TABLE OF CONTENTS

ABSTRACT (Chinese)······i
ABSTRACT (English)······iii
ACKNOWLEDGMENTS (Chinese) ······vi
ACKNOWLEDGMENTS (English) ······vii
TABLE OF CONTENTS
LIST OF FIGURES
SYMBOL AND ABBREVIATION LISTS ······xvi
CHAPTER 1 Background
1.1 Background and motivation of miniaturized Monolithic MIC······1
1.2 Background and motivation of miniaturized beam-steering
antenna······15
CHAPTER 2 Introduction 19
2.1 New Synthetic Quasi-TEM Transmission Lines
2.2 Novel Synthetic Beam-Steering Leaky-Wave Antennas22
CHAPTER 3 Design and Application of Synthetic Quasi-TEM Mode
Transmission Lines24
3.1 Operational Principle of Meander Complementary Conducting Strips
(CCSs)24

3.1.1	Proposed Concept of Quasi-TEM Synthetic TL25
3.1.2	Compacted Passive Circuits Using CCS TLs29
3.2	Quasi-TEM Propagation Characteristics of Meandered CCS TLs and
	Conventional MSs
3.2.1	Analyses and Validity Checks of 2-D TLs
3.2.2	Comparative Studies of Propagation Characteristics of CCS TL
	Against MS in both Straight and Meandered Configurations39
3.2.3	Dispersion Characteristics of 2-D TLs48
3.2.4	Effect of Meandering Paths on the Compacted 2-D CCS TL53
СНАРТ	ER 4 Practical Design
4.1	Miniaturized Rat-Race Hybrid Using CCS TLs57
4.2	Distributed CMOS Oscillator Using CCS TLs63
4.3	Discussion
СНАРТ	ER 5 Design of Synthetic Microstrip at Higher Order Using
	Periodic Varactor Loadings
5.1	The Structure of Beam-Steering Micro-Slotline Leaky Wave
5.1	The Structure of Beam-Steering Micro-Slotline Leaky Wave Antennas
5.1 5.2	The Structure of Beam-Steering Micro-Slotline Leaky Wave Antennas
5.1 5.2 5.3	The Structure of Beam-Steering Micro-Slotline Leaky Wave Antennas
5.1 5.2 5.3	The Structure of Beam-Steering Micro-Slotline Leaky Wave Antennas
5.1 5.2 5.3 CHAPT	The Structure of Beam-Steering Micro-Slotline Leaky Wave Antennas
5.1 5.2 5.3 CHAPT 6.1	The Structure of Beam-Steering Micro-Slotline Leaky Wave Antennas

REFERENCES	91	
	ノユ	

- **APPENDIX A:** The extracting processes of the guiding properties, Z_c, loss, and SWF for a finite length TL99
- **APPENDIX B:** The derivation of the power-wave scattering parameter matrix, S_p , for a finite length TL with complex reference impedances Z₁ and Z₂.....105

APPENDIX C: Using numerical technique to obtain accurate broadband characterization of TL112

APPENDIX D. Verified Examples of the γ - Z_c Extracting Procedure and Numerical Technique for the finite-length TL······118

LIST OF FIGURES

Fig. 1.1. A circular wafer topology that is composed of many square chips for the MMIC2
Fig. 1.2. 78–114 GHz Monolithic Subharmonically Pumped GaAs-Based HEMT Diode Mixer with size of <i>1.5 mm × 2.0 mm</i> [1]3
Fig. 1.3. The cross-section views of the hybrid microwave integrated circuit (HMIC) and monolithic microwave integrated circuit (MMIC)4
Fig. 1.4. The planar spiral inductor in the MMIC······5
Fig. 1.5. The miniaturized TL for the high permittivity $\varepsilon_r \varepsilon_o$ substrate6
Fig. 1.6. The miniaturized TL for the high permeability $\mu_r \mu_o$ substrate7
Fig. 1.7. The cross-sections view for the MIS slow-wave TL
Fig. 1.8. The UC-PBG MS structures [13]9
Fig. 1.9. The EME MS structures [14]11
Fig. 1.10. Comparison on chip area and loss of TFMS and conventional MS [16]12
Fig. 1.11. A compact MMIC magic T structure using TFMS TL [16]13
Fig. 1.12. Configuration of phase-array antenna structure16

- Fig. 3.4. Predicted and measured characteristic impedance (real part: $\text{Re}(Z_c)$, imaginary part: $\text{Im}(Z_c)$) versus frequency of the 70- Ω CCS TL (5 × 4 meander trace); structural and material parameters as in Fig. 3.3. ...38
- Fig. 3.5. Comparison of guiding properties. (a) $\text{Re}(Z_c)$, (b) SWF, and (c) loss per guided wavelength (decibels/ λ_g) of the CCS TL and MS in both straight and meandered configurations (5 × 4 meander trace) versus patch width W (= W_x = W_y) given various widths (S) of the connecting arm and various sizes of etched ground planes W_h (= W_{hx} = W_{hy}); periodicity P = 450 and 225 µm at f_o = 5.4 GHz.40-41
- Fig. 3.6. (a) Propagation characteristics $(\beta/k_o, \alpha/k_o)$, (b) complex characteristic impedance [Re(Z_c), Im(Z_c)], and (c) loss per guided wavelength (decibels/ λ_g) versus frequency of the 2-D CCS TL (5 × 4 meander trace, the W_h = 300 µm) with various connecting arm widths S, and

traditional MS and meandered MS with equal linewidths W (= 300 μ m), total length L (= 9020 μ m) and periodicity P (= 450 μ m)...49-50

- Fig. 3.7. The different meandering paths of the compacted 2-D CCS TL. (a) Trace pattern 1, (b) trace pattern 2, and (c) trace pattern 3.....53
- Fig. 3.8. (a) Propagation characteristics (β/k_o , α/k_o), (b) complex characteristic impedance [Re(Z_c), Im(Z_c)] and (c) loss per guided wavelength (decibels/ λ_g) versus frequency of the 70- Ω 2-D CCS TL (5 × 4) with different trace pattern 1, 2, and 3 as shown in Fig. 3.7, which the unit-cell structural parameters are same, the connecting arm width S = 150 µm, linewidth W_x = W_y = 300 µm, hole width W_{hx} = W_{hy} = 300 µm, periodicity P = 450 µm, and the total length L = 9020 µm. 54-55

- Fig. 4.4. CCS oscillator schematics......65
- Fig. 4.5. Comparison of the theoretical and measured propagation characteristics Re(Zc), Im(Zc), Loss(decibels/ λ_g), and SWF of the meandered CMOS CCS TL obtained using a TSMC 0.25-µm 1P5M CMOS process with unit-cell structural parameters P = 15 µm, S = 3 µm, W_x = 10 µm, W_y = 8 µm, W_{hx} = 14 µm and W_{hy} = 10 µm; 2-D CCS TL (8 × 3 meander trace) and M5 and M4 are set into the top layer and M2 and M1 are set

into the bottom layer. The theoretical data is simulated using $IE3D^{TM}$67

- Fig. 4.7. 5.2-GHz CMOS cross-coupled oscillator based on a CCS TL resonator. Chip area: 0.5 mm × 0.6 mm (including pads), 0.225 mm × 0.21 mm (active area), and 0.225 mm × 0.225 mm (CCS TL on top).....71
- Fig. 4.8. Measured results of the oscillator (a) single-ended output power spectrum, (b) phase noise spectrum.....72

Fig. 5.2. The dispersion characteristic of the first higher order EH₁ mode of uniform, unloaded micro-slotline structure. W = 1 mm, s = 0.4 mm, b = 16 mm, z1 = 3 mm, h = 0.762 mm, ε_r = 2.55, H = ∞.
Normalized phase constant (0/4)

-----Normalized phase constant (β/k_o)

----- Normalized attenuation constant (α/k_o). -----77

- Fig. 5.3. H-plane (Y-Z plane) radiation patterns of the micro-slotline antenna, without and with capacitors, at $f_o = 4$ GHz......81

- Fig. 5.6. The measured main beam's angle against reverse D.C. bias voltage of the electronic beam steering micro-slotline leaky wave antenna, at $f_o = 3$ GHz. 87
- Fig. B-1. The equivalent circuit model of the two-port TL.....105
- Fig. D-2. The Compare of guiding property parameters: (a) Z_{co} and Z_c versus *frequency*, (b) *SWF* and *Loss*(*dB*/ λ_g) versus *frequency*, that got from the original data characteristic impedance Z_{co} and the processed characteristic impedance Z_c by numerical technique, for conventional MS line. 122

SYMBOL AND ABBREVIATION LISTS

EH₀: quasi-TEM mode

EH₁: first higher-order mode

Quasi-TEM: quasi-transverse electromagnetic

CCS: Complementary-Conducting-Strip

CCSs: Complementary Conducting Strips

MS: microstrip

MSs: microstrips

TL: transmission line

TLs: transmission lines

CMOS: Complementary Metal-Oxide-Semiconductor

TSMC: Taiwan Semiconductor Manufacturing Company

1P5M: one ploy and five metal layers

MIM: Metal-Isolator-Metal

2-D TL: two-dimensional transmission line

Z_c: characteristic impedance

SWF: slow-wave factor

MICs: microwave integrated circuits

MIC: microwave integrated circuit

 S_p : power-wave scattering parameter matrix

 γ : propagation constant, $\gamma = j\beta + \alpha$ ($e^{j\omega t} e^{-\gamma}$ assumed)

 β : phase constant

 α : attenuation constant

Re(Z_c): real part of characteristic impedance

Im(Z_c): imaginary part of characteristic impedance

k_o: the free-space wave number $\left(=\frac{2\pi}{\lambda_o} \text{ or } \frac{2\pi f}{c}\right)$

 β/k_o : normalized phase constant

 α/k_o : normalized attenuation constant

 λ_g : the guided wavelength

 λ_o : the free-space guided wavelength

D.C., DC: direct current

LTCCs: low-temperature co-fired ceramics

PCBs: printed circuit boards

MMIC: monolithic microwave integrated circuit

MMICs: monolithic microwave integrated circuits

GaAs: gallium arsenide

ε_r: relative permittivity

 μ_r : relative permeability

MIS: metal-insulator-semiconductor

MS: microstrip

SWF: slow-wave factor

TFMSs: thin-film microstrips

TFMS: thin-film microstrip

HMICs: hybrid microwave integrated circuits

HMIC: hybrid microwave integrated circuit

SiON: silicon oxynitride

CPW: coplanar waveguide

PLL: phase-locked-loop

DIL: dielectric imaging line

1-D: one-dimensional

2-D: two-dimensional

pHEMT: pseudomorphic high electron-mobility transistor

ARF: area reduction factor

Z_o: referenced impedance, typically equal to 50 ohm

SMA: subminiature A
BFN: Beam forming network
UC-PBG: uniplanar compact photonic-bandgap
EME: electric-magnetic-electric
2-D TL: two-dimensional transmission-line
RFIC: radio frequency integrated circuit
RFICs: radio frequency integrated circuits
RF: radio frequency

