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Abstract—To reduce the time-to-market and photomask cost for ad-
vanced process technologies, metal-only engineering change order (ECO)
has become a practical and attractive solution to handle incremental de-
sign changes. Due to limited spare cells in metal-only ECO, the new added
netlist may often violate the input-slew and output-loading constraints
and, in turn, delay or even fail the timing closure. This paper presents a
framework, named metal-only ECO slew/cap solver (MOESS), to resolve
the input-slew and output-loading violations by connecting spare cells
onto the violated nets as buffers. MOESS performs two buffer-insertion
schemes in a sequential manner to first minimize the number of inserted
buffers and then resolve timing violations, if any. The experimental results
based on industrial designs demonstrate that MOESS can resolve more
violations with fewer inserted buffers and less central processing unit
runtime compared to an electronic design automation vendor’s solution.

Index Terms—Engineering change order (ECO), physical design,
slew/loading violation.

I. Introduction

For current process technologies, the cost of photomasks
increases dramatically per generation [1], [2]. To reduce this
expensive cost of photomasks, the incremental design changes
are enforced to be implemented by changing only the metal
layers while the base layers (for cells) remain the same. As
a result, the original photomasks used for printing the cells
can be reused in the next tape-out. This reuse of the base-
layer photomasks can not only save the cost of photomasks
themselves but also reduce the tape-out turn-around time since
the base layers could be manufactured in advance. This type
of incremental design changes is referred to as metal-only
engineering change order (ECO).

To realize metal-only ECO, some design techniques have
to be developed. First, spare cells need to be spread all over
the design so that the change can be made at every possible
location. This spare-cell allocation determines the affordable
ECO size and its area overhead. Electronic design automation
(EDA) vendors already provide some solutions to it. Second,
a more complicated router is required to efficiently handle
a large number of existing obstacles and design rules in
ECO. Some previous work addressed these issues by using an
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implicit connection graph [3], a graph-reduction technique [4],
or a timing-aware router [5]. Third, the violations of timing
factors may significantly increase after metal-only ECO. Thus,
a solver which can automatically remove those timing-related
violations is needed to shorten the timing closure of metal-
only ECO. Unfortunately, the current solutions provided by
EDA vendors are not effective enough.

Input slew and output loading are two important timing
factors to sign off the timing closure, which are limited by
the slew constraint and loading constraint, respectively. Any
violation to these two constraints may lead to a wrong timing
estimation of the design, and in turn, degrade its performance
and yield.

Several buffer-insertion techniques [6]–[10] are proposed
to resolve the violation of the slew, loading, and timing
constraint. However, most previous works assume that its gate
placement is able to change, and hence cannot be applied to
metal-only ECO.

In metal-only ECO, solving the timing-related violation
relies on the utilization of pre-placed spare gates. [11]
proposed a technology-remapping technique to fix timing
violations, which may require more pre-placed spare cells to
support the desired remapping. [12] inserts constant values
to the inputs of spare cells and applies a technology-mapping
technique to replace the original cells with spare cells. It may
require more universal but larger-area spare cells, such as
and-or-invert and multiplexer.

Some commercial tools also provide options to support
buffer insertions in metal-only ECO. However, the final lo-
cation of the inserted buffers often deviates from the ideal
location due to the lack of physical information on spare cells
and routing resources during the buffer insertion.

This paper presents a metal-only-ECO framework, named
metal-only ECO slew/cap solver (MOESS), which resolves
slew and loading violations by using pre-placed spare gates
as inserted buffers. MOESS also can resolve the timing viola-
tions, implicitly or explicitly. For each violation, the proposed
framework first finds the best buffer candidates from all spare
gates and then utilizes a commercial back-end tool to insert
the selected buffer through the tool’s interface. Therefore, the
focus of this framework is on how to accurately estimate the
output loading (input slew) of the buffers newly inserted with
the adopted back-end tool. This framework can be applied
based on any commercial back-end tool as long as the design
database can be queried through an open interface.

II. Proposed ECO Slew/Loading Solver

A. Overall Flow of MOESS
After the metal-only ECO is done by using netlist difference

and spare cell mapping, tools will report the pins violating slew
or loading constraints. Based on this timing report, MOESS
will insert buffers through a commercial automatic placement
and routing (APR) tool [15] to resolve each slew or loading
violation. In MOESS, the slew constraint of a gate g can be
transferred into a corresponding loading constraint, denoted as
OALg (output available loading). The definition of OALg is
the maximum output loading of g which can generate a output
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Fig. 1. Overall flow of MOESS.

Fig. 2. Flow of ESB buffer-insertion scheme.

slew smaller than the slew constraint assuming that the input
slew of g is equal to the slew constraint. Thus, input-slew
violations can be resolved by the same approach as used for
solving output-loading violations.

Fig. 1 shows the overall flow of MOESS. The first stage
of MOESS is to increase the candidate pool of spare buffers
by collecting usable spare cells. The second stage of MOESS
is to apply ECO save buffer (ESB) buffer-insertion scheme
to resolve the slew and loading violations using minimum
buffers. After the slew/loading violations are resolved, most
timing violations can be resolved as well. Then a timing-
analysis tool will report the remaining critical paths violating
timing constraints. Along those critical paths, we identify the
nets which are inserted with buffers in stage 2. Then, we
perform the ECO care timing (ECT) buffer-insertion scheme to
re-insert the buffers and shorten their setup time while solving
slew and loading violations. For the timing violations which
still cannot be resolved, MOESS will enforce the priority
routing on the critical nets by using top metal or double
spacing, and then re-route the other non-critical nets.

Fig. 2 shows the steps of the ESB scheme for solving a
violation net. Each step will be briefly introduced in later
sections. For details, please refer to our previous work [13].

B. Obtain Minimum-Chain Order of Terminal Pins
When grouping the terminal pins to be driven by a buffer,

we hope that the grouped pins could be not only in the
same neighborhood and but also in the same direction toward
the violation gate. Otherwise, the wire loading of driving
the grouped pins can be too large. To obtain such grouping,
we modified a minimum-chain (MC) algorithm in [14] to get
the MC order of terminal pins. The concept of this minimum-
chain algorithm is to assign the closest pin as the next ordered
pin each time, starting from the violation gate g (the order of

g is 0). By connecting the terminal pins one by one with such
order, their total wire length can approach minimal. Also, the
terminal pins with adjacent MC order are more likely in the
same direction toward the violation gates as well.

C. Group Terminal Pins Using MC Order
In step B of Fig. 2, terminal pins of the violation net are

first grouped assuming a type-t buffer b is used. We start from
the buffer type with the highest driving capability to the one
with the lowest. Then, we follow the MC order to serially add
the terminal pins into the group p list. The objective here is
to obtain a group of pins p list such that the output loading
of b for driving all grouped pins in p list is close to but not
exceed the OALb. The following equation estimates the output
loading of b for driving p list [denoted as GOLb(p list)]

GOLb(p list) =
n∑

i=1

(
InCpi

+ WL(pi, pi−1)
)

(1)

where n is the size of p list, pi is the ith ordered pin in
p list, InCpi

is the input capacitance of pi, WL(pi, pi−1)
is the wire loading estimation between pi and pi−1, and
WL(p1, p0) is equal to 0. The computation of WL(pi, pi−1)
will be detailed in Section IV.

D. Calculate Ideal Buffer Location
To ensure that the inserted type-t buffer can drive all the

grouped pins in p list, we first calculate the output remained
load of the buffer b, denoted as ORLb, using

ORLb = OALb −GOLb(p list). (2)

The amount of ORLb determines the affordable wire length
connecting from inserted buffer b to the last-ordered pin pn in
p list. Thus, the ideal location of the inserted buffer b must
satisfy the following equation:

|Xb −Xpn
| · Uh(b, pn) + |Yb − Ypn

| · Uv(b, pn) ≤ ORLb (3)

where Xa and Ya represent the X-axis and Y-axis coordinates
of pin a, respectively. Uh(p1, p2) and Uv(p1, p2) represent
the wire loading associated with a horizontal and vertical
distance units, respectively. To make the buffer b closer to the
source pin g, we limit the ideal location of b on the straight
line between g and pn, which is represented by

(Yb − Ypn
)/(Xb −Xpn

) = (Ypn
− Yg)/(Xpn

−Xg). (4)

Last, we can obtain the ideal location of b by solving both
(3) and (4), assuming the equality holds in (3).

E. Search Real Spare Gate

We first use the Manhattan distance between the last-ordered
pin pn and the ideal buffer location as the radius to draw
a diamond-shape region centered at pn. The buffer found
in this diamond-shape region can satisfy (3). To make the
buffer closer to the violation gate g, we use the same radius
to draw another diamond-shape region centered at the ideal
buffer location. We then attempt to select the buffers locating
in the intersection of the two regions. This searching can make
sure that the selected buffer, if any, is on the way toward the
violation gate g. Finally, we select the type-t buffer closest to
the ideal location in the intersection region. If such type buffer
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TABLE I

Comparison Between MOESS [15] and on Solving Slew, Loading, and Timing Violations for Multiple Metal-Only ECO Projects

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Proj. Instance Pro- Spare ECO #Violation Worst Slew Worst Loading Worst Slack #Spare Buffer Runtime
(Ver.) Count cess Count Size Slew Load Ori. [15] MOESS Imp. Ori. [15] MOESS Imp. Ori. [15] MOESS Imp. [15] MOESS Imp. [15] MOESS Speedup
da(3) 190.4K 0.18 7.6K 142 40 0 16.0n 5.0n* 1.9n 68% 4.3 <1 <1 – −3.5n −2.2n* >0 100% 78 40 49% 20m 1m 19.0×
db(3) 210.8K 0.18 9.1K 1030 6 0 2.4n 1.8n 1.8n – <1 <1 <1 – >0 >0 >0 – 12 5 58% 22m 1m 21.0×
dc(4) 242.9K 0.18 5.5K 507 71 0 6.6n 3.8n* 2.0n 47% 1.4 <1 <1 – −2.3n −0.3n* >0 100% 91 68 25% 31m 3m 9.3×
dd(3) 309.3K 0.18 10.4K 1904 47 0 7.2n 2.1n* 2.0n 5% 1.9 <1 <1 – −1.6n >0 >0 – 83 48 42% 27m 2m 12.5×
de(2) 871.1K 0.13 62.4K 127 0 35 0.9n 0.9n 0.9n – 1.4 1.22* 1.1 8% >0 >0 >0 – 63 35 44% 172m 5m 33.4×
df(2) 1.3M 0.13 48.8K 1276 15 243 2.0n 1.3n* 0.9n 31% 3.1 3.5* 1.2 66% −0.6n −0.1n* >0 100% 377 277 27% 222m 37m 5.0×
dg(4) 1.6M 0.13 80.5K 1702 166 258 5.6n 1.2n* 1.0n 17% 9.3 4.6* 1.2 74% −0.2n −0.4n* >0 100% 314 259 18% 252m 45m 4.6×

Average 24% 21% 57% 38% 14.9×

cannot be found in the intersection region, then we change
the buffer type to one with lower driving capability and repeat
step B to step D.

F. ECT Buffer-Insertion Scheme

Although the slew or loading violation can be solved by the
ESB scheme, the delay of some paths may exceed the timing
constraint due to the extra gate delay of inserted buffers. Our
internal experiments found that most of those timing violations
result from the sharing of a common buffer between a timing-
critical path and long new-added wires. Note that those new-
added wires can be designed as multi-cycle paths to meet the
timing constraint but the original paths cannot. Thus, the ECT
scheme utilizes a similar approach as the ESB scheme but
separate the grouping of long-wire terminal pins from the
others, such that the loading of those long wires would not
be added to the critical path.

III. Experimental Result of MOESS

A. Experiment Setup

The ECO flow, including netlist difference, spare gate map-
ping, and routing, is performed based on a commercial APR
platform [15]. We compare the results of MOESS with an EDA
vendor’s buffer-insertion solution for metal-only ECO [15]. In
vendor’s solution, we use the command “run gate buffer wire-
slew/cap-ECO” to insert buffers for each violation net.

The benchmarks used in this experiment are all industrial
projects. The spare-cell count in each project is 3–5% of the
total cell count. The slew constraint in use is a pre-defined
constant associated with the process technology and the cell
library. The loading constraint in use is defined as a ratio to the
value of the library-suggested constraint. In our experiments,
the slew and loading constraints are 2.0 ns and the ratio of 1
for the 0.18 µm process, respectively. The slew and loading
constraints are 1.0 ns and the ratio of 1.2 for the 0.13 µm
process, respectively.

B. ECO on Industrial Projects

In Table I, we first report the comparison results on
seven industrial projects. Column 1 lists the project name
and its ECO version in parentheses. Columns 2–4 list the
instance count, the adopted process technology, the spare-cell
count, and the size of ECO in instances for each project,
respectively. Columns 6 and 7 list the number of reported
slew violations and loading violations, respectively, before
any buffer-insertion scheme is applied. Columns 8–10, 12–14,
and 16–19 list the worst input slew, the worst output-loading

ratio to the library-suggested constraint, and the worst slack,
respectively, reported (1) before any buffer-insertion scheme is
applied (denoted by ori.), (2) after an EDA vendor’s solution
is applied (denoted by [15]), and (3) after MOESS is applied
(denoted by MOESS). Columns 11, 15, and 19 also list the
improvement of MOESS over [15] (denoted by imp.) in the
worst input slew, the worse output-loading ratio, and the worst
slack, respectively. The number followed by a “*” means that
the corresponding value violates the constraint. In Columns
20–22 and 23–25, we report the number of spare buffers in
use and the CPU runtime for both [15] and MOESS, and the
corresponding improvement or speedup of MOESS over [15].

As the results show MOESS can resolve all the slew,
loading, and setup-time violations for these seven projects
while the vendor’s solution violates the slew constraint in three
projects, the loading constraint in two projects, and the setup
time constraint in four projects. The average improvements
of MOESS on the worst slew, worst loading, and worst slack
are 24%, 21%, and 57%, respectively. Also, the number of
used spare buffers by MOESS is smaller than that by [15] for
each project, which saves more ECO resources for the next
generation of ECO. This reduction to the number of used spare
buffers is 38% in average. Furthermore, the runtime consumed
by MOESS is less than that by [15] for each project as well.
The average speedup of MOESS is 14.9×.

The above experimental results demonstrate the effective-
ness and efficiency of our buffer-insertion algorithm.

C. Statistics of Inserted Buffers

Table II reports the detailed statistics of the inserted buffers
used in Table I for both [15] and MOESS. In Table II, columns
2 and 3 list the number of buffers inserted. Columns 4 and 5
list the number of original violation gates remaining violated
after the buffers are inserted. Columns 6 and 7 list the number
of inserted buffers whose output loading exceeds its output
available load (constraint violated). Columns 8 and 9 list the
average ratio of the output loading over its output available
load for all buffers not violating the constraint (i.e., buffers
not in column 6 or 7).

As the result shows, the buffers inserted by MOESS can
always satisfy the slew/loading constraint and further help to
resolve the original violations. On the contrary, buffers inserted
by [15] usually deviate from their ideal location, and hence
may result in new violations on the inserted buffers or fail to
resolve the original violations. Columns 10 and 11 further list
the maximum and average distance between the ideal location
and the final location of the buffers inserted by [15].
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TABLE II

Statistics of Inserted Buffers Used in Table I

1 2 3 4 5 6 7 8 9 10 11
Proj. # of Inserted Buffers Original Violations Unsolved Violations on Inserted Buffers Avg. Loading Ratio Distance bw. Ideal & Real in [15]
(Ver.) [15] MOESS [15] MOESS [15] MOESS [15] MOESS Maximum Average
da(3) 78 40 9 0 6 0 0.13 0.33 1036.8 445.15
db(3) 12 5 0 0 0 0 0.22 0.55 1159.6 504.21
dc(4) 91 68 43 0 5 0 0.11 0.27 919.4 450.86
dd(3) 83 48 13 0 3 0 0.12 0.39 769.8 349.93
de(2) 63 35 5 0 0 0 0.17 0.37 812.8 306.4
df(2) 377 277 40 0 7 1 0.18 0.42 1537.1 460.1
dg(4) 314 259 60 0 13 0 0.16 0.25 763.4 268.7

Average 0.16 0.37 999.8 397.9

One important reason why MOESS uses a smaller number
of inserted buffers than [15] is that its ESB buffer-insertion
scheme attempts to select the buffer which can use as much
of its driving capability as possible to resolve the violation.
At the same time, the output loading of the inserted buffer is
also kept under the constraint. As the result shows in Table II,
the buffers selected by MOESS utilize 37% of their driving
capability in average, which is 2.3 times larger than that of [15]
(16%). Also, the loading of all those buffers is kept under the
constraint. This result again demonstrates the effectiveness of
the proposed ESB scheme.
D. Solving Setup-Time Violations

Table III reports more information about the setup-time
violations (collected by PrimeTime) for the same projects
used in Table I. In Table III, columns 2 and 3 list the slack
and the number of paths violating the setup-time constraint,
respectively, after ECO is performed and before any buffer
insertion scheme is applied. Then columns 4 to 9 list the
same information after three buffer insertion schemes ([15],
ESB, and ECT) are applied individually. As the result shows,
after the proposed ESB scheme is applied, the total number of
setup-time-violated paths drops from 686 to 36 for all projects.
Note that the ESB buffer-insertion scheme only focuses on
solving the slew/loading violations. Thus, this result first
demonstrates that majority of the setup-time violations can be
resolved when the slew/loading violations are resolved, which
is why MOESS performs the ESB scheme before the ECT
scheme. Next, the result also shows that the ESB scheme can
resolve more setup-time violations than [15]. This is because
the ESB scheme can resolve the slew/loading violations more
effectively than [15] does. Last, for those inserted buffers
located on a setup-time-violated path after the ESB scheme
is applied, we remove the inserted buffers and apply the ECT
scheme to insert new buffers for solving the slew/loading
violations. Then the remaining 36 setup-time-violated paths
can all be resolved, which again demonstrates the effectiveness
of the proposed ECT scheme.

IV. Details of Wire-Loading Estimation

MOESS runtime efficiency mainly results from its quick
wire-loading estimation of a multiple-terminal net, which is
used in Section II-C for grouping the terminal pins to be
driven by an inserted buffer, and in Section II-D for calculating
the ideal buffer location. Since a net’s wire loading is highly

TABLE III

Slack and the Number of Paths Violating Setup-Time

Constraint Before and After Buffer Insertion

1 2 3 4 5 6 7 8 9

Proj. Before Buf. Insert After [15] After ESB After ECT
(Ver.) Slack Vio. Path Slack Vio. Path Slack Vio. Path Slack Vio. Path

da(3) −3.5n 148 −2.2n 16 −0.1n 5 >0n 0

db(3) >0n 0 >0n 0 >0n 0 >0n 0

dc(4) −2.3n 266 −0.3n 42 −0.1n 18 >0n 0

dd(3) −1.6n 34 >0n 0 >0n 0 >0n 0

de(2) >0n 0 >0n 0 >0n 0 >0n 0

df(2) −0.6n 172 −0.1n 54 −0.1n 3 >0n 0

dg(4) −0.2n 66 −0.4n 14 −0.1n 10 >0n 0

total 686 126 36 0

correlated to its wire length, to estimate its wire loading needs
to estimate its final routing length first. The idea used in
MOESS is to: 1) break a multiple-terminal net into several
two-terminal nets; 2) take the routing length of a two-terminal
net as its Manhattan distance times a ratio function of the
routing congestion within the net’s neighborhood; and 3) sum
the estimated wire loading of those two-terminal nets. Such
a ratio function can be obtained and tabulated in advance
based on the statistics collected from the previous usage of
the adopted APR tools. Thus, the wire loading of a multiple-
terminal net can be calculated by a quick table lookup instead
of actually performing the detail route and resistance and
capacitance extraction. This quick estimation is cost-effective
especially when determining which terminal pins should be
driven by an inserted buffer, where different combinations of
terminal pins would be tried iteratively for a violated high-
fanout net. In the following sections, we will discuss several
key issues about our wire-loading estimation.

A. Accuracy of Using Different Density Definitions

In MOESS, we use the routing-ratio function realtime
radiation monitor device [RRMD(vd)] to represent the ratio
of a two-terminal net’s routing length over its Manhattan
distance, where the via density vd is the input parameter repre-
senting the degree of routing congestion. To construct a tabular
function of RRMD(vd), we first divide the nets into different
groups based on the value of their via density and then collect
the distribution of the routing ratios within a group. Note that
the collected statistics precludes the nets where obstacles are
in between its terminals. This is because MOESS would detour
the selection of the inserted buffers along the boundaries of
obstacles when obstacles exist in between.

For large designs in advanced logic processes, six or
more metal layers are usually used and each layer (more
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TABLE IV

Statistics of RRMD(vd) When Using the Average Percentage

of Occupied Via Among All Layers as the Definition of vd

Avg Via Density 0–0.1 0.1–0.2 0.2–0.3 0.3–0.4 0.4–0.5
Probability (%) 68.6 26.8 3.1 0.9 0.5

Mean 1.127 1.176 1.221 1.236 1.298
Std. Dev.−de 0.132 0.194 0.232 0.216 0.278

95th percentile 1.38 1.53 1.68 1.66 1.82
99th percentile 1.62 1.88 2.17 2.04 2.41

TABLE V

Statistics of RRMD(vd) When Using the Maximum Percentage

of Occupied Via Among All Layers as the Definition of vd

Worst Via Density 0–0.1 0.1–0.2 0.2–0.3 0.3–0.4 0.4–0.5
Probability (%) 19.5 56.2 16.2 4.5 3.6

Mean 1.126 1.129 1.19 1.214 1.213
Std. dev.−de 0.122 0.139 0.199 0.230 0.233

95th percentile 1.36 1.39 1.55 1.63 1.67
99th percentile 1.58 1.65 1.89 2.11 2.13

TABLE VI

Average Ratio of the Estimated Routing Length Over the Real

Routing Length for the Output Nets of the Inserted Buffers in

Table I

# of terminals 2 3 4 5–8 9–12 13–16 >17 Total
# of nets 95 118 113 238 81 33 55 732
Avg. ratio 1.203 1.271 1.336 1.333 1.330 1. 282 1.346 1.304
Nets<ratio 1 1 0 0 0 0 0 0 1

specifically, between each two adjacent metal layers) has its
own percentage of occupied via. In the following experi-
ment, we use two definitions to calculate the via density vd:
1) the average percentage of occupied via on a layer; and
2) the maximum percentage of occupied via among all layers.
Tables IV and V list the probability, mean, standard deviation,
95th percentile, and the 99th percentile of RRMD(vd) for
each interval of vd when the first and second definitions
of via density are used, respectively. As the result shows,
the standard deviation of most intervals obtained by using
the second definition is smaller than that by using the first
one. It implies that using the maximum via percentage as the
parameter of RRMD(vd) can lead to a narrower distribution
and hence a more accurate estimation of RRMD(vd). Thus,
MOESS uses the second definition of the via density as the
input parameter for RRMD(vd).

B. Real Routing Length Versus Estimation

One main objective of our wire-loading estimation is to
obtain an available spare buffer whose output loading can be
under the constraint when being inserted to resolve the viola-
tion. Thus, when mapping a via density vd to its RRMD(vd),
we return the 95th percentile of the distribution associated
with the interval of vd, not the mean. This 95th percentile of
routing ratio often leads to a conservative estimation of the
wire loading, such that we may not be able to find the best
buffer whose driving capability can be fully utilized to resolve
the violation. Also, for a multiple-fanout net, our estimation
will break the net into several two-terminal nets and then sum
the loading of each, which is again a conservative estimation

since the real routing pattern of a multiple-fanout net is like
a Steiner tree instead of a piece-wise connected chain.

Table VI lists the number of nets, average ratio of the rout-
ing length estimated by MOESS over the real routing length,
and the number of nets whose above ratio is smaller than 1 for
different numbers of net’s terminals. The nets used in this table
are the output nets of the inserted buffer in Table I. As the
result shows, only 1 out of total 733 nets has its real routing
length larger than our estimation. Actually, that net does not
result in a loading violation since usually the selected buffer
seldom locates on the boundary of the search area. Also, for a
net with more terminals, the estimated routing length usually
tends to be more conservative due to the difference between
a Steiner tree and a piece-wise connected chain. Therefore,
the experimental result demonstrates that the loading of the
selected spare buffers can be controlled under the constraint
while an average 30% margin is imposed onto the estimation.

V. Conclusion

In this paper, we fist proposed an efficient and effective
framework to resolve the slew, loading, and timing constraint
in metal-only ECO. Also, we discussed the accuracy and
limitation of using the via density to predict the wire loading of
an inserted connection. The experimental results obtained from
real industrial projects showed that the proposed framework
can significantly increase affordable scale of a metal-only ECO
with fewer spare gates and less runtime in use, compared to
a current vendor’s solution.
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Routing With Constraints for Post-Grid
Clock Distribution in Microprocessors

Rupesh S. Shelar, Member, IEEE

Abstract—Microprocessors typically employ a global grid
followed by block-level buffered trees for clock distribution.
The trees are connected to the grid by routing wires along reserved
tracks. The routing of these clock wires, which present load to the
grid, is constrained by delay/slope requirements at inputs of the
block-level trees. This leads to a capacitance minimization problem
during multiterminal routing, where routes use the reserved tracks and
obey the constraints. This paper presents an algorithm that addresses
the problem, improving wirelength by 14% over a competitive approach.
The algorithm is employed for post-grid clock distribution in a 45 nm
technology microprocessor.

Index Terms—Design aids, integrated circuits, layout, microprocessors,
placement, routing.

I. Introduction

In high-performance microprocessor circuits, clocks are
distributed employing hybrid networks, containing global grid
followed by buffered gated trees, to reduce the skew [1], [2],
[3]. These circuits are designed hierarchically by partitioning
the chip into different layout areas, each containing several
blocks comprising tens of thousands of standard cells, macros,
etc. The buffered gated clock trees are created inside each
block to distribute the clock to sequentials. The input to the
clock trees is provided by routing clock wires, on reserved
tracks, from the global grid. This routing is referred to as the
post-grid clock distribution or the global clock routing in this
paper.

The post-grid clock distribution problem poses a challenge
because of the problem size and constraints on routing without
the luxury of buffer insertion on the routes. Typically, there
are thousands of clock terminals in each layout area. The
constraints include delay/slope requirements at inputs of the
clock trees and a limit on the load presented to grid drivers.
Traditionally, this routing is carried out manually, and possibly
iteratively to meet the slope requirements or to reduce the
load on the grid. This may affect the time to market, as
the block-level and full-chip timing convergence depends on
the clock arrival times at the sequentials over entire die area.
Moreover, commonly used techniques to converge the block-
level timing such as up-sizing the sequentials eventually result
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in increased loads on the grid drivers. If the load is too
high, the clock may not toggle with the desired transition
times. However, it is difficult to predict whether the block-
level timing convergence has indeed led to such a situation,
since the exact load depends on clock ports in other blocks in
the layout area and is not known until global clock routing is
carried out. This motivates a search for a fast algorithm for
post-grid clock distribution. The clock wires also contribute
significant load on the grid. Reducing the load often leads
to improved reliability of the grid and power savings. This
motivates a quest for the algorithm that can minimize the wire
capacitance.

To the best of our knowledge, there is no published
algorithm addressing the problem of multiterminal routing
with constraints in the context of post-grid global clock
distribution. Microprocessor designers carry out this routing
mostly manually, often employing the nearest source heuristic
(explained in Section IV). The heuristic may result in sub-
optimal wirelength and may also cause the poor slopes at
the inputs of the local clock trees. The work in [4] proposes
shorting the inputs of the buffers every two to three stages in
a buffered H-tree so that per stage skew attenuates with the
number of stages. Recent link-insertion algorithms to reduce
skew [5], [6], [7] in buffered clock trees are similar. Other
related work includes that on zero-skew routing [8], [9], [10],
or that on buffered clock tree synthesis [11]; these focus on
wirelength/skew/power minimization for (buffered) trees.

We propose a polynomial time algorithm to solve the routing
problem with slew constraints in the context of post-grid global
clock distribution. The algorithm is practical, as it runs in
seconds on real microprocessor design. The resulting routing
obeys the constraints and improves wirelength by 14%, on
average, over commonly used nearest source heuristic. The
algorithm has been employed to carry out routing for post-
grid global clock distribution in a high-end microprocessor
design in a 45 nm technology, demonstrating its practical use.
The algorithm may also be useful for application specific
integrated circuits (ASICs) running at GHz frequencies using
hybrid clock distribution schemes.

The rest of the paper is organized as follows. Section II
introduces preliminaries. Section III describes a graph the-
oretic formulation for multiterminal routing with constraints
underlying the post-grid clock distribution problem. Section IV
describes algorithms that address the problem. Section V dis-
cusses results obtained employing those for clock distribution
in a microprocessor. Section VI concludes the paper.

II. Preliminaries

High-end microprocessors employ the hybrid network as
shown in Fig. 1 to distribute the clock. The phased-locked
loop (PLL) generates the clock and drives the global grid,
as shown in Fig. 1(a). The grid, implemented using spines
[2], distributes the clock to block-level buffer trees. The PLL
and the grid are designed manually. The last level in the
grid comprises wires, as shown in Fig. 1(b). These wires,
referred to as the global grid wires, are driven by multiple
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