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Abstract— An efficient method is presented to model the
parasitic three-dimensional (3-D) capacitance of VLSI multilevel
interconnections. Based on the boundary-finite-element method
(BFEM) of integral formulation, arbitrary triangle elements
on the surface of conductors for charge distribution are used
to efficiently calculate capacitances of both parallel conductors
and complicated configurations such as crossing lines, corners,
contacts, and their combinations. Using an adaptive multilevel
Green’s function and low-order polynomials as shape function,
we apply the Galerkin principle over finite elements, and most
of the surface integrals of charge distribution can be evaluated
analytically and the singular integrals can be eliminated by
choosing proper coordinate transformation. Moreover, an even
less complex and more general method for arbitrary geometry
configuration of multilevel interconnection lines is proposed in
order to link with the finite element pre-processor in present
CAD tools.

Index Terms—BFEM, Green’s function, interconnection, 3-D
capacitance, VLSI.

I. INTRODUCTION

A S THE feature sizes of devices are scaled down, the
response time of VLSI chip is increasingly dominated by

the interconnection [1], [2]. The computation of capacitances
between different metal layers for such a densely packed
multiconductor system is a complex and difficult task. Several
methods [3]–[20] have been developed in the past, and for FD
[3]–[6] and FE [7] methods, the charge density diverges at the
sharp edges and the solution of Poisson’s equation requires an
artificial bounded region that is difficult to determine. Most
of them treat the two-dimensional (2-D) problems, in which
infinite parallel conductors are considered [3], [4], [14]. For
three-dimensional (3-D) problems, the method most commonly
used is to solve the Green’s function integral equation by
“point fitting method” [15] or the “finite element technique”
[7]–[10], [16]. The charge distribution proposed in [11]–[13]
consists of constant surface charges on the rectangular grid
of conductor boundaries. The problems with this method
are that a large set of functions is needed to approximate
the charge distribution and high-order integrals have to be
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evaluated. Recently, an efficient modeling based on piecewise-
linear charge distribution concentrated on a network of edges
was presented in [8]–[10]. Using this technique, the order of
integration is reduced to one but singularity problem of the
concentrated charges on edges can’t be eliminated and may
lead to erroneous results [10]. On the other hand, fast empirical
models have also been proposed [22], but they are not accurate
enough, particularly for estimating 2-D and 3-D capacitance
coefficients.

Based on the boundary-finite-element method (BFEM) of
integral formulation [10], we use arbitrary triangle elements
on the surface of conductors for charge distribution. Hence it
is easy to calculate capacitances of both parallel conductors
and complicated configuration such as crossing lines, corners,
contacts, and their combinations. Using an adaptive multilayer
Green’s function and low-order polynomials as shape function,
we apply the Galerkin principle over finite elements. Most of
the surface integrals of charge distribution can be evaluated an-
alytically, therefore the singularity problems can be eliminated
and analytical solution can be obtained.

A 3-D capacitance modeling for an arbitrary structure has
been developed and is confirmed to be efficient and accurate
as compared with existing data. Major improvements for
this purpose are adoption of arbitrary triangle elements and
elimination of singular integrals to obtain analytical form.
These improvements have made it possible to link with CAD
tools.

Our paper is organized as follows. Section II is devoted to
mathematical formulation of capacitance suitable for 3-D mul-
ticonductor system. Using Fourier integral technique, Green’s
function and the discretization of potential formulation are
described. Furthermore, reduced capacitance matrices are pre-
sented. The manipulation of the integration for different cases
including singular integration, neighboring singular integra-
tion and regular integration are analyzed. Comparisons with
other approaches are made in Section III. Conclusions are
summarized in the final section.

II. M ATHEMATICAL FORMULATION

Consider a configuration of multilevel interconnection
above a ground plane and its equivalent circuit shown in
Fig. 1. For this configuration, a capacitance matrix,

, is used to describe the capacitance of nodal admittance
matrix. Therefore, will not be extracted directly, one
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Fig. 1. The configuration ofM multilevel interconnections above a ground
plane and its equivalent circuit.

has to derive the short-circuit capacitance matrix , as
defined and well-known in textbooks. There is a simple
relationship between the capacitance matrix and the short-
circuit capacitance matrix, and they can be transformed into
each other by an incidence matrix [8].

To calculate the capacitance coefficients, the electrostatic
potentials for conductors have to be analyzed, which is induced
by the charges distributed over the whole space. For the
present case, we consider only the surface chargeon the
conductors, therefore the potentials can be formulated in
surface integral equations by Green’s theorem [11]–[13]. For
different configurations of interest in integrated circuits, we
have to only choose the appropriate Green’s function for the
integral equation.

A. Discretization of Potential Formulation

Reducing the Green’s integral equation to a discrete prob-
lem, we obtain an approximated solution of potential from
the discretization of charge on the surface of conductors.
Based on the BFEM of integral formulation [10], we use
arbitrary triangle elements on the surface of conductors for
charge distribution. The integration of charge distribution over
all the surface of conductors is then divided into several
triangle element integrations to achieve high efficiency. The
representation points and nodes are selected on the surface of
each conductor. With each node, charges distribute over the
triangle elements defined by the arbitrary two near neighboring
nodes, the electrostatic potential at the field point can be
rewritten in a discretization form

(1)

where is the space variable used to describe the source
point distribution on the th nearest-neighboring element of
the th node on the th conductor.

For brief editing, we let be replaced by Each
element of nodes is associated with a shape function, as
shown in Fig. 2, to describe the charge distribution of arbitrary
triangle elements on the surface of conductors. To simplify the
integral equation for the th node, the shape function at the
th element of arbitrary triangle is given in a slope-intercept

Fig. 2. An evaluation of the shape function amplitudef(p) for the � th
element, theilth node on the surface of theith conductor.

form by (see Fig. 2)

(2)

where

(3)

Note that and is the distance
between the th node and the source point and are the
angles in the th element of arbitrary triangle, as shown in
Fig. 2. While and are the edge lengths of triangle, which
are from the th node to the other two neighboring nodes.
is a normalization factor and the normalization condition is

(4)

Substituting (2) into (4), it gives

(5)

As a consequence, the charge distribution on theth node of
the th conductor will be described by a linear combination
of shape functions for theth element with the appropriate
weights of first-order polynomials. The charge distribution

over the elements can be written as

(6)

where is the shape function of theth element, the th
node on theth conductor; are the unknown coefficients.

B. Multilayer Green’s Function

We assume that the interconnections are placed in a stratified
medium. This assumption is valid when the substrate is heavily
doped and the IC is reasonably planar. So, the Si-substrate
is the infinite ground plane and the SiOlayer is used as
protective material. We use the Fourier integral technique
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[8]–[10] to obtain the Green’s function for Si-SiOsystem
shown in Fig. 1. When both the field point and the source
points are in the same protective coating such as oxide, the
Green’s function can be written as

(7)

where denotes the permittivity of SiO denotes the
permittivity of vacuum; and is the thickness of SiO
The source point and the field point
are space variables, which are described in the rectangular
coordinate, as shown in Fig. 1. In (7), the physical meaning
of potential can be divided into three terms: the first term is the
contribution from the uniform dielectric ; the second term
can be considered as the contribution from the infinite ground
plane; while the third term represents the contribution from
different dielectrics.

C. Derivation of Capacitance Matrix

If the Green’s function (7) and the charge density (6) are
substituted into (1), then the potential at the th node
of the th conductor is read as

(8)

where

(9)

The standard form for the short-circuit capacitance matrix
is obtained as [8], [9]

(10)

where is introduced as a incidence matrix of nodes
and conductors; is the total number of nodes. The matrix
element is equal to 1 if the th conductor contains theth

node, and else is the matrix of the surface
integrals.

It should be noted that the inverse matrix only
depends on geometric configuration of interconnection. It is
realized reasonably that the short-circuit capacitance matrix

is obtained without solving charge distributions and
bias voltages. Furthermore, the capacitance matrixcan be
obtained from by an incidence matrix [8].

D. Element Integrations

The integral of matrix element in (9) is the most
critical part of simulator, since it determines the computing
time and accuracy. We use the same manipulation for the
source point and its image point in (9). Hence, we derive
the general integral form for one of infinite terms in (9),
which can be characterized into three classes. Each one of
the three classes is just one of the infinite summation terms.
For the surface integral terms denoted as

we can classify these integrations
into three classes of integral formulation.

Class 1 – Singular Integration:The source point coin-
cides with the field point Using polar local coordinate, the
local original point is set to the source point q, and the surface
integral has an analytical solution

(11)

where
Class 2 – Neighboring Singular Integration:One of the

neighboring of the source pointcoincides with the field point
Under polar local coordinate, while we have to choose the

field point as the local original point in order to reduce to
one-dimensional (1-D) integral andis expressed as

(12)

where b and c are the geometrical constants of triangular
element, which are the same definitions as Class 1 and the
variables of and have to be calculated according to
the redefined local coordinate.

Class 3 – Regular Integration:The integration contains no
singularities. For an arbitrary triangular element, the 2-D
integral is easily reduced to one by integration along the
contour of equal amplitude of shape function.is expressed as

(13)

where
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Fig. 3. A configuration of three parallel conductors above a ground plan e,
where l = 20 �m; w = 5 �m; t = 1 �m; h = 2 �m; s = 10 �m; and
"1 = "2 = 3:9"0:

and
Therefore, regular integration is reduced to 1-D

integral, which is evaluated by Gaussian quadrature method.
As the denominator of (13), ,
approaches to zero, the integral will diverge. From (13), the
integrand is reduced to (14) by using local coordinate with
its original point set to the field point. The integrand can be
evaluated by

(14)

The source point and the field point are
space variables, which are described in the rectangular coor-
dinate. It’s worth to denote that the dependence of field point
in (14) is implicitly related to and parameters,
which are functions of space variables for source points and
field points. and are the vectors of the points A, B,
and the th node in the local coordinate. So,and are the
unit vectors from the th node to the other two neighboring
nodes at the th element of the arbitrary triangle, as shown in
Fig. 2. Since the vectors of and are specified, can
be defined as the unit vector of

According to the layout data, an automatic mesh generation
takes place, in which node numbers and their coordinates are
linked to the pre-processor of finite element tools. Hence,
it has been pointed out [21] that the calculated capacitance
values are sensitive with respect to selection of nodes. To
improve accuracy and efficiency, we propose a sinusoidal
weighting scheme within each other of vertex points,
and , in which one takes

(15)

where is the position for th node of the
th conductor and is the weighting factor.

TABLE I
COMPARISONS OFCOMPUTED CAPACITANCES FOR PARALLEL

CONDUCTORS SHOWN IN FIG. 3 USING DIFFERENT METHODS

TABLE II
THE ACCURACY AND CPU TIME VERSUS THETOTAL MESH NUMBER AND

THE EFFECTIVENESS OFSINUSOIDAL WEIGHTING SCHEME FOR FIG. 3

III. RESULTS AND COMPARISONS

In our paper, the accuracy of the proposed method has
been checked against existing data of three parallel conductors
oriented over an infinite ground plane shown in Fig. 3. Com-
parisons with these data are made in Table I, whereis the
ground capacitance and is the coupling capacitance. One
can see from front six rows of Table II that the relative error
of will converge to less than 3% for the number of nodes
larger than 102 and the CPU time will be less than 30 s. To
investigate the effectiveness of sinusoidal weighting scheme,
we calculate the capacitance coefficients for Fig. 3 under
different grid-partition conditions, as shown in Table II. The
fifth and sixth rows are calculated under equal-space meshing
as references for other sinusoidal weighting conditions. From
Table II, it can be found that the relative error will grow as
n value increases. It is worth to note that under sinusoidal
weighting for the relative error is only about 0.13% but
the CPU time is much reduced to about one third of the value
under equal-space meshing in the sixth row.

In order to illustrate the flexibility of the proposed technique
to more general cases, we consider a combination of parallel
conductors, corner, and crossing lines, as shown in the inserts
of Figs. 4 and 5. For practical cases, the corner angle of
the lower conductor can be arbitrary and the width of the
lower conductor at two adjacent parts can be different. The
rotation part of the lower conductor is labeled by the dashed
line and the fixed part by the solid line. The corner angle
is defined as the inner angle between the fixed part and the
rotation part of the lower conductor. At first, we calculate
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Fig. 4. The computed capacitance versus the corner angle of lower
conductor with w0

1
= 3 �m; and the insert shows combinations of

corner and crossing lines:l1 = 20 �m; w1 = 3 �m; w0

1
= 3 �m;

t1 = 0:5 �m; h1 = 0:6 �m; e = 10 �m; l2 = 20 �m; w2 = 3 �m;
t2 = 0:8 �m; h2 = 1:6 �m; s = 7 �m; "1 = 3:9"0; "2 = "0; and
d = 100 mu.

the capacitance values for different corner angles, as shown
in the insert of Fig. 4. From the curve shown in Fig. 4,
one can see that grows as the angle becomes sharp,
due to the increasing accumulation of charge at the convex
of corner. Furthermore, there is a peak value of when
the angle is around 60, due to the larger overlap area of
two conductors. Secondly, we analyze the capacitances by
changing the width of the front part for the lower conductor
and keep the angle at 120, as shown in the insert of Fig. 5.
The data points show monotonous variation which is in
agreement with our original conjecture, as shown in Fig. 5.
The CPU times for the calculations of Figs. 4 and 5 are 441.4
and 441.4 s, respectively, under the corresponding sinusoidal
weighting mesh numbers of 242 and 242,
respectively. The computing time depends not only on the
algorithm presented here but also on the method of grid
partition.

IV. CONCLUSIONS

For the 3-D multilevel interconnection system, the
boundary-finite-element technique has been developed as
an efficient method to calculate the parasitic capacitance
for arbitrary configuration of conductors. In this paper, the
existing BFEM of integral formulation is modified and
improved. Using arbitrary triangle elements on the surface
of conductors for charge distribution, capaciatnces for more
realistic cases with arbitrary configuration of multilevel
conductor system in a stratified medium can be efficiently
computed. Moreover, we apply the Galerkin principle over
finite elements by choosing an adaptive multilevel Green’s
function and low-order polynomials as shape function. The

Fig. 5. The computed capacitance versus the width of the
front part for the lower conductor with an angle of 120�, and
the insert shows combinations of corner and crossing lines:
l1 = 20 �m; w1 = 3 �m; � = 120

�; t1 = 0:5 �m; h1 = 0:6 �m; e =

10 �m; l2 = 20 �m; w2 = 3 �m; t2 = 0:8 �m; h2 = 1:6 �m; s = 7 �m;
"1 = 3:9"0; "2 = "0; and d = 100 �m:

key points of the proposed BFEM technique are to deduce
the analytical form for most of the surface integrals of charge
distribution and to eliminate the singular behavior of Class 1
and Class 2 integrals by choosing proper coordinate.

A 3-D capacitance modeling for an arbitrary structure has
been developed and confirmed to be efficient and accurate
as compared with existing data. Major contributions of the
proposed method are adoption of arbitrary triangle elements
and elimination of the singular integrals to obtain analytical
form. These improvements have made it possible to link with
existing CAD tools.
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