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Sharp Thresholds for Relative Neighborhood
Graphs in Wireless Ad Hoc Networks

Chih-Wei Yi, Member, IEEE, Peng-Jun Wan, Lixin Wang, and Chao-Min Su

Abstract—In wireless ad hoc networks, relative neighborhood
graphs (RNGs) are widely used for topology control. If every node
has the same transmission radius, then an RNG can be locally
constructed by using only one hop information if the transmission
radius is set no less than the largest edge length of the RNG.
The largest RNG edge length is called the critical transmission
radius for the RNG. In this paper, we consider the RNG over
a Poisson point process with mean density 𝑛 in a unit-area disk.

Let 𝛽0 =

√
1/
(

2
3
−

√
3

2𝜋

)
≈ 1.6. We show that the largest RNG

edge length is asymptotically almost surely at most 𝛽
√

ln𝑛
𝜋𝑛

for

any fixed 𝛽 > 𝛽0 and at least 𝛽
√

ln𝑛
𝜋𝑛

for any fixed 𝛽 < 𝛽0.
This implies that the threshold width of the critical transmission

radius is 𝑜

(√
ln𝑛
𝑛

)
. In addition, we also prove that for any

constant 𝜉, the expected number of RNG edges whose lengths

are not less than 𝛽0

√
ln𝑛+𝜉

𝜋𝑛
is asymptotically equal to 𝛽0

2

2
𝑒−𝜉.

Index Terms—Wireless ad hoc networks, relative neighbor-
hood graphs, critical transmission radii, Poisson point processes,
thresholds.

I. INTRODUCTION

A wireless ad hoc network is a collection of radio devices
located in a geographic region. Each node is equipped

with an omni-directional antenna with limited transmission
power. A communication session is established either through
a single-hop radio transmission if the communication parties
are close enough, or through relaying by intermediate de-
vices otherwise. Because of no need for fixed infrastructures,
wireless ad hoc networks can be flexibly deployed at low
cost for varying missions such as battlefield decision making,
emergency disaster relief and environmental monitoring.

In slow fading channel models, signals transmitted at power
level 𝑝 will be received at distance 𝑑 with strength 𝑐𝑑−𝜅𝑝
where 𝜅 is an environment-related constant, called path loss
factors, and 𝑐 is an antenna-related constant. A received
signal can be decoded only if its strength is not less than
a threshold. In a homogeneous network, due to the same
(maximal) transmission power and similar environments, we
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assume all nodes have the same (maximal) transmission radius
𝑟. The induced network topology is called 𝑟-disk graphs in
which two nodes have an edge if and only if the distance
between them is at most 𝑟. In many applications, a large
number of ad hoc wireless devices are randomly deployed
in a (finite) deployment region. Consequently, it is natural
to represent the vertex set by a random point process in a
bounded region, and the induced 𝑟-disk graphs are called
random geometric graphs [1] which are a bounded version
of the network model proposed by Gilbert (1961) [2].

Without fixed infrastructures, virtual backbones are con-
structed and maintained for routing packets. In [3] and [4],
relative neighborhood graphs (RNGs) [5] and Gabriel graphs
(GGs) [2] are used to construct planar virtual backbones.
However, most previous works assumed underlying networks
are connected, or implicitly assumed the transmission radius
can be arbitrarily increased if necessary. In addition, in order
to locally construct virtual backbones, only part of structures
will be constructed. This could increase the dilation factor and
cause more energy consumption. In this work, by investigating
the largest RNG edge length, we show that "complete" RNGs
can be locally constructed with high probability by using only
1-hop information if the transmission radius is properly set.

A graph property is said increasing if a graph has this
property, then all its supergraphs are with this property. For
a given set of nodes and an increasing property, the smallest
transmission radius such that the induced network topology
has the specified property is called the critical transmission
radius for this property. The property of an 𝑟-disk graph with-
out isolated nodes is increasing, and the corresponding critical
transmission radius is equal to the largest nearest-neighbor link
length. The largest nearest-neighbor link problem had been
studied by Dette and Henze (1989) [6]. Connectivity is another
increasing property. Philips et al. (1989) [7] proved that if
the average number of neighbors is less than 𝛽 ln𝑛 for some
constant 𝛽 < 1, the network is almost surely disconnected.
So, there is no (finite) magic number for connectivity. They
also conjectured that 𝛽 > 1 is a sufficient condition for
connectivity. Penrose (1997) [8] proved that the two critical
transmission radii for connectivity and for no isolated nodes
are asymptotically equal. Santi (2003) [9] studied the connec-
tivity problem on a more general network model in which
nodes are deployed in a cube [0, 𝑙]

𝑑 for 𝑑 = 1, 2, 3 and the
transmission radius is a function of 𝑙 and 𝑛. Kozma et al.
(2004) [10] proved that the largest Delaunay triangulation edge

length is 𝑂

(
3

√
ln𝑛
𝑛

)
. Goel et al. (2004) [11] showed that all

monotonic properties have sharp thresholds and the threshold
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Fig. 1. The shaded lunar area in the intersection of two disks with radii
∥𝑢− 𝑣∥ and centered at 𝑢 and 𝑣 respectively. 𝑢𝑣 is an RNG edge if and
only if no other node is in the shaded area.

width is upper bounded by 𝑂
(

ln3/4 𝑛√
𝑛

)
in the plane.

In RNGs, two nodes have an edge if and only if there
are no other nodes in the intersection of two disks centered
respectively at the two nodes and with the distance between
them as radii. In Fig. 1, 𝑢 and 𝑣 have an RNG edge between
them if and only if the shaded area, called a lens, doesn’t
contain any other node. Assume all nodes have the same
transmission radius 𝑟. If 𝑟 is no less than the largest RNG
edge length, the RNG is a subgraph of the 𝑟-disk graph.
So, only edges of the 𝑟-disk graph are candidates of RNG
edges. For any two neighboring nodes, all nodes in the
corresponding lens are neighbors of these two nodes. Thus,
1-hop information is enough to decide RNG edges. On the
other hand, if 𝑟 is less than the largest RNG edge length, it is
easy to construct a counter example in which RNG edge can
not be decided according to only 1-hop information. Hence,
the largest edge length of an RNG is the critical transmission
radius to construct the RNG by using only 1-hop information.

In this paper, we assume a wireless ad hoc network is
represented by a Poisson point process in a unit-area disk
with mean density 𝑛, denoted by 𝒫𝑛, and all nodes have the
same maximal transmission radius 𝑟𝑛 which is a function of 𝑛.
We use 𝒢𝑛 to denote the RNG over 𝒫𝑛 and 𝜆𝑛 to denote the

maximal edge length of 𝒢𝑛. Let 𝛽0 =

√
1/
(
2
3 −

√
3

2𝜋

)
. We

prove that for any constant 𝛽, 𝜆𝑛 is asymptotically almost

surely at most 𝛽
√

ln𝑛
𝜋𝑛 if 𝛽 > 𝛽0, and at least 𝛽

√
ln𝑛
𝜋𝑛

if 𝛽 < 𝛽0. This result implies that the threshold width of

the critical transmission radius is 𝑜

(√
ln𝑛
𝑛

)
. Furthermore,

let 𝑙𝑛 = 𝛽0

√
ln𝑛+𝜉
𝜋𝑛 for some constant 𝜉 and 𝒩𝑛 denote

the number of RNG edges whose lengths are at least 𝑙𝑛.
For convenience, these edges are called long (RNG) edges.
We prove that the expected number of long RNG edges is
asymptotically equal to 𝛽0

2

2 𝑒−𝜉.
In what follows, ∥𝑥∥ denotes the Euclidean norm of a point

𝑥 ∈ ℝ2. ∣𝐴∣ is shorthand for 2-dimensional Lebesgue measure
(or area) of a measurable set 𝐴 ⊂ ℝ2. All integrals considered
will be Lebesgue integrals. The topological boundary of a set
𝐴 ⊂ ℝ2 is denoted by ∂𝐴. The disk of radius 𝑟 centered at 𝑥 is
denoted by 𝐵 (𝑥, 𝑟). The unit-area disk centered at the origin
is denoted by 𝔻, and 𝑅0 = 1/

√
𝜋 is the radius of 𝔻. Let 𝑛

denote the node density of the Poisson point process. An event
is said to be asymptotic almost sure (abbreviated by a.a.s.) if
it occurs with a probability converges to one as 𝑛 → ∞.

The symbols 𝑂, 𝑜,∼ always refer to the limit 𝑛 → ∞. To
avoid trivialities, we tacitly assume 𝑛 to be sufficiently large
if necessary. For simplicity of notation, the dependence of sets
and random variables on 𝑛 will be frequently suppressed.

The rest of this paper is organized as follows. In Section II,
we give a brief of our main results. In Section III, we introduce
some terminologies and present several useful geometric and
integral lemmas. In Section IV, we derive the asymptotic
length of the longest RNG edge. In Section V, we derive the
asymptotic expected number of long RNG edges. We give
simulation results in Section VI and summarize this paper in
Section VII.

II. MAIN RESULTS

Recall that 𝒫𝑛 denotes a Poisson point process in a
unit-area disk with mean density 𝑛, 𝒢𝑛 denotes the RNG
over 𝒫𝑛, 𝜆𝑛 denotes the largest edge length of 𝒢𝑛, and

𝛽0 =

√
1/
(
2
3 −

√
3

2𝜋

)
≈ 1.6. One of our main results is the

following theorem.
Theorem 1: For any constant 𝜀 > 0, as 𝑛 → ∞, we have

Pr

[
(1− 𝜀)𝛽0

√
ln𝑛

𝜋𝑛
≤ 𝜆𝑛 ≤ (1 + 𝜀)𝛽0

√
ln𝑛

𝜋𝑛

]
→ 1.

Let 𝑟𝑛 = 𝛽
√

ln𝑛
𝜋𝑛 . According to Theorem 1, the 𝑟𝑛-disk

graph over 𝒫𝑛 a.a.s. contains 𝒢𝑛 if 𝛽 > 𝛽0, and on the other
hand, the 𝑟𝑛-disk graph a.a.s. does not contain 𝒢𝑛 if 𝛽 < 𝛽0.
Therefore, 𝛽0 is corresponding to the threshold of the critical
transmission radius for RNGs. For reference, we remark that
𝛽 = 1 is corresponding to the threshold for connectivity [12]
[13]. The threshold width of RNGs implied by Theorem 1 is

𝑜

(√
ln𝑛
𝑛

)
that is far smaller than 𝑂

(
ln3/4 𝑛√

𝑛

)
given in [11].

The next theorem gives the asymptotic expected number

of long RNG edges. Recall that 𝑙𝑛 = 𝛽0

√
ln𝑛+𝜉
𝜋𝑛 for some

constant 𝜉, and 𝒩𝑛 denotes the number of long RNG edges
whose lengths are not less than 𝑙𝑛.

Theorem 2: For the expected number of long RNG edges,
we have

lim
𝑛→∞E [𝒩𝑛] =

𝛽0
2

2
𝑒−𝜉.

Since Pr [𝑋 = 0] = 1 − Pr [𝑋 ≥ 1] ≥ 1 − E [𝑋 ] for any
non-negative integer value RV 𝑋 ,

Pr

[
𝜆𝑛 < 𝛽0

√
ln𝑛+ 𝜉

𝜋𝑛

]
= Pr [𝒩𝑛 = 0]

≥ 1−E [𝒩𝑛]

∼ 1− 𝛽0
2

2
𝑒−𝜉.

Therefore,

lim
𝜉→∞

lim
𝑛→∞Pr

[
𝜆𝑛 < 𝛽0

√
ln𝑛+ 𝜉

𝜋𝑛

]
= 1,

and thus 𝜉 → ∞ is an a.a.s. sufficient condition for 𝜆𝑛 <

𝛽0

√
ln𝑛+𝜉
𝜋𝑛 .
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Fig. 2. The partition of the unit-area disk 𝔻.

III. PRELIMINARIES

In this section, we introduce some terminologies and lem-
mas that will be used to prove our main results. For a given
real number 𝑟 ∈ (0, 𝑅0), the unit-area disk 𝔻 is partitioned
into 𝔻𝑟 (0), 𝔻𝑟 (1) and 𝔻𝑟 (2) as shown in Fig. 2: 𝔻𝑟 (0) is
the disk of radius 1/

√
𝜋 − 𝑟 centered at the origin; 𝔻𝑟 (1) is

the annulus of radii 1/
√
𝜋 − 𝑟 and

√
1/𝜋 − 𝑟2 centered at

the origin; and 𝔻𝑟 (2) is the annulus of radii
√
1/𝜋 − 𝑟2 and

1/
√
𝜋 centered at the origin. Then,

∣𝔻𝑟 (0)∣ =
(
1−√

𝜋𝑟
)2

,

∣𝔻𝑟 (1)∣ = 2𝜋𝑟
(
1/

√
𝜋 − 𝑟

)
,

∣𝔻𝑟 (2)∣ = 𝜋𝑟2.

For any two points 𝑢 and 𝑣, let 𝐿𝑢𝑣 denote the lens 𝐿𝑢𝑣 =
𝐵 (𝑢, ∥𝑢− 𝑣∥) ∩ 𝐵 (𝑣, ∥𝑢− 𝑣∥), i.e. the intersection of two
disks centered at 𝑢 and 𝑣, respectively, and with radii ∥𝑢− 𝑣∥.
We have

∣𝐿𝑢𝑣∣ = 1

𝛽0
2𝜋 ∥𝑢− 𝑣∥2

where 𝛽0 =

√
1/
(
2
3 −

√
3

2𝜋

)
. For a lens 𝐿𝑢𝑣, the middle point

of 𝑢 and 𝑣 is called its center, the line segment 𝑢𝑣 is called its
waist, and the two intersection points of ∂𝐵 (𝑢, ∥𝑢− 𝑣∥) and
∂𝐵 (𝑣, ∥𝑢− 𝑣∥) are called its vertices. A lens is called an 𝑟-
lens if the length of its waist is 2𝑟. A lens is feasible if its waist
is contained in 𝔻. In what follows, we only consider feasible
lenses. Assume ∥𝑢− 𝑣∥ = 2𝑟. Then, if the center of 𝐿𝑢𝑣 is in
𝔻√

3𝑟 (0), the lens is contained in 𝔻 and ∣𝐿𝑢𝑣 ∩ 𝔻∣ = ∣𝐿𝑢𝑣∣;
if the center of 𝐿𝑢𝑣 is in 𝔻╲𝔻𝑟 (2), at least a half lens is
contained in 𝔻 and ∣𝐿𝑢𝑣 ∩ 𝔻∣ ≥ 1

2 ∣𝐿𝑢𝑣∣. The next lemma
giving a lower bound for the area of the union of two lenses
is from [14] (Lemma 2).

Lemma 3: Assume 𝑐 = 0.039, 𝑅 > 0, and 𝑎1, 𝑏1, 𝑎2, 𝑏2 ∈
ℝ2. Let 𝑧1 = 1

2 (𝑎1 + 𝑏1), 𝑟1 = ∥𝑎1 − 𝑏1∥, 𝑧2 = 1
2 (𝑎2 + 𝑏2),

and 𝑟2 = ∥𝑎2 − 𝑏2∥. If 𝑟1, 𝑟2 ∈ [12𝑅,𝑅
]
, ∥𝑧1 − 𝑧2∥ ≤ √

3𝑅,
𝑎1, 𝑏1 /∈ 𝐿𝑎2𝑏2 , and 𝑎2, 𝑏2 /∈ 𝐿𝑎1𝑏1 , then

∣𝐿𝑎1𝑏1 ∪ 𝐿𝑎2𝑏2 ∣ − ∣𝐿𝑎1𝑏1 ∣ ≥ 𝑐𝑅 ∥𝑧1 − 𝑧2∥ .

An 𝜀-tessellation is to divide the plane by vertical and
horizontal lines into grid cells with width 𝜀. Without loss
of generality, we assume the 𝑥-axis and 𝑦-axis are one of
the horizontal lines and vertical lines, and the origin is at a

Fig. 3. A polyquadrate is a collection of grids that intersect with a convex
polygon.

corner of a grid cell. A collection of grid cells intersecting
with a convex polygon (or a compact convex set) is called
a polyquadrate. For example, in Fig. 3, the shaded grid cells
form a polyquadrate. The horizontal span of a polyquadrate is
the horizontal distance measured by the number of grid cells
from the leftmost cells to the rightmost cells. The vertical
span of a polyquadrate is with a similar definition but for the
vertical direction.

Lemma 4: If 𝑆 is a collection of 𝑚 grid cells and 𝑛 is a
fixed positive integer, the number of polyquadrates with span
less than 𝑛 and intersecting with 𝑆 is Θ(𝑚).

Proof: Since 𝑛 is fixed, the number of polyquadrates that
have spans less than 𝑛 and contain a specified grid cell is
bounded. Since 𝑆 consists of 𝑚 grid cells, the lemma follows.

The next lemma gives an a.a.s. upper bound and lower
bound of a collection of Poisson RVs, and we leave its proof
in Appendix.

Lemma 5: Assume 𝑐 > 0 and 𝛽 > 0 are constant and 𝐼𝑛 =
Θ
((

𝑛
ln𝑛

)𝑐)
. Let 𝑌𝑖 be a Poisson RV with rate 𝜇𝑖 for 𝑖 =

1, ⋅ ⋅ ⋅ , 𝐼𝑛.

1) If 𝜇𝑖 ≥ 𝛽 ln𝑛 and 𝛽 ≥ 𝑐, we have

lim
𝑛→∞Pr

[
𝐼𝑛
min
𝑖=1

𝑌𝑖 > 0

]
= 1.

2) If 𝑌1, 𝑌2, ⋅ ⋅ ⋅ , 𝑌𝐼𝑛 are independent, 𝛽 ∈ (0, 𝑐), and 𝜇𝑖 ≤
𝛽 ln𝑛, we have

lim
𝑛→∞Pr

[
𝐼𝑛
min
𝑖=1

𝑌𝑖 = 0

]
= 1.

At the end of this section, we give a lemma about the limits
of integrals, and similarly, its proof can be found in Appendix.

Lemma 6: Let 𝑟𝜉 = 𝛽0

√
ln𝑛+𝜉
𝜋𝑛 for some constant 𝜉, and

either 𝑅𝑛 = 3
√

ln𝑛
𝜋𝑛 or 𝑅𝑛 = 𝛽0

√
ln𝑛+𝜉𝑛
𝜋𝑛 with 𝜉𝑛 = 𝑜 (ln𝑛)

and 𝜉𝑛 → ∞. Then

𝑛2

2

∫ ∫
𝑢,𝑣∈𝔻

𝑟𝜉≤∥𝑢−𝑣∥<𝑅𝑛

𝑒−𝑛∣𝐿𝑢𝑣∩𝔻∣𝑑𝑢𝑑𝑣 ∼ 𝛽0
2

2
𝑒−𝜉.

IV. ASYMPTOTIC LENGTH OF THE LONGEST EDGE

This section is dedicated to the proof of Theorem 1. The
proof is divided into two parts. In Subsection IV-A, we give
Lemma 7 which provides an upper bound for the largest edge
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length. In Subsection IV-B, we give Lemma 8 which provides
a lower bound for the largest edge length. Since two bounds
are tight, Theorem 1 follows Lemma 7 and 8.

A. Upper Bound for the Longest Edge Length

Lemma 7 says that if 𝛽 > 𝛽0, there a.a.s. do not exist RNG

edges whose lengths are not less 𝛽
√

ln𝑛
𝜋𝑛 . In the proof, we are

going to show that any lens whose waist is fully contained in

𝔻 and not less than 𝛽
√

ln𝑛
𝜋𝑛 a.a.s. contains some other nodes.

Therefore, we can conclude that all RNG edges are a.a.s. less

than 𝛽
√

ln𝑛
𝜋𝑛 .

Lemma 7: For any constant 𝛽 > 𝛽0, we have

lim
𝑛→∞Pr

[
𝜆𝑛 ≥ 𝛽

√
ln𝑛

𝜋𝑛

]
= 0.

Proof: Let 𝑑 = 𝛽
√

ln𝑛
𝜋𝑛 and 𝑟 = 𝑑

2 . Pick a constant

𝛽1 ∈ (𝛽0, 𝛽), and let 𝑑′ = 𝛽1

√
ln𝑛
𝜋𝑛 , 𝑟′ = 𝑑′

2 and 𝜀 = 𝑟−𝑟′√
2

.
Let C𝑟 be the collect of all feasible 𝑟-lenses, whose waists
are contained in 𝔻. If 𝑢𝑣 is an RNG edge, there are no other
nodes in 𝐿𝑢𝑣. So, 𝜆𝑛 ≥ 𝑑 implies that there exists a lens in
C𝑟 that does not contain nodes of 𝒫𝑛. Therefore,

Pr

[
𝜆𝑛 ≥ 𝛽

√
ln𝑛

𝜋𝑛

]
≤ Pr

[
min
𝐶∈C𝑟

∣𝐶 ∩ 𝒫𝑛∣ = 0

]
. (1)

Divide the plane by an 𝜀-tessellation. The distance of any
two points within a grid cell is at most 𝑟 − 𝑟′. If 𝐴 and 𝐵
respectively are an 𝑟-lens and 𝑟′-lens with the same center and
overlapping waists, grid cells intersected with 𝐵 are contained
in 𝐴 since any point of 𝐵 is apart from ∂𝐴 by at least 𝑟− 𝑟′.
So, the polyquadrate induced by 𝐵 is contained in 𝐴. Let
{𝑃1, ⋅ ⋅ ⋅ , 𝑃𝐼𝑛} denote the set of polyquadrates induced by the
𝑟′-lenses in C𝑟′ , and 𝑌𝑖 denote the number of nodes of 𝒫𝑛 in
𝑃𝑖. Since any 𝑟-lens in C𝑟 contains at least one 𝑃𝑖, we have

Pr

[
min
𝐶∈C𝑟

∣𝐶 ∩ 𝒫𝑛∣ = 0

]
≤ Pr

[
𝐼𝑛
min
𝑖=1

𝑌𝑖 = 0

]
. (2)

Note that 𝑌𝑖 is a Poisson RV with rate 𝑛 ∣𝑃𝑖∣. Assume 𝐸
is the collection of polyquadrates induced by 𝑟′-lenses with
center on 𝔻√

3𝑟′ (0) and 𝐹 is the collection of polyquadrates
induced by feasible 𝑟′-lenses with center on 𝔻 ∖ 𝔻√

3𝑟′ (0).
Since 𝐸 ∪ 𝐹 = {𝑃1, ⋅ ⋅ ⋅ , 𝑃𝐼𝑛},

Pr

[
𝐼𝑛
min
𝑖=1

𝑌𝑖 = 0

]
= Pr

[
min
𝑃𝑖∈𝐸

𝑌𝑖 = 0 or min
𝑃𝑖∈𝐹

𝑌𝑖 = 0

]
(3)

≤ Pr

[
min
𝑃𝑖∈𝐸

𝑌𝑖 = 0

]
+ Pr

[
min
𝑃𝑖∈𝐹

𝑌𝑖 = 0

]
.

For any 𝑃𝑖 ∈ 𝐸, we have

𝑛 ∣𝑃𝑖∣ ≥ 𝑛
1

𝛽0
2𝜋𝑑

′2 =

(
𝛽1

𝛽0

)2

ln𝑛 > ln𝑛.

Applying Lemma 4, we also have ∣𝐸∣ = Θ
(

1
𝜀2

)
= Θ

(
𝑛

ln𝑛

)
.

Therefore, by Lemma 5,

Pr

[
min
𝑃𝑖∈𝐸

𝑌𝑖 = 0

]
= 1− Pr

[
min
𝑃𝑖∈𝐸

𝑌𝑖 > 0

]
∼ 0. (4)

For any 𝑃𝑖 ∈ 𝐹 , we have

𝑛 ∣𝑃𝑖∣ ≥ 𝑛

(
1

2𝛽0
2𝜋𝑑

′2
)

>
1

2
ln𝑛.

Applying Lemma 4, we also have ∣𝐹 ∣ = Θ
(
𝑟′
𝜀2

)
=

Θ
(√

𝑛
ln𝑛

)
. Therefore, by Lemma 5,

Pr

[
min
𝑃𝑖∈𝐹

𝑌𝑖 = 0

]
= 1− Pr

[
min
𝑃𝑖∈𝐹

𝑌𝑖 > 0

]
∼ 0. (5)

Put Eq. 1, 2, 3, 4, and 5 together, and the lemma is proved.

B. Lower Bounds for the Longest Edge Length

Lemma 8 says that if 𝛽 < 𝛽0, there a.a.s. exist RNG edges

whose lengths are not less than 𝛽
√

ln𝑛
𝜋𝑛 . To prove this, the

plane is tessellated into equal-size square cells. For each cell,
an event that implies the existence of such RNG edges is
introduced, and a lower bound for the probability of the event
is derived. Since these events are identical and independent
among cells, we can easily find a probability lower bound
that is asymptotically equal to 1.

Lemma 8: For any constant 𝛽 ∈ (0, 𝛽0),

lim
𝑛→∞Pr

[
𝜆𝑛 ≥ 𝛽

√
ln𝑛

𝜋𝑛

]
= 1.

Proof: Assume 𝛽1 and 𝛽2 are positive constants, and
𝑅1 and 𝑅2 respectively are given by 𝑛𝜋𝑅2

1 = 𝛽1 ln𝑛 and
𝑛𝜋𝑅2

2 = 𝛽2 ln𝑛. Choose 𝛽1, 𝛽2 such that max
(
1
4𝛽0

2, 𝛽2
)
<

𝛽1 < 𝛽2 < 𝛽0
2 and 𝜋

𝑐2

(
1− 𝑅1

𝑅2

)
< 1. Here 𝑐 is given

by Lemma 3. We have 1
2𝑅2 ≤ 𝑅1 ≤ 𝑅2. Divide 𝔻 by(

4
√

ln𝑛
𝑛𝜋

)
-tessellation. Let 𝐼𝑛 denote the number of grid cells

fully contained in 𝔻. Here 𝐼𝑛 = 𝑂
(

𝑛
ln𝑛

)
. For each such cell,

we draw a disk with radius 1
2

√
ln𝑛
𝑛𝜋 at the center of the cell.

For 1 ≤ 𝑖 ≤ 𝐼𝑛, let 𝐸𝑖 be the event that there exist two nodes
𝑋,𝑌 ∈ 𝒫𝑛 such that 𝑋𝑌 is a RNG edge, their midpoint is
in the 𝑖-th disk, and their distance is between 𝑅1 and 𝑅2.
Therefore,

Pr

[
𝜆𝑛 ≥ 𝛽

√
ln𝑛

𝜋𝑛

]
≥ Pr [at least one 𝐸𝑖 occur]

= 1− Pr [none of 𝐸𝑖 occurs] .

𝐸1, ⋅ ⋅ ⋅ , 𝐸𝐼𝑖 are identical and independent. Thus,

Pr [none of 𝐸𝑖 occurs] = (1− Pr [𝐸1])
𝐼𝑛 ≤ 𝑒−𝐼𝑛 Pr[𝐸1].

We can prove 𝐼𝑛 Pr [𝐸1] → ∞. (See Appendix B for details.)
So,

Pr

[
𝜆𝑛 ≥ 𝛽

√
ln𝑛

𝜋𝑛

]
→ 1.



618 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 9, NO. 2, FEBRUARY 2010

V. EXPECTED NUMBER OF LONG EDGES

We have proved that the ratio of the largest RNG edge

length to
√

ln𝑛
𝑛𝜋 is a.a.s. equal to 𝛽0. Let 𝑙𝑛 = 𝛽0

√
ln𝑛+𝜉
𝑛𝜋 for

a constant 𝜉. In this section, we are going to prove Theorem
2 that gives the asymptotic expected number of long RNG
edges.

Proof of Theorem 2: Assume 𝑌 and 𝑉 are point sets
and 𝑌 ⊆ 𝑉 . Let ℎ𝑟 (𝑌, 𝑉 ) denote a function such that
ℎ𝑟 (𝑌 = {𝑢, 𝑣} , 𝑉 ) = 1 only if ∥𝑢− 𝑣∥ ≥ 𝑟 and there
is no other node of 𝑉 in the disk area 𝐿𝑢𝑣; otherwise,
ℎ𝑟 (𝑌, 𝑉 ) = 0. Let 𝑋1 and 𝑋2 denote independent random
points with uniform distribution over 𝔻 and independent of
𝒫𝑛. According to the Palm theory,

E [𝒩𝑛] = E

⎡
⎢⎣ ∑
{𝑋′

1,𝑋
′
2}⊆𝒫𝑛

ℎ𝑟 ({𝑋 ′
1, 𝑋

′
2} ,𝒫𝑛)

⎤
⎥⎦

=
𝑛2

2!
E [ℎ𝑟 ({𝑋1, 𝑋2} , {𝑋1, 𝑋2}∪𝒫𝑛)] .

Let 𝐹 (𝑟) be the probability of the event that 𝑋1𝑋2 is a RNG
edge and ∥𝑋1 −𝑋2∥ ≥ 𝑟. Then,

𝐹 (𝑟) = E [ℎ𝑟 ({𝑋1, 𝑋2} , {𝑋1, 𝑋2}∪𝒫𝑛)] ,

and

𝐹 (𝑟)

=

∫ ∫
𝑢,𝑣∈𝔻

∥𝑢−𝑣∥≥𝑟
Pr

[
𝑋1𝑋2 is a
RNG edge

∣∣∣∣ 𝑋1 = 𝑢
𝑋2 = 𝑣

]
𝑑𝑢𝑑𝑣

=

∫ ∫
𝑢,𝑣∈𝔻

∥𝑢−𝑣∥≥𝑟
𝑒−𝑛∣𝐿𝑢𝑣∩𝔻∣𝑑𝑢𝑑𝑣.

According to Theorem 1,

𝐹

(
𝛽0

√
ln𝑛+ 𝜉

𝑛𝜋

)

∼ 𝐹

(
𝛽0

√
ln𝑛+ 𝜉

𝑛𝜋

)
− 𝐹

(
3

√
ln𝑛

𝑛𝜋

)

=

∫ ∫
𝑢,𝑣∈𝔻

3
√

ln𝑛
𝑛𝜋 >∥𝑢−𝑣∥≥𝛽0

√
ln𝑛+𝜉

𝑛𝜋

𝑒−𝑛∣𝐿𝑢𝑣∩𝔻∣𝑑𝑢𝑑𝑣.

Hence, by Lemma 6, we have

E [𝒩𝑛] =
𝑛2

2!
𝐹

(
𝛽0

√
ln𝑛+ 𝜉

𝑛𝜋

)
∼ 𝛽0

2

2
𝑒−𝜉.

Thus, the theorem is proved.

VI. SIMULATIONS

We run simulations to validate our asymptotic results. In
the simulation, 400 random point sets over a unit-area square
with uniform distribution are generated for each node density
𝑛 = 100, 200, 400, 800, and 1600. The cumulative distribution
functions of the largest RNG edge length are illustrated in Fig.
4. The curves from right to left are corresponding to the CDFs
with respect to 𝑛 = 100, 200, 400, 800, and 1600. Without
too much surprise, as the node density becomes larger, the
largest RNG edge length becomes smaller, and the threshold

CDF of the largest RNG edge length
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Fig. 4. CDF of the largest RNG edge length.

TABLE I
DILATION FACTORS.

𝑛 = 100 𝑛 = 200 𝑛 = 400 𝑛 = 800 𝑛 = 1600
MAX 5.039 6.021 5.795 5.651 6.977
MIN 2.375 2.752 2.895 3.279 3.463
AVG 3.337 3.659 3.934 4.177 4.425

width, that is corresponding to the width of the CDF curve,
also becomes more narrow.

To investigate the energy efficiency issue, for each pair of
nodes, we calculate the ratio of the length of the shortest path
in the RNG between them and the Euclidean distance between
them. The maximal ratio over all pairs of nodes in a random
point set is the dilation factor of the RNG. In Table I, we list
the maximal, minimal, and average dilation factors among 400
random point sets for each node density. The dilation factor
is a lower bound of the stretch factor. Although Bose (2002)
[15] proved that the stretch factor of RNGs is Θ(𝑛) in the
worst case, we can see in Table I the dilation factor doesn’t
increase significantly. So, the power efficiency of RNG is not
too bad in the average case.

VII. CONCLUSIONS

The relative neighborhood graphs are a geometric structure
used in topology control for wireless ad hoc networks and
can be constructed by distributed and localized algorithms.
Motivated by constructing geometric structures using only 1-
hop information, we studies the maximal length of RNG edges
which is the smallest transmission radius for constructing the
RNG by only 1-hop information if all nodes have the same
transmission radius. In this paper, we assume a wireless ad
hoc networks is represented by a Poisson point process with
mean 𝑛 on a unit-area disk. We first showed that the ratio of
the maximal length of RNG edges to

√
ln𝑛
𝜋𝑛 is a.a.s. equal to√

1/
(

2
3 −

√
3

2𝜋

)
≈ 1.6. Next, we proved that for a constant

𝜉, the expected number of long RNG edges, whose lengths

are at least 𝛽0

√
ln𝑛+𝜉
𝜋𝑛 , are a.a.s. equal to 𝛽0

2

2 𝑒−𝜉. This imply
that if 𝜉 → ∞, it is a.a.s. that the maximal length is less than

𝛽0

√
ln𝑛+𝜉
𝜋𝑛 .
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APPENDIX A
PROOFS OF LEMMAS IN SECTION III

First, we give the proof of Lemma 5.
Proof of Lemma 5: Consider the first case. If 𝜇𝑖 ≥ 𝛽 ln𝑛,

Pr [𝑌𝑖 = 0] = 𝑒−𝜇𝑖 ≤ 𝑒−𝛽 ln𝑛.

So,

Pr

[
𝐼𝑛
min
𝑖=1

𝑌𝑖 > 0

]
= 1− Pr [∃𝑖 such that 𝑌𝑖 = 0]

= 1− Pr

[
𝐼𝑛⋁
𝑖=1

(𝑌𝑖 = 0)

]
≥ 1−

𝐼𝑛∑
𝑖=1

Pr [𝑌𝑖 = 0]

≥ 1−
𝐼𝑛∑
𝑖=1

𝑒−𝛽 ln𝑛 = 1− Θ
(( 𝑛

ln𝑛

)𝑐)
𝑒−𝛽 ln𝑛

= 1−Θ

(
𝑛𝑐−𝛽

ln𝑐 𝑛

)
.

Therefore, if 𝛽 ≥ 𝑐, we have

Pr

[
𝐼𝑛
min
𝑖=1

𝑌𝑖 > 0

]
∼ 1.

Consider the second case. If 𝑌1, 𝑌2, ⋅ ⋅ ⋅ , 𝑌𝐼𝑛 are indepen-
dent,

Pr

[
𝐼𝑛
min
𝑖=1

𝑌𝑖 > 0

]
= Pr

[
𝐼𝑛⋀
𝑖=1

(𝑌𝑖 > 0)

]

=

𝐼𝑛∏
𝑖=1

Pr [𝑌𝑖 > 0] =

𝐼𝑛∏
𝑖=1

(1− Pr [𝑌𝑖 = 0])

≤
𝐼𝑛∏
𝑖=1

𝑒−Pr[𝑌𝑖=0] = 𝑒−
∑𝐼𝑛

𝑖=1 Pr[𝑌𝑖=0].

If 𝜇𝑖 ≤ 𝛽 ln𝑛,

Pr [𝑌𝑖 = 0] = 𝑒−𝜇𝑖 ≥ 𝑒−𝛽 ln𝑛.

Put the two inequalities together. Then,

Pr

[
𝐼𝑛
min
𝑖=1

𝑌𝑖 = 0

]
= 1− Pr

[
𝐼𝑛
min
𝑖=1

𝑌𝑖 > 0

]
≥ 1− 𝑒−

∑𝐼𝑛
𝑖=1 Pr[𝑌𝑖=0] ≥ 1− 𝑒−

∑𝐼𝑛
𝑖=1 𝑒

−𝛽 ln𝑛

= 1− 𝑒−Θ(( 𝑛
ln𝑛 )

𝑐
)𝑒−𝛽 ln𝑛

= 1− 𝑒
−Θ

(
𝑛𝑐−𝛽

ln𝑐 𝑛

)
.

Therefore, if 𝛽 ∈ (0, 𝑐), we have

Pr

(
min

1≤𝑖≤𝐼𝑛
𝑌𝑖 = 0

)
∼ 1.

Next, we are going to prove Lemma 6. But before that, we
need a lemma that gives a tighter lower bound for ∣𝐿𝑢𝑣 ∩ 𝔻∣
as the center of 𝐿𝑢𝑣 is near the boundary of 𝔻 and a tool for
variable transformation.

Lemma 9: For any 𝑢, 𝑣 ∈ 𝔻, let 𝑟 = 1
2 ∥𝑢− 𝑣∥, 𝑧 = 𝑢+𝑣

2 ,
and 𝑡 = 1√

𝜋
− ∥𝑧∥. If 𝑧 ∈ 𝔻╲

(
𝔻√

3𝑟 (0) ∪ 𝔻𝑟 (2)
)
, we have

∣𝐿𝑢𝑣 ∩ 𝔻∣ ≥ 1

2
∣𝐿𝑢𝑣∣+ 𝑟𝑡.
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Fig. 5. A lens near the boundary of 𝔻.

t(z)

z

b

a

r c

d

Fig. 6. If 𝑧 ∈ 𝔻𝑟 (1), then 𝜃 (𝑧, 𝑟) = 4∠𝑎𝑧𝑏.

Proof: Let 𝑎, 𝑏 with ∥𝑎∥ ≥ ∥𝑏∥ denote the two vertices
of 𝐿𝑢𝑣. If the segment 𝑎𝑧 does not intersect ∂𝔻, the triangle
𝑎𝑢𝑣 is contained in 𝔻 and with area 1

2 ∥𝑢− 𝑣∥ ∥𝑧 − 𝑎∥ =
1
2 (2𝑟)

(√
3𝑟
)
= 𝑟

(√
3𝑟
) ≥ 𝑟𝑡. Otherwise, let 𝑐 denote the

intersection point of 𝑎𝑧 and ∂𝔻. See Fig. 5. Note that 𝑡 is the
shortest distance from 𝑧 to ∂𝔻. The triangle 𝑐𝑢𝑣 is contained
in 𝔻 and with area 1

2 ∥𝑢− 𝑣∥ ∥𝑧 − 𝑐∥ = 1
2 (2𝑟) ∥𝑧 − 𝑐∥ =

𝑟 ∥𝑧 − 𝑐∥ ≥ 𝑟𝑡. In addition, the half lens surrounded by the
segment 𝑢𝑣 and arcs 𝑢𝑏 and 𝑣𝑏 is always contained in 𝔻. So,
we have

∣𝐿𝑢𝑣 ∩ 𝔻∣ ≥ 1

2
∣𝐿𝑢𝑣∣+ 𝑟𝑡,

and the lemma is proved.
For 𝑧 ∈ 𝔻 and 𝑟 ∈ ℝ, let 𝜃 (𝑧, 𝑟) denote the (total)

central angle corresponding to the portion of ∂𝐵 (𝑧, 𝑟) in
which if a diameter of 𝐵 (𝑧, 𝑟) has an endpoint, the diameter
is fully contained in 𝔻. For example, in Figure (6), 𝑏, 𝑐 are the
intersection points of ∂𝐵 (𝑧, 𝑟) and ∂𝔻, and the segment 𝑏𝑑
is a diameter of 𝐵 (𝑧, 𝑟). Then, 𝜃 (𝑧, 𝑟) = 4∠𝑎𝑧𝑏. In addition,
if 𝑧 ∈ 𝔻𝑟 (1), we use 𝑡 (𝑧) to denote the distance between 𝑧
and ∂𝔻. We have

𝜃 (𝑧, 𝑟) = 2𝜋, if 𝑧 ∈ 𝔻𝑟 (0) ;

𝜃 (𝑧, 𝑟) ≤ 4 arcsin
𝑡 (𝑧)

𝑟
≤ 4

𝑡 (𝑧)

𝑟
, if 𝑧 ∈ 𝔻𝑟 (1) ; (6)

𝜃 (𝑧, 𝑟) = 0, if 𝑧 ∈ 𝔻𝑟 (2) .

Proof of Lemma 6: Let 𝑧 = 𝑢+𝑣
2 and 𝑟 = ∥𝑢−𝑣∥

2 . If
𝑧 ∈ 𝔻√

3𝑟 (0), 𝐿𝑢𝑣 is fully contained in 𝔻 and

∣𝐿𝑢𝑣 ∩𝔻∣ = 1

𝛽0
2𝜋 ∥𝑢− 𝑣∥2 =

4

𝛽0
2𝜋𝑟

2.
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First, we calculate the integration over 𝑧 ∈ 𝔻√
3𝑟 (0).

𝑛2

2

∫ ∫
𝑢,𝑣∈𝔻

𝑢+𝑣
2 ∈𝔻√

3𝑟(0)

𝑟𝜉≤∥𝑢−𝑣∥<𝑅𝑛

𝑒−𝑛∣𝐿𝑢𝑣∩𝔻∣𝑑𝑢𝑑𝑣

=
𝑛2

2

∫ 𝑅𝑛
2

𝑟=
𝑟𝜉
2

∫
𝑧∈𝔻√

3𝑟(0)

𝑒
− 4

𝛽0
2 𝑛𝜋𝑟

2

8𝜋𝑟𝑑𝑧𝑑𝑟

∼ 2𝑛2

∫ 𝑅𝑛
2

𝑟=
𝑟𝜉
2

𝑒
− 4

𝛽0
2 𝑛𝜋𝑟

2

2𝜋𝑟𝑑𝑟

= 2𝑛2

∫ 𝑅𝑛
2

𝑟=
𝑟𝜉
2

𝑒
− 4𝑛

𝛽0
2 𝜋𝑟

2

𝑑
(
𝜋𝑟2
)

= 2𝑛2

⎛
⎝−𝛽0

2

4𝑛
𝑒−𝑛𝜋𝑟

2

∣∣∣∣
𝑅𝑛
2

𝑟=
𝑟𝜉
2

⎞
⎠

∼ 𝛽0
2

2
𝑒−𝜉.

Next, we calculate the integration over 𝑧 ∈ 𝔻√
3𝑟 (1) ∖𝔻𝑟 (2).

Let 𝑡 denote the distance from 𝑧 to ∂𝔻. By Lemma 9 and Eq.
(6), we have ∣𝐿𝑢𝑣 ∩ 𝔻∣ ≥ 2

𝛽0
2𝜋𝑟2 + 𝑐1𝑟𝑡 and 𝑟𝜃 (𝑧, 𝑟) ≤ 𝑐2𝑡.

Thus,
𝑛2

2

∫ ∫
𝑢,𝑣∈𝔻

𝑢+𝑣
2

∈𝔻√
3𝑟

(1)∖𝔻𝑟(2)

𝑟𝜉≤∥𝑢−𝑣∥<𝑅𝑛

𝑒−𝑛∣𝐿𝑢𝑣∩𝔻∣𝑑𝑢𝑑𝑣

≤ 𝑛2

2

∫ ∫
𝑢,𝑣∈𝔻

𝑢+𝑣
2

∈𝔻√
3𝑟

(1)∖𝔻𝑟(2)

𝑟𝜉≤∥𝑢−𝑣∥<𝑅𝑛

𝑒
−𝑛

(
2

𝛽0
2 𝜋𝑟2+𝑐1𝑟𝑡

)
𝑑𝑢𝑑𝑣

≤ 𝑛2

2

∫ 𝑅𝑛
2

𝑟=
𝑟𝜉
2

∫
𝑧∈𝔻√

3𝑟
(1)∖𝔻𝑟(2)

𝑒
−𝑛

(
2

𝛽0
2 𝜋𝑟2+𝑐1𝑟𝑡

)
4𝑟𝜃 (𝑧, 𝑟)

⋅ 𝑑𝑧𝑑𝑟

≤ 𝑂 (1)𝑛2

∫ 𝑅𝑛
2

𝑟=
𝑟𝜉
2

∫ √
3𝑟

𝑡=0

𝑒
−𝑛

(
2

𝛽0
2 𝜋𝑟2+𝑐1𝑟𝑡

)
𝑡𝑑𝑡𝑑𝑟

≤ 𝑂 (1)𝑛2𝑒
− 1

2𝛽0
2 𝑛𝜋𝑟2𝜉

∫ 𝑅𝑛
2

𝑟=
𝑟𝜉
2

∫ √
3𝑟

𝑡=0

𝑒−𝑐1𝑛𝑟𝑡𝑡𝑑𝑡𝑑𝑟

≤ 𝑂 (1)𝑛2𝑒−
1
2
(ln𝑛+𝜉)

∫ 𝑅𝑛
2

𝑟=
𝑟𝜉
2

∫ ∞

𝑡=0

𝑒−𝑐1𝑛𝑟𝑡𝑡𝑑𝑡𝑑𝑟

= 𝑂 (1)𝑛2𝑒−
1
2
(ln𝑛+𝜉)

∫ 𝑅𝑛
2

𝑟=
𝑟𝜉
2

(𝑛𝑟)−2 𝑑𝑟

≤ 𝑂 (1)𝑛2𝑒−
1
2
(ln𝑛+𝜉) (𝑛𝑟𝜉)

−2 𝑅𝑛

≤ 𝑂 (1) 𝑒−
1
2
(ln𝑛+𝜉)

(√
ln𝑛

𝑛

)−1

= 𝑂 (1) (ln𝑛)−1/2

= 𝑜 (1) .

Last, we calculate the integration over 𝑧 ∈ 𝔻𝑟 (2). Since the
measure of the set

{
(𝑢, 𝑣) ∣ 𝑢, 𝑣 ∈ 𝔻, 𝑢+𝑣2 ∈ 𝔻𝑟 (2)

}
is zero,

𝑛2

2

∫ ∫
𝑢,𝑣∈𝔻

𝑢+𝑣
2 ∈𝔻𝑟(2)

𝑟𝜉≤∥𝑢−𝑣∥<𝑅𝑛

𝑒−𝑛∣𝐿𝑢𝑣∩𝔻∣𝑑𝑢𝑑𝑣 = 0.

Therefore,

𝑛2

2

∫ ∫
𝑢,𝑣∈𝔻

𝑟𝜉≤∥𝑢−𝑣∥<𝑅𝑛

𝑒−𝑛∣𝐿𝑢𝑣∩𝔻∣𝑑𝑢𝑑𝑣 ∼ 𝛽0
2

2
𝑒−𝜉.

APPENDIX B
SUPPLEMENTS TO THE PROOF OF LEMMA 8

To prove Lemma 8, we introduce several relevant events
and derive their probabilities. Let 𝐴 denote the disk centered

at the origin with area ln𝑛
4𝑛 , i.e. with radius 1

2

√
ln𝑛
𝑛𝜋 . Let 𝛽1

and 𝛽2 denote two positive constants, and 𝑅1 and 𝑅2 be given
by 𝑛𝜋𝑅2

1 = 𝛽1 ln𝑛 and 𝑛𝜋𝑅2
2 = 𝛽2 ln𝑛. Choose 𝛽1, 𝛽2 such

that max
(
1
4𝛽0

2, 𝛽2
)
< 𝛽1 < 𝛽2 < 𝛽0

2 and 𝜋
𝑐2

(
1− 𝑅1

𝑅2

)
< 1.

Here 𝑐 is given by Lemma 3. We have 1
2𝑅2 ≤ 𝑅1 ≤ 𝑅2.

Assume 𝑉 is a point set and 𝑌 ⊂ 𝑉 . Let ℎ1 (𝑌, 𝑉 )
denote a function such that ℎ1 (𝑌 = {𝑢, 𝑣} , 𝑉 ) = 1 only if
1
2 (𝑢+ 𝑣) ∈ 𝐴, 𝑅1 ≤ ∥𝑢− 𝑣∥ ≤ 𝑅2, and there is no other
node of 𝑉 in 𝐿𝑢𝑣; otherwise, ℎ1 (𝑌, 𝑉 ) = 0. Then, 𝐸1 is
the event that there exist two nodes 𝑋,𝑌 ∈ 𝒫𝑛 such that
ℎ1 ({𝑋,𝑌 } ,𝒫𝑛) = 1. In what follows, we use 𝑋1, 𝑋2, 𝑋3

and 𝑋4 to denote independent random points with uniform
distribution over 𝔻 and independent of 𝒫𝑛. Let 𝐹1 be the
event that

ℎ1 ({𝑋1, 𝑋2} , {𝑋1, 𝑋2} ∪ 𝒫𝑛) = 1,

𝐹2 be the event that

ℎ1 ({𝑋1, 𝑋2} , {𝑋1, 𝑋2, 𝑋3} ∪ 𝒫𝑛)

⋅ ℎ1 ({𝑋1, 𝑋3} , {𝑋1, 𝑋2, 𝑋3} ∪ 𝒫𝑛) = 1,

and 𝐹3 be the event that

ℎ1 ({𝑋1, 𝑋2} , {𝑋1, 𝑋2, 𝑋3, 𝑋4} ∪ 𝒫𝑛)

⋅ ℎ1 ({𝑋3, 𝑋4} , {𝑋1, 𝑋2, 𝑋3, 𝑋4} ∪ 𝒫𝑛) = 1.

We claim that

Pr [𝐸1] ≥ 𝑛2

2
Pr [𝐹1]− 𝑛3

2
Pr [𝐹2]− 𝑛4

8
Pr [𝐹3] . (7)

We shall prove this claim by the Palm theory and Boole’s
inequalities. For clarity, we use 𝑋 ′

1, 𝑋
′
2, 𝑋

′
3 and 𝑋 ′

4 to denote
elements of 𝒫𝑛. For any {𝑥1, 𝑥2, 𝑥3} ⊆ 𝑉 , let

ℎ2 ({𝑥1, 𝑥2, 𝑥3} , 𝑉 ) = ℎ1 ({𝑥1, 𝑥2} , 𝑉 ) ⋅ ℎ1 ({𝑥1, 𝑥3} , 𝑉 )

+ ℎ1 ({𝑥2, 𝑥1} , 𝑉 ) ⋅ ℎ1 ({𝑥2, 𝑥3} , 𝑉 )

+ ℎ1 ({𝑥3, 𝑥1} , 𝑉 ) ⋅ ℎ1 ({𝑥3, 𝑥2} , 𝑉 ) .

For any {𝑥1, 𝑥2, 𝑥3, 𝑥4} ⊆ 𝑉 , let

ℎ3 ({𝑥1, 𝑥2, 𝑥3, 𝑥4} , 𝑉 )

= ℎ1 ({𝑥1, 𝑥2} , 𝑉 ) ⋅ ℎ1 ({𝑥3, 𝑥4} , 𝑉 )

+ ℎ1 ({𝑥1, 𝑥3} , 𝑉 ) ⋅ ℎ1 ({𝑥2, 𝑥4} , 𝑉 )

+ ℎ1 ({𝑥1, 𝑥4} , 𝑉 ) ⋅ ℎ1 ({𝑥2, 𝑥3} , 𝑉 ) .

Note that the addition and multiplication in ℎ2 and ℎ3 are
Boolean operators. Let 𝐹 ′

1 ({𝑋 ′
1, 𝑋

′
2}) be the events that

ℎ1 ({𝑋 ′
1, 𝑋

′
2} ,𝒫𝑛) = 1, 𝐹 ′

2 ({𝑋 ′
1, 𝑋

′
2, 𝑋

′
3}) be the event that

ℎ2 ({𝑋 ′
1, 𝑋

′
2, 𝑋

′
3} ,𝒫𝑛) = 1, and 𝐹 ′

3 ({𝑋 ′
1, 𝑋

′
2, 𝑋

′
3, 𝑋

′
4}) be

the events that ℎ3 ({𝑋 ′
1, 𝑋

′
2, 𝑋

′
3, 𝑋

′
4} ,𝒫𝑛) = 1. According to
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the Palm theory (refer to Theorem 7 in [14]), we have

∑
{𝑋′

1,𝑋
′
2}⊆𝒫𝑛

Pr [𝐹 ′
1 ({𝑋 ′

1, 𝑋
′
2})]

= E

⎡
⎢⎣ ∑
{𝑋′

1,𝑋
′
2}⊆𝒫𝑛

ℎ1 ({𝑋 ′
1, 𝑋

′
2} ,𝒫𝑛)

⎤
⎥⎦

=
𝑛2

2!
E [ℎ1 ({𝑋1, 𝑋2} , {𝑋1, 𝑋2} ∪ 𝒫𝑛)]

=
𝑛2

2
Pr [𝐹1] ; (8)

∑
{𝑋′

1,𝑋
′
2,𝑋

′
3}⊆𝒫𝑛

Pr [𝐹 ′
2 ({𝑋 ′

1, 𝑋
′
2, 𝑋

′
3})]

= E

⎡
⎢⎣ ∑
{𝑋′

1,𝑋
′
2,𝑋

′
3}⊆𝒫𝑛

ℎ2 ({𝑋 ′
1, 𝑋

′
2, 𝑋

′
3} ,𝒫𝑛)

⎤
⎥⎦

=
𝑛3

3!
E [ℎ2 ({𝑋1, 𝑋2, 𝑋3} , {𝑋1, 𝑋2, 𝑋3} ∪ 𝒫𝑛)]

= 3
𝑛3

3!
Pr [𝐹2] =

𝑛3

2
Pr [𝐹2] ; (9)

and

∑
{𝑋′

1,𝑋
′
2,𝑋

′
3,𝑋

′
4}⊆𝒫𝑛

Pr [𝐹 ′
3 ({𝑋 ′

1, 𝑋
′
2, 𝑋

′
3, 𝑋

′
4})]

= E

⎡
⎢⎣ ∑
{𝑋′

1,𝑋
′
2,𝑋

′
3,𝑋

′
4}⊆𝒫𝑛

ℎ3 ({𝑋 ′
1, 𝑋

′
2, 𝑋

′
3, 𝑋

′
4} ,𝒫𝑛)

⎤
⎥⎦

=
𝑛4

4!
E [ℎ3 ({𝑋1, 𝑋2, 𝑋3, 𝑋4} , {𝑋1, 𝑋2, 𝑋3, 𝑋4} ∪ 𝒫𝑛)]

= 3
𝑛4

4!
Pr [𝐹3] =

𝑛4

8
Pr [𝐹3] . (10)

Applying Boole’s inequalities and Eq. (8), (9), and (10), we
have

Pr [𝐸1] ≥
∑

{𝑋′
1,𝑋

′
2}⊆𝒫𝑛

Pr [𝐹 ′
1 ({𝑋 ′

1, 𝑋
′
2})]

−
∑

{𝑋′
1,𝑋

′
2,𝑋

′
3}⊆𝒫𝑛

Pr [𝐹 ′
2 ({𝑋 ′

1, 𝑋
′
2, 𝑋

′
3})]

−
∑

{𝑋′
1,𝑋

′
2,𝑋

′
3,𝑋

′
4}⊆𝒫𝑛

Pr [𝐹 ′
3 ({𝑋 ′

1, 𝑋
′
2, 𝑋

′
3, 𝑋

′
4})]

=
𝑛2

2
Pr [𝐹1]− 𝑛3

2
Pr [𝐹2]− 𝑛4

8
Pr [𝐹3] .

Hence, our claim is true.
In the next, we derive the probabilities of 𝐹1, 𝐹2, and 𝐹3.

Let 𝑆1 denote the set

{
(𝑥1, 𝑥2)

∣∣∣∣12 (𝑥1 + 𝑥2) ∈ 𝐴,𝑅1 ≤ ∥𝑥1 − 𝑥2∥ ≤ 𝑅2

}
.

We have

Pr [𝐹1] =

∫ ∫
𝑆1

Pr [𝐹1 ∣ 𝑋1 = 𝑥1, 𝑋2 = 𝑥2] 𝑑𝑥1𝑑𝑥2

=

∫ ∫
𝑆1

𝑒−𝑛∣𝐿𝑥1𝑥2 ∣𝑑𝑥1𝑑𝑥2

=

∫ ∫
𝑆1

𝑒
−𝑛 1

𝛽0
2 𝜋∥𝑥1−𝑥2∥2

𝑑𝑥1𝑑𝑥2.

Let 𝑧 = 𝑥1+𝑥2

2 and 𝑟 = 1
2 ∥𝑥1 − 𝑥2∥. Then,

Pr [𝐹1] =

∫
𝑧∈𝐴

∫ 𝑅2
2

𝑟=
𝑅1
2

𝑒
− 4

𝛽0
2 𝑛𝜋𝑟

2

8𝜋𝑟𝑑𝑟𝑑𝑧

= 4

∫
𝑧∈𝐴

∫ 𝑅2
2

𝑟=
𝑅1
2

𝑒
− 4

𝛽0
2 𝑛𝜋𝑟

2

2𝜋𝑟𝑑𝑟𝑑𝑧

= 4

∫
𝑧∈𝐴

∫ 𝑅2
2

𝑟=
𝑅1
2

𝑒
− 4

𝛽0
2 𝑛𝜋𝑟

2

𝑑
(
𝜋𝑟2
)
𝑑𝑧

= −
⎛
⎝ 𝛽0

2

𝑛
𝑒
− 4

𝛽0
2 𝑛𝜋𝑟

2
∣∣∣∣
𝑅2
2

𝑟=
𝑅1
2

⎞
⎠ ∣𝐴∣

=
𝛽0

2

4𝑛2

(
𝑛
− 𝛽1

𝛽0
2 − 𝑛

− 𝛽2
𝛽0

2

)
ln𝑛. (11)

Let 𝑆2 denote the set⎧⎨
⎩(𝑥1, 𝑥2, 𝑥3)

∣∣∣∣∣∣
𝑥1+𝑥2

2 , 𝑥1+𝑥3

2 ∈ 𝐴;𝑥1, 𝑥2 /∈ 𝐿𝑥1𝑥3 ;
𝑥1, 𝑥3 /∈ 𝐿𝑥1𝑥2 ;𝑅1 ≤ ∥𝑥1 − 𝑥2∥ ≤ 𝑅2;

𝑅1 ≤ ∥𝑥1 − 𝑥3∥ ≤ 𝑅2

⎫⎬
⎭ .

Applying Lemma 3, if (𝑥1, 𝑥2, 𝑥3) ∈ 𝑆2, we have

Pr [𝐹2 ∣𝑋1 = 𝑥1, 𝑋2 = 𝑥2, 𝑋3 = 𝑥3 ] ≤ 𝑒−𝑛∣𝐿𝑥1𝑥2∪𝐿𝑥1𝑥3 ∣

≤ 𝑒
−𝑛

(
1
𝛽0
𝜋∥𝑥1−𝑥2∥2+𝑐𝑅2∥ 𝑥1+𝑥2

2 − 𝑥1+𝑥3
2 ∥).

Therefore,

Pr [𝐹2]

=

∫ ∫ ∫
𝑆2

Pr [𝐹2 ∣𝑋1 = 𝑥1, 𝑋2 = 𝑥2, 𝑋3 = 𝑥3 ]

⋅ 𝑑𝑥1𝑑𝑥2𝑑𝑥3

≤
∫ ∫ ∫

𝑆2

𝑒
−𝑛

(
1

𝛽0
2 𝜋∥𝑥1−𝑥2∥2+𝑐𝑅2∥ 𝑥1+𝑥2

2 − 𝑥1+𝑥3
2 ∥)

⋅ 𝑑𝑥1𝑑𝑥2𝑑𝑥3.

Let 𝑧1 = 𝑥1+𝑥2

2 , 𝑟1 = 1
2 ∥𝑥1 − 𝑥2∥, 𝑧2 = 𝑥1+𝑥3

2 , and 𝜌 =
∥𝑧1 − 𝑧2∥. Then,

Pr [𝐹2]

≤ 16

∫
𝑧1∈𝐴

∫ 𝑅2
2

𝑟1=
𝑅1
2

∫
𝑧2∈𝐴

𝑒
−𝑛

(
4

𝛽0
2 𝜋𝑟

2
1+𝑐𝑅2∥𝑧1−𝑧2∥

)
2𝜋𝑟1

⋅ 𝑑𝑟1𝑑𝑧1𝑑𝑧2

≤ 16

∫
𝑧1∈𝐴

∫ 𝑅2
2

𝑟1=
𝑅1
2

𝑒
− 4

𝛽0
2 𝑛𝜋𝑟

2
12𝜋𝑟1𝑑𝑟1𝑑𝑧1

⋅
∫
𝑧2∈𝐴

𝑒−𝑐𝑛𝑅2∥𝑧1−𝑧2∥𝑑𝑧2

≤ 16

∫
𝑧1∈𝐴

∫ 𝑅2
2

𝑟1=
𝑅1
2

𝑒
− 4

𝛽0
2 𝑛𝜋𝑟

2
1𝑑
(
𝜋𝑟21
)
𝑑𝑧1
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⋅
∫ ∞

𝜌=0

𝑒−𝑐𝑛𝑅2𝜌2𝜋𝜌𝑑𝜌

= −
⎛
⎝ 4𝛽0

2

𝑛
𝑒
− 4

𝛽0
2 𝑛𝜋𝑟

2
∣∣∣∣
𝑅2
2

𝑟=
𝑅1
2

⎞
⎠ ∣𝐴∣ 2𝜋

(𝑐𝑛𝑅2)
2

=
2𝜋𝛽0

2

𝑐2 (𝑛𝑅2
2)𝑛

3

(
𝑛
− 𝛽1

𝛽0
2 − 𝑛

− 𝛽2
𝛽0

2

)
ln𝑛. (12)

Let 𝑆3 denote the set⎧⎨
⎩(𝑥1, 𝑥2, 𝑥3, 𝑥4)

∣∣∣∣∣∣∣∣

𝑥1+𝑥2

2 , 𝑥3+𝑥4

2 ∈ 𝐴;
𝑥1, 𝑥2 /∈ 𝐿𝑥3𝑥4 ;𝑥3, 𝑥4 /∈ 𝐿𝑥1𝑥2 ;

𝑅1 ≤ ∥𝑥1 − 𝑥2∥ ≤ 𝑅2;
𝑅1 ≤ ∥𝑥3 − 𝑥4∥ ≤ 𝑅2

⎫⎬
⎭ .

Applying Lemma 3, if (𝑥1, 𝑥2, 𝑥3, 𝑥4) ∈ 𝑆3, we have

Pr [𝐹3 ∣𝑋1 = 𝑥1, 𝑋2 = 𝑥2, 𝑋3 = 𝑥3, 𝑋4 = 𝑥4 ]

≤ 𝑒−𝑛∣𝐿𝑥1𝑥2∪𝐿𝑥3𝑥4 ∣

≤ 𝑒
−𝑛

(
1

𝛽0
2 𝜋∥𝑥1−𝑥2∥2+𝑐𝑅2∥𝑥1+𝑥2

2 −𝑥3+𝑥4
2 ∥)

.

Therefore,

Pr [𝐹3]

=

∫ ∫ ∫ ∫
𝑆3

Pr

[
𝐹3

∣∣∣∣ 𝑋1 = 𝑥1, 𝑋2 = 𝑥2,
𝑋3 = 𝑥3, 𝑋4 = 𝑥4

]
⋅ 𝑑𝑥1𝑑𝑥2𝑑𝑥3𝑑𝑥4

≤
∫ ∫ ∫ ∫

𝑆3

𝑒
−𝑛

(
1

𝛽0
2 𝜋∥𝑥1−𝑥2∥2+𝑐𝑅2∥ 𝑥1+𝑥2

2 − 𝑥3+𝑥4
2 ∥)

⋅ 𝑑𝑥1𝑑𝑥2𝑑𝑥3𝑑𝑥4.

Let 𝑧1 = 𝑥1+𝑥2

2 , 𝑟1 = 1
2 ∥𝑥1 − 𝑥2∥, 𝑧2 = 𝑥3+𝑥4

2 , 𝑟2 =
1
2 ∥𝑥3 − 𝑥4∥, and 𝜌 = ∥𝑧1 − 𝑧2∥. Then,

Pr [𝐹3]

≤
∫
𝑧1∈𝐴

∫ 𝑅2
2

𝑟1=
𝑅1
2

∫
𝑧2∈𝐴

∫ 𝑅2
2

𝑟2=
𝑅1
2

𝑒
−𝑛

(
4

𝛽0
2 𝜋𝑟

2
1+𝑐𝑅2∥𝑧1−𝑧2∥

)

⋅ (8𝜋𝑟1𝑑𝑟1𝑑𝑧1) (8𝜋𝑟2𝑑𝑟2𝑑𝑧2)

≤
(
4

∫
𝑧1∈𝐴

∫ 𝑅2
2

𝑟1=
𝑅1
2

𝑒
− 4

𝛽0
2 𝑛𝜋𝑟

2
12𝜋𝑑𝑟1𝑑𝑧1

)

⋅
(
8𝜋

𝑅2

2

(
𝑅2

2
− 𝑅1

2

)∫
𝑧2∈𝐴

𝑒−𝑐𝑛𝑅2∥𝑧1−𝑧2∥𝑑𝑧2

)

≤
(
4

∫
𝑧1∈𝐴

∫ 𝑅2
2

𝑟1=
𝑅1
2

𝑒
− 4

𝛽0
2 𝑛𝜋𝑟

2
1𝑑
(
𝜋𝑟21
)
𝑑𝑧1

)

⋅
(
8𝜋

𝑅2

2

(
𝑅2

2
− 𝑅1

2

)∫ ∞

𝜌=0

𝑒−𝑐𝑛𝑅2𝜌2𝜋𝜌𝑑𝜌

)

=

(
𝛽0

2 ln𝑛

4𝑛2

(
𝑛
− 𝛽1

𝛽0
2 − 𝑛

− 𝛽2
𝛽0

2

))

⋅
(

4𝜋2

(𝑐𝑛𝑅2)
2𝑅2 (𝑅2 −𝑅1)

)

=
𝜋2𝛽0

2

𝑐2𝑛4

(
1− 𝑅1

𝑅2

)(
𝑛
− 𝛽1

𝛽0
2 − 𝑛

− 𝛽2
𝛽0

2

)
ln𝑛. (13)

Put Eq. (7), (11), (12) and (13) together. We have

Pr [𝐸1]

≥
(
𝛽0

2

8
− 𝜋𝛽0

2

𝑐2 (𝑛𝑅2
2)

− 𝜋2𝛽0
2

8𝑐2

(
1− 𝑅1

𝑅2

))

⋅
(
𝑛
− 𝛽1

𝛽0
2 − 𝑛

− 𝛽2
𝛽0

2

)
ln𝑛

∼ 𝛽0
2

8

(
1− 𝜋2

𝑐2

(
1− 𝑅1

𝑅2

))(
𝑛
− 𝛽1

𝛽0
2 − 𝑛

− 𝛽2
𝛽0

2

)
ln𝑛.

Since 𝜋2

𝑐2

(
1− 𝑅1

𝑅2

)
< 1 and 𝐼𝑛 = Ω

(
𝑛

ln𝑛

)
, we have

Pr [𝐸1] = Ω

((
𝑛
− 𝛽1

𝛽0
2 − 𝑛

− 𝛽2
𝛽0

2

)
ln𝑛

)
,

and

𝐼𝑛 Pr [𝐸1] = Ω

(
𝑛
1− 𝛽1

𝛽0
2

)
→ ∞. (14)
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