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Spontaneous emission from a two-level atom in anisotropic one-band photonic crystals:
A fractional calculus approach
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Spontaneous emission (SE) from a two-level atom in an anisotropic photonic crystal (PC) is investigated by
the fractional calculus. Physical phenomena of the SE are studied analytically by solving the fractional kinetic
equations of the SE. There is a dynamical discrepancy between the SE of anisotropic and isotropic PCs. We
find that, contrary to the SE phenomenon of the isotropic PC, the SE near the band edge of an anisotropic PC
shows no photon-atom bound state. It is consistent with the experimental results of Barth, Schuster, Gruber, and
Cichos [Phys. Rev. Lett. 96, 243902 (2006)] that the anisotropic property of the system enhances the SE. We also
study effects of dispersion curvatures on the changes of the photonic density of states and the appearance of the
diffusion fields in the SE.
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I. INTRODUCTION

Photonic crystals (PCs), a new class of optical materials
with periodic dielectric structures, provide a way to control the
spontaneous emission (SE) through redistributing the photon
density of states (DOS) near the photonic band gap (PBG). This
control offers the key technology of manipulating light, such as
in light emitting devices [1], quantum information processing
[2], or solar cells [3]. The DOS near the band edge of PCs
changes the optical behavior of an excited atom in a PC, such
as the appearance of photon-atom bound states [4–8], spectral
splitting [9], enhanced quantum interference [10], the coherent
control of SE [11], non-Markovian effects [4–6,12], etc.
Among these studies, the photon dispersion relation of a PC
is described by the effective mass approximation [4,5], which
leads to no photon DOS below the band edge frequency ωc.

The dispersion relation near the band edge is assumed to
be isotropic in early studies [4–7,9,12]. This isotropic PC
system studied by John et al. [9,13] through using the Laplace
transform method was predicted the presence of the unphysical
bound state for the resonant atomic frequency lying outside the
band gap. This unphysical bound state, corresponding to the
prolonged lifetime effect in the experimental observation, was
inconsistent with the experimental result that the prolonged
lifetime effect would disappear when the emission peak lay
outside the PBG region [14]. We resolved this inconsistency
through using the fractional calculus method to solve the
kinetic equation of the isotropic PC system and found no
unphysical photon-atom bound state existing as the resonant
atomic frequency lay in the allowed band [8]. This experimen-
tally consistent result validated the correctness of applying the
fractional calculus to this optical system.

In a practical three-dimensional PC with an allowed
point-group symmetry, the photonic band structure is highly
anisotropic, namely, the equal frequency surface near the
band edge is no longer spherical. A vector form of photon
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dispersion relation is required to describe a more realistic
anisotropy of the band. In this vector form of dispersion
relation, the photon DOS is proportional to

√
ω − ωc while

that of an isotropic dispersion relation is proportional to
1/

√
ω − ωc [15], where ω stands for the eigenmode frequency

and ωc for the band edge frequency. This discrepancy of
photon DOS will create different SE phenomena between
anisotropic and isotropic PCs. The most prominent difference
is the existence of diffusion field [16–19] in an anisotropic
PBG. It was predicted theoretically by Yang et al. [16–19]
that the bare atomic transition frequency lying above the band
edge will be shifted into the forbidden gap by the interaction
with the radiation modes where an atom-photon bound state is
generated. In other words, the emitted photons tunnel through a
PC for a localization length, and then reflect back, called Bragg
reflection, to re-excite the atom. The emitter with frequency
lying near band edge will not yield SE. Recently, Barth et al.
observed experimentally [20] that the anisotropic properties
of a PC could be detected by employing the CdSe on ZnS
quantum dots (QDs) as emitters embedded inside artificial
colloidal opals. When an emitter was placed inside a PC with
the anisotropic band structure, the anisotropy would imprint
on the SE of the system if the emission frequency lay in the
forbidden gap. For the emission frequency of the QDs lying
inside the forbidden gap, fluorescence and no SE from the QDs
embedded inside colloidal opals with the strong and weak
anisotropic band structure were observed, separately. There
exists inconsistency between the experimental observation
and previous theoretical studies, which predict no SE in the
anisotropic PCs if the emitter’s frequency lying inside the
band gap. Experimental results showed the fundamental SE
difference between the isotropic and anisotropic PCs. We
believe that such a different SE is due to the dynamical
discrepancy between the SE of anisotropic and isotropic PCs.

The SE behavior of the anisotropic PC system has also
been studied by Kofman et al. [12] and John et al. [13,21,22].
Kofman et al. predicted that the anisotropic property would
lead to the strong inhibition of the decaying behavior of
the system. The result of John et al. exhibited a nonzero
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FIG. 1. (Color online) (a) A two-level atom with excited state |2〉
and ground state |1〉. The transition frequency ω21 is nearly resonant
with the frequency range of the PBG reservoir. (b) Directional
dependent dispersion relation near band edge with edge frequency
ωc. (c) DOS of the anisotropic one-band effective mass model.

excited-state population in the steady state for the atomic
transition frequency lying near the band edge. Both conclu-
sions are inconsistent with the experimental observation where
anisotropy enhances the emission and no photon-atom bound
state is observed if the emission frequency lies inside and near
the band edge. In this paper, we study the dynamics of SE from
a two-level atom embedded in a PC with anisotropic one-band
model (Fig. 1). Fractional calculus, which was validated as a
better mathematical method for studying the SE behavior of
the atom-field interaction in PCs [8], is applied to solve the
non-Markovian dynamics of the anisotropic optical system
with threshold-like DOS. We find that the anisotropic property
of the system enhances the SE of the system which agrees with
the experimental observation by Barth et al. [20]. There still
exist photon-atom bound states deep in the gap. The bound
states, occurring near the band edge of the isotropic reservoir,
become the decaying states in the anisotropic system. Such a
change is due to there being less photon DOS, and then leading
to the existence of the diffusion field near the band edge of the
anisotropic PC. We also study effects of dispersion curvatures
on the changes of the photonic density of states. The SE of
the system with various curvatures of dispersion are solved
by the fractional calculus and discussed on the basis of the
curvature-dependent photon DOS and coupling strength.

The paper is organized as follows. In Sec. II, we show the
basic SE theory of an atom in an anisotropic PC. Therein,
the curvature dependent photon DOS and memory kernel
referred to those derived by John et al. [13,21,22] are illustrated
in Appendix A. In Sec. III, we solve the kinetic equation
of the SE of an atom using the fractional calculus and
express the analytical solution in terms of the fractional
exponential function. The SE phenomenon of the anisotropic
system is compared with that of the isotropic system. The
spectral information of the anisotropic system consistent with
the dynamical behavior is also addressed here based on the
calculation presented in Appendix B. The new topic of the
influence of curvature of the anisotropic dispersion relation on
the dynamical behavior of the SE is discussed here as well.
Finally, we summarize our results in Sec. IV.

II. BASIC THEORY OF A TWO-LEVEL ATOM IN AN
ANISOTROPIC ONE-BAND PHOTONIC CRYSTAL

When the system of a two-level atom coupled to the
field reservoir in a PC with anisotropic one-band model is
considered, the Hamiltonian for this atom-field interacting

system can be written as

H = h̄ω21σ22 +
∑

�k
h̄ω�ka

†
�ka�k + ih̄

∑
�k

g�k(a†
�kσ12 − σ21a�k),

(1)

where σij = |i〉〈j | (i, j = 1, 2) are the atomic operators for
a two-level atom with excited state |2〉, ground state |1〉,
and resonant transition frequency ω21; a�k and a

†
�k are the

annihilation and creation operators of the radiation field; ω�k
is the radiation frequency of mode �k in the reservoir, and

the atom-field coupling constant g�k = ω21d21
h̄

[ h̄
2ε0ω�kV

]
1
2 ê�k · ûd is

assumed to be independent of atomic position with the fixed
atomic dipole moment �d21 = d21ûd . Here V is the sample
volume, ê�k is the polarization unit vector of the reservoir mode
�k, and ε0 is the Coulomb constant. For simplicity, we consider
one polarization direction for each mode �k.

In the single photon sector, the wave function of the system
has the form

|ψ(t)〉 = B(t)e−iω21t |2, {0}〉 +
∑

�k
C�k(t)e−iω�k t |1, {1�k}〉 (2)

with initial condition B(0) = 1 and C�k(0) = 0. Here B(t)
labels the probability amplitude for the atom in its excited
state |2〉 with an electromagnetic vacuum state and C�k(t) for
the atom in its ground state |1〉 with a single photon in mode
�k with frequency ω�k . We got the equations of motion for
the amplitudes by projecting the time-dependent Schrödinger
equation on the one-photon sector of the Hilbert space as

d

dt
B(t) = −

∑
�k

g�kC�k(t)e−i��k t , (3)

d

dt
C�k(t) = g�kB(t)ei��k t (4)

with detuning frequency ��k = ω�k − ω21. By substituting the
time integration of Eq. (4) into Eq. (3), we have the time
evolving equation of the excited-state probability amplitude

d

dt
B(t) = −

∫ t

0
G(t − τ )B(τ )dτ (5)

with the memory kernel G(t − τ ) = ∑
�k g2

�ke
−i��k (t−τ ). This

memory kernel is related to the dispersion relation of photon
reservoir. For the anisotropic photonic band gap (PBG)
reservoir, the dispersion relation has a vector form and could
be expressed by the effective-mass approximation as [23]

ω�k ≈ ωc + A(�k − �kc)2, (6)

where A ∼= f ωc/k2
c = f c2/ωc signifies different curvatures

in different directions with scaling factor f whose value is in
the order of unity and depends on the nature of the dispersion
relation near the band edge ωc. This anisotropic dispersion
relation leads to the curvature-dependent photon DOS (see
Appendix A)

ρ(ω) = 1

4π2

√
ω − ωc

A3
	(ω − ωc), (7)

where 	(x) is the Heaviside step function. This photon DOS
has threshold-like behavior near band edge frequency ωc which
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results in the very different dynamical behavior of this atom-
field interacting system from that of free space. The related
memory kernel of the anisotropic system could be expressed
as (see Appendix A)

G(t − τ ) = ω2
21d

2
21

4ε0h̄

∫ ∞

0
dω

ρ(ω)

ω
e−i(ω−ω21)(t−τ ) (8)

if we assume the direction of atomic dipole moment ûd is
parallel to the polarization vector ê�k . Substituting the photon
DOS in Eq. (7) into this memory kernel, we obtain the memory
kernel as

G(t − τ ) = ω2
21d

2
21

√
ωc

8ε0h̄(πA)3/2
ei(
c+ωc)(t−τ )

{
e−i[ωc(t−τ )+π/4]

√
ωc(t − τ )

− √
π [1 − �(

√
iωc(t − τ ))]

}
. (9)

This full expression for memory kernel G(t − τ ) is the same
as that derived by John et al. in Ref. [22]. If ωc(t − τ ) � 1,
we can asymptotically expand the error function �(x) to the
second order, and the memory kernel becomes

G(t − τ ) = β1/2/f 3/2

√
π(t − τ )3/2

e−i[3π/4−
c(t−τ )] (10)

with the detuning frequency 
c = ω21 − ωc of the atomic
transition frequency ω21 from the band edge frequency ωc

and the coupling constant β1/2 = (ω2
21d

2
21

√
ωc)/(16πε0h̄c3) in

units of Hz1/2. We will use this approximate memory kernel
to investigate the SE behavior of the system because it is the
approximate form of the full expression of memory kernel in
Eq. (10) for ωc(t − τ ) � 1. This condition, ωc(t − τ ) � 1,
could be satisfied for all but the τ = t point (as ωc ≈ 1015

Hz for optical transition), which would not affect the integral
calculation of the SE probability as being omitted. Substituting
this approximate memory kernel into the time evolving Eq. (5)
and making the transformation B(t) = ei
ctD(t), we have the
kinetic equation of this anisotropic system as

d

dt
D(t) + i
cD(t) = β1/2eiπ/4

√
πf 3/2

∫ t

0

D(τ )

(t − τ )3/2
dτ. (11)

III. DYNAMICS OF SPONTANEOUS EMISSION

In this section, we will use fractional calculus to solve
the kinetic equation of the anisotropic system and discuss
the dynamics of SE on the basis of the obtained analytical
solution. We have recently applied this approach to study
the dynamics of SE from an atom embedded in a PC with
an isotropic dispersion relation [8]. It was found that the
dynamical behavior of SE from the optical systems with
threshold-like photon DOS can be correctly and concisely
described by fractional calculus.

When the right-hand side of the kinetic Eq. (11) is
considered, we can express it as a Riemann-Liouville fractional
differentiation operator [24–26] with order ν = 1/2. That is,∫ t

0

D(τ )

(t − τ )3/2
dτ = �(−1/2)

d1/2

dt1/2
D(t) (12)

with Gamma function �(x). The kinetic equation thus has a
fractional differential form as

d

dt
D(t) + i
cD(t) + 2β1/2eiπ/4

f 3/2

d1/2

dt1/2
D(t) = 0. (13)

In order to solve this fractional kinetic equation, we ma-
nipulated the fractional operators including the integral op-
erator (d−1/dt−1) and the fractional differentiation operator
d1/2/dt1/2. Mathematically, the adopted manipulation is not
unique provided that one could justify the function arrived at
is the solution of the original fractional differential equation.
The first step of our manipulation yields

D(t) − D(0) + i
c

d−1

dt−1
D(t) + 2β1/2eiπ/4

f 3/2

d−1/2

dt−1/2
D(t) = 0.

(14)

The second step gives

d1/2

dt1/2
D(t) + i
c

d−1/2

dt−1/2
D(t) + 2β1/2eiπ/4

f 3/2
D(t) = t−1/2

√
π

.

(15)

Here the initial condition D(0) = B(0) = 1 has been applied.
The probability amplitude D(t) can be solved by performing
the Laplace transform of the fractional derivatives including
[26]

L

[
d1/2

dt1/2
D(t)

]
= s1/2D̃(s) −

[
d−1/2

dt−1/2
D(0)

]
t=0

, (16)

L

[
d−1/2

dt−1/2
D(t)

]
= s1/2D̃(s), (17)

and

L[t−1/2] = �(1/2)√
s

, (18)

where D̃(s) is the Laplace transform of D(t). These procedures
give the Laplace transform of D(t) as

D̃(s) = 1

s + i
c + 2β1/2eiπ/4s1/2/f 3/2
. (19)

In order to express this equation as a sum of partial fractions,
we need to find the roots of the indicial equation Y 2 +
2β1/2eiπ/4Y/f 3/2 + i
c = 0, where we have converted the
variable s1/2 into Y . There are two kinds of roots for this
indicial equation: one with different roots Y1 	= Y2 and the
other with degenerate root Y1 = Y2. For the case of different
roots, D̃(s) could be expressed as

D̃(s) =
(

1

(
√

s − Y1)
− 1

(
√

s − Y2)

)
1

(Y1 − Y2)
(20)

with

Y1 = eiπ/4

(
−β1/2

f 3/2
+

√
β

f 3
− 
c

)
(21)

and

Y2 = eiπ/4

(
−β1/2

f 3/2
−

√
β

f 3
− 
c

)
. (22)
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For the degenerate case, we have β

f 3 = 
c. The indicial
equation becomes

Y 2 + 2
β1/2eiπ/4

f 3/2
Y + βeiπ/2

f 3
= 0 (23)

or (
Y + β1/2eiπ/4

f 3/2

)2

= 0. (24)

The partial fractions of D̃(s) can thus be written as

D̃(s) = 1(√
s + β1/2eiπ/4

f 3/2

)2 . (25)

The dynamical solution of the probability amplitude D(t) can
be obtained by applying the inverse Laplace transform on the
partial-fractional forms of D̃(s) for the two cases of different
roots and degenerate root. The applied formulas of the inverse
Laplace transform include

L−1

[
1

(
√

s − a)

]
= Et

(
−1

2
, a2

)
+ aEt (0, a2) (26)

and

L−1

[
1

(
√

s − a)2

]
= 2atEt

(
−1

2
, a2

)
+ (1 + 2a2t)

×Et (0, a2) + aEt

(
1

2
, a2

)
(27)

with Et (α, a) = tα
∑∞

n=0
(at)n

�(α+n+1) = d−α

dt−α eat being the two-
parameter fractional exponential function of variable t , order
α, and constant a [26]. The analytical solution for the fractional
kinetic equation [Eq. (13)] of the anisotropic photonic crystal
system is thus obtained. For β/f 3 	= 
c,

D(t) = 1

2eiπ/4
√

β/f 3 − 
c

[
Y 2

1 Et

(
1/2, Y 2

1

)
−Y 2

2 Et

(
1/2, Y 2

2

) + Y1e
Y 2

1 t − Y2e
Y 2

2 t
]
, (28)

and for β/f 3 = 
c,

D(t) = −2
β3/2ei3π/4

f 9/2
tEt

(
1

2
, iβ/f 3

)

− β1/2eiπ/4

f 3/2
Et

(
1

2
, iβ/f 3

)
+ (1 + 2itβ/f 3)eiβt/f 3

− 2
β1/2eiπ/4

f 3/2
t1/2/

√
π. (29)

Here we have applied the relation of the fractional exponen-
tial function for special values Et (−1/2, a) = aEt (1/2, a) +
t−1/2/

√
π and Et (0, a) = eat .

This analytical solution of Eq. (28) or Eq. (29), which has
so far not been obtained, determines the dynamical behavior of
the atomic excitation B(t) and the amplitude of the radiation
field which can be obtained via B(t) in a standard way [18,27].
In this solution, the behavior of the indicial roots Y1 and Y2

depends on the lying region of the atomic transition frequency
ω21 [see Eqs. (21) and (22)]. As the atomic frequency is in the
higher-energy region ω21 > ωc + β/f 3 (
c > β/f 3, region
of allowed band), Y 2

1 and Y 2
2 are complex and the solution

decays with time quickly. On the other hand, when the atomic
frequency lies in the region ω21 < ωc + β/f 3 (
c < β/f 3),
the square of these roots, Y 2

1 and Y 2
2 , is pure imaginary so

that the dynamical solution in Eq. (28) contains nondecaying
terms. These nondecaying terms oscillate individually with
time and form atom-photon bound states as the atomic
frequency lies deeply in the forbidden gap (ω21 
 ωc). Near
band edge (ω21

∼= ωc, Y 2
1

∼= Y 2
2 ), these nondecaying terms

interfere with each other severely which leads to the decaying
solution. This solution reveals that the anisotropic system
exhibits decaying behavior as the atomic frequency lies in
the region ω21 � ωc + β/f 3 near band edge (including the
allowed band edge and forbidden band edge) which agrees
with the experimental observation in Ref. [20] where SE
appeared with an extra angular anisotropy in the anisotropic
PC system as the emission frequency of the embedded QDs
lies in the forbidden gap. This result differs from that of
the previous studies [16–19] by Zhu et al. whose discussion
basis is the lying regions of the atomic transition frequency.
They predicted that the bare atomic transition frequency lying
in the region ω21 < ωc + β1/2ω

1/2
c will be shifted into the

forbidden gap by the interaction with the radiation modes
where a photon-atom bound state is generated. That is, there
will not exist SE in the anisotropic PC system if the atomic
transition frequency lies in the region either near the allowed
band edge or near the forbidden band edge which disagrees
with the experimental result in Ref. [20].

Instead of analyzing the integration contours for the proba-
bility amplitudes in previous solving procedures [16–19], we
plot the dynamical behavior of this anisotropic system directly
from our analytical solution of Eqs. (28) and (29) for f =
1. Based on the excited-state probability amplitude P (t) =
|B(t)|2 = |D(t)|2, the dynamical behavior of the anisotropic
system is shown in Fig. 2. It can be seen from Fig. 2 that
typical characteristic of non-Markovian dynamics including
nonexponential decay and atom-photon bound states exists

FIG. 2. (Color online) Dynamics of SE of the anisotropic PC
system as a function of βt for several atomic detuning frequencies
from the band edge in units of β, 
c/β = (ω21 − ωc)/β. Systems
with positive atomic detuning frequencies 
/β > 0 have atomic
frequencies lying within the allowed band while those with negative
ones 
/β < 0 inside the PBG.
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in the system which results from the special (threshold-like)
DOS [Eq. (7)]. When the atomic transition frequency lies in
the band gap (
c < 0), the system exhibits photon-atom bound
states and decaying states in the allowed band (
c > 0). The
dynamical behavior of the anisotropic system is almost the
same as that of the isotropic system [8] except for the smaller
probability of bound states and faster decaying behavior of
decaying states. That is, the anisotropic property enhances
the decaying behavior of this atom-field interacting system.
This result is consistent with the experimental observation in
Ref. [20] where SE appears only in anisotropic PC but not in
the weak anisotropic PC system.

The physical reason of anisotropy enhancing decay can be
obtained through comparing the difference of the anisotropic
and isotropic PC systems. In these two systems, the most
prominent difference is the behavior of photon DOS near
band edge. The photon DOS is proportional to 1/

√
ω − ωc

for an isotropic PC system and
√

ω − ωc for an anisotropic
system where ω and ωc are the eigenmode frequency and band
edge frequency. The singularity of photon DOS in isotropic
system near band edge leads to the appearance of coherent
propagating field while not large enough photon DOS in
anisotropic system results in the coexistence of incoherent
diffusion field and coherent propagating field. The energy
transfer from the localized field to the diffusion field for the
bound states of the anisotropic system leads to the smaller
probability in the excited level. The coexisting energy of
diffusion field and propagating field for decaying states results
in faster decaying of the excited population. That is, anisotropy
accompanied by not large enough DOS and the existence of
diffusion field leads to the enhancement of decaying behavior
of the bound states and decaying states near band edge.

The SE behavior of the anisotropic PC system could also be
studied through the emission spectrum shown in Fig. 3. This
figure is plotted according to Eq. (B9) where the definition
of emission spectrum is based on the Wiener-Khintchine
relation [21,22,28]. (see Appendix B) This spectrum ex-
hibits no emission of radiation in the photonic band gap

FIG. 3. (Color online) Emission spectra near an anisotropic band
edge of a PC for several atomic detuning frequencies from the band
edge in units of β, 
c/β = (ω21 − ωc)/β. Systems with positive
atomic detuning frequencies 
/β > 0 have atomic frequencies lying
within the allowed band while those with negative ones 
/β < 0
inside the PBG.

(ω − ωc < 0) and a Lorentzian shape throughout the allowed
band (ω − ωc > 0) because of the absence and abundance
of photon DOS in these two regions. For the region near
band edge (ω − ωc → 0), this spectrum shows non-Lorentzian
shapes with fast increasing amount of emission. Since the
photon DOS is a slowly increasing square root dependence of
detuning frequency, we could deduce that this non-Lorentzian
behavior of the spectrum stands for the existence of the
diffusion field near band edge.

The SE behavior of a two-level atom embedded in an
anisotropic PC has also been studied by Kofman et al. in
Ref. [12] and John et al. in Refs. [13,21,22]. In Kofman’s
result, the relative peak value of the non-Lorentzian spectrum
to the Lorentzian one (about 1/25) is smaller than ours
(about 4/25). The appreciable values of the cut-off smoothing
parameter, standing for the anisotropic property, result in
the strong inhibition of the decaying behavior, which is
inconsistent with the experimental observation of anisotropy
enhancing the decaying behavior [12]. The work of Kofman
et al. uses a different model of the photon DOS and that this
model itself (but not its solution which is most likely correct)
may be the reason of the discrepancy between their results
and the experimental (and the present theoretical) results.
On the other hand, John et al. observed that the dynamical
SE exhibits a nonzero excited-state population for the atomic
transition frequency lying within the gap which corresponds
to an atom-photon bound state. This nonzero excited-state
population exhibits larger values than those of our results.
For example, as the atomic frequency lies in the gap of

c/β = (ω21 − ωc)/β = −5, the non-zero value in John’s
result is 0.6 and 0.35 in ours. This value becomes 0.375 in
John’s and 0.075 in ours for 
c/β = −1. The larger population
for the bound states near band edge means that the SE can
hardly occur as the emission frequency lies within the band
gap which contradicts the experimental result.

The physical reason of the anisotropy enhancing the SE
is further investigated in the following on the basis of the
dynamical discrepancy of SE between the anisotropic and
isotropic systems with the atomic transition frequency near
band edge. In Fig. 4, we plot the dynamics of SE for these
two systems with the atomic frequency lying close to the
band edge. It reveals that states in the isotropic system exhibit
bound (
c < 0) or slow decaying (
c > 0) behavior, whereas,
in the anisotropic system, almost all of these states display
fast decaying behavior. That is, the bound states close to the
band edge of the isotropic system become the decaying states
which lead to the appearance of SE in the anisotropic system.
This result is consistent with the experimental observation in
Ref. [20]. In order to investigate the local optical properties
of PCs, Barth et al. doped the PCs of artificial colloidal
opals with CdSe on ZnS core-shell quantum dots whose
emission frequency lies inside the forbidden gap and the line
width was narrower than the width of the band gap. They
demonstrated that the characteristic patterns of fluorescence
image from different quantum dots carried information on the
modification of the optical mode density which arose from the
direction-dependent photonic stop band. The anisotropic band
structure of the artificial colloidal opals, which corresponds to
the direction-dependent photonic stop band, brought an extra
angular anisotropy of fluorescence image that was detected
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FIG. 4. (Color online) Dynamics of SE of the anisotropic (Aniso.,
solid lines) and isotropic (Iso., dashed lines) PC systems with
atomic frequencies lying close to the band edge of PBG reservoir,
(
c/β = (ω21 − ωc)/β → 0). Systems with positive atomic detuning
frequencies 
/β > 0 have atomic frequencies lying within the
allowed band while those with negative ones 
/β < 0 inside the
PBG.

by defocused wide-field image of the single CdSe on ZnS
quantum dots. These quantum dots did not emit light if they
were embedded inside a PC with weak anisotropy of band
structure. That is, SE appears only in the anisotropic PC as the
emission frequency of the embedded quantum dots lies in the
forbidden gap, but they did not emit light with bound states
in the weak anisotropic PC system. Our results are validated
by the presence of SE in the anisotropic PC which differs
from the prediction of the previous studies [12,16–18,21,22].
Dynamical difference of the isotropic and anisotropic PC
systems leads to the appearance of fluorescence image in the
anisotropic system. Close to the band edge, photon DOS in the
anisotropic case is nearly zero so that the incoherent diffusion
field emerges to release some of the radiation energy. This
diffusion field increases as the atomic frequency shifts to the
band edge in the band gap and decreases as the frequency
further shifts to the allowed band. The energy transferring from
localized field to diffusion field reaches maximum at the band
edge. The dynamical behavior of the two systems arriving
at the great difference close to the band edge illustrates the
existence of the diffusion field in the anisotropic system.

In Fig. 5, we show how the curvature of the dispersion
relation affects the dynamical behavior of the anisotropic
system which has so far not been explored. The solid lines
are plotted for the system with the larger curvature (f = 1)
of dispersion relation and dotted lines for the system with the
smaller curvature (f = 0.8). For the bound states (
c < 0),
the excited-state probability P (t) of the system with the smaller
curvature has the smaller value than that of the system with the
larger curvature. On the other hand, the excited-state probabil-
ity of the system with smaller curvature decays faster than that
of the larger-curvature system for the decaying states (
c > 0).
Without changing the units of energy (coupling constant β) and
time (1/β), the dispersion relation of the smaller curvature has
the larger DOS and coupling strength. As the atomic transition
frequency moves from the band gap to the allowed band, this
larger DOS leads to the earlier appearance of the diffusion
field that corresponds to the earlier energy transfer from the

FIG. 5. (Color online) Dynamics of SE of the anisotropic PC
systems with two kinds of curvatures in the dispersion relation. Solid
lines for the system with smaller-curvature dispersion relation and
dashed lines for the larger-curvature system. These systems have
atomic frequencies lying within the PBG.

localized field to the diffusion field for the bound states and ear-
lier coexisting energy of the diffusion field and the propagating
field for the decaying states. This earlier energy transfer and
coexistence result in the smaller value of probability in the
bound states and fast decaying in the decaying states along
different wave vectors in the anisotropic system.

IV. CONCLUSION

We have used fractional calculus to solve the non-
Markovian dynamics of the optical system consisting of a
two-level atom coupled to a PBG reservoir with anisotropic
one-band model. The dynamical SE shows that the anisotropic
property enhances the decaying behavior of the states through
the smaller probability of the photon-atom bound states
(
c < 0) and the faster decaying rates for the decaying states
(
c > 0). This theoretical result of anisotropy enhancing
the decaying behavior is consistent with the experimental
observation in Ref. [20] where SE happens only in the strong
anisotropic PCs but not in the isotropic (weak anisotropic)
system for the emission frequency lying in the forbidden gap.
Investigating the dynamical difference between the isotropic
and anisotropic systems, we found the reason of anisotropy
enhancing decay originates from the the different photon DOS
in the two systems and the existence of diffusion field in
the anisotropic system. Not large enough DOS near band
edge in the anisotropic system leads to the appearance of
the incoherent diffusion field and energy transfer from the
localized field to the diffusion field. The dynamical difference
between the anisotropic and isotropic systems manifests itself
more clearly as the atomic transition frequency lies close to the
edge of the PBG reservoir. With the same atom-field coupling
strength and detuning frequency in the forbidden gap, the
bound states in the isotropic system turn into the unbound
states in the anisotropic system. This change leads to the
presence of SE in the anisotropic system that agrees with the
experimental observation in Ref. [20]. The presence of SE in
the anisotropic photonic crystal validates the correctness of our
results while illustrates the inconsistency with the prediction
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of the previous studies. The existence of the diffusion field
in the anisotropic system is elucidated both by the large
non-zero values of emission spectra near the band edge and
the dynamical behavior of the two systems arriving at the
great difference close to the band edge. We also investigated
the topic of how the curvature of the anisotropic dispersion
relation affects the dynamical behavior of the anisotropic
system. Without changing the units of energy and time, the
dispersion relation of the smaller curvature has larger DOS
and coupling strength which leads to the earlier appearance
of the diffusion field and energy transfer. This earlier energy
transfer results in the smaller and faster-decaying probability
along different wave vectors in the anisotropic PC system.

ACKNOWLEDGMENTS

We would like to gratefully acknowledge partial finan-
cial support from the National Science Council (NSC),
Taiwan under Contract Nos. NSC-97-2811-E-009-023, NSC-
96-2628-M-009-001-MY3, NSC-96-2112-M-034-002-MY3,
and NSC-96-2628-M-009-001-MY3.

APPENDIX A: CALCULATION OF THE DENSITY OF
STATES AND MEMORY KERNEL

We first derived the density of states for the anisotropic
model in the effective-mass approximation, ρ(ω). The photon
DOS, which counts the number of modes per unit volume
available at a given frequency ω, can be written as

ρ(ω) = 1

V

∑
�k

δ(ω − ω�k), (A1)

where V is the quantization volume and one polarization
direction for each mode �k is considered. By introducing the
anisotropic dispersion relation, ω�k = ωc + A(�k − �kc)2, and
applying the continuum approximation, we can further express
Eq. (A1) as

ρ(ω) = 1

(2π )3

∫ ∞

0
d�kδ[ω − ωc − A(�k − �kc)2]. (A2)

Here we assume a fixed orientation of the atomic dipole
moment under the electric dipole approximation. Making
the substitution of �q = �k − �kc and performing the angular
integration, we obtained the photon DOS as

ρ(ω) = 1

4π2

√
ω − ωc

A3
	(ω − ωc), (A3)

which was articulated in Eq. (7) of the text.
We then calculated the memory kernel for this anisotropic

system. Starting from the definition of memory kernel below
Eq. (5) and inserting a δ function, we had the memory kernel

G(t − τ ) =
∑

�k
g2

�ke
−i(ω�k−ω21)(t−τ )

=
∫ ∞

0
dωδ(ω − ω�k)

∑
�k

g2
�ke

−i(ω−ω21)(t−τ ) (A4)

with g2
�k = [ω2

21d
2
21(ê�k · ûd )2]/(2ε0h̄ω�kV ). If we assumed

ê�k · ûd = 1 (the direction of atomic dipole moment ûd is

parallel to the polarization vector ê�k) and considered the
definition of photon DOS in Eq. (A1), the memory kernel
became

G(t − τ ) = ω2
21d

2
21

4ε0h̄

∫ ∞

0
dω

ρ(ω)

ω
e−i(ω−ω21)(t−τ ). (A5)

By substituting the photon DOS in Eq. (A3) and applying
the integral formula

∫ ∞
0 dx(x2e−b2x2

)/(x2 + a2) = √
π/2b −

aea2b2
π [1 − �(ab)]/2 with the error function �(x) =

(2/
√

π )
∫ x

0 dte−t2
[29], we obtained the memory kernel as

G(t − τ ) = ω2
21d

2
21

√
ωc

8ε0h̄(Aπ )3/2
ei(
c+ωc)(t−τ )

{
e−i[ωc(t−τ )+π/4]

√
ωc(t − τ )

− √
π [1 − �(

√
iωc(t − τ ))]

}
. (A6)

This full expression of memory kernel was listed in Eq. (9)
of the text where the coefficient before the error function was√

π instead of
√

π/2 in the result of John et al. in Ref. [21].
As we expanded the error function asymptotically to second
order, it gave

1 − �(
√

iωc(t − τ )) = 1

π
e−iωc(t−τ )

{ √
π√

iωc(t − τ )

−
√

π/2

[iωc(t − τ )]3/2

}
, (A7)

which was valid for ωc(t − τ ) � 1. This asymptotic expansion
of the error function led to the asymptotic memory kernel

G(t − τ ) ∼= ω2
21d

2
21

16ε0h̄(Aπ )3/2ωc

e−i[3π/4−
c(t−τ )]

(t − τ )3/2
. (A8)

This neat form of memory kernel could be obtained only if
the valid coefficient

√
π/2 was in front of the error function.

It could be further expressed as the form of Eq. (10) shown in
the text

G(t − τ ) = β1/2/f 3/2

√
π (t − τ )3/2

e−i[3π/4−
c(t−τ )], (A9)

if we defined the coupling constant β1/2 = (ω2
21d

2
21

√
ωc)/

(16πε0h̄c3). Here the phase factor e−i3π/4 was the same as
those obtained by John et al. in recent works of Refs. [13,22]
but different from that in earlier work of Ref. [21].

APPENDIX B: CALCULATION OF THE EMISSION
SPECTRUM

The emission spectrum of the anisotropic PC system has
been studied by Kofman et al. [12] and John et al. [22].
However, apparent inconsistency existed between their results
and with the experimental observation by Barth et al. [20]. For
example, John et al. observed a long spectral tail that extended
far into the allowed electromagnetic continuum for all atomic
detunings near the band edge while Kofman saw a much
weaker nonexponential tail. Besides, The relative amount of
emitted radiation in John’s result for the atomic frequency at
band edge to that in the allowed band (about 1/3) was much
larger than that obtained by Kofman (about 1/25). In order to
illuminate the effect of the anisotropy on the PC system, we
calculate the emission spectrum of the system again.
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The emission spectrum of the system S(ω) was defined
by the ensemble average of the correlation function of the
excited-state probability amplitude B(t) through the Wiener-
Khintchine relation as [21,22,28]

S(ω) ≡
∫ ∞

−∞
ei(ω−ω21)τ 〈B(τ )B(0)〉dτ + c.c., (B1)

where 〈. . .〉 stands for the ensemble average and c.c. for the
complex conjugate of the leading term. If we used the initial
condition B(0) = 1 and assumed the ensemble average was
stationary, which meant independent of time, this spectrum
could be written as

S(ω) = 2Re

{∫ ∞

−∞
ei(ω−ω21)τB(τ )dτ

}
= 2Re{B̃[s = −i(ω − ω21)]} (B2)

with Re{. . .} standing for the real part of the function and
B̃(s) being the Laplace transform of B(t). This Laplace
transform B̃(s) could be obtained through applying the Laplace
transformation to the time evolving equation

dB(t)

dt
= −

∫ t

0
G(t − τ )B(τ )dτ. (B3)

It gave

B̃(s) = 1

s + G̃(s)
(B4)

with G̃(s) being the Laplace transform of the memory kernel,
i.e.,

G̃(s) ≡ ω2
21d

2
21

4ε0h̄

∫ ∞

0
dt

[
e−st

∫ ∞

0
dω

ρ(ω)

ω
e−i(ω−ω21)t

]
.

(B5)

When the anisotropic photon DOS [Eq. (7)] is considered, this
memory kernel became

G̃(s) = ω2
21d

2
21

8A3/2π2ε0h̄

∫ ∞

0
dω

√
ω

(ω + ωc)(s + iω − i
c)
(B6)

with the detuning frequency 
c = ω21 − ωc. The complex
integral in the memory kernel can be dealt by the calculus
of residues [30], which gave

G̃(s) = 4ωcβ
1/2

f 3/2

ei3π/4

√
s − i
c + √

iωc

(B7)

with β1/2 = (ω2
21d

2
21

√
ωc)/(16πε0h̄c3) and f = Aωc/c

2. Sub-
stituting this memory kernel into Eq. (B4) and using the rela-
tion B̃(ω) = B̃ [s = −i(ω − ω21)], we obtained the expression
of B̃(ω). For ω > ωc,

B̃(ω) = (ω/ωc)

ωc

{
4

f 3/2

√
β

ωc

√(
ω

ωc

)
− 1 − i

(
ω

ωc

) [ (
ω

ωc

)

− 1 −
(


c

ωc

)
+ 4

f 3/2

√
β

ωc

/ (
ω

ωc

)]}−1

, (B8)

and for ω < ωc,

B̃(ω) = i

ωc

{(
ω

ωc

)
− 1 −

(

c

ωc

)

+ 4

f 3/2

√
β

ωc

/[√
1 −

(
ω

ωc

)
+ 1

]}−1

. (B9)

Taking the real part of B̃(ω), we got the emission
spectrum

S(ω) ∝
√

β

ωc

2b
(

ω
ωc

)√(
ω
ωc

) − 1

b2
(

ω
ωc

− 1
)
(β/ωc) + (

ω
ωc

)2[( ω
ωc

) − 1 − (

c

ωc

) + b

√
β

ωc

/(
ω
ωc

)]2
	

(
ω

ωc

− 1

)
(B10)

with b = 4/f 3/2. This emission spectrum differed from that
obtained by John et al. in Ref. [22] with one more frequency
dependent factor (ω/ωc) in the numerator. This factor appeared
naturally as the phase factor ei3π/4 was merged into the
denominator of the Green function. In Fig. 3, the emission
spectrum was plotted for several atomic detuning frequencies

c/β with f = 1. We saw the spectrum exhibited the
Lorentzian behavior throughout the allowed band (ω − ωc > 0)
with exponentially decaying tail, which was the same as that
observed by Kofman et al. [12]. This Lorentzian spectrum
elucidated the atom-field interaction in this region to be
Markovian as in free space. As expected, the spectrum showed
no emission of radiation in the region of photonic band
gap (ω − ωc < 0) because of the lack of the photon density
of modes. Between these two extremes, near the allowed
band edge (ω − ωc → 0), the system exhibited fast increasing

amount of emission illustrating the existence of the diffusion
field. Photon DOS of the anisotropic system increased slowly
with the square root detuning frequency from band edge
in this region, i.e., ρ(ω) ∝ √

ω − ωc. Emission from the
coherent propagating field occupying these few DOS was
relatively little compared with that from the field without
photon DOS, named incoherent diffusion field. Diffusion field
existed in this anisotropic system was thus elucidated by the
fast increasing amount of emission near band edge. When
the relative amount of the emitted radiation from systems with
different atomic detuning frequencies (
c/β = (ω21 − ωc)/β)
was considered, we observed that our result had values
between those of John’s and Kofman’s. For example, this
relative value was (4/25) for emission from system with the
atomic detuning frequency at the band edge (
c/β = 0) to
that in the allowed band (
c/β = 2), larger than that by
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Kofman et al. (1/25) and smaller that by John et al. (2/3)
[22]. The larger value than that of Kofman’s result illustrated
again that anisotropy of the system enhanced the decaying

behavior. The agreement between our spectral and dynamical
SE was interpreted by the smaller value than that of John’s
result.
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