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Abstract
This study develops a continuous model to analyze the ‘pull-in’ effect in the circular
micro-plates used in capacitive-type micro-electro-mechanical systems (MEMS) sensors,
actuators and microphones. In developing the model, the governing equation of motion of the
deformed plate is established in the form of a partial different equation (PDE) which is then
decomposed using the Galerkin method to create a coupled set of modal ordinary differential
equations. By considering the first-order deflection mode only and using a fifth-order Taylor
series expansion of the electrostatic force, closed-form solutions are obtained for both the
position and the voltage of the static pull-in event. Applying an energy balance method and a
finite-order approximation method, the solutions are then obtained for the position and voltage
of the dynamic pull-in event. The theoretical results obtained for the pull-in phenomena are
verified based on the comparison to available experimental data, and also numerically using a
finite element analysis (FEA) approach. In general, the results indicate that the ratio of the
dynamic to static pull-in voltages is approximately 92%. However, when the squeezed-film
effect induced by the air gap between the two plates is taken into account, the value of this
ratio increases slightly as a result of considering a higher dynamic pull-in voltage.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Recent advances in the MEMS field have facilitated the design
and application of a variety of micro-sensors and actuators
based on electrostatic actuation mechanisms. MEMS-
based electrostatic devices are essentially simple capacitors
composed of two parallel micro-plates, typically with a square,
circular or beam-type configuration. The device is designed
such that one of these plates is free to move, while the back
plate remains fixed. When a voltage is applied across the
two plates, an electrostatic force is induced between them,
causing the deformable electrode to deflect toward the back
plate. Given a sufficient intensity of the applied voltage,

3 Author to whom any correspondence should be addressed.

the electrostatic force exceeds the elastic restoring force
developed within the deformed plate, and thus it collapses
and makes contact with the back plate. In certain MEMS-
based capacitive-type applications, e.g. microphones [1, 2]
and pressure sensors [3, 4], it is essential to avoid this ‘pull-
in’ effect since the contact between the two plates induces
a short circuit and therefore renders the device inoperable.
However, in other applications, e.g. optical/RF switches
[5, 6], the bias voltage is deliberately tuned in such a way
that the deformable plate collapses, thereby turning the switch
on (or off). Therefore, the realization of such devices requires
not only the availability of mature fabrication techniques, but
also an in-depth knowledge of the dynamic behavior of the
device structure such that the pull-in effect between the two
plates can be either avoided or induced depending upon the
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particular application. To these ends the critical bias voltage
at which pull-in voltage and the corresponding deflection of
the plates/beams (i.e. the so-called pull-in position) must be
precisely computed in advance such that designers can ensure
that the device will operate in accordance with the specification
requirements.

The literature contains many investigations into the pull-
in effect in a variety of electrostatic sensors and actuators. In
some cases, a simple 1-D lumped dynamic model was used
to approximate the behavior of the deformed plate in order to
predict the bias voltage at which the static pull-in event occurs
and the corresponding deflection of the plate (i.e. the pull-in
voltage and the pull-in position, respectively) [7, 8]. However,
the use of a lumped model inevitably limits the accuracy of
the prediction results, and thus other researchers proposed the
use of more sophisticated continuous models [9, 10] or finite
element models (FEM) [8, 10, 11] to analyze the response
of the deformed plate. Among the works using continuous
models, they are aimed to obtain analytical predictions on
the static pull-in position and voltages. For example, Younis
et al [9] presented a continuous reduced-order model for
predicting the static pull-in voltage and position of electrically
actuated MEMS micro-beams. Chao et al [10] developed a
novel computational procedure for predicting the static pull-
in event and verified the numerical results experimentally.
Adopting a similar approach to that employed in [11], Vogl
and Nayfeh [12] presented a continuous reduced-order model
with a uniform residual biaxial plane stress consideration for
actuated.

All the studies described above considered the case of a
static pull-in event, i.e. the intensity of the applied voltage was
gradually increased until the deflection of the plate reached
the critical pull-in position and caused the plate to collapse.
However, in practical electrically actuated MEMS devices,
the voltage applied across the two plates does not gradually
increase in this manner, but changes instantaneously from zero
to the specified design value. Under these conditions, the
deformed beam or plate tends to overshoot the equilibrium
position as a result of inertial effects, and thus it collapses at
a lower voltage than that observed in the static case. Clearly,
this phenomenon has considerable practical implications
regarding the performance of the device, and hence many
researchers have investigated the corresponding ‘dynamic
pull-in’ phenomena. For example, Neilson and Barbastathis
[13] used a lumped model to derive the dynamic pull-in
voltages of parallel-plate and torsional electrostatic MEMS-
based actuators, respectively. Similarly, Elata and Bamberger
[14] established the dynamic pull-in voltage of a multiple
degree-of-freedom parallel-plate system with multiple voltage
sources. In both cases, it was shown that the ratio of the
dynamic pull-in voltage to the static pull-in voltage was of
the order of 91.9%.

In general, the MEMS devices in a circular plate yield
better structure flexibility than rectangular plates since no
corner and/or sharp edges induce higher residual stress after
multiple depositions [8, 12]. As a result, they are an ideal
solution for capacitive-type MEMS-based microphones and
pressure sensors to render higher sensitivity. However, a
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Figure 1. Schematic illustration showing the electrostatic actuation
of the parallel edge-clamped circular micro-plates.

review of the literature reveals that the dc dynamic pull-in
characteristics of edge-clamped parallel circular plates have
yet to be rigorously explored. Accordingly, the objective
of the current study is to develop a continuous model of
the edge-clamped parallel circular plate structure such that
accurate predictions of both its static and its dynamic pull-
in characteristics can be obtained. The study commences
by establishing the equation of motion of the edge-clamped
deformable micro-plate in the form of a partial differential
equation (PDE). Using the Galerkin method, the PDE is then
decomposed into a coupled set of modal ordinary differential
equations (ODEs). Taking a first-mode approximation and
using a fifth-order Taylor’s expansion method to facilitate
the computation of the distributed electrostatic force, closed-
form solutions are derived for the voltage and position of the
static pull-in event. Subsequently, an energy balance method
[13, 20] is employed to derive closed-form expressions for
the voltage and position of the dynamic pull-in event for the
ideal case where the parallel circular plate system has no
damping effects. Finally, a finite-order approximation method
is proposed for deriving the dynamic pull-in phenomena
of a realistic parallel circular plate system in which the
deformation of the plate is opposed by a squeezed-film effect
generated by the air in the gap between the two plates. The
various theoretical models are used to evaluate the respective
effects of the plate radius, the plate thickness and the air
gap height on the static and dynamic pull-in voltages and
positions of the parallel plate system. The influence of the
squeezed-film damping effect on the pull-in phenomena is
also systematically explored. Finally, the theoretical results
are compared with available experimental data in [12], and
validated numerically using a finite element analysis (FEA)
approach.

2. Modeling

2.1. Model description

Figure 1 illustrates the configuration of the two edge-
clamped parallel circular micro-plates considered in the
present analysis. When a voltage, v(t), is applied between
the upper and lower plates at time t, the resulting electrostatic
force induced between them causes the upper plate to deflect
toward the lower plate. At a certain value of the bias
voltage, the magnitude of the attractive force between the
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two plates exceeds that of the restoring force developed within
the deflected plate, and thus a pull-in event takes place. As
described in the introduction, it is essential that this pull-in
event can be accurately predicted during the design stage
such that appropriate parameter values can be assigned to the
parallel plate structure in order to either prevent or induce the
pull-in effect, depending upon the particular application.

While predicting the pull-in voltage, it is necessary to
establish the governing equation of motion of the upper,
deformable plate. Since this plate is radially symmetrical,
the governing equation of motion can be expressed as follows
[15]:

ρh
∂2w
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In equations (1) and (2), ρ is the density of the plate material;
h is the plate thickness; c is the damping coefficient of the
plate material; D is the flexural rigidity of the plate; ∇4 is
the biharmonic operator, w = w(r, t) is the deflection of
the deformed plate, where r is the radial coordinate of the
plate and t denotes time; �(r, t) is the stress function; and τ

is the uniform residual biaxial plane stress per unit distance of
the deformed plate. From basic principles, the flexural rigidity
of the plate, D, can be formulated as

D = Eh3

12(1 − ν2)
, (3)

where E and ν are Young’s modulus and Poisson ratio
of the deformed plate, respectively. The term Fe in
equation (1) denotes the electrostatic force acting on each
unit area of the circular plate when a bias voltage is applied
and can be expressed as

Fe = εV 2
b

2(d − w)2
, (4)

where Vb is the bias voltage; d is the height of the air gap
between the two plates; and ε is the permittivity of air. Note
that the electrostatic force given in equation (4) provides an
approximation of the capacitance between two edge-clamped
parallel plates for which the fringing fields at the boundary are
ignored [16].

The boundary conditions for the governing equation of
the upper edge-clamped circular plate in the absence of an
electrostatic force are given by

w(R, t) = 0, (5)
∂w(R, t)

∂r
= 0, (6)

�(r, t) = 0. (7)

Note that equations (5) and (6) indicate that the edge of the
plate is clamped, while equation (7) indicates that the plate
is in a non-stressed condition. For analytical convenience,

equation (1) can be non-dimensionalized using the following
parameters:

ŵ = w

d
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R
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ĉ = c
R2

√
ρhD

, τ̂ = τ
hR2

D
, α = εR4

Dd3
, (8)

V̂b = Vb

V0
and F̂e = Vb

2(1 − ŵ)2
.

The governing equation of motion of the upper plate can then
be rewritten in the form
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The corresponding non-dimensional boundary conditions are
given by

ŵ(1, t̂ ) = 0, (10)

∂ŵ(1, t̂ )

∂r̂
= 0, (11)

�(r̂, t̂) = 0. (12)

Having derived the governing equation and its boundary
conditions, the static and dynamic pull-in characteristics of
the two-plate system can be facilitated by performing a
modal decomposition of equation (9), as demonstrated in the
following section.

2.2. Reduced-order model

In the current study, the governing PDE given in
equation (9) is decoupled using the Galerkin method [17] to
create a coupled set of discrete modal ODEs. The decoupling
process commences by separating the deformation of the
upper circular plate into its temporal components, wk(t̂), and
its spatial components, φk(r̂), respectively. The deflection,
ŵ(r̂, t̂ ), can then be expressed in the form of a series of
products of these two components, i.e.

ŵ(r̂, t̂ ) ≈
N∑

k=1

wk(t̂)φk(r̂), 1 � k � N (13)

where wk(t̂) is the kth time-dependent generalized coordinate
of the kth mode shape function, φk(r̂) is the kth radial-
dependent mode shape function and satisfies the boundary
conditions given in equations (11) and (12) and N is the
number of modes considered. As N approaches infinity, the
approximation given in equation (13) becomes exact provided
that the specified mode shape function forms a complete set.

If the mode shape function,φk(r̂), is specified as the axi-
symmetric modes of the deformed plate, it can be shown that
the mode shapes are given by [15]

φk(r̂) = Ck

(
J0(r̂

√

k)

J0(
√


k)
− I0(r̂

√

k)

I0(
√


k)

)
, (14)
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where J0 is the Bessel function of the first kind, I0 is
the modified Bessel function of the first kind [18], Ck is
a constant coefficient corresponding to thekth mode shape
and 
k is the kth natural frequency. Applying the same
procedure of the well-known Galerkin method, substituting
equation (13) into equation (9), multiplying both sides by
the mode shape function in equation (14) and integrating the
substituted equations over the surface domain of the deformed
thin circular plate, the coupled set of nonlinear modal ODEs
describing the parallel micro-plate structure can be derived as

Mẅ + Cẇ + Kw = fe, (15)

where w contains all wk(t̂), 1 � k � N . The individual terms
within equation (15) are given by

mk =
∫ 1

0
φ2

k dr̂ , (16)
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∂

∂r̂

(
r̂
∂φk
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.

(18)

In the system equation given in equation (15), the electrostatic
force term, fe, has the form

fe,k = α

∫ 1

0
F̂eφk dr̂ , (19)

where F̂e is the distributed electrostatic force between the two
parallel circular plates and varies as a nonlinear function of
the upper plate deflection. Observing equations (15)–(19), a
number of significant points emerge. First, kth derived are in
fact the natural frequencies associated with the eigenmodes of
the deformed circular plate. Second, the orthogonality existing
between different modes results in diagonal matrices M, C
and K, as evidenced from the computed right-hand sides of
equations (16), (17) and (18), respectively. In other words, the
left-hand side of equation (15) is decoupled. Furthermore,
since the computed entries of matrices M, C and Kare
constant, all of the terms on the left-hand side of the reduced
equation (15) are linear. Third, the modal electrostatic
force vector, fe, is computed by integrating the nonlinear
distributed electrostatic force F̂e given in equation (4). The
nonlinear dependence of F̂e on the circular plate deflection
ŵ(r̂, t̂ ) renders fe the only coupled and nonlinear term in
equation (15).

It should be noted at this point that having computed
matrices M, C and K, the only term remaining to be evaluated
is the electrostatic force acting on the deformable plate,
i.e. fe. However, performing the integration operation in
equation (19) is complex due to the nonlinearity of the
electrostatic force term, F̂e. In practice, equation (19) can
be solved in one of two different ways, namely using a
numerical method to perform a full-order Gaussian integration;
or (2) performing a finite-order Taylor series expansion
of the electrostatic force, F̂e, prior to carrying out the
integration operation. The integration results based on the
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Figure 2. Full-order and finite-order solutions for variation of
electrostatic force with respect to the deflection in the center of the
deformed circular plate.

Taylor series expansion enable a closed-form prediction of
the pull-in position/voltage. The results of the Gaussian
integration process can be used to help determine the order
of the Taylor series required to obtain an accurate closed-
form approximation of the pull-in position/voltage. For
example, considering only the first mode in equation (13),
the corresponding electrostatic force,fe,1, is computed using
both methods. Figure 2 compares the results obtained by
the two methods for the variation of the electrostatic force as
a function of the steady-state deflection of the plate center.
Note that in computing the results, both methods consider
only the first deflection mode (w1) in equation (13). It can
be seen that the approximation results obtained using the
fifth-order Taylor series expansion method are very close to
the numerical results obtained using the full-order Gaussian
integration method for the case where w1 is less than 0.5. As
will be shown later, the static pull-in position is invariably
less than 0.5, and thus in the current analysis, equation (19) is
solved using the fifth-order Taylor series expansion approach.
This strategy avoids the requirement for a numerical scheme
to process the full-order Gaussian integration of F̂e and yields
closed-form approximations of the pull-in voltage and pull-
in position which are in very close agreement with the exact
results.

3. Pull-in prediction

This section employs the continuous model developed in
section 2 to predict the static and dynamic pull-in voltages
and positions of the deformable plate shown in figure 1 for
various values of the plate thickness, the plate radius and the
air gap height.

3.1. Static pull-in prediction

In analyzing the deformation of the circular micro-plate, the
present analysis considers only the first mode of the decoupled
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system equation given in equation (13). It will be shown
later in section 5 that this first-mode approximation is entirely
adequate for the purposes of predicting the deflection of the
center point of the deformed circular plate. The pull-in event
can be predicted by analyzing the static equilibrium between
the elastic restoring force developed within the deformed
circular plate, i.e. the third term on the left-hand side of
equation (15), and the electrostatic force induced by the
applied bias voltage, i.e. the right-hand side of equation (15),
i.e.

fr,1 = fe,1, (20)

where fr,1 is the net restoring force associated with the first
deflection mode, while fe,1 is the corresponding electrostatic
force. From equation (18), the restoring force, fr,1, can be
obtained as

fr,1 = k1w1, (21)

where w1 denotes the normalized steady-state first-mode
deflection of the center point of the deformed circular plate.
Meanwhile, fe,1 can be derived by integrating equation (19)
with k = 1. At the moment that the static pull-in event occurs,
the rate of change of the electrostatic force, fe,1, with respect
to the deflection of the circular plate, w1, is equal to that of the
restoring force fr,1, i.e.

∂fr,1

∂w1
= ∂fe,1

∂w1
, (22)

which means that the tangency of the electrostatic force fe,1

and the restoring force fr,1 are equal with respect to circular
plate center deflection w1. The pull-in position and pull-in
voltage can therefore be found by solving equations (20) and
(21) simultaneously, yielding

fe,1.
∂fr,1

∂w1
= fr,1

∂fe,1

∂w1
. (23)

where it is seen that w1 is the only unknown to be solved in
determining the pull-in position. In other words, the pull-in
position is independent of the magnitude of the applied bias
voltage.

As described in section 2, the electrostatic force terms in
equation (23) can be solved using either a finite-order Taylor
series expansion method or a full-order numerical scheme.
Using a fifth-order Taylor series expansion to approximate
fe,1 and ∂fe,1

∂w1
yields an expression of the form

fe,1
∂fr,1

∂w1
− fr,1

∂fe,1

∂w1

∼= αV̂ 2
b C2

1 · (441.759 + 34.6101τ̂ )

· [−0.256 582 + 0.484 726w2
1 − 1.132 33w3

1

+ 1.912 15w4
1 − 2.8058w5

1

] = 0. (24)

This equation can be solved by setting the sum of the terms in
the brackets equal to zero, resulting in a normalized value of
the pull-in position, i.e. a value describing the deflection of the
center point of the circular plate as a ratio of the total height of
the air gap. From inspection, the normalized pull-in position
is found to have a value of

w1,pi ≈ 0.415. (25)

Figure 3 illustrates the variations of the restoring force and the
electrostatic force, respectively, as the normalized deflection

1w

,1ef
,1rf

Figure 3. Variations of the fifth-order Taylor series approximation
of electrostatic force and restoring force, respectively, with respect
to the normalized deflection in the center of the deformed circular
plate. (Note: point of tangency at w1,pi ≈ 0.415.)

of the center point of the deformed plate is progressively
increased. As shown, the two profiles are tangent at a
deflection value of 0.415, corresponding to the normalized
pull-in position. From equation (25), it is apparent that the
normalized pull-in position is not only independent of the bias
voltage, but also of all the system parameters, namely the
radius and thickness of the plate, the plate material, the height
of the air gap and so forth. Therefore, the normalized pull-
in position of w1,pi ≈ 0.415 predicted based on a continuous
model corresponds to a smaller gap between two charged plates
at the occurrence of pull-in.

As indicated above, the electrostatic force terms in
equation (23) can also be solved by conducting a full-order
numerical integration operation. Adopting this approach, the
normalized value of the pull-in position is found to be 0.408.
Figure 4 illustrates the results obtained for the pull-in position
by the full-order numerical method and the finite-order Taylor
series expansion approach, respectively. In general, both sets
of results indicate that the value of the normalized pull-in
position is independent of the radius of the circular plate. Thus,
it is shown that the pull-in phenomenon is well predicted, and
furthermore, it can be seen that the prediction of the normalized
pull-in position obtained using the fifth-order Taylor expansion
method is in good agreement with the results obtained using
the full-order numerical integration scheme.

Having established the value of the normalized pull-
in position, the corresponding pull-in voltage is easily
obtained by substituting the corresponding value of the plate
deflection into equation (20). Assuming a pull-in position of
w1,pi ≈ 0.415, as computed using the fifth-order Taylor series
expansion method, it can be shown that the corresponding
pull-in voltage is given in non-dimensional form by

V̂b,spi = 1.325 36
√

16.777 + 1.314 41τ̂√
α

. (26)
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R

1
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Figure 4. Full-order and finite-order solutions for the static pull-in
position in circular plates with various radii.

Converting equation (26) to a dimensional form yields the
following expression

Vb,spi = 1.325 36d
3
2

√
16.777D + 1.314 41hR2τ

R2
√

ε
. (27)

From an inspection of equation (27), it can be seen that the
static pull-in voltage is directly proportional to the square
roots of the flexural rigidity, D, the residual stress, τ ,
and the thickness of the deformed circular micro-plate, h,
respectively, but is inversely proportional to the plate radius,
R, and the square root of the permittivity of the air gap, ε.
Equation (27) indicates that the value of the static pull-in
voltage is also significantly influenced by the height of the
air gap. Note that contrary to the found dependence of the
pull-in voltage on system parameters based on equation (27),
the normalized pull-in position is independent of all system
parameters, evidenced in equation (25).

Assuming that the parallel plate structure shown in
figure 1 has the parameter values indicated in table 1,
the closed-form solution of the static pull-in voltage (i.e.
equation (27)) yields a value of 20.1792 V. To verify this
result, the pull-in voltage is also computed using the full-order
Gaussian integration operation to evaluate the electrostatic
force acting between the two plates. In this case, the static
pull-in voltage is found to be 20.0713 V. Figure 5 compares
the results obtained using the full-order integration method
and the finite-series Taylor series expansion method for the
variation of the static pull-in voltage as a function of the radius
of the circular plate. (Note that other than the plate radius,
the remaining system parameters are as defined in table 1).
In general, it is observed that the value of the pull-in voltage
decays exponentially as the radius increases. It can also be
seen that the approximation results converge toward the exact
solution as the order of the Taylor series expansion increases.
In general, the results confirm the feasibility of using the fifth-
order approximation of the electrostatic force to compute the
static pull-in phenomena and demonstrate the validity of the

R

Figure 5. Full-order and finite-order solutions for variation of the
static pull-in voltage with respect to the radius of the deformed
circular plate.

Table 1. System parameters employed in static and dynamic pull-in
analyses.

Symbol Parameters Value/unit

h Deformed circular plate thickness 3.01 μm
L Circular plate radius 250.0 μm
d Gap thickness 1.014 μm
ν Poisson’s ratio 0.0436
E Young’s modulus 150.6 GPa

closed-form solution for the static pull-in voltage given in
equation (27).

The validity of equation (27) can also be confirmed
experimentally. Both Vogl and Nayfeh [12] and Osterberg
[19] measured the static pull-in voltages of edge-clamped
Silicon micro-circular plates with a thickness of around 3 μm.
The height of the air gap was approximately 1 μm in every
case. The corresponding results are presented in figure 6 and
compared with those computed using the closed-form solution
via equation (27) with parameter values of d = 1.014 μm,
h = 3.01 μm, E = 150.6 GPa, ν = 0.0436 and τ =
7.82 MPa. From inspection, the average discrepancy between
the approximated results and the experimental counterparts is
found to be around 2.18%. In other words, the validity of
the closed-form solution based on a fifth-order Taylor series
expansion is again confirmed.

3.2. Dynamic pull-in prediction

The discussions above have considered the case in which the
voltage is gradually increased until the deflection of the center
point of the plate reaches a critical displacement and causes the
pull-in event to take place. However, in practical applications,
the bias voltage is generally applied when the circular plate is
in an undeformed condition. As a result, the plate undergoes
a rapid deflection, and thus the inertial effects of the plate
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Figure 6. Theoretical and experimental results [12] for variation of
static pull-in voltage with respect to the radius of the deformed
circular plate.

and the viscosity effect induced by the squeezed air film
between the deformed plate and the back plate play roles
in determining the occurrence of the pull in event. In the
literature, the corresponding bias voltage is conventionally
defined as the dynamic pull-in voltage [13, 14].

3.2.1. Energy balance method. Practical capacitive-type
MEMS devices are generally actuated using a step voltage
signal. The application of this voltage signal causes the
deformable plate to overshoot the static equilibrium position
considered in the previous analyses. If the overshoot is
sufficiently large, the pull-in effect may occur at a voltage
lower than that observed in the static case. In analyzing
the dynamic pull-in voltage, the actuating voltage signal is
modeled as

Vb(t) = VbU(t), (28)

where U(t) is a unit step function and Vb is the magnitude of the
voltage. Since the parallel plate model shown in figure 1 has
a nonlinear nature, examining its response to the step voltage
using an analytical technique is usually difficult. Thus, in
the present analysis, the dynamic pull-in characteristics of the
system are evaluated initially using a simple energy balance
method [13, 20].

At time t = 0, the system is at rest and has no stored
energy. However, when a step voltage is applied, the energy
injected into the system is stored as both kinetic and potential
energy. Over time, the stored energy above that associated
with the equilibrium position is dissipated through damping
effects. The energy balance of the system at any instant in
time can thus be written as follows:

Einjected = Ekinetic + Epotential + Edissipated. (29)

Where Einjected is the energy input into the system, Ekinetic is
the kinetic energy stored in the system, Epotential is the elastic
potential energy stored in the system and Edissipated is the energy
lost from the system due to damping effects [13]. In general,

the lowest possible value of the dynamic pull-in voltage occurs
when the over-shoot reaches its maximum value. In a practical
system, the overshoot can be maximized by suppressing the
damping effects.

For example, under vacuum conditions, the damping
effect within the system is restricted to the material properties
of the deformed plate itself, and thus the energy dissipation
term in equation (29) can effectively be ignored. When the
deformable plate is at the point of maximum overshoot, all
of the stored energy is in the form of potential energy since
the plate is momentarily at rest, and thus it has zero kinetic
energy. The dynamic pull-in event can therefore be evaluated
by equating the electrical energy injected into the system with
the potential energy associated with the point of maximum
overshoot. Therefore, the energy method will be used to
analyze the dynamic pull-in phenomenon associated with a
step input to the parallel circular plate system.

The dynamic pull-in voltage of the edge-clamped circular
plate can be analyzed using the coupled ODEs given in
equations (15)–(19) and the energy balance equation given
in equation (29). The maximum non-dimensional potential
energy stored within the deformed plate can be expressed as

Êpotential = 1
2 Kw2

max ≈ 1
2k1w

2
1,max, (30)

where k1 is given in equation (18) and w1,max is the deflection
of the plate at the maximum overshoot position. Meanwhile,
the non-dimensional energy injected into the system by the
applied voltage can be found by integrating the electrostatic
force acting on the deformed plate over the plate displacement,
i.e.

Êinjected =
∫ wmax

0
fedw ≈

∫ w1,max

0
fe,1 dw1, (31)

where fe,1 is given in equation (19). Combining
equations (29)–(31) and setting the kinetic and dissipated terms
equal to zero, the step voltage can be expressed as the following
function of the maximum overshoot displacement:

V̂b = [{−(52.18 + 4.0881τ̂ )w2
1,max

}/{
α
(
0.663 10w1,max

− 0.5w2
1,max + 0.4176w3

1,max − 0.3658w4
1,max

+ 0.3295w5
1,max − 0.3021w6

1,max

)}] 1
2 . (32)

Taking the derivative of equation (32) and setting it equal to
zero

(
i.e. dV̂b

dw1,max
= 0

)
gives

w1,max = −0.641 346. (33)

Note that the negative sign in equation (33) simply indicates
a defection of the deformed circular plate in the downward
direction. In other words, the magnitude of the position of
the local maximum deflection is w1,pi,max = 0.641 346, i.e.
it lies in the range 0 < w1,pi,max < 1. In other words, the
normalized dynamic pull-in position has a value of around
0.641. It is noted that this value is higher than that observed in
the static analyses, i.e. 0.415 (using the finite-order Taylor
series expansion method) and 0.408 (using the full-order
Gaussian integration method), respectively. As stated above,
the minimum value of the potential required to induce the pull-
in event is associated with the maximum overshoot position. In
other words, the step voltage corresponding to the maximum
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Figure 7. Theoretical static pull-in and theoretical dynamic pull-in
voltages without squeezed-film effect considered in the circular
plates with various radii.

overshoot defined in equation (33) can be regarded as the
dynamic pull-in voltage. Having computed the value of the
dynamic pull-in position, the dynamic pull-in voltage is easily
obtained by substituting the solution of equation (33) into
equation (32), which yields

Vb,dpi = 1.219 789d
3
2

√
16.777D + 1.314 41hR2τ

R2
√

ε
. (34)

It can be shown that the ratio between the dynamic pull-in
voltage, Vb,dpi, computed in equation (34) and the static pull-
in voltage, Vb,spi, computed in equation (27) is given by

Vb,dpi

Vb,spi

∼= 0.9203. (35)

In other words, for the ideal case of zero damping, the dynamic
pull-in voltage is approximately 92.03% of the static pull-in
voltage. Equation (35) also shows that the value of this ratio
is independent of the device parameters. Figure 7 illustrates
the variation in the closed-form solutions for the static and
dynamic pull-in voltages, respectively, as a function of the
plate radius. From a close inspection, it is confirmed that in the
ideal zero-damping case the ratio of 92.03% between the static
and the dynamic pull-in voltages is maintained irrespective of
the plate radius.

At this point, the closed form of the dynamic pull-
in voltage prediction of the edge-clamped circular plate is
obtained by using the energy method to analyze the dynamic
behavior, but it has a shortcoming that it uses the energy
method to obtain the dynamic pull-in voltage closed form of the
device. The energy method cannot analyze the damping factor
of the system. In consequence, the damping-like squeezed-
film effect of the system or device cannot be analyzed via the
afore-proposed energy method.

3.2.2. Finite-order approximation method. Although the
energy balance approach provides a convenient means of
evaluating the dynamic pull-in position and voltage, it

necessarily makes the assumption that the system has no
damping effects. However, in practice, the deflection of the
upper plate is resisted by a squeezed-film effect within the air
gap as it deforms. Furthermore, the material properties of the
upper plate also induce a slight energy dissipation effect. As a
result, the value of the pull-in voltage increases slightly since
it is necessary to overcome these damping effects in order
to induce the pull-in event. In other words, the closed-form
solutions obtained in the previous section using the energy
balance method can be regarded as representing the ideal case
in which neither the material of the plate nor the air gap exerts
a damping effect. To model the more realistic case in which
damping effects are present within the system, this section
of the paper develops a finite-order approximation method to
establish the dynamic pull-in response of the parallel plate
structure shown in figure 1.

When the squeeze-film effect of the air gap between the
two plates is taken into account, the governing equation of
motion for the deformed plate can be expressed as

ρh
∂2w

∂t2
+ 2c

∂w

∂t
+ D∇4w = 1

r

∂

∂r

(
∂w

∂r

∂�

∂r

)

+
τh

r

∂

∂r

(
r
∂w

∂r

)
+ Fe − P, (36)

where

∇4w =
(

∂2

∂r2
+

1

r̂

∂

∂r

) (
∂2w

∂r2
+

1

r̂

∂w

∂r

)
.

In this equation, w = w(r, t) is the deflection of the deformed
circular micro-plate; r is the radial coordinate position; h, c and
ρ are the thickness, material damping coefficient and density
of the circular plate, respectively; τ is the uniform residual
biaxial plane stress per unit distance of the deformed micro-
plate; D is the flexural rigidity of the plate; E and ν are Young’s
modulus and Poisson ratio of the circular plate, respectively;
Fe is the electrostatic force per unit area of the deformed plate;
and P is the net pressure acting on each area of the deformed
plate as a result of the squeezed air film effect.

In general, the pressure induced within a thin air film
squeezed between two moving plates can be described using
the 2D Reynolds equation. This equation is derived from
the Navier–Stokes equation under three basic assumptions,
namely (1) the inertial terms are negligible compared to the
viscous terms, (2) the pressure is constant within the film
and (3) the flow in the direction perpendicular to the plates is
negligible [21]. Under these conditions, the Reynolds equation
can be formulated as follows:

∂

∂x

(
ρah

3
a

12η

∂P

∂x

)
+

∂

∂y

(
ρah

3
a

12η

∂P

∂y

)
= ∂(ρaha)

∂t
, (37)

where η and ρa are the viscosity and density of the air,
respectively; P is the pressure; and ha is the thickness of
the air film. In MEMS applications such as that considered
in the present study, the ratio between the mean free path
of the air particles and the film thickness (Knudsen number
Kn) is sufficiently large that a non-slip boundary condition
at the interface between the air and the moving plates is
no longer applicable. In practice, the viscosity parameter
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η is therefore replaced by an effective viscosity parameter
ηeft = η(1 + 6Kn)

−1.
The present analysis is based upon a simplified squeezed-

film model, in which an assumption is made that the
compressibility effects of the air gap are sufficiently small
that they can be neglected, i.e. the density of the air, ρa ,
has a constant value. Therefore, the squeezed-film force
exerted on the deformed plate by the air within the gap
between the two plates can be approximated as an air spring
force and a dissipative damping force. For the case of two
radially symmetrical parallel circular plates separated by an
air gap with constant density and viscosity, the squeezed-film
pressure, P, can be expressed as

P = 3ηeft

d3
(R2 − r2)

∂w

∂t
, (38)

where w = w(r, t) is the deflection of the deformed plate
and d is the height of the air gap between the two plates.
Substituting equation (38) into the governing equation given
in equation (36) yields

ρh
∂2w

∂t2
+

(
2c +

3ηeft

d3
(R2 − r2)

)
∂w

∂t
+ D∇4w

= 1

r

∂

∂r

(
∂w

∂r

∂�

∂r

)
+

τh

r

∂

∂r

(
r
∂w

∂r

)
+ Fe. (39)

Therefore, it is well known that the squeezed-film force can
be reduced to the air spring force by equation (39). For
analytical convenience, equation (39) can be transformed into
the following non-dimensionalized form:

∂2ŵ

∂t̂2
+

(
2ĉ +

3R4ηeft

d3
√

Dρh
(1 − r̂2)

)
∂ŵ

∂t̂
+ ∇̂4ŵ

= τ̂
1

r̂

∂

∂r̂

(
r̂
∂ŵ

∂r̂

)
+ αF̂e. (40)

Applying the Galerkin decomposition method to equation (40)
yields the following coupled set of nonlinear modal ODEs for
the micro-plate structure with a squeezed-film effect:

Mẅ + Ĉẇ + Kw = fe, (41)

where the damping term Ĉ has the form

ĉk =
[

2ĉ

∫ 1

0
φ2

k dr̂ +
3R4ηeft

d3
√

Dρh

∫ 1

0
(1 − r̂2)φ2

k dr̂

]
,

1 � k � N.

(42)

Considering the first deflection mode only, equation (41) can
be rewritten in the following state-space form:

ẋ1 = x2,

ẋ2 = 1

m1
[fe,1 − ĉ1x2 − k1x1],

(43)

As in the static analyses performed in section 3.1, the
electrostatic force F̂e associated with the first deflection
mode can be computed by applying the fifth-order Taylor
series expansion prior to performing the integration operation.
Equation (43) can thus be further derived as

x2 = ẇ1,

ẋ2 = μ1 + μ2x1 + μ3x
2
1 + μ4x

3
1 + μ5x

4
1 + μ6x

5
1 + μ7x2,

(44)

Figure 8. Phase portraits of the system with squeezed-film effects
under three bias voltages.

where

μ1 = −0.663 103αV 2
b , μ2 = αV 2

b − 104.36 − 8.176 15τ̂ ,

μ3 = −1.252 71αV 2
b , μ4 = 1.463 18αV 2

b ,

μ5 = −1.647 23αV 2
b , μ6 = 1.812 81αV 2

b ,

μ7 = −(2ĉ + 0.915 694B), B = 3ηef tR
4

d3
√

Dρh
.

(45)

Utilizing a numerical method to solve equation (44), the
deflection and velocity of the center point of the deformed plate
can be calculated for any specified set of system parameters.
By plotting x2 against x1, a phase portrait can then be obtained
from which both the dynamic pull-in voltage and the dynamic
pull-in position can be directly derived. Figure 8 presents the
phase portraits obtained when solving equation (44) using the
parameter values indicated in table 1 and three different values
of the bias voltage, Vb. Note that the residual stress is assumed
to have a value of 7.82 MPa in every case. Note also that the
notation Vb,dpi in the legend denotes the pull-in voltage. It is
observed that the three orbits in the figure have quite different
characteristics. For example, when a bias voltage of 18.2 V is
applied, the orbit forms a closed structure, indicating that the
system is in a stable condition. However, at a slightly higher
voltage of 18.691 V, a homoclinic orbit is formed, indicating
that the voltage corresponds to the dynamic pull-in voltage.
The x-axis coordinate of the intersection point indicates the
dynamic pull-in position. From inspection, the dynamic pull-
in position is found to have a value of 0.6 in the current case.
When the voltage is increased beyond the pull-in voltage, the
micro-plate collapses, as indicated by the red dashed orbit
shown in figure 8.

Figure 8 also confirms the feasibility of using the finite-
order approximation method to derive the dynamic pull-in
voltage of the capacitive-type system shown in figure 1 for
the case where a squeezed-film effect exists between the two
plates. Furthermore, the figure shows that the value of the
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Figure 9. Phase portraits of the undamped system under three bias
voltages.

dynamic pull-in voltage is lower than the static pull-in voltages
determined in section 3.1, but is higher than that obtained using
the energy balance method in which a zero damping effect is
assumed. However, this method is unable to obtain a closed-
form solution of the dynamic pull-in voltage.

The validity of the finite-order approximation method can
be confirmed by setting the damping term to zero and then
comparing the results obtained for the dynamic pull-in voltage
and position with those obtained using the energy balance
method. Considering the structure shown in figure 1, described
by the governing equation given in equation (1), figure 9
shows the phase portraits of the undamped system under three
values of the applied voltage. (Note that the device parameters
and residual stress value are identical to those considered in
figure 8). In this case, it can be seen that the dynamic pull-
in voltage has a value of Vb,dpi = 18.572 V. As expected,
the value of the pull-in voltage is lower than that observed in
figure 8 (Vb,dpi = 18.691 V) since the effects of damping
are ignored in figure 8. Comparing the pull-in voltage value
of 18.572 V computed using the finite-approximation method
under a zero damping assumption with the value of 18.5719 V
calculated for the ideal non-damped case, the ratio between
them is found to be 99.999 46. In other words, the two
methods provide virtually identical results for the dynamic
pull-in voltage in a perfectly undamped system. Thus, it can
be inferred that in an ideal system, the energy balance method
provides a convenient means of determining the dynamic pull-
in voltage since it obtains accurate results without the need for
complex numerical computations.

3.3. Analysis of pull-in predictions

Having established various theoretical prediction methods for
the static and dynamic response of the edge-clamped circular
micro-plate configuration shown in figure 1, this section
utilizes these methods to examine the respective effects of

the system parameters on the pull-in characteristics of the
deformable circular plate.

Figure 10(a) illustrates the variation of the static and the
dc dynamic pull-in voltage (with and without a squeezed-film
effect) as the radius of the circular plate, R is increased. (Note
that the other parameters are as shown in table 1). Meanwhile,
figure 10(b) shows the ratios of the dynamic pull-in voltages
with and without a squeezed film effect, respectively, to the
static pull-in voltage at various values of the plate radius.
Finally, figure 10(c) shows the variation of the ratio of the
dynamic pull-in voltage without a squeezed-film effect to that
with a squeezed-film effect as the plate radius is increased.
In general, figure 10(a) shows that the static and dynamic
pull-in voltages all decrease as the radius of the circular plate
increases. This result is to be expected since the rigidity
of the plate decreases as its radius increases. Moreover, it
can be seen that the static pull-in voltage is greater than both
dynamic pull-in voltages. Figure 10(b) shows that the ratio
of the dynamic pull-in voltage without squeezed-film effects
to the static pull-in voltage remains constant at a value of
around 92.03% irrespective of the value of R. However, it is
apparent that the ratio increases when the squeezed-film effect
is taken into consideration, particularly at higher values of
the plate radius. Although figure 10(a) seems to show a very
close agreement between the two values of the dynamic pull-
in voltages, figure 10(c) shows that the ratio of the dynamic
pull-in voltage with no squeezed-film effect to that of the pull-
in voltage with a squeezed-film effect actually reduces from
100% to 94.3% as the radius of the circular plate is increased
from 1 μm to 5 μm.

In practice, the pull-in voltage of the circular plate
structure shown in figure 1 is affected not only by the radius
of the deformed circular plate, but also by the height of the air
gap between the two circular plates and the thickness of the
deformed circular plate. Figures 11(a)–(c) show the effects of
the air gap on the static and dynamic pull-in voltages of the
device, the ratios of the dynamic pull-in voltages to the static
pull-in voltage and the ratio of the dynamic pull-in voltage
without a squeezed-film effect to that with a squeezed-film
effect, respectively. Figure 11(a) shows that the static and
dynamic pull-in voltages all increase with an increasing gap
height. This result is to be expected since for a constant
electrical voltage, the electrostatic force decreases as the gap
height increases, and thus a higher electrical voltage is required
to induce the pull-in effect. Figure 11(a) also confirms that
the static pull-in voltage is consistently higher than the two
dynamic pull-in voltages. Figure 11(b) reveals that in the
absence of a squeezed-film effect, the ratio of the dynamic
pull-in voltage to the static pull-in voltage has a constant value
of 92.03%, irrespective of the gap height. However, it can be
seen that when the squeezed-film effect is taken into account,
the value of the ratio increases slightly. Figures 11(b) and (c)
both indicate that the relative influence of the squeezed-film
effect on the pull-in voltage reduces as the height of the air
gap increases.

Figures 12(a)–(c) illustrate the effect of the thickness of
the deformed circular plate on its static and dynamic pull-in
characteristics. Figure 12(a) shows that the static and dynamic
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Figure 10. (a)–(c) Pull-in voltage analyses as a function of the
radius of the circular plate.

pull-in voltages increase as the thickness of the circular plate
increases. Intuitively, this is reasonable since the rigidity of

d

(a) 

d

(b) 

d

(c)

Figure 11. (a)–(c) Pull-in voltage analyses as a function of the air
gap between two circular plates.

the plate is enhanced as its thickness increases. It is seen from
figure 12(a) that all two dynamic pull-in voltages are close to
each other and smaller than the static counterpart. Figure 12(b)
confirms that the ratio of the ideal dynamic pull-in voltage to
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Figure 12. (a)–(c) Pull-in voltage analyses as a function of the
thickness of a deformed circular plate.

the static voltage remains constant at 92.03%. Furthermore,
from figures 12(b) and (c), it can be seen that the influence of
the squeezed-film effect on the value of the dynamic pull-in

voltage reduces as the thickness of the deformed circular plate
increases.

Overall, the results presented in figures 10–12 indicate that
the magnitudes of the static pull-in voltage and the dynamic
pull-in voltage vary as a function of the radius and thickness
of the deformed circular plate and the height of the air gap,
respectively. Specifically the pull-in voltage increases with
a decreasing plate radius and an increasing plate thickness
and air gap. Furthermore, it has been shown that the squeeze
damping effect arising as a result of the air film between the
two circular plates results in a slight increase (less than 10%)
in the dynamic pull-in voltage, particularly at higher values of
the plate radius, or lower values of the plate thickness and gap
size, respectively.

4. Finite element analysis and validation of
theoretical predictions

In order to validate the results presented in section 3 for
the static and dynamic pull-in voltages of the two circular
micro-plates, this section performs a finite element analysis
using the commercial Intellisuite modeling and simulation
package. The analysis procedure basically involves solving a
coupled system of mechanical and electrical fields. In general,
Intellisuite offers two alternative computational schemes,
namely a sequential scheme and a direct scheme. In the
sequential method, the dynamics of the mechanical and
electrical fields are calculated individually and sequentially,
whereas in the direct method, the computational process solves
the coupled system directly. Although the latter method is
more computationally intensive, it has an improved precision,
and is therefore adopted in the present analysis to compute
the plate deflection corresponding to different values of the
applied voltage [22].

Figure 13(a) presents the FEM model of the two parallel
circular plates. Note that in performing the deformation
simulations, the model is constructed using the parameters
defined in table 1 and assumes a residual stress of 7.82 MPa.
The FEM modeling and analysis herein are accomplished by
the commercial software Intellisuite. The finite elements of the
circular plate are created by several default automesh densities.
In fact, the FEM modeling adopts the function of auto-
meshing provided by the commercial software Intellisuite,
with the default mesh value with the convergence criterion
set to ‘0.0001 μm’. This default value is confirmed capable
of offering reliable results, since as the convergence criterion
is increased to ‘0.001 μm’, the pull-in predictions are only
varied less than in 2%.

The objective of the simulations is to determine the voltage
at which the pull-in event occurs such that the theoretical
values of the static and dynamic pull-in voltages derived in
the previous section can be verified. When the pull-in event
takes place, the upper plate collapses and makes contact with
the fixed back plate. In other words, the air gap at the center
point of the deformed plate reduces to zero. Thus, the pull-in
voltage is easily derived simply by tuning the voltage until a
zero air gap is obtained.
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Figure 13. (a) Configuration of two parallel circular plates in FEM
model; (b) deflection of deformed circular plate under applied bias
voltage of 19.7 V; (c) comparison between FEM and theoretical
first-mode approximation results for the circular plate deflection
along r̂ direction.

Figure 13(b) presents the deflection of the thin circular
plate corresponding to an applied bias voltage of 19.7 V.
Under this particular value of the applied bias voltage, the
deflection at the center of the plate is seen to be 1.015 μm,
i.e. equivalent to the air gap (see table 1). In other words, the
FEM analysis predicts a static pull-in voltage of 19.7 V. When
the simulation is repeated using an impulse-like application
of the applied voltage, the simulation results reveal that the
magnitude of the voltage at which the deflection of the center
point of the circular plate equals the gap height reduces to
18.2 V, which corresponds to the dynamic pull-in voltage.
Utilizing the aforementioned computation and data analysis

R

Figure 14. Theoretical, experimental and FEM results for the static
pull-in voltages with respect to the radius of the deformed circular
plate.

R

Figure 15. Theoretical results for the dynamic pull-in voltage (with
and without squeezed-film consideration) and FEM results for
dynamic pull-in voltage (with squeezed-film consideration) at
various values of the plate radius.

procedures, the dynamic and static pull-in voltages can be
found by FEM.

Figure 13(c) illustrates the variation of the normalized
circular plate deflection along the r̂-axis direction, as
computed by the FEM approach and the first-mode
approximation method presented in section 3, respectively.
Although a slight discrepancy is observed between the two
profiles toward the fringes of the plate, the two sets of results
are in excellent agreement in the center region. Therefore,
the FEM results confirm the effectiveness of the first-mode
approximation in predicting the pull-in phenomenon.

Finally, figures 14 and 15 show the theoretical and FEM
predictions on static and dynamic pull-in voltages versus
plate radius, respectively, along with experimental static pull-
in voltages from [12, 19]. It is seen from figure 14 that
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theoretical predictions are very close to FEM counterparts.
Furthermore, the experimental static pull-in voltages from
[12, 19], particularly for the radius at 250 μm, average
percentage deviate from the experimental results and the FEM
results by just 2.18% and 2.26%, respectively.

The data shown in figure 14 confirm the validity of the
theoretical prediction methods established in this study. On
the other hand, figure 15 shows the theoretical dynamic pull-in
voltages with and without squeezed-film considered, and also
the associated FEM data. It is clearly shown in this figure that
the results obtained from the reduced-order model for the pull-
in voltage subject to a squeezed film effect vary by no more
than 2.46% from the results obtained using the FEM approach
over the considered radius range. In other words, the validity of
the reduced-order model and the finite-approximation method
are confirmed.

5. Concluding remarks

This study has developed a reduced-order continuous model to
evaluate the pull-in voltage and position of the upper plate in
a MEMS structure comprising a parallel arrangement of two
circular micro-plates. The magnitudes of the pull-in voltage
and the pull-in position have been estimated using various
closed-form and numerical techniques. The validity of the
theoretical results has been confirmed both experimentally
based on available data, and numerically using a FEM
approach. The major findings and contributions of the current
study can be summarized as follows:

(1) The results obtained using the continuous model with
a fifth-order Taylor series expansion of the electrostatic
force and a first-mode approximation have indicated that
the normalized static pull-in position has a value of
0.415. The equivalent result obtained using the same
reduced-order continuous model but a full-order Gaussian
integration of the electrostatic force has a slightly lower
value of 0.408. In general, the results have shown that
the static pull-in position is not only independent of the
magnitude of the applied bias voltage, but also of all the
system parameters, i.e. the thickness, radius and material
of the deformed circular micro-plate and the height of the
air gap.

(2) Utilizing the fifth-order Taylor series expansion method
and a first-mode approximation, closed-form solutions
have been obtained for both the static pull-in voltage and
the dynamic pull-in voltage in the ideal case where the
parallel circular micro-plate structure has zero damping
effects. It has been shown that in this ideal case, the
dynamic pull-in voltage is around 92.03% of the static
pull-in voltage, irrespective of the plate parameters.

(3) The results obtained using the continuous reduced-order
model have shown that the static and dynamic pull-in
voltages decrease as the radius of the deformed plate
increases, or the plate thickness and air gap height are
reduced.

(4) In practice, the air in the gap between the two plates resists
the deflection of the upper plate and therefore induces
a squeezed-film effect. The results of a finite-order

approximation analysis have shown that this squeezed-
film effect leads to a slight increase in the value of the
dynamic pull-in voltage. The relative influence of the
squeezed film increases as the radius of the deformed
plate increases, or the plate thickness and air gap height
are reduced.

In a future study, the theoretical results obtained for the
dynamic pull-in voltage will be validated more rigorously
by performing experimental comparisons. Furthermore, the
analysis method presented in this study will be extended to the
case of MEM capacitor-type devices with square- or beam-
type plates.
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