
CHAPTER 4 

Curvature Analysis 

 

4.1 Introduction 

Due to the elasticity of tooth surfaces, the instantaneous contact point of the 

meshing tooth surfaces is spread over an elliptical area under the load. The 

dimensions and orientations of the contact ellipses depend on the principal curvatures 

of the contact surfaces. one of the application of curvature analysis is to investigate 

the tooth undercutting when the envelope surfaces are generated. The tooth 

undercutting will occur if the normal curvature of the generating surface is smaller 

than that of the generated surface. 

Relationships between the principal curvatures and directions of the surfaces 

were proposed by Litvin [22]. The approach of curvature analysis proposed by Litvin 

can determine the principal curvatures and directions of the generated surfaces 

without the knowledge of the complex tooth surfaces. He investigated the 

relationships of the principal curvatures and directions for tooth surfaces in point 

contact and line contact, but these tooth surfaces are the envelope to one-parameter 

family of surfaces.  

The motion of the hob cutter surfaces that envelope the surface of the 

curvilinear-tooth gear is considered as the two-parameter motion of a rigid body. In 

this case, the hob cutter surface and tooth surface are in point contact and the tooth 

surface of the curvilinear-tooth gear is represented by four related parameters. 

Therefore, it is difficult to calculate the curvatures of complex tooth surfaces by using 

differential geometry method. In this chapter, equations related the principal 

curvatures and directions of the two surfaces are formulated. 
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4.2 Relations Between Relative Velocity 

 The generating surface  is a regular surface and is represented in coordinate 

system  as: 

1Σ

),,( 1111 ZYXS

1)1(
1 ),( Cl ∈φr , 0

)1(
1

)1(
1 ≠

∂
∂

×
∂
∂

φ
rr

l
, El ∈),( φ ,   (4.1) 

where and l φ  are surface parameters of surface . The normal to surface  is 

represented as follows: 
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The surface  as the envelope to the two-parameter family of surface  can be 

represented as follows:   
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where Matrix  represents the coordinate transformation from coordinate system 

 to . 

21M

),,( 1111 ZYXS ),,( 2222 ZYXS θ  and ψ  depict two independent parameters 

which determined the relative motion between the tool surface  and envelope . 

 represents the unit normal of tool surface . The symbol  represents the 

relative velocity of contact point when parameter 
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θ=j (or ψ ) is varied and 

parameter ψ (or θ ) is fixed. Equations (4.4) and (4.5) that relate the parameters , l

φ , θ , and ψ  are called equations of meshing. 

Figure 4.1 reveals the relationship among coordinate systems for the generation 

mechanism with two-parameter motion. The motion of the hob cutter surface  can  1Σ
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Fig. 4.1 Simulation of a generation mechanism with two-parameter motion 

 

 

be represented by two independent parameters, rotational angles θ  and ψ , while 

axes  and  are the rotational axis of the surface , respectively. Axis  

represents the rotational axis of the gear tooth surface .  Axes  and  are 

intersected at Point . The point M is a common point to both rotating surfaces. 

 is the position vector drawn form point  to point M.  represents the 

position vector drawn to point M from an arbitrary point on the axis  e.g., .  

The location of origin points  and  is specified by the position vectors  
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and , which are measured from the fixed coordinate system . D is 

a relative-position vector drawn from the point  to point . 

)2(ρ ),,( ffff ZYXS
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According to section 3.3, the relative velocity with respect to the hob cutter 

surface , , and relative velocity of the tip of the surface unit normal which 

corresponds to the motion of the contact point over the surface , , can be 

expressed by: 
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4.3 Relations Between Curvatures of Mating Surfaces 

Figure 4.2 shows that two mating surfaces  and  are tangent to each other 

at their instantaneous contact point M. The vector  represents the surfaces common 

unit normal at common contact point M.  Plane T denotes the common tangent plane 

of these two mating surfaces.  The origins of coordinate systems , and 

, and the instantaneous contact point M are coincident.  and  are 

unit vectors of the principal directions of surface , while  and  are unit 

vectors of the principal directions of surface . 
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2Σ σ  is the angle measured from the 

vector   to . The coordinate transformation matrix, , and transform 

the coordinates from coordinate system  to  and from 

 to , respectively, can be expressed by: 
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Fig. 4.2 Principal direction of mating surface represented in 

 tangent plane 
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The vectors and  lie in the tangent plane T and they are related by 

Rodrigues’ formula [12,13] as follows: 
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Symbols  and  are the principal curvatures of surface , while  and  

are the principal curvatures of surface . Owing to the tangency of two contacting 
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surfaces, the position vectors of the surface  and surface  at the contact point 

and their unit normal vectors are the same as represented in the fixed coordinate 

system by: 
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The differentiated forms of Eqs. (4.11) and (4.12) can be represented as follows 

[12,13]: 

)12()1()2(
trrr VVV += ,  (4.13) 

and .  (4.14) )1()12(
)1()2(

nωnn ×+=
••

rr

The subscript “r” represents the relative velocity over the tooth surface, while the 

subscript “tr” denotes the transfer velocity. Equations (4.13) and (4.14) can be 
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Substituting Eqs. (4.9) ,(4.10) and (4.15) into Eq. (4.16) yields the following equation: 
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After some mathematical operations, equation (4.17) can be represented by a system 

of two linear equations as follows:  
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Let  and j=1=i θ  in Eq. (4.6) and substituting Eqs. (4.9) and (4.15) into Eq. (4.6), 

equation (4.6) can be expressed by: 
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Similarly, setting and j =1=i ψ  in Eq. (4.6) and substituting Eqs. (4.9) and (4.15) 

into Eq. (4.6), equation (4.6) can be expressed by: 

[ ] [ ] 04443)2(

)2(

4241 =
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+⎥
⎦

⎤
⎢
⎣

⎡

dt
d
dt
d

bb
v
v

bb
rh

f

ψ

θ

, (4.30) 

where ,  (4.31) 
T

h

f
T

h

f
T

v
v

b
b

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⋅×
⋅×

+⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
eωn
eωn

K
)(
)(

),12()1(

),12()1(

1),12(

),12(

42

41
ψ

ψ

ψ

ψ

and 

[ ]

)1(
),(),(

)1(),2()()(

)1(
),2(

)2()1()1(),12()1()1()1(
),12(

)1(

)1()1(),12()12(),12()1()12(),12()12(),12(
4443

)(])[(

])[(])[(][

][][

2
2 nVVnωVV

nωρρnωPωnωP

nωVVωn

⋅−+−+

−+×−−

+−+=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

••

••

ψψ
ψ

ψ
ψ

ψ

ψψψψ

ψ

θ

OO
OO

trhhhfff

h
h

vvkvvk

dt
d
dt
d

bb

. 

 (4.32) 

Equations (4.18), (4.27), and (4.30) yield a system of four equations in two unknowns 

as follows:  
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As shown in Fig 2.5, the curvilinear-tooth gears are generated by a CNC hobbing 
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machine. The kinematic relations such as position vectors and , linear 

velocities  and , angular velocities  and , and their 

differentiation have been derived in section 3.2. Substituting these kinematic relations 

into Eqs. (4.18), (4.27), and (4.30), the coefficients of the system of four equations 

(4.33) can be found. 
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the rank of matrix of coefficients for equation (4.33) must equal to two. This yields: 
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According to Eqs. (4.34)-(4.36), the coefficients , , and , can be obtained 

as follows:  
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Substituting the coefficients , , and , and the principal curvatures  

and  of the tool surface into Eqs. (4.24)-(4.26), the unknown principal curvatures 
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sk  and  of the generated surface and the angle qk σ  formed between the vectors 

 and  can be found. fe se

 

4.4 Principal Curvatures and Directions of the Hob Cutter 

The tooth surfaces of cylindrical gears with curvilinear shaped teeth generated by 

a hob cutter that is performing motion with two independent parameters had been 

developed in chapter 2.  The surface equation of the hob cutter , represented in 

coordinate system , can be expressed by: 

)1(
1r

),,( 1111 ZYXS

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−±
+−
+

=

1
cossin

sincossinsin)cos(
sinsinsincos)cos(

),(
111

1111

1111

11
)1(

1 φβα
βφαφα
βφαφα

φ
Pl

llr
llr

l
n

nnt

nnt

m

m

r ,     (4.40) 

where  and 1l 1φ  are the surface parameters of the hob cutter.  denotes the 

lead-per-radian revolution of the hob cutter’s surface. Symbols 

1P

nα , β , and  are 

design parameters of the hob cutter. In Eq. (4.40), the upper sign represents the 

right-side hob cutter surface while the lower sign indicates the left-side hob cutter 

surface.  
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The surface normal vector  of the hob cutter can be obtained and 

represented in coordinate system  as follows: 
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The principal curvatures  and , and principal directions  and  of 

the point on surface can be expressed by [56]:  
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Symbol H represents the mean curvature while K expresses the Gaussian 

curvature. The partial derivatives , , and of surface equation , 

represented in coordinate system , can be obtained by: 
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Substituting the partial derivatives , , , and  into Eqs. (4.42)-(4.45), 

the principal curvatures and directions of a point on hob cutter surface can be 

obtained.  

lr φr φlr φφr
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4.5 Numerical Examples  

The procedures for determination of principal curvatures and directions of a 

two-parameter envelope surface are shown in Fig. 4.3. There are two numerical 

examples to calculate the principal curvatures and directions at the point of tooth 

surface of the curvilinear-tooth gear. 

 
Example 4.1: The major design parameters of a ZA worm-type hob cutter and the 

curvilinear-tooth gear are listed in Table 4.1.  Figure 4.4 displays the left-side and 

right-side tooth surfaces of the curvilinear-tooth gear,  and . The cross 

section =0.0 mm shown in Fig. 4.4 represents the middle section of the tooth 

width.  

L2Σ R2Σ

fZ

Based on the flowchart shown in Fig. 4.3 and the corresponding equations, the 

principal curvatures and directions of the curvilinear-tooth gear surface can be 

obtained. When the nominal radius of circular arc tooth trace  equals 110 mm, 

Table 4.2 and Table 4.3 show the principal curvatures,  and , and principal 

directions,  and , at cross section =0.0 mm on the tooth surfaces  and 

, respectively. In Tables 4.2 and 4.3, =4.381 mm generates the tip of addendum 

while =10.354 mm generates the starting point of the working curve on the tooth 

surface. 

cR

sk qk

se qe fZ L2Σ

R2Σ 1l
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According to the data of , , , , , and  shown in Tables 4.2 

and 4.3, it was found that the principal direction  is parallel to axis  and the 

principal direction  lies in the plane 

sxe sye sze qxe qye qze

se fZ

qe ff YX − . Since the principal curvatures  

is positive and  is negative as shown in Table 4.2, the points at cross section 

sk
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 START 

Determine fk , hk , fe  and he by using 

Eqs. (4.40)-(4.48) 
 

Input design parameters of the hob 
cutter ( 1T , nM , nα , and 1r ) and the 

curvilinear-tooth gear ( 2T  and cR ) 

Determine 11b , 12b  and 22b  by 
using Eqs. (4.37)-(4.39) 

Determine sk , qk  and σ  by using Eqs. (4.24)-(4.26)

END 

Determine 43332313 ,,, bbbb , 342414 ,, bbb  and 44b by 
using Eqs. (4.20), (4.29), and (4.32) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.3 Flowchart for the determination of the principal curvatures and 

 directions for the envelope surface of family of tool surface 
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Fig. 4.4 The concave surface and convex surface of the curvilinear-tooth gear 

 

 

 

Table 4.1 Major design parameters for cylindrical gears with circular 
 arc tooth traces 

 Hob cutter Curvilinear-tooth gear 
Number of teeth 1 20 
Normal module 3 mm 3 mm 

Normal pressure angle 20°  20°  
Lead angle 2.866°  ━ 
Face width ━ 40 mm 

Nominal radius of 
circular tooth trace ━ 110 mm 

 Pitch radius  30 mm 30 mm 
Outside diameter 67.5 mm 66 mm 
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fZ = 0 mm on tooth surface  are hyperbolic points. The points at cross section 

= 0 mm on tooth surface  are elliptic points because the principal curvatures 

 and  both have the same sign as shown in Table 4.3.  

L2Σ

fZ R2Σ

sk qk

 

Example 4.2: The major design parameters are chosen the same as those shown in 

Table 4.1, except that the nominal radius of circular arc tooth trace  is 5000 mm. 

The analysis results of principal curvatures and directions are shown in Table 4.4 and 

Table 4.5. It is found that the characteristics of curvatures and directions of the 

surfaces are the same as those shown in Table 4.2 and Table 4.3, except that the 

principal curvatures of the points at cross section = 0 mm have some 

differences.  

cR

sk fZ

 

 

Table 4.2 Principal curvatures and directions at cross section = 0 mm on fZ
 tooth surface  when nominal radius = 110 mm L2Σ cR

1l (mm) sk (1/mm) sxe  sye  sze  qk (1/mm) qxe  qye  qze  
 4.381 0.009077 0.000 0.000 1.000 -0.058372 -0.870 -0.493 0.000 
 4.979 0.008944 0.000 0.000 1.000 -0.064565 -0.897 -0.441 0.000 
 5.576 0.008815 0.000 0.000 1.000 -0.072231 -0.922 -0.388 0.000 
 6.173 0.008690 0.000 0.000 1.000 -0.081965 -0.943 -0.334 0.000 
 6.770 0.008568 0.000 0.000 1.000 -0.094734 -0.961 -0.278 0.000 
 7.368 0.008449 0.000 0.000 1.000 -0.112222 -0.975 -0.222 0.000 
 7.965 0.008334 0.000 0.000 1.000 -0.137634 -0.986 -0.164 0.000 
 8.562 0.008221 0.000 0.000 1.000 -0.177932 -0.994 -0.106 0.000 
 9.159 0.008112 0.000 0.000 1.000 -0.251613 -0.999 -0.048 0.000 
 9.757 0.008006 0.000 0.000 1.000 -0.429482 -1.000 0.010 0.000 
10.354 0.007902 0.000 0.000 1.000 -1.465754 -0.998 0.068 0.000 
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Table 4.3 Principal curvatures and directions at cross section = 0 mm on fZ
 tooth surface  when nominal radius = 110 mm R2Σ cR

1l (mm) sk (1/mm) sxe  sye  sze  qk (1/mm) qxe  qye  qze  
4.381 0.008067 0.000 0.000 1.000 0.058372 0.870 -0.493 0.000 
4.979 0.008176 0.000 0.000 1.000 0.064565 0.897 -0.441 0.000 
5.576 0.008287 0.000 0.000 1.000 0.072231 0.922 -0.388 0.000 
6.173 0.008402 0.000 0.000 1.000 0.081965 0.943 -0.334 0.000 
6.770 0.008520 0.000 0.000 1.000 0.094734 0.961 -0.278 0.000 
7.368 0.008641 0.000 0.000 1.000 0.112222 0.975 -0.222 0.000 
7.965 0.008766 0.000 0.000 1.000 0.137634 0.986 -0.164 0.000 
8.562 0.008895 0.000 0.000 1.000 0.177932 0.994 -0.106 0.000 
9.159 0.009027 0.000 0.000 1.000 0.251613 0.999 -0.048 0.000 
9.757 0.009163 0.000 0.000 1.000 0.429482 1.000 0.010 0.000 
10.354 0.009304 0.000 0.000 1.000 1.465754 0.998 0.068 0.000 
 

Table 4.4 Principal curvatures and directions at cross section = 0 mm on fZ
 tooth surface  when nominal radius = 5000 mm L2Σ cR

1l (mm) sk (1/mm) sxe  sye  sze  qk (1/mm) qxe  qye  qze  
4.381 1.881729E-4 0.000 0.000 1.000 -0.058372 -0.870 -0.493 0.000 
4.979 1.881244E-4 0.000 0.000 1.000 -0.064565 -0.897 -0.441 0.000 
5.576 1.880755E-4 0.000 0.000 1.000 -0.072231 -0.922 -0.388 0.000 
6.173 1.880260E-4 0.000 0.000 1.000 -0.081965 -0.943 -0.334 0.000 
6.770 1.879760E-4 0.000 0.000 1.000 -0.094734 -0.961 -0.278 0.000 
7.368 1.879256E-4 0.000 0.000 1.000 -0.112222 -0.975 -0.222 0.000 
7.965 1.878748E-4 0.000 0.000 1.000 -0.137634 -0.986 -0.164 0.000 
8.562 1.878236E-4 0.000 0.000 1.000 -0.177932 -0.994 -0.106 0.000 
9.159 1.877721E-4 0.000 0.000 1.000 -0.251613 -0.999 -0.048 0.000 
9.757 1.877203E-4 0.000 0.000 1.000 -0.429482 -1.000 0.010 0.000 
10.354 1.876682E-4 0.000 0.000 1.000 -1.465754 -0.998 0.068 0.000 
 

Table 4.5 Principal curvatures and directions at cross section = 0 mm on fZ
 tooth surface  when nominal radius = 5000 mm R2Σ cR

1l (mm) sk (1/mm) sxe  sye  sze  qk (1/mm) qxe  qye  qze  
 4.381 1.876860E-4 0.000 0.000 1.000 0.058372 0.870 -0.493 0.000 
 4.979 1.877534E-4 0.000 0.000 1.000 0.064565 0.897 -0.441 0.000 
 5.576 1.878204E-4 0.000 0.000 1.000 0.072231 0.922 -0.388 0.000 
 6.173 1.878869E-4 0.000 0.000 1.000 0.081965 0.943 -0.334 0.000 
 6.770 1.879529E-4 0.000 0.000 1.000 0.094734 0.961 -0.278 0.000 
 7.368 1.880186E-4 0.000 0.000 1.000 0.112222 0.975 -0.222 0.000 
 7.965 1.880840E-4 0.000 0.000 1.000 0.137634 0.986 -0.164 0.000 
 8.562 1.881490E-4 0.000 0.000 1.000 0.177932 0.994 -0.106 0.000 
 9.159 1.882137E-4 0.000 0.000 1.000 0.251613 0.999 -0.048 0.000 
 9.757 1.882782E-4 0.000 0.000 1.000 0.429482 1.000 0.010 0.000 
10.354 1.883423E-4 0.000 0.000 1.000 1.465754 0.998 0.068 0.000 
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4.6 Remarks 

An approach for the determination of principal curvatures and directions for the 

surface as envelope to two parameters family of surfaces has been developed. The 

proposed approach has considered three equations, two differentiated equations of 

meshing and Rodrigues’ equation, to yield system of four linear equations in two 

unknowns. It was the extension of Litvin’s approach. 

Computer programs for calculations of the principal curvatures and directions of 

the tooth surfaces have been developed. The principal curvatures and directions of the 

tooth surface have been calculated successfully by the developed computer programs. 

The proposed approach will be further used to evaluate the half length of the major 

and minor axes of contact ellipse in the next chapter. 
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CHAPTER 5 

Tooth Contact Anaylsis 

 

5.1 Introduction 

The noise and vibration of gear meshing are two important measurements of a 

gear train performance. It is well known that the kinematic error (KE) of a gear train 

is a main source of gear noise and vibration [55]. The shape and level of KEs induced 

by gear axial misalignments are the important factors to predict the noise and 

vibration of a mating gear pair. If the KE is a discontinuous function, there has a 

relative motion and a large acceleration at the transfer point where the next gear pair 

come into mesh. The shape of KEs with discontinuous linear function caused by gear 

axial-misalignments can be absorbed by a predesigned parabolic function of KEs with 

a controllable magnitude [13], and the level of KEs induced by horizontal 

axial-misalignments can be reduced by the compensation method [25]. The bearing 

contact may be shifted to the edge of the gear tooth surfaces due to the errors of 

manufacturing or assembly.  To avoid the edge contact of a mating gear pair, the 

tooth surfaces should be modified to change the contact type from line contact to 

point contact. Gear pairs with higher contact ratios can reduce the tooth stress and KE 

by sharing the load among neighboring teeth. The dimensions and orientation of 

contact ellipses can be obtained and the finite element method is applied to the stress 

analysis. 

The contact characteristics of the gear pair mentioned above, the paths of the 

contact point on tooth surfaces as well as contact ratio, KE, and contact ellipse can be 

estimated by the developed tooth contact analysis (TCA) computer program. 

Assumptions, such as considering contact as rigid surfaces, have been made when the 
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tooth contact analysis is performed. In this chapter, the contact characteristics of a 

curvilinear-tooth gear pair will be studied. 

 

5.2 Simulation of Gear Meshing 

The model for gear meshing under assembly errors can be simulated by changing 

the settings and orientations of the coordinate systems  and 

 with respect to the fixed coordinate system  as shown in Fig. 5.1, 

where coordinate systems  and  are attached to the 

pinion and gear, respectively.  The axes  and  are rotational axes of the 

pinion and gear, respectively. Coordinate systems  and  

are the reference coordinate systems for the misaligned gear assembly simulations. 

The simulation of horizontal axial misalignments of a gear pair can be achieved by 

rotating the coordinate system  about the  axis through an angle 

),,( hhhh ZYXS

fS

),,( pppp ZYXS ),,( gggg ZYXS

pZ gZ

),,( vvvv ZYXS ),,( hhhh ZYXS

),,( hhhh ZYXS hX

),,( vvvv ZYXS

hγΔ  with respect to the coordinate system . Similarly, simulation of 

vertical axial misalignments of a gear pair can be performed by rotating the 

coordinate system  about the Y  through an angle 

),,( ffff ZYXS

),,( vvvv ZYXS h vγΔ  with respect 

to coordinate system . Z),,( hhhh ZYXS Δ  denotes the assembly error along the 

rotational axis  measured from point gZ gO′  to point O .  Symbol  represents 

the operational center distance of a gear pair, and 

g C′

CΔ  denotes the center distance 

variations. The origin  of the coordinate system  may be 

displaced by an amount of  and the operational center distance of the meshing 

gear pair can be represented by 

gO ),,( gggg ZYXS

CΔ

CCC = + Δ′  with respect to origin of the fixed 

coordinate system .  Symbols 

fO

),,( ffff ZYXS 1φ′  and 2φ′  represent the rotational  
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Fig. 5.1 Simulation of gear meshing with assembly errors 
 

 

angles of the pinion and gear, respectively, when they are meshed with each other.   

The unit normal and position vectors of both pinion and gear tooth surfaces 

should be represented in the same coordinate system, say  when 

applying the TCA method to calculate the KEs of the curvilinear gear pair. The 

position vector and the unit normal vector of the pinion represented in coordinate 

system  can be transformed to the fixed coordinate system 

 by applying the following homogeneous coordinate transformation 

),,( ffff ZYXS

),,( pppp ZYXS

),,( ffff ZYXS
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matrix equations: 

)( p
pR

)( p
pn

⎥
⎥
⎥
⎥

⎦

⎤

10
01
00
00

⎥
⎥
⎥
⎥

⎦

⎤

1
0
0
0

v

v

⎥
⎥
⎥
⎥

⎦

⎤

1
0
0
0

h

h

⎥
⎥
⎥

⎦

⎤
′
′

1
0
0

1

1

⎥
⎥
⎥

⎦

⎤

Δ

Δ

v

v

γ

γ
0

⎥
⎥
⎥

⎦

⎤

h

h

γ
γ

),,( gggg ZYXS

), ff ZY

)(g
gR

)(
vphvfh

p
f MMMR =                                 (5.1) 

and                                     (5.2) )(
vphvfh

p
f LLLn =

where , 

⎢
⎢
⎢
⎢

⎣

⎡
′′−

′′

=

00
00

cossin
sincos

11

11

φφ
φφ

vpM

⎢
⎢
⎢
⎢

⎣

⎡

ΔΔ−

ΔΔ

=

000
cos0sin

010
sin0cos

v

v

hv γγ

γγ

M , 

⎢
⎢
⎢
⎢

⎣

⎡

ΔΔ−
ΔΔ

=

000
cossin0
sincos0

001

h

h
fh γγ

γγ
M , 

⎢
⎢
⎢

⎣

⎡
′−

′

=
00

cossin
sincos

1

1

φφ
φφ

vpL , 

⎢
⎢
⎢

⎣

⎡

Δ−

Δ
=

v

v

hv

γ

γ

cos0sin
10

sin0cos
L , 

and . 
⎢
⎢
⎢

⎣

⎡

ΔΔ−
ΔΔ=

h

hfh

γ
γ

cossin0
sincos0

001
L

Similarly, the position vector and the unit normal vector of the gear represented 

in coordinate system  can be transformed to the fixed coordinate 

system  by applying the following equations: ,( ff XS

)(
fg

g
f MR =                                         (5.3) 
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5.3 Kinematic Errors 

Owing to the tangency of two contacting gear tooth surfaces, the position vectors 

of the pinion and gear tooth surfaces should be the same at the contact points and their 

unit normal vectors should be collinear to each other. Therefore, the following 

equations must be held [12,13]: 

 

0)()( =− g
f

p
f RR , (5.5) 

and , (5.6) 0)()( =− g
f

p
f nn

where  and  indicate the position vectors of the tooth surfaces of pinion 

and gear, respectively, represented in coordinate system . and 

 express the surface unit normal vectors of pinion and gear, respectively, 

represented in coordinate system .  Eq. (5.5) indicates that the pinion 

and gear tooth surfaces have a common contact point, and Eq. (5.6) indicates that the 

unit normal vectors of the pinion and gear surfaces are collinear at their contact point. 

Since 

)( p
fR )( g

fR

),,( ffff ZYXS )( p
fn

)(g
fn

),,( ffff ZYXS

1)()( == g
f

p
f nn , Eqs. (5.5) and (5.6) yield a system of five independent 

equations as follows: 
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0)()( =− g
f
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fx
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p
fx
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fx
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Considering two equations of meshing for gear tooth surfaces, two equations of 

meshing for pinion tooth surfaces, and Eqs. (5.7)-(5.11), these yield a system of nine 

independent equations with ten unknowns: , pl pφ , pθ , pψ , , gl gφ , gθ , gψ , 1φ′ , 

and 2φ′ . Where  and pl pφ  are tooth surface parameters of the pinion while  and gl

gφ  are tooth surface parameters of the gear. If the pinion is a driving gear, the 

rotational angle 1φ′  is considered as a given value. Therefore, nine unknown 

parameters are solved with nine nonlinear equations.  

The KEs of a curvilinear gear pair can be calculated by using the following 

equation: 

11212 )()( φφφφφ ′−′′=′′Δ
g

p

T
T

, (5.12) 

where  and  denote the numbers of teeth of pinion and gear, respectively, 

while 

pT gT

)( 12 φφ ′′ represents the actual rotational angle of the gear meshing under different 

assembly conditions, and it is solved by numerical method. )( 12 φφ ′′Δ  expresses the 

KE of a curvilinear gear pair under the given assembly errors. 

The contact ratio  of the gear pair can be expressed by the following cm
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equation [13]: 

p

BE
c

T

m
o360
11 φφ ′−′

= , (5.13) 

where B1φ′  represents the rotational angle of the pinion that corresponds to the point 

of contact in the beginning of gear pair meshing while E1φ′  is the rotational angle of 

the pinion that corresponds to the point of contact at the end of gear meshing for the 

same pair of profiles. BE 11 φφ ′−′  indicates the rotational angle of the pinion when one 

pair of teeth is in mesh. The rotational angles B1φ′  and E1φ′  can be obtained by TCA 

simulation computer programs. 

 

5.4 Contact Ellipses 

 When tooth surfaces are meshed with each other, their instantaneous contact 

point is spread over an elliptical area owing to elastic deformation. There are two 

methods to find the contact ellipses. One method is the curvature analysis method, 

and the other method is surface topology method. 

 

5.4.1 Curvature Analysis Method 

The position vector and normal vector of instantaneous contact points at the 

tooth surfaces of pinion and gear can be obtained by applying the developed TCA 

computer simulation programs. Based on the procedures proposed in chapter 4, the 

principal directions and curvatures of the contact points can be obtained. They can be 

represented by unit vectors  ( , ) and ( , ) and curvatures ( , ) 

and  ( , ), respectively. 
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Fig.5.2 Orientation and dimension of contact ellipse 
 

 

The instantaneous contact of tooth surface at a point is spread over an elliptical 

area as shown in Fig. 5.2. The unit vectors of any instantaneous contact point,  

and , are located on the common tangent plane of the mating tooth surfaces 

)1(
Ιe

)2(
Ιe 1Σ  

and . Symbol  and b  represent the half length of the major and minor axes of 

the contact ellipse, respectively. The orientation of the contact ellipse is determined by 

the angle 

2Σ a

γ  which is measured from the minor axis of the contact ellipse to the first 

principal direction of the pinion. The angle γ  can be calculated by [12,13]: 

σ
σγ

2cos
2sin2tan

21

2

gg
g
−

=   (5.14) 

where . 2,1,)()( =−= ΙΙΙ ikkg ii
i
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 Angle σ  is formed by the first principal directions of the pinion and gear tooth 

surfaces  and , and it can be obtained by: )1(
Ιe )2(

Ιe

)(cos )2()1(1
ΙΙ

− ⋅= eeσ   (5.15) 

The half length of the major and minor axes of the contact ellipse,  and b , can be 

expressed in terms of the elastic deformation 

a

δ  by[12,13]: 
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=  (5.17) 
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4
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and . )()()( iii kkk ΙΙΙΣ +=

 The elastic deformation of the material, δ , is obtained by experiments. Thus, 

the orientations and dimensions of the contact ellipse of two mating gear tooth 

surfaces can be determined by utilizing Eqs. (5.14)-(5.17). 

 

5.4.2 Surface Topology Method 

Figure 5.3(a) shows that two mating surfaces  and  are tangent to each 

other at their instantaneous contact point , where  represents the common unit 

normal vector at contact point , which can be determined by the developed TCA 

computer simulation programs.  Plane T denotes the common tangent plane of the 

two mating surfaces.  The origin of coordinate system  and the 

pΣ gΣ

TO n

TO

),,( TTTT ZYXS
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instantaneous contact point  are coincident. The direction of axis  is defined 

to coincide with the common unit normal vector .  Thus, the plane  is the 

common tangent plane. 

TO TZ

n TT YX −

The contact ellipses of the gear pair are obtained by using the surface separation 

topology method [39].  To calculate the separation distance of two mating tooth 

surfaces, surface coordinates of the mating curvilinear-tooth gear and pinion must be 

transformed to the same coordinate system .  Figure 5.3(b) shows the 

separation distances measured from the tangent plane T to the surfaces  and  

at point P. The separation distance of two mating surfaces can be defined by , 

where  is equal to 

),,( TTTT ZYXS

pΣ gΣ

pg dd +

pg dd + )()( g
T

p
T ZZ − , measured from any point P on the tangent 

plane T along its perpendicular direction.  and  represent the coordinates 

of the  component of points P

)( p
TZ )( g

TZ

TZ p and Pg , respectively. An equal distance-separation 

line for two mating surfaces is found by defining an auxiliary polar coordinate system 

( r , θ ).  Parameter r  represents the distance measured outward from the 

instantaneous contact point  to any point P on the common tangent plane T. 

Parameter 

TO

θ  represents the angle measured from axis  to the axis of 

measurement (distance r) on the common tangent plane T. Any point P on the 

common tangent plane T can be represented in terms of polar coordinate parameters r 

and 

TX

θ . The amount of the equal distance-separation is set to be 0.00632 mm at this 

study, since the thickness of the coating paint used for contact pattern tests is 0.00632 

mm. Then, the contact patterns (a equal distance-separation line) for two mating tooth 

surfaces can be found by applying the developed computer programs. 
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Fig.5.3 (a) Common tangent plane and polar coordinates 
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Fig.5.3 (b) Measurement on surface separation 
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 Figure 5.4 shows the relationship among coordinate systems , 

, , and , where coordinate systems 

 and  are reference coordinate systems. The two 

mating tooth surfaces can be represented in the tangent plane coordinate system 

 by applying the following homogeneous coordinate transformation 

equation: 
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where superscripts =p, g denote the pinion and gear, respectively. Symbols , , 

and  designate the coordinate components of the instantaneous contact point of 

the two mating surfaces represented in the fixed coordinate system .  

i xp yp

zp

),,( ffff ZYXS

Symbol σ  is the angle measured from axis  to axis  while pZ qZ λ  

represents the angle measured from axis  to axis . They can be obtained by: qZ TZ

z

y

n
n

=σtan ,                     (5.19) 
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tan

zy

x

nn
n
+

=λ ,                     (5.20) 

where , , and  symbolize the components of the common unit normal 

vector of the two surfaces at the instantaneous contact point represented in coordinate 

system . 
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5.5 Numerical Examples for Gear Meshing Simulations 

 

Example 5.1: Curvilinear-tooth gears are meshed under the ideal meshing 

condition. 

The major design parameters of hob cutter, gear, and pinion are shown in Table 

5.1.  If the pinion and gear are meshing under ideal conditions, it means that the 

misaligned angles =Δ hγ =Δ vγ 0.0 degrees, and =ΔC =ΔZ 0.0 mm.  The bearing 

contacts and KE for ideal meshing condition are shown in Table 5.2.  The gear pair 

induces KE under ideal assembly condition. The bearing contact simulation results 

= =0.0 mm, as shown in Table 5.2, indicates that the contact points are 

distributed over the middle region of the tooth flank when the gear pair is meshed 

under ideal assembly conditions. Figure 5.5 illustrates the KE of the gear pair, cut by 

different outside radii of the hob cutter, under ideal meshing conditions. It is found 

that the KE of the meshed gear pair decreases as pitch radius  of the hob cutter 

increases. The contact ratio of the curvilinear-tooth gear pair, calculated by Eq. (5.13) 

is 1.62. It is similar to that of spur gear pair. 

pZ gZ

1r

Figure 5.6 depicts the contact path and the contact ellipses on the pinion tooth 

surface under ideal assembly conditions. The contact ellipses are plotted when the 

pinion is rotated every  from  to .   o4 o8− o8
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Table 5.1 Some major design parameters for cylindrical gears with  
circular arc tooth traces 

 Hob cutter Gear Pinion 
Number of teeth 1 40 20 
Normal module 3 mm 3 mm 3 mm 

Normal pressure angle 20°  20°  20°  
Lead angle 2.866°  ━ ━ 
Face width ━ 40 mm 40 mm 

Nominal radius of 
circular tooth trace ━ 110 mm 110 mm 

Pitch radius  30 mm 60 mm 30 mm 
Outside diameter 67.5 mm 126 mm 66 mm 

 

 

 

Table 5.2 kinematic errors and bearing contacts under the ideal 
meshing condition ( mm) 110== cgcp RR

1φ′ (deg.) 2φ′ (deg.) pl (mm) pZ (mm) gl (mm) gZ (mm) KE(arc-sec.)

-10.000 -4.999 4.301 0.000 9.474 0.000 4.249 

-8.000 -3.999 4.658 0.000 9.117 0.000 3.036 

-6.000 -2.999 5.016 0.000 8.761 0.000 2.006 

-4.000 -2.000 5.373 0.000 8.404 0.000 1.158 

-2.000 -1.000 5.730 0.000 8.048 0.000 0.489 

0.000 0.000 6.087 0.000 7.691 0.000 0.000 

2.000 1.000 6.444 0.000 7.334 0.000 -0.311 

4.000 2.000 6.801 0.000 6.977 0.000 -0.444 

6.000 3.000 7.158 0.000 6.620 0.000 -0.399 

8.000 4.000 7.515 0.000 6.263 0.000 -0.176 

10.000 5.000 7.871 0.000 5.906 0.000 0.225 
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Figure 5.7 shows the relationship between the nominal radius of circular arc 

tooth trace  and the ratio of the major and minor axes of the contact ellipse  

when the normal pressure angles are 20 degrees and 25 degrees, respectively. Based 

on Fig. 5.7, when the normal pressure angles equal 20 degrees and 25 degrees, the 

ratios  are 43.2 and 42.3, respectively, under nominal radius =110 mm. It is 

found that the ratio  is proportional to the nominal radius of circular arc tooth 

trace . 

cR ba /

ba / cR

ba /

cR
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Fig. 5.5 Kinematic errors of the curvilinear-tooth gear pair under ideal meshing 
 condition 
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Fig. 5.6 Contact ellipses and bearing contacts on the pinion surface under ideal  
 assembly condition 
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Fig. 5.7 Relationship between the ratio  and nominal radius  ba / cR
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Table 5.3 kinematic errors and bearing contacts due to horizontal axial 
misalignment 3′=Δ hγ  ( 110== cgcp RR mm) 

1φ′ (deg.) 2φ′ (deg.) pl (mm) pZ (mm) gl (mm) gZ (mm) KE(arc-sec.)

-10.000 -4.998 4.460 10.672 9.322 10.667  3.859 

-8.000 -3.999 4.816 10.569 8.966 10.565  2.726 

-6.000 -2.999 5.173 10.467 8.610 10.463  1.775 

-4.000 -1.999 5.529 10.365 8.254 10.362  1.004 

-2.000 -0.999 5.886 10.263 7.898 10.261  0.413 

 0.000  0.000 6.242 10.162 7.542 10.160  0.000 

 2.000  0.999 6.599 10.061 7.186 10.060 -0.235 

 4.000  1.999 6.955  9.960 6.829  9.960 -0.292 

 6.000  2.999 7.312  9.860 6.473  9.861 -0.172 

 8.000  4.000 7.668  9.760 6.116  9.762  0.126 

10.000  5.000 8.024  9.660 5.760  9.663  0.601 
 

 

Example 5.2: Curvilinear-tooth gears are meshed under a horizontal 

axial-misalignment 3′=Δ hγ . 

The gear pair has a horizontal axial-misalignment 3′=Δ hγ . Table 5.3 lists the 

analysis results of bearing contacts and KEs using the same gear design parameters as 

those of given in Example 5.1. The contact points are distributed near the cross 

section =10 mm. Comparing the bearing contacts of Example 5.1 and Example 

5.2, it is found that the bearing contacts of the gear pair shift from cross section 

=0 mm to =10 mm as the gear pair is meshed with a horizontal 

axial-misalignment 

pZ

pZ pZ

3′=Δ hγ . The variation of KE is small in comparison with that of 

Example 5.1. 
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Example 5.3: Curvilinear-tooth gears are meshed under the ideal meshing 

condition ( =110 mm and =113 mm). cpR cgR

The major design parameters are chosen the same as those of given in Example 

5.1, except that the nominal radii  and  are 110 mm and 113 mm, 

respectively.  Two mating curvilinear-tooth gears are meshed under ideal assembly 

condition. There are two methods to estimate the contact ellipses in this Example. The 

contact path and contact ellipses of the gear pair under ideal assembly condition are 

shown in Fig. 5.8. The contact ellipses with green color are estimated by surface 

topology method while the red one is estimated by curvature analysis method. The 

contact points are distributed at the middle section of the tooth flank in this example. 

Figure 5.8 shows that the contact ellipses calculated by different methods are very 

similar. 

cpR cgR

 

Example 5.4: Curvilinear-tooth gears are meshed under a horizontal 

axial-misalignment 3′=Δ hγ  ( =110 mm and =113 mm). cpR cgR

The gear design parameters are chosen the same as those of given in Example 

5.3. The horizontal axial-misalignment of the gear 3′=Δ hγ  is considered when two 

mating curvilinear-tooth gears are meshed. The bearing contacts and KEs of the gear 

pair under the prescribed horizontal axial-misalignment are shown in Table 5.4.  

Based on the analysis results, the contact points are distributed near the cross section 

=3.5 mm and the KEs of the mating gear pair are similar to those of Example 5.1. 

The bearing contacts and contact ellipses are depicted in Fig. 5.9.  It is found that the 

bearing contacts are localized and shifted from the cross-section =10 mm back to 

the cross-section =3.5 mm of the tooth flank. This case implies that the shift of 

pZ

pZ

pZ
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bearing contacts caused by horizontal axial-misalignment can be reduced by properly 

choosing the nominal radii of circular arc tooth trace  and .  cpR cgR
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Fig. 5.8 Contact ellipses and bearing contacts on the pinion surface under ideal  
 assembly condition 
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Fig.5.9 Contact ellipses and bearing contacts on the pinion surface under  
 horizontal axial-misalignment 3′=Δ hγ  
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Table 5.4 kinematic errors and bearing contacts due to horizontal axial 
misalignment 3′=Δ hγ ( mm and 110=cpR 113=cgR mm) 

1φ ′ (deg.) 2φ ′ (deg.) pl (mm) pZ (mm) gl (mm) gZ (mm) KE(arc-sec.)

-10.000 -4.998 4.319 3.727 9.456 3.721  4.203 

-8.000 -3.999 4.677 3.691 9.099 3.686  2.999 

-6.000 -2.999 5.034 3.655 8.743 3.651  1.979 

-4.000 -1.999 5.391 3.620 8.386 3.617  1.139 

-2.000 -0.999 5.748 3.585 8.030 3.582  0.480 

 0.000  0.000 6.105 3.550 7.673 3.548  0.000 

 2.000  0.999 6.462 3.515 7.316 3.514 -0.302 

 4.000  1.999 6.819 3.480 6.959 3.480 -0.426 

 6.000  2.999 7.176 3.445 6.603 3.446 -0.372 

 8.000  3.999 7.532 3.410 6.246 3.412 -0.140 

10.000  5.000 7.889 3.376 5.889 3.378  0.270 
 

 

Table 5.5 kinematic errors and bearing contacts due to vertical axial 
misalignment 3′=Δ vγ ( mm and 110=cpR 113=cgR mm) 

1φ ′ (deg.) 2φ ′ (deg.) pl (mm) pZ (mm) gl (mm) gZ (mm) KE(arc-sec.)

-10.000 -4.998 4.301 0.380 9.474 0.352  4.248 

-8.000 -3.999 4.659 0.377 9.117 0.349  3.036 

-6.000 -2.999 5.016 0.373 8.761 0.345  2.006 

-4.000 -1.999 5.373 0.369 8.404 0.342  1.157 

-2.000 -0.999 5.730 0.366 8.048 0.339  0.489 

 0.000  0.000 6.087 0.362 7.691 0.335  0.000 

 2.000  0.999 6.444 0.359 7.334 0.332 -0.311 

 4.000  1.999 6.801 0.355 6.977 0.329 -0.443 

 6.000  2.999 7.158 0.351 6.620 0.326 -0.398 

 8.000  3.999 7.515 0.348 6.263 0.322 -0.176 

10.000  5.000 7.872 0.345 5.906 0.319  0.225 
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Example 5.5: Curvilinear-tooth gears are meshed under a vertical 

axial-misalignment 3′=Δ vγ  ( =110 mm and =113 mm). cpR cgR

The gear design parameters are chosen the same as those of given in Example 

5.3. The gear pair is meshed with vertical axial-misalignment 3′=Δ vγ . The bearing 

contacts and KEs of the gear pair under the prescribed vertical axial-misalignment are 

listed in Table 5.5. In this case the contact points are distributed near the cross section 

= 0.36 mm. The KEs of the curvilinear-tooth gears induced by vertical axial- 

misalignments are similar to those induced by horizontal axial- misalignments. Figure 

5.10 illustrates the bearing contacts and contact ellipses of the curvilinear-tooth gear 

pair on pinion tooth surfaces under vertical axial-misalignments 

pZ

3′=Δ vγ .  

 

 

Table 5.6 kinematic errors and bearing contacts due to center distance 
variation 0.2 mm ( mm and =ΔC 110=cpR 113=cgR mm) 

1φ ′ (deg.) 2φ ′ (deg.) pl (mm) pZ (mm) gl (mm) gZ (mm) KE(arc-sec.)

-10.000 -4.998 4.239 0.000 9.325 0.000  4.180 

-8.000 -3.999 4.596 0.000 8.968 0.000  2.978 

-6.000 -2.999 4.953 0.000 8.612 0.000  1.960 

-4.000 -1.999 5.311 0.000 8.255 0.000  1.125 

-2.000 -0.999 5.668 0.000 7.899 0.000  0.472 

 0.000  0.000 6.025 0.000 7.542 0.000  0.000 

 2.000  0.999 6.382 0.000 7.185 0.000 -0.292 

 4.000  1.999 6.739 0.000 6.828 0.000 -0.404 

 6.000  2.999 7.096 0.000 6.471 0.000 -0.337 

 8.000  3.999 7.452 0.000 6.114 0.000 -0.090 

10.000  5.000 7.809 0.000 5.757 0.000  0.337 
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Fig.5.10 Contact ellipses and bearing contacts on the pinion surface under vertical 
 axial-misalignment 3′=Δ vγ  
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Table 5.7 kinematic errors and bearing contacts due to assembly error 
=ΔZ 0.1 mm ( 110=cpR mm and 113=cgR mm) 

1φ ′ (deg.) 2φ ′ (deg.) pl (mm) pZ (mm) gl (mm) gZ (mm) KE(arc-sec.)

-10.000 -4.998 4.321 -3.771 9.454 3.871 4.200 

-8.000 -3.999 4.678 -3.734 9.098 3.834 2.997 

-6.000 -2.999 5.035 -3.698 8.741 3.798 1.977 

-4.000 -1.999 5.392 -3.663 8.385 3.763 1.138 

-2.000 -0.999 5.749 -3.627 8.028 3.727 0.480 

0.000 0.000 6.106 -3.591 7.672 3.691 0.000 

2.000 0.999 6.463 -3.556 7.315 3.656 -0.301 

4.000 1.999 6.820 -3.520 6.958 3.620 -0.424 

6.000 2.999 7.177 -3.485 6.601 3.585 -0.370 

8.000 3.999 7.534 -3.450 6.244 3.550 -0.138 

10.000 5.000 7.890 -3.415 5.887 3.515 0.273 
 

 

Example 5.6: Curvilinear-tooth gears are meshed under a center distance 

variation 0.2 mm ( =110 mm and =113 mm). =ΔC cpR cgR

Table 5.6 lists the analysis results of bearing contacts and KEs using the same 

gear design parameters as those of given in Example 5.3 with =ΔC 0.2 mm.  The 

contact points of the curvilinear-tooth gear pair are dislocated and KEs are similar to 

those of Example 5.4 or Example 5.5.  Table 5.6 illustrates that the contact points are 

still distributed over the middle region of the tooth flank. 

 

Example 5.7: Curvilinear-tooth gears are meshed with assembly error =ΔZ 0.1 

mm ( =110 mm and =113 mm). cpR cgR

Table 5.7 lists the analysis results of bearing contacts and KEs using the same 

gear design parameters as those of given in Example 5.3 with =ΔZ 0.1 mm.  The 
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contact points of the curvilinear-tooth gear pair are dislocated and KEs are similar to 

those of Example 5.4.  It is found that the bearing contacts of the gear pair shift from 

cross section =0 mm to = -3.5 mm as the gear pair is meshed with assembly 

error 

pZ pZ

=ΔZ 0.1 mm. Figure 5.11 illustrates the contact path and contact ellipses of the 

curvilinear-tooth gear pair on pinion tooth surfaces with assembly error =ΔZ 0.1 

mm. 

 

Example 5.8: Curvilinear-tooth gears are meshed under 3′=Δ hγ , 3′=Δ vγ , and 

0.2 mm ( =110 mm and =113 mm). =ΔC cpR cgR

The gear design parameters are also chosen the same as those of given in 

Example 5.3.  When two mating gears are meshed under 3′=Δ hγ , 3′=Δ vγ , and 

0.2mm, the analysis results are shown in Table 5.8.  The contact points are  =ΔC

 

Table 5.8 kinematic errors and bearing contacts under 3′=Δ hγ , 
3′=Δ vγ , and =ΔC 0.2 mm ( 110=cpR mm and 113=cgR mm) 

1φ ′ (deg.) 2φ ′ (deg.) pl (mm) pZ (mm) gl (mm) gZ (mm) KE(arc-sec.)

-10.000 -4.998 4.270 4.792 9.297 4.758  4.104 

-8.000 -3.999 4.628 4.746 8.940 4.713  2.917 

-6.000 -2.999 4.985 4.699 8.584 4.667  1.915 

-4.000 -1.999 5.342 4.653 8.227 4.622  1.095 

-2.000 -0.999 5.699 4.607 7.871 4.577  0.457 

 0.000 0.000 6.056 4.561 7.514 4.533  0.000 

 2.000 0.999 6.413 4.516 7.158 4.488 -0.277 

 4.000 1.999 6.769 4.470 6.801 4.444 -0.375 

 6.000 2.999 7.126 4.425 6.444 4.400 -0.293 

 8.000 3.999 7.483 4.380 6.087 4.356 -0.032 

10.000 5.000 7.839 4.335 5.730 4.312  0.410 
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Fig.5.11 Contact ellipses and bearing contacts on the pinion surface under an 
 assembly error =ΔZ 0.1 mm 
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Table 5.9 kinematic errors and bearing contacts under 3′=Δ hγ , 3′=Δ vγ , 
0.2 mm, and =ΔC =ΔZ 0.1 mm ( 110=cpR mm and 113=cgR mm) 

1φ ′ (deg.) 2φ ′ (deg.) pl (mm) pZ (mm) gl (mm) gZ (mm) KE(arc-sec.)
-10.000 -4.998 4.239 0.393 9.325 -0.259  4.180 

-8.000 -3.999 4.596 0.389 8.969 -0.256  2.978 

-6.000 -2.999 4.954 0.385 8.612 -0.253  1.960 

-4.000 -1.999 5.311 0.382 8.255 -0.251  1.125 

-2.000 -0.999 5.668 0.378 7.899 -0.248  0.472 

 0.000 0.000 6.025 0.374 7.542 -0.245  0.000 

 2.000 0.999 6.382 0.371 7.185 -0.243 -0.292 

 4.000 1.999 6.739 0.367 6.828 -0.240 -0.404 

 6.000 2.999 7.096 0.363 6.471 -0.238 -0.337 

 8.000 3.999 7.453 0.360 6.115 -0.236 -0.090 

10.000 5.000 7.809 0.356 5.757 -0.233  0.337 

 

distributed near the cross section = 4.5 mm. Figure 5.12 illustrates the bearing 

contacts and contact ellipses of the curvilinear-tooth gear pair on pinion tooth surfaces. 

It is found that the bearing contacts are also localized near the cross section = 4.5 

mm. 

pZ

pZ

 

Example 5.9: Curvilinear-tooth gears are meshed under 3′=Δ hγ , 3′=Δ vγ , and 

0.2 mm, and =ΔC =ΔZ 0.1 mm ( =110 mm and =113 mm). cpR cgR

The gear design parameters are also chosen the same as those of given in 

Example 5.3.  When two mating gears are meshed under 3′=Δ hγ , 3′=Δ vγ , 

0.2mm, and =ΔC =ΔZ 0.1 mm, the analysis results are shown in Table 5.9.  The 

contact points are distributed near the cross section = 0.37 mm. Figure 5.13 

illustrates the bearing contacts and contact ellipses of the curvilinear-tooth gear pair 

pZ
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on pinion tooth surfaces. It is found that the bearing contacts are localized near the 

middle region of the tooth flank. 

 

5.6 Remarks 

The bearing contact and KEs of the curvilinear-tooth gears are investigated by 

applying the developed TCA computer programs. The contact ellipses of the 

curvilinear-tooth gear pair under different assembly conditions can be estimated by 

utilizing the curvature analysis method or surface topology method. According to the 

numerical results, the following conclusions can be drawn: 

(1) The gear pair, generated by a ZA worm-type hob cutter, induces KEs under ideal 

assembly condition. However, the level of KEs of the gear pair is small. The 

bearing contacts are localized in the middle region of the tooth flank under the 

ideal assembly condition. 

(2) The KEs of the meshed gear pair under ideal assembly condition decreases when 

the gear pair is generated by a larger pitch radius of the hob cutter . 1r

(3) The curvilinear-tooth gear pair induces KEs while the gear pair is meshed with 

center distance variations and the bearing contacts are localized in the middle 

region of the tooth flank. 

(4) The KE of the gear pair is not sensitive to axial misalignments because the contact 

type of the proposed curvilinear-tooth gear pair is in point contacts. 

(5) The bearing contact can be localized near the middle region of the tooth flank by 

properly choosing a nominal radius of circular arc tooth trace. The ratio of the 

major and minor axes of the contact ellipse  is proportional to the nominal 

radius of circular arc tooth trace. 

ba /
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Fig.5.12 Contact ellipses and bearing contacts on the pinion surface with assembly
 errors 3′=Δ hγ , 3′=Δ vγ  and =ΔC 0.2 mm 
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Fig.5.13 Contact ellipses and bearing contacts on the pinion surface with assembly
 errors 3′=Δ hγ , 3′=Δ vγ , =ΔC 0.2 mm and =ΔZ 0.1 mm 
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CHAPTER 6 

Finite Element Stress Analysis 

 

6.1 Introduction 

The finite element method (FEM) is an effective tool for the determination of 

elastic tooth deformations and stress analysis. Many researchers applied FEM to study 

tooth deflection and stress distribution for various types of gear drives [40-43]. Tsay 

and Fong [44] and Litvin et al. [45] applied loads directly to the contact ellipses or 

contact lines on tooth surfaces obtained from TCA to estimate stress contours. In 

some literature, contact boundary conditions are simulated with gap elements as a 

three-dimensional stress analysis is performed [46-48]. Celik [49] estimated the gear 

teeth deflections and stresses, and compared the analysis results of three teeth model 

with whole body model. The analysis results are very similar for both models. Some 

researchers discussed the contact and bending stresses of tooth surfaces by using FEA 

softwares [50-52]. The results calculated by FEM are compared with those obtained 

experimentally with strain gages [53-54]. 

In this chapter, a multi-tooth meshing model is performed to simulate the 

bearing contacts of the mating gear pair. The location of bearing contacts under a 

given load is investigated, and the tooth stress distribution of the proposed 

curvilinear-tooth gear pairs is also calculated based on the FEM and the 

general-purpose FEA simulation software, ABAQUS/Standard 6.4. A PC version of 

analysis simulation program, running on windows 2000 operating system, is used to 

obtain the numerical solution for the contact problem by applying the nonlinear static 

analysis. 
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6.2 Finite Element Contact Analysis Model 

Application of FEM requires the development of the finite element analysis 

model formed by finite element meshes, the definition of contacting surfaces, the 

specification of surface interaction model, and the establishment of boundary 

conditions. In this study, The following assumptions have been made: (1) a pair of 

gears with three-teeth model is meshed to perform the stress analysis, (2) both 

materials of gear and pinion are considered as isotropic and homogeneous materials, 

(3) small displacement and small sliding between the contact surfaces are assumed, 

and (4) Thermal stress is ignored. 

 

6.2.1 Finite Element Meshes  

The tooth surfaces of the curvilinear-tooth gear are complicated surfaces. It is 

difficult to establish a solid model for this type of gearing by applying commercial 

CAD computer softwares such as I-DEAS or ProEngineer. A mesh-generation 

program has been developed in this study to generate nodal points of the tooth 

surfaces and to discretize the geometric models of the pinion and the gear tooth 

surfaces by finite elements for FEA. The developed mesh-generation program allows 

one to adjust the mesh density and the number of elements to meet specific 

requirements. 

The nodal coordinates lying on tooth surfaces, including the region of active 

profiles and fillets, are determined analytically by applying the developed 

mathematical model of the curvilinear-tooth gear. Therefore, the lost of accuracy due 

to the development of FE models using CAD computer programs is avoided. Besides, 

the location of contact points on pinion and gear can be obtained from TCA computer 

programs. 
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Establishing a finite element analysis model requires properly choosing a 

suitable element type and then generating the corresponding mesh system. In this 

study, the three-dimensional solid element in incompatible modes, C3D8I [50], 

having eight nodes and six faces, is employed to discretize the geometric models of 

the pinion and the gear tooth surfaces. These elements are the first-order elements that 

are enhanced by incompatible modes to improve their bending behavior. The 

discretization of pinion and gear teeth for a pair of three-teeth finite element model is 

represented in Fig. 6.1. The possible contact regions in the central section of the face 

width are discretized by finer meshes. 

 

6.2.2 Surface Definition and Interaction Properties 

The contact definition in ABAQUS/Standard has two parts: the definition of the 

surfaces and the definition of the interaction between surfaces. Generally, the master 

surface should be chosen as the surface of the stiffer body if the two surfaces are on 

structures with comparable stiffness, or as the surface with the coarser meshes. The 

nodes of the master surface can penetrate into the slave surface; however, the nodes 

on slave surfaces are constrained not to penetrate into the master surface during the 

analysis processes. The convex sides of pinion tooth surfaces have been chosen as the 

slave surfaces while the concave sides of gear tooth surfaces as the master one 

considering that the surfaces of the gear tooth are harder than that of the pinion tooth. 

Two options, “small sliding” and “no friction”, in an ABAQUS contact 

simulation should be specified to define the interaction between the contact pair. In 

this study, the friction coefficient is given as zero by assuming that the gears are 

meshed under good lubrication conditions. 
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Fig. 6.1 A pair of three teeth finite element meshing model 
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6.2.3 Boundary Conditions and Loads 

The Incompatible mode element, C3D8I, has three degrees of freedom (DOF) 

active at each node: translations in the 1-, 2-, and 3- directions. In this study, the nodes 

on the two lateral sides and bottom of the gear’s base are considered fixed, as shown 

in Fig. 6.2. Therefore, these nodes have zero displacement in the degrees of freedom 

1-, 2-, and 3-directions. In addition, the nodes on the bottom of the pinion’s base are 

connected to the pinion’s rotational axis by rigid beam elements, and the nodes on the 

pinion’s rotational axis are constrained in a way such that the pinion can rotate about 

its rotational axis only. The torque is applied directly to the remaining DOF at the 

pinion’s rotational axis to make the tooth surfaces of gear and pinion contact with 

each other. The FEA model to simulate the tooth contact with a pair of 

three-meshing-teeth gears with boundary conditions is depicted in Fig. 6.2. 

 

 

Table 6.1 Major design parameters for the curvilinear-tooth gear 
 Hob cutter Gear Pinion 

Number of teeth 1 57 31 
Normal module 3 3 3 

Normal pressure angle 20°  20°  20°  
Lead angle 2.866°  ━ ━ 
Face width ━ 30 mm 30 mm 

Nominal radius of 
circular tooth trace ━ 113 mm 110 mm 

Pitch radius 30 mm 85.5 mm 46.5 mm 
Outside diameter 67.5 mm 177 mm 99 mm 
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Fig. 6.2 FEA model of three pair of meshing teeth 
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6.3 Simulation Results and Discussions 

The major design parameters of the curvilinear-tooth gear pair are shown in 

Table 6.1. The pinion and gear are carbon steel with a hardness of 350 Brinell tooth 

surface and through-hardened core. The material properties are listed in Table 6.2. 

The generation of the finite element analysis model is performed automatically using 

the data as shown in Table 6.3. A torque of 200 N-m is applied to the pinion’s 

rotational axis. The accomplished stress analysis enables to obtain the von Mises 

stresses, and be labeled by symbols “S, Mises” in the contour plots. The unit used for 

the stress distribution is N .  2/ mm

Figures 6.3 to 6.5 show the distributions of the bearing contacts, contact stresses 

and bending stresses obtained by FEA for the mating gear pair. Two teeth may be 

meshed near the mean point of the path of contact due to elastic deformation of the 

tooth. The variations of contact stresses and bending stresses during one tooth of gear 

pair meshing are illustrated in Fig. 6.6 and Fig. 6.7, respectively. According to the 

TCA simulation results, the pitch points of tooth surfaces are meshed when the 

pinion’s rotational angle is . It is obvious that the maximum bending stress 

occur when the contact point is near the pitch point as shown in Fig. 6.7. 

o899.2

 

Table 6.2 Material properties for the gears 
Medium Carbon Steel AISI 1045 

Modules of Elasticity (MPa) 205.0E3 

Poisson’s Ratio 0.29 

Density (Kg/mm3) 78.5E-7 

Hardness (HB) 350  

Allowable Contact Stress (MPa) (Source: AGMA 2001-C95) 980 

Allowable Bending Stress (MPa) (Source: AGMA 2001-C95) 275 
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Table 6.3 Finite element analysis model for the investigated gear pair 
 Gear Pinion 

Total number of elements 95,616 

Total number of nodes 122,713 

Element type C3D8I 

Contact pair Master surface Slave surface 

Interaction between surfaces Small sliding, no friction 

Boundary condition Fixed Torque applied 200 N-m 
 

 

The maximum contact stresses on gear concave surface and pinion convex 

surface are 754.5 MPa and 760.3 MPa, while the maximum bending stresses are 

170.3 MPa, and 175.2 MPa respectively. The allowable contact stress and bending 

stress are 980 MPa and 275 MPa, respectively, as shown in Table 6.2. Therefore, the 

factor of safety of the gears in contact is 1.29, and the factor of safety of the gears in 

bending is 1.57.  

Figure 6.8 shows the variations of contact and bending stresses of the gear under 

different nominal radius . Consequently, by increasing the nominal radius  

reduces the contact stresses and bending stresses due to a larger contact area of the 

gear tooth surface. Figure 6.9 illustrates the distributions of contact stress when the 

nominal radius  is 50000 mm. The profile of a curvilinear-tooth gear is similar to 

that of a spur gear when the nominal radius is very large. In this case, the contact 

pattern covers the whole tooth flank as shown in Fig. 6.9. The phenomenon of stress 

concentrations can also be observed in both tooth edges. 

cR cR

cR
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6.4 Remarks 

A computer program for generating the finite element analysis model has been 

developed. The finite element meshes, the definition of contacting surfaces and 

boundary conditions are automatically generated using the integrated computer 

program. The following advantages are evident: (1) The input file for finite element 

analysis models of the gear pair can be automatically generated for any rotational 

angle of pinion and gear obtained from TCA. A good stress convergence is assured 

because there is at least one contact point between the contact surfaces. (2) Generation 

of the finite element meshes is performed using the equation of tooth surfaces. The 

mesh density can be adjusted to meet specific requirements, and the nodes lying on 

the tooth surfaces are guaranteed to be the points on the real tooth surfaces of the 

pinion and the gear. Therefore, the accuracy of tooth profile coordinates in the FE 

model development can be obtained. (3) CAD computer program is not needed for 

generating the finite element analysis models. 

The bearing contacts of the curvilinear-tooth gear pair with the applied torque 

have been discussed. Besides, the bending and contact stresses during the cycle of 

meshing are also investigated. The automatic generation of FEA models enables one 

to perform multi-tooth stress analysis. The analysis results show that the maximum 

contact stress and bending stress occur when the contact point is near the pitch point, 

and increasing the nominal radius  reduces the contact stresses and bending 

stresses due to a larger contact area of the gear tooth surface. 

cR
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Bending stress: 120.6 MPa
(MPa) 

 
Fig. 6.3 Bearing contacts and stress distributions at beginning point of 

 contact on the gear concave surfaces 
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Bending stress: 170.3 MPa(MPa) 

 
Fig. 6.4 Bearing contacts and stress distributions at the mean point of 

 contact on the gear concave surfaces 
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Bending stress: 125.1 MPa(MPa) 

 
 

Fig. 6.5 Bearing contacts and stress distributions at the end point of 
 contact on the gear concave surfaces 
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Fig. 6.6 Variations of contact stresses during one tooth of gear pair 

 meshing 
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Fig. 6.7 Variation of bending stresses during one tooth of gear pair 

 meshing 
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Fig. 6.8 Effects of nominal radius on the maximum von Mises stress cR
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Fig. 6.9 Stress distributions on gear tooth surfaces as nominal radius 
 cR equals 50000 mm 
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CHAPTER 7 

Conclusions and Future Work 

 

In this study, the mathematical model of the curvilinear-tooth gear is developed, 

and the tooth undercutting and secondary cutting phenomena are also investigated as 

the curvilinear-tooth gear is generated. The procedure for calculation of principal 

curvatures and directions of the curvilinear-tooth surface is proposed and the 

corresponding calculation computer programs are also developed. The contact 

characteristics of the curvilinear-tooth gear pair such as bearing contacts, KEs and 

contact ellipses are investigated. Finally, the contact stress and bending stress are 

studied by applying finite element models with a pair of three-meshing-teeth gears.  

 

7.1 Conclusions 

Based on the analysis results obtained in the previous chapters, the following 

conclusions are drawn: 

(1) The mathematical model of curvilinear-tooth gears has been developed based on 

the cutting mechanism of a 6-axes CNC hobbing machine. The gear model is 

represented as a function of hob cutter’s design parameters and the CNC 

generating motion parameters. The tooth profiles obtained by mathematical 

model can be considered as a standard profile for the curvilinear-tooth gears. The 

transverse gear chordal thickness measured at the middle section is larger than 

those of other sections, but the tooth thickness at the addendum circle in the 

middle section of face width is smaller than those of other sections. 

(2) The kinematic method to find the differentiated equations of meshing is 

developed for analyzing tooth undercutting. According to the undercutting 

analysis results, the occurrence of tooth undercutting at the both-end sections of 
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face width of the curvilinear-tooth gear is much easier than other sections. The 

convex tooth surfaces compared with the concave tooth surfaces are much easier 

to undercut. The tooth undercutting of the curvilinear-tooth gears can be avoided 

with a large number of teeth or pressure angle, and the tooth undercutting may 

reduce by increasing the nominal radius of circular arc tooth trace. Owning to the 

geometric character of the hob cutter, the hob cutter with a larger outside 

diameter or a curvilinear-tooth gear with a smaller nominal radius of circular arc 

tooth trace will result in secondary tooth cutting when the curvilinear-tooth gears 

are generated by a hob cutter. Increasing the normal pressure angle or decreasing 

the outside diameter of the hob cutter can avoid secondary tooth cutting under the 

same nominal radius of circular arc tooth traces. 

(3) An approach for the determination of principal curvatures and directions for the 

gear surface as an envelope to two-parameters family of hob cutter surfaces is 

developed. The proposed approach is the extension of Litvin’s approach. 

Computer programs for calculations of the principal curvatures and directions of 

the tooth surfaces are developed.  

(4) The curvilinear-tooth gear pair generated by a ZA worm-type hob cutter induces 

KEs when the gear pair is meshed under ideal assembly condition, or with center 

distance variations. However, the level of KEs of the gear pair is small. The 

bearing contacts are localized in the middle region of the tooth flank under ideal 

assembly condition. The KEs of the meshed gear pair under ideal assembly 

condition decreases when the gear pair is generated by a larger pitch radius of the 

hob cutter. The KE of the gear pair is not sensitive to axial misalignments because 

the contact type of the proposed curvilinear-tooth gear pair is in point contacts. 

The bearing contact can be localized near the middle region of the tooth flank by 

properly choosing a nominal radius of circular arc tooth trace. The ratio of the 
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major and minor axes of the contact ellipse is proportional to the nominal radius 

of circular arc tooth trace. 

(5) A computer program for generating the finite element model is developed. The 

finite element meshes, the definition of contacting surfaces, and boundary 

conditions are automatically generated using the integrated computer program. 

The bearing contacts of the curvilinear-tooth gear pair under the applied torque is 

investigated. The analysis results show that the maximum bending stress occurs 

as the contact point is near the pitch point, and increasing the nominal radius  

reduces the contact stresses and bending stresses due to a larger contact area of 

the gear tooth surface. 

cR

 

7.2 Future Work 

The tooth surfaces of the curvilinear-tooth gear generated by a hob cutter are 

indeed new types of gear surfaces. Advanced studies of this kind of gear for industrial 

applications are important and necessary. In the future, the following research topics 

can be extended: 

(1) The illustrated approach in Chapter 2 can be further extended to derive the 

mathematical model for noncircular face width gears, for example, parabolic or 

elliptical curved tooth traces. 

(2) The sensitivity analysis can be used to study the surface deviation of the 

curvilinear-tooth gear with respect to machine-tool settings and the assembly 

errors of the hob cutter in the manufacturing process. 

(3) Tooth surface deviations of the curvilinear-tooth gear having secondary cutting. 

(4) Real contact ratio, load sharing between the meshing teeth, and transmission error 

under the given load may be implemented by considering multi-tooth finite 

element models. Moreover, the effect of friction force may be investigated by 
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defining the tooth surfaces interaction with friction. 

(5) The single flank test and the measurement of noise and vibrations should be 

performed with the proposed curvilinear-tooth gear pairs. 
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