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Abstract—An efficient method is presented to model the evaluated. Recently, an efficient modeling based on piecewise-
parasitic three-dimensional (3-D) capacitance of VLSI multilevel |inear charge distribution concentrated on a network of edges
interconnections. Based on the boundary-finite-element method was presented in [8]-[10]. Using this technique, the order of

(BFEM) of integral formulation, arbitrary triangle elements . L . .
on the surface of conductors for charge distribution are used integration is reduced to one but singularity problem of the

to efficiently calculate capacitances of both parallel conductors concentrated charges on edges can't be eliminated and may
and complicated configurations such as crossing lines, corners, lead to erroneous results [10]. On the other hand, fast empirical

contacts, and their combinations. Using an adaptive multilevel models have also been proposed [22], but they are not accurate

Green’s function and low-order polynomials as shape function, anaygh  particularly for estimating 2-D and 3-D capacitance
we apply the Galerkin principle over finite elements, and most coefficients

of the surface integrals of charge distribution can be evaluated .
analytically and the singular integrals can be eliminated by ~ Based on the boundary-finite-element method (BFEM) of

choosing proper coordinate transformation. Moreover, an even integral formulation [10], we use arbitrary triangle elements
less complex and more general method for arbitrary geometry on the surface of conductors for charge distribution. Hence it
configuration of multilevel interconnection lines is proposed in 5 a5y to calculate capacitances of both parallel conductors
order to link with the finite element pre-processor in present . . . . .
CAD tools. and complicated configuration such as crossing lines, corners,
contacts, and their combinations. Using an adaptive multilayer
Green’s function and low-order polynomials as shape function,
we apply the Galerkin principle over finite elements. Most of
the surface integrals of charge distribution can be evaluated an-
I. INTRODUCTION alytically, therefore the singularity problems can be eliminated

S THE feature sizes of devices are scaled down, tRgd analytical solution can be obtained.

response time of VLSI chip is increasingly dominated b A 3-D capacitance .modell_ng for an arbltrgry structure has
the interconnection [1], [2]. The computation of capacitancg;'aeen developed and is confirmed to be efficient and accurate
between different metal layers for such a densely pack&d compared with eXIStlng data.. Ma]or' improvements for
multiconductor system is a complex and difficult task. SeverH)iS Purpose are adoption of arbitrary triangle elements and
methods [3][20] have been developed in the past, and for ,_ebmlna_tlon of singular integrals fto obtgln ana_lyt|ca_l form.
[3]-[6] and FE [7] methods, the charge density diverges at tf&ese improvements have made it possible to link with CAD
sharp edges and the solution of Poisson’s equation require§ S- . . ) )
artificial bounded region that is difficult to determine. Most ©OUr paper is organized as follows. Section Il is devoted to
of them treat the two-dimensional (2-D) problems, in whichrathematical formulation of capacitance suitable for 3-D mul-
infinite parallel conductors are considered [3], [4], [14]. Fofconductor system. Using Fourier integral technique, Green’s
three-dimensional (3-D) problems, the method most commorﬂiﬁc“o” and the discretization of potential formulation are
used is to solve the Green's function integral equation agscnbed. Furthermore, reduced capacitance matrices are pre-
“point fitting method” [15] or the “finite element technique”_sente‘.j' Thg manipglation qf the ir?tegrat_ion fqr differe.nt cases
[7]-[10], [16]. The charge distribution proposed in [11][13 ncludlng smgular mtegrgtlon, neighboring smgular_ mtegra_l-
consists of constant surface charges on the rectangular gigt @nd regular integration are analyzed. Comparisons with
of conductor boundaries. The problems with this methd§ler approaches are made in Section lil. Conclusions are
are that a large set of functions is needed to approximatdmmarized in the final section.
the charge distribution and high-order integrals have to be

Index Terms—BFEM, Green'’s function, interconnection, 3-D
capacitance, VLSI.

Il. MATHEMATICAL FORMULATION
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Fig. 1. The configuration off multilevel interconnections above a ground
plane and its equivalent circuit.
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has to derive the short-circuit capacitance matfix;;, as Fig. 2. An evaluation of the shape function amplitufigp) for the rth

defined and well-known in textbooks. There is a simpl@ement theith node on the surface of then conductor.

relationship between the capacitance matrix and the short-

circuit capacitance matrix, and they can be transformed inigrm by (see Fig. 2)

each other by an incidence matrix [8]. ]
To calculate the capacitance coefficients, the electrostatic fiirr(q) = A {1 _r@ } )

potentials for conductors have to be analyzed, which is induced |

by the charges distributed over the whole space. For t{igere

present case, we consider only the surface chargs the absin ®

conductors, therefore the potentials can be formulated in Ty = —— : . 3)

surface integral equations by Green’s theorem [11]-[13]. For asing +bsin(® —¢)

different configurations of interest in integrated circuits, whlote thata = a(q),b = b(q), and® = ®(q); r is the distance

have to only choose the appropriate Green'’s function for thetween the&lth node and the source poift¢ and® are the

integral equation. angles in therth element of arbitrary triangle, as shown in
Fig. 2. Whilea and b are the edge lengths of triangle, which
A. Discretization of Potential Formulation are from thei/th node to the other two neighboring nodds ;

. . . , is a normalization factor and the normalization condition is
Reducing the Green’s integral equation to a discrete prob-

lem, we obtain an approximated solution of potential from Z/ it (@) dsiitr = 1. (4)
the discretization of charge on the surface of conductors. T Js

Bas_ed on .the BFEM of integral formulation [10], we useSubstituting (2) into (4), it gives

arbitrary triangle elements on the surface of conductors for

il

charge distribution. The integration of charge distribution over Aig = 1 . ) (5)
all the surface of conductors is then divided into several ’ Zarbr sin @
triangle element integrations to achieve high efficiency. The 6

T

representation points and nodes are selected on the surface of o )
each conductor. With each node, charges distribute over fie & consequence, the charge distribution onitttenode of
triangle elements defined by the arbitrary two near neighborifigf “th conductor will be described by a linear combination

nodes, the electrostatic potential at the field pginy, can be ©OF Shape functions for theth element with the appropriate
rewritten in a discretization form weights of first-order polynomials. The charge distribution

ai,:(q) over the elements can be written as

V(pia) =y / G(pj,jv, @iit.r)o(Giir,r) dsiir (1) oialq) = ia y_ fiit(q) (6)

iyilr Y ST

whereg; ;- is the space variable used to describe the sour\e’gerefiii“ ,'S the shape function of theth element, the_lth
point distribution on therth nearest-neighboring element of'0de on theith conductoriy; ;; are the unknown coefficients.
the ¢lth node on theith conductor.

For brief editing, we letg; ;; - be replaced byg. Eac
element of nodes is associated with a shape function, adVe assume that the interconnections are placed in a stratified
shown in Fig. 2, to describe the charge distribution of arbitrampedium. This assumption is valid when the substrate is heavily
triangle elements on the surface of conductors. To simplify thleped and the IC is reasonably planar. So, the Si-substrate
integral equation for theélth node, the shape function at thds the infinite ground plane and the SiQayer is used as
Tth element of arbitrary triangle is given in a slope-interceprotective material. We use the Fourier integral technique

h B. Multilayer Green’s Function
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[8]-[10] to obtain the Green’s function for Si-SjCsystem node, and elsé’; = 0. [P] is thel' x I' matrix of the surface
shown in Fig. 1. When both the field point and the sourdategrals.
points are in the same protective coating such as oxide, thdt should be noted that the inverse matii®]=! only

Green'’s function can be written as depends on geometric configuration of interconnection. It is
realized reasonably that the short-circuit capacitance matrix
Glp, 9= [Cs] is obtained without solving charge distributions and
1 1 bias voltages. Furthermore, the capacitance m#fifjxcan be
drey | (@ -2+ =y )2+ (z—2)2 obtained from[Cs] by an incidence matrix [8].
1

- D. Element Integrations
V=22 + -y + e+ , greon o
oo (n+1) The integral of matrix elemeng, ;; ; ;; in (9) is the most
+Z(_1)n<51 — 52) critical part of simulator, since it determines the computing
=0 e1+e2 time and accuracy. We use the same manipulation for the

1 source point and its image point in (9). Hence, we derive

. the general integral form for one of infinite terms in (9),

[\/(“7_“7/)2 +(y=y)? +[2(n+1)d = (z+2)]? which can be characterized into three classes. Each one of
_ 1 the three classes is just one of the infinite summation terms.

V=22 + (y—y')? +[2(n+1)d + (z—2")]? For the surface integral terms denotedias- [(1/7(p,q)) -
N 1 1 —(r(q)/r+(q))] dsi.it(q), we can classify these integrations

— 2 — 2 N2 into three classes of integral formulation.

\/(x e =y + Rt Ld + (242 Class 1 — Singular IntegrationThe source pointg coin-
_ 1 cides with the field poinp. Using polar local coordinate, the

Vie=2)2 4+ (y—v')? + 2(n+1)d - (z—2)? local original point is set to the source point g, and the surface

7) integral I has an analytical solution

where €; denotes the permittivity of SiQe, denotes the absin ® bsin® + (@ — bcos® +¢) tan%
permittivity of vacuum; andd is the thickness of Si© I= > In > (12)
The source pointg(z’,4/,2") and the field pointp(z,y, z) ¢ bsin® + (@ — bcos® — ¢) tanE

are space variables, which are described in the rectangular
coordinate, as shown in Fig. 1. In (7), the physical meaningherec? = a? + b% — 2abcos .

of potential can be divided into three terms: the first term is the Class 2 — Neighboring Singular Integratior©One of the
contribution from the uniform dielectrie;; the second term neighboring of the source poinptcoincides with the field point
can be considered as the contribution from the infinite groupd Under polar local coordinate, while we have to choose the
plane; while the third term represents the contribution froffield point as the local original point in order to reduce to

different dielectrics. one-dimensional (1-D) integral andis expressed as
C. Derivation of Capacitance Matrix B /‘1’ 7’45\/ ? + 7’35 — 2crg cos ¢ i (12)
If the Green’s function (7) and the charge density (6) are ~Jo 2b

substituted into (1), then the potentid(p; ;;) at thejlth node

. : where b and c are the geometrical constants of triangular
of the jth conductor is read as

element, which are the same definitions as Class 1 and the

M N variables of¢,® andr, have to be calculated according to
V(p,i) = Z Z aq b (8) the redefined local coordinate.
i=1il=1 Class 3 — Regular IntegrationThe integration contains no
where singularities. For an arbitrary triangular element, the 2-D
integral is easily reduced to one by integration along the
P =4 Z/ G(pj i Giit,) contour of equal amplitude of shape functidris expressed as
T S4,il .
bsin ®
T I=
. {1 - ,(Q) } ds;.a(q). 9) c
rs(q) By
The standard form for the short-circuit capacitance matrix '/0 ( B a) .
[Cs] is obtained as [8], [9] ' D1y + bago & by + by o+ bs & (13)
[Cs] = [FIT [P M [F] (10) Vi p? +ag p+az +ag i+ as

where[F] is introduced as & x M incidence matrix of nodes wherea; = 1,a2 = 2(Az - py + Ay - o + Az - pig), a3 =
and conductors)V; is the total number of nodes. The matrixAz? + Ay? + Az?, a4 = p1 - My + fio - Mo + Uz - M3, a5 =
elementF}; is equal to 1 if theith conductor contains thith Az -my 4+ Ay -ma +Az-ms, by = (b/a)?,by = (2b/a)- (Az-
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TABLE |

CoMPARISONS OFCOMPUTED CAPACITANCES FOR PARALLEL

CONDUCTORS SHOWN IN FIG. 3 USING DIFFERENT METHODS
CaFaCItanLes Ruehli and Brennan ICPC SPIDER BFEM

[12] 18] 9
Ciy = Cs3 43 4382 4.262 4.3573
Cp=Cxn 0.11 0.1098 0.1153 0.11647
:I: Ci3 0.014 0.01421 0.01436 0.014527

Cn 41 4290 4.165 42594
b ]

TABLE I
Fig. 3. A configuration of three parallel conductors above a ground plan e, THE AccurAcY AND CPU TiME VERSUS THETOTAL MESH NUMBER AND
wherel = 20 gm,w = 5 pm,t = 1 gm,h = 2 pm,s = 10 pm, and THE EFFECTIVENESS OFSINUSOIDAL WEIGHTING SCHEME FOR FIG. 3
g1 = €2 = 3.960.
Number n C11 = Cs3 Cn Cip = Cp| Cy3 = C31 CniRelativd CPU time

of nodes nfF) Y GnfF) [(X 107 AN (<102 7Y error ()] (in sec)

385476 1.6122 :
L+ Ay va+Azvs),bs = as, by = (b/a)- (v -my+1a-ma+ 54 5.518604 | 5.385476( 1.612255 | 2.211568 | 24.41 9.5
3 -mg), by =a5,Av=2'—x, Ay =9y —y, Az =2 -2z, = 78 \ 4.738711| 4.629233| 1.310679 | 1.687937 | 24.08 16.8
(Nlaﬂ?aﬂ?:) — (TA _ 7’il)/|7’A _ 7’il|77/ — (]/171/271/3) — 102 4.564680] 4.460079| 1248841 | 1.581599 291 29.5
(s — %) /|7B — 7ul, and m = (my,ma,m3) = (Fp — 270 4.435242 4333217| 1.214380 | 1.502036 1.79 230.3
74) /|78 —74|. Therefore, regular integration is reduced to 1-D 420 4.357259] 4259421 1.164679 | 1452712 | 0.0 606.1

integral, which is evaluated by Gaussian quadrature method:,,, | | [43s1573)4252734| 1175760 | 1455277 | 0.13 230.6
As the denominator of (13)/a1? + aapt+ a3 + asp+ as, To70 | 3 |4366922{4.267646| 1.181255 | 1463538 | 022 234.6
approaches to zero, the integral will diverge. From (13), tth
integrand is reduced to (14) by using local coordinate with
its original point set to the field point. The integrand can bef270 | 7 | 4413000[4312635 | 1195251 | 1489463 | 1.28 229.9
evaluated by T270 | 9 [4.446863]|4.345402| 1208810 | 1.509339 | 2.05 230.4

-t

The source poing(z’,1/,z") and the field poinp(z, y, z) are In our paper, the accuracy of the proposed method has
space variables, which are described in the rectangular cooeen checked against existing data of three parallel conductors
dinate. It's worth to denote that the dependence of field poiotiented over an infinite ground plane shown in Fig. 3. Com-
in (14) is implicitly related toas, a3, b2, and b3 parameters, parisons with these data are made in Table |, wiigras the
which are functions of space variables for source points agtbund capacitance and;; is the coupling capacitance. One
field points.i4, 75, and+;; are the vectors of the points A, B,can see from front six rows of Table Il that the relative error
and the:lth node in the local coordinate. Sp,and are the of C1; will converge to less than 3% for the number of nodes
unit vectors from theith node to the other two neighboringlarger than 102 and the CPU time will be less than 30 s. To
nodes at theth element of the arbitrary triangle, as shown immvestigate the effectiveness of sinusoidal weighting scheme,
Fig. 2. Since the vectors ofy andip are specifiedsn can we calculate the capacitance coefficients for Fig. 3 under
be defined as the unit vector éf — 4. different grid-partition conditions, as shown in Table Il. The
According to the layout data, an automatic mesh generatibfth and sixth rows are calculated under equal-space meshing
takes place, in which node numbers and their coordinates asereferences for other sinusoidal weighting conditions. From
linked to the pre-processor of finite element tools. Henc&able Il, it can be found that the relative error will grow as
it has been pointed out [21] that the calculated capacitantevalue increases. It is worth to note that under sinusoidal
values are sensitive with respect to selection of nodes. Weighting forn = 1 the relative error is only about 0.13% but
improve accuracy and efficiency, we propose a sinusoidhke CPU time is much reduced to about one third of the value
weighting scheme within each other of vertex poiflSe:tex1  Under equal-space meshing in the sixth row.
and 7 vertex2, iN Which one takes In order to illustrate the flexibility of the proposed technique
to more general cases, we consider a combination of parallel
7 +7 7 _ conductors, corner, and crossing lines, as shown in the inserts
— 2,vertex2 2,vertexl 1,vertex2 2, vertexl . .
Tik —< 5 ) < 5 ) of Figs. 4 and 5. For practical cases, the corner angle of

270 5 | 4.383764]4.284215| 1.185010 | 1.472805 0.60 234.9

alNQ + asp + as t denotes sinusoidal weighting and others indicate equal-space (all case with k=10).

. 14
bip® + bapr 4 b3 (14)

lll. RESULTS AND COMPARISONS

" the lower conductor can be arbitrary and the width of the

. <COS M) (15) lower conductor at two adjacent parts can be different. The

K rotation part of the lower conductor is labeled by the dashed

line and the fixed part by the solid line. The corner angle

wherek =1,2,---, K. 7 , is the position forkth node of the is defined as the inner angle between the fixed part and the
ith conductor anch is the weighting factor. rotation part of the lower conductor. At first, we calculate
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Fig. 4. The computed capacitance versus the corner angle of lowdg. 5. The computed capacitance versus the width of the
conductor withw] = 3 pm, and the insert shows combinations offront part for the lower conductor with an angle of 220and
corner and crossing lineds = 20 pm, wy = 3 pm, w} = 3 pm, the insert shows combinations of corner and crossing lines:
ty, = 0.5 pm,hy = 0.6 pm,e = 10 pm,lz = 20 pyMm, w2 = 3 pum, I} = 20 pm,wy; = 3 pm,d = 120°,¢; = 0.5 um,hy = 0.6 um,e =

to = 0.8 umhe = 1.6 pm,s = 7 pum, ¢1 = 3.9¢0.€2 = €0, and 10 pum,l2 = 20 um,we = 3 um,t2 = 0.8 um,ho = 1.6 um, s = 7 pum,

d = 100 mu. g1 = 3.9¢0,82 = ¢y, andd = 100 pm.

the capacitance values for different corner angles, as shokey points of the proposed BFEM technique are to deduce
in the insert of Fig. 4. From the curve shown in Fig. 4the analytical form for most of the surface integrals of charge
one can see thaC; grows as the angle becomes sharpiistribution and to eliminate the singular behavior of Class 1
due to the increasing accumulation of charge at the convaid Class 2 integrals by choosing proper coordinate.

of corner. Furthermore, there is a peak value(®f when A 3-D capacitance modeling for an arbitrary structure has
the angle is around 80 due to the larger overlap area oteen developed and confirmed to be efficient and accurate
two conductors. Secondly, we analyze the capacitances d compared with existing data. Major contributions of the
changing the width of the front part for the lower conductgsroposed method are adoption of arbitrary triangle elements
and keep the angle at 120as shown in the insert of Fig. 5.and elimination of the singular integrals to obtain analytical
The data points show monotonous variation which is iform. These improvements have made it possible to link with
agreement with our original conjecture, as shown in Fig. &xisting CAD tools.

The CPU times for the calculations of Figs. 4 and 5 are 441.4

and 441.4 s, respectively, under the corresponding sinusoidal
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