CONTENTS

ABSTRACT	Ι
CONTENTS	IV
LIST OF TABLES	VI
LIST OF FIGURES	VII
NOMENCLATURE	XIV
CHAPTER 1 Introduction	1
1.1 Motivation of the study	1
1.2 Literature review—heat transfer and flow characteristics of	
impinging jets	2
1.3 Literature review—unsteady transitional impinging jets	5
1.4 Literature review—confined jet flow associated with CVD reactors	
and RTP processors	6
1.5 Objective of the present study	7
CHAPTER 2 Experimental Apparatus and Procedures	8
2.1 Experimental apparatus	8
2.2 Analysis of time-average and instantaneous air temperature	11
2.3 Experimental procedures	11
2.4 Uncertainty analysis	11
2.5 Verification of the experiment	12
CHAPTER 3 Characteristics of Vortex Flow at Long Time	18
3.1 Typical steady flow pattern	19
3.2 Onset of vortex flow	21

3.3 Effects of jet Reynolds number	25
3.4 Effects of Rayleigh number	27
3.5 Effects of processing chamber geometry	28
3.6 Size and location of the vortex rolls	30
3.7 Steady temperature distribution in vortex flow	31

CHAPTER 4 Characteristics of Time Dependent Vortex Flo	w 93
4.1 Time periodic vortex flows	93
4.2 Flow regime map	96
4.3 Formation of vortex flow	97

CHAPTER 5 Concluding Remarks and Recommendations

for future work	109
5.1 Concluding remarks	109
5.2 Recommendations for future work	111

113

LIST OF TABLES

Table 2.1	Summary of the uncertainty analysis	13
Table 3.1	Critical condition for appearance of the secondary inertia-driven roll	33
Table 3.2	Critical condition for onset of time-dependent flow for unheated disk and	
	D _j =10.0 mm	34
Table 3.3	Critical condition for the onset of buoyancy-driven vortex roll	35

LIST OF FIGURES

Fig. 2.1	Schematic diagram of the experimental system	14
Fig. 2.2	Schematic of the test section from the top view (a) and 3-zone concentric heater (b)	15
Fig. 2.3	The heater consists of three parts: resistances heating element, holder and insulator	16
Fig. 2.4	The flow field for $H/D_j=2$ and Ra=0, left: the result from the present study at Re _j =406 for $D_j=10.0$ mm; right: contours of stream function from Law and Masliyah (1984) at Re=400	17
Fig. 3.1	Steady vortex flow pattern for $D_j=10.0 \text{ mm}$ and $H=15.0 \text{ mm}$ at $Re_j=406 (Q_j=3.0 \text{ slpm})$ and $Ra=3,170 (\Delta T=10.0^{\circ}C)$: (a) top view flow half of photo taken at the middle horizontal plane between the disk and chamber top, (b) side view flow photo taken at the vertical plane $\theta=0^{\circ}$ & 180° and (c) the corresponding schematically sketched cross plane vortex flow	36
Fig. 3.2	Steady side view flow photos taken at the cross plane $\theta=0^{\circ}$ for various Re _j to illustrate the tertiary inertia-driven roll with Ra=0 & D _j =10.0 mm for (a) H=20.0 mm, (b) H=15.0 mm and (c) H=10.0 mm.	37
Fig. 3.3	Steady side view flow photos at low Reynolds numbers for Ra=0 & H=20.0 mm: (a) Re _j =13.6 & D _j =10.0 mm, (b) Re _j =20.0 & D _j =10.0 mm, (c) Re _j =12.0 & D _j =22.1 mm and (d) Re _j =15.0 & D _j =22.1 mm	38
Fig. 3.4	Steady side view flow photos at low Reynolds numbers for Ra=0 & H=15.0 mm at Re _j = (a) 27 & D _j =10.0 mm, (b) 41 & D _j =10.0 mm, (c) 12 & D _j =22.1 mm and (d) 18 & D _j =22.1 mm.	39
Fig. 3.5	Steady side view flow photos at low jet Reynolds numbers for Ra=0 with H=10.0 mm at Re _j = (a) 13.5 & D _j =10.0 mm, (b) 27 & D _j =10.0 mm, (c) 37 & D _j =22.1 mm, (d) 43 & D _j =22.1 mm and (e) 49 & D _j =22.1 mm.	40
Fig. 3.6	Steady side view flow photos near the critical condition showing the flow near the onset of buoyancy-driven roll for Ra=1650 ($\Delta T=2.2^{\circ}C$) with (a) Re _j =612 & D _j =10.0 mm, (b) Re _j =680 & D _j =10.0 mm, (c) Re _j =748 & D _j =10.0 mm, (d) Re _j =275 & D _j =22.1 mm, (e) Re _j =305 & D _j =22.1 mm and (f) Re _j =336 &	

D_j=22.1 mm..----- 41

Steady side view flow photos taken at the cross plane $\theta = 0^{\circ}$ & 180° for Fig. 3.7 various jet Reynolds numbers at Ra=0 ($\Delta T=0^{\circ}C$) for D_i= (a) 10.0 mm and (b) 22.1 mm. ------ 42 Steady side view flow photos taken at the cross plane $\theta = 0^{\circ} \& 180^{\circ}$ for Fig. 3.8 various jet Reynolds numbers at Ra=3,760 (ΔT =5.0°C) for D_i= (a) 10.0 mm and (b) 22.1 mm. ----- 43 Steady side view flow photos taken at the cross plane $\theta = 0^{\circ}$ & 180° for Fig. 3.9 various jet Reynolds numbers at Ra=7,520 ($\Delta T=10.0^{\circ}C$) for D_i= (a) 10.0 mm and (b) 22.1 mm. ----- 44 Fig. 3.10 Steady side view flow photos taken at the cross plane $\theta = 0^{\circ}$ & 180° for various jet Reynolds numbers at Ra=11,270 (ΔT =15.0°C) for D_i= (a) 10.0 mm and (b) 22.1 mm. ----- 45 Fig. 3.11 Steady side view flow photos taken at the cross plane $\theta = 0^{\circ}$ & 180° for various jet Reynolds numbers at Ra=15,030 (ΔT =20.0°C) for D_i= (a) 10.0 mm and (b) 22.1 mm. ----- 46 Fig. 3.12 Steady side view flow photos taken at the cross plane $\theta = 0^{\circ}$ & 180° for various jet Reynolds numbers at Ra=18,790 (ΔT =25.0°C) for D_i= (a) 10.0 mm and (b) 22.1 mm. ------ 47 Fig. 3.13 Steady side view flow photos taken at the cross plane $\theta = 0^{\circ}$ & 180° for various jet Reynolds numbers at H=15.0 mm & Ra=0 ($\Delta T=0^{\circ}C$) for D_i= (a) 10.0 mm and (b) 22.1 mm. ----- 48 Fig. 3.14 Steady side view flow photos taken at the cross plane $\theta = 0^{\circ}$ & 180° for various jet Reynolds numbers at H=15.0 mm & Ra=1,590 (ΔT =5.0°C) for D_i= (a) 10.0 mm and (b) 22.1 mm. ----- 49 Fig. 3.15 Steady side view flow photos taken at the cross plane $\theta = 0^{\circ}$ & 180° for various jet Reynolds numbers at H=15.0 mm & Ra=3,170 (ΔT =10.0°C) for D_i= (a) 10.0 mm and (b) 22.1 mm. ----- 50 Fig. 3.16 Steady side view flow photos taken at the cross plane $\theta = 0^{\circ}$ & 180° for various jet Reynolds numbers at H=15.0 mm & Ra=6,340 (∆T=20.0°C) for D_i= (a) 10.0 mm and (b) 22.1 mm. ----- 51

Fig. 3.17	Steady side view flow photos taken at the cross plane $\theta = 0^{\circ}$ & 180° for various jet Reynolds numbers at H=15.0 mm & Ra=7,930 ($\Delta T=25.0^{\circ}C$) for $D_j=$ (a) 10.0 mm and (b) 22.1 mm.	- 52
Fig. 3.18	Steady top view flow photos taken at the middle horizontal plane between the disk and chamber top with Ra=0 ($\Delta T=0^{\circ}C$) & D _j =10.0 mm at H=15.0 mm for Re _j = (a) 135, (b) 270, (c) 406, (d) 541 and (e) 676.	- 53
Fig. 3.19	Steady top view flow photos taken at the middle horizontal plane between the disk and chamber top with Ra=6,340 (ΔT =20.0°C) & D _j =10.0 mm at H=15.0 mm for Re _j = (a) 135, (b) 270, (c) 406, (d) 541 and (e) 676.	- 54
Fig. 3.20	Steady top view flow photos taken at the middle horizontal plane between the disk and chamber top with Ra=0 ($\Delta T=0^{\circ}C$) & D _j =22.1 mm at H=15.0 mm for Re _j = (a) 61, (b) 122, (c) 183, (d) 245 and (e) 306	- 55
Fig. 3.21	Steady top view flow photos taken at the middle horizontal plane between the disk and chamber top with Ra=6,340 (ΔT =20.0°C) & D _j =22.1 mm at H=15.0 mm for Re _j = (a) 61, (b) 122, (c) 183, (d) 245 and (e) 306	- 56
Fig. 3.22	Steady side view flow photos taken at the cross plane $\theta = 0^{\circ}$ & 180° for various jet Reynolds numbers at H=10.0 mm and Ra=0 ($\Delta T=0^{\circ}C$) for D _j = (a) 10.0 mm and (b) 22.1 mm.	- 57
Fig. 3.23	Steady side view flow photos taken at the cross plane $\theta = 0^{\circ}$ & 180° for various jet Reynolds numbers at H=10.0 mm and Ra=470 ($\Delta T=5.0^{\circ}C$) for D _j = (a) 10.0 mm and (b) 22.1 mm.	- 58
Fig. 3.24	Steady side view flow photos taken at the cross plane $\theta = 0^{\circ}$ & 180° for various jet Reynolds numbers at H=10.0 mm and Ra=940 (ΔT =10.0°C) for D _j = (a) 10.0 mm and (b) 22.1 mm.	· 59
Fig. 3.25	Steady side view flow photos taken at the cross plane $\theta = 0^{\circ}$ & 180° for various jet Reynolds numbers at H=10.0 mm and Ra=1,410 (ΔT =15.0°C) for D _j = (a) 10.0 mm and (b) 22.1 mm.	· 60
Fig. 3.26	Steady side view flow photos taken at the cross plane $\theta = 0^{\circ} \& 180^{\circ}$ for various jet Reynolds numbers at H=10.0 mm and Ra=1,880 (ΔT =20.0°C) for D _j = (a) 10.0 mm and (b) 22.1 mm	· 61
Fig. 3.27	Steady side view flow photos taken at the cross plane $\theta = 0^{\circ}$ & 180° for various jet Reynolds numbers at H=10.0 mm and Ra=2,350 (ΔT =25.0°C) for	

	$D_j = (a) \ 10.0 \ mm \ and \ (b) \ 22.1 \ mm.$	62
Fig. 3.28	Top view flow photos taken at the middle horizontal plane between the disk and chamber top with Ra =940 (ΔT =10.0°C) and D _j =10.0 mm at H=10.0 mm for Re _j = (a) 135, (b) 270, (c) 406, (d) 541 and (e) 676	63
Fig. 3.29	Top view flow photos taken at the middle horizontal plane between the disk and chamber top with Ra=1,880 (ΔT =20.0°C) and D _j =22.1mm at H=10.0 mm for Re _j = (a) 61, (b) 122, (c) 184, (d) 245 and (e) 306	64
Fig. 3.30	Top view flow photos taken at the middle horizontal plane between the disk and chamber top with Ra =2,350 (ΔT =25.0°C) and D _j =10.0 mm at H=10.0 mm for Re _j = (a) 135, (b) 270, (c) 406, (d) 541 and (e) 676	65
Fig. 3.31	Steady side view flow photos taken at the cross plane $\theta = 0^{\circ}$ & 180° for various Rayleigh numbers at Q _j =3.0 slpm for D _j = (a) 10.0 mm & Re _j =406 and (b) 22.1 mm & Re _j =184.	66
Fig. 3.32	Steady side view flow photos taken at the cross plane $\theta = 0^{\circ}$ & 180° for various Rayleigh numbers at Q _j =5.0 slpm for D _j = (a) 10.0 mm & Re _j =676 and (b) 22.1 mm & Re _j =306.	67
Fig. 3.33	Half of side view flow photos taken at $\theta = 0^{\circ}$ (left) and quarter of top view flow photos (right) taken at the middle horizontal plane between the disk and chamber top with Q _j =3.0 slpm, H=20.0 mm and D _j =10.0 mm at steady state for Ra= (a) 0, (b) 7,520 and (c) 15,030	68
Fig. 3.34	Half side view flow photos taken at $\theta = 0^{\circ}$ (left) and quarter of top view flow photos (right) taken at the middle horizontal plane between the disk and chamber top with Q _j =3.0 slpm, H=20.0 mm and D _j =22.1 mm at steady state for Ra=(a) 0, (b) 7,520 and (c) 15,030.	69
Fig. 3.35	Steady side view flow photos taken at the cross plane $\theta = 0^{\circ}$ & 180° for various Rayleigh numbers at H=15.0 mm with Q _j =2.0 slpm for D _j = (a) 10.0 mm and (b) 22.1 mm.	70
Fig. 3.36	Steady side view flow photos taken at the cross plane $\theta = 0^{\circ}$ & 180° for various Rayleigh numbers at H=15.0 mm with Q _j =4.0 slpm for D _j = (a) 10.0 mm and (b) 22.1 mm.	71
Fig. 2.27	Steady side view flow photos taken at the cross plane $Q = 0^{\circ}$ & 190° for	

Fig. 3.37 Steady side view flow photos taken at the cross plane $\theta = 0^{\circ}$ & 180° for various Rayleigh numbers at H=15.0 mm with Q_j=5.0 slpm for D_j=(a) 10.0

Fig. 3.38 Half side view flow photos taken at $\theta = 0^{\circ}$ (left) and quarter of top view flow photos (right) taken at the middle horizontal plane between the disk and chamber top with Re_i=406, H=15.0 mm and D_i=10.0 mm at steady state for Ra= (a) 0, (b) 3,170 and (c) 6,340. ----- 73 Fig. 3.39 Half side view flow photos taken at $\theta = 0^{\circ}$ (left) and quarter of top view flow photos (right) taken at the middle horizontal plane between the disk and chamber top with $Re_i=184$, H=15.0 mm and $D_i=22.1$ mm at steady state for Ra=(a) 0, (b) 3,170 and (c) 6,340. ----- 74 Fig. 3.40 Steady side view flow photos taken at the cross plane $\theta = 0^{\circ}$ & 180° for various Rayleigh numbers at H=10.0 mm & Qi=1.0 slpm for Dj= (a) 10.0 mm and (b) 22.1 mm.----- 75 Fig. 3.41 Steady side view flow photos taken at the cross plane $\theta = 0^{\circ}$ & 180° for various Rayleigh numbers at H=10.0 mm & $Q_i=3.0$ slpm for $D_i=$ (a) 10.0 mm and (b) 22.1 mm.----- 76 Fig. 3.42 Steady side view flow photos taken at the cross plane $\theta = 0^{\circ}$ & 180° for various Rayleigh numbers at H=10.0 mm & Q_i =5.0 slpm for D_j = (a) 10.0 mm and (b) 22.1 mm. ----- 77 Fig. 3.43 Steady side view flow photos taken at the cross plane $\theta = 0^{\circ} \& 180^{\circ}$ at Q_i=3.0 slpm & H=20.0 mm with Ra=0. ----- 78 Fig. 3.44 Steady side view flow photos taken at the cross plane $\theta = 0^{\circ}$ & 180° at H=20.0 mm. ----- 79 Fig. 3.45 Steady side view flow photos taken at the cross plane $\theta = 0^{\circ}$ & 180° at H=15.0 mm with Ra=0.----- 80 Fig. 3.46 Steady side view flow photos taken at the cross plane $\theta = 0^{\circ}$ & 180° at H=15.0 mm. ----- 81 Fig. 3.47 Steady side view flow photos taken at the cross plane $\theta = 0^{\circ}$ & 180° at H=10.0 mm. ----- 82 Fig. 3.48 Steady side view flow photos taken at the cross plane $\theta = 0^{\circ}$ & 180° for

mm and (b) 22.1 mm. ----- 72

 $D_j=10.0 \text{ mm}$ at given $\Delta T=0^{\circ}C$ for various H. ------ 83

Fig. 3.49	Steady side view flow photos taken at the cross plane $\theta = 0^{\circ}$ & 180° for $D_j=10.0 \text{ mm}$ at given $\Delta T=20.0^{\circ}C$ for various H	84
Fig. 3.50	Steady side view flow photos taken at the cross plane $\theta = 0^{\circ}$ & 180° for $D_j=22.1 \text{ mm}$ at given $\Delta T=0^{\circ}C$ for various H.	85
Fig. 3.51	Steady side view flow photos taken at the cross plane $\theta = 0^{\circ}$ & 180° for D _j =22.1 mm at given $\Delta T=25.0^{\circ}C$ for various H	86
Fig. 3.52	Radial extent of the primary inertia-driven roll with $D_j=22.1$ mm for H= (a) 10.0 mm, (b) 15.0 mm and (c) 20.0 mm.	87
Fig. 3.53	Radial location of the secondary inertia-driven roll with $D_j=10$ mm for H= (a) 10.0 mm, (b) 15.0 mm and (c) 20.0 mm.	88
Fig. 3.54	Radial variation in non-dimensional steady air temperature with various Re_j for H=15.0 mm & D _j =10.0 mm at Z=0.5 for Ra= (a) 3,170, (b) 6,340 and (c) 7,930.	89
Fig. 3.55	Radial variation in non-dimensional steady air temperature with various Re_j for H=15.0 mm & D_j=22.1 mm at Z=0.5 for Ra= (a) 3,170, (b) 6,340 and (c) 7,930.	90
Fig. 3.56	Radial variation in non-dimensional steady air temperature with various Re_j for H=10.0 mm & D _j =10.0 mm at Z=0.5 for Ra= (a) 1,410, (b) 1,880 and (c) 2,350.	91
Fig. 3.57	Radial variation in non-dimensional steady air temperature with various Re_j for H=10.0 mm & D_j=22.1 mm at Z=0.5 for Ra= (a) 1,410, (b) 1,880 and (c) 2,350.	92
Fig. 4.1	Side view flow photos at the cross plane $\theta = 0^{\circ} \& 180^{\circ}$ at certain time instant in a typical periodic cycle and time records of air temperature at selected locations in the middle horizontal plane Z=0.5 with H=20.0 mm for (a) Re _j =136, Ra=11,270 & D _j =10.0 mm (t _p =21.1 sec) and (b) Re _j =61, Ra=15,030 & D _j =22.1 mm (t _p =13.8 sec)	99
Fig. 4.2	The time records of non-dimensional air temperature and the corresponding power spectrum densities for Ra=15,030 and D _j =22.1 mm at location (R, Z) =(0.52, 0.5) for θ =0° with H=20.0 mm for various Reynolds numbers Re _j = (a)49, (b)61, (c)73, (d)85 and (e)98	100

Fig. 4.3	The time records of non-dimensional air temperature and corresponding power spectrum densities for $Re_j=61$ and $D_j=22.1$ mm at location (R, Z) =(0.52, 0.5) for $\theta=0^{\circ}$ with H=20.0 mm for various Rayleigh numbers Ra= (a) 11,270, (b) 15,030 and (c) 18,790.	101
Fig. 4.4	Side view flow photos taken at the cross plane $\theta = 0^{\circ}$ for Re _j =61, Ra=11,270 and D _j =22.1 mm with H=20.0 mm at selected time instants (right) and the corresponding schematically sketched cross plane flow (left) in a typical periodic cycle (t _p =13.3sec)	102
Fig. 4.5	Half side view flow photos taken at $\theta = 0^{\circ}$ (left) and quarter of top view flow photos (right) taken at the middle horizontal plane between the disk and chamber top with Re _j = 61, Ra=11,270 and D _j =22.1 mm for H=20.0 mm at selected time instants in statistical state for (a) t=0 sec, (b) t=5 sec, (c) t=9 sec and (d) t=13 sec.	103
Fig. 4.6	Flow region map delineating the temporal state of the vortex flow for H=20.0 mm.	104
Fig. 4.7	The side view flow photos at selected time instants during flow formation at the cross plane $\theta = 0^{\circ}$ & 180° for Ra=0 at H=20.0 mm & D _j =10.0 mm for Re _j = (a) 136 and (b) 676	105
Fig. 4.8	The side view flow photos at selected time instants during flow formation at the cross plane $\theta = 0^{\circ}$ & 180° for Ra=0 at H=20.0 mm & D _j =22.1 mm for Re _j = (a) 61 and (b) 306.	106
Fig. 4.9	Time variation of the size of the primary inertia-driven roll for various Re _j at Ra=0	107
Fig. 4.10	Time variation of the location of the secondary inertia-driven roll for various Re _i at Ra=0	108

NOMENCLATURE

Dj	Jet diameter at the injection pipe exit (mm)
f	Oscillation frequency of time periodic flow (Hz)
F	Non-dimensional oscillation frequency, f/(α /H ²)
g	Gravitational acceleration (mm/s ²)
Gr	Grashof number, $g\beta\Delta TH^3/\nu^2$
Gr/Re _j ²	Critical buoyancy-to-inertia ratio for the onset of buoyancy induced roll
Н	Distance between the exit of injection pipe and heated plate (mm)
Qj	Jet flow rate (Standard Liter per Minute, slpm)
r _s	The center of the location of secondary inertia-driven roll (mm)
r,θ,z	Dimensional cylindrical coordinates
R, O, Z	Dimensionless cylindrical coordinates, r/R_c , θ , z/H
Ra	Rayleigh number, $g\beta\Delta TH^3/\alpha\nu$
R _c	Radius of processing chamber (mm)
Re _j	Jet Reynolds number, $\overline{V_j}D_j/v$
Re _w	Local Reynolds number in the wall-jet region, $\overline{u}H/v$
Rewe	Local Reynolds number in the wall-jet region at the edge of heated disk
SI	Size of primary inertia-driven roll (mm)
So	Size of buoyancy-driven roll (mm)
T _f	Temperature of the heated disk ($^{\circ}$ C)
Tj	Temperature of jet at the injection pipe exit ($^{\circ}C$)
t	Time (sec)
ū	Average velocity of the flow at wall-jet region (mm/s), $(\text{Re}_{j} D_{j} v)/(8rH)$
$\overline{\mathbf{V}}_{j}$	Average velocity of the air jet at the injection pipe exit (mm/s)

Greek symbols

α	Thermal diffusivity (mm ² /s)
β	Thermal expansion coefficient (1/K)
ΔΤ	Temperature difference between the heated disk and the injected air (°C)
ν	Kinematic viscosity (mm ² /s)
Φ	Non-dimensional temperature, $(T - T_j)/(\overline{T}_f - T_j)$

Superscript

_

Average

Subscripts

с	Processing chamber
e	Edge of heated disk
f	Fluid, Air
j	Jet impinging
Ι	Primary inertia-driven roll
0	Buoyancy-driven roll
S	Secondary inertia-driven roll
W	Wall-jet region