TABLE OF CONTENTS

- APPENDIX A: The extracting processes of the guiding properties, Z_c, loss, and SWF for a finite length TL …………………………99
- **APPENDIX B:** The derivation of the power-wave scattering parameter matrix, S_p , for a finite length TL with complex reference impedances Z_1 and Z_2 ………………………………………………105

APPENDIX C: Using numerical technique to obtain accurate broadband characterization of TL …………………………………112

APPENDIX D. Verified Examples of the γ - Z_c Extracting Procedure and Numerical Technique for the finite-length TL…………118 **ANS ISSO AND INC.**

LIST OF FIGURES

- Fig. 2.1. Comparison of conventional 1-D MS and synthetic 2-D TL structures.……………………………………………………………20
- Fig. 3.1. Geometries of the CCS unit cell. (a) 2-D top view, (b) Cross-sectional view.…………………………………………………………………26
- Fig. 3.2. Comparison of mask patterns of the 2-D guided structures of the CCS rat-race hybrid prototype (inside pattern) and the traditional MS rat-race hybrid (outside pattern). ……………………………………30
- Fig. 3.3. Predicted and measured normalized propagation constants (phase constant β/k_0 , attenuation constant α/k_0) versus frequency of the 70- Ω CCS TL (5×4) meander trace). Structural and material parameters are $P = 450 \mu m$, $S = 150 \mu m$, $W_x = W_y = W_{hx} = W_{hy} = 300 \mu m$, $L = 9020$ μ m, and h = 0.203 mm; the relative dielectric constant ε _r = 3.38 and t = 0.018 mm, and the conductivity of the metal is 5.49×10^7 S/m, as shown in Fig. 3.1 and Eq. (3.5).……………………………………36 **X** 1896
- Fig. 3.4. Predicted and measured characteristic impedance (real part: $\text{Re}(Z_c)$, imaginary part: Im(Z_c)) versus frequency of the 70- Ω CCS TL (5 \times 4 meander trace); structural and material parameters as in Fig. 3.3. …38
- Fig. 3.5. Comparison of guiding properties. (a) $Re(Z_c)$, (b) SWF, and (c) loss per guided wavelength (decibels/ λ_{g}) of the CCS TL and MS in both straight and meandered configurations $(5 \times 4$ meander trace) versus patch width W (= $W_x = W_y$) given various widths (S) of the connecting arm and various sizes of etched ground planes W_h (= W_{hx} = W_{hy}); periodicity P = 450 and 225 μ m at f_o = 5.4 GHz. ………………40-41
- Fig. 3.6. (a) Propagation characteristics (β/ k_0 , α/ k_0), (b) complex characteristic impedance $[Re(Z_c), Im(Z_c)]$, and (c) loss per guided wavelength (decibels/ λ_g) versus frequency of the 2-D CCS TL (5 \times 4 meander trace, the $W_h = 300 \mu m$) with various connecting arm widths S, and

traditional MS and meandered MS with equal linewidths $W = 300$ μ m), total length L (= 9020 μ m) and periodicity P (= 450 μ m). \cdots 49-50

- Fig. 3.7. The different meandering paths of the compacted 2-D CCS TL. (a) Trace pattern 1, (b) trace pattern 2, and (c) trace pattern 3. · · · · · · · · · · 53
- Fig. 3.8. (a) Propagation characteristics (β/ k_0 , α/ k_0), (b) complex characteristic impedance $[Re(Z_c), Im(Z_c)]$ and (c) loss per guided wavelength (decibels/ λ_g) versus frequency of the 70- Ω 2-D CCS TL (5 \times 4) with different trace pattern 1, 2, and 3 as shown in Fig. 3.7, which the unit-cell structural parameters are same, the connecting arm width $S =$ 150 μ m, linewidth W_x = W_y = 300 μ m, hole width W_{hx} = W_{hy} = 300 μ m, periodicity P = 450 μ m, and the total length L = 9020 μ m. 54-55
- Fig. 4.1. (a) Top pattern and (b) bottom pattern of the CCS rat-race hybrid coupler. $\frac{1}{2}$ is $\frac{1}{2}$ if $\frac{$
- Fig. 4.2. (a) Total view, and (b) Enlarged view of the CCS rat-race hybrid coupler measurement setup.…………………………………………61
- Fig. 4.3. Scattering parameters, return loss $|S_{11}|$, $|S_{33}|$, isolation $|S_{31}|$, coupling loss $|S_{41}|$, $|S_{43}|$, and phase difference $|\angle S_{41}|$ - $\angle S_{43}|$ versus frequency of the CCS rat-race hybrid prototype.………………………………………62
- Fig. 4.4. CCS oscillator schematics.……………………………………………65
- Fig. 4.5. Comparison of the theoretical and measured propagation characteristics $Re(Zc)$, Im(Zc), Loss(decibels/ λ_g), and SWF of the meandered CMOS CCS TL obtained using a TSMC 0.25-µm 1P5M CMOS process with unit-cell structural parameters P = 15 μ m, S = 3 μ m, W_x = 10 μ m, W_y = 8 μ m, W_{hx} = 14 μ m and W_{hy} = 10 μ m; 2-D CCS TL (8 \times 3 meander trace) and M5 and M4 are set into the top layer and M2 and M1 are set

into the bottom layer. The theoretical data is simulated using IE3DTM.………………………………………………………………67

- Fig. 4.6. Simulated results of the oscillator $-$ (a) single-ended output power spectrum, (b) phase noise spectrum.…………………………………69
- Fig. 4.7. 5.2-GHz CMOS cross-coupled oscillator based on a CCS TL resonator. Chip area: 0.5 mm \times 0.6 mm (including pads), 0.225 mm \times 0.21 mm (active area), and 0.225 mm × 0.225 mm (CCS TL on top).…………71
- Fig. 4.8. Measured results of the oscillator $-$ (a) single-ended output power spectrum, (b) phase noise spectrum.…………………………………72
- Fig. 5.1. Detailed view of beam steering micro-slotline leaky-wave antenna flipped upside down. ESA

Fig. 5.2. The dispersion characteristic of the first higher order EH_1 mode of uniform, unloaded micro-slotline structure. $W = 1$ mm, $s = 0.4$ mm, $b =$ 16 mm, z1 = 3 mm, h = 0.762 mm, ε_r = 2.55, H = ∞ . \blacksquare Normalized phase constant (β/k_o)

- Fig. 5.3. H-plane (Y-Z plane) radiation patterns of the micro-slotline antenna, without and with capacitors, at $f_0 = 4 \text{ GHz}$. \cdots \cdots \cdots \cdots \cdots 81
- Fig. 5.4. The electronic beam steering leaky-wave antenna construction: the micro-slotline leaky-wave antenna with parallel varactors and the uniplanar feed viewed upwardly from physical original structure. The reverse bias and DC-blocking capacitors doesn't display in Fig. 5.4. The structure parameters are $w = 1$ mm, $s = 0.4$ mm, $b = 16$ mm, $z1 = 3$ mm, H = 28 mm, h = 0.762 mm, ε_r = 2.1, y₀ = 3.5 mm, l_c = 1 mm, d = 20 mm. ………………………………………………………………83

⁻⁻⁻⁻⁻ Normalized attenuation constant (α/k o). ………………………77

- Fig. 5.5. The measured result: (a) magnitude of S_{11} , (b) phase of S_{11} , and (c)-input impedance of the electronic beam steering leaky-wave antenna as Fig 5.4. (Dd_3010s, Dd_3030s and Dd_3050s represent reverse bias $V_r = 1$ -Volt, 3-Volts, and 5-Volts applying to the DC-blocking varactors cases, respectively.…………………………84-85
- Fig. 5.6. The measured main beam's angle against reverse D.C. bias voltage of the electronic beam steering micro-slotline leaky wave antenna, at $f_0 =$ 3 GHz. ………………………………………………………………87
- Fig. B-1. The equivalent circuit model of the two-port TL.…………………105
- Fig. D-1. The comparison of losses in GaAs MS for 70- μ m width on 100- μ m GaAs, using the MMM and 3D Full-Wave MOM Integral Equations. (a) *The* losses, using *MMM* and *3D* Full-Wave simulations, compare to previous work [66], (b) The dispersion characteristics β/k (solid lines) and α / k_o (dash lines) versus *frequency*. ……………………………119 1896
- Fig. D-2. The Compare of guiding property parameters: (a) Z_{co} and Z_{c} versus *frequency*, (b) *SWF* and *Loss(dB/* λ *_g)* versus *frequency*, that got from the original data - characteristic impedance Z_{co} and the processed characteristic impedance Z_c by numerical technique, for conventional MS line. ……………………………………………………………122

SYMBOL AND ABBREVIATION LISTS

 $EH₀$: quasi-TEM mode

 $EH₁$: first higher-order mode

Quasi-TEM: quasi-transverse electromagnetic

CCS: Complementary-Conducting-Strip

CCSs: Complementary Conducting Strips

MS: microstrip

MSs: microstrips

TL: transmission line

TLs: transmission lines

CMOS: Complementary Metal-Oxide-Semiconductor

TSMC: Taiwan Semiconductor Manufacturing Company

 $n_{\rm trans}$

1P5M: one ploy and five metal layers

MIM: Metal-Isolator-Metal

2-D TL: two-dimensional transmission line

 Z_c : characteristic impedance

SWF: slow-wave factor

MICs: microwave integrated circuits

MIC: microwave integrated circuit

S ^p : power-wave scattering parameter matrix

γ: propagation constant, $\gamma = j\beta + \alpha$ (*e*^{*i*ω*t*} *e*^{-γ} assumed)

β: phase constant

α: attenuation constant

 $Re(Z_c)$: real part of characteristic impedance

 $Im(Z_c)$: imaginary part of characteristic impedance

k_o: the free-space wave number ($=\frac{2\pi}{\lambda_o}$ or *c* $\frac{2\pi f}{\sigma}$) $β/k_o$: normalized phase constant

 α/k_0 : normalized attenuation constant

 λ_{g} : the guided wavelength

 λ_0 : the free-space guided wavelength

D.C., DC: direct current

LTCCs: low-temperature co-fired ceramics

PCBs: printed circuit boards

MMIC: monolithic microwave integrated circuit

MMICs: monolithic microwave integrated circuits

GaAs: gallium arsenide

 ε_r : relative permittivity

 μ_r : relative permeability

MIS: metal-insulator-semiconducto

MS: microstrip

SWF: slow-wave factor

TFMSs: thin-film microstrips

TFMS: thin-film microstrip

HMICs: hybrid microwave integrated circuits

HMIC: hybrid microwave integrated circuit

SiON: silicon oxynitride

CPW: coplanar waveguide

PLL: phase-locked-loop

DIL: dielectric imaging line

1-D: one-dimensional

2-D: two-dimensional

pHEMT: pseudomorphic high electron-mobility transistor

ARF: area reduction factor

Zo: referenced impedance, typically equal to 50 ohm

SMA: subminiature A BFN: Beam forming network UC-PBG: uniplanar compact photonic-bandgap EME: electric-magnetic-electric 2-D TL: two-dimensional transmission-line RFIC: radio frequency integrated circuit RFICs: radio frequency integrated circuits RF: radio frequency

