.

Since T is a skew-symmetric matrix, a Gower.'Plot based on T can be depicted, called
the ordinal Gower Plot of R. From the work of Genest and Zhang (1996), we summarize the
following rules to detect the ordinal consistency of R. Examining the ordinal Gower Plot of
R, R is close to be ordinal consistent, if (i) the location of alternatives (points Py, ..., Py)
are equidistant from origin within a 180 degree arc; (ii) the angles between consecutive points
are equal to 180/n degrees; (iii) the faithfulness of the graphical representation is
demonstrated by variability factor, expressed in (2.3), being approximately 1. The points are

arranged counter-clock-wise in the order of preference.

Let S = (sij), for all i,j, where s;; = In(rij;). S is then a skew symmetric matrix. A Gower

17



Plot based on S can be depicted, called the cardinal Gower Plot of R. Examining the cardinal

Gower Plot of R, R is close to be cardinal consistent, if (i) Py, ..., P, are collinear, and (ii)

variability factor is approximately 1. The first condition means that s;k + s;’j = s;j, for all
1<i,k, j<n.
For instance, suppose a DM specifies a preference matrix as R,. T, is the tournament

matrix corresponding to R,. The ordinal Gower Plot is depicted in Figure 2.2(a).

Examining the ordinal Gower Plot, the matrix R is ordinal consistent because (i) all its points

1 2 45 0 1 1 1
_1/2125 _I_:—1011
U412 13 -1 -1 0 1
15 15 U3 4 % -1 -10

are located on a half-circle; (ii) the'angles between every two consecutive points are equal to

180/n degrees; (iii) variability factor.="97.1%. Let' S, = In(R,), the cardinal Gower Plot of

R, is depicted in Fig. 2.2(b) representing 99.9% variability. The matrix R is not cardinal

consistent because A4 is away from the collinear line. The ranking of alternatives is A; = A

= As = A4 ("7 means superior to).

Gower Plots are powerful tools for detecting inconsistencies in data matrix, and can also

display ranks of alternatives. However, it can neither show the similarities among alternatives

nor provide any suggestions about how to adjust inconsistencies. In addition, a Gower Plot

can be drawn only if the preference matrix is complete (discussed in Chapter 6).
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Figure 2.2 Gower Plots of R, (a) ordinal Gower Plot of R, (b) cardinal
Gower Plot of R;

2.3 Summary

A decision maker’s choice is often affected by background information. This chapter
briefly reviews two commonly used visualization techniques, Multidimensional Scaling and

Gower Plots, and illustrates their:advantages and insufficiencies.
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Chapter 3 Decision Ball Techniques

This chapter illustrates the Decision Ball techniques with additive and multiplicative
score functions respectively, based on the concept of Multidimensional Scaling techniques.

An additive score function is the most commonly used form in practice (Belton and
Stewart, 2002) since it is more understandable for the decision maker. However, the linear
additive score function is restricted to a fixed rate of substitution between criteria. A
multiplicative score function is good at reflecting reasonable marginal rate of substitution, but
is more complicated than the additive one. Both/score functions are provided here to allow a
decision maker to choose a propéer one.

The structure of this chapter "is*'organized’ as follows. Section 3.1 introduces the
properties of additive score functions. Section 3.2 illustrates the properties of multiplicative
score functions. Section 3.3 proposes the Decision Ball techniques with additive and
multiplicative score functions respectively. Section 3.4 uses an example to demonstrate how

to display alternatives on Decision Balls. Summary of this chapter is made in Section 3.5.

3.1 Properties of Additive Score Functions
Let A = {A;, Ay, ..., As} be a set of n alternatives for solving a decision problem, where

each alternative contains m criteria. An alternative A; is expressed as A (Ci1, ..., Cim). Denote
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Wy as the weight of criterion k. In order to make sure all weights of criteria are positive, a
criterion cjx with cost feature (i.e., a DM likes to keep it as small as possible) is transformed
from cix to (¢, —c;, ) in advance, where c, is the largest value of criterion k.

Notation 3.1 The score function of A; is assumed in an additive form, expressed below

~ &

Si(w):iwk C'_k

k=1 Ck =Cy.

3.1)

where (i) w, >0, Vk and ZWk =1. w=(w,w,,...,w,) is a weight vector obtained by
k=1
other decision methods in advance, (ii)c, and c, are respectively the largest and smallest

values of a criterion k. (iii) 0<S;(w) <1.

Notation 3.2 The dissimilarity between A;jand A; is defined as

i |C|k ', | (32)

Ck_Ck
where 0<6,;(w) <1 and &, ;(w)=0;;(w).
For the purpose of comparison, we define an ideal alternative A. , where

A. = A(c,,C,,....c.) and S,=1. A is designed to be located at the north pole of a ball

(radius = 1) with coordinate(x.,y.,z.) = (0, 1, 0). Denote ¢;., d;. as the dissimilarity,

distance between Ajand A. respectively. We then have following propositions:

Proposition 3.1  &;.(w) =1-S;(w) (33)
4 c m C_—C —(c., —C

<Proof>  &,.(w)=> w, 1G ~ G ZWk (G = &) = (Cik &)
= G = Ck —Ci.
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=(iwk (C_k—C_k)_iWk (ci_,k -C)

k=1 C, —C, k=1 C, —Cy

)=1-5,w)

Notation 3.3 Denote the Euclidean distance between A; and A; as

d; =26, ;, (3.4)
such that if &,; =0thendij=0andif & =1then dij=+2, wherey2 isused because
the distance between the north pole and equator is +/2 when radius = 1. The relationship
between y;and S; is expressed as

Proposition 3.2 y; =2S, - S/. (3.5)

<Proof> Following Proposition 3.1 and Notation 3.3,
dZ =(x -0 +(y; —1)2#(z; —0)2 =207 =2(1-S;)°.
Therefore, we can obtain, y, £2S.=S%.
Assume the weights of criteria are obtained from other decision methods in advance. The
scores of and dissimilarities among alternatives can be calculated based on Notation 3.1 and
3.2. From Proposition 3.2, if S; = 0, then y;= 0; if S; =1, then y; = 1. That is, the alternative

with a higher score is located to be closer to the North Pole.

3.2 Properties of Multiplicative Score Functions
Before applying multiplicative score functions, all criterion values have to be normalized
into interval [1, 10] with ¢, =1,and ¢, =10.

Notation 3.4 The multiplicative score function of A;is assumed in a non-linear Cobb-Douglas
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(1928) form with constant return to scale, expressed below
S, (W) =wycics ...ch, (3.6)
where wo, Wy, ..., Wn > Oand > w, =1.

Let 1<S, <10, then wp =1.

Notation 3.5 The dissimilarity between A;jand A; is expressed as

Max{c, ,,C. Max{c, ..,C: ,
é‘i‘j (W) :[ { i1 ],1} { Cj,

]Wl X ooo X m!

You
Min{c,,.c,} Min{c, .., }] ’ 3.7)

j.m
where &;;(w)=7,;(w) and 1<, ,;(w)<10.

Notation 3.6 Let the Euclidean distance between A; and A; be

di,j = M1 (38)
In(10)

V203" w (In(Max{Cise; ) =In(Minfc, . ¢; )
k=1

Because d;; = , the relationship between

In(10)

d;. and S; can be expressed as

V23 w, (Ine,) - In(c; . )))
_ k=1

J2(In@0)-In(s,)) In(s,)
di- In(L0) B In(L0) =20~ In(lO)) - (39
We then have following proposition:
Proposition 3.3 y, = 2In(S,) —(In(si))2 (3.10)

In10) In(L0)

In(s,)

<Proof> Since x2 +(y. -1%+z2=d% =201- 2
i (yl ) i i, ( In(lO))

_2n@) _ In(s,)

then y; = In(10)  "In(10)

)?.

From Proposition 3.3, if S; =1, theny; = 0; if §;= 10, then y; =1.
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3.3 Display Techniques

From the basis of Multidimensional Scaling techniques, this section proposes Decision
Ball techniques to provide spatial relationships among alternatives. The arc length between
two alternatives is used to represent the dissimilarity between them: the larger the difference,
the longer the arc length. However, because the arc length is monotonically related to the
Euclidean distance between two points and both approximation methods make little difference
to the resulting configuration (Cox and Cox, 1991), the Euclidean distance is used here for
simplification.

In addition, the alternative With-a higher-score is-designed to be closer to the North Pole
so that alternatives will be located. on"the concentric circles in the order of rank from the top
view.

Let 6” = f(0;;), where f(5,;) is a monotonic transformation of &,; (i.e. if

~

S5 <&  then d..<d

i1 <Opq i; <d,,)- A Decision Ball technique with additive score functions is

developed as follows.

Model 3.1 (A Decision Ball model — An additive score function)

Min Z= Zn:i(di,j ~d;,)?

i=l j>i

sty =25, -S?, Vi, (3.11)

(3.12)
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dZ = =x)2+ (Y, -y +(z - 2% Vi, j, (3.13)
X' +yl+22 =1, Vi, (3.14)
-1<x;,z, <1, 0<y, <1, Vi, & isatolerable error. (3.15)
The objective function of Model 3.1 is to minimize the sum of difference between di;
and dAi,j. (3.11) is from Proposition 3.2. (3.12) is the monotonic transformation from &; ; to
d... All alternatives are graphed on the surface of a semi-sphere (3.14)(3.15).

L]

The stress value can be measured by

(3.16)

If a decision maker chooses to use a multiplicative score function, Model 3.1 can be

reformulated as follows.

Model 3.2 (A Decision Ball model — A multiplicative score function)

Min z = ii(di,j—ai,j)z

i=l j>i
~2In(S;) _(In(Si)
"7 In(10)  In(10)

s.t. )2, (3.17)

(3.12) ~ (3.15).

Expression (3.17) is from Proposition 3.3.
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3.4 An lllustrative Example — Visualization on Decision Balls

This section uses a numerical example to demonstrate how to display alternatives on
Decision Balls with additive and multiplicative score functions respectively.
<Example 3.1> Visualization on Decision Balls

Suppose a decision maker has three criteria (cy, ¢z, and c3) to fulfill. He hopes all criteria
values to be as large as possible. Assume the weights of criteria are known as follows: (wy,
W,, W3) = (0.2, 0.5, 0.3). Four alternatives are under considerations as listed in Table 3.1.

Assume the decision maker chooses to use an additive score function. Following
Notation 3.1, the scores of alternatives can be-obtained as (Si, Sz, Ss, S4) = (0.3, 0.66, 0.45,
0.8). The dissimilarities among alternatives are calculated based on Notation 3.2, as listed in

Table 3.2 (a). Applying Model 3.1 1o this'example yields the coordinate of each alternative, as

Table 3.1 Data matrix of Example 3.1

Cik Ci C» Cs

A1 20 100 1.2
A2 35 165 0.8
A3 40 140 0.6
As 30 180 1

Table 3.2 Results of Example 3.1 with an additive score function
(a) dissimilarity (b) coordinates of alternatives

(@) (b)
O j A1 A2 Az As X y z
A1 0.76 0.75 0.70 A1 -0.78 | 052 [ -0.34
A2 0.31 0.24 A2 -0.40 [ 0.89 0.21
As 0.55 As -0.60 [ 0.71 0.37
A4 A4 -0.28 | 096 | -0.02
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Figure 3.1 The Decision Ball of Example 3.1 with an additive score
function

listed in Table 3.2(b). The corresponding Decision Ball is shown in Figure 3.1.

Assume the decision maker selects a multiplicative score function in Example 3.1. From
Notation 3.4, the scores of alternatives are-(S1, Sz, Sy S4) = (1.06, 4.06, 3.19, 4.45). Based on
Notation 3.5, the dissimilarities- among alternatives-are calculated, as listed Table 3.3(a).
Applying Model 3.2 to the example yields the coordinates of alternatives, as listed in Table

3.3(b). The Decision Ball with a multiplicative score function is depicted in Figure 3.2.

Table 3.3 Results of Example 3.1 with a multiplicative score function
(a) dissimilarity (b) coordinates of alternatives

(@) (b)
Si A1 A2 Az A4 X y 4
AL 0.00 1.62 1.67 1.54 A1 -0.92 [ 0.06 [ -0.39
Az 0.00 0.00 1.22 1.15 A2 -0.52 [ 0.86 [ -0.01
Az 0.00 0.00 | 0.00 1.40 Az -0.61 [ 0.74 | 0.27
As | 0.00 [ 0.00 | 0.00 [ 0.00 As | -041 | 0.87 | -0.29
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Figure 3.2 The Decision Ball of Example 3.1 with a multiplicative score
function

3.5 Summary

This section proposes Decision Ball techniques. with additive and multiplicative score
functions respectively to provide a useful wvisual representation of ranks and similarities
among alternatives. An illustrative” example [is  also demonstrated about how to display

alternatives on Decision Balls.
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Chapter 4 Model 1: Moral Algebra Decision Ball Models

This chapter presents Model 1 — Moral Algebra Decision Ball models for Type | decision
pattern. The decision problems solved in this pattern are Yes/No decision problems. This is
the simplest decision pattern because the decision makers have not to estimate the value of
each criterion for each alternative in advance. Decision makers are assumed to be capable of
making pairwise comparisons between pro and con reasons. Based on Franklin’s Moral
Algebra, this study develops a mechanism to visualize the decision alternatives and processes
on Decision Balls.

The structure of this chapter issorganized‘as follows. Section 4.1 introduces the concept
of Franklin’s Moral Algebra. Section'4.2 constructs Moral Algebra Decision Ball models.
Section 4.3 uses an example to demonstrate how to apply Moral Algebra on Decision Balls.

Summary of this chapter is made in Section 4.4.

4.1 Introduction to Franklin’s Moral Algebra

More than 230 years ago, Joseph Priestly, a noted scientist, asked for advice from
Benjamin Franklin about what option to choose when making a decision. Franklin replied to
his friend that he could not advise what to determine, but would like to tell how. Franklin

called his method of choices a Moral or Prudential Algebra, which had brought him great

29



success in making rational decisions. (The letter from Benjamin Franklin to Joseph Priestly is

listed in the Appendix)

Franklin thought, the difficulty of making decision was because the reasons pro and con

were not present in the mind at the same time; sometimes one set present themselves, and at

other times another, while the first was out of sight.

Franklin’s Moral Algebra for making choices was first to divide a sheet of paper into

two columns; one for pro, and another for con. Then, write down the various motives, for or

against the choice. Franklin then attempted to estimate the respective weights of these reasons

at one time. If a reason pro equaled.a‘reason con,:then both would be crossed out. If a reason

pro equaled two reasons con, the three were crossed out. After a day or two of consideration,

if nothing new came to mind for either side, Franklin-would then come to a determination.

Franklin thought that since all the reasons lay before him, and since each reason was

considered separately and comparatively; he could judge better, and was less liable to make a

rash choice. In fact, Franklin benefited a lot from this kind of choice method.

Franklin’s Moral Algebra is an intelligent way of simplifying the complexity of a

decision. By eliminating reasons pro and con step-by-step, the original list of pros and cons

can be replaced with an equivalent but compact list. Then, a clear choice can then be reached.

However, this algebra is not used widely today because of the following facts.

First, Franklin’s Moral Algebra requires a decision maker to list equivalent pros and cons.
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However, it is not easy for a decision maker to tell explicitly which pro(s) and con(s) can be

eliminated simultaneously. Second, the key point in Franklin’s Moral Algebra is to present all

the pros and cons to the mind at the same time, the decision maker therefore can make whole

comparisons about these pros and cons. However, the table listing may not be a proper way to

display complete information to a decision maker. Since a table can only list the items of pros

and cons but can not tell the similarities or differences between them.

This study therefore proposes Moral Algebra Decision Ball models to visualize and

enrich Franklin’s Moral Algebra. The merits of this approach in making choices are listed

below:

(i) The decision maker is not required to.directly-list equivalent pros and cons. But to

roughly express the comparisons between pros and cons with words such as “equally

important”, “slightly more important”, “more important” and “significantly more

important”.

(if) After making the comparisons, the differences of importance between pros and cons are

displayed on the surface of a ball. By examining the ball, the decision maker can detect

the closest sets of pros and cons, and then eliminate them simultaneously.

(iii) The whole decision process can now be visualized. By “seeing and choosing”, the

decision maker is more confident when making comparisons, updating preferences,

eliminating pros and cons, simplifying complexity, and finally reaching a decision.
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4.2 Construction of Moral Algebra Decision Ball Models

To illustrate the relationship between pros and cons, we can compare the differences
between them. Suppose an option represents a pro or a con. If two options are equally
important, then the difference of importance between them should be small. If one option is
slightly more important than the other, then their difference becomes larger. If one option is
much more important than the other, then their difference is significantly larger. To visualize
the difference of importance means to convert them into physical distances.

Two rules of allocating all options on the surface of a ball are as follows:
Rule 1 : The more the difference ofiimportance between two options, the longer the physical

distance between them.

Rule 2 : The more important an option is, the closer it is to the north pole.

The decision maker’s preferences between two options A and B are classified and

expressed in Table 4.1.

Table 4.1 The relationship between two options

Preference between Aand B Expression
A is equally important as B A~ B
Ais slightly more important than B A - B
A'is more important than B A = B

Ais significantly more importantthanB | A =~ B
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The essence of Franklin’s Moral Algebra is to simultaneously display the complete
information of pros and cons to the decision maker. This study intends to utilize computer
graphic technologies to develop a decision support system to visualize a decision maker’s
preferences on a ball.

On the surface of a Decision Ball, the distance between two reasons is designed to be the
relationship between them: the more the difference of importance, the longer the distance. The
relationship between relationship type and distance is defined as listed in Table 4.2.

Table 4.2 The mapping table of relationship type and distance

Relationship Type| Minmum Target Maximum
(r.;) Distance (d;,j) Distance (d; ;) | Distance (E)
1 ~ 0 0xq 0.2x(
2 > 0.2xq 1xq 2x(Q
3 > 1xq 2xq 3xq
4 S 2x( 3x( 4xq

In Table 4.2, q is a scaling constant, and r,; is the relationship type between two

options i and j. There are four relationship types, including “~”, “=7, “w>»"and “»sx".

Each type of relationship is mapped to a target distance d

di" ; and di" ; respectively. Let di;j be the actual distance between reason i and reason j, and

(Xi, Vi, zi) be the mapping coordinates of reason i on the Decision Ball. For simplicity, let the
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radius of the Decision Ball be 1. The Decision Ball is formulated as follows:

Model 4.1 A Pro-Con Decision Ball Model

Min y/A

s.t. -7<d;;-d,,<Z, Vr; #¢, (4.1)
dy; <d, <d;,, vr, #¢, (4.2)
Yizy;+g, ifr; e{"""" " (4.3)
929, 9249, 4.4

(3.13) ~ (3.15),

where g, g are lower bounds of g and g respectively.

The objective is to minimize-the difference between the actual distance and target
distance (4.1). Expression (4.2) is.used-to set the upper and lower bound of d;;. The latitudes
of Pro or Con reasons stand for the order of importance. If a reason P; is important than P;, the
latitude of P; is designed to be higher than that of P;, as listed in Expression (4.3), where g is a
gap in y coordinate between two reasons with different importance. The lower bounds of g

and q are set in (4.4) in order to avoid all reasons located too close to each other. The

suggested values are g=0.1, q =0.25.

4.3 An illustrative Example — A CEO’s Dilemma

<Example 4.1> A CEQO’s Dilemma
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Here we use an example, called a CEO’s dilemma, to illustrate the process of utilizing a

Decision Ball to assist a manager in making choices.

Imagine a manager, David, who faces a difficult choice. David is the department director

of SOFTCOM, a famous software company with 2000 employees. David came to the U.S.A

from Shanghai, China. After obtaining his PhD from Wharton business School, David was

recruited by SOFTCOM. Because of his outstanding ability in analysis, he has been promoted

to a senior position in SOFTCOM. David has a lovely family, his wife Lisa and two children

Ivy and Paul. lvy is 10 and Paul is 6.

Because of the boom in the Chinese market; SOFTCOM plans to establish a subsidiary

in Shanghai. One week ago, David was asked to be the CEO of the China subsidiary of

SOFTCOM. The rewards of this new position-are quite promising. The salary will be doubled,

and David may be promoted to the Asia’s director of SOFTCOM in the future. In addition,

David can take care of his old parents in Shanghai. However, Lisa, lvy and Paul do not want

to leave. After staying at home for 5 years to take care of kids, Lisa cherishes her current job.

Ivy and Paul love their current schools very much. In addition, Ivy and Paul cannot speak

Chinese and may not make many friends in China. David is very excited about the new

position; however, he does not want to be separated from his family. David needs to choose

this week. How can he make this decision?

Many quantitative tools learned from school do not seem useful for David’s decision,

35



since all of these tools ask David to specify explicitly the trade-offs between “job and family”

or between “money and love”. David does not like it. Now we assist David to make his

decision via a Decision Ball.

There are five steps of making a choice:

Step 1 Listing of Pros and Cons

Suppose David lists five pros in order of importance (roughly) for accepting the new

position. First, this is a great promotion opportunity. If he accepts this new position, it is very

possible he will be promoted to be the director of Asia in three years. Second, David’s parents

live in Shanghai. Both of them are over 75 years.old. He can give his aging parents attention

if he moves back to China. Third, the salary of the new position is more than twice as high as

his salary now. Fourth, to be the CEO of a Chinese subsidiary, he could make more

contributions to his homeland. Last, David has an aggressive personality and likes a career

that offers a challenge. To be a CEO of Chinese subsidiary is an exciting challenge for him.

David also lists five cons in order of importance (roughly). First, both kids were born in

the U.S.A. They cannot speak Chinese. They may have a tough time transforming to a new

culture. Besides, both kids enjoy their American-style school life very much and object to

leaving. Second, David’s wife is an accountant. Lisa has worked hard and has recently got a

promotion to section manager. She is not willing to quit her job. Third, the population density

is very high in China, which results in a polluted environment. Fourth, the family just bought
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a new house in the U.S.A. one year ago. The house has a great view and a beautiful yard. The

family likes the house very much and they are not willing to move out. Finally, David and

Lisa have lived in the U.S.A. for over 16 years. Most of their friends are in the U.S.A. They

cherish their friendships very much.

The summary of pros and cons are listed in Table 4.3.

Table 4.3 David’s list of pros and cons for accepting the new position

Pros Cons
P, |Career promotion C: |Children’s education
P, |Parents’ care C, |Lisa’s job
P3; |High salary Cs |Polluted environment
P, |Working homeland Cz. |Abandoning new house
Ps |New challenge Cs |Loss of friendships

Step 2 Comparison of Pros

David selects some pros for comparison;.as listed in Figure 4.1(a).

® Comparing Career promotion (P;) with other pros, David thinks career promotion is

equally important as Care for parents (P,), more important than High salary (P3), more

important than Working for the homeland (P,4), and significantly more important than a

New challenge (Ps). These preferences are expressed as P1~P;, Py==P3, P1>>Py4, and

Py > Ps.

® Comparing Parents’ care (P,) with other pros, David thinks itis slightly more important

compared to a High salary (P3) as well as Working for homeland (P,), denoted as P, > P

and P,>Py.
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Figure 4.1 Pro Ball of Example 4.1 (a) Relationships among pros (b)
David’s Pro Ball

® Comparing High salary (Ps) with other pros, David is unclear about the comparison of

High salary (P3) and Working for homeland (P4). What he can sure is High salary (Ps) is

slightly more important than a New challenge (Ps) (Ps> Ps). Working for homeland (P4)

seems more important than a New: ¢hallenge (Ps) (P4~ Ps).

After David finishes filling out preferences in Figure 4.1(a), the Decision Ball system
then maps David’s preferences into a Pro Ball in Figure 4.1(b). Figure 4.1(b) illustrates the
relationships among the five pros. The arc length between two pros indicates their differences
of importance: the longer the distance, the larger the difference. For instance, because the
importance of Career promotion (P1) over a New challenge (Ps) is higher than that of Career
promotion (P1) over High salary (Ps), the distance between P; and Ps is much longer than that
of P; and P3. Moreover, the latitude of a pro stands for the order of importance. For example,

because the importance of Career promotion (P1) is higher than a New challenge (Ps), the
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latitude of Py is much higher than Ps.

Figure 4.1(b) shows that Career promotion (P;) and Parents’ care (P,) are the closest to
each other, and Career promotion (P;) and a New challenge (Ps) are the longest distance apart;
which fit the preference values in Figure 4.1(a). It is noteworthy that High salary (P3) and
Working for homeland (P,) are close to each other, which implies P; and P, may be of similar
importance. This relationship was not realized by David before; but it is visually illustrated by
the ball. Moreover, David could also choose to revise the relationship between pro reasons in
Figure 4.1(a) to modify his Pro-Ball iteratively.

Step 3 Comparison of Cons
David selects some cons for. comparisons, as-listed in Figure 4.2(a).
® Considering his Children’s education (C3), it.seems slightly more important than Lisa’s

job (Cy) (C1~Cy), because David thinks Ivy and Paul can only have a childhood once.

C1|C2| C3|C4| Cs A
- PV
Ci: Children’s ke ,/"_-.-»/ c
education - | > - KL
. . I"-I{ -}:“H .r: .C
. ’ Wy - 2
C,: Lisa’s job . (Y
Ay o | e
Cs : Polluted .Lﬂ}\\:" —{ C, |
environment WA T~ | !
C4 : Abandoning i\ - =y
new house s k, Tt~
— ]
Cs:Lossof ~ | T —
friendships ~—
~: equally important; > : slightly more important;
>>:more important;  >>>: significantly more important.
(a) (b)

Figure 4.2 Con Ball of Example 4.1(a) Relationships among con reasons
(b) David’s Con Ball
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His children’s education is slightly more important than a Polluted environment (C3), and
is significantly more important than Loss of friendships (Cs) (C1>Cgs, Cy >>>Cs).

® Lisa’s job (C,) is slightly more important than Abandoning their new house (C,).

® Both a Polluted environment (C3) and Abandoning new house (C4) are more important
than the Loss of friendships (Cs).
A Con Ball associated with Figure 4.2(a) is depicted in Figure 4.2(b).

Step 4 Comparison between Pro(s) and Con(s)
Next, David needs to specify the relationship between pro and con reasons, as listed in

Figure 4.3(a).

® Since Lisa had stayed at hamefor 5 years-to care for the kids before she got her current
job, the job means a lot to her.. David therefare thinks his Promotion opportunity (P) is
equally important as Lisa’s job (C,).

® It is difficult to compare Care for parents (P,) with any con. David therefore does not
make any comparison here.

® Working for homeland (P4) is equally important as the problems caused by a Polluted
environment (Cs).

® David thinks his family’s emotional reluctance to Abandon their new house (Cy) is
slightly more important than the pleasure due to a Higher salary (P3), denoted as P3< C,.

After filling out Figure 4.3(a), the system generates a Pro-Con Ball (Figure 4.3(b)),
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which merges the Pro-Ball in Figure 4.1(b) and the Con-Ball in Figure 4.2(b). During the

merging process, the system reallocates all pros and cons in order to let Career promotion (P)

and Lisa’s job (C,), Working for homeland (P4) and a Polluted environment (C3) be as close as

possible, to let the latitude of Abandoning the house (C,4) be higher than that of a High salary

(Ps). This is because David feels P1~ Cy, P4 ~Cs, and P3 < Ca, as specified in Figure 4.3(a).

Step 5 Swapping Equivalent Pros and Cons

By examining the Pro-Con Ball in Figure 4.3(b), David finds that Career promotion (P;)

and Lisa’s job (C,) are very close to each other, that means P; and C, are equally important

(as specified in Figure 4.3(a)); therefore Py-and Cz can be eliminated (marked with a dash

oval in Figure 4.3(b)). Similarly;-a Polluted environment (Cs) and Working for homeland (P,)

can be eliminated. It is worthy to notice.that Loss of friendships (Cs) and a New challenge (Ps)

are also close to each other, which means they may be of similar importance although David

did not realize it in Figure 4.3(a). This can only be visualized on a ball. Suppose David

decides to eliminate a New challenge (Ps) and the Loss of friendship (Cs). The final Decision

Ball is displayed in Figure 4.3(c).
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C;: Children’s| C, : Lisa’s | C5: Polluted |C4:Abandoning|Cs : Loss of
education job environment | new house friendship

P,: Career_
promotion

P, : Parents’
care

Ps : High salary <

P, : Working N
homeland

Ps : New
challenge

~: equally important; > : slightly more important;
>>: more important;  >>> : significantly more important. (a)

- Merge Figs. 4.1(b) and 4.2(b) into
\ Fig. 4.3(b) with Pix Cy, P4~ Cs, /

Cy>P3

e

(©)

Figure 4.3 Pro-Con Ball of Example 4.1 (a) Relationships between pros and
cons (b) David’s Pro-Con Ball
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By checking the latitude of the rest of the reasons in Figure 4.3(c), we can see that
Children’s education (C;) is more important than Parents’ care (P,) and Abandoning the house
(C4) is more important than a High salary (P3), where C4 >Pj3 is already shown in Figure
4.3(a). David now is quite clear about his mindset: Children’s education (C;) seems more
urgent than Parents’ care (P2). He did not realize this before his Decision Ball showed him.
Because the reasons con are more significant than the reasons pro as illustrated in Figure

4.3(c). David therefore decides not to accept the new position.

4.4 Summary
From the basis of Franklin’s Moral*Algebra, this study proposes Moral Algebra Decision
Ball models to assist a manager make choice more confidently. By presenting all pros and
cons related to a choice on a ball simultaneously, a decision maker can make a more
knowledgeable decision.
The merits of this approach in making choices are listed below:
(i) The decision maker is not required to directly list equivalent pros and cons. But to
roughly express the comparisons between pros and cons.
(i) By examining the ball, the decision maker can detect the closest sets of pros and cons,

and then eliminate them simultaneously.
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(ili) By “seeing and choosing”, the decision maker is more confident when making

(iv)

v)

comparisons, updating preferences, eliminating pros and cons, simplifying complexity,
and finally reaching a decision.

Comparing with traditional 2-dimentional plane models, the proposed approach is more
flexible because it can display points not on the same plane. For instance, as shown in
Figure 4.3(b), there are 10 points, which are not on the same plane.

Comparing with traditional 3-dimensional cube models, the decision maker can observe
the difference of importance and priority of importance between pro and con reasons on

Decision Balls more easily because all points are displayed on the surface of balls.
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Chapter 5 Model 2 : Even Swap Decision Ball Models

This chapter introduces Model 2 — Even Swap Decision Ball models for Type Il decision
pattern. Ranking for multiple alternatives is the major decision problem considered here. This
decision pattern is sophisticated because the decision makers are assumed to be capable of
making clear trade-offs among a range of criteria across a group of alternatives. Even Swaps
(Hammond et. al., 1998) processes are adopted here for making comparisons among
alternatives. The whole decision processes are visualized on Decision Balls.

The structure of this chapter isi'organized as, follows. Section 5.1 introduces the Even
Swap processes. Section 5.2 buildssEven Swap Decision Ball models. Section 5.3 uses an
office-renting example to demonstrate the decision processes. Summary of this chapter is

made in Section 5.4.

5.1 Introduction to Even Swap Processes

From the basis of Franklin’s moral algebra, Hammond, Keeney and Raiffa (1998)
developed a reliable mechanism for making trade-offs among a range of objectives across a
group of alternatives. “Even” implies equivalence and “Swap” represents exchange. An Even
Swap increases the value of one criterion while decreasing the value by an equivalent amount

in terms of another criterion. By iteratively crossing out equally rated criteria to reduce the

45



number of criteria, the most preferred alternative could be found.

Given a set of n alternatives A;, Az, ..., Ay, Where each alternative A; contains multiple
criteria. The conventional even-swap method (Hammond et al., 1998) begins with creating a
consequences table, specified by the DM. Such a table contains the consequences that the
alternatives have for the given criteria. The DM can find the best alternative based on the
following three steps.

Step 1 Eliminating dominated alternatives.

The even-swap method intends to eliminate the alternatives as many as possible. Since
the fewer the alternatives, the fewer trade-offs the:-DM has to make. A is said to dominate A; if
alternative A; is better than A; in-some criteria and no. worse than A; in all other criteria. All
dominated alternatives are eliminated first.

Step 2 Choosing a target criterion

After eliminating dominated alternatives, the even-swap method suggests the DM to
choose a target criterion where the values of this criterion for all alternatives are ready to be
adjusted as the same. Normally, a criterion with close values for most of alternatives is
considered as a target criterion.

Step 3 Making Even Swaps
Choosing another criterion ready for compensating the changes in the target criterion.

Assessing what changes in this criterion would compensate for the needed change in the
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target criterion. Make the Even Swaps, and cancel out the target criterion.

Steps 1 through Step 3 are applied iteratively until the best alternative is chosen.

Even Swap approach is a rational and practically useful way in finding the best

alternative. However, current Even Swap method has following drawbacks remained to be

improved:

(i) Only the best alternative is found. Other alternatives are not ranked. In actual decision

environment, the DM may like to know the second best and/or the third best alternatives.

(if) Various trade-off values among alternatives, which are specified by the DM, may not

consist with each other. Current'methods have no mechanism to check the consistency

among these trade-offs.

(iii) The dissimilarities among alternatives are not' taken into account. Actually, the DM

hopes to know not only the ranks of alternatives but also the dissimilarities among

alternatives.

In order to improve the insufficiencies of the conventional Even Swap method, this study

proposes Even Swap Decision Ball models to rank and display alternatives. The DM can see

the ranks of and differences among all alternatives on a Decision Ball. In addition, by

examining the moving trajectories of alternatives on a Decision Ball, the DM can check the

consistency among Even Swaps.
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5.2 Construction of Even Swap Decision Ball Models
By mapping all A; into the points (denoted as P;) on a ball, the spatial relationships
among these points are discussed below:
Notation 5.1 Given two alternatives A; (Ciz, ..., Cim) and A;j (Cj1, ..., Cjm), Ai “dominates” A,
denoted as A > A; if (i) c; >c;j, for all k and (ii) there is at least a k such that ¢;, >¢;,.
Consider the following propositions.

Proposition 5.1 Suppose there are two alternatives A; and A; with §;> S;. P, Pj and P; are

on the same longitude if and only if d; ;(w) =d;.(w)—-d;.(w).

<Proof> If P., Pjand P; are on thessame longitude with S;> §;, then

PP = P.P; - P-P, . That is, the value of PP~ += PP;- PB.p, is minimal for known S;
and S;. Since the arc length is monotonically related to Euclidean distance between two

points, d.; (w) +d; ;(w) —d..;(w) is minimal. Because d.;(w)+d;;(w)-d.;(w)>=0, we then

have d,;(w)=d;.(w)—d;.(w). On the other hand, since di«(w) and d;«(w) are expressed as

PP. and P,P. which are monotonically related to PP.  and Fij’* respectively, if
d,;(w)=d;.(w)—d;.(w), then P., Pi and P;j are located on the same arc along the great
circle. Thatis, P., Pjand P;jare on the same longitude.

Proposition 5.2 Consider a DB(w, 1) with two alternatives Ajand Ajonly i.e, I ={i, j} If

dominance exists between Aj and A; (i.e. A > A; or A; > A), then Piand Pjare on the same

longitude.
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<Proof> A > A; implies ¢, >c,, ,forall k.

(i)  For an additive score function, from (3.2) and (3.4),

\/_5” \/_Zwk‘i - ‘ \/_Z w, k_CjQ_(Ck_Ci,k)

e 6 —Cy

=v2(5,.-5,.)=d,.—d,.
(i) For a multiplicative score function, from (3.8) and (3.9)

J2In(s ;) 2

d;; = In(lO)’ o) 2 Zwk(ln(Max(cIk c;,)—In(Min(c; ., c;,)))

2 J2 . In0)d,. _ InQo)d,.
=T (10)("1(3)—' (S;)= ” (10)( 72 -1+ 7 )
=d.-d.

From Proposition 5.1, P., Pjand:Pjare on the.same-longitude.

Proposition 5.3 For a DB(w, I)for I'="{1, 7} 1f Si(w) > Sj(w), and Pjand P;are on the same

longitude, then A - A,.

<Proof> Since Sj(w) > S;(w) and P;, P;are on the same longitude,
dj(w)=d;.(w)—d,.(w).

(i) For an additive score function, from (3.3) and (3.4),

\/_Z‘Ik j ‘ \/_ZWk K __C*,k+ci _‘/_Z w, Sk Cik =Cjwc .

k=L G — C_k Ck_c_k k=1 Cy — C_k

(i)  For a multiplicative score function, from (3.7) and (3.8),

(ZWk(ln(Ck In(Cj,k)_In(a)+In(ci,k)))_ ZWk(ln(C.k) In(C;)))-

dij = In(L0) % In (10)
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Both (i) and (ii) imply ¢;, >c;, ,forall k. Thatis A > A,.

We then deduce following theorem:

Theorem 5.1 Given Ajand Ajwhere S;(w) > S;(w). Let Pjand Pj be the mapping points of

Aiand Aj on a DB(w, 1), I = {i, j}. If and only if dominance exists between A; and A; (i.e.

A > A; or A; = A), then Piand Pjare on the same longitude of the ball connecting P., P
and P;.

Notation 5.2 DS(iy, i, ..., Ip) is denoted as a dominant set composed of p alternatives with
dominant relationships A, > A > A .

p

Proposition 5.4 Consider a dominant'set DS(1,:2, ..., k), let DB(w, I), I = {1, 2, ..., k} be

the corresponding Decision Ball for.the alternatives Az, Ao, ..., A, where A > A, > ...> A,.

Connecting points P., P1, Py, ...5.Pk"forms-a-longitude on the surface of this Decision Ball.

That implies ax; +cz; =0 fori=1,2, ..., k, where a and c are constants.

<Proof> Similar to Propositions 5.2 and 5.3.

Notation 5.3 Given an alternative set A = (A1, A2, ..., Ay) and a weighted vector w, a

corresponding Decision Ball of A and w is denoted as

DB(w, I) = {(xi, vi, z)| iel={L2,...,n}}, where (x;, yi, z) are obtained by solving

following models.

Model 5.1 (Even Swap -- Decision Ball model with an additive score function)

Min z= ii(du ~d,;)?

i=L j>i
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s.t. Xz; =Xz, VA>A; , Vi, ], (5.1)

(3.11) ~ (3.15).

A

The objective of Model 5.1 is to minimize the sum of difference between di; and d; ;.
(5.1) is from Proposition 5.4.

Model 5.2 (Even Swap --Decision Ball model with a multiplicative score function)

Min z= ii(du ~d,;)?

i=L j>i

_2In(s,) _ In(s,)

= In(10) In(lO)) -V 62

s.t.
(5.1), and (3.12) ~ (3.15),

where (5.2) is from Proposition 3.3.
Notation 5.4 Let A be the alternative converted from A; by the DM through making Even
Swaps, Aj and A are called concurrent-alternatives..P; and P, which are mapping points of
Aiand A, are called concurrent points.
Remark 5.1 Given two alternatives A;and A;, suppose the DM can stably make Even Swaps,
then P; can be converted into another concurrent point P, such that P., P;and P, are on the
same longitude.

We can use Figure 5.1 to interpret Remark 5.1. HereS; > S; but Ajdoes not dominate
Aj. Via Even Swap processes, we can convert Ajto A; where A > A;. From Theorem 5.1, P;

therefore can be moved to a concurrent point Pj' where P., P; and Pj' are on the same

longitude.
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Figure 5.1 Moving trajectory of concurrent points
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Notation 5.5 A;is said consistently even swapped into A if <e&,where ¢ isa

i
tolerable error. Normally we may set' ¢ <0,05.

Theorem 5.2 Given A; with its concurrent alternative A , and P; with its concurrent point

P, A is consistently even swapped into A if .and only if P; and P are on the same

latitude.

<Proof>

(i) If A;is consistently even swapped into A, then S, =S, it implies y, =y, (referred to
Proposition 3.2 or 3.3). Therefore, Piand P, are on the same latitude.

(i) If P; and P are on the same latitude, then y, =y, which implies S, =S,. A
therefore is consistently even swapped from A; .
Theorem 5.2 is useful in checking the consistency of Even Swap processes made by the

DM. Take Figure 5.1 for instance, A; is consistently even swapped into AJ however, AJ §
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not even swapped from A; consistently. The more inconsistent swap the DM has made, the

bigger differences in score before and after even swap. That is, the difference between

coordinate yjand y; is bigger.

Both Theorem 5.1 and Theorem 5.2 are utilized in this study to develop a mechanism to
visualize the Even Swap processes via Decision Balls. By examining the moving trajectories
of related points on a Decision Ball, the DM can rank the alternatives more confidently.

The solving processes are summarized as follows:

Step 1 (Initialization) The system asks the DM to input a consequence table, to select
criteria with cost feature, to quantify the non-numerical criteria, to choose a type of score
function, and to specify the initial-weights w(J) for-J = 0. A dominant set is initialized as
DS(J) = ¢, forJ=0.

Step 2 (Computing scores) Based on w(J), the system computes Si(w) and d j(w).

Step 3 (Displaying a Decision Ball) A Decision Ball DB(w, 1) is displayed to the DM after
solving Model 5.1 or 5.2. The alternative Aj ¢ DS(J) with the highest score is chosen as the
next swap alternative by the system. The process stops if all alternatives are in DS(J) or the
DM ceases to make further even swaps.

Step 4 (Making Even Swaps) The DM makes even swaps between A; and alternatives in
DS(J). A is changed to a concurrent alternative A .

Step 5 (Weight adjustment) For each even swap, the system computes the related weights
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by solving following linear programs:

Model 5.3 (Weight adjustment model with an additive score function)

Min «

s.t. ‘Wp(Ci'p -C.,)+ W, (c _Ci',q)‘ <a, foranevenswap (cp, Cg)inAi, (5.3)

> w =1, (5.4)
k=1
w, >0, Vk, (5.5)

where cix and c;, are the value of criterion k of A; before and after the even swap
respectively. The weights of unadjusted criteria are kept the same as previous step. J = J+1.

The weight adjustment model with a multiplicative score function can be formulated as
follows:

Model 5.4 (Weight adjustment model-with a multiplicative score function)

Min  «
st |w,(In(c; ) - In(c; ;) + W, (In(e, ) - In(e, )| < (5.6)
for an even swap (¢, cq) in A,
(5.4) ~ (5.5).

Step 6 (Updating the dominant set) A; is added into DS(J). Reiterate Step 2 to Step 6.

5.3 An lllustrative Example — An Office-Renting Problem

<Example 5.1> An office-renting problem
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This example is slightly modified from Harvard Business Review (Hammond et al.,
1998), which describes a business problem for determining where to rent an office. The DM
has five major decision criteria to fulfill (Table 5.1): (c;) a short commute time from home to
office, (c) good access to his clients, (c3) good office services, (c4) sufficient space, and (Cs)
low costs. The commuting time is the average time in minutes needed to travel to work
during rush hour. The percentage of his clients within an hour’s drive of the office is used to
measure the access to clients. A simple three-letter scale is used to describe the office
services provided: “A” indicates full service; “B” means partial service; and “C” implies no
service available. Office size is measured insquare feet, and cost is measured by monthly
rent. Five alternative locations from A; through As are under considerations.

The 1% iteration: At Step 1 of.the first iteration, the DM inputs his consequences table,
maximal and minimal values of each criterion (Table 5.1), where c;, cs are criteria with cost
feature (The DM would like it as small as possible). The DM chooses a multiplicative score

function. The system asks the DM to answer some questions. Suppose the dialogue is as

Table 5.1 The consequence table of Example 1 (A, > A.)

Criteria Alternative | 5, A2 | As | A+ | As | Max | Min
Commute

Cy1 (Mins) 45 25 20 25 30 60 0
Customer

2 | Access (%) 50 | 80 | 70| 8 | 75 [ 100 | O

Cs Offlc_e A B c A c A -
Services
Office Size

Cq (Square Feet) 800 | 700 | 500 | 950 | 700 [ 1200 | 500
Monthly

Cs Cost ($) 1850 | 1700 | 1500 ] 1900 | 1750 | 2000 | 1500
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follows:

<Q1> Consider criterion c3, how do you quantify the values of service level A, B and C?
<Al> 4,2, 1

<Q2> Input the initial weights for c;, ¢y, €3, C4 and cs. <A2> 0.2,0.2,0.2, 0.2, 0.2.
At Step 2, based on the initial weights, the similarities among alternatives and scores of
alternatives are calculated. At Step 3, a Decision Ball (Figure 5.2(a)) is displayed to the DM.
The figure illustrates that because A, > As (Table 5.1), A, and Asare on the same longitude.
At Step 4, the DM are suggested to make even swaps between A, and A, first because A, and
A, yield the highest score. Suppose the-dialogue is as follows.
<Q3> Consider Figure 5.2(a), now:A; needs-to be moved to a new point A, which has the
same longitude of A,. Please choose a target criterion of A, from {c,, cs, C4, Cs}, and
adjust its value. <A3> cs and 1900.

<Q4> Consider A,, to compensate the increase of cs from 1700 to 1900, choose one
criterion from {c,, cs, ¢4 } and specify the value being adjusted. <A4> ¢4 and 850
(A2 is changed to a concurrent point A,,and A, = A,).

The weights of criteria are adjusted as (wi , Wo, Wz , Wg, Ws ) =(0.2, 0.2, 0.2, 0.263, 0.137).
The criteria values and scores of alternatives after even swap are listed in Figure 5.2(b).

The 2" iteration: A Decision Ball is shown in Figure 5.3(a). A1, which has the higher score

than As and Ags, is then chosen as the next swap alternative. At Step 4, the system asks the DM
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following sample questions.

<Q5>

<Q6>

<Q7>

<Q8>

Consider Figure 5.3(a), here A; needs to be moved to A which has the same
longitude of A, and A,.  Firstly, c3 of A; is adjusted to B. To compensate the increase
of c3 from A to B, choose one criterion from {c, ¢, C4, Cs} and specify the value you
want to adjust. <A5> cpand 75.

Do you want to adjust another criterion pair of A; ?  <A6>  Yes.

Consider A;, choose a target criterion from {ci, c,, C4, Cs}, and specify the equated
value. <A7> cs, and 1900.

Consider A;, to compensate’ the increase of cs from 1850 to 1900, choose one
criterion from {c;, c,, Ca}yand specify value being adjusted. <A8> ¢4 and 850.

(A1 is changed to a concurrentpoint=A;, and.” A, - A, = A)).

The weights of criteria become w = (0.2, 0.291, 0.109, 0.277, 0.123).

The 3"iteration: A Decision Ball (Figure 5.4(a)) is displayed to the DM, where As is then

chosen as a swap alternative. Suppose the DM equates an increase in ¢z from C to B with a

200 increase in cs, and equates an increase in ¢; from 30 to 45 with a 100 increase in c4. The

consequences table after even swaps is listed in Fig. 5.4(b). The weights become w = (0.176,

0.291, 0.101, 0.301, 0.131).

The 4" iteration: Figure 5.5(a) is displayed to the DM. A; is chosen as a swap alternative.

Suppose the consequences table after even swaps is listed in Figure 5.5(b). The final weights
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on criteria become w = (0.178, 0.291, 0.099, 0.232, 0.2). Since all alternatives are on the same
longitude, the process is terminated. The final Decision Ball and consequences table are
depicted in Figure 5.6(a) and (b). The ranks for these alternatives are A = A, = A; = As > Az .

The moving trajectories of concurrent points Az and A4 for the whole processes are

shown in Figure 5.7, where 3' stands for concurrent point of Az after the i iteration. The
most inconsistent even swaps the DM has made are at Iteration 2 and 5 because 3% and 3°
are furthest away from the latitude formed by all3'. The DM can therefore examine the
moving trajectories of Az and A4 to discover and update these inconsistencies. The system
may also warn the DM about these-inconsisténcies, thus to help the DM to update his

preferences at the Iteration 2 and:5.
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Iternative

Criteria Weight| As | A2 | A2
Commute
Cy (Mins) 0.2 25 25 25
Customer
) C2 Access (%) 0.2 85 80 80
i Office
o | €3 |services 0.2 A B B
/ A | e, |Qffice Size 0.263 | 950 | 7003850
A (Square Feet)
e -4 f ¢, [Monthly 0137 | 1900 )
= // 5 |Cost ($) : 17001900
,.--’ Score 6.71 | 542 15.23
(a) (b)

Figure 5.2 The decision ball and even swaps after Iteration 1. The shaded area

is the swap inputted

by the DM

Criteria lternative Weight Az, Al A1’
Commute
Ciy (Mins) 0.200 | 25 | 45 | 45
Customer L
2 Access (%) 0.291 | 80 | 50°F 75
Cs Offlc_e 0.109 | B A 3» B
Services
Office Size
Cy4 (Square Feet) 0.277 | 850 | 800-$850
Monthly
5| cost ($) 0.123 | 1900 | 18504»1900
Score 5.63[5.11] 4.86
(@) (b)
Figure 5.3 The decision ball and even swaps after Iteration 2
Criteria Iternative Weight] Al’ As Aé
Commute
.
C1 (Mins) 0.176 | 45 | 30745
Customer
©2 | Access (%) 0291 f 75 | 75 | 75
C3 Ofﬁge 0101 B | C 7B
H Services
Office Size ‘
Cy (Square Feet) 0.301 | 850 | 700 P800
Monthly
®s | Cost (9) 0.131 [1900{1756$1950
Score 491]4.48( 4.49
(a) (b)

Figure 5.4 The decision ball and even swaps after Iteration 3
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()

Figure 5.5 The decision ball and even swaps after Iteration 4

(@)

Criteria—2ternative |\veight As | As | As
Commute
c . . 1
1 (Mins) 0.178 | 45 | 20 1>45
Customer
C» Access (%) 0291 75 | 70 | 70
¢, |Office 0009 | B | c-B
Services
Office Size
Cy (Square Feet) 0.232 | 800 | 500-f»/50
Monthly
Cs Cost ($) 0.200 | 1950] 150041950
Score 42113.40] 4.00
(b)
Criteria—2Mternative \yeiond Ay | A2 | A | Ad | A
Commute
Cy (Mins) 0178 45 | 25| 45 | 25 | 45
Customer
C5 Access (%) 0201 7518 | 70 | 85| 75
Office
€3 lservices 0091 BB BJAIB
Office Size
Cq (Square Feet) 0.2321 850 850 | 750 | 950 | 800
Monthly:
Sa1lCost (9) 0.200 | 1900{ 1900| 1950 | 1900 1950
Score 4.68(5.35[4.00]6.24] 4.21
(b)

Figure 5.6 The final decision ball and consequences table

Figure 5.7 The moving trajectories of A; and A, after even swaps
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5.4 Summary
Even Swap method is a straightforward process, which provides a useful way for making

trades among criteria thus to assist the DM find out the best alternatives. However, only the

best alternative can be found. The ranks of rest of alternatives are not known. In addition,
there may exist large inconsistencies among even swaps that the DM could not know.

This study develops Even Swap Decision Ball models to visualize the Even Swap
process via a Decision Ball. By mapping the alternatives into the points on the surface of this
Decision Ball, the Even Swap processes are illustrated as the moving trajectories among
related points. The DM can examine these trajectories to obtain intelligences below:

(i) To know the dissimilarities among alternatives. The longer the distance, the larger the
dissimilarity.

(i) To know the superiority (or dominance) relationship between alternatives by checking
the longitude of alternatives. The alternatives, which are on the same longitude, exist
dominance relationship.

(iii) To know the inconsistencies in decision processes by checking the latitude of alternatives.
The even swap, which causes the alternative the furthest away from the latitude, is the
most inconsistent one.

The proposed Decision Ball models can display alternatives on the same longitude and
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latitude of a sphere to indicate special relationships among alternatives, which are difficult to

be plotted and examined by traditional 2-dimensional or 3-dimensional models.
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Chapter 6 Model 3 : Pairwise Comparison Decision Ball Models

Ranking multiple alternatives with inconsistent preferences is one of the most important
issues in decision science. This study proposes Pairwise Comparison Decision Ball models for
Type 111 decision pattern to help the decision makers improve inconsistent preferences and
rank alternatives. The decision makers are assumed to be capable of making pairwise
comparisons between alternatives using score ratios.

After a decision maker specifies pairwise comparisons between alternatives, an
Adjusting model will suggest optionsfor adjusting, the inconsistent judgments. These options
are then illustrated on Gower PIots to aid in detecting the causes of any ordinal inconsistency.
Following that, Decision Ball technigues are used.'to display the spatial distances among
alternatives based on their dissimilarities.

By cycling through the above three steps iteratively, a decision maker can rank decision
alternatives more confidently. Proposed approach can aid the decision maker detect and
improve inconsistencies conveniently. In addition, incomplete preference matrix can also be
treated.

The structure of this chapter is organized as follows. Section 6.1 briefly introduces the
concept of pairwise comparisons. Section 6.2 forms Pairwise Comparison Decision Ball

models. Section 6.3 uses two examples to demonstrate the decision processes. Summary of
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this chapter is made in Section 6.4.

6.1 Introduction to Pairwise Comparisons

The Analytic Hierarchy Process (Saaty, 1977) is a popular method for establishing
priorities in multicriteria decision problems by evaluating the strength of individual
preferences through the pairwise comparison of alternatives at each level of the hierarchy.

Let A={A |i=1..,n} be a set of n alternatives for solving a decision problem.

W.
Denote rijas r,; =—xg

ij?
W;

where e;; is a multiplicative term accounting for inconsistencies.

The ratio —- measures the relative,dominancé:of A; over A; in terms of underlying priority

Wi

weights wy > 0, ..., w,> 0, takén to sum up-to one by convention. Following Saaty, it is
convenient to let R = (rij), i, j € flw.,n}, bean” nxn preference matrix. It is assumed that
rij =

Several methods have been proposed (e.g., Saaty, 1977; Jesen, 1984; Genest and Rivest,
1994) to rank alternatives in AHP. The ranks they yield do not vary much when the decision
makers’ preferences are consistent. However, if a preference matrix is ordinally inconsistent
or highly cardinally inconsistent, different ranking methods may produce wildly different
priorities and rankings. Hence, how to help the decision makers detect and improve these
inconsistencies becomes an important issue in pairwise comparison models.

Consider a set of decision alternatives A = {A, A,, ..., Ay} for solving a problem, where
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each Ajcontains m criteria Ci1, ..., Cim. Denote S; as the score function of an alternative A;. S;
can be either an additive function or a multiplicative function of cjx. Denote C = (cix) as the
criterion matrix of the decision problem. Assume a decision maker can tell which score
function to choose, and can specify the ratio of the score of one alternative to another
alternative in a pairwise fashion.

Denote R = (ri;) as a decision maker’s preference matrix where r;; is the ratio of S; to S;,
rij = 1/rj;. If the decision maker is unclear about the ratio of S; to S, ri; is remained blank
(denoted as r,; =¢). R is ordinally inconsistent (intransitive) if for some i, j, ke {1,2,3, ...,
n} there exists rij; > 1, rjx > 1, but Kk <1.”"Ris cardinally inconsistent if for some i, j, ke
{1, 2,3, ..., n} there exists r,, #Fhyxr;, (Genestand Zhang, 1996). R is incomplete if there
existsany r,;=¢.

The problem in this study is as follows:

“Given a data set C = (Cix) and a preference matrix R = (ri;), how should one rank the
decision alternatives A, A, ..., Ay?”

If R is complete and ordinally consistent, all A;j can be ranked immediately; otherwise, R
should be adjusted. This study develops three models to assist the decision maker adjust R =
(rij) and rank A1, Ay, ..., An, as follows: (Figure 6.1)

(i) The first model is an Adjusting model used to convert R = (ri;) into some new complete

matrix R = (ri',j) . It also provides some options as to how to adjust ri:j .
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Figure 6.1 Solution procedure of Pairwise Comparison Decision Ball models
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(i) The second model is a Gower Plot model originally developed by Gower (1977) and
Genest and Zhang (1996). Following an option provided by the first model (i.e.,R), a
Gower Plot model could graphically detect the decision alternative(s) which violates
ordinal consistency.

(iii) The third model is a Decision Ball model. The Decision Ball not only shows the ranks of
alternatives but displays the spatial distances associated with the dissimilarities between
alternatives following the revised preference matrix R'.

Through the iterative operations of (1), (i) and (iii) the decision maker can finally rank

alternatives more confidently.

6.2 Construction of Pairwise Comparison Decision Ball Models

This section develops a systematical approach for ranking and displaying alternatives.
The approach includes three models: the Adjusting model, the Gower Plot model, and the
Decision Ball model.

Givena C = (cix) and a R = (rij), where R may be incomplete or inconsistent, a model of
adjusting R with addition score functions is formulated below:

Model 6.1 (Adjusting model — Additive score functions )

Min MxZ,+7Z,
{w }
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7, = iiuu

i=l j>i
ZEDWICH
i=l j>i
s.t. (%—1)><(riyj -)+Mxu;;>¢, foralli,jwherer,; #¢ andr; =1, (6.1)
J
—‘Si —Sj‘+ M xu;; >0, forallijwherer,; =1, (6.2)
?— <o, Vi (6.3)
]
mo ¢, —C
S (W)= w ==, (6.4)
k=1 Ck =C¢.
> w, =1, (6.5)
k=1
Wy W, <w,, VK, (6.6)
u;; {0}, Mis a large value, & isatolerable error. (6.7)

The variables in Model 6.1 are (Wy; W5, ."., Wm). The first objective (Z;) of Model 6.1 is

to achieve ordinal consistency by minimizing the number of preferences (i.e., r,;) being

revised. The elements of matrix U, u; j , are binary variables, i.e. ujj =1 if ri; is reversed,
and otherwise ujj = 0. Constraint (6.1) means: when r,; #¢ and r,; =1, ui; = 0, if (i)

(%>1) and (r; ; >1) (ii) (%<1) and (r; ; <1) ; and otherwise uj; = 1. A tolerable positive

] J

number & is used to avoid g—' =1. Constraint (6.2) means: when ri; = 1, uj;= 0 if §;= S;;
j

and otherwise uj; = 1. The second objective (Z) is to achieve cardinal consistency by

minimizing the «;; values, i.e. to minimize the difference between S—' and r; ;. Since
j

ordinal consistency (Z1) is more important than cardinal consistency (Z5), Z is multiplied by
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a large value M in the objective function. Constraints (6.4) and (6.5) come from Notation 3.1.

Constraint (6.6) sets the upper and lower bound of weights.

Model 6.1 is a nonlinear model, which can be converted into the following linear mixed

0-1 program:

Min MxZ,+7Z,

{w}
n n
Zi= U

i=L j>i

Z>= iiau

i=L j>i

st (§-S))x(r; -)+Mxu;; >¢, foralli, jwherer;; # ¢ andr; =1, (6.8)

L] =

-Mxu;; <S; -S; <M xu;;, forallijwherer,; =1, (6.9)

ij =

S;xn;—a;; <S; < S; XN ytay;, Vi, (6.10)

(6.4) ~ (6.7).

Where (6.8), (6.9) and (6.10) are converted from (6.1), (6.2) and (6.3) respectively.

mo C,—C
After the weight vector, (wi, Wp, ..., Wy), is found, Si(w)=2wk 12X can be

k=1 Cy Cy

calculated and a complete matrix can be obtained as

R =(r;), (6.11)

T . .
where ri'j:S_l if r,, =¢ oruj;=1;otherwise, r,; =r;.

]

The Adjusting model with multiplicative score functions is formulated as follows.

Model 6.2 (Adjusting Model —Multiplicative score functions )

Min MxZ,+7Z,
{w }

69



7, = iiuu

i=L j>i

Z>= iiau

i=L j>i

s.t. In(%)xln(ri,j)+ M xu;, > ¢, foralli, jwherer;; # ¢ andr; =1, (6.12)

i,j =
]

Si
In—
S;

+Mxu;; 20, foralli,jwherer,; =1, (6.13)

L=

<a ., Vi j, (6.14)

ij

In(te, )~ Inr, )

]

and (6.5)~(6.7).
Constraints (6.12), (6.13), and (6.14) correspond to constraints (6.1), (6.2) and (6.3)

respectively. Model 6.2 can be linearized as follows.

Min MxZ,+7Z,
{w }

7, = iiuu

i=L j>i

Z;= iiau

i=L j>i

st. O wIn(c,, )= D wIn(c; ))xIn(r, )+ M xu;; > &,
P} o

foralli, jwherer,; #¢ andr,; #1, (6.15)
~Mxu,; <> w Inc,) - wIn(c;, ) <M xu,;, Vr,; =1, Vi, j, (6.16)
a o
> wIn(c, ) =D wIn(c;, ) —In(r; ) +e | < e, Vi, ], (6.17)
k=1 k=1

(6.5)~(6.7),
where e ; =exp(e; ;).

After a complete matrix R’ is obtained, the ordinal Gower Plots can be used to aid in
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detecting the causes of any ordinal inconsistency. The concept of Gower Plots refers to
Section 2.2. The Gower Plot model with a multiplicative score function is the same as that
with an additive score function.

At last, Decision Ball techniques, as proposed in Section 3.3, with additive or
multiplicative score functions are adopted to display ranks and similarities among
alternatives.

The solution processes are shown in Figure 6.1 and illustrated below:

Step 1 The decision maker specifies a data matrix C = (cix), chooses a type of score
function, and inputs a preference matrix R = (ri;); where R can be an incomplete matrix.
Step 2 Applying Model 6.1 (if an-additive-score function is selected) or Model 6.2 (if a
multiplicative score function is ‘thosen) to the data and preference matrix yields a set of
weights w, and a revised preference matrix R =(r;;), where R’ isa complete matrix.
Step 3 Applying Gower Plot model toR", the ordinal Gower Plots before and after
adjustment are displayed based on R'.

Step 4 Based on the weights w obtained in Step 2, the score of alternatives S;(w) and
dissimilarities o, ;(w) among alternatives are calculated.

Step 5 Applying Decision Ball techniques (Model 3.1 if an additive score function is chosen;

or Model 3.2 if a multiplicative score function is chosen) to Si(w) and &; ;(w) vyields the

coordinates (x;, Vi, z) of alternatives on the Decision Ball. The Decision Ball is then
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displayed to the decision maker.

Step 6 The decision maker can observe the ranks and similarities among alternatives on the
ball. Other options can be obtained through Step 3 to Step 5 by setting some u;; = 0. The
decision maker can also adjust preferences in R (Step 1) or R™ (Step 2) directly based on
the information provided by Gower Plots and Decision Balls, and observe the corresponding

changes.

6.3 Illustrative Examples

Two examples are used to illustrate the Decision Maker’s problem solving processes.
For simplicity, only additive score functions aré-illustrated here.
<Example 6.1> Investment in Mutual'Funds

The first example is about an investor who would like to invest in mutual funds. The
investor has four major decision criteria to fulfill: (c;) a high total return, (c,) large fund size
(economies of scale), (c3) low risk (3 : Beta), and (c4) low turnover. Six alternatives (Aq, ...,
Ag) are under considerations as listed in the C; in Figure 6.2, where c3 and c,4 are cost criteria.
Suppose the investor chooses to use an additive score function and specifies an incomplete
preference matrix Ry = (rij), where ryg, o3, and rzg are left blank because it is difficult for the
investor to make comparisons between these alternatives. The data set, preference matrix, and

the solving process are depicted in Figure 6.2. (Here R; can be checked as ordinally
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inconsistent since r, <1 and r,, <1 andbut r,>1.)

Applying Model 6.1 to C; and R; yields the solution as Z, =1, Z, = 3.64, uy4 = 1, (Wy,
W, W3, W,) = (0.38, 0.19, 0.05, 0.38), and (S1, Sz, Ss, Sa, Ss, Se) = (0.56, 0.65, 0.41, 0.82, 0.58,
0.35). The values of unspecified preferences can be computed as rig = g_; =159, r3 = 2—;
=158, and r36 = g—z =1.17. The system’s results suggest reversing ry 4 from 2 to 0.68 (3—1)
to minimize both ordinal and cardinal inconsistencies. This is regarded as Option 1 of
adjusting the preferences. The ordinal Gower Plots, with r; 4 >1 and r; 4 <1, are also depicted
in Figure 6.2. Examining the Gower Plots before reversal (i.e., when r,, >1), the preference
matrix is ordinally inconsistent because A; and Aj: lie off the half circle, which implies A; and
A, are the alternative causing major-ordinal inconsistencies. By following the suggestion of
revising ry4 as ri4 <1, the Gower*Plot will'show the preference matrix is ordinally consistent
and the alternatives will be ranked as As>- A= As> Ar= Az Aes.

Applying a Decision Ball technique (Model 3.1) based on the results of Model 6.1 (Si(w)
and ¢, ;(w)) yield a set of coordinates for Ay, ..., As, with Stress = 6.9%. The corresponding
Decision Ball is shown on the left bottom of Figure 6.2. Examining the Decision Ball, the
investor can observe that (i) if he reverses ry4 from larger than 1 to smaller than 1, the ranks
of alternatives is Ay Az>= As>= A= Asz>= Agfrom top to down along a latitudinal line (ii)

A4, A and As have higher similarities because they are close to each other. For diversifying

the investment, the investor may avoid investing A4, A2 and As simultaneously.
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If the investor does not like to reverse ry4, another option can be generated by setting
uz4 =0 in Model 6.1. Applying Model 6.1 (with a new constraint u; 4 = 0) again yields Option
2where Z1=2,7,=357,u1,=1, U;5 =1, (Wg, Wy, W3, Wg) = (0.63, 0.10, 0.05, 0.22), (S1, Sy,
S3, S4, Ss, Sg) = (0.73, 0.70, 0.26, 0.72, 0.53, 0.40). The corresponding Gower Plots and
Decision Ball (with Stress 5.9%) are shown on the right bottom of Figure 6.2.

If the investor does not like Option 1 and Option 2, he may modify R; (or R;) directly
(Option 3) based on the information provided on the Gower Plot about the alternative(s)
causing major inconsistencies, or based on the information provided on the Decision Ball

about the scores and similarities among alternatives.
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Figure 6.2 Decision Process of Example 6.1
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<Example 2> Selection of universities

Consider a student who needs to enroll in a university. He would like to choose from a

list of eight candidate universities. The student sets four criteria for choosing a university: (c;)

rich campus life estimated by size, (c;) high average salary after graduation, (c3) high entrance

score, and (c4) low tuition. Low tuition, c4, is considered to be a cost criterion. An additive

score function is used to rank the alternatives. The data set C, and an incomplete preference

matrix R, are listed as in Figure 6.3.

After applying Model 6.1 to thé example,three possible ordinally consistent solutions

are found. Those are, u;7 = 1 (Option 1), uz7= ¥ (Option 2), and u;3 = 1 (Option 3). The

corresponding Gower Plots and Decision Balls. (with Stress 7.2%, 6.7%, and 4.5%

respectively) are depicted in Figure 6.3.

Option 1lyields Z1=1, Z,=3.51, uy7 = 1, (W, Wo, W3z, Wy) = (0.31, 0.59, 0.05, 0.05), (S;,

Sz, Sz, Sa, Ss, S, S7, Sg) = (0.62, 0.37, 0.52, 0.12, 0.20, 0.34, 0.45, 0.75). Examining Gower

Plot (a) where ri7 < 1 to know it is ordinally inconsistent because there are some angles

between consecutive points not equal to 180/n degrees. Alternatives A;, As, and A; are the

ordinally inconsistent alternatives. Reversing ri7 as ri; >1 (means A; better than A7)

generates an ordianlly consistent situation with Ag>= A; =As =A7 =A; =As =As =A4. The

related Decision Ball (b) illustrates that considering Ag, A1, and As, Ag= Az > As. However, Az
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is more similar to Ag. Therefore, if the student is not accepted by As, Az may be a better choice
than A;.

Suppose the student chooses to reverse r3; as r37 <1 (means A; better than A3z) (Option
2), the related Decision Ball (d) illustrates the ranks of alternatives are Ag>~ A7>= A;>= Asz>
Ay~ As = As- Ay A and A; are very close. Thus, if university Ag is impossible to

candidate for enrollment then A; as well as A; could be a good choice.
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Figure 6.3 Decision Process of Example 6.2
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6.4 Summary

This study develops Pairwise Comparison Decision Ball models to help a decision
maker improve the quality of decision-making by iteratively reducing ordinal and cardinal
inconsistencies. Gower Plots are adopted to detect the alternatives causing ordinal
inconsistencies. An optimization model is then developed to provide suggestions for adjusting
these inconsistencies conveniently.

Decision Ball techniques are used to provide a useful visual representation of ranks and
similarities among alternatives, whickiare more flexible and easier to observe than traditional
2-dimensional plane and 3-dimensional cube‘models. respectively. In addition, suggestions
about how to improve inconsistencies-are also shewn on the Decision Ball. The decision
maker can observe the suggested solutions and choose the most acceptable change to reduce
inconsistencies and to rank alternatives more confidently.

The proposed approach assists a decision maker make a more reliable decision by
improving inconsistencies. The improvements in inconsistency can be measured by the
consistency ratio (CR)(Saaty, 1980), which is briefly illustrated as follows. Given a matrix R
of rank n, the consistency index (CI) is first calculated to measure the deviation from a
consistent matrix:

Cl= (1, —n)/(n-1),

max
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where A, isthe maximal eigenvalue of R. Then, the consistency ratio (CR) is computed as the

ratio of the CI to the so-called random index (RI) which is a CI of randomly generated

matrices:

CR = CI/RI.

The CR = 0 indicates perfect consistency. The CR before and after adjustments for

Example 6.1 and 6.2 are listed in Table 6.1. The CR in both examples can be improved

significantly. For instance, in Option 1 of Example 6.1, the CR can be significantly improved

from 0.087 to 0.047. In Option 1 of Example 6.2, the CR can be improved from 0.064 to

0.049.

Table 6.1 Improvements in inconsistency measured by consistency ratio (CR)

Examples Options CR before CR after
Adjustment Adjustment
Example 6.1 Option 1 0.087 0.047
Investment in Mutual Funds | Option 2 0.078 0.053
Example 6.2 Option 1 0.064 0.049
Selection of Universities Option 2 0.070 0.053
Option 3 0.060 0.055
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Chapter 7 Model 4 : Classification Decision Ball Models

This chapter presents Model 4 — Classification Decision Ball models for Type IV
decision pattern. The major decision problem solved here is to classify alternatives. That is,
the decision makers are interested in the grouping relationships of alternatives more than
individual rank of alternatives. In this decision pattern, no personal preferences are taken into
account.

Sueyoshi (1999) first proposed a DEA-DA analysis incorporating the non-parametric
feature of DEA (Data Envelopment Analysis) into the DA (Discriminant Analysis). However,
previous DEA-DA methods cannotrdisplay the relationships among alternatives. This study
develops Classification Decision :Ball" models to visualize the grouping results and
relationships among alternatives.

The structure of this chapter is organized as follows. Section 7.1 briefly introduces the
DEA-DA analysis. Section 7.2 constructs Classification Decision Ball models. Section 7.3
uses two examples to demonstrate the classification processes. Summary of this chapter is

made in Section 7.4.

7.1 Introduction to DEA-DA Analysis

Discriminant Analysis (DA) is a statistical technique for predicting group membership.
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The GP (Goal Programming)-based DA, first proposed by Freed and Glover (1981), can

estimate weights of criteria by minimizing sum of deviations (MSD, Freed and Glover, 1986)

or minimizing misclassified alternatives (MMO, Banks and Abad, 1991). Those weights yield

an evaluation score, which is compared with a threshold value for classifying alternatives.

The Data Envelopment Analysis (DEA) first proposed by Charnes et al. (1978) is a

popular technique for evaluating efficiency of Decision Making Units (DMUs). Sueyoshi

(1999) first proposed a DEA-DA analysis incorporating the non-parametric feature of DEA

into the DA. He proposed a two-stage DEA-DA analysis: first identifies the existence of an

overlap between two groups, and then determines the group membership of an alternative.

Sueyoshi (2001) extended DEA=DAranalysis; known-as extended DEA-DA analysis, which

can deal with the negative value in data."Both approaches estimate weights by minimizing the

sum of deviation of misclassified alternatives. However, the classification performance is not

good enough by both methods.

In order to improve hit rates, Sueyoshi (2004a) developed a mixed integer programming

(MIP) approach, referred as two-stage MIP approach, which estimates weights by minimizing

the total number of misclassified alternatives. Sueyoshi (2004b) and Sueyoshi and Hwang

(2004) dropped the first stage of the two-stage MIP approach, called standard MIP approach,

to simplify the estimation process of the two-stage MIP approach. Both MIP approaches can

efficiently improve hit rates.
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This section briefly illustrates the formulations of standard and two-stage MIP
approaches. Let A = (A1, A, ..., Ay) be a set of n alternatives for solving a classification
problem, where each alternative contains m independent factors. An alternative A; is expressed
as Ai(Ci1, ..., Cim). Each alternative belongs to one of two groups (G; and G;), and the
group membership is required to be known before computation. Denote t; as a binary variable,
which is used to indicate whether A; is correctly classified or not. If A;is correctly classified,
thent; = 0; otherwise, tj = 1. The standard MIP approach is formulated as follows:

Standard MIP approach (Sueyoshi, 2004b; Sueyoshi and Hwang, 2004)

Min >t +>'t, (7.1)

ieG, ieG,

st. Ywe, —d+Mt; 20, YieG,, (7.2)
k=1
> we, —d-Mt; <-¢, YieG,, (7.3)
k=1
2w =1, (7.4)
k=1

Wy, d: unrestricted, t; = 0/1.
M and & are given large and small numbers. The objective is to minimize the total number of
incorrect classifications. d is the discriminant score and ZWkCi,k represents the discriminant

k=1

function. wy is the weight of factor k, which is unrestricted in sign. Because |w,| is a
nonlinear term, the whole model can be reformulated as following linear one (Sueyoshi,

2004b)
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Min >t +>t, (7.5)

ieG, ieG,

st > (W —w ), —d+Mt; >0, VieG,, (7.6)
k=1
Z(W; W )C, —d-Mt; <-¢, VieG,, (7.7)
k=1
D (wy +w) =1, (7.8)
k=1
S zwi 25 and & 2w 26, k=1..,m, (7.9)
O +0, <1, k=1..,m, (7.10)
> (6F +6,)=m, (7.11)
k=1

d: unrestricted, t; = 0/1,5,” =0/1, 5, =0/1, and all other variables >0.
Each weight wy is separated as (w; =W ), Where,w; = (w,|+w,)/2 and w, =(w,|-w,)/2.
Based on Glen (1999), two binary variables o7 and ‘6, are incorporated into (7.9) ~ (7.11).
Denote d”and w, as the optimal solutions obtained from optimality of above model. A new
alternative sample A, can be classified by following rule: if Zm:w;cryk >d", then A e G, ; if

k=1

Zm:w,’:cryk <d —¢, then A, €G, . The visual structure of the standard MIP approach is
k=1
depicted in Figure 7.1.

In order to increase the number of correct classifications, Sueyoshi (2004a) proposed a
two-stage MIP approach: the first stage is to identify and minimize the overlap distance; the
second stage is to minimize the number of incorrect classifications. The two-stage MIP

approach is formulated as follows.
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Two-stage MIP approach (Sueyoshi, 2004a)

Stage 1 : Classification and overlap identification

Min  p (7.12)
s.t. Zm:(wk+ -w. )¢, —d+p=0, VieG,, (7.13)
k=1
Zm:(wk*—wk‘)ciyk—d—pgo, VieG,, (7.14)
k=1
(7.8) ~ (7.112),

d, p: unrestricted, 5,7 =0/1,5; =0/1, and all other variables >0.
Let Clz{ieGl|Zm:WECiyk >d +p’}, sz{ier|Zm:w;ci‘k<d*—p*},
k=1 k=1
D,=G,-C, and D, =G, -C, .+ p >0 ‘indicates the existence of an overlap (D; U Dy);
otherwise, p” <0 indicates no overlap. A new-sample A, is classified by the following rule:
if Arce Cq,then A € Gy; if Are CsithemA eGy; otherwise, A, belongs to an overlap. To
handle overlap, the second stage is expressed as follows.

Stage 2 : Handling overlap

Min >t +>t, (7.15)

ieD; ieD,

st > (W —w)c, —g+Mt; >0, VieD,, (7.16)
k=1
> (W —w)e, —g-Mt; <-¢, VieD,, (7.17)
k=1
D (8¢ +68,)=h, (7.18)
k=1
(7.8) ~ (7.10),

0/1, &7 = 0/1, and all other variables >0. h is a

where g: unrestricted, t; = 0/1,5;"
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Figure 7.1 The visual structure of  Figure 7.2 The visual structure of
the standard MIP approach the two-stage MIP approach

prescribed positive number with h<m.

The alternatives in the overlap are classified at the second stage as follows: if
Zwk 29", thenA €G, ; if Zwk « <9 —¢, then A € G, . The visual structure of
the standard MIP approach is depicted in Figure 7.2.

Although the two-stage MIP: approach-has better classification performance than standard
MIP approach, the former produces two sets-of-weights (at Stage 1 and 2 respectively), which
are difficult to make comparisons among‘all alternatives. Besides, both approaches may result
in multiple solutions. For instance, there may exist several sets of weight in the standard MIP
approach to achieve the same optimal objective value in (7.5). Moreover, both approaches
include too many binary variables.

Based on the Two-stage MIP approach, this study proposes Classification Decision Ball
models to group alternatives by a multi-stage MIP approach. Decision Ball techniques are
used to display alternatives on the surface of a ball, on which the decision maker can observe
grouping relationships among alternatives layer by layer. In addition, the number of binary

variables can also be reduced significantly.
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7.2 Construction of Classification Decision Ball Models

The conceptual diagram of Classification Decision Ball models is shown in Figure 7.3.

Alternatives are displayed on the surface of the Decision Ball. The alternatives with higher

scores are located closer to the North Pole. The distance between two alternatives indicates

the similarity between them: the higher the similarity, the shorter the distance.

The proposed Classification Decision Ball models, based on the concepts of the

Two-stage MIP approach (Sueyoshi, 2004a), are a multi-stage MIP approach, which can be

represented as multi-layer Decision Balls. As shown in Figure 7.3(a), the proposed approach

first finds an overlap region on arfirst-layer“Decision Ball, and then extends this overlap

region to a second-layer Decision’Ball as depicted-in Figure 7.3(b). The cutting plane, which

indicates a discriminant score in the overlap of the first layer Decision Ball (Figure 7.3(a)), is

rotated into a horizontal plane in the second-layer (Figure 7.3 (b)).
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The proposed multi-stage MIP approach includes two models, which are formulated as

follows:

Model 7.1 (Standard Classification Model )

Min Z= Yt +>t, (7.19)
ieG, ieG,

st. > we, +Mt >g, VieG,, (7.20)
k=1
> we, —-Mt <g-¢ VieG,, (7.21)
k=1
D (w, +2e,) =1, (7.22)
k=1
w, +e, 20, Vk, (7.23)
M(u, -1 <w, <Mu, —¢,Vky (7.24)
-w, <g <-w, +Mu,,Vk, (7.25)
e, <M@l1-u,), vk, (7.26)

g: unrestricted,u, , t; =0/1, and all other variables >0.

(a) (b)

Figure 7.3 The conceptual diagram of the multi-layer Classification
Decision Ball models (a) The first layer (b) The second layer
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The objective of Model 7.1 is to minimize the total number of incorrect classifications. g

is the discriminant score and Zm:wkci,k represents the discriminant function. Model 7.1 is
ket

improved from the Standard MIP approach (Sueyoshi, 2004b) by reducing the number of

binary variables used for |w,|. Based on the study of Li (1996), we can let |w,|=w, +2e,.

From expressions (7.22) ~ (7.26), if wx < 0, then a binary variable ux = 0 and ex = -wy, thus

W, | =w, +2e, =-w, ; otherwise, if w, >0, then u. = 1 and e = 0, thus

W, | =w, +2e, =w,. The total number of binary variables used for |w,| is just half of that

in Sueyoshi (2004b).

Model 7.2 (Overlap Identification Model")

Min p (7.27)
st. > we, >d, VieG,, (7.28)
k=1
> we, <d+p, VieG,, (7.29)
k=1

(7.22) ~ (7.26)

d, p: unrestricted.

Model 7.2 is improved from the Stage 1 of Two-stage MIP approach (Sueyoshi, 2004a)
by reducing the number of binary variables used for |wk|. The objective of this model is to

minimize the overlap region between two groups. Let C, ={ie G, |> w,c;, >d +p’},
k=1
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C,={ieG, |Zm:w;ciyk <d}, D,=G,-C, and D,=G,-C,. p >0 indicates the
k=1
existence of an overlap (D; U D,); otherwise, p” <0 indicates no overlap.

The multi-stage classifying processes are shown in Figure 7.4. At the first stage, the
decision maker inputs the data set and specifies the minimal hit rate, denoted as h. Model 7.1
is applied to the data set first. If the hit rate is greater thanh, then the corresponding Decision
Ball is displayed to the decision maker, and the processes are terminated. Otherwise, Model
7.2 is applied to the data set to find the overlap area. The corresponding Decision Ball with an
overlap area is depicted. Based on the alternatives in the overlap areas, applying Model 7.1

again to find the new discriminate score and hit rate. Model 7.1 and 7.2 are applied iteratively

A DM inputs dﬁta set (Giand Gy)
and specifies 1.
Set initial Stage i =1

Applying Model 7.1

i T

No

. Display i"" layer
Applying Model 7.2 Decision Ball
v based on Model 7.1
Display i"" layer Decision v
Ball based on Model 7.2.
D1:{G1-Cl}& D2:{G2'C2}

v
Set Stage i = i+1
Glz Dl& GQZ Dz

Figure 7.4 The multi-stage classifying processes of the proposed
Classification Decision Ball models
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until the hit rate is greater then h. The Decision Ball for the i" stage is called the i layer
Decision Ball.

The Decision Ball techniques used here are slightly different from those in Chapter 3
because the weight of criteria could be negative. Only additive score functions are discussed
in this chapter. For simplicity, all factors are normalized to [0,1] scale in advance. Before
applying Decision Ball Model 3.1, the score and dissimilarity function should be modified as
follows.

Then, the additive score function of A; is redefined as

Si(w) = Z|Wk|ci,k +Z|Wk|(1‘ci,k) ) (7.30)
k=1 k=1
w, >0 w <0

where 0<S, <1. S; here is called the transferred score.
The dissimilarity between A; and‘Ajis redefined as
k=1

where 0<6,;(w) <1 and &, ;(w)=0;;(w).

7.3 Hlustrative Examples

Two examples are used to illustrate the processes of the proposed Classification Decision
Ball models.
<Example 7.1> A corporate bankruptcy example

This section takes corporate bankruptcy in US electric power industry (Sueyoshi, 2006)
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as an example to illustrate the proposed approach. As listed in Table 7.1, Alternatives 1~61 are
61 non-default firms (G;) and alternatives 62~83 are 22 default firms (G;). The performance
of all the firms is measured by 13 financial ratios. Suppose the decision maker sets the
minimal hitrate as h =99%.

First, the data set in Table 7.1 is normalized to [0,1] scale. Then, let & = 0.0001 and M
= 1000, applying Model 7.1 to the normalized data set yields Z =0and g~ =0.406. Z =0
implies that there are no alternative misclassified (i.e. hit rate = 100%). The weights of 13
factors are w = {ws, Wy, W3, Wy, Ws, Wg, W7, Wg, Wg, W1g, W11, W12, Wiz} = {0.077, -0.112, 0.069,
0.047, -0.040, 0, 0.441, 0, 0, -0.029,.01014, 0.146,:0.024}, where the weights of 6™, 8" and 9™

factors are equal to 0.
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Table 7.1 Financial performance of 83 firms in US electric power industry.
1~61 are non-default firms and 62~83 are default firms. (Sueyoshi, 2006)

Obs. | 1 2 3 7 5 3 7 g g 10 11 2 3
T 003 |_-001 025 | 053 | 015 0.01 0.08 843 7 .77 16.35 0.88 16.35
2 0 016 | 093 | 09 | 05 0.0 0.1 16.57 167 0.32 0.08 374 36.22
3 007 | 006 047 | 028 | 035 004 | 013 104 %6 011 15.00 7 %52
4 002 | 002 | 044 | 039 | 031 003 | 0.3 9.66 5 0.0 12.65 73 30.36
5 001 | 007 | 043 | 027 | 034 | 005 0.17 9.2 73 0.02 12.52 346 73
3 001 | 012 43 | 021 | o017 002|007 2.1 167 011 19.26 311 1353
7 004 | 005 243 | 029 | 05 0 0.03 T4 0.6 038 0 T21 13.26
8 0.1 0.13 343 0 042 | 012 | 011 | DD T.06 0.61 347 76 04
9 002 | 022 | 443 | 025 | 0al 0.05 0.15 17.18 .79 0. 812 345 33.84
10 | 007 | oo 543 | 033 | 014 | 003 006 | 21.09 177 0.73 733 211 16.79
T | oo | om 643 | 031 04 0 0.13 049 02 0.26 T7.04 0.08 6.7
12 | 01 | o 743 | 018 | 046 | 004 | 0.4 1024 146 0.14 1711 311 1347
13 | 001 | 000 | 843 | 029 | 024 | 004 | o0al 15.04 183 0.19 12.57 PR 343
| ool | 001 943 | 035 | 029 | 004 | 0.9 231 703 0.08 1547 156 2197
5 | 001 | 005 | 1043 | 04 | 011 | 003 | 006 | 1751 61 042 70,68 .53 2403
16 | 001 | 021 | 1143 | 022 | oal 004 | 003 29.87 72 0.15 537 727 2449
7 | 002 | 005 | 057 | 032 | 03 004|041 12.49 T35 003 2.6 301 70.36
8 | 001 | 012 | 028 | 09 | 029 | o001 0.11 7.4 T07 0.1 0.76 0.52 26,55
19 | 001 | 006 | 031 | 03 | 03 002 | 003 6.5 708 0.1 19.33 207 50.1
20 0 0.01 028 | 051 0.2 0.05 021 762 31 0.12 17,15 T3] 24,08
21 0 0.0 04 057 | 016 | 005 | 024 | 3027 78 0.22 16,75 .75 1893
22 | 002 | 002 | 041 | 039 | 024 | 002 0.1 717 T51 .16 2453 2.5 7191
2 | 001 | 002 T25 | 025 | 027 | 004 | 03 156 247 ~0.06 2,65 2,58 39.26
2 | 011 | 006 | 041 034 | 009 | 003 004 | 7341 749 0.7 134 737 5.1
25 | 002 | 002 047 | 036 | 027 004 | 0.6 12,63 165 0.26 1107 3 75
2 | 001 | 008 0.3 05 |03 0.01 0.05 358 159 0.14 2707 0.59 21
21 | 006 | 005 052 | 034 | 03 0.03 0.1 10,53 127 0.25 1275 61 T899
2 | 001 | 002 | 037 | 028 | 03 0.03 0.4 043 T15 002 115 318 30,11
2 | 002 | 002 | 043 | 037 | 024 | 004 | 003 T7.01 TO8 0,06 3.6 742 7788
30 | 001 | 006 | 021 | 031 | 02l 002 | 004 885 Tod ~0.06 1249 .85 3208
31 0 012 | 049 | 028 | 036 | 004 | 018 208 166 001 3.06 763 564
32 | 002 | 001 086 | 023 | 0340 | L0030 | 5002 10.72 105 031 1332 193 1865
33| 005 | 045 02 0.13 | .01 0.01 0.02 1.5 155 0.0 1291 310 70,28
34| o0 0 035 | 024 |03 004 | 025 12.26 T13 0,09 83 333 29.56
35 | 004 | 006 T38| 02600 024 |00 | 003 10,04 116 0.13 g 165 1602
36 | 001 | 012 | 054 | 033 ] 02 001 0,05 6.1 137 0.17 7281 103 73,06
37 | 001 | 001 067 | 022.] 022 | 000 007 12.56 T1 045 0.00 07 17.63
3 | 002 | 012 762 | 032 | 022 | 002 | 004 2 45 011 3,72 703 21.05
3 | 005 | 006 | 023 | 061 | 047 | 002 ] 005 .86 12 0.13 107 136 155
40 | 001 | o0 0.6 026 | 025 0 0,06 0.19 788 0.13 136.83 ~0.05 1435
4T | 016 | 0.4 0.64 02|, 0437 —0:03——=0:03 | 2502 139 000 108 3 19.04
) 0 005 | 057 | 0337|0801 " 004|013 .1 42 007 10.62 386 7185
3 | 001 | 001 0.3 033 7} 034 | 005 0.14 481 05 039 6.55 383 2795
% 0 002 | 078 | 037 |2084-] 004 | 04 896 3 003 723 151 22,57
45 | 008 | 004 046 | 044 | 0150 | 00T | 008 0.1 7.0 0.35 ) T16 3185
%6 0 0 041 | 046 | 09 | 003 0.1 .02 159 003 472 2.65 7503
47 | 001 | 012 | 033 | 041 | 016 | 003 0.07 844 213 001 137 367 .10
48 | 002 | 003 | 06l 038 | 027 | 002 | 001 831 138 0.1 10.54 131 21,59
% | 001 | 011 51 | 0.9 | 022 | 003 0.1 3.0 17 0.16 13.46 317 26,52
50 | 001 0 061 | 038 | 03 | 0035 | 007 o1 167 007 16.35 2 376
51 | 003 0 044 | 034 | 03 007 | 016 | 2457 137 0.0 797 515 2783
53 | 001 | 004 | 056 | 041 | 021 0.01 0 176 0,89 0.22 376.25 0.3 1505
53 | 001 | 005 | 034 | 028 | 027 004 | 015 1202 221 035 16.36 162 2535
54 | 002 | 017 | 039 | 027 | 032 | 005 0.19 154 9 0.02 T1.66 2.26 26,24
55 | 003 | 008 | 066 | 038 | 019 | 002 | 004 1057 155 019 T3.71 312 7715
56 | 013 | 009 02 037 | 03 003 | 004 043 0.95 TA1 11.60 057 75
57 | 005 | 002 | 058 | 027 | 027 0.03 0.12 1187 147 0.18 12.89 701 513
58 | 008 | 004 | 053 | 029 | 016 | 002 | 009 | 1433 43 03 0.83 83 T8.10
59 | 001 | 001 047 | 039 | 025 0.03 0.5 10.14 127 001 13.10 78 72.56
6 | 002 | 003 093 | 025 | 027 0.03 0.13 10.84 60 003 T2.08 PRE 36.55
61 | 002 | 007 | 052 | 042 | 022 | 003 0.09 2.6 154 001 12.06 7.8 2774
62 | 003 | 01 096 | 072 | 027 | 028 | 028 | 9147 0.22 T13 046 193 0.4
6 | 003 | 01 019 | 001 0.2 001 | 03 | 636 0.01 0.2 0.08 0.3 004
64 | 002 | 005 | 060 | 017 | 033 | 04l | 11 | -12538 | 077 0.60 231 107 T35
6 | 012 | 005 0.53 T4 | 057 | 01 | 226 | 2007 .18 092 30.83 154 093
66 | 002 | 028 | 043 | 086 | 022 | 048 | 067 | 22016 790 0.29 067 1021 7
67 | 003 | 008 | 034 0.5 0 007 | 006 | -3720 001 0.52 7 765 752
68 | 012 | 0.5 049 TOL | 005 | 041 | 032 | 23702 0.3 071 57 967 069
6 | 006 | 002 045 | 039 | 033 0.01 0.02 747 037 0.60 503 047 358
70 | 002 | 045 289 | 013 | 018 | 001 0.05 866 6.1 0.58 6157 22 83,13
i 0 008 | 782 | 022 | 003 | 001 | 055 | 2262 505 0.0 2062 0.5 T5.05
72 0 0.05 04 099 | 005 | 047 | 066 | 3137 033 0.6 035 12.65 763
73 | 003 | 017 | 07 018 | 026 | 013 | 011 | 4887 0.61 1.9 1.55 23 3.56
74 | 004 | 014 048 | 072 | 053 | 002 | -1L02 2.9 0,16 133 0.1 0.15 0.31
75 | 019 | 032 119 0 063 | -121 | -176 | -19351 0.12 2.15 019 638 0.74
76 | 002 | 02 T49 | 006 | 049 | 021 | 059 | -42.86 03 0.60 097 036 031
77 | 006 | 041 074 | 015 | 007 | 016 | 009 | 314.4 78 069 51 9.9 18.25
78 | 004 | 007 | 055 | 093 | 02 | 029 | -068 | 14204 | -201 0.25 -1.05 174 0.36
79 | 003 | -L1 0.13 0 021 | 012 | 074 | .08 001 0.69 0,02 “1.08 0.02
80 | 001 | 001 041 05 001 | 003 | 011 | 11142 | 035 051 093 5.6 36
81 | 002 | -047 108 | 035 | 001 | 006 | 009 | 16668 | -12.31 172 1.36 301 3.10
82 | 001 | 045 | 043 [ 023 | 008 | 022 | 033 | 244 0.85 0.1 -1.05 -1.95 0.8
83 | ool | 071 0.14 0 0.15 0.01 0.1 991 0.23 0.72 483 0.24 0.58
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Figure 7.5 The Decision Ball of 10 target alternatives

Next, we will depict alternatives on the surface of the Decision Ball. In order to reduce
the complexity of visual presentation (it «is easy- to get confused and costs lots of
computational time if too many alternatives are display simultaneously), the decision maker
can choose some alternatives as target alternatives to be a basis for comparison. Suppose the
decision maker selects 5 alternatives (16, 21, 34, 43 and 54) from non-default firms and 5
alternatives (64, 66, 74, 78 and 81) from default firms as target alternatives. From (7.30) and
(7.31), the transferred scores and dissimilarities of target alternatives can be calculated.

Applying Model 3.1 to the target alternatives yields coordinates of these alternative with
Stress = 8.99%, as graphed in Figure 7.5. The area above the dash curves belongs to G; and
below the dash curves belongs to G,. The alternative with higher final score is located at the

higher latitude. In Figure 7.5, the order of 10 target alternatives is 16, 34, 54, 43, 21, 81, 78,
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Figure 7.6 The Decision Ball of alternative 62 based on the target
alternatives

66, 74 and 64 respectively. Moreover; althoughralternatives 81, 78, 66, 74 and 64 belongs to
the same group G, alternative 81 has higher possibility to become G; because its location is
very closer to G;. The processes are terminated-because the hit rate is greater than minimal hit
rate h.

After plotting 10 target alternatives as a basis of comparison, we can classify and
compare any alternative by checking the Decision Ball. For example, if a decision maker
would like to check alternative 62, the system computes the dissimilarities among alternative
62 and 10 selected target alternatives and applies Model 3.1 to the alternative yields the
location of alternative 62, as shown in Figure 7.6. By checking Figure 7.6, alternative 62
belongs to G, which is the most similar to alternative 81. If alternative 62 would like to

upgrade itself to G1, the benchmark alternatives are suggested as 21, 54 and 16. Alternative 43
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and 34 are skipped as a benchmark because 54 and 16 have similar similarities but higher

Scores.

<Example 7.2>  Classifying Japanese banks

The second example is related to 100 Japanese banks, extracted from Sueyoshi (2001).

All banks are listed by their corporate ranks. The first group G; contains 50 banks whose

ranks are from the 1 to 50. The second group G, contains the remaining 50 banks whose ranks

are from 51 to 100. Seven financial performance data are chosen as evaluation criteria,

including return on total assets, equity-to total assets, cost-profit rate, return on total domestic

assets, bad loan ratio, loss ratio of bad loan, and return, on equity. Suppose the decision maker

sets the minimal hit rate = 99 %.
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Table 7.2 Financial performance of 100 Japanese Banks.

G, contains

ranks 1~50 banks and G, contains ranks 51~100 banks. (Sueyoshi, 2001)

1 2 3 4 5 6 7
Return on . . Return on .
Equity to |Cost-Profit . | Bad loan| Loss ratio | Return on
total total domestic . .
total assets rate ratio |of bad loan| equity
assets assets
1 0.67 9.28 43.28 0.36 2.08 46.99 18.68
2 1 4.78 61.98 0.94 0.31 155.2 27.26
3 0.65 9.1 50.07 0.52 2.41 48.35 20.9
4 1.67 4.21 51.69 0.88 2.97 80.1 51.24
5 0.91 10.64 59.72 0.72 1.08 78.64 21.44
6 0.62 8.75 51.9 0.35 2.49 46.18 19.83
7 0.71 8.75 53.75 0.52 3.64 51.52 24.87
8 1.06 6.58 59.31 0.93 1.37 47.59 19.56
9 1.02 10.15 58.59 0.81 1.34 65.4 25.79
10 0.87 9.16 61.21 0.84 1.55 77.93 21.45
11 1.13 6.23 58.33 0.95 3.48 37.44 23.78
12 0.82 11.28 61 0.69 1.52 45,85 17.1
13 0.64 9.22 53.15 0.19 4.64 55.55 19.93
14 0.88 11.14 61.84 0.63 1.7 52.2 14.19
15 0.77 9.54 58.62 0.63 0.61 49.62 15.15
16 0.95 9.45 58.77 0.84 3.48 19.53 14.96
17 0.73 9.24 59.93 0.59 1.26 61.95 15.56
18 0.8 10.04 62.9 0:6 2.18 65.03 19.41
19 0.83 9.6 57.83 0.63 2.66 47.66 19.46
20 0.53 8.92 64.13 0.38 3.88 50.26 18.16
21 1.05 6.38 66.56 0,98 3.7 48.67 20.39
22 0.91 10.17 60.03 0.75 2.13 36.63 19.94
23 1.05 8.44 57.93 0.67 2.48 48.67 30.51
24 0.8 9.86 67,12 0.68 1.33 69.61 19.04
25 1.05 4.53 59.6 0.79 3.09 50.72 29.15
26 0.9 9.77 61.37 0.71 2.26 62.25 110
27 0.95 441 63.71 0.84 2.8 56.11 35
28 0.69 9.64 70.12 0.49 0.64 85.12 12.77
29 0.78 11.83 67.01 0.49 0.36 58.41 19.4
30 0.56 13.61 66.89 0.34 0.81 51.89 9.43
31 0.79 9.35 68.02 0.66 0.79 59.32 18.46
32 0.73 9.18 66.07 0.58 1.15 66.93 18.82
33 0.86 9.09 61.1 0.6 1.95 47.28 16.97
34 1 11.33 64.34 0.46 1.19 46.54 18.44
35 0.96 5.06 63.42 0.88 4.66 37.96 26.09
36 0.76 9.19 59.35 0.48 1.8 22.89 15.28
37 1.72 441 52.91 0.59 6.94 40.62 49.3
38 1.09 9.03 63.24 0.63 4.19 42.17 26.44
39 0.66 9.06 68.22 0.73 15 37.58 16.17
40 1.57 4.28 52.91 0.65 6.87 33.21 45,93
41 0.68 10.19 68.76 0.52 0.97 57.65 15.21
42 0.53 8.7 63.42 0.35 2.9 62.7 18.48
43 0.66 9.63 68.17 0.49 1.1 57.2 17.4
44 0.93 4.35 65.66 0.81 1.76 39.3 28.58
45 1.18 8.69 52.83 0.54 6.8 43.16 35
46 0.7 4.72 71.29 0.9 2.39 49.78 18.33
47 0.71 9.35 69.69 0.64 1.84 38.16 16.5
48 0.65 9.11 65.96 0.56 1.42 44,16 16.72
49 0.71 10.54 66.37 0.47 1.43 43.62 14.23
50 0.72 9.47 69.35 0.48 0.86 56.36 15.34
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Table 7.2 (Continued)

1 2 3 4 5 6 !
Return on . . Return on .
Equity to | Cost-Profit . | Bad loan| Loss ratio | Return on
total total domestic . .
total assets rate ratio |of bad loan| equity
assets assets

51 0.71 9.31 66.43 0.51 1.66 52.79 16.04
52 0.69 8.42 67.94 0.55 0.38 45.38 18.42
53 0.55 9.44 70.29 0.43 1.24 74.95 12.59
54 0.51 9.09 61.15 0.24 4.7 68.15 20.74
55 0.6 10.69 66.77 0.41 2.42 40.55 12.41
56 1.1 3.75 62 0.5 2.21 49.9 39.62
57 0.72 4.2 66.99 0.73 1.53 45.88 23
58 0.64 9.63 67.67 0.47 2.82 50.61 18.09
59 0.62 9.26 68.59 0.49 1.51 45.25 16.72
60 0.58 9.82 71.67 0.42 0.89 64.84 14.43
61 0.83 4.96 65.84 0.74 3.65 39.98 23.54
62 0.66 10.85 71.15 0.34 1.19 62.33 13.44
63 0.88 4.28 68.67 0.78 3.93 46.31 26.11
64 0.99 4.37 64.49 0.87 5.48 21.93 26.11
65 0.72 4.54 12.42 0.59 1.54 71.95 21.39
66 0.87 4.25 66.45 0.59 2.18 56.39 28.51
67 0.96 4.02 64.27 0.75 3.59 80.51 44.48
68 0.67 6.06 70.75 0.39 1.42 69.34 13.82
69 0.68 8.76 70.38 0.49 1.34 49.27 16.19
70 0.85 4.24 66.33 0.64 3.03 48.97 28.41
71 0.6 9.2 71.87 0.44 1.09 59.29 16.26
72 0.52 9.08 69.43 0.34 1.52 62.74 14.09
73 0.65 9.22 67.79 0.4 1.47 67.74 16.7
74 0.76 8.13 67.71 0.47 1.71 47.88 19.42
75 0.57 9.63 70.41 0.39 2.72 52.91 12.36
76 0.56 9.43 14.88 0.39 0.54 59.3 15.04
77 0.59 10.55 71.99 0:35 0.89 35.83 11.86
78 0.75 8.42 64.59 0.48 3.1 50.94 20.39
79 0.6 9.02 66.75 1.13 4.65 34.23 18.6
80 0.8 4.16 69.81 0.69 2.62 33.13 26.04
81 0.65 8.29 71.15 0.52 2.23 52.1 16.41
82 0.64 411 72.33 0.49 0.86 57.3 20.6
83 0.49 9.05 74.25 0.43 1.61 51.57 10.16
84 1.12 424 64.41 0.42 2.71 31.45 32.12
85 0.64 9.03 71.71 0.34 1.3 57.4 16.89
86 0.45 10.43 79.26 0.4 1.28 65.05 10.72
87 0.63 9.7 71.05 0.21 0.68 46.2 13.57
88 0.6 8.4 65.9 0.4 3.09 33.48 20.68
89 0.87 477 64.63 0.44 3.16 35.94 25.03
90 0.6 4.83 74.85 0.38 0.27 51.76 15.28
91 0.6 411 73.99 0.37 1.12 80.03 17.97
92 0.73 3.46 71.56 0.48 2.18 67.48 24.89
93 0.72 6.88 76.31 0.26 0.56 48.12 14.29
94 0.75 4.47 72.36 0.42 2.46 63.08 20.8
95 0.83 4.13 60.99 0.37 2.63 32.01 28.67
96 0.88 4.13 59.07 0.45 5.88 29 2.49
97 0.82 4.65 65.99 0.47 3.26 28.62 23.28
98 1.01 4,53 63.39 0.3 4.46 43.69 29.04
99 0.4 9.1 74.18 0.33 3.83 54.38 13.98
100 0.54 4.4/ 16.35 0.49 0.96 46.99 14.63
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Figure 7.7 The first layer Decision Ball of Example 7.2, where 33
alternativesiin. the overlap

At the first stage, applying Model 7.2 yields a/hit rate 96%. Because the hit rate is less
than 99%, applying Model 7.2 yields a set of weights w = {w1, W,, W3, W4, W5, Ws, W7} =
{-0.03, 0.037, -0.398, 0.127, -0.130, 0.145, -0.134}, d" = -0.245,and p ~ = 0.038. There
are 33 alternatives located in the overlap. The first layer Decision Ball is shown in Figure 7.7.
At the second stage, applying Model 7.1 to the alternatives in the overlap in Figure 7.7 yields
a hit rate 98%. Since the hit rate is still less than 99%, Model 7.2 is applied again to yield a set
of weights w = {wy, W,, Wz, Ws, Ws, Wg, W7} = {-0.018, 0.019, 0.346, -0.077, 0.118, -0.130,
0.292}, d” =0.237,and p~ = 0.026. The second layer Decision Ball is depicted in Figure

7.8, where 25 alternatives are located in the overlap region.
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Figure 7.8 The second layer Decision Ball of Example 7.2, where 25
alternativesin.the overlap.

At the third stage, applying-Model 7.1 to the remaining 25 alternatives yields a hit rate
100%, with W = {w1, Wy, Wa, Wa, We; We, W7} = {0,069, -0.031, -0.274, 0.063, -0.075, 0.047,
-0.442} and g = -0.232. The third layer Decision Ball is graphed in Figure 7.9. The

classifying processes are terminated since the hit rate is greater than 99%.
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Figure 7.9 The third layer Decision Ball of Example 7.2

7.4 Summary

This study proposes Classification Decision Ball models, which can assist the decision

makers visualize the grouping relationships among alternatives.

The major advantages of the Classification Decision Ball models are summarized as

follows:

(i) Classifying alternatives on Decision Balls layer-by-layer.

(if) Visualizing the relationships among alternatives, including ranks of, grouping of and

similarities among alternatives on Decision Balls.

(iii) Providing benchmark alternatives if an alternative would like to upgrade its performance

from one group to another.
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(iv) Reducing the number of binary variables significantly.
(v) Comparing with traditional 2-dimensional plane and 3-dimensional cube models, the
proposed approach is more flexible and easier to observe because all alternatives are

displayed on the surface of a sphere.
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Chapter 8 Concluding Remarks

This study proposes four Decision Ball models to display alternatives on spheres, thus to
make a more knowledgeable decision. Four types of Decision Ball models, including Moral
Algebra Decision Ball models, Even Swap Decision Ball models, Pairwise Comparison
Decision Ball models, and Classification Decision Ball models, are constructed to meet
decision makers with different decision preferences.

Some future directions for further research are described below.

(i) Construction of more Decision: Ball models: Different decision makers may have
various types of decision preferences and requiréments. More Decision Ball models can
be constructed for the decision makers with other types of decision patterns. For instance,
Decision Ball models for the Data Envelopment Analysis (DEA, Charnes et al., 1978),
decision preferences involving fuzzy concepts, and decision preferences including
psychological factors, etc.

(i) Global optimization of Decision Ball techniques: As shown in Section 3.3, the proposed
Decision Ball techniques are still non-linear. Hence, how to linearize the Decision Ball
techniques is an important direction for further research. In addition, because the
computational time of the proposed models will increase significantly when the number

of alternatives grows, a distributed computing algorithm could be developed to improve
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the computational efficiency.

(iii) Investigation of decision preferences: deeper study of decision behavior to provide a

customized and visualized decision environment is another important direction for future

research.
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Appendix

A letter from Benjamin Franklin to Joseph Priestly

London, Sept 19, 1772

Dear Sir,

In the affair of so much importance to you, wherein you ask my advice, | cannot, for want of
sufficient premises, advise you what to determine, but if you please I will tell you how. When
those difficult cases occur, they are difficult, chiefly because while we have them under
consideration, all the reasons pro and con are not'present to the mind at the same time; but
sometimes one set present themselves, and at other times another, the first being out of sight.
Hence the various purposes or inclinations that alternatively prevail, and the uncertainty that
perplexes us. To get over this, my way is to divide half a sheet of paper by a line into two
columns; writing over the one Pro, and over the other Con. Then, during three or four days
consideration, I put down under the different heads short hints of the different motives, that at
different times occur to me, for or against the measure. When | have thus got them all together
in one view, | endeavor to estimate their respective weights; and where | find two, one on
each side, that seem equal, | strike them both out. If I find a reason pro equal to some two
reasons con, | strike out the three. If | judge some two reasons con, equal to three reasons pro,

| strike out the five; and thus proceeding | find at length where the balance lies; and if, after a
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day or two of further consideration, nothing new that is of importance occurs on either side, |
come to a determination accordingly. And, though the weight of the reasons cannot be taken
with the precision of algebraic quantities, yet when each is thus considered, separately and
comparatively, and the whole lies before me, I think I can judge better, and am less liable to
make a rash step, and in fact | have found great advantage from this kind of equation, and

what might be called moral or prudential algebra.

Wishing sincerely that you may determine for the best, | am ever, my dear friend, yours most

affectionately.

B. Franklin

From: “Letter to Joseph Priestly”; Benjamin-Franklin Sampler, (1956).
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