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Chapter 3 Research Methodology 

3.1 Fundamentals of Catastrophe Theory 

Catastrophe theory (Thom, 1975) is a mathematical theory that describes the 
relation between two sets of variables, control variables and behavioural variables 
(state variables), is so-called gradient system. In the gradient system, with fixed value 
of the control variables, the system always seeks an equilibrium state which means 
that the value of the behavioural variable changes until the minimum or maximum of 
a certain quantity is obtained. Given ),.....,(  variablestate 21 nxxxX =  
and ),.....,(  variablecontrol 21 ncccC = , the c)V(x,function  potential  and the 
equilibrium surface can be defined as 0Vx =∇ . Figure 3.1 shows the relationship 
between state variable and control variable. 

 

Figure 3.1 Relationships between State Variables and Control Variables 

Tom has demonstrated through his classification theorem that all discontinuous 
phenomena that can be expressed in terms of four or fewer independent variables 
(also called control dimensions) which exit in many branches of science can be 
modeled accurately using one of only seven elementary catastrophes; Table 3.1 gives 
prototypical examples for equations showing each type of catastrophe. More 
specifically, for any system with fewer than five control factors and fewer than three 
behavior axes, these are the only seven catastrophes possible. Only the cusp 
catastrophe model is considered in the thesis, so the cusp model will be defined in 
greater detail. 
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Table 3.1 Rene Thom’s Seven Elementary Catastrophes 

 control dimension behavior dimension Potential function 

Fold 1 1 xzz −3

3
1  

Cusp 2 1 24

2
1

4
1 yzxzz −−  

Swallowtail 3 1 325

2
1

2
1

5
1 vzyzxzz −−−  

Butterfly 4 1 4326

4
1

3
1

2
1

6
1 uzvzyzxzz −−−−

Hyperbolic 3 2 vzwywxzwz ++++ 33  

Elliptic 3 2 2223 vwvzywxzzwz ++++−  

Parabolic 4 2 2242 uwvzywxzwwz +++++

3.2 Cusp Catastrophe Model 

The catastrophe structure most commonly has been applied the cusp model 
(Gresov, Haveman, & Oliva 1993). Figure 3.2 shows the basic form of the 
deterministic cusp model generated. Each catastrophe model can be formalized by 
potential or gradient structures, a potential function F(x, c) is a function of both the 
system state x and the control parameter(s) c. The Cusp Catastrophe Model (CCM; 
see Thom, 1975) consists of one behavior variable and only two control variables. The 
potential is represented by Eq. (3.1), the equilibria of Eq. (3.1) is three-dimensional. 

vxuxxxvuF ++−= 24

2
1

4
1),,(  (3.1) 

Where the state variable x is controllability, and u and v are environmental 
control parameters. As a stable equilibrium state x for this potential gives relative 
value x of a function F (u, v, x), a set of point (u, v, x) is defined as Eq. (3.2), 
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Where MF is said to be cusp catastrophe manifolded. The values of x in 
correspondence to which attains a local maximum or minimum satisfies the condition 
as Eq. (3.3), 
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03 2 =+ ux  (3.3) 

Figure 3.2 A Cusp Catastrophe Model and its Five Different Flags 

Eliminating x from Eq. (3.2) and Eq. (3.3), the bifurcation set is express by Eq. 
(3.4). In Zeeman’s terminology u is a splitting factor and v is normal factor. 

23 274 vu =  (3.4) 

A switch in topology takes place at the values of u and v satisfying Eq. (3.4), 
which constitute the catastrophe set. In the equation Eq. (3.3) x is the state variable, 
and u, v are control parameters. The parameter u determines whether the system has 
one or can have two stable equilibria. When u > 0 only one stable equilibrium can exit 
whatever the value of v. When u < 0 it depends upon the value of v whether the 
system has a single low level of stable equilibrium, or a low level and a high level 
equilibria, or a single high level of equilibrium. 

According to the different variable sets, three different cases can be defined. 
Case 1: There is one stable equilibrium point; Case 2: There are two stable and one 
unstable equilibrium point; or Case 3: There is one stable equilibrium point, and one 
at which an instantaneous jump in the state variable occurrence. 

Changes in the control or independent variables (v-right/left movement, and 
u-back/front movement) cause the changes in the behavior or dependent variable 
(x-vertical movement). If u is low, smooth changes in v occur in proportion to change 
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in x as shown by examining the travel of point A and B in Figure When u is high (past 
the singularity) changes in v producing relatively small changes in x until a threshold 
is reached when there is a sudden discontinuous shift in x. This is depicted by the path 
from point C to D in Fig3.2. Note, that a reversal in v back to the point of the shift in x, 
will not cause x to return back to its original position, since v will have to move well 
past to cause x to shift back. This is shown as the movement from point C to E. 

 The various moves on the surface are characterized by five qualities that Thom 
(1975) described as: bimodality, divergence, catastrophe, hysteresis, and 
inaccessibility for more details of these catastrophe flags are discussed as the 
following: 

1. Bimodality 

Over some parts of phenomenon, the behavior is ambiguous; that is, bimodality 
indicates that either two stables or distinctly different behaviors can be occurred. 

2. Divergence 

The divergence indicates small differences in the starting position can result in 
vastly different and opposite ending positions. In short, small initial differences can 
bring about totally different behavior. 

3. Catastrophe (sudden transitions) 

If changes in the normal and splitting factor produce a path which crosses the 
bifurcation set, an abrupt, catastrophe changes, in the value of the dependent variable 
will be occurred. At that point, an abrupt transition is made from the lower to the 
upper surface. 

4. Hysteresis 

After the sudden transitions, although the path is returned, the hysteresis 
phenomena show that the abrupt change from one mode of behavior to another takes 
place at different values of the control factors depending on the direction of change. 

5. Inaccessibility 

Over part of phenomenon, there is a middle region between the two types of 
behavior that are inaccessible.1 

                                                 
1  For further discussion of catastrophe theory, the following websites are proposed readable 

presentations: 
http://www.sbm.temple.edu/~oliva/cat-theory.htm 
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3.3 Approaches for Estimating Catastrophe Models 

Estimation of chaos models, in general, and catastrophe models, in particular, is 
difficult because of nonlinear dynamic characteristics. Several cusp-fitting procedures 
have been proposed, but none is completely satisfactory. On the following literature, 
there are three techniques for fitting the cusp catastrophe models. These methods are 
GEMCAT of Oliva et al. (1987), the maximum likelihood method of Cobb (1978) and 
the regression method of Guastello (1982). GEMCAT and the method of Cobb for 
instance can be applied to cross sectional data; the method of Guastello can only be 
applied to time series of data. Figure 3.3 shows that the major researchers on 
catastrophe theory and its estimating approach. 

 

Figure 3.3 Major Researchers on Catastrophe Theory and its Estimating Approach 

A limitation of Cobb’s and Guastello’s methods does not allow researchers to 
specify models in terms of specific combinations of multiple indicator variables. 
Rather the technique finding catastrophe if it exists and identifies which independent 
variables are associated with the control factor and which independent variables are 
associated with the splitting factor. Cleary, this is a problem when the researchers are 
trying to develop a confirmatory that estimates a specific catastrophe model. 
Additionally, the dependent variable is required to be univariate. Consequently, its 
usefulness is limited when the catastrophe model uses or requires a multivariate 
dependent construct. 

                                                                                                                                            
http://www.marquette.edu/psyc/guastell.html 

http://www.aetheling.com/models/cusp/Intro.htm 
http://perso.wanadoo.fr/l.d.v.dujardin/ct/eng_index.html 
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GEMCAT approaches have been successfully applied in a number of different 
organizational research contexts (e.g. Oliva, 1992; Gresov et al., 1993; Kalph, 
Kauffman and Oliva, 1994). Next, the GEMCAT approach is described in some 
details. 

Oliva et al.’s (1987) GEMCAT approach allows all variables in a catastrophe to 
be latent composites. To accomplish this, the variable X, Y, and Z in the canonical 
cusp is presented by Equation (3.5), 

xzyzzzyxf −−= 24

2
1

4
1),,(  (3.5) 

Let: 

i = 1… I dependent variables; 

j = 1…J “splitting” independent variables; 

k = 1…K “normal” independent vatiables; 

t = 1…T observations; 

Zit = the value of the i-th dependent variable on observation t; 

Yit = the value of the j-th splitting independent variable on observation t; 

Xkt = the value of the k-th normal independent variable on observation t; 

Now, define three “latent” unobservable variables: 

iti
I
it ZZ α∑ == 1

*  (3.6) 

jtj
J
jt YY β∑ == 1

*  (3.7) 

ktk
K
kt XX γ∑ == 1

*  (3.8) 

where: 

iα  = the estimated coefficient for the i-th dependent variable in itZZ = ; 

jβ  = the estimated coefficient for the j-th splitting independent variable in 
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jtYY =  

kγ  = the estimated coefficient for the k-th normal independent variable in 

ktXX =  

iti
I
it ZZ αα ∑ === 1

* Z  = the value of the latent performance variable on 

observation t, where iαα =  

jtj
J
jt YYY ββ ∑ === 1

*  = the value of the latent splitting variable on observation t, 

where jββ =  

ktk
K
kt XXX γγ ∑ === 1

*  = the value of the latent normal variable on observation 

t, where kγγ =  

Thus, the equation (3.5) can be redefined as these three “latent” unobservable 
constructs which can thus accommodate univariate or multivariate measurements for 
each type of variable. This allows the cusp catastrophe model to be rewritten as 
shown in Eq. (3.9): 

24 ********

2
1

4
1),,( tttttttt ZYZXZZYXf −−=  (3.9) 

In these terms, the estimation problem, given ktXX = , jtYY =  and itZZ = , and 

its derivative set equal to zero can be stated as: 
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*
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 (3.10) 

From equation Eq. (3.10) the estimating goal is to minimize Eq. (3.11): 

[ ]2****
1

2
,,

3

Min tttt
T
ttkji ZYXZe −−==Φ ∑ =γβα  (3.11) 
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where the et  = error. That is, for a given empirical data on various specified 
dependent, splitting, and normal variables, one wishes to estimate the impact 
coefficients that define their respective latent variables, which make Φ as close to zero 
as possible. Minimizing Φ is equivalent to find the best fitting cusp catastrophe 
surface to the empirical data. 

More recently, Lange et al. (2000) developed an improved version of the 
algorithm called GEMCATⅡ (the GEMCATⅡ software is developed in Delphi 
V3.0), which provides greater speed, efficiency, utility and flexibility in terms of 
analysis and testing. GEMCATⅡ uses a combination of the Downhill Simplex 
method and Powell’s Conjugate Gradient approach. GEMCAT estimates the various 
indicator weights by minimizing the total squared residual (Φ) across observations; 
the default procedure is to run the Downhill Simplex. 

3.4 Conclusion Remarks 

Interest in developing more parsimonious approaches to the modeling of 
complex behavior has been stimulated by catastrophe theory (Thom, 1975; Zeeman, 
1976). These approaches have become intriguing to researchers in behaviorally based 
disciplines such as economics (Zeeman, 1977; Lange et al., 2001), (Byrne, 2001), and 
management (Oliva, et al., 1988; Guastello, 1988). The models’ strengths can capture 
complex behavior by using significantly fewer nonlinear equations than the number of 
linear equations needs to describe the same phenomena. 

Catastrophe theory is a mathematical theory that describes the relation between 
two sets of variables, such as control variables and behavioural variables. The first 
important step in experimental research concerned with catastrophe systems is to get 
some strong indications that the system under survey indeed shows catastrophic 
transitional behavior (Zeeman, 1976; Glimore, 1981). When one has obtained strong 
indications by the use of the flags mentioned in the previous paragraph it seems 
reasonable to try determining the appropriate catastrophe model. Therefore, the 
second step in experimental research, catastrophe modeling, is concerned with fitting 
catastrophe models to experimental observations. 

Currently, three different approaches are considered the most appropriate for 
estimating catastrophe models. The first is by Cobb (1978), the second is by Guastelo 
(1982) and the third is GEMCAT, developed by Oliva et al, (1987). GEMCAT, in 
contrast, is a confirmatory multivariate analytical procedure. Theses three method are 
different, having advantage and disadvantages. Cobb’s procedure is classified as an 
exploratory statistical method in which researchers cannot indicate a priori which 
measured variables relate to which independent variable (Oliva et al., 1992). 
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To deal with the Cobb’s and Guastello’s approach, researchers using their 
estimating techniques have typically averaged or otherwise scaled the measures to get 
a single dependent measure. Unfortunately, such averaging techniques can cause the 
loss of value information when a true catastrophe models is present as demonstrated 
in Oliva et al. (1987). More recently, Alexander, Herbert, Deshon and Hanges (1992) 
noted a problem with Guastello’s difference regression approach, arguing that this 
technique will yield catastrophe results in the face of linear data. In short, the 
procedure can indicate that catastrophe data are present when they are not. Alexander 
and colleagues went on to suggest that researchers interested in estimating catastrophe 
model should use either Cobb’s (1978) technique or the GEMCAT developed by 
Oliva et al. (1987). The choice of technique depends on the nature of the research 
context. For exploratory, situations in which theory construction is the focus, or when 
the existence of catastrophe data is the issue and univariate dependent measures are 
sufficient, the Cobb’s approach is best; alternately, GEMCATE is more appropriate for 
theory-testing or confirmatory contexts, and those requiring multivariate indicators. 

Alexander et al. (1992) comparison of Cobb (1981) and Guastello (1995) 
techniques versus the GEMCAT approach note that for exploratory situations in 
which theory construction is the focus, or when the existence of catastrophe data is 
the issue and univariate dependent measures are sufficient, Cobb related approaches 
are the best choice. However, Alexander et al. (1992) argue the GEMCAT is the best 
choice for theory testing or confirmatory contexts, and those requiring multivariate 
indicators in the dependent variables. Given the use of multivariate dependent 
construct and confirmatory mature of this work, the GEMCATII procedure is the 
appropriate estimation technique to be used. According to literature review, the 
analysis framework of catastrophe model is shown as the Figure 3.4. 
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Figure 3.4 Analysis Framework of Catastrophe Model 


