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Polarization properties in the transition from below to above lasing threshold
in broad-area vertical-cavity surface-emitting lasers
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For highly divergent emission of broad-area vertical-cavity surface-emitting lasers, a rotation of the polarization
direction by up to 90◦ occurs when the pump rate approaches the lasing threshold. Well below threshold the
polarization is parallel to the direction of the transverse wave vector and is determined by the transmissive
properties of the Bragg reflectors that form the cavity mirrors. In contrast, near-threshold and above-threshold
emission is more affected by the reflective properties of the reflectors and is predominantly perpendicular to the
direction of transverse wave vectors. Two qualitatively different types of polarization transition are demonstrated:
an abrupt transition, where the light polarization vanishes at the point of the transition, and a smooth transition,
where it is significantly nonzero during the transition.
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I. INTRODUCTION

In the past decades vertical-cavity surface-emitting lasers
(VCSELs) have played an increasing role in scientific research
and applications [1]. One of the features of VCSEL design is
the possibility of obtaining large two-dimensional apertures
that are quite homogeneous and have a small polarization
anisotropy.

The polarization behavior in such lasers resulting from
the competition of stimulated and spontaneous emission has
been the subject of many investigations [2–6]. It is known
that the polarization properties of small- and medium-aperture
VCSELs above [7–12] and below [4,5] threshold are deter-
mined mainly by the intracavity anisotropies. Well below
threshold the polarization degree is reduced dramatically, in
VCSELs [4] as well as in edge-emitting semiconductor lasers
[13] (which possess much higher intracavity anisotropies).
However, below threshold the polarization coincides with the
at-threshold one.

As aperture size increases, off-axis emission becomes
important. Because the cavity resonance is different for
different transverse modes, the off-axis emission with the
best alignment between the cavity resonance and the gain
maximum of the active medium have the largest gain [14,15].
Recently it was shown [16–18] that for strongly off-axis
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emission the intracavity anisotropies play only an auxiliary
role in polarization selection above threshold. In contrast, the
polarization-selective properties of reflection and transmission
of the distributed Bragg reflectors (DBRs) forming the cavity
mirrors are much more important. Above threshold, the
DBR transverse electric (TE) modes (which are in paraxial
approximation perpendicular to the transverse component of
the wave vector, i.e., s waves) have higher reflectivity, and
the cavity quality factor for the TE modes is larger than
that for the tansverse magnetic (TM) modes. This determines
the polarization of the above-threshold emission, which has
an overall tendency to be perpendicular to the transverse
wave vector (“90◦ rule”) [17]. It also induces a coupling
between polarization and spatial degrees of freedom [18].
A corresponding phenomenon for the eigenmodes of stable
dome-shaped microcavities with exact circular symmetry was
described in [19,20], leading to a modification and lifting of
degeneracies of standard Laguerre-Gaussion modes.

In contrast, in the marginally stable, square plano-planar
cavities we are going to discuss, the eigenmodes are better
described as a superposition of a few Fourier modes
(tilted plane waves). In such geometry, the above-threshold
polarization is also strongly affected by the transverse cavity
boundaries, that is, the waveguide formed by the oxide
confinement [18]. This can lead to strong deviations of the
above-threshold polarization state from the 90◦ rule for
transverse wave vectors with directions not parallel to either
of the device boundaries [18].

The data in [18] (for lasers with a square aperture) and
[21] (for lasers with a circular aperture) indicate also that
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the polarization direction for off-axis light is different below
and above threshold but there is no detailed investigation. In
this work, we characterize the polarization properties of off-
axis below-threshold emission and show that the polarization
direction is governed mainly by the transmissive properties of
the top DBR. The transmissivity is larger for the TM Bragg
modes (parallel to the transverse wave vector, p waves) than for
the s waves, resulting in a “0◦ rule” for polarization selection;
that is, the polarization is parallel to the transverse wave vector.

We consider, both theoretically and experimentally, the
transition from the below-threshold to the above-threshold
polarization state for highly divergent VCSEL emission. The
nature of the transition depends critically on the orientation
of the polarization of the final (lasing) state. When the final
polarization obeys the 90◦ rule and is perpendicular to the
polarization state well below threshold, the transition is very
abrupt and the light is unpolarized at the point of transition.
On the other hand, when the polarization of the final state is
not orthogonal to the initial one, the transition is considerably
smoother, and the emission retains a relatively large degree of
polarization during the transition. Our theory predicts also that
far below threshold the main principal axes of the intracavity
and extra-cavity field are perpendicular to each other due to
the strong anisotropic filtering of the light coupled out via the
DBRs.

In the next section we describe the experimental setup.
In Sec. III the experimental results are reported. In Sec. IV
a theoretical model for the description of the transition is
developed and analyzed and the results compared to the
experimental observations. Concluding remarks are in Sec. V.

II. EXPERIMENTAL SETUP AND METHODS

The VCSELs under study are oxide-confined top emitters
with a square aperture of 40 × 40 µm2 that are packaged
in transverse optical (TO)-type housings without caps. The
emission wavelength is around 780 nm. The lasers consist of
two highly reflective DBRs (top mirror, 31 layers; bottom mir-
ror, 47 layers) with three 8-nm-thick Al0.11Ga0.89As quantum
wells in between. Together with several Al0.36Ga0.64As spacer
layers and the GaAs substrate, the whole structure is about
10 µm long. In order to reduce the electrical resistance of the
lasers the interfaces between different semiconductor layers
are graded. A laterally oxidized layer above the active region
provides current and optical confinement.

The devices are electrically pumped with a low-noise DC
current source between 0 and 30 mA. The typical lasing
threshold at 0◦C heat sink temperature is 15 mA. The VCSEL
is mounted on a copper plate that is attached to a thermoelectric
cooling element, enabling temperature control between 40◦C
and −35◦C. We remark that the actual device temperature
is strongly influenced by the driving current due to Joule
heating effects. Temperature values given here are for the heat
sink only. The device temperature can be inferred indirectly
from optical spectra and changes with current by a factor
of about 0.9 K/mA. The device temperature changes the
detuning between the cavity resonance and the maximum gain
frequency, since these shift with distinctly different rates with
temperature (typical values are 0.28 nm/K for the gain peak
and 0.075 nm/K for the resonance, e.g., [22]). As considered
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FIG. 1. (Color online) Experimental setup. The VCSEL is set
into an air-tight box to avoid condensation water. Polarization optics:
half-wave plate and linear polarizer.

in detail in [23], this mechanism controls the length scales of
the transverse patterns emitted by the VCSEL.

Figure 1 shows the setup used for the experiments. The
laser beam is collimated by a microscope objective with a
numerical aperture of 0.8. VCSEL, cooling elements, and the
objective are put into an air-tight box to avoid condensation of
water at low temperatures. The far field of the laser emission
is imaged onto a high-resolution 14-bit camera with a large
charge-coupled device (CCD) chip. A half-wave plate and a
linear polarizer are inserted into the beam path. The orientation
of the polarizer defines the reference coordinate system by
which the state of polarization is represented. Horizontal
polarization is defined as 0◦and angles are measured in the
counterclockwise direction. The polarization is measured by
taking far-field images for three settings of the polarization
optics: horizontal (Ix), vertical (Iy), and diagonal orientation
(I45). For the circular component (Icirc) a quarter-wave plate
(set to 45◦ with respect to the horizontal) is necessary.
From these data, the spatial-resolved Stokes parameters are
calculated,

S0 = Ix + Iy, S1 = (Ix − Iy)

S0
,

S2 =
(

2I45

S0

)
− 1, S3 =

(
2Icirc

S0

)
− 1, (1)

where S0 represents the total intensity, S1 the (normalized)
amount of light polarized in the x (positive S1) or y (negative
S1) direction, S2 the (normalized) amount of light polarized
along the diagonal direction (positive for 45◦, negative for
−45◦), and S3 the (normalized) amount of circularly polarized
light (the sign denotes the direction of rotation). Using this set
of Stokes parameters, the degree of polarization (fractional
polarization) p and the polarization direction ϕ can be
calculated:

p =
√

S2
1 + S2

2 + S2
3 , ϕ = 1

2
arctan

(
S2

S1

)
. (2)

The fraction of circular polarization S3 was found to be of the
order of 0.02; thus, we assume linear polarization in the rest
of the article. In this article we focus on the characteristics of
two VCSELs that illustrate the general behavior found in the
experiments very well.
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III. DISTRIBUTION OF SPONTANEOUS EMISSION AND
THE TRANSITION THROUGH THRESHOLD

We consider two nominally identical devices from the
design and growth process that show however rather different
behavior. The near-field and far-field intensity distributions
of the emission are shown in Figs. 2 (device 1) and 3
(device 2), respectively. In both cases the heat sink temperature
is T = 0◦C; the threshold current for device 1 is 15.2 mA and
that for device 2 is 15.6 mA. The top and middle rows in each
figure depict the intensity distributions in gray-scale coding
(black denoting the maximum intensity) of the near-field and
far-field, respectively; the third shows the spatial frequency
distribution of the polarization direction in a cyclic color code
(red denotes ±90◦, green −45◦, blue 0◦, and yellow +45◦; cf.
the color bar on the right of Fig. 2). The columns show the
emission below threshold [panels (a), (d), and (g); 12.0 mA for
device 1 and 13.5 mA for device 2), slightly below threshold
[panels (b), (e), and (h); 13.5 mA for device 1 and 15.5 mA
for device 2), and just above threshold [panels (c), (f), (i);
15.6 mA for device 1 and 16.0 mA for device 2). The optical
axis is positioned in the center of each image.

Below and above threshold, the emission has its maximum
at a well-defined wave number. This critical wave number is
favored because it has the most favorable detuning properties,
as discussed above (see [23] for details about the dependence of
the transverse wave numbers of the emission on the detuning).
Even far below threshold the ring indicating the critical
wave number is easily discernible. With current approaching
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FIG. 2. (Color online) Near- and far-field images for device 1
below and above threshold. Heat sink temperature T = 0◦C; driving
current 12.0 mA (a, d, g), 13.5 mA (b, e, h), 15.6 mA (c, f, i). The
color code of the polarization direction distribution (bottom row) is
shown by the bar on the bottom right. These images correspond to
the transition shown in Fig. 5.
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FIG. 3. (Color online) Near- and far-field images for device 2
below and above threshold. Heat sink temperature T = 0◦C; driving
current 13.5 mA (a, d, g), 15.5 mA (b, e, h), 16.0 mA (c, f, i). The
white spots in panels (a) and (b) result from debris on the neutral
density filters. The color code is the same as in Fig. 2. These images
correspond to the transition shown in Fig. 6.

threshold it narrows until at threshold the lasing modes develop
from this ring. This is easily explained by the increase of the
finesse of the cavity if threshold is approached.

Within this critical ring, far below threshold the maximum
of spontaneous emission is found at the diagonals in Fourier
space but moves close to the axes above threshold (i.e., with
either small kx for device 1 or small ky for device 2). Just
above threshold VCSEL 1 emits far-field patterns with two
dominant Fourier components on the y axis [Fig. 2(f)]. The
polarization of these components is in tendency orthogonal
to their wave vector, which is shown in Fig. 2(i), where the
area of lasing emission is polarized horizontally (blue in the
color code). Below threshold the polarization direction is very
different, that is, parallel to the wave vector [see Fig. 2(g)].
These general observations are also true for device 2.

The validity of the 0◦ rule is illustrated and tested further
in Fig. 4. Here radial cuts through the polarization distribution
at 0◦, 22.5◦, 45◦, 67.5◦, and 90◦ with respect to the x axis
are shown for T = 0◦C and I = 10 mA (i.e., far below
threshold). Each curve starts at about 10◦ for k⊥ ≈ 0 and
switches asymptotically to the angle of the cut. For values of
the transverse wave number above 1 µm−1, the polarization is
clearly parallel to the wave number. The deviations amount up
to about 10◦ at 1 µm−1 and decrease for higher wave numbers.
The polarization state at k⊥ ≈ 0 is interpreted to be selected
by the cavity anisotropies.

It is interesting to note that the curves of the polarization
angle and the fractional polarization are continuous until the
maximum measured value of 5 µm−1, though between 3.5 and
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FIG. 4. (Color online) Radial cuts [at 0◦ (black solid line), 22.5◦ (red long-dashed line), 45◦ (green small-dashed line), 67.5◦ (blue dotted
line), and 90◦ (cyan dot-dashed line)] through the far-field distribution of the spontaneous emission for device 1. T = 0◦C, I = 10 mA.
(a) Polarization in dependence on the transverse wave number k⊥ showing the validity of the 0◦ rule for k⊥ > 2 µm−1. The thick lines indicate
the polarization expected from the theory developed in Sec. IV. (b) Fractional polarization in dependence on k⊥ for the same cuts as in panel
(a). The part near k⊥ ≈ 0 is shown in the inset.

5 µm−1 (depending on the direction of the wave vector) the
cutoff condition for the transverse modes of the waveguide
formed by the refractive index step (i.e., the side boundaries
formed by oxidation) sets in. It is clearly visible in the center
rows of Figs. 2 and 3 that the intensity is cut off indeed.
This indicates that the influence of the side boundaries on
the polarization characteristics of below-threshold emission is
very small.

The fractional polarization, that is, the amount of linearly
polarized light, in dependence on the transverse wave number
is shown in Fig. 4(b), again for the same cuts. It increases
monotonically with wave number. The graphs are more or
less congruent, which indicates the isotropic character of
the phenomenon, showing its relative independence from the
principal axes of the intracavity anisotropy for large-enough
wave numbers. The polarization degree is small but nonzero
for k⊥ = 0 [see inset to Fig. 4(b)], which also indicates the
influence of the cavity anisotropies, because the DBRs are
isotropic for k⊥ = 0.

In the following, we take a closer look at the changes
involved in the transition from spontaneous to lasing emission.
This transition is illustrated in Fig. 5 for device 1 and Fig. 6 for
device 2. Each figure shows in panel (a) the local (in Fourier

space) intensity, in panel (b) the fractional polarization, and in
panel (c) the local polarization orientation in dependence on
the driving current. In addition, the pump rate

P = (I − Ith)

Ith
(3)

is displayed on the upper x axis of the diagrams. The inset
in (a) shows the Fourier component for which these plots
were made (indicated by the arrow). The black lines in the
Figs. 5(a) and 6(a) show in both cases the typical behavior of
a laser crossing threshold: a region of low emission intensity
representing spontaneous emission and small slope, followed
by a steeply increasing part indicating lasing emission.
Threshold is extrapolated by a linear fit to this latter part and
indicated by the dashed red line. The blue dotted curves in
Figs. 5 and 6 are calculated from Eqs. (9) and (12) and will be
discussed in the theoretical section.

The fractional polarization shown in Figs. 5(b) and 6(b)
typically follows the development of the intensity until it
saturates at a maximum of 0.8 to 1.0.

In Figs. 5(c) and 6(c), the change of the polarization
direction with current is shown. Far below threshold the
polarization angle is in good agreement with the 0◦ rule. With

FIG. 5. (Color online) Transition from spontaneous emission to lasing emission of the spot depicted in the inset in panel (a) for device 1.
The black solid curves are experimental data, the blue dashed curves are calculated from Eqs. (9)–(12). (a) Local intensity in dependence on
driving current. The threshold, indicated by the vertical red dashed line, is derived from a linear fit to the steep slope of the intensity. (b) Degree
of polarization. (c) Local polarization direction. The change of polarization is evident about 1.5 mA below threshold.
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FIG. 6. (Color online) Transition from spontaneous emission to lasing emission of the spot depicted in the inset in (a) for device 2.
(a) Local intensity in dependence on driving current. (b) Degree of polarization. (c) Local polarization direction. All denotations are analogous
to those for Fig. 5.

increasing current the scenario is different for the two lasers.
For device 1, the polarization starts to change quite abruptly
approximately 1.1 mA below threshold: In a current range
of only 1 mA, the angle changes to 0◦, which corresponds
to the 90◦ rule. The polarization reaches the target state well
below threshold (about 93% of Ith). Note that the fractional
polarization has a pronounced local minimum at the transition.

Device 2 [Fig. 6(c)] shows a rather gradual change of the
polarization that starts already more than 5 mA (at 67 % of
Ith) below threshold. The behavior is monotonous; there is no
dip in the fractional polarization. This behavior is typical, if
the wave vector is not oriented along one of the two axes.
Only in the latter case (Fig. 5) is an abrupt transition found.
The continuous transition is more typical for the devices under
study, though, because the wave vector configuration depicted
in Fig. 6(a) is more typical [18].

IV. THEORY AND DISCUSSION

A. The Ginsburg-Landau equation

In order to analyze the behavior described earlier in this
article, we use a model for a broad-area VCSEL that accounts
for its cavity structure, including Bragg reflectors [17,24].
For simplicity, we consider a spatially homogeneous device
with an infinite aperture. For this case the eigenmodes are
plane transverse waves Ekt

(x, y, t) = E(t) exp{i(kxx + kyy)},
where E(x, y, t) ≡ {Ex,Ey} is the slowly varying complex
envelope of the field inside the cavity and k⊥ = {kx, ky} is the
transverse component of the wave vector.

Many features of polarization selection at and slightly above
threshold can be obtained by a linear stability analysis [18,25].
However, for the transition from below to above threshold it
is of critical importance to take into account both spontaneous
emission and the nonlinear saturation. Therefore, we will
use here a nonlinear Ginsburg-Landau equation (GLE) with
an additional term describing spontaneous emission (see the
Appendix for the derivation). For the spatially homogeneous
device with infinite aperture, the equation can be written for
every transverse wave with complex amplitude E(t):

Ė = −κinE − κoutϒ(k⊥)E + i�(k⊥)E + �E

− κoutG(k⊥)IE + W. (4)

The field decay rate κ = κin + κout results from the laser
emission through the DBRs κout (outcoupling losses) and κin

(intracavity losses) by scattering and absorption. The latter
is isotropic (polarization independent), whereas the former is
anisotropic. The anisotropy is described by the 2 × 2 matrix
ϒ(k⊥), which represents polarization- and k⊥-dependent
losses at the DBRs. In addition, the matrix ϒ(k⊥) includes
also the gain in the device (and hence has a component
depending linearly on the driving current). �(k⊥) represents
diffraction in the cavity and in the DBRs, G(k⊥) is a matrix
describing the impact of the nonlinear saturation, and I = E†E
is the light intensity († means the conjugate transpose).
A more detailed description of ϒ(k⊥), �(k⊥), and G(k⊥)
is given in the Appendix. � is the intracavity anisotropy
matrix, which in the basis of the main anisotropy axes is
written as � = diag(γa + iγp,−γa − iγp), where γa is the
amplitude anisotropy (dichroism), γp is the phase anisotropy
(birefringence), and diag(· , ·) denotes a diagonal matrix with
the corresponding entities on the diagonals.

As indicated earlier in this article, the other source of
anisotropy is the reflection at the DBRs. The action of
the DBRs can be described in terms of s and p waves
[26,27], which are plane transverse waves with polarization
correspondingly perpendicular and parallel to the direction
of the transverse wave vector kt . In this basis, the matrix
of reflection from the ith Bragg reflector is diagonal Ri(kt ) =
diag{Rsi(kt ), Rpi(kt )}; that is, pure s and p waves are reflected
from the Bragg reflectors without mixing. The correspond-
ing transmission matrices Ti(kt ) = diag{Tsi(kt ), Tpi(kt )}, i =
1, 2, are also diagonal in this basis.

The spontaneous-emission rate is described by the
term W ≡ W(k⊥, t) = √

βspKj/T1ξ (k⊥, t) in Eq. (4). Here
ξ (k⊥, t) is a Langevin noise source (see the Appendix
for details), j is the normalized current density, T1 is the
population decay time, βsp is the spontaneous-emission factor
(the fraction of spontaneous emission going into the given
mode), and K is the Petermann excess quantum noise factor
[28], which takes into account a possible nonorthogonality of
the modes leading to projection of the noise in other modes
onto the selected one [28].

When deriving the GLE [Eq. (4)], the dynamics of the
population differences [both total carrier density D and the
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population difference between sub-bands with opposite carrier
spin d, cf. Eqs. ( A)–(A3)] is neglected. In particular, we
assumed equal populations of both sub-bands (d = 0). This
corresponds to a quasistationary approximation valid for
low intensities and linear light polarization (or completely
unpolarized light), as motivated by the absence of elipticity
in the experimental results. This approximation is fairly good
below, directly at, and even slightly above threshold. Of course,
when considering the system further above threshold, the
population dynamics must be taken into account, which leads
to additional nontrivial polarization behavior [7–12], such as
polarization switchings. However, the region far above the
threshold is beyond the scope of the present article.

B. The coherence matrix

In Eq. (4) the nonlinear term can be neglected for small
current well below threshold, which results in the linear
equation

Ė = −κinE − κoutϒ(k⊥)E + i�(k⊥)E + �E + W, (5)

which can be solved directly,

E = exp(�t)
∫ t

0
exp(−�τ )W (τ ) dτ, (6)

where � = −κin − κoutϒ + i� + �.
If the field E is known, the Stokes parameters can be

obtained from the coherence matrix J = 〈EE†〉 [here 〈·〉
denotes an ensemble (and not time) averaging; note also the
reverse order of multiplication in this definition compared to
the definition of intensity, which results in a matrix instead of
a scalar],

Sj = tr(Jσj ), (7)

where σj are the Pauli matrices. In particular, the mean
intensity 〈I 〉 = S0 can be obtained as 〈I 〉 = trJ .

By multiplying Eq. (6) from the left with its Hermite
conjugate, performing averaging and then integration, we
obtain

J = −�−1
r JW {1 − exp(�rt)}, (8)

where �r = � + �† and JW = 〈WW†〉 is the coherence
matrix of spontaneous emission. In the derivation of Eq. (8) it
is taken into account that the polarization components of W are
δ correlated and therefore JW is proportional to the unit matrix
JWij = δijKβspj/2T1 (where δij , i = 1, 2 is a Kronecker δ);
that is, it commutes with all other matrices. It is also assumed
that all functions of matrix arguments � and �† commute.

We will search for the statistically stationary solutions of
Eq. (8) (i.e., those with a time-independent coherence matrix).
For such solution being finite, the exponential term in Eq. (8)
must decay. This is automatically fulfilled below threshold
because � is nothing but a linear stability matrix for the
GLE (4) without noise far below threshold near its nonlasing
solution, and therefore all the eigenvalues of �r are less than
zero. Hence, for the small current we obtain

J = −�−1
r JW . (9)

Equation (9) gives the coherence matrix inside the cavity.
Because the Bragg reflectors transmit different polarizations

differently, the coherence matrix Jo is different from J for an
observer outside of the cavity:

Jo = T JT †. (10)

Let us turn our attention to the general case of the nonlinear
Eq. (4). We can simplify the analysis by neglecting the
joint fluctuation of the term IE and replace the intensity
with its mean value 〈I 〉 in this term. This approximation
can be interpreted in the following way: We replace the
original stochastic process described by Eq. (4) with a simpler,
Gaussian one [29] with the same mean 〈E〉 = 0 and, by its
construction, with the same stationary mean intensity 〈I 〉.
We expect therefore that the stationary coherence matrix J

will also not be significantly altered by this approximation.
Of course, the process described by the original GLE is
not, strictly speaking, Gaussian, especially in the vicinity
of threshold or polarization switchings [30,31]. However,
as we will see later, this approximation fits rather well to
the experimental findings, allowing at the same time very
constructive analytical insight. By considering the resulting
equation as a linear equation for the field and proceeding as
above, we arrive at Eq. (8) with the modified matrix

� = −κin − κoutϒ + i� − κoutG〈I 〉 + �. (11)

As before, we consider only the finite statistically stationary
solutions, for which the exponential term in Eq. (8) decays,
and obtain again Eq. (9), with � given now by Eq. (11).

Taking the trace of Eq. (9), one obtains an implicit equation
for the intensity 〈I 〉,

〈I 〉 = tr{[2κin + κout(ϒ + ϒ†) − (� + �†)

+ κout〈I 〉(G + G†)]−1JW }, (12)

which is a polynomial of third order for 〈I 〉. The intensity
outside the cavity is then given by 〈Io〉 = tr{T JT †}. Equation
(12) has only one positive root, which is small (〈I 〉 ≈ 0) below
threshold and grows asymptotically linearly with current
(〈I 〉 ∼ j ) above threshold. Below and at threshold it is,
however, in rather good agreement with experiment [compare
the black and blue curves in Figs. 5(a) and 6(a)].

C. General features

As stated earlier in this article, the most significant
difference between devices 1 and 2 is in the pattern formed
above threshold. Whereas the below-threshold state obeys
the 0◦ rule for both devices (i.e., the polarization direction
is parallel to k⊥), the polarization of the above-threshold
state deviates significantly from the 90◦ rule for device 2
(around 30◦). In [18] it was shown that for high-enough k⊥
the polarization direction is aligned mainly to the transverse
side boundaries of the device rather than to the anisotropies
(either intracavity- or Bragg-induced ones). The validity of the
90◦ rule above threshold depends therefore on the position of
the spots in the far field with respect to the directions of the side
boundaries. For a device with the boundaries parallel to the x

and y coordinate axes, the 90◦ rule is satisfied when the spots
are located close to the x or y axis, whereas for spots away from
the axes the polarization direction deviates from the 90◦ rule.
Note that for the purpose of this article it is not important why
some devices emit in a specific wave vector configuration and
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FIG. 7. (Color online) Different types of transitions from nonlas-
ing to lasing state in the space of Stokes parameters (S1, S2): abrupt
transition (blue straight dashed arrow from Eai to Eaf , corresponds to
device 1) and smooth transition (green curved dashed arrow from Esi

to Esf , corresponds to device 2). The initial polarization state for the
abrupt transition Eai is orthogonally polarized to the final one Eaf ,
whereas for the initial Esi and final Esf states for the smooth transition
this is not the case. For convenience, the polarization directions for
different quadrants of the (S1, S2) plane are shown by red arrows in
the black boxes. The red cross in the center corresponds to a fully
unpolarized state (p = 0), whereas the black circle shows the fully
polarized state (p = 1).

some in another. We are only exploring the consequence of a
given wave vector configuration on the polarization behavior.

The difference between these two situations can be depicted
in the space of Stokes parameters (Fig. 7). Because the
polarization is always linear, S3 = 0 and we use only its
two-dimensional subspace (S1, S2). One can see that—if the
initial state Eai and the final state Eaf are orthogonal to
each other—S2 experiences a zero crossing during the tran-
sition (red cross in Fig. 7). According to Eq. (2), this means
that the degree of polarization is also zero at the crossing
point. The polarization direction retains only two values
during this transition. Hence the transition, which appears at
the point S1 = S2 = 0, is an abrupt switching between two
discrete polarization states. Both the transition of the degree
of polarization through zero and the abrupt switching can be
seen in Figs. 5(b) and 5(c). On the other hand, when the final
state Esf is not orthogonal to the initial one Esi , the polarization
follows a path avoiding the origin; that is, it rotates to the final
state instead of switching to it. In this case, the degree of
polarization does not pass through zero and the polarization
direction changes smoothly [see Figs. 6(b) and 6(c)].

We will refer to the first case as an “abrupt” transition and
to the second case as a “smooth” one. One can see a remote
analogy to the Ising and Bloch transitions [32], which also
represent abrupt “switching” or smooth “rotating” behavior.
The role of the vector of magnetization in this case is played
by the Stokes parameters. One should note, however, that

Ising and Bloch transitions occur in space, that is, between
energetically equivalent spatially separated states (at constant
external parameters), whereas here the transition takes place
in dependence on an external parameter (current), that is, in
the parameter space.

The previously mentioned difference between the abrupt
and smooth transitions can be expressed more directly in
terms of the coherence matrix. For the abrupt transition, the
coherence matrix is diagonal in one and the same coordinate
basis during the whole transition. Only two polarization
directions are possible, depending on which diagonal element,
J11 or J22, is larger. The point representing the polarization
state in Fig. 8 can move only along a straight line passing
through zero (S1 = 0, S2 = 0). At the point of transition
J11 = J22; that is, the light is unpolarized, and the polarization
direction changes abruptly. In the case of a smooth transition,
the situation is different. Of course, the coherence matrix is
Hermitian and therefore there is always a Cartesian coordinate
basis in which it is diagonal. However, this basis is changing
during the transition. That reflects the existence of several
competing mechanisms (DBRs, side boundaries, intracavity
anisotropies), each of them having its own principal axes. Their
mutual influence is changing with a change of parameter (here
current). In this case, the Stokes parameters do not vary along a
straight line and can avoid the zero crossing. It should be noted
also that the origin (S1 = 0, S2 = 0) is a special point in the
sense that the coherence matrix in this point is proportional to
the identity matrix and therefore is diagonal in every coordinate
basis.

D. Detailed discussion

The polarization, intensity and fractional polarization ob-
tained from Eqs. (9), (10), and (12) are shown in Figs. 4, 5,
and 6 in comparison to experimental data. The parameters
of the active layer and the cavity used for calculations are
α = 3, γ = 103 ns−1, γa = 0.8 ns−1, and γp = 0. The DBRs,
consisting of 31 (top mirror) and 47 (bottom mirror) λ/4
layers of material with alternating refractive index n1 = 3.46,
n2 = 3.093 and the transparency current Jtr = 7 mA were
assumed. The effective round-trip time τ = 33 fs includes
also the effects of the dispersion in the DBRs and in the
cavity [23]. The outcoupling loses for these parameters are
κout = 17.4 ns−1. The best coincidence with the experimental
results appears for κin = 65 ns−1, which is in rather good
agreement with estimations based on losses in the p-DBR and
typical gain values of GaAs quantum wells [33,34].

In the framework of the theory presented here, only an
infinite device can be considered. Therefore, the final lasing
state satisfies always the 90◦ rule [17]. As the laser approaches
threshold, the influence of the side boundaries start to play
an important role [18], and the polarization may not be
perpendicular to k⊥ anymore. For device 1, this deviation is
very small but it is not negligible anymore for device 2. We
take this into account in our model by introducing an artificial
rotation of the main axes of the matrix � for device 2, so it
becomes diagonal not in the basis of s and p waves but in
another, rotated one. On the other hand, we keep the transition
matrix T the same (i.e., diagonal in the basis of s and p waves).
This makes the resulting coherence matrix nondiagonal. The
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FIG. 8. (Color online) (a) The amplitude γba (blue solid line) and phase γbp (red dashed line) anisotropy induced by the Bragg reflector.
(b) The degree of polarization for the parameters of device 1 (see Fig. 4) and ky = 0 according to theoretical calculations. The polarization
degree inside the cavity is indicated by the red dashed line, that outside the cavity by the blue solid line. The corresponding experimental curve
is depicted by the black thin line. The extracavity polarization in the “pure filtering limit” (i.e., assuming completely unpolarized light inside
the cavity) is indicated by the green dot-dashed line. (c) The polarization direction inside (red dashed lines) and outside (blue solid lines) the
cavity for the intracavity anisotropy favoring x polarization [thick lines, as in panel (b)] or an anisotropy favoring a polarization direction of
10◦ (thin lines).

angle of rotation is 25◦, which corresponds approximately to
the angle of the wave vectors visible in the inset of Fig. 3(a).

Although the spontaneous-emission factor is rather small
(βsp ≈ 10−5) for VCSELs with a transverse size around
40 µm [35], it can be significantly enhanced by the Petermann
excess factor. The value of K depends extremely strongly
on the inhomogeneities and imperfections in the construction
of a particular device. The best results in comparison to
experiment give the values Kβsp = 6 × 10−4 for device 1
and Kβsp = 10−2 for device 2. In [18] it is shown that
the four spots at the corners of a rectangular that form the
dominant Fourier peaks of the spatial structures [see inset of
Fig. 6(a)] can form the eigenmode of the transverse waveguide
but are not simultaneously an eigenmode of the reflection
operator of the DBR. Thus, the reflection couples many
transverse wave vectors k⊥. This may be the the origin of
the rather large Petermann factor K , especially for device 2.
In addition, nonorthogonality of the modes might originate
from inhomogeneities of the structure and current distribution
[which is clearly visible in the intensity distributions in
Figs. 2(a)–2(c) and 3(a)–3(c) for devices 1 and 2].

With this choice of parameters, a very good agreement
between experiment and theory is obtained for the develop-
ment of the fractional polarization and the local polarization
direction versus current for both devices (Figs. 5 and 6), as well
as for the dependence on the transverse wave vector (Fig. 4).
The data reflect the degree of abruptness of the transition [Fig.
5(c) vs Fig. 6(c)] and the monotonous vs nonmonotonous
development of fractional polarization [Fig. 6(b) vs Fig. 5(b)].
The increase of fractional polarization and the convergence
toward the 90◦ rule with increasing wave number is due to the
increasing anisotropy between s and p waves, of course [see
the blue line in Fig. 8(a)].

The case of the abrupt transition allows more analytical
insight. Let us suppose for the sake of clarity that the isotropic
intracavity anisotropy is diagonal in the representation of s and
p waves. In this situation, all the matrices in Eqs. (9) and (10)
are diagonal in this representation. Therefore, the coherence
matrices J , Jo are also always diagonal. In this case, Eqs. (9)
and (10) are decoupled into independent equations for the

diagonal elements,

Jii = Kβspj

2T1[κin + κoutRe(ϒii) + Re(�ii) + κout〈I 〉Re(Gii)]
,

Joii = |Tii |2Jii, (13)

where i = 1 corresponds to the DBR s wave and i = 2 to the
p wave.

Well below threshold the denominator in Eq. (13) is positive
and approximately the same for both s and p waves (as will
be discussed later in this article), and the light outside of
the cavity is slightly p polarized (Jo11 < Jo22) due to the
filtering by the Bragg reflector. As the current approaches
threshold, the denominator for the s wave in Eq. (13) tends
to zero, whereas the one for the p wave remains positive,
which provides superiority for the s wave strongly overcoming
the opposite difference in transmission. Obviously, at some
point the transition between s and p polarization occurs.
At the point of transition Jo11 = Jo22 (and therefore S1 = 0,
S2 = 0); that is, the output is unpolarized [see Fig. 7, blue
straight arrow, and Fig. 5(b)]. Because the coherence matrix is
diagonal, the polarization direction can have only two values,
corresponding to either Jo11 < Jo22 (0◦ rule) or Jo11 > Jo22

(90◦ rule). Therefore, at the transition point, the polarization
direction changes abruptly and is constant in all other points
above and below threshold [see Fig. 5(c)].

Let us now consider the behavior of the extracavity polar-
ization far below threshold [when the intensity-dependent term
in Eq. (13) can be neglected]. If we suppose that the intracavity
losses κin are much larger than the ones through outcoupling
κout and much larger than the intracavity anisotropy �ii , we
obtain

Jii = Kβspj

2T1κin
, Joii = |Tii |2Jii . (14)

In this case, the output polarization is governed by the
transmission through the DBR |Tii |2, and the laser cavity
works as a simple filter for almost unpolarized intracavity
radiation. Because |Ts |2 > |Tp|2, this results in the 0◦ rule due
to the dominance of p-polarization direction in transmission.
In this case (we will call it the “pure filtering case” here), the
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degree of polarization is determined only by the transmitting
properties of the Bragg reflector [see Fig. 8(b), green dot-
dashed line]. The difference in transmission between s and
p waves increases with k⊥ approximately quadratically, and
the degree of polarization in this case reflects this dependence
according to Eq. (14).

For the opposite case, κout � κin and assuming a diagonal
coherence matrix, we obtain

Joii ∼ |Tii |2/Re(ϒii), (15)

instead of Eq. (14). Because for small current ϒii ∼ 1 −
|Rii |2 = |Tii |2, the light outside the cavity is completely
unpolarized in this case. This is in agreement with the
energy conservation principle, since the numbers of intracavity
photons in both polarizations are increased by the spontaneous
emission equally and the polarizations do not mix. Therefore,
in the stationary case, in the absence of intracavity losses
the energy escaping the cavity must also be equal for both
polarizations.

In general, the extracavity polarization degree, defined by
Eq. (13), lies between these two limiting cases [Fig. 8(b),
thick, solid blue line]. As the Bragg reflection is isotropic
for k⊥ = 0 (ϒii |k⊥=0 = 1 for i = 1, 2), the polarization
for k⊥ ≈ 0 is defined only by the intracavity amplitude
anisotropy γa (and does not depend on γp). The best
agreement with the experimental value of the degree of
polarization for k⊥ = 0 is achieved for γa = 0.8 ns−1, a
reasonable number in line with typical observations in
small-area VCSELs [36,37]. With increasing transverse wave
number k⊥, the relative importance of the anisotropy induced
by ϒ(k⊥) increases. The amplitude anisotropy γba(k⊥) =
κout{Re[ϒ11(k⊥)] − Re[ϒ22(k⊥)]}/2 and the phase anisotropy
γbp(k⊥) = κout{Im[ϒ11(k⊥)] − Im[ϒ22(k⊥)]}/2, induced by
ϒ(k⊥) are shown in Fig. 8(a). In analogy to the intracavity
anisotropy, only γba plays a role in determining the coherence
matrix. As one can see, γba increases approximately quadrat-
ically with k⊥. The degree of polarization inside the cavity
[see Fig. 8(b), thick dashed red line] is influenced more
strongly by the intracavity anisotropy for small k⊥ (below
∼1.5 µm−1) and by the Bragg-induced anisotropy for larger
k⊥. However, it remains relatively small for all k⊥, and the
polarization degree outside of the cavity is therefore quite
strongly determined by the Bragg filtering mechanism [see
Fig. 8(b), thick solid blue line].

Now let us consider the behavior of the polarization of the
intracavity field in dependence on k⊥ far below threshold in
more detail. As an example, a cut displaying the polarization
angle along the kx axis, assuming the anisotropy also being
directed along the x axis, is shown in Fig. 8(c). In this
case, the intracavity and extracavity light for k⊥ ≈ 0 is x

polarized. However, for high-enough k⊥ (above ≈1.5 µm−1),
the DBR-induced anisotropy overcomes the intracavity one
and the intracavity light becomes weakly polarized in the
direction perpendicular to k⊥ [see Fig. 8(c), thick red dashed
line]. This degree of polarization is small and canceled when
the light is transmitted through the Bragg reflector. Hence, the
polarization of the light outside of the cavity is still determined
by the transmission, that is, is parallel to k⊥, as mentioned
previously [see Fig. 8(c), blue lines].

Hence, we also encounter a polarization transition in the
intracavity field if we consider k⊥ as a parameter instead of
the current. This transition is abrupt [see Fig. 8(c), thick red
dashed line] and the fractional polarization vanishes at the
transition point [see Fig. 8(b), thin red dashed line]. It can be
understood in a way fully analogous to the abrupt transition
appearing with the change of current. It should be noted that
this transition is not apparent outside the cavity [thick blue line
in Fig. 8(c)].

This behavior becomes slightly more complex if one
analyzes the polarization along a cut in Fourier space whose
direction does not coincide with the preferred intracavity
anisotropy axis. In that case, the change of polarization angle
vs wave number is smooth [Fig. 8(c), thin red dashed line]
and also detectable outside the cavity [Fig. 8(c), thin blue
line]. This is backed up by the experimental curves displayed
in Fig. 4(a), where the transition is most notable for the
cyan curve, which corresponds to a cut along 90◦; that is,
the competition between intracavity anisotropy and Bragg
anisotropy is more apparent in the extracavity polarization,
if the deviation between wave vector and anisotropy angle
increases.

V. CONCLUSION

For highly divergent emission in wide-aperture VCSELs,
the polarization direction is determined by the properties of the
DBRs and (close to threshold) by the transverse structure of
the cavity. Far below threshold the polarization is independent
from the cavity structure and the p wave of the DBRs (which
has the polarization direction parallel to k⊥) prevails in the
emission because the almost unpolarized intracavity light
is filtered by the transmission through the DBR, which is
higher for p waves than for s waves. In the simplest case,
when the above-threshold polarization direction is not strongly
influenced by the transverse boundaries, an abrupt switch of
polarization direction occurs as the current increases toward
the laser threshold: the s wave inside the cavity starts to prevail
because the reflectivity and therefore the quality factor of the
cavity is higher than the one for the p wave. At the point of
transition the filtering effect of the transmission through the
DBR cannot compensate the intracavity polarization anymore,
and the polarization changes its direction from the one
parallel to k⊥ to the perpendicular one. This abrupt change of
polarization direction is accomplished by the passing through
zero of the degree of polarization of the light outside of the
cavity.

On the other hand, if the above-threshold polarization
does not coincide with the DBR s mode, the transition is
qualitatively different. In this case, the polarization changes
smoothly and the degree of polarization is significantly
nonzero during the entire transition. As was shown in [18], the
deviation of the above-threshold polarization direction from
the one dictated by the s wave of the DBRs can be due to the
influence of the side boundaries of the cavity.

The difference between two types of transition can be
explained in the terms of coherence matrix. The abrupt
transition occurs when the coherence matrix of the light outside
the cavity is diagonal (in one and the same basis) during the
whole transition. In this case, only two polarization directions

023819-9



M. SCHULZ-RUHTENBERG et al. PHYSICAL REVIEW A 81, 023819 (2010)

are possible. If the different mechanisms influencing the
polarization have different directions, the resulting coherence
matrix is nondiagonal and arbitrary polarization direction is
possible.

We note an analogy between the abrupt and smooth transi-
tions described here and Ising and Bloch transitions between
two equivalent states in ferromagnetics with respect to a
“switching” vs “rotation” behavior. However, the polarization
transition in this article occurs in parameter space (between
energetically inequivalent states) in contrast to the usual Bloch
and Ising ones.
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APPENDIX: THE GINSBURG-LANDAU EQUATION

A. The initial equations

Polarization phenomena in VCSEL are often modeled using
an equations for the intracavity field E and the total carrier
density D, as well as the population difference d between
sub-bands with opposite carrier spin [7,17]. We start from the
nonlinear Eqs. (18) of [17] for the normalized complex-valued
envelope E(t, k⊥) of the optical field for given k⊥ and carrier
population variables D, d:

Ė = −κoutME − i�E − iκoutαE

+ κout(1 + iα)G(AE) + W, (A1)

Ḋ = −γ1{D − j + Im[(i − α)E∗L(AE)]}, (A2)

ḋ = −γsd − γ1Re[(i − α)E∗L(AE′)]. (A3)

Here α is the linewidth enhancement factor, j is the
normalized current density, κout is the outcoupling losses (see
later in this article), γ1 = 1/T1 and γs are the decay rates of D

and d, respectively, E′ = {Ey,−Ex}, and A = (
D id

−id D
). The

linear operators M(k⊥), �(k⊥), G(k⊥), and L(k⊥) describe
the losses, diffraction, and gain in the cavity and are 2 × 2
k⊥-dependent matrices acting on the vector field E(k⊥).

In the present article we assume that �(k⊥) = −k2
⊥v/k0I +

[s1(k⊥) + s2(k⊥)]/τ is a matrix describing the dispersion
relation given by the cavity resonance condition for s and
p waves of DBR. Here v is the speed of light in the cavity,
k0 is the longitudinal part of the wave vector, τ is the cavity
round-trip time, I = diag(1, 1) [diag(·, ·) is here a diagonal
matrix with corresponding entities on the diagonals], and s1, s2

are the matrices describing diffraction of the light in the DBRs.
In s-p representation, they can be written as si = diag(ssi , spi),
where i = 1, 2 and ssi ,spi are the phase shift for s and p waves.

Using these assumptions, M(k⊥) and G(k⊥) can
be written in terms of propagation matrices F1(k⊥) =
(ρ�̃)1/2R1(k⊥) exp[−is1(k⊥)], F2(k⊥) = (ρ�̃)1/2R2(k⊥) exp
[−is2(k⊥)], F = F1F2: M(k⊥) = [1 − F (k⊥)]/M0,G(k⊥) =
[1 + F1(k⊥) + F2(k⊥) + F (k⊥)]L�/G0. M and G are nor-
malized by the constants M0 and G0 in such a way that

M11(0) = 1 and G11(0) = 1. Here R(kt ) is an operator
describing the reflection from the Bragg mirrors, represented
by matrices Rm = Rmij (m = 1, 2, i = 1, 2, j = 2, 2). κout =
[1 − |R111(0)||R211(0)|]/τ = [1 − |R122(0)||R222(0)|]/τ is the
outcoupling losses for zero transverse mode. ρ describes all
intracavity losses in the whole system (which are not due to
outcoupling) and �̃ is the intracavity anisotropy matrix, which
in the basis of the main anisotropy axes is written as

�̃ =
[

exp(γaτ + iγpτ ) 0

0 exp(−γaτ − iγpτ )

]
, (A4)

where γa is the amplitude anisotropy and γp is the birefrin-
gence. The influence of the gain contour line L(k⊥) is given
by the expression L = 1/{1 + [(δ − �)/γ ]2}, where L is the
cavity length and γ is the material polarization decay rate.

The spontaneous emission is described by the term W =√
Kβspγ1Dξ in the approximation of zero inter-sub-band

population difference. Here, K is the Petermann excess
quantum noise factor and βsp is the spontaneous-emission
factor. ξ is the Langevin noise source with zero mean and
correlation in (x, y) space and circular wave basis ξ (x, y, t) =
[ξ+(x, y, t), ξ−(x, y, t)]:

〈ξ±(x, y, t)ξ±(x ′, y ′, t ′)〉 = 2δ(t − t ′)δ(x − x ′)δ(y − y ′),
〈ξ±(x, y, t)ξ∓(x ′, y ′, t ′)〉 = 0. (A5)

Performing the transverse Fourier transform and transforming
into a basis of linear (orthonormal) polarization with arbitrary
directions of axes 1 and 2, one obtains the analogous equation
for ξ (kx, ky, t) = [ξ1(kx, ky, t), ξ2(kx, ky, t)]:

〈ξj (kx, ky, t)ξi(k
′
x, k

′
y, t

′)〉
= 2δij δ(t − t ′)δ(kx − k′

x)δ(ky − k′
y). (A6)

Therefore, the noise is also correlated in the k⊥ representation
and in an arbitrary orthogonal polarization basis. The noise
terms in the equations for D and d are neglected in the present
consideration.

B. The derivation of the Ginsburg-Landau equation for the field

Here we obtain the lowest-order nonlinear equations for
the field resulting from the previously mentioned nonlinear
equations. We take into account that near lasing threshold
the resulting linear operator acting on E, D, and d has a
block-diagonal form with the part acting on E not being
coupled to the carrier part. The eigenvalues stemming from the
carrier-related part are always strongly negative. In addition,
d = 0 for linearly polarized (or unpolarized) light. The
absence of circularly polarized components is validated by the
experimental results presented in Sec. II. Then it is possible to
adiabatically eliminate D and obtain a complex equation for
E only.

The solution of Ḋ = 0 is given then by D = j/(1 + IL),
where I = |E|2. For small intensity I one can write it as D ∼
j (1 − IL). Substituting this into the equation for the field, we
obtain

Ė = −κoutME − i�E − iκoutαE + κout(1 + iα)jGLE

− κout(1 + iα)jGL2IE + W. (A7)
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Because the anisotropy and the intracavity losses are
small compared to 1, the corresponding terms can be de-
composed as ρ = exp(−κinτ ) ≈ 1 − κinτ , �̃ ≈ 1 + �τ , with
� = diag(γa + iγp,−γa − iγp). Considering κinτ , κoutτ , and
�τ as small parameters and neglecting these terms starting
from the first order in G and from the second order in M and
introducing the matrices G = (1 + iα)jG̃L2, ϒ = M̃ + iα −

(1 + iα)jG̃L (where M̃ = M|ρ=1,�̃=1, G̃ = G|ρ=1,�̃=1), we
obtain the resulting GLE (4).

The spontaneous-emission term in the approximation
of a small intensity can be written as W(k⊥, t) =√

Kβspγ1jξ (k⊥, t). Here we neglected the second-order term
in the decomposition of the stationary value of D into a
series.
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