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Appendix A: The extracting processes of the guiding properties, Zc, 

loss, and SWF for a finite length TL 

    To obtain the complex propagation constant γ  from the two-port 

scattering parameters of the through line, the complex characteristic impedance 

must be obtained beforehand in this dissertation. This can be achieved by 

respectively adding an open load and a short load at the output port of the 

microstrip [61]. The input impedance with open and short loads at the output 

port can be expressed as 

 

lγcoth, ⋅= copenin ZZ                                             (A-1) 

lγtanh, ⋅= cshortin ZZ                                              (A-2) 

 

Zc is the complex characteristic impedance of the transmission line with 

complex propagation constant γ and length . l

 

  Let Zo be the reference impedance level, normally 50 Ω in a typical 

S-parameter measurement system, the two-port scattering matrix  can be 

related to Z

S
=

in,open and Zin,short by the following expressions[61], 
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S11, S12, S21 and S22 are the elements of the two-port - parameters 

referenced to Z

S
=

o. It should be noticed that S11 = S22 and S12 = S21 for symmetrical 

and passive circuits. 
 

   Substituting equations (A-3), (A-4), (A-5) and (A-6) into equations (A-1) 

and (A-2), the complex characteristic impedance Zc can be solved as follows: 
 

)0('1
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)('1
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11
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S
SZZ oc −

+
⋅
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For symmetrical and passive circuits, the S11 = S22 and S12 = S21 substitute 

into Eq. (A-5)-(A-7), then we can get the simplified formula of Zc that shows as 

(3.6). 
 

    The scattering matrix  is then re-normalized to ZS
=

c
* and Zc for the input 

port-1 and the output port-2, respectively [62], where the Zc
* is the conjugate of  

 100



the Zc, and the resultant scattering matrix pS   should have the 

following characteristics 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
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⎤
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pp

pp

SS
SS

   

011 =pS                                                      (A-8) 

l⋅−= γeS p21                                                   (A-9) 

 

   The detail derivation of Eq. (A-8) and Eq. (A-9) will be given in the 

Appendix B of this dissertation, assuming that the guiding transmission line 

under investigation supports only a bound mode with characteristic impedance 

Zc and propagation constant γ. After invoking the complex impedance 

re-normalization process, the complex propagation constantγ(γ=α+jβ) 

becomes [8] 

 

o
p

o k
S

k /
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/ 21
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⎛ −
=

l
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l⋅
⋅==

f
cSk peffro π

εβ
2

)arg(/ 21,                                 (A-11) 

 

Where α is the attenuation constant (unit = Np/m), ko is the free-space wave 

number (=
oλ
π2  or 

c
fπ2 ),  is the magnitude of S|| 21pS p21,  is the length of the 

equivalent transmission line (unit = m), β is the phase constant (unit = rad/m), 

l
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effr,ε  is the effective relative dielectric constant of the transmission line, arg(Sp21) 

is the total delay phase of Sp21 (unit = rad), c is the speed of light (  m/sec) 

and f is the operating frequency(unit = Hz). 

8103×≈

 

   The guiding properties of a transmission line can be fully characterized by 

impedance characteristic (Zc(f)) and dispersion characteristic (γ(f)=α(f)+jβ

(f)). However, the relative parameters of loss per guided-wavelength (Loss 

( )gdB λ ) and slow-wave factor (SWF = gλλ0 = ok/β ) bear more meaning for 

slow-wave structures. The characteristic impedance, loss per guided-wavelength, 

and slow-wave factor can be obtained from Eqs. (A-7), (A-10) and (A-11). 

Moreover, Loss( )gdB λ and SWF can also be expressed as follows: 

 

gg mmdBLossedBLoss g λλ λα ⋅⋅=⋅= ⋅− )/(10)(log20)/( 3
10                   (A-12) 

effr
g k ,

0

0SWF εβ
λ
λ

===                                          (A-13) 

 

where α is the attenuation constant (unit = m1 ), gλ  is the guided-wavelength 

(unit = m), and . )(log20)/( 001.0
10

α⋅−⋅= emmdBLoss
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   The guiding properties (Zc, SWF, and loss) are extracted directing from the 

S-parameter of the simulated or measured DUT transmission line (MS, CCS,...). 

The extracting processes can be summarized as follows: 

Step1: properly choose the length  of transmission line, that l l  < 0.25λg is 

suggested, else the extracting parameters will be caused by large 

disturbance near those frequencies where the line length g
n λ⋅=
2

l , n = 1, 

2, 3, etc., and λg is the guided-wavelength of transmission line. The 

spurious resonance and numerical error are severely and obviously as the 

line length  near to a multiple of half-guided-wavelength. The 

numerical method to reduce the error will be listed in Appendix C. 

l

Step2: to get its two-port scattering parameters [S] reference to Zo, normally 

50-Ω, by simulation or measurement,  

Step3: at first, to decide the characteristic impedance of the transmission line, Zc, 

that is derived from the input impedance with open and short loads at the 

output port, the final expression is  
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      Where 
22

2112
1111 1

)('
S
SSSS

−
+=∞  and 

22

2112
1111 1

)0('
S
SSSS

+
−= ,  

      the S11 = S22 and S12 = S21 for symmetrical and passive circuits,  

Step4: to perform the re-normalized process, to the scattering matrix [S], that is 
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re-normalized to Zc
* and Zc for the port-1 and port-2, respectively. 

 

 
      The resultant scattering matrix Sp  

where Sp11 = 0, Sp21 = e-γl and γ =α+jβ, γ : propagation constant, α : 

attenuation constant, β : phase constant, 

Step5: to extract the normalized propagation constant γ /ko (α /ko, β /ko) from the 

Sp21, 

 

 

 

 

where |Sp21| is the insertion loss and arg(Sp21) is the delay-phase of 

transmission line, at the condition, Zs = Zc* for the input port-1 and ZL = 

Zc for the output port-2. 

 
Step6: to extract the Loss (dB/λg) and SWF from the α, λg, and β /ko , 
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Appendix B: The derivation of the power-wave scattering 

parameter matrix, pS , for a finite length TL with 

complex reference impedances Z1 and Z2

    The propagation characteristics of the finite length transmission line can be 

characterized by Zc (complex characteristic impedance), γ(=α+jβ, complex 

propagation constant, where α is the attenuation constant and β is the phase 

constant), and  (length of the transmission line) using two-port transmission 

line circuit model,  matrix. 

l

⎥
⎦

⎤
⎢
⎣

⎡
DC
BA

 

    The equivalent circuit of this model is shown as follows, 

 

Fig. B-1. The equivalent circuit model of the two-port TL. 

 

Where I1, V1 and I2, V2 are expressed as terminated current and voltage at port-1 

and port-2, respectively. 
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    Equation (B-1) formulizes the relation between these 2 ports [61], [63], 
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Where  is equal ⎥
⎦

⎤
⎢
⎣

⎡
DC
BA
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     The input impedance Zin(=V1/I1) can be derived from Eq. (B-1) as follows, 

    

γγ
γγ

sinhcosh
sinhcosh

2
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c

c
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l
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Where Z2 is equal to (V2/(-I2)). The input impedance Zin (=V1/I1) is equal to Zc as 

Z2 (=V2/(-I2)) is equal to Zc. 

 

   From Eq. (B-1) and Fig. (B-1) we have, 

 

V1 = AV2-BI2                                                 (B-3) 

I1 = CV2-DI2                                                 (B-4) 

V1 = -I1Z1                                                     (B-5) 

V2 = -I2Z2                                                    (B-6) 
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   On the other hand, the definition of the incident and reflected power waves 

ai and bi, i =1, 2 for port-1, port-2, indicates that [62] 
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**

                                      (B-8) 

 

Where |Re(Zi)| is the magnitude of the real part of Zi,  is defined as the 

square root of |Re(Z

∧

iZ

i)|, and Zi* is the conjugate of Zi. 

 

   From Eq. (B-7) and Eq. (B-8), we can solve V1 and I1 in terms of a1 and b1 

for port-1 by the following formula, 

 

)Re(
)(
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1111
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1
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∧

⋅−
=                                                (B-10) 

 

   Similarly we can solve V2 and (-I2) in terms of a2 and b2 for port-2 by the 
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following formula, 
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    Equation (B-9) to (B-12) can be rearranged in matrix form as follows, 
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Substituting Eq. (B-13) and (B-14) into Eq. (B-1), we have 

 

⎥
⎦

⎤
⎢
⎣

⎡
⋅⋅⎥

⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
⋅

2

2
2

1

1
1 b

a
U

DC
BA

b
a

U                                        (B-15) 

 

⎥
⎦

⎤
⎢
⎣

⎡
⋅≡⎥

⎦

⎤
⎢
⎣

⎡
⋅⎥

⎦

⎤
⎢
⎣

⎡
≡⎥

⎦

⎤
⎢
⎣

⎡
⋅⋅⎥

⎦

⎤
⎢
⎣

⎡
⋅=⎥

⎦

⎤
⎢
⎣

⎡
⇒ −

2

2

2

2

2221

1211

2

2
2

1
1

1

1           
b
a

V
b
a

VV
VV

b
a

U
DC
BA

U
b
a              (B-16) 

 108



 

⎥
⎦

⎤
⎢
⎣

⎡
⋅≡⎥

⎦

⎤
⎢
⎣

⎡
⋅⎥

⎦

⎤
⎢
⎣

⎡
≡⎥

⎦

⎤
⎢
⎣

⎡
⋅

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−

−

=⎥
⎦

⎤
⎢
⎣

⎡
⇒

2

1

2

1

2221

1211

2

1

12

11

12

1212

22

2

1         1

)det(

  
a
a

S
a
a

SS
SS

a
a

V
V

V

V
V

V
V

b
b

p
pp

pp             (B-17) 

 

Where pS  is the power-wave scattering parameter matrix that is referred to the 

reference impedance Z1 and Z2 at port-1 and port-2, respectively, 

)()det( 21122211 VVVVV ⋅−⋅= . 

 

   Assume the system under consideration is reciprocal and passive, where 

Re(Z1), Re(Z2) are positive and Z1, Z2 are complex, the scattering parameters of 

the matrix pS  can be found by the following equations, 
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where 1)det( =− V , 
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  The above scattering parameters can be further simplified for the following 

two cases: 
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    For its special case of positive and real characteristic impedance, Zc = Rc 

and Xc =0, 
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Case2: Z2 = Zc and Z1 = Zc*  
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  After the characteristic impedance Zc of the transmission line is found, the 

new parameters Sp can be obtained by changing the original 50-ohm (Z1 = Z2 = 

50 ohm) system to the new complex impedance (Z1
* = Z2 = Zc) system. Secondly, 

we can directly extract the loss and slow-wave factor (SWF) parameters from 

the magnitude and phase of Sp21 as Eq. (A-10) to Eq. (A-13). 
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Appendix C: Using numerical technique to obtain accurate 

broadband characterization of TL 

    The results of the guided properties from S-parameter 3D Full-Wave 

analyses and measurement may exist larger error as the length  of the 

Device-Under-Testing (DUT) transmission line equals to the multiple of 

half-wave-length. The relatively large error in the characteristic impedance 

values, except that due to the junction structural and/or electrical discontinuities, 

spurious resonance influence, and measurement uncertainties [64], [65], is 

mainly caused by numerical error. For example, the characteristic impedance Z

l

c 

can be found symbolically from Eq. (A-7), the expression 
⎟
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0
0  at frequencies where the line length g

n λ
2

~l , n = 1, 2, 3, … and 

so on, λg is guided wavelength. Therefore a small variation in the denominator 

and/or numerator, such as %1±  error in the (ex. -0.98 to -0.99) and 

(ex. 0.99 to 0.98), will cause about 

'
_11 zeroS

'
inf_11S %35±  relatively large variation in Zc 

(ex.  to ) in numerical simulations. The extraction of the 

guided properties, SWF (=β/k

oZ⋅414.1 oZ⋅707.0

o) and Loss ( )gdB λ , will also cause some degree 

error at frequencies where the line length  is near a multiple of l
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half-wave-length. 

 

    For the special accuracy problem encounters with Zc, SWF and Loss 

( )gdB λ , we present here a numerical method to reduce the error. The procedures 

are described as follows: 

     

   Using well-known numerical curve fitting and interpolation technique, such 

as cubic-spline interpolation, we inserted as many data (2-port S-parameter) as 

possible in the variation frequency band, where the line length  is near a 

multiple of half-wave-length.  

l

 

   We find out the error dominating frequencies where the line length g
n λ
2

=l , 

n = 1, 2, 3, …and so on. From these data where the phase delay get from the 

parameter ∠ Sp21 (or ∠ S21) are equal or most near to a multiple of 180° and the 

values of relative expression ,  are equal or most near to 

zero. 

)1( '
_11 zeroS+ )1( '

inf_11S−

 

   We delete all interpolated data except those in the error dominating 

frequencies. Let xon, n = 1, 2, 3, …etc., be those data with respect to the 

frequency condition of the line length g
n λ
2

=l , n = 1, 2, 3, …and so on. 
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   The waiting processed data curves, the values of the real parts and the 

imaginary parts of the ,  near at x)1( '
_11 zeroS+ )1( '

inf_11S− o1, xo2, xo3, etc., can be 

replaced approximately using ni –order power series polynomial, respectively. 

Where the ni –order is decided from the variation range of the guided properties 

(Zc, SWF and Loss ( )gdB λ ), and the power series polynomial form is similar 

with Taylor series expansion to xon, which shows as following general 

expression,  
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Where the symbol x represent frequency variable of variation range near xon; f (xj) 

is the response value of f (x) at x = xj for j = 1, 2, 3, … ni and x1 < x2 < x3 …< 

; the a
inx f1 , af2 , af3 , … and  are the constant coefficient of the first-order, 

the second-order, the third-order, …, and the n

ifna

i –order item, respectively. The 

constant coefficient afj can be solved from ni simultaneous equations as follows: 
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So, 

 

[ ] [ ] [ ]DCA ⋅= −1                                                  (C-2) 

 

Where the matrix [A] is the constant coefficient matrix. 

 

   Theoretically, when x is equal to xon, f (x) = f (xon) is equal to zero for n=1, 2, 

3, and so on. In physically, the numerical-error results display that only close to 

zero in some degree. Assuming that 

 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−
+

≡
)(1
)(1

)( '
_11

'
inf_11

xS
xS

xV
zero

                                           (C-3) 

and 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅+
⋅+

≡⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−
+

≡
)()(
)()(

)(1
)(1

)( '
inf_11

'
_11

xGjxG
xFjxF

xS
xS

xU
ir

irzero                             (C-4) 

 

Where the Fr(x), Fi(x), Gr(x), and Gi(x) all can be represented by Eq. (C-1), the 

relative coefficients can also be solved in according with the procedures of Eq. 

(C-2).  

 

   When the af1 , af2 , af3 , ……., and have been resolved in Eq. (C-1), the 

mainly processed procedures display as follows:  

ifna
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   The first, to process the characterization variation frequency points except 

for at x = xo1, xo2, xo3, …etc. Setting the numerical error f (xon) to zero in Eq. 

(C-1), to get the modified new values of f (x), applying to the Fr(x), Fi(x), Gr(x), 

Gi(x) near at xo1, xo2, xo3, … etc., respectively, to get the modified new values of 

U(x) and the relative values of V(x), to solve the modified new characteristic 

impedance Zc(x).  

 

   The second, to process the error dominating frequency points at x = xo1, xo2, 

xo3, …etc. Here, U(x) occur ⎟
⎠
⎞

⎜
⎝
⎛

0
0  at x = xo1, xo2, xo3, …etc., to solve the 

limitation values of U(x) as x approach to the xo1, xo2, xo3, …etc., respectively, in 

according with L’Hopital’s rule, to get the modified new values of U(x) and the 

relative values of V(x), to solve the modified new Zc(x) at x = xo1, xo2, xo3..., 

respectively. 

 

   Finally, using the modified new Zc to get the other guiding properties (SWF 

and Loss (dB/λg)) of transmission line in according with the γ - extracting 

procedures from Eqs. (A-8) - (A-13) in Appendix A. 

 

   For verified purpose, we have used above numerical method and extracting 

procedures, to process simulated and/or measured S-parameter of a finite length 
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traditional MS line, to solve its characterization (Zc,, β/ko0 = SWF, α/ko, Loss 

(dB/mm), and Loss (dB/λg)… etc.). We have also applied the presented 

numerical method to process the original values of characteristic impedance Zc, 

to reduce the influence of numerical error near at frequencies where the line 

length g
n λ
2

=l , n = 1, 2, 3, …etc., to get the accurate broadband 

characterization of transmission line (Zc,, SWF, and Loss(dB/λg)). These 

examples will be presented and discussed as Appendix D.   
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Appendix D. Verified Examples of the γ - Zc Extracting Procedure 

and Numerical Technique for the finite-length TL 

Case 1:  

 

   The measured results across the 5 GHz to 40 GHz band reported by 

Goldfard and Platzker [66, Fig. 8] are applied to validate the above-mentioned 

theoretical extracting procedure for obtaining Zc and γ.     

 

   First, the measured data by Goldfard and Platzker are validated by the 

mode-matching method (MMM) incorporating the metal mode [67] as shown 

Fig. D-1(a). Then the full-wave method-of-moment (MOM) results are 

compared to the MMM data in Fig. D-1(b). Figure D-1(a) shows that the 

attenuation constants (in dB/mm) obtained by the MMM are in the middle of 

error bound when operating frequency is below 10 GHz. By contrast the 

attenuation constants approach the lower limit of the error bound between 10 

GHz and 35 GHz. The attenuation constants obtained by the full-wave MOM 

are slightly below the measurement limits of error below 25 GHz and approach 

upper limit near 35 GHz. Since the MMM data agree very well with the 

measurement across the band, they are used as a reference to access the accuracy 

of the full-wave MOM extracting procedure. Figure D-1(b) indicates that the 

normalized attenuation constant (α/ko) obtained by the full-wave MOM is 
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Fig. D-1. The comparison of losses in GaAs MS for 70-μm width on 100-μm 

GaAs, using the MMM and 3D Full-Wave MOM Integral Equations. (a) The 

Fig. D-1. The comparison of losses in GaAs MS for 70-μm width on 100-μm 

GaAs, using the MMM and 3D Full-Wave MOM Integral Equations. (a) The 
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losses, using MMM and 3D Full-Wave simulations, compare to previous work 

[66], (b) The dispersion characteristicsβ/ k (solid lines) andα/ ko (dash lines) 

versus frequency. 

GHz and 17.54 % at 35 GHz less than those obtained by the MMM. On the 

other hand, the maximum deviation of the normalized phase constant (β/ko) 

between two method occurs at the lowest frequency end at 5GHz, where only 

−0.57 % deviation from the MMM data is observed. Therefore the validity of the 

full-wave MOM parameters extracting procedure is validated, provided 

approximately ± 20 % error bound is acceptable for the normalized attenuation 

constant across the band.  
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Case 2: 

 

    Here, we present an example of a traditional MS line structure that Roger 

RO4003 substrate of thickness of 0.508 mm, relative dielectric constant εr of 

3.38, tan-loss tanδ of 0.0022, and cladding conductor thickness of 17.5 µm is 

employed for the 110-Ω MS line design. The MS line structural parameters are 

linewidth W of 0.278 mm, ground-plane width of 1.524 mm, and line length L 

of 48.379 mm. 

 

    The comparing guiding property parameters: characteristic impedance (Zco 

and Zc), slow-wave factor (SWF) and loss per guided wavelength (Loss (dB/λg)) 

versus frequency that got from the original data characteristic impedance Zco and 

the numerical method processed characteristic impedance Zc for the 

conventional MS line, show as Fig. D-2(a)-(b). 

 

   We find out the original data Zco have larger variation near about at 7.8 GHz 

(L ~ 0.5 λg), which the curve of the real parts Re(Zco) has a tip (~ 131 Ω) about 

at 7.7 GHz and a dip (~ 82 Ω) about at 7.8 GHz, simultaneously, the curve of the 

imaginary parts Im(Zco) has a dip (~ -17.5 Ω) about at 7.8 GHz, and the derived 

SWF and Loss (dB/λg) have a little variation about at 7.8 GHz that got from the 

Zco. But the other hand, the processed characteristic impedance Zc by numerical  
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Fig. D-2. The Compare of guiding property parameters: (a) Zco and Zc versus 

frequency, (b) SWF and Loss(dB/λg) versus frequency, that got from the 

original data - characteristic impedance Zco and the processed characteristic 

impedance Zc by numerical technique, for conventional MS line.
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technique are smoothly for real part and imaginary part and the derived SWF 

and Loss (dB/λg) are more smooth that got from the Zc. 

 

   Beside, we derived the characteristic impedance (Zc) that got from the input 

(or output) voltage standing-wave-ratio (VSWR) at the interested frequencies 

( g
nL λ⋅=
4

, n = 1, 2, 3…) [8] as following expression 

 

minmax VSWRVSWRZZ oc ⋅⋅=                                       (D-1) 

 

Where the Zo is equal to 50 Ω; the maximum VSWR, VSWRmax, is equal to 4.764 

occur at 3.9 GHz (~ 0.25 λg) and the minimum VSWR, VSWRmin, is equal to 

1.019 occur at 7.8 GHz (~ 0.5 λg), the characteristic impedance Zc is 

approximately equal to 110.165 Ω for the case. 

 

   The error-percentage of the characteristic impedance Zc that got from Eq. 

(D-1) comparing to our numerical method is smaller than 3.64 %. So, the 

validity of the presented numerical method for Zc-parameter extraction is 

verified again. 
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Summary: 

 

    By comparing to the data that get from Mode-Match method (MMM) and 

HP ADS Line-CAL software analyses, the results are identically well and 

satisfied to our demand. So, the validity of presented numerical method and 

extraction procedures are verified. 

 

    In the following, we will apply the presented numerical method to process 

the original characteristic impedance Zco, to reduce the serious influence of the 

numerical error near at g
nl λ⋅=
2

 and n = 1, 2, 3 etc., to get the broadband 

guided properties (Zc, SWF and Loss (dB/λg)) of the TLs in this dissertation. 
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