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摘   要 

 

研究動態交通（Traffic dynamics）的時間狀態特性（Temporal features）與預測短

期交通的變化，對尋求解決各項交通問題以及改善先進交通管理系統（Advanced 
traffic management systems, ATMS）等相關領域效能，均扮演相當重要的關鍵角

色。然而傳統一維空間時間序列分析方法，對交通動態隨時間狀態演進的特徵，

無法充分掌握其訊息；復以過去許多研究著手進行預測之前，未能審慎考量交通

特性暨影響預測準確性的因素，均顯示出過去研究不足之處急待解決。 

 

綜觀過去對交通時間序列的分析，不外乎著重於線性型態的研究，當然，也有為

數不少相當有貢獻的研究係著重於探討車輛軌跡在時間-空間上的交互作用；然

而這些研究的資料仍僅限於使用模擬模型所產生，其實驗結果缺乏實證交通資料

的驗證。因此，本研究利用 Takens 法則，以多維空間方法進行分析，佐以最大里

亞帕諾夫指數（the largest Lyapunov exponent）以及吸引子維度（Correlation 
dimension），在多維空間中仔細觀察交通流量、速率及佔有率，隨時間演進之軌

跡，並藉此發展出一套檢驗動態交通在時間狀態特性的準則。 

 

此外，在本研究中，採用輻狀基底函數類神經網路（Radial Basis Function Neural 
Network, RBFNN）以及即時回饋學習演算法（Real-time recurrent learning algorithm, 
RTRL），探討在不同量測尺度、時間稽延、空間維度以及不同時段的情況下，對

短期動態交通預測的影響程度；同時在不同預測方法中，利用一階自我迴歸隨機

時間序列（First-order autoregressive stochastic time series）與確定性一階微分方程

式（Deterministic first-order differential-delay equation），成對比較了[線性-即時回

饋學習演算法]與[簡單非線性法-即時回饋學習演算法]在預測能力方面的差異

特性。 

 

最後，經由中山高速公路實測資料，進行時間狀態特性的實證研究與短期交通預

測的敏感度分析，其結果顯示：隨著量測尺度、歷史資料、觀察時段不同，交通

流量、速率及佔有率在多維空間中呈現不同非線性時間形態；而藉由流量-速率-

佔有率，三者成對觀察中發現透過時間順序的遞進，多維空間不啻提供更多有效

訊息。另外，使用輻狀基底函數類神經網路以及即時回饋學習演算法在短期交通
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預測方面，具有令人滿意的結果；但是預測準確度也同時會受到量測尺度、時間

稽延以及不同時段的影響。本研究的實證成果可做為未來發展交通管理的架構參

考，特別是在動態的交通控制方面。 

 

關鍵詞：時間狀態特性、重構狀態空間、時間順序、輻狀基底函數類神經網路、

即時回饋學習演算法。 
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Abstract 
 
The characterization of the dynamics of traffic states remains fundamental to seeking 
for the solutions of diverse traffic problems while short-term prediction of dynamic 
traffic states remains critical in the field of advanced traffic management systems 
(ATMS) and related areas. However, the scarcity of information provided by 
conventional one-dimensional traffic time-series data and the hasty prediction without 
deliberately taking into account the characteristics of traffic dynamics as well as 
affected factors may have shed light on the lack which need to be solved urgently. 
 
Conventional analysis of traffic time series may play a part in the investigation of 
traffic patterns characterized by linear statistics. A certain number of studies working 
at the vehicle trajectories or their interactions within a time-space domain have 
significant contributions. Nevertheless, most of the results simulated by formulated 
models are not easy to be calibrated by real data. To gain more insights in traffic 
dynamics in the temporal domain, this paper explored traffic patterns in 
higher-dimensional state spaces, where we attempted to map the one-dimensional 
traffic series into appropriate multidimensional space by Takens’ algorithm. After such 
a state space reconstruction, we then made use of the largest Lyapunov exponent to 
depict the rate of expansion or contraction of traffic state trajectories in the 
reconstructed spaces. The correlation dimension was further estimated to examine if 
the traffic state trajectories exhibited chaotic-like or stochastic-like motions. In 
accordance with the above procedures, a novel filtering approach was proposed to 
inspect the characteristics of real-world temporal traffic flow dynamics. 
 
In addition, a radial basis function neural network (RBFNN) and a real-time recurrent 
learning algorithm (RTRL) were proposed to learn about whether or not the dynamics 
of short-term traffic states characterized in different time intervals, collected in diverse 
time lags, dimensions and times of day have significant influence on the performance 
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of the proposed model relative to the published forecasting methods. Furthermore, we 
also dabble in comparing pair predictability of linear method-RTRL algorithms and 
simple nonlinear method-RTRL algorithms individually using a first-order 
autoregressive stochastic time series AR(1) and a deterministic first-order 
differential-delay equation. 
 

Finally, an empirical study and a sensitivity analysis were conducted. Wherein, flow, 
speed, and occupancy time-series data as well as the speed-flow, speed-occupancy, and 
flow-occupancy paired data collected from dual-loop detectors on a freeway of Taiwan 
was processed in the empirical study and the same traffic data was fulfilled in the 
sensitivity analysis with various time intervals, time lags and times of day. The 
numerical results revealed that different nonlinear traffic patterns could emerge 
depending on the observed time-scale, history data and time-of-day. In addition, with 
consideration of sequential order and spatiotemporal features, more information about 
traffic dynamical evolution was extracted. On the other hand, the performances of 
RBFNN and RTRL algorithms in predicting short-term traffic dynamics are 
satisfactorily accepted. Furthermore, it is found that the dynamics of short-term traffic 
states characterized in different time intervals, collected in diverse time lags and times 
of day may have significant effects on the prediction accuracy of the proposed 
algorithms. The above findings may support that the proposed methods in this study 
can be used to develop traffic management schemes which are practically applicable in 
dynamic control. 
 
Keywords: temporal traffic pattern, reconstructed state spaces, sequential order, radial 

basis function neural network, real-time recurrent learning algorithm 
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CHAPTER 1 INTRODUCTION 

 
 
1.1 Background and Motivations 
 
Traffic patterns are those characteristics of vehicle groups passing a point or short 
segment during a specified span or traveling over longer sections of highway. Various 
applications of cooperative driving or any kind of driver information and assistance 
systems are strongly dependent on actual and predicted traffic features. In terms of 
temporal features, traffic time-series data measured in different time scales or intervals 
serve different purposes. In planning, for instance, one might wish to estimate the 
annual traffic volume over the planned horizon for proposed infrastructure alternatives. 
The annual volume is then used for estimating the expected saving in travel time for 
economic feasibility studies. For design purposes, however, hourly traffic volume is 
often required to determine the facilities’ capacity. Thus, accurately predicting the 
hourly flow variations would become essential to avoid an over- or under-design of 
new facilities. For operational purposes, much shorter-term traffic information, such as 
minute-flow, is essential for real-time traffic management and control. In addition to 
flow, other traffic data in temporal perspectives such as occupancy and speed are also 
crucial for various practical purposes. Further, traffic occurs in space and time, i.e., 
spatiotemporal features. If we explore the spatiotemporal traffic patterns, more 
insightful information may provide us an understanding of freeway traffic that can be 
used for effective traffic management, traffic control, organization and other 
engineering applications, which should increase freeway capacity, improve traffic 
safety and result in high-quality mobility. In particular, surveying the congested traffic 
patterns could give us necessary information for efficient collective management 
strategies, including such well-know methods as ramp metering and traffic assignment. 
Varaiya (2005) pointed out that effective management on highway congestion through 
investigation of traffic patterns can significantly reduce congestion. As such, 
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disclosure of the traffic dynamical patterns deserves in-depth exploration. 
 
Traffic time series represent the evolution or temporal variation of any traffic variables 
measured in a sequential (chronological) order. The diverse characteristics of traffic 
time series, from random series, short-term correlation, non-stationary series to 
seasonal fluctuations, can be depicted according to various observing time intervals. 
Conventional analysis of time series may shed light on investigating into the features 
of time-series data such as trend, seasonality, outliers and discontinuities against time. 
Such a measure may merely apply to describing general linear phenomena such as 
mathematical moments mean, variance, auto-covariance and autocorrelation rather 
than the whole spectra of nonlinear dynamic phenomena, which exhibit not only trend 
but also the resulting anomalous fluctuation. The intrinsic information behind traffic 
fluctuation, which is an essence for many advanced traffic control and management 
practices in intelligent transportation systems (ITS), may need an advanced method to 
exploit. Therefore, researching the features of traffic time series via an innovative 
technique deserves in-depth exploration, too. 
 
On the other hand, accurately characterizing and predicting the traffic dynamics, 
especially measured in short time intervals, has become a prerequisite in the 
development of advanced traffic management systems (ATMS). Here, traffic dynamics 
(or termed as traffic time series) refer to are regarded as temporal evolution of such 
traffic states as flow, speed and occupancy, measured in a sequential (chronological) 
order with identical time intervals. Numerous adaptive intelligent signal control 
mechanisms, for instance, are established on the basis of instantaneous or predicted 
5-minute or shorter flow data. Smart incident detection may require 1-minute or 
shorter traffic states as inputs. Lam et al. (2002) further pointed out that the short-term 
traffic forecasting results can be used for validation of the regional and territory-wide 
transport models required in various transport studies, such as the freight transport 
study and parking demand study, and the development of traffic flow simulator to 
provide the off-line short-term travel time and traffic flow forecasting database. Due to 
the complex nature of traffic time series with considerable fluctuations and noises, 
accurately capturing and predicting short-term traffic dynamics is more challenging 
than the long-term (e.g., hourly or daily traffic) dynamics wherein conspicuous 
fluctuations have essentially been smoothed out. In view of traffic dynamics measured 
in different ways would provide more informative insights into its complex nature, 
developing the prediction models to better elucidate its evolution, measured in 
different time intervals, periods, lags, and times of day, deserves in-depth exploration. 
And this also motivates our study. 
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With regard to the fact that how to apply the results of characterizing and predicting 
the traffic dynamics to help developing methods for real time traffic control is an 
extensive issue which furthers more research in the development of advanced traffic 
management systems (ATMS). For instance, recurrent traffic congestion has been 
recognized as a critical issue to solve in the development of advanced freeway traffic 
dynamics systems. Generally speaking, recurrent traffic congestion often happens 
during peak hours and affects most of commuters day after day. If we can reduce the 
top fluctuation of flows, we may postpone the peak hour, which mainly bring about 
traffic block to eliminate most of delay by some control rules. However, it had been 
inefficient to stop on-ramp vehicles entering freeway whenever one fond the flows 
increase drastically in the twinkling of an eye. So, it is necessary to develop a forward 
strategy to control fluctuation of flows. Otherwise the suddenly high flow will 
influence obviously the next step flow. Therefore, we would like to learn whether or 
not the critical problems of recurrent congestion and non-recurrent congestion daily 
occur could be alleviated or avoided via the characterizing and predicting of traffic 
dynamics. The significance is the fourth reason to trigger our study. 
 
1.2 Objectives and Values 
 
In view of the scarcity of information provided by one-dimensional traffic time series, 
and the lack of considering sequential order in fundamental diagrams proposed by 
traffic stream models, the main objective of this study was to characterize evolutional 
state trajectories in appropriately reconstructed state spaces and chronological 
relationship for paired- and three- traffic variables in multiple dimensions at an 
isolated station as well as between two nearby stations. From successive days with 
coarse scales to within a day using subtle observation (20-second, 1-minute, etc.), then 
to several days with different time intervals, we have attempted to gain in-depth 
insights into the evolution of traffic time series. By investigating the temporal patterns 
of traffic dynamics in reconstructed state spaces, we can understand the characteristics 
of traffic series and further develop effective managements, such as incident detection, 
extended delay prevention and ramp metering other than those known in 
one-dimensional space. Furthermore, a close look at traffic time series not only 
provides useful information for application in ITS, but improves upon the shortage of 
linear models for conventional stochastic processes. Aside from the above temporal 
patterns, we believe that this analysis may have a sense as the first step for 
understanding of complex behavior of spatiotemporal features of congested traffic 
patterns. 
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With considering the above features of traffic dynamics exhibited in multidimensional 
state spaces and predictabilities between various techniques suiting different types of 
traffic series, the second purpose of this study is to propose a radial basis function 
neural network-based (RBFNN) and a real-time recurrent learning-based (RTRL) 
algorithm to know whether or not the dynamics of short-term traffic states 
characterized in different time intervals, collected in diverse time lags and times of day 
have significant influence on the performance of the proposed model relative to the 
published forecasting methods. In addition to assessing the relative performance of the 
proposed RBFNN and RTRL algorithms, we further compare the pair predictability of 
linear method versus RTRL algorithms and simple nonlinear method versus RTRL 
algorithms individually using a first order autoregressive time series AR(1) and a 
deterministic function to elucidate the significance that the characteristics of traffic 
dynamics affect the accuracy of prediction. After a well-trained network is built and 
various techniques are compared, the accurate understanding for traffic dynamics and 
reliable prediction would be anticipated. 
 
1.3 Benefits and Significance 
 
In this study, we adopt three traffic variables, flow, speed and percent occupancy, to 
explore the temporal features of traffic dynamics. To see the benefits of inspecting 
features of a time series, we set an example to elucidate the conceptual difference 
between numeric data and features. For instance, one normally does not have a distinct 
awareness that traffic is light or heavy when one is told that the traffic volume equals 
20 vehicles per lane with a 1-minute time interval. At most, one perhaps can ask when 
the traffic volume occurs during the day to help discriminate between light and heavy 
traffic. Nevertheless, as depicted in Figure 1-1, one easily gets confused, since the 
specific volume, 20 vehicles per minute, happens at several time points during the day. 
Therefore, the information provided by traffic data is extremely limited, in particular 
when figures are derived from one variable.  
 
From Figure 1-2 (a), it can be seen that heavy traffic seemingly occurs, because traffic 
speed drops off and occupancy increases, at two time points in the day, around 10:00 
am and 14:00 pm, when the other two curves of variables, speed and occupancy, are 
added in Figure 1-1. Meanwhile, the corresponding traffic dynamics with volumes 
equal to 52 vehicles per 3 minutes and 154 vehicles per 9 minutes are displayed in 
Figures 1-2 (b) and (c) respectively. For the larger intervals, it seems that the 
associated information is getting less. However, no matter what time scale we employ, 
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the useful information provided by traffic data is incomplete and even misunderstood 
compared with that provided by features shown in Figure 1-3. From Figure 1-3, it can 
be clearly seen that traffic series measured with different time scales reveal similar 
trends or structures. As the time scale used as a measurement becomes smaller, 
fluctuations surging along with the general patterns become more conspicuous. 
Specifically, the traffic time series patterns in one dimension from day to day look 
very similar but never exactly repeat. The patterns are essentially non-reproducible 
(with oscillations) each day. 
 
In spite of the benefits of features, the display of traffic dynamics in multidimensional 
spaces may reveal more valuable information. To see the benefits of a time series 
presented in reconstructed state spaces in this study and illustrate two well-known 
nonlinear time series: the first one is Lorenz series generated by Eq. (1.1), which is 
known as a deterministic (chaotic) time series. The second one is a random time series 
generated by Eq. (1.2), which is proven as a stochastic (random) time series (Sprott 
and Rowlands, 1995). 
 

dX/dt=10(Y-X); dY/dt=28X-Y-XZ; dZ/dt=XY-8Z/3 (1.1) 
Xn+1=AXn+B(modC) (1.2) 

 
For the one-dimensional plots, x(t) versus t, shown in Figure 1-4, we notice that a 
chaotic time series (Figure 1-4(a)) is less distinguishable from a random time series 
(Figure 1-4(b)). Namely, it is faint to distinguish, by visualization method, between a 
chaotic system and a stochastic system because both have very similar irregularity in 
one-dimensional space; however, it seems existent a few rules in the Lorenz time 
series. If we reconstruct these two time series in a three-dimensional state spaces, x(t) 
versus x(t+τ ) versus x(t+2τ ), where τ  is a proper time lag, we would see the 
difference as shown in Figure 1-5. Notice that the chaotic system has revealed 
discernible structure (Figure 1-5(a)), in which the trajectories are governed by certain 
deterministic rules. In contrast, the random system does not reveal any structure at all, 
which plots just scatter uniformly in the three-dimensional state spaces (Figure 1-5(b)). 
This illustration provides good advice that a very simple tool, which is one of methods 
of nonlinear time series, can reveal certain deterministic rules in multidimensional 
state spaces. 
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Figure 1-1 Time points with volume equaling 20 vehicles/1-minute in a workday 
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Figure 1-2 Numerical variation of traffic variables with 3 time scales in a workday 
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Figure 1-3 Features of 24-hour traffic time series with 4 time intervals 

 
Figure 1-4 One-dimensional plots for Lorenz and a random time series 
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Figure 1-5 Three-dimensional state spaces plots for Lorenz and a random time series 
 
Through the state space reconstruction, one may find out the noticeable patterns for a 
chaotic system. However, one still cannot figure out how the series trajectories would 
evolve over time because mapping the one-dimensional series into higher dimension 
does not explain its sequential order. To see the importance of the sequential order, 
this study further demonstrates another nonlinear time series, known as Logistic map, 
generated by Eq. (1.3). 
 

x(n+1)=3.75x(n)(1- x(n)) (1.3) 
 

Let the initial condition of the series be x(0)=0.1. Figure 1-6 presents the difference of 
the series in two-dimensional state spaces with revealing and without revealing its 
sequential dynamics. One can clearly observe the back-forth dynamical behaviors by 
only taking the sequential order of the series into consideration (Figure 1-6(a) marked 
with numbers). In contrast, without considering its sequential order the series can only 
reveal its patterns, not the dynamical behaviors (Figure 1-6(b)). 
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Figure 1-6 Logistic map x(n+1)=3.75x(n)(1- x(n)), where x(0)=0.1 

 
Next, another well-known example is further demonstrated in Figure 1-7 to elucidate 
the significance of tracing when we face the intangible variance of traffic dynamics. In 
this figure, the relationship between speed and flow without sequential order is 
displayed in the top left plot (entitled original data (a)), while the identical relationship 
between speed and flow, when completely shuffled, without sequential order is 
displayed next to the original data (a), and which we name surrogate data (b). From the 
above two plots, it seems that the distribution representation only tells us the numerical 
relationship between the two traffic variables rather than the rationale of the dynamics. 
However, when their sequential order is taken into consideration, the slight difference 
between the original data and the surrogate data can be seen, depicted as original data 
(c) and surrogate data (d) respectively in Figure 1-7. Moreover, if a small area from the 
original data (c) is selected and the sequential order tracked, then we find the trace 
scattering depicted in the original data (a) and original data(c) of the right hand side 
plots, which represent the plots of ten points in the early hours and morning peak hours. 
Obviously, there are distinct differences between the original data (plot (a) and (c)) and 
the surrogate data (plot (b) and (d)) after tracing along the ten points. Accordingly, 
such tracings play an important role in investigating traffic dynamics. 
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Figure 1-7 The relationship between speed and flow with/without tracing 

 
The above illustrations imply that one can gain insights into a time series by looking at 
its patterns in multidimensional state spaces, rather in a conventional one-dimensional 
space, and by considering its sequential order to realize its actual dynamical behaviors. 
Some challenging issues may arise from these implications. For instance, what is the 
most appropriate time lag? How high the dimension should be embedded to reveal the 
best features? Do nonlinear phenomena really exhibit in the nature of traffic dynamics? 
What types of nonlinear phenomena may exist? What are the core logics for modeling 
the traffic sequential orders? Why do we need to predict? What is the best prediction? 
What is the cause and effect relationship between features and prediction? What is the 
difference of predictability between various techniques? The following chapters will 
address these issues in detail. 
 
1.4 Limitation and Scope 
 
In this study, traffic time series were directly extracted from dual-loop detectors 
installed at a given 3~4-lane mainline segment of the northbound Sun Yat-Sen 
Freeway of Taiwan, located in the northern area of Taipei County. The traffic series 
extracted from “isolated” stations can only provide us to explore the temporal patterns 
of traffic dynamics, not spatiotemporal features over several adjacent segments. This is 
the restriction of our empirical investigation. In addition, traffic state trajectories in 
this dissertation refer to traffic variables (flow, time-mean-speed, percent occupancy), 
which were tracked and recorded in reconstructed state spaces over time rather than 
vehicles changing their position with time evolution. 
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1.5 Organization and Framework 
 
The following chapters of the dissertation begin with the literature review and 
description of our rationales for methodology development, followed by a brief of 
preliminary testing and discussion of analytical results. We conclude with an 
elaboration of the research and follow-up for future work. Figure 1-8 is the framework 
of dissertation and Figure 1-9 is the research framework. 
 

Chapter 1 Introduction
--Background and Motivations
--Objectives and Values
--Benefits and Significance
--Limitation and Scope
--Organization and Framework

Chapter 2 Literature Review
--Temporal Traffic Features
--Spatiotemporal Traffic Patterns
--Linear and Nonlinear Prediction
--Neural Network

Chapter 3 Methodology
--Reconstruction of State Spaces
--Motions of Traffic State Trajectories
--Linear and Simple Nonlinear Predicting Algorithms
--Rationales for RBFNN and RTRL

Chapter 4 Preliminary Testing

Chapter 5 Empirical Study

--Calculation and Statistics for Data
--A Filtering Approach
--Result of Filtering Approach
--Preliminary Testing for Predictability

--Temporal Traffic Patterns
--Diverse Temporal Patterns
--Paired- and Three-variable Traffic Evolutions
--Sensitivity Analysis

Chapter 6 Conclusions and Suggestion
--Temporal and Spatiotemporal Patterns
--Temporal Features and Short-term Prediction
--Extensive Applications
--Follow-up

 

Figure 1-8 Framework of dissertation 
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Figure 1-9 Research framework 
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CHAPTER 2 LITERATURE REVIEW 

 
 
Numerous researchers have devoted their efforts to the study of traffic dynamics, and 
we can categorize their achievements into four types: temporal features, 
spatiotemporal patterns, linear and nonlinear prediction and artificial neural networks, 
which are presented in this chapter. 
 
2.1 Characteristics of Temporal Traffic Time Series 
 
Most of the early paradigms have employed stochastic processes to depict the traffic 
time series by using some presumed mathematical (probabilistic) distributions. Taking 
headways as an example, May (1990) categorized their features into random, constant, 
and intermediate states. Wherein, headways categorized as the intermediate case is the 
most difficult to model, although it is the most frequently encountered case in a 
real-world situation. Likewise, traffic flows are often modeled by different stochastic 
processes. For instance, Poisson distributions are widely acknowledged in low-volume 
conditions where the mean and the variance of counting traffic are about the same. 
Such traffic conditions can be associated with random headway states. In contrast, 
binomial distributions are often utilized for near-capacity conditions where the mean 
of flow rates is typically larger than its variance. These traffic conditions correspond to 
nearly constant headway states. The intermediate flow count between these two 
boundary states can be very complex, and has been modeled by different probabilistic 
distributions. In the late 1970s, autoregressive integrated moving average (ARIMA) 
processes had become very popular in the study of linear stochastic time series (Box et 
al., 1976; Jenkins and Alavi, 1981). Moreover, a large amount of literature has 
extended analytical tasks from pure time-series models to dynamically generalized 
linear models (Ansley et al., 1977; Clarke, 1983; Maravall, 1983; Liu, 1991; Chang 
and Miaou, 1999; Lee and Fambro, 1999; Lingras et al., 2000; Williams, 2001; 
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Williams and Hoel, 2003), and to multivariate time series state space models 
(Stathopoulos and Karlaftis, 2003) assuming that the dynamics of traffic flow may 
follow a linear system or can be modeled with a time invariant linear filter by Wold’s 
decomposition. 
 
Other paradigms treat traffic series as a nonlinear system. For instance, Disbro and 
Frame (1989) utilized chaos theory, a nonlinear system with aperiodic determinism, to 
describe traffic flow phenomena, and Dendrinos (1994), Zhang and Jarrett (1998), Lan 
et al. (2003a) and Shang et al. (2005) in their analysis of traffic data also found that 
chaotic characteristics exist in traffic systems. In addition, Smith et al. (2002) stated 
that the presence of “chaotic like” behavior cannot be completely dismissed, especially 
during congestion when traffic flow is unstable and a stronger causative link may be 
operating in the time dimension. In reality, at times it is very difficult to make such a 
spatiotemporal analysis of empirical data extracted from “isolated” stationary detectors. 
Under such restriction - only temporal traffic patterns were investigated, nonlinear 
phenomena such as equilibrium (stable) fixed points, periodic, quasi-periodic motions 
or chaotic characteristics, and stochastic or random behaviors could be analyzed in a 
traffic dynamical system. Therefore, it may not be appropriate to view any traffic 
series as a pure deterministic or a complete random time series. Instead, traffic flow 
dynamics may be characterized in a comprehensive spectrum featured in the range 
between random and deterministic (Lan et al., 2007b). Only through sufficient 
evidence from field observations can we be sure of the dynamical behaviors of traffic 
series, thereby in turn, enabling modeling (elucidating or predicting) the traffic series 
in a more accurate manner for practical applications. 
 
2.2 Spatiotemporal Traffic Patterns 
 
A certain number of previous studies also have aimed at the trajectories of traffic 
patterns varying in the spatial domain for specific purposes such as geometric design 
of traffic systems and advanced traffic control. Such spatial traffic patterns, which vary 
transversely across the highway between lanes and direction of travel and 
longitudinally along the highway or street, may also provide useful information for 
control and design purposes, such as incident detection, accident investigation, 
roadway design, etc. For example, Sheu et al. (2004) presented a discrete-time 
nonlinear stochastic model to characterize the traffic states under the condition of 
lane-blocking incidents on surface street. In the late 1990s, a “three-phase traffic 
theory” was developed to depict the spatiotemporal traffic patterns (Kener, 1998, 1999, 
2002a, b). Subsequently, several models, including Kerner-Klenov model, CA model, 
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FOTO and ASDA models, were presented to recognize and track traffic breakdown 
and spatiotemporal congested patterns (Kener and Klenov, 2002; Kerner et al., 2002, 
2004). In addition, Kerner (2004) and Kerner et al. (2006) further pointed out a few 
drawbacks of fundamental diagram approaches in describing of spatiotemporal 
congested freeway patterns. By Kerenr’s three-phase traffic theory, the spatiotemporal 
relationship among traffic variables has been elaborately illustrated. In addition, 
cellular automaton (CA) simulation has been widely used to explicate the behaviors of 
traffic flows. Nagel and Schreckenberg (1992) first proposed a CA model to reproduce 
the basic features of real traffic. In the late 1990s, a considerable number of modified 
CA models have been developed or extended in the past decade (Nagel, 1996, 1998; 
Rickert et al., 1996; Chowdhury et al., 1997; Barlović et al., 1998; Nagel et al., 1998; 
Knospe et al., 2000; Bham and Benekohal, 2004; Larraga et al., 2005). Most of these 
modified works dealt only with pure traffic flows (only one type of vehicles). Hsu, et 
al. (2007) proposed refined cellular automata (CA) rules to explore the fundamental 
traffic features and stated that the proposed refined CA models are capable of 
capturing the essential features of traffic flows. 
 
2.3 Techniques for Linear and Nonlinear Prediction 
 
Techniques for predicting time series can be generally divided into two categories: 
linear and nonlinear. Linear techniques, such as autoregressive integrated moving 
average (ARIMA) methods, aim to characterize homogeneous time-series data, either 
stationary, or non-stationary that can be further transformed into a stationary series 
(Kalman, 1960; Box and Jenkins, 1970; Granger and Newbold, 1976; Oller, 1985). 
Additional comparisons between linear technique (ARIMA) and other predicting 
methods, for instance neural network (NN), non-parametric regression (NPR) and 
Gaussian maximum likelihood (GML) are also conducted for extensive applications 
(Smith et al., 2002; Tam et al., 2004; Lam et al., 2006). In contrast, linear models may 
not be applicable in characterizing inhomogeneous data due to their weakness in 
transforming the non-stationarity of traffic states into stationarity. 
 
The nonlinear techniques for predicting the inhomogeneous time series are in effect 
strongly based on the underlying postulation that different time series with equal states 
may have equal futures and similar states will also evolve similarly, at least in the short 
run. According to such postulation, Iokibe et al. (1995) proposed a fuzzy local 
reconstruction method which was adequate in prediction of some experimental 
nonlinear time-series cases. Sakawa et al. (1998) proposed a fuzzy neighborhood 
method which proved effective in some deterministic nonlinear predictions. Lan and 
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Lin (2001) proposed a phase-space local approximation method for satisfactorily 
predicting short-interval flow dynamics. In the prediction literature, most successfully 
modeling for nonlinear time-series data have been generated in laboratory experiments 
and rarely have they been found outside the laboratory due to the complex fluctuations 
with noises of most real time-series data. This has stimulated some attempts to 
combine nonlinearity and stochasticity in modeling and making predictions (Gardiner, 
1997; Ragwitz and Kantz, 2000, 2002). 
 
2.4 Neural Network 
 
Undoubtedly, considerable literature has elaborated the predicting approaches from 
neural network (Clark et al., 1993; Dochy et al., 1996; Dougherty and Cobbett, 1997; 
Smith and Demetsky, 1997; Kirby et al., 1997) to wavelet analysis (He and Ma, 2002) 
and to hybrid method (Li, 2002; Soltani, 2002). One of neural network based 
approaches, called radial basis function neural network (RBFNN), is worth to further 
illustrate because of its successful application on predicting the traffic dynamics 
(Wedding and Cios, 1996; Chen and Grant-Muller, 2001) with reasonable training time 
from practical perspectives. Ham and Kostanic (2001) and Kecman (2001) proposed 
an effective technique, called OLS (Orthogonal Least Squares), to improve the 
disadvantages pertaining to the original RBFNN, which had made RBFNN more 
useful and practical in prediction (Chen et al., 1991). Another neural network based 
approach, real-time recurrent learning (RTRL), is also noteworthy because it is not 
only able to manipulate the mapping of single input-output, i.e., static process, but also 
capable of incorporating time sequential order into operating the non-stationary 
process, in which the chronological order is a very important factor to accurately 
predict traffic dynamics (Haykin, 1999; Chang et al. 2002). Because of the recurrent 
feedback loops, a recurrent neural network (RNN) is able to process temporal patterns 
and time-vary systems (Chang and Mak, 1999). Wherein, the real-time recurrent 
learning algorithm applied to train RNN developed by Williams and Zipser (1989) is 
one of the successful learning algorithms. In particular, it is suitable for on-line 
training of RNN (Mak et al. 1999). Afterward, Mak et al. (1999), Chang and Mak 
(1999) and Goh (2003) proposed modified learning algorithms as well as an adaptive 
gradient computation to improve the convergence capability of the RTRL algorithms, 
which have made RTRL algorithms more useful and practical in prediction.  
 
Despite the improvement in computation of above approaches, most previous literature 
may either lack empirical analysis of the characteristics of traffic dynamics before 
prediction, or hastily train a network without considering the effects that influence the 
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prediction accuracy from diverse perspectives, for example, observing the different 
training results of traffic series measured in different time intervals, time lags, times of 
day and in multidimensional state spaces. Accordingly, it is necessary to further 
understand the pros and cons between various predicting techniques and the affected 
factors under different scenarios when one would like to thoroughly acquire more 
information from the procession of prediction.  
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CHAPTER 3 METHODOLOGY 

 
 
This chapter mainly describes the methods of this study, including reconstruction of 
state spaces, motions of traffic state trajectories, linear and simple nonlinear predicting 
algorithms, RBFNN and RTRL algorithms. In addition, we also use a few well-known 
examples to elucidate the algorithms and make them readable. 
 
3.1 Reconstruction of State Spaces 
 
Reconstruction of state spaces involves two main steps: (1) determination of 
appropriate time delay and (2) embedding dimension. In the study, the fundamentals of 
Takens’ method were utilized to determine appropriate time delay. Note that Takens’ 
method has been extensively applied to many disciplines of science and engineering 
(Abarbanel, 1996; Kantz and Schreiber, 2004). In Takens (1981), it was proved that, 
under fairly general conditions, the underlying dynamical system could be faithfully 
reconstructed from time series, in the sense that a one-to-one correspondence can be 
established between the reconstructed and the true but unknown dynamical systems. 
Details about the developmental procedures and rationales for state space 
reconstruction were depicted in the following, including determination of time delay, 
embedding dimension and how to measure the motion of trajectories in reconstructed 
space via largest Lyapunov exponent and attractor dimension. 
 
3.1.1 Determination of Time Delay 
 
First, let us specify a dynamic system to elaborate traffic dynamics and its properties. 
In the study, traffic dynamics (including flow, speed and occupancy) is named 
interchangeably as traffic time series or traffic series referring to the temporal 
evolution of any traffic variable or its state trajectories measured in a chronological 
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sequence with equal time interval. Now, let x(t) denote the traffic series describing the 
time evolution in phase space, then it can be expressed by on ordinary differential 
equation ))(()( txFtx =& , Rt∈ ; or in discrete time tnt Δ=  by maps of the 

form )(1 nn xfx =+ , Ζ∈n , where x is a state vector that is finite dimensional nRx∈ , 

and f and F are referred to as vector fields explicitly depending on n and t. The space 
nR  in which x evolves is called a state space. A traffic time series can also be 

considered as a sequence of observations { })( nt xsS =  performed with some 

measurement function )(⋅s , wherein the one-dimensional traffic time series embedded 

into multiple dimensions reconstructed space is denoted as )...,,,( )1(2 τττ −+++= mttttt ssssS , 

Nt ,...,2,1=  where the parameter τ  is called time delay and the integer m is called 
embedding dimension. In space, geometric objects with non-integer dimensions are 
called fractals, whereas a geometric object, which characterizes the long-term 
behavior of a system in the phase space, is called an attractor. Correlation dimension is 
a measure of the extent to which the presence of a data point affects the position of the 
other point lying on the attractor. 
 
Accordingly, time delay for any traffic series can be conceptualized with Figure 3-1. 
In the top panel, the points of square, diamond and circle represent the value of series 
at time t; τ+t  and τ2+t  respectively; in contrast to the low panel, one can find 
their corresponding places in the multidimensional space through reconstruction. If the 
time delay is different, the portrait in multidimensional space will change immediately. 
Thus, it is important to decide a proper time delay when one map a time series into a 
multidimensional space, that is the quality of reconstructed portraits for a traffic time 

series depended on the value of τ . For small τ , ts  and τ+ts  are very close to each 

other, whereas for a large value of τ , ts  and τ+ts  can be completely independent of 

each other, and any connection between them is random. Consequently, we need a 

criterion for an intermediate choice that is large enough so that ts  and τ+ts  are 

independent but not completely independent in a statistical sense. 
 
There are two alternatives to estimate the time delay required by the embedding 
theorem from an observed traffic time series. The first one is calculating the linear 
autocorrelation function (ACF) of the data points and selecting τ  as the time of its 
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first zero-crossing. The rationale behind this approach is that the time when ACF 

reaches a zero value marks the point beyond which the τ+ts  sample is completely 

de-correlated from ts . However, this approach is suitable only for linear time series. 

The second one involves the calculation of data from a nonlinear autocorrelation 
function called average mutual information (AMI), which is proposed by Fraser and 

Swinney (1986) and can be expressed as ijθ in Eq. (3.1): 

∑−=
ji ji

ij
ijij pp

p
p

,

)(
ln)(

τ
τθ  (3.1) 

where for some partition on the real numbers, pij is the probability of finding a time 
series value in the i-th interval, and pij(τ ) is the joint probability that an observation 
falls into the i-th interval and an observation time τ  later falls into the j-th interval. In 
theory, this expression has no systematic dependence on the size of the partition 
elements and can be quite easily computed. There exist good arguments that if the time 
delayed mutual information exhibits a marked minimum at a certain value of τ , then 
this is a good candidate for a reasonable time delay. In practice, one may not be 
interested in the absolute values of mutual information but rather in its first minimum, 
and thus the first minimum of AMI usually signal a proper time delay for the time 
series. Compared with ACF that only measures linear correlations, AMI also takes into 
account nonlinear correlations, therefore this paper will use the AMI approach by 
Fraser and Swinney (1986) to determine the proper time delay for traffic time series. 
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Figure 3-1 The concept of traffic series time delay in 1-D and 3-D spaces 

 
3.1.2 Determination of Embedding Dimension 
 
The purpose of the reconstructed state spaces is to find a Euclidean space that is large 
enough so that the set of points describing the attractor can be unfolded without 
ambiguity. Kennel et al. (1992) proposed a false nearest neighbor (FNN) algorithm to 
determine the minimal sufficient embedding dimension m. The FNN algorithm is to 

search for point is  in the time series and to look for its nearest neighbor js  in an 

m-dimensional space, followed by calculating the distance ji ss −  and iterating both 

the points, and then computing the ratio ji,ε  of Eq. (3.2) in an m-dimensional space. 

m
j

m
i

m
j

m
i

ji ss

ss

−

−
=

++ 11

,ε ,… Nji ,...,2,1, =  (3.2) 

If the ratio ji,ε  exceeds a given heuristic threshold tε , this point is  is marked as 

having a false nearest neighbor, wherein in general, the value of the threshold tε  is 
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recommended as lying between 10 to 15 (Nayfeh, 1995; Abarbanel, 1996). The 
criterion that the embedding dimension is high enough is that the fraction of points for 

which tji εε >,  is zero, or at least sufficiently small. 

 
Figure 3-2 illustrates an example depicting the FNN algorithm. In the top panel, the 
square point is the nearest point to the circle point within 500 points in one-dimension, 
wherein their Euclidean’s distance is 0.02. A simple method is used to project the 
square point and the circle point to the y-axis, where after it is apparent that the 
distance between the two circles is very close. However, the value becomes 10.01 if 
one calculates the Euclidean distance in a two-dimensional plane (middle panel) 
according to proper time delay. Because the ratio of 10.01 divided by 0.02 is greater 

than the threshold, tε , thus, the square point is a false neighbor of the circle point. If 

one further calculates the ratio of distances between a two-dimensional plane and a 
three-dimensional space (low panel), then it demonstrates that the ratio dropped 
drastically because the Euclidean distance is 10.4 in three-dimensional space. Since 

the ratio is no longer greater than the threshold, tε , it suggests that an embedding 

dimension of m = 2 is sufficient. After we examine every point in this time series 
according to the above algorithm, the proper embedding dimension can be decided. 
However, if there are a multitude of identical values in a realistic time series, then 
FNN algorithm probably cannot work precisely. In that case, the embedding dimension 
would be determined approximately by correlation dimension instead. 
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Figure 3-2 The concept of measuring the distance of traffic time series by FNN 

algorithm 
 
3.2 Motions of Traffic State Trajectories 
 
Once the appropriate time delay and embedding dimension for a traffic series are 
determined, one can map the one-dimensional traffic series into m-dimensional 
reconstructed spaces. After that, one is interested in knowing how traffic state 
trajectories moved in this space over time. Note that traffic state trajectories in this 
paper refer to traffic variables (flow, time-mean-speed, percent occupancy), which 
were tracked and recorded in reconstructed state spaces over time rather than vehicles 
changing their position with time evolution. This paper makes use of the Lyapunov 
exponent to measure the rate of expansion or contraction of traffic state trajectories 
and is described hereinafter. 
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3.2.1 Estimation of the Largest Lyapunov Exponent 
 

If we take two points is  and js  in the reconstructed space, and indicate the distance 

between them as 0δ=− ji ss , then, after a time span tΔ , it is expected that the new 

distance δ  will be equal to te Δ= λδδ 0 , where λ  is called the Lyapunov exponent. 

For an m-dimensional space, the rate of expansion or contraction of trajectories is 
described for each direction by one Lyapunov exponent, resulting in m different λ s. 

Of the m different λ s, the largest value 0λ  (largest Lyapunov exponent) is of main 

interest since it can be easily calculated even without the explicit construction of a 

model for the traffic time series. If 0λ  is negative, the traffic state trajectories will 

converge to a fixed point. If 0λ  is zero, the traffic state trajectories are periodic 

motions. If 0λ  is positive, the traffic state trajectories may exhibit other motions such 

as an aperiodically deterministic chaos or stochastic randomness (Hilborn, 2000; 
Kantz and Schreiber, 2004). 
 
In theory, the largest Lyapunov exponent can be used to identify the traffic state 
trajectories moving in the reconstructed state spaces. However, in practice, there will 
be fluctuations in the calculation of the largest Lyapunov exponent due to noisy traffic 
data. For instance, in a true state space, distances do not always grow everywhere on 
the attractor at the same rate, and in fact they may even shrink locally. To minimize 
the influence of noisy field traffic data on calculating the largest Lyapunov exponent, 
one can employ an appropriate averaging statistic when computing the average 
exponential growth of distance. To realize this, the following procedures are proposed: 

(1) Choosing a point is  of the traffic time series in the reconstructed space and select 

all neighbors with a distance smaller than r. (2) Computing the average over the 
distance of all neighbors to the reference part of the trajectories as a function of the 
relative time. The logarithm of the average distance at time t is some effective 
expansion rate over the time span tΔ  (plus the logarithm of the initial distance) 
containing all the deterministic fluctuations due to projection and dynamics. (3) 
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Repeating this for many values of i, thereby averaging out the fluctuations of the 
effective expansion rates. (Kantz and Schreiber, 2004) 
 
The above procedures can be represented as Eq. (3.3), wherein the curves of stretching 
factor )( tΔζ  exhibit a robust linear increase, slope of which is an estimate of the 

largest Lyapunov exponent 0λ  per time step. 

( ) ( )
∑ ∑
= Ψ∈

Δ+Δ+ ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

Ψ
=Δ

N

i ss
tjti

i ij

ss
sN

t
1

1ln1)(ζ , Nji ,...,2,1, =  (3.3) 

where ( )isΨ  is the neighborhood of is  with diameter r. 

 
Figure 3-3 demonstrates an example of Lorenz time series1, which is known as a 
deterministic (chaotic) time series in estimating the largest Lyapunov exponent 
according to the above proposed procedures. In this figure, we observe that the dotted 
line, i.e., slope of bundle curves (each curve represents m-th dimension) is positive and 

the largest Lyapunov exponent is 002.0044.00 ±=λ . Note that the curves of stretching 

factor in the left panel (Figure 3-3(a)) are rather steeper than those in the right panel 
(Figure 3-3(b)) because the distance r = 0.199 is smaller than r = 0.353. Consequently, 
choosing a proper distance is also essential. 
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Figure 3-3 An example of estimating the largest Lyapunov exponent 

 

                                                 
1 dX/dt=10(Y-X); dY/dt=28X-Y-XZ; dZ/dt=XY-8Z/3 
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3.2.2 Estimation of the Correlation Dimension 
 
Correlation dimension is a measure of the extent to which the presence of a data point 
affects the position of other points lying on the attractor. Among the number of 
methods available for distinguishing between chaotic motions and stochastic motions 
of time-series trajectories, the correlation dimension is perhaps the most fundamental 
one (Shang et al., 2005). A seemingly irregular phenomenon arising from any 
deterministic time-series dynamics will have a limited number of degrees of freedom 
equal to the smallest number of first-order differential equations that capture the most 
important features of the time series. Thus, when one reconstructs spaces with 
increasing dimensions for an infinite data set, a point will be reached where the 
dimensions are equal to the number of degrees of freedom, and beyond which 
increasing the dimension of the representation will not have any significant effect on 
the correlation dimension. Under this circumstance, we view the correlation dimension 
of the attractor as saturated. If the attractor dimension is saturated in low-dimensions 
(normally, five-dimensions), then it signalizes that the time-series trajectories exhibit 
aperiodic motions, which is essentially deterministic chaos. In contrast, if an attractor 
dimension cannot reach saturation or is saturated in very high-dimensions, then the 
trajectories of that time series could be stochastic. 
 
Grassberger and Procaccia (1983) showed that correlation dimension d can be 
evaluated by using the correlation integral )(rμ , which is the probability that a pair of 
points (si, sj) chosen randomly in the reconstructed space are separated by a distance 
less than r. If N is the number of points in the reconstructed vector time series St, the 
correlation integral can be approximated by the following sum in Eq. (3.4): 

( )∑ ∑
= +=

−−Θ
−

=
N

j

N

ji
jiN ssr

NN
rm

1 1)1(
2),(μ  (3.4) 

where Θ denotes the Heaviside step function and ji ss − stands for the distance 

between points si and sj; ( )ji ssr −−Θ =0, if 0≤−− ji ssr  and ( )ji ssr −−Θ =1, for 

0>−− ji ssr . In the limit of an infinite amount of data ( ∞→N ) and for small r, we 

expect Nμ  to scale like a power law: 

drrm αμ ∝),(  (3.5) 
where α  is a constant and d  is the correlation dimension or the slope of the 

)(ln rμ versus rln plot given by 
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∞→→

μ  (3.6) 

 
To observe whether a time series exhibits deterministic features, the correlation 
dimension (or local slope) values are plotted against the corresponding embedding 
dimension values. If the value of the correlation dimension is finite, low and 
non-integer, then the system is possibly exhibiting as low-dimensional chaos. The 
saturation value of the correlation dimension is defined as the correlation dimension of 
the attractor, or so-called attractor dimension. In general, an embedding dimension (m) 
is no less than double the attractor dimension (2d) plus one. In contrast, if the 
correlation dimension increases without bound with increase in the embedding 
dimension, then the system is considered as stochastic. 
 
Figure 3-4 demonstrates an example of Lorenz time series by calculating its 
correlation dimension. The left panel (Figure 3-4(a)) is a plot of correlation integral 

),( rmNμ  versus distance r on logarithmic scale; whereas the right panel (Figure 3-4(b)) 

is its local slope. In the right panel, the increasing curve is flat when embedding 
dimension is about equal to 4, suggesting that the Lorenz time series is deterministic 
chaos with attractor dimension (saturated value) nearly equaling 2.01. 
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Figure 3-4 An example of estimating the correlation dimension of attractor 
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3.3 Linear and Simple Nonlinear Predicting Algorithms 
 
3.3.1 Linear Prediction 
 
After understanding algorithms of reconstructing the state spaces as well as motions of 
the state trajectories, let us start out from the fundamentals of linear and nonlinear 
predicting algorithms. Given a sequence of observations St, t=1,…,N, we intend to 
predict the outcome of the following measurements, St+1. One often wants to find the 

prediction 1
ˆ
+tS , which minimizes the expectation value of the squared prediction error 

( )211
ˆ

++ − tt SS . When we assume the time series is stationary, we can estimate this 

expectation value by its average over the available measured values. If we further 
restrict the minimization to linear time-series models which incorporate the k last 
measurements, we can express this by 

∑
=

+−+ =
k

j
jktjt SaS

1
1

ˆ  (3.7) 

and minimize 

( )∑
−

=
++ −

1 2

11
ˆ

N

kt
tt SS  (3.8) 

with respect to the parameters aj, j=1,…,k. Here we have assumed that the mean of the 
time series has already been subtracted from the measurements. By requiring that the 
derivatives with respect to all the ajs to be zero, we obtain the solution by solving the 
linear set of equations 

kiSSaC
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j
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kt
ikttjij ,...,1,

1

1

1 ==∑ ∑
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−

=
+−+  (3.9) 

Here Cij is the k×k auto-covariance matrix 

∑
−

=
+−+−=

1N

kt
jktiktij SSC  (3.10) 

 
Note that the linear relation, Eq. (3.7), is justified for harmonic as well as for linear 
stochastic processes. The most popular stochastic models for linear time series, 
autoregressive (AR) models and moving average (MA) models, either consisted of 
linear filters acting on a series of independent noise inputs as expressed in Eq. (3.11) 
or on past values of the signal itself as expressed in Eq. (3.12), while Eq. (3.13) 
represents the ARMA model. (Chatfield, 1996) 
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where xn is a Gaussian random variable 
aj, bj are parameters 
MMA, MAR are the order of MA model and AR model 

nϕ  is white Gaussian noise 

 
3.3.2 Simple Nonlinear Prediction 
 
Nevertheless, most time series of traffic dynamics exhibited in the real world are 
nonlinear and more complex than the time series formulated by linear models. A local 
linear method in multidimensional spaces was employed to predict nonlinear time 
series if the data base was large and the noise level was small (Kantz and Schreiber, 
2004). The original concept relevant to nonlinear prediction was used in tests for 
determinism by Kennel and Isabelle (1992). The resulting method is very simple. 

Recall the time-series expression in multidimensional spaces: ),...,,( )1( ττ −++= mtttt sssS , 

t=1,2,…, N, and for all measurements S1, …,St, the corresponding delay vectors 

),...,,( )1(111 ττ −++ msss …, )...,,( )1( ττ −++ mttt sss  in multidimensional spaces can be found. In 

order to predict a future measurement TtS + , one can find the embedding vector 0ts  

closest to ts  and use Tts +0  as a predictor. However, owing to multiple dimensions, 

we have to choose the parameter ε  of the order of the resolution of the measurements 

and form a neighborhood )( tsεΨ  of radius ε  around the point ts . For all points 

)(0 tt ss εΨ∈ , i.e., all points closer than ε  to ts , look up the individual predictors 

Tts +0 . The prediction is then the average of all these individual predictors. 
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∑
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Here )( tsεΨ  denotes the number of elements of the neighborhood )( tsεΨ . If no 

neighbors closer than ε  can be found, one might just increase the value of ε  until 
some neighbors are found. 
 
The concept of multidimensional spaces and simple nonlinear prediction for any traffic 
series is demonstrated in Figure 3-5. In the left top panel (a), the points of square, 
diamond and circle respectively represent the values of the series at time t; τ+t  and 

τ2+t ; in contrast, in the right top panel (b), one can find their corresponding 
trajectories in the multidimensional spaces through reconstruction. When a proper time 
delay is determined, we can map the traffic series from one dimension into three 
dimensional spaces. On the other hand, in the left bottom panel (c), if we choose one 
small section part of the state trajectories in the multidimensional spaces and enlarge it 
as right bottom panel (d) to observe the trajectory motions, it indicates that the 
trajectories within radius ε , i.e., in the black circle, move towards the same direction 
and one can predict the square point at time (t+T) by averaging the four closed points 
marked start at time (t+T). That is, in this case we assume that the underlying 
relationship between the current observation and its nearest neighbors remains 
stationary with short-term time evolution, the points marked start already known their 
values are the neighbors of the current observation (the square point at time t) and then 
a prediction (the square point at time t+T) can be made by using the relationship and 
tracking the movements of the nearest neighbors. 
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Figure 3-5 The concept of prediction for traffic series in multidimensional spaces 

 
3.4 Rationales for RBFNN and RTRL 
 
3.4.1 RBFNN Algorithms 
 

Likewise, a traffic series can be considered as a sequence of observations { })( nt xsS =  

performed with some measurement function )(⋅s , wherein an one-dimensional series 
embedded into multiple dimensional spaces can be transformed into 

NtssssS ttmtmtt ,...,2,1),,,...,,( )2()1( == −−−−− τττ
2 (Lan et al., 2007d). Accordingly, if input 

is a q-dimensional series NtuuuuU ttqtqtt ,...,2,1),,,...,,( )2()1( == −−−−− τττ  with 

                                                 
2 Another type of identical expression is ),...,,( )1( ττ −++= mtttt sssS , t=1,2,…, N 
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corresponding output a k-dimensional series 

NtyyyyY ttktktt ,...,2,1),,,...,,( )2()1( == −−−−− τττ , then tY  can be generated by some 

unknown nonlinear multidimensional series of the form: 

NtuuuyyyfY tqtqttktktt ,...,2,1),,...,,,,...,,( )2()1()2()1(1 == −−−−−−−−+ ττττ  (3.15) 

where )(⋅f  is an unknown nonlinear function. 
 
With using the above as a basis, a radial basis function neural network (RBFNN) can 

be constructed, wherein the multi-dimensional traffic series tU  is used as input to the 

network, and tY  will be the corresponding output series. Formulation of network 

output data is accomplished through a hidden layer consisting of M neurons. Each of 
the M neurons in the hidden layer applies an activation function which is a function of 
the Euclidean distance between the input and a multiple dimensional prototype vector. 
Each hidden neuron contains its own prototype vector as a parameter. The output of 
each hidden neuron is then weighted and passed to an output layer. The outputs of the 
network consist of sums of the weighted hidden layer neurons. That is, formulation of 
output response to an input multidimensional time series is postulated as a linear 
combination through the hidden layer responses, and can be expressed as below: 

( ) MjcUwwy
M

j
jtjjt ,...,2,1,0 =−⋅+= ∑ φ  (3.16) 

where )(⋅φ  is a radial basis function (RBF) -- a response of the jth hidden neuron to 

an input multidimensional time series tU , jw  is a weight of the jth hidden neuron for 

defining the contribution of the hidden neuron to a particular output, and 0w  is a bias 

term. The RBF hidden neuron responses jz  are given by 
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jtjj ,...,2,1,
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⎞

⎜
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φ  (3.17) 

where jc  is the center of the jth Gaussian function and jσ  is the width of the 

Gaussian. 
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As input traffic series are presented to the RBFNN, the network iteratively creates new 
center neurons to reduce its performance error (i.e. Euclidean distance). Allocation of 
the new hidden neurons is determined by orthogonal least squares (OLS), which 
employs a Gram-Schmidt algorithm and Cholesky decomposition (Chang and Chang, 
2005) to create new center neurons under a given threshold. In other words, the widths 
and center locations of the existing hidden neurons can be adjusted during the learning 

process. As to the method of adjusting weight jw , Broomhead and Lowe (1988) 

proposed a recursive least mean squares (LMS) algorithm to obtain an acceptable error 
as follows. If d(p) is the pth desired value, then y(p) is the pth network output. The e(p) 
is the pth difference between the desired value and the network output. When e(p) 
equals zero, the pth network output is thereby able to fit the pth desired value entirely. 
As such, the total values of e(p) in network can be a minimum: 

[ ] ∑∑
==

−==
N

p

N

p
pypdpeE

1

2

1

2 ))()(()(  (3.18) 

When E has a minimum value, then the gradient vector 
jw
pE

∂
∂ )(  is equal to zero. 

Substituting 0)(
=

∂
∂

jw
pE  into Eq. (3.18) will obtain )()( 1 pdW TT φφφ −= . The 

parameters jw  are iteratively updated until the learning processes stably converge. In 

the algorithms, because the parameters jjc σ,  in the hidden layer have been 

previously determined, thus the recursive adjustment of weight jw  is capable of 

significantly reducing learning time when compared to error back propagation. The 
advantage of effectively reducing learning time is an important factor for choosing the 
RBF algorithm as the basis for our prediction model because in addition to capturing 
the traffic trend, we are also predicting the variance of traffic dynamics in the short run. 
If a prediction model is slow to respond to changing variables, the utility of the 
prediction model will be greatly restricted. Figure 3-6 depicts the typical architecture 
of a RBF neural network in the context of predicting traffic dynamics, collected from 
loop detectors. 
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Figure 3-6 A typical RBF network and traffic dynamics from loop detectors 

 
3.4.2 RTRL Algorithms 
 
In contrast to the static learning algorithms, such as RBFNN, the real-time recurrent 
neural network (RTRNN) can be considered as a BPN with feedback loops connecting 
to every hidden node, which exhibits dynamical learning algorithms. The main 
difference compared with BPN is that the outputs are used as part of the next 
sequentially timed input, i.e., the output at time (t+1) is based upon the current input 
and previous outputs. Furthermore, the RTRNN consists of three layers: a 
concatenated input-output layer with (m+n) nodes, a processing (hidden) layer with n 
nodes and an output layer with k outputs. Let y(t) denote the n-tuple of outputs of the 
n-processing neurons at time t and x(t) the m-tuple of external inputs to the network at 
time t. We concatenate y(t) and x(t) to form the (m+n)-tuple u(t), with B denoting the 
set of indices for the processing neurons and A the set of indices for the external inputs, 
so that 
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Biifty
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By adopting the indexing convention just described, a hidden network netj at time t is 
obtained by summing up the weighted inputs with a weight matrix w. After the 
network is transferred by an activation function f( ), the output yj(t) is used as a 
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feedback input in the next time step and summing up the weighted feedback inputs 
with a weight matrix v is repeated. Likewise, after the transformation, the network 
output, zk(t), is passed to an output layer. The above said procedure can be expressed as 
the following equations: 

∑
∪∈

−−=
BAj

ijij tutwtnet )1()1()(  (3.20) 

))(()( tnetfty jj =  (3.21) 

∑= )()()( tytvtnet jkjk  (3.22) 

))(()( tnetftz kk =  (3.23) 

 
Concerning the algorithms for computing the weight matrix w, v as well as the error 
function, we denote dk(t) as the desired value of the k-th neuron at time t and define 
ek(t) to be the difference between the desired value and the network output at time t, 
i.e., 

)()()( tztdte kkk −=  (3.24) 

Then we define the error function, E(t): 
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According to the steepest descent method, the amount of adjusted weight for vkj(t) and 
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where 1η , 2η  are the learning rate, 
And 
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According to error back propagation algorithms (Chang and Chang, 2005), a new 

variable with three dimension can be defined as )(tj
mnπ  which is called a dynamic 
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variable 
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Accordingly 

[ ] )()())(()()1( 2 ttvtnetftetw j
mnkjkkmn πη ∑ ′=−Δ  (3.31) 

 
In brief, the steps involved in RTRL algorithms can be summarized as follows and 
depicted in Figure 3-7: 

 
Step 1. Randomly initialize the weight wmn(0) and vkj(0). 
Step 2. Input the xi(t) into the RTRL network and compute the yj(t), zk(t), then use 

)( τ+ty j  as feedback to the concatenated input-output layer together with 

)( τ+tx j  as new inputs. 

Step 3. Compute the difference between desired value dk(t) and network output 
zk(t). 

Step 4. Update )(tvkjΔ  according to Eq. (3.26). 

Step 5. Update )1( −Δ twmn  according to Eq. (3.27). 

Step 6. Increment t by 1 and go to step 2. 
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Figure 3-7 A typical RTRL network and traffic dynamics from loop detectors 
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CHAPTER 4 PRELIMINARY TESTING 

 
 
In this study, traffic time series were directly extracted from dual-loop detectors 
installed at a given 3~4-lane mainline segment of the northbound Sun Yat-Sen 
Freeway of Taiwan, located in the northern area of Taipei County. Figure 4-1 is the 
sites of detector stations. In order to discover the features of traffic time series in 
different situations, we divided the collected raw data into three groups. Data in the 
first group was counted aggregately by average flow, time-mean-speed and percent 
occupancy per 5-minute per approach. The data was extracted from station N27.9 near 
station 433, collected from traffic inbounds to Taipei City. Data in the second group 
contained flow, time-mean-speed and percent occupancy per 20-second per lane 
recorded in median lane. The data was collected from stations 402, 404, 421 and 433. 
Stations 402 and 404 are outbound from Taipei City, whereas stations 421 and 433 are 
inbound to the City. Data in the third group was a processed data set, i.e., we 
combined ten-workday time series, which every workday time series was come from 
the second group data. Then, we divided the combined time series into four subgroups 
according to four time-of-day intervals, i.e., 00:00-03:00, 06:00-09:00, 12:00-15:00 
and 18:00-21:00. The purpose of processing the traffic time series was to compare 
different features of traffic series between four time-of-day intervals. Similarly, in 
order to examine the features between traffic time series with various time scales, in 
the second group, we further accumulated the 20-second traffic series into longer-term 
data, including 1-minute, 3-minute and 9-minute series, of which, flows were directly 
summed from each 20-second flow, speeds were the weighted average of each 
20-second time-mean-speed multiplied by its corresponding flow and occupancies 
were the arithmetic mean of each 20-second occupancy. Likewise, in the first group, 
the 5-minute approach data sets were accumulated into 15-minute, 30-minute and one 
hour time series via the above method. The above detailed calculations and related 
statistics were illustrated as the following Section 4.1. 
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Figure 4-1 Sites of detector stations 402, 404, 421, 433 and 27.9 

 
4.1 Calculation and Statistics of Data 
 

As above mention, our empirical data is extracted directly from stationary sensors. The 
calculation and acquisition of data from stationary sensors are described as follows. 
When a vehicle enters the detection zone, the sensor is activated and remains so until 
the vehicle leaves the detection zone. We consider “0” and “1” signal to individually 
represent the absence of a vehicle and the presence of a vehicle. Figure 4-2(a) is the 
signals output from a detector during an observing time T, and Figure 4-2(b) is the plot 
of vehicles passing over a paired detector A and B. The on-time referred to as the 
vehicle occupancy time requires the ith vehicle to travel a distance equivalent to its 
length plus the length of the detection zone. The off-time between vehicles is the time 
gap. Apparently, the ith vehicle occupancy time and percent occupancy can be easily 
obtained by 

AifAirocci ttt −=  or BifBirocci ttt −=  (4.1) 
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where tocci : the individual occupancy time (seconds) 
 tif : the instant time that ith vehicle is detected (seconds) 
 tir : the instant time that ith vehicle is off detected (seconds) 
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 % occ : percent occupancy 
 N : number of vehicles detected in time period T 
 T : selected time period (seconds) 

 
Since vehicle occupancy time is a function of vehicle speed, vehicle length and 
distance between two detectors as shown in the following equations: 
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where ix&  : speed for vehicle i (meter per second) 

BA DD ,  : length of detector A and detector B (meter) 
D : distance between detector A and detector B (meter) 
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Figure 4-2 Output signals from a detector and vehicles passing over two detectors 
 
Because the traffic raw data are measured in 20-second, one further accumulates them 
into 1-minute, 3-minute and 9-minute counts which can be calculated in the following 
equations: 
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where iq : ith flow rate (vehicles per 20-second per lane) 

iu : ith time-mean-speed (kilometer per hour per lane) 

iocc% : ith percent occupancy time per lane 

Tq : accumulated flow rate (vehicles per 20T-second per lane) 
Tu : weighted time-mean-speed (kilometer per hour per lane) 

Tocc% : percent occupancy per lane for 20T-second time intervals 
T: constant 

Note: If T equals to 3, qT means 60-second (i.e. 1-minute) volume; if T equals to 9, qT 

means 180-second (i.e. 3-minute) volume, and so on…. 
 
If one would like to gather the lane quantities into approach quantities, the calculation 
of approach for traffic series are counted in following equations. 
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where T
jq : jth lane accumulated flow rate (vehicles per 20T-second) 

T
ju : jth lane weighted time-mean-speed (kilometer per hour) 

T
jocc% : jth lane percent occupancy for 20T-second time intervals 

TQ : approach flow rate (vehicles per 20T-second per approach) 
TU : approach weighted time-mean-speed (kilometer per hour per approach) 

TOCC% : approach percent occupancy for 20T-second time intervals 
n: number of lanes 

 
From our selected traffic time series, there are some invariant features noteworthy. For 
instance, the outbound flow rates at stations 402 and 404 in the morning peak hours 
(06:00-09:00) are relatively lower than the evening peak hours (18:00-21:00); while 
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the inbound flow rates at stations 421 and 433 in the morning peak hours are 
approximately equal to evening peak hours. This feature concurs with the 
characteristics of working trips that most suburb commuters drive into Taipei City in 
the morning peak hours and leave office in the evening peak hours, i.e., the temporal 
flow patterns at different detection stations are influenced by direction. Similarly, the 
speed and occupancy patterns are also affected by direction. In addition, we notice 
from Table 4-1(a) and (b) that the degrees of variation of traffic series depend on times 
of day in general. For instance, early hours (00:00-03:00) has the largest coefficient of 
variation (CV) while the evening peak period (18:00-21:00) has the smallest CV. The 
degrees of variation also decline with time scale, i.e., traffic series measured in 
20-second has the largest CV, followed by 1-minute, 3-minute, and then 9-minute. 
Moreover, the CVs of flow and occupancy are larger than the CV of speed. Perhaps 
the speed limit regulation has reduced its degree of variation. 
 
On the other hand, the mean and CV of successive traffic series at station N27.9 is 
listed in Table 4-1(c). From this table, one can simply notice the individual values of 
successive traffic series are not identical, but similar, including mean and CV. In 
addition, the CV of speed is the smallest, while the CVs of flow and occupancy are 
approximately equal. The variation degrees of successive traffic time series also 
decline with increasing time scale. The above consistent statistic characters illustrate 
that the reliability of our traffic series is (i.e., no apparent incidents). Figure 4-3 
demonstrates the successive one-dimensional traffic time series measured in five 
minutes; while Figure 4-4 shows the traffic series measured in 1-minute scale during 
five workdays. Figure 4-5 displays a 24-hour traffic series exhibiting heavy traffic 
with various time scales on a typical workday. From Figure 4-3 and Figure 4-4, it is 
noted that the traffic time series, measured in 1-minute as well as 5-minute scale, vary 
similarly and the traffic patterns exhibit in different days, but they never exactly repeat. 
From Figure 4-5, we observe the fluctuation of 20-second time series is the most 
severe. As the measured time interval gets larger, the degrees of variation decline. 
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Table 4-1 The mean and coefficient of variation (CV) of traffic time series 
(a) outbound 

Flow Speed Occupancy 
Station 402 Station 404 Station 402 Station 404 Station 402 Station 404Time 

Measured 
time 

interval Mean CV Mean CV Mean CV Mean CV Mean CV Mean CV
20-sec 2.1 0.84 0.9 1.36 92.14 0.13 98.54 0.09 2.91 0.98 1.03 1.62
1-min 6.2 0.67 2.8 0.91 91.77 0.08 98.55 0.06 2.92 0.75 1.03 1.10
3-min 18.6 0.57 8.3 0.70 91.23 0.05 98.54 0.04 2.93 0.62 1.03 0.81

00:00 
-- 

03:00 
9-min 56.1 0.51 24.8 0.58 91.07 0.04 98.53 0.03 2.94 0.56 1.04 0.69
20-sec 4.8 0.64 2.8 0.94 87.03 0.11 96.28 0.08 7.47 0.69 3.28 1.04
1-min 14.3 0.53 8.3 0.74 86.66 0.07 96.28 0.05 7.46 0.57 3.27 0.80
3-min 42.5 0.48 25.0 0.59 86.44 0.05 96.28 0.04 7.42 0.50 3.26 0.64

06:00 
-- 

09:00 
9-min 125.0 0.48 75.0 0.53 86.40 0.04 96.34 0.03 7.28 0.49 3.20 0.60
20-sec 5.9 0.44 3.3 0.76 81.55 0.11 94.47 0.07 9.95 0.51 3.90 0.84
1-min 17.7 0.30 9.8 0.53 81.10 0.08 94.47 0.05 9.95 0.35 3.90 0.57
3-min 53.1 0.21 29.3 0.40 80.86 0.05 94.48 0.03 9.95 0.24 3.90 0.41

12:00 
-- 

15:00 
9-min 159.0 0.16 87.9 0.32 80.85 0.04 94.50 0.03 9.93 0.18 3.88 0.35
20-sec 8.2 0.38 6.4 0.57 75.05 0.12 86.41 0.10 14.47 0.45 8.93 0.63
1-min 24.6 0.27 19.2 0.42 75.04 0.10 86.41 0.07 14.48 0.32 8.93 0.47
3-min 74.0 0.20 57.7 0.33 75.03 0.08 86.40 0.05 14.50 0.24 8.96 0.36

18:00 
-- 

21:00 
9-min 223.1 0.17 173.3 0.29 74.92 0.07 88.40 0.08 14.59 0.20 8.89 0.42

(b) inbound 
Flow Speed Occupancy 

Station 421 Station 433 Station 421 Station 433 Station 421 Station 433Time 
Measured 

time 
interval Mean CV Mean CV Mean CV Mean CV Mean CV Mean CV
20-sec 1.4 1.27 1.2 1.62 94.23 0.21 99.58 0.08 1.50 1.59 1.30 1.76
1-min 4.3 1.13 3.7 1.49 94.19 0.19 99.59 0.05 1.50 1.40 1.30 1.64
3-min 12.9 1.04 11.1 1.44 94.17 0.19 99.59 0.03 1.51 1.30 1.31 1.58

00:00 
-- 

03:00 
9-min 38.6 0.96 33.1 1.39 93.34 0.18 99.61 0.02 1.50 1.18 1.30 1.53
20-sec 7.2 0.68 7.2 0.64 90.98 0.13 82.56 0.28 9.24 0.79 12.46 0.93
1-min 21.6 0.62 21.5 0.58 90.66 0.12 82.62 0.27 9.22 0.72 12.42 0.88
3-min 64.4 0.61 64.2 0.55 90.48 0.11 82.74 0.27 9.14 0.69 12.35 0.85

06:00 
-- 

09:00 
9-min 188.7 0.60 189.5 0.55 90.52 0.10 83.14 0.26 8.92 0.69 12.03 0.85
20-sec 5.7 0.50 5.9 0.47 92.77 0.14 90.34 0.13 7.26 0.99 7.86 0.82
1-min 17.0 0.34 17.8 0.35 92.26 0.11 90.34 0.12 7.26 0.75 7.86 0.73
3-min 51.0 0.24 53.4 0.27 91.84 0.10 90.38 0.11 7.28 0.60 7.84 0.67

12:00 
-- 

15:00 
9-min 152.5 0.19 159.8 0.22 91.76 0.09 90.38 0.11 7.26 0.49 7.81 0.65
20-sec 6.80 0.49 7.6 0.44 89.95 0.12 87.71 0.10 8.75 0.70 9.85 0.54
1-min 20.3 0.36 22.7 0.33 89.30 0.10 87.69 0.08 8.75 0.58 9.86 0.43
3-min 61.2 0.27 68.2 0.26 88.73 0.09 87.65 0.07 8.79 0.48 9.89 0.36

18:00 
-- 

21:00 
9-min 185.5 0.23 205.5 0.23 88.40 0.08 87.46 0.06 8.89 0.42 10.00 0.31

Units: flow = vehicles/time interval-lane; speed = kilometer/hour; occupancy = % 
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(c) station N27.9 
Flow Speed Occupancy Flow Speed OccupancyDate 

Mean CV Mean CV Mean CV 
Date

Mean CV Mean CV Mean CV 
1th Feb. 252.3 0.529 90.97 0.035 6.17 0.562 16th Feb. 270.6 0.488 89.37 0.037 6.97 0.509
2th Feb. 244.8 0.547 87.60 0.057 6.94 0.560 17th Feb. 263.7 0.524 86.75 0.156 7.55 0.698
3th Feb. 222.0 0.553 84.00 0.073 6.99 0.571 18th Feb. 273.6 0.527 89.53 0.031 7.39 0.592
4th Feb. 220.7 0.639 83.98 0.091 6.82 0.530 19th Feb. 268.3 0.512 90.19 0.030 6.87 0.526
5th Feb. 256.5 0.540 86.85 0.048 8.05 0.870 20th Feb. 284.5 0.507 88.26 0.039 7.54 0.524
6th Feb. 285.0 0.497 88.75 0.036 7.49 0.518 21th Feb. 283.3 0.462 90.07 0.033 7.12 0.493
7th Feb. 285.1 0.486 89.60 0.037 7.04 0.522 22th Feb. 254.9 0.469 90.34 0.037 6.22 0.504
8th Feb. 261.4 0.458 89.92 0.032 6.41 0.492 23th Feb. 270.6 0.488 89.37 0.037 6.97 0.509
9th Feb. 270.4 0.491 89.00 0.043 7.09 0.510 24th Feb. 288.6 0.469 89.87 0.028 7.49 0.481
10th Feb. 265.5 0.510 88.57 0.038 6.91 0.530 25th Feb. 268.3 0.525 89.69 0.036 7.17 0.537
11th Feb. 256.0 0.530 89.21 0.063 6.84 0.535 26th Feb. 269.3 0.522 88.80 0.038 7.39 0.550
12th Feb. 260.6 0.502 88.43 0.042 6.79 0.532 27th Feb. 287.1 0.509 89.03 0.035 7.62 0.529
13th Feb. 285.0 0.497 88.75 0.036 7.49 0.518 28th Feb. 259.8 0.461 90.88 0.028 6.51 0.482
14th Feb. 285.1 0.486 89.60 0.037 7.04 0.522 29th Feb. 269.3 0.408 91.19 0.026 6.59 0.422
15th Feb. 264.6 0.453 88.76 0.033 6.41 0.492        

Units: approach flow = vehicles/5-minute time interval; approach speed = kilometer/hour; approach occupancy = 

% 
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Figure 4-3 One-dimensional successive (one month) traffic time series measured in 

five minutes per approach (station N27.9) 
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Figure 4-4 One-dimensional 1-minute traffic series for five workdays (station 433) 
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Figure 4-5 One-dimensional traffic series measured in various time scales per lane on 

a typical workday with congested case (station 421) 
 

4.2 A Filtering Approach to Discriminate Features of Traffic Dynamics 
 

Aside from research into the statistics of real traffic data, this study proposes a novel 
filtering approach to inspect the characteristics of real-world traffic flow dynamics. 
The proposed approach contains four steps as depicted in Figure 4-6. The first step is 
to filter out periodic/quasi-periodic trajectories by the Fourier power spectrum. The 
second step is to further filter out equilibrium (fixed) points by the precise largest 
Lyapunov exponent. The third step is to distinguish random patterns from chaotic or 



 47

stochastic patterns by comparing the iterated function system (IFS) clumpiness maps 
between original and surrogate data. The final step is to filter out the plausible 
stochasticity from chaoticity using correlation dimension. The rationales for the 
proposed filtering approach are explained as follows. 
 

 
Figure 4-6 The proposed filtering approach (Lan et al., 2007c) 

 
Firstly, Fourier analysis lets us determine the frequency content of some signals. If the 
signal is periodic or quasi-periodic, the Fourier power spectrum will consist of a 
sequence of “spikes” at the fundamental frequencies, their harmonics. However, if the 
signal is neither periodic nor quasi-periodic (for example, if it is chaotic), then the 
Fourier power spectrum will be continuous. Thus, the sudden appearance of a 
continuous power spectrum from a discrete spectrum, as some parameter of the system 
is changed, is viewed as an indicator of the onset of chaotic behavior (Hilborn, 2000). 
However, a continuous Fourier power spectrum can also arise if external noise is 
present. Thus, the presence of a continuous power spectrum cannot necessarily be 
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taken as conclusive evidence for the existence of chaos, unless that the noise is absent 
and that the experimental resolution is sufficient to see all the frequencies that might 
be present for the expected number of degrees of freedom. Sprott (2003) pointed out 
that a stochastic system with a non-uniform power spectrum can masquerade for chaos. 
Because of the noise influence, it seems easier to differentiate periodic and 
quasi-periodic trajectories from continuous power spectrum. Besides, the power 
spectrum can be affected by the noise of experimental data in such a way that a noisy 
deterministic chaos might not definitely have a broadband spectrum. Hence, it is 
suitable to distinguish periodic and quasi-periodic from chaotic trajectories, with 
describing “main peak with broadband noise-like” rather than just “broadband 
spectrum,” if we infer that nonlinear trajectories exist deterministic chaoticity. The 
proposed filter approach will make use of the good features of power spectrum -- if the 
power spectrum is narrow (clear) and has only few (two or three) dominant sharp 
spikes, it must be periodic or quasi-periodic; if it is “main peak with broadband 
noise-like” spectrum, it could be chaotic; if it is stochastic, there must be many 
fundamental frequencies resolved with higher resolution. 
 
Secondly, the exponential divergence of nearby trajectories in phase space is 
recognized as the hallmark of chaotic behaviors (Drazin, 1994). If we take two points 

in the phase space 1nx  and 2nx  and indicate their distance as 021 δ=− nn xx , then 

after time t it is expected that the new distance δ  will be equal to teλδδ 0= , where 

λ  is called the Lyapunov exponent. In general, for an m-dimensional phase spaces the 
rate of expansion or contraction of trajectories is described for each direction by one 
Lyapunov exponent, resulting in m different λ s, wherein positive value indicates 
expansion of the orbit; zero value indicates periodic trajectories and negative value 
indicates contraction. Of the m different λ s, the main interest is to look at the largest 

value 0λ  since it can be easily calculated and also yields evidence for the presence of 

deterministic chaos in the observed data (Gencay, 1996). If 0λ  is positive, the time 

series can be quasi-periodic, chaotic or stochastic. If 0λ  is zero, the trajectories will 

eventually converge to a period-k sink (k is greater than or equal to 2); thus, the time 

series is periodic. If 0λ  is negative, the time series will converge toward stable sinks 

-- equilibrium (fixed) points. Rosenstein et al. (1993) proposed a method to calculate 
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0λ  from an observed times series. However, since 0λ  is very sensitive to the noise of 

a time series, precisely estimating 0λ  is very critical. To obtain a precise value for 0λ , 

one needs to know in advance the proper time delay and embedding dimension. In this 
study, we employ average mutual information (AMI) method, proposed by Fraser and 
Swinney (1986), to estimate the proper time delay. Besides, we employ false nearest 
neighbors (FNN) algorithm, developed by Kennel et al. (1992), to estimate the 
sufficient dimension for phase space reconstruction. 
 
Thirdly, iterated function systems provide a well-defined method to produce fractals 
with specific desired characteristics and appearance. It also suggests a data-analysis 
method (Peak and Frame, 1994). Suppose we play a game with a time series of 

uncorrelated random numbers 10 << nX  on a square with moving a fraction f =0.5. 

That is, label the corners of the square ABCD clockwise from the upper left. Start 
anywhere in the square, such as the corner A. If the first value in the time series has 

25.00 1 << X , move half way to A; if 5.025.0 1 << X , move half way to B, and so 
forth. Continue iterating until the square begins to fill in. If the values are uncorrelated, 
then the points will be uniformly scattered in the square. The clumpiness of the plot is 
an indicator of determinism, whether it may be chaos, colored (correlated) noise or 
white (uncorrelated) noise. Since the IFS clumpiness does not very well distinguish 
chaos from colored (correlated) noise. It may be necessary to further compare the 
properties between an original time series and its surrogates, which are designed to 
mimic the statistical properties of the original data, but with the determinism removed. 
The surrogate data can be easily generated by randomly shuffling the original data. 
While shuffling the sequences will preserve the same probability distribution as the 
original data, namely, the surrogates for any original time-series data must be random 
(Theiler et al., 1992). 
 
Lastly, correlation dimension is a measure used to examine the phenomenon that the 
presence of a data point may affect the position of the other point lying on the attractor. 
If the value of the correlation dimension is finite, low and non-integer, the system is 
possibly considered as low-dimensional chaos. The saturation value of the correlation 
dimension is defined as the correlation dimension of the attractor, or called attractor 
dimension.  In contrast, if an attractor dimension cannot reach saturation or is 
saturated in very high-dimension, then the trajectories of that time series could be 
stochastic (Shang et al. 2005). Grassberger and Procaccia (1983) showed that 
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correlation dimension d can be evaluated by using the correlation integral )(rμ , which 
is the probability that a pair of points (si, sj) chosen randomly in the reconstructed 
space are separated by a distance less than r. The details of calculating )(rμ  are as 
the same as the Eq. (3.4) ~ (3.6).  
 
4.3 Result of Filtering Approach 
 
By using the proposed filtering approach, a systematic inspection on the nonlinear 
features of temporal flow dynamics was carried out and the results of each step were 
presented as follows. 
 
Table 4-2 summaries the results of power spectra for different combinations, while 
Figure 4-7 illustrates the power spectrum for the one-minute flows at station 421. 
According to the power spectrum plots, one may find that, regardless of time intervals, 
all data can be deemed as continuous in the form of so-called “noise-like broadband.” 
Neither an obvious spike nor a sequence of spikes could be identified for the traffic 
flow time series as periodic or quasi-periodic trajectories. However, there are still 
some discrepancies between different periods. For instance, during the off-peak hours, 
the power spectrum does not show main peaks. In other words, the traffic flow during 
off-peak hours has revealed random coupled with no exhibiting order or determinism. 
But the most important thing is that if one wishes to diagnose the characters of 
nonlinear dynamics more precisely, one needs further diagnosis by proceeding from 
the second step to the fourth step. The power spectrum in the first step is just to filter 
out periodic or quasiperiodic trajectories from nonlinear dynamical properties. 
 
In the second step, we use AMI and FNN methods to determine the most appropriate 
time delay and embedding dimension, respectively. It should be noted that owing to 
the noise effect of traffic data, it is difficult to decrease the percent of FNN to zero. In 
this paper, we set the maximum acceptable percent of FNN as under 5%. Figure 4-8 is 
an example of AMI and FNN analysis at station 421. The left-hand-side plot of Figure 
4-8 shows that the first low point corresponding to time delay is one time steps and the 
right-hand-side plot tells us if we set embedding dimension as 6, the percent of FNN 
will drop as low as about 3%, which is lower than 5%. Therefore, we know the proper 
time delay for the one-minute flows from 06:00 am to 09:00 am at station 421 is one 
time step (equivalent to one-minute) and the proper embedding dimension is 6. 
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Table 4-2 Summary of power spectra 
Times of day Measured time interval Station 402 Station 404 Station 421 Station 433

20-sec + + + + 
1-min + + + + 
3-min + + + + 00:00--03:00 

9-min + + x x 
20-sec + + + + 
1-min + + + + 
3-min + + + + 06:00--09:00 

9-min x x x x 
20-sec - - - - 
1-min x x - - 
3-min x x + + 12:00--15:00 

9-min x x x x 
20-sec + + + + 
1-min + + - - 
3-min + + + + 18:00--21:00 

9-min x x x x 
+ represents one main peak with flat or descending noise-like 
x represents peaks with noise-like 
- represents flat noise-like or many fundamental frequencies 
 

 

Figure 4-7 An illustration of power spectra of one-minute flows (Station 421) 
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Figure 4-8 An illustration of AMI and FNN of one-minute flows (Station 421) 

 
After choosing appropriate time delay and embedding dimension, we can then 

calculate the largest Lyapunov exponent 0λ . The results are summarized in Table 4-3. 

It is found that the largest Lyapunov exponents are positive in most cases, indicating 
that the state trajectories of traffic flow in workdays would not maintain equilibrium 
fixed points (either zero flow or capacity flow) for a long time. The only exceptions 
are the data from stations 421 and 433 during the early hours (00:00 am to 03:00 am). 

The negative values of 0λ  for these two stations suggest that the traffic flows in early 

hours measured in 20-second interval are so lulled (very few travelers going into the 
city) that the trajectories often converge to fixed points (zero flow or near zero 

volume). In contrast, the positive values of 0λ  for the two outbound stations 402 and 

404 during 00:00 am to 03:00 am suggest that the 20-second flows in early hours will 
not converge to zero. It agrees to the fact that quite a number of travelers leave Taipei 
city after their night activities during the midnight. 
 
The above two steps have successfully ruled out the empirical flow patterns being 
periodic or quasi-periodic motions or converging to fixed points. However, we still 
cannot distinguish if the traffic flow patterns are chaotic, stochastic or random. As 
noted previously, IFS provides a well-defined method to produce fractals with specific 
desired characteristics and appearance. Through the comparison of traffic flow 
properties between an original time series data and its surrogates, one can easily 
distinguish randomness from nonlinear complex time series since the clumpiness plot 
of surrogate (randomized) data is expected to be uniformly dense and shows no 
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fractals at all. 
 

Table 4-3 Summary of the largest Lyapunov exponents 

Time of day Measured time interval Station 402 Station 404 Station 421 Station 433

20-sec 0.263 0.215 -0.115 -0.054 
1-min 0.549 0.328 0.566 0.343 
3-min 0.546 0.249 0.462 0.409 00:00--03:00 

9-min 0.416 0.243 0.438 0.341 
20-sec 0.553 0.390 0.585 0.578 
1-min 0.600 0.317 0.744 0.590 
3-min 0.495 0.263 0.482 0.516 06:00--09:00 

9-min 0.539 0.348 0.356 0.395 
20-sec 0.573 0.454 0.628 0.596 
1-min 0.716 0.441 0.744 0.688 
3-min 0.598 0.366 0.559 0.570 12:00--15:00 

9-min 0.410 0.376 0.413 0.487 
20-sec 0.636 0.356 0.682 0.627 
1-min 0.690 0.422 0.705 0.638 
3-min 0.566 0.191 0.552 0.536 18:00--21:00 

9-min 0.432 0.184 0.501 0.418 
 
Table 4-4 summarizes the diagnosing results for various combinations. Figure 4-9 
illustrates the IFS maps for the twenty-second flows during 06:00 am - 09:00 am at 
station 421. The left clumpiness plot is for original data and the right plot is for 
surrogate data. We find that noticeable difference exists in the IFS clumpiness maps 
between the original data and its surrogates in periods 06:00 am - 09:00 am and 18:00 
pm - 21:00 pm. However, off-peak data during 12:00 pm - 15:00 pm does not show 
obvious difference between two IFS clumpiness maps. As to the state trajectories of 
traffic flow in midnight, it is the fact that most of them are close to random because 
their IFS clumpiness maps between the original data and its surrogates do not show 
obvious difference. Such random patterns agree to the fact that most of drivers can 
freely drive their vehicles as long as not speeding, i.e., there is no obvious relationship 
between two vehicles shown in chronological order. 
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Table 4-4 Summary of IFS clumpiness maps 

Time of day Measured time interval Station 402 Station 404 Station 421 Station 433

20-sec - - - - 
1-min - - - - 
3-min - - - - 00:00--03:00 

9-min - - - - 
20-sec + + + + 
1-min + + + + 
3-min + + + + 06:00--09:00 

9-min + + + + 
20-sec - + - - 
1-min - - - - 
3-min + + + + 12:00--15:00 

9-min + + + + 
20-sec + + + + 
1-min + + + + 
3-min + + + + 18:00--21:00 

9-min + + + + 
+ represents obvious or visual difference (original data have obvious or secret fractals but surrogates do not 

have; or both have fractal sets with dissimilar patterns) 
- represents no visual or secrete difference (both original and surrogate data have no fractal sets; or original 

data have secret fractals but surrogates do not have) 
 

 
Figure 4-9 An illustration of IFS clumpiness maps of 20-second flows 

(06:00 am - 09:00 am, Station 421) 
 
The final traffic flows are observed with chaotic and stochastic features after we filter 
out the above nonlinear patterns. Nevertheless, the external appearance of 
deterministic chaoticity and stochasticity are similar. It is difficult to diagnose the 
characteristics for such nonlinear time series by using a single figure, especially while 
the short-term traffic flow dynamics surging along with extreme fluctuation as well as 
involving with noise. In this study, a critical parameter, correlation dimension, is 
employed to distinguish the patterns between them. Table 4-5 reveals that state 
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trajectories of traffic flow during morning and evening peak-hours periods measured 
with coarse time intervals, such as 9-minute, exhibit more deterministic-like (chaotic) 
than stochastic patterns because the correlation dimensions are finite, low and 
non-integer. In contrast, state trajectories of traffic flow with shorter interval, such as 
20-second and 1-minute, will show stochastic pattern because their attractor 
dimensions cannot reach saturation or converge in very high (over six) dimensions. 
 
Table 4-5 also shows that during the off-peak period, traffic dynamics exhibit more 
stochastic than chaotic patterns because their attractor dimensions are higher than 
other corresponding time periods. Simultaneously, we notice that in the early hours 
(00:00-03:00) the values of correlation dimension are low and non-integer, too. It does 
not represent that the feature of traffic flow in the period is a deterministic chaoticity, 
but it shows a random phenomenon as mentioned previously instead. An in-depth 
inspection to the raw data clarifies that during the midnight the state trajectories of 
traffic flow associated with copious zero- and identical volumes reconstructed in 
multidimensional spaces will masquerade as a low attractor dimension. Fortunately, 
the parameter of IFS clumpiness maps helps filter out the random pattern during the 
early hours. 
 

Table 4-5 Summary of the correlation dimension 

Time of day Measured time interval Station 402 Station 404 Station 421 Station 433

20-sec 3.3 3.7 3.3 3.3 
1-min 3.2 3.5 3.2 3.3 
3-min 2.9 3.3 2.8 3.1 00:00--03:00 

9-min 2.7 3.2 2.5 2.6 
20-sec - - - - 
1-min 5.4 5.2 5.6 5.6 
3-min 4.5 4.6 4.4 4.3 06:00--09:00 

9-min 3.3 3.6 3.2 3.2 
20-sec - - - - 
1-min - - - - 
3-min 5.4 5.1 5.4 5.3 12:00--15:00 

9-min 4.6 4.6 4.9 4.7 
20-sec - - - - 
1-min 5.7 5.7 5.8 5.7 
3-min 4.8 4.9 4.7 4.5 18:00--21:00 

9-min 3.7 3.9 3.5 3.4 
- represents an attractor dimension cannot reach saturation over six dimensions 
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In this section, a novel filtering approach was proposed to analyze the features of 
nonlinear traffic flow time-series data directly extracted from four detector stations on 
Taiwan Freeway. Different nonlinear patterns have been found, depending on the 
measured time intervals, times of day and locations. During the peak hours, the 
temporal flows measured in larger time intervals are in general close to chaotic-like 
(deterministic) patterns; but they are close to stochastic-like patterns if measured in 
shorter time intervals. During the off-peak period, the temporal flows are close to 
stochastic-like patterns, too. At midnight, most temporal flows reveal random patterns; 
some measured in 20-second interval even converge into equilibrium (fixed) points 
when most of travelers depart downtown after their night activities during the 
midnight. 
 
4.4 Testing for Predictability of Various Techniques 
 

In addition to the proposed filtering approach, in this section we further describes the 
main procedures and testing results for the predictability of various techniques 
depicted in Chapter 3. We generated two time-series data categories including linear 
stochastic time series and nonlinear deterministic time series in advance of prediction 
therein. The stochastic time series derived from a linear equation was adopted to 
compare the predictability between the linear autoregressive method and the RTRL 
algorithms while the nonlinear time series derived from a first-order differential-delay 
equation was used to compare the predictability between the simple nonlinear method 
and the RTRL algorithms. Details about the preliminary test procedures are described 
as follows: 
 

First, an AR(1) time series, ttt exx +−=−+ )4.0(75.0)4.0( 1  with )1,0(~
..

Ne
dii

t  was used 

to compare the predictability between the linear model and the RTRL algorithms. In 
the AR(1) linear time series, two hundred independent points et, which conformed to 
Gausian distribution, were created and an initial xt was picked to iterate two hundred 
times together with et. Then we set the order of the above model be equal to one to 
compute the average prediction error and residuals for each time step. After 
computation, we learned that the root-mean-square error (RMSE) was equal to 1.03. 
Employing the same time series xt as an input as well as xt+1 as output, we adopted the 
RTRL algorithms to train a network and calculated the RMSE, which equaled 0.979 for 
one trained data set and 0.93 for another test data set. In order to train the AR(1) model, 
in the RTRL neural network, six nodes were used to process the recurrent feedbacks 
and the learning rate was set to 0.1. The goal of the RTRL network we set was either 
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that the RMSE equals 0.01 or the training times reached 700 times, whereupon the 
training iterations would stop. In Figure 4-10, the panel (a) represents the difference 
between the outputs of the AR(1) model and desired values; while the panel (d) 
represents the difference between the outputs of the RTRL network and desired values. 
It’s obvious to indicate that for a stochastic time series, the accuracy of prediction by 
adopting RTRL algorithms is superior to adopting linear prediction both from 
observing the difference in figure and comparing the values of RMSE. 
 
Second, a first-order differential-delay equation, which is the famous Mackey-Glass 

equation: )(1.0
)(1

)(2.0)(
10 tx

tx
tx

dt
tdx

−
−+
−

=
τ
τ , was used to compare the predictability between 

the simple nonlinear method and the RTRL algorithms. This equation represents a 
physiological responsive system, which can be used as an index to examine the 
features of a nonlinear time series (Mackey and Glass, 1977). For instance, the series 
displays periodic motions when τ  is a relatively small value, whereas for τ  larger 
than 17, it displays a chaotic phenomenon. We employed an average mutual 
information (AMI) approach and a false nearest neighbor (FNN) algorithm to search 
for the proper time delay and to determine the minimal sufficient embedding 
dimension. Once the appropriate time delay and the sufficient dimension were 
determined, we were able to map the one-dimensional differential equation into 
multidimensional spaces and make use of the neighboring measurements in 
multidimensional spaces to predict future points. In accordance with this approach, a 
time series which contained five hundred data points was reconstructed into 
multidimensional spaces and was forward predicted five hundred time steps. The panel 
(b) in Figure 4-10 represents the predicting results showing the difference between 
output of the simple nonlinear technique and desired values. The RMSE was equal to 
0.1268. Similarly, we adopted the RTRL algorithms to train a network, in which the 
input and output are the as same as the above time series, to predict the first-order 
differential-delay equation. In the RTRL network, twelve nodes were used to process 
the recurrent feedbacks and the learning rate was set to 0.1. The goal of the RTRL 
network we set was either that the RMSE equals 0.07 or the training times reached 
2,000 times, whereupon the training iterations would stop. The panel (e) in Figure 4-10 
represents the prediction results, showing the difference between output of RTRL 
algorithms and desired values. The RMSE was equal to 0.07. From Figure 4-10 and 
RMSE, again we learned that for a deterministic equation, the accuracy of prediction 
by adopting RTRL algorithms is superior to adopting the simple nonlinear technique. 
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Note that if further observing the top panel in Figure 4-10(b), we will find that the 
errors of prediction by using the simple nonlinear technique are not the same as time 
evolves, but rather the differences are getting larger, i.e., the accuracy of prediction is 
getting low as time evolves. By contrast, the errors of prediction by using the RTRL 
algorithms do not exhibit such a situation, but show large differences during the first 
steps. The right panels of Figure 4-10 display the difference between the model output 
and desired values by adopting the simple nonlinear technique (see panel c) and 
adopting the RTRL network (see panel d) in the first twenty time steps. It can be 
clearly seen that in the panel (c), the curve marked in red depicting the simple 
nonlinear technique and the curve marked in blue depicting the desired values match 
quite closely. The RMSE of short time steps (e.g., 20 steps) is equal to 0.0035, which is 
greatly superior to the average RMSE of whole steps (e.g., the average RMSE of 500 
time steps is equal to 0.1268). In other words, if one would like to forward predict a 
nonlinear time series resulting from a deterministic function in short steps, then the 
simple nonlinear technique is quite a good method to adopt. By contrast, in the panel 
(f), the curve marked in red depicting RTRL algorithms and the curve marked in blue 
depicting the desired values don’t match well in the beginning but converge gradually. 
It indicates that the RTRL algorithms is suitable to train a network to predict, and the 
eventually average predictability compared with other techniques is satisfactory; 
however, training time of the neural network is comparably long and is a factor that 
should be taken into account in practice. Consequentially, in accordance with the 
different purposes to be achieved, the predicting techniques with their particulars serve 
various functions. In terms of the purpose of improving the accuracy of prediction in 
this case, the RTRL network is a suitable technique because the results of training and 
testing have revealed that the method can not only successfully simulate a linear time 
series with stochastic characteristics, but also can capture the nonlinear dynamic 
trajectories resulting from a deterministic function. 
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Figure 4-10 The difference between model output and desired values by adopting 

linear method, simple nonlinear method and RTRL algorithms 
 
Furthermore, the prediction power of RBFNN was calibrated simultaneously. Two 
deterministic functions were illustrated: one is a sincos mathematical function and the 
other is a first-order differential-delay equation being as same as the above equation. 
Firstly, in a sincos mathematical function, we test )2sin()3cos(),( yxyxf = , wherein the 
boundary of variable x and variable y is between -1 and 1. Four hundred (x, y) points 
are created, of which three hundred points are used as the training sets and the 
remaining one hundred points are used as the testing sets. Tolerance is set equal to 0.8. 
Following the rules of RBFNN, we employ the OLS algorithm to determine centre 
neurons and employ the LMS algorithm to modify weighted vectors. Figure 4-11(a) 
presents the training results, which illustrate the difference between network outputs 
and desired values in three dimensions. The RMSE (root-mean-square error) is equal to 
0.0321. 
 
Secondly, in a first-order differential-delay equation, we also employ the famous 
Mackey-Glass equation. A vector [x(t-18), x(t-12), x(t-6), x(t)] is further used as input 
and a vector x(t+6) is used as output, then the RBF network is applied to train the 
model and the tolerance is set as 0.9. Five hundred vectors are used as both the training 
and testing sets. Likewise, OLS algorithm is employed to determine the centre neurons 
and LMS algorithm is used to modify the weighted vectors. Figure 4-11(b) presents 
the test results showing the difference between network outputs and desired values in 
three dimensions. The RMSE is equal to 0.0263. Figure 4-11(c) displays directly the 
difference between network outputs and desired values in one dimension for this 
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first-order differential-delay equation. The training and testing results have revealed 
that the RBFNN is able to successfully simulate a mathematical function as well as 
capture the dynamic trajectories of a nonlinear time series. 
 

 
Figure 4-11 The results of training and testing RBFNN with two deterministic functions 
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CHAPTER 5 EMPIRICAL STUDY 

 
 
To illustrate the potential advantages of proposed models in analyzing and predicting 
traffic dynamics, an empirical study and a sensitivity analysis are conducted 
individually, where the main procedures and analytical results together with 
discussions are provided as follows. 
 
5.1 Temporal Traffic Patterns and State Trajectory Evolution in Multi- 

dimensional Spaces 
 
The following demonstrates more interesting features of our empirical traffic series 
mapped in a reconstructed state space. First, the 20-second traffic series for a typical 
workday at station 433 is reconstructed into two and three-dimensional state spaces 
with appropriate time delays. Figure 5-1 compares the same traffic series plotted in 
1-D, 2-D and in 3-D spaces. With reference to time delay, it can be seen that points in 
1-D numerically change with time evolution, while in the 2-D diagram points not only 

change with time evolution but also composed of ts  and τ+ts . Similarly, in the 3-D 

diagram every point is composed of ts , τ+ts  and τ2+ts . Consequently, variations in 

1-D correspond to the degree of spread in 2-D and 3-D spaces, in addition, the steep 
fluctuations in 1-D correspond to different areas in 2-D or in 3-D spaces. On the other 
hand, the state trajectories in the 2-D and 3-D diagrams change with time enabling the 
state trajectories to move back and forth. However, the curves always move forward 
with time. 
 
Figure 5-2 presents the three-dimensional 1-minute traffic series for five workdays at 
station 433. The different features of traffic series in three-dimensional space from day 
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to day are similar but not exactly the same. To see the effect of time scale, Figure 5-3 
demonstrates the traffic patterns in three-dimensional reconstructed state spaces 
measured in 20-second, 1-minute, 3-minute and 9-minute intervals respectively for one 
workday at station 433. It is noticed that the traffic features become more explicit as 
the time scale gets coarser. Figure 5-4 further compares the features of 20-second 
traffic series over 24 hours and within various times of day arranged from midnight to 
evening peak-hour period, i.e., 00:00-03:00, 06:00-09:00, 12:00-15:00 and 
18:00-21:00. Investigating the dynamical behaviors at different times of day, one can 
find that the conspicuous dynamics of traffic state trajectories come mainly from 
periods 06:00-09:00 and 18:00-21:00. In the early hours, when traffic is very calm, the 
occupancy trajectories shrink to very low values, but the speed trajectories can vary 
rather significantly, which fully explains heterogeneous driver characteristics. Under 
free flow conditions, some aggressive drivers may move very fast while some 
conservative drivers may not, causing the wide diversity of speed dynamics. In 
contrast, during the morning peak-hour period, speed trajectories tend to shrink to 
some low values while flow trajectories can vary largely in a wide-range domain. 
 

 
Figure 5-1 Comparison of 1-D, 2-D and 3-D 20-second traffic series on a typical 

workday (station 433) 
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Figure 5-2 Three-dimensional 1-minute traffic series for five workdays (station 433) 

 

 
Figure 5-3 Three-dimensional traffic series measured in various time scales (station 

433) 
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Figure 5-4 Three-dimensional 20-second traffic series in different times of day (station 

433) 
 
Let us take the 9-minute traffic series as an example to further explore the dynamical 
behaviors of trajectories in more detail. In order to trace the sequential order, we only 
illustrate a limited number of points of the dynamics, as shown in Figure 5-5, which 
clearly indicates the dynamical behaviors of state trajectories in the reconstructed 
spaces. For a typical workday, the flow state trajectories move around the lowest 
corner, i.e., at the coordinate (0, 0, 0) with less fluctuation at midnight (00:00-03:00). 
In the morning peak hours (06:00-09:00), however, the state trajectories advance along 
the diagonal direction and sometimes move back and forth as time evolves, which 
continue to advance until the later morning peak hours. During off-peak hours 
(12:00-15:00), the state trajectories fluctuate in the middle of the 3-D spaces. After 
evening peak hours (18:00-21:00), the state trajectories move back to the original 
place. The whole sequence of features of the traffic flow series within a day are 
demonstrated in Figure 5-6, which similarly shows that the motion of occupancy 
trajectories advances along the diagonal direction from bottom to top in the 
reconstructed space. The difference between the occupancy and flow state trajectories 
is that the range of motion for occupancy is smaller than that for flow. Compared with 
flow and occupancy, the direction of motion for speed state trajectories is just the 
opposite, i.e., from top to bottom. It can be concluded that the direction of traffic state 
trajectories in multidimensional spaces corresponds to that of the traffic series in 1-D 
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space, especially when the data is measured on a coarse scale.  
 
Figure 5-7 shows a comparison between 1-D and 3-D spaces for successive traffic 
flow series. In the top panel, the flow series goes from left to right with time evolution 
while the direction of traffic state trajectories goes anti-clockwise with time evolution 
in reconstructed space. Four data points have been selected and marked with Arabic 
numerals 1, 2, 3, and 4 in the top panel, wherein time delays between paired points i.e., 
point 1 vs. point 2; point 3 vs. point 4, are equal. After reconstruction, the four points 
were projected into the bottom panel and correspondingly marked with the same 
Arabic numerals 1, 2, 3, and 4. From Figure 5-7, it’s found that, in the top panel, the 
difference in flow between points 1 and 2 is lower than between points 3 and 4, 
therefore, in the bottom panel the distance between points 3 and 4 is larger than 
between points 1 and 2. In addition, in the bottom panel, one circle distance of 
trajectories going around the space approximately equals the variety of flow from 
00:00 to 24:00 in the top panel. However, it’s noticed that not every circle moves 
smoothly, but heads for one direction with variation and the degrees of variation 
increase by the time scale shortening. 
 

 
Figure 5-5 The dynamics of 9-minute traffic trajectories in various time-of-day in 3-D 

space (station 433) 
 



 66

 
Figure 5-6 The whole-day dynamics of 9-minute flow trajectories in 3-D spaces 

(station 433) 

 
Figure 5-7 Successive flow time series in 1-D and its trajectories in 3-D reconstructed 

spaces (flow: vehicles per hour per approach) 
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5.2 Diverse Temporal Patterns in Multidimensional Spaces 
 
In this section, we employ the methodologies introduced in Chapter 3 to further 
compute the related parameters that can disclose the features of traffic series. The 
results are summarized in Table 5-1 – Table 5-5. From Table 5-1, it is found that the 
relationship between time delay and time interval is an inverse proportion. The values 
of embedding dimension are five or six, which illustrate that the successive traffic 
series are not composed of a disorder data set, but rather, some state trajectories are 
dominated by an intrinsic attractor, which may be called as a “deterministic-like” 
feature. Furthermore, the numerals in the last column (correlation dimension) represent 
attractor dimension changing with embedding dimension increasing. Further observing 
the tendency for correlation dimension, it’s easily noticed that the slope of curve is 
much smoother with increasing embedding dimension, and as the time scale gets larger, 
the degree of smoothness becomes more obvious. In addition, although the largest 
Lyapunov exponents are positive; however, they are almost nearly equal to zero, which 
means that the successive traffic series, reconstructed in reconstructed spaces, should 
be periodic trajectories or they recur regularly day after day. 
 
From Table 5-2 – Table 5-4, it’s found that the proper embedding dimensions for 
20-second flow, speed and occupancy state trajectories are around 9 and 10, which are 
rather high. It suggests that these 20-second traffic state trajectories exhibit much more 
stochastic motions than deterministic-like motions, if observed within a typical 
workday. Furthermore, the reason that the time delays of traffic series on different 
workdays, stations and time scales are always equal to one is that the AMI exhibits a 
fairly low value at (t+1) step, then the value doesn’t drop down to zero abruptly at 
following steps but gradually decrease. In other words, the time delays at (t+1), 
(t+2),…,(t+m-1) steps are relatively small corresponding to the time delay at t = 0, thus 
the time delays (Table 5-1) can be considered as “one”. From Table 5-3, however, it is 
found that the proper embedding dimensions for 1-minute flow, speed and occupancy 
state trajectories are reduced to 6 and 7, lower than those of 20-second measurements, 
in addition, in Table 5-4 the proper embedding dimensions have further reduced to 3 or 
4 for the 9-minute traffic state trajectories, which indicates that an initial 
deterministic-like pattern would have been observed if the measured time interval gets 
longer. 
 
From Table 5-5, the time delays of flow and occupancy, in contrast to those of a 
typical workday, are no longer equal to one. Instead, like successive time series, they 
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show different values with various time scales. In addition, the time delay declines 
with increasing time scale. Such change in time delays from one to specific values 
indicates that the pattern of traffic series has probably changed. For instance, road 
users can drive freely in the early hours as long as they don’t speed, i.e., the speed 
state trajectory is random so that the time delay of speed-series is equal to one; 
embedding dimension is larger than five; the largest Lyapunov exponent is positive 
and correlation dimension is not saturated. However, aside from midnight 
(00:00-03:00), in the morning peak hours 06:00-09:00, for example, commuters’ 
speeds are mainly confined by heavy traffic volumes, thereby the time delay is no 
longer equal to one, instead diverse time delays are exhibited and there is evidence for 
other parameters. Hence, we are convinced that the random features must have 
disappeared. 
 
Apart from time delay, Table 5-5 also provides additional details regarding embedding 
dimension. According to the various embedding dimension in Table 5-5, the 
characteristics of very short-term traffic time series (e.g., 20-sec and 1-min) seemingly 
should be stochastic because of relatively high dimensions. Finally, like the successive 
traffic time series, parts of the curve for correlation dimension in Table 5-5 gradually 
become smooth with increasing embedding dimension, which indicates that an initial 
attractor has been developing to make correlation dimension be saturated. In addition, 

the negative values of 0λ  for flow and occupancy in the early hours suggest that 

flows and occupancy at such times measured in 20-second intervals should be 
equivalent to fixed point under steady state. Such pattern could result from the fact that 
traffic flow and occupancy are so lulled (very few travelers going into City) that the 
state trajectories eventually converge to fixed points in reconstructed state spaces. 
 

Table 5-1 Four parameters of successive one-month traffic series 

Traffic 
Variable 

Time 
scales 

Time 
delay 
(τ ) 

Embedding
dimension 

(m) 

The largest 
Lapunov 
exponent

Correlation dimension (d) 

5-min 61 6 0.002 (0.87, 1.64, 2.12, 2.56, 2.85, 3.01, 3.28, 3.36, 3.64, 3.89)
15-min 20 6 0.002 (0.87, 1.62, 2.06, 2.46, 2.80, 3.17, 3.60, 3.59, 3.87, 3.72)
30-min 10 5 0.005 (0.88, 1.66, 2.22, 2.72, 2.83, 3.16, 3.44, 3.46, 3.59, 3.72)Flow 
60-min 5 5 0.005 (0.88, 1.65, 2.10, 2.40, 2.46, 2.74, 2.71, 2.86, 2.74, 2.78)
5-min 84 6 0.001 (0.76, 1.49, 2.17, 2.74, 3.11, 3.33, 3.53, 3.76, 3.96, 4.13)

15-min 27 6 0.001 (0.79, 1.53, 2.15, 2.58, 3.14, 3.14, 3.18, 3.42, 3.65, 3.89)
30-min 13 5 0.005 (0.85, 1.64, 2.30, 2.65, 3.02, 3.13, 3.45, 3.72, 3.52, 3.70)Speed 
60-min 6 5 0.005 (0.86, 1.65, 2.17, 2.59, 2.62, 2.75, 2.87, 3.01, 3.16, 3.17)
5-min 61 6 0.002 (0.52, 0.99, 1.38, 1.73, 2.03, 2.25, 2.37, 2.42, 2.45, 2.48)

15-min 20 6 0.002 (0.70, 1.32, 1.84, 2.23, 2.48, 2.74, 3.14, 3.01, 3.01, 3.11)
30-min 10 6 0.003 (0.81, 1.51, 2.12, 2.69, 2.55, 2.91, 3.19, 3.05, 3.25, 3.41)Occupancy 

60-min 5 5 0.005 (0.79, 1.50, 2.07, 2.21, 2.45, 2.43, 2.67, 2.61, 2.76, 2.67)
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Table 5-2 Parameters of 20-second traffic trajectories at different stations on a typical 

workday 

Station Variable Time 
delay (τ )

Embedding 
dimension (m)

The largest 
Lyapunov exponent 

Correlation 
dimension (d)

Flow 1 10 0.104 Not saturated 
Time-mean-speed 1 9 0.044 Not saturated 402 
Percent occupancy 1 9 0.101 Not saturated 
Flow 1 9 0.085 Not saturated 
Time-mean-speed 1 9 0.097 Not saturated 404 
Percent occupancy 1 9 0.085 Not saturated 
Flow 1 10 0.112 Not saturated 
Time-mean-speed 1 9 0.066 Not saturated 421 
Percent occupancy 1 9 0.036 Not saturated 
Flow 1 10 0.081 Not saturated 
Time-mean-speed 1 9 0.039 Not saturated 433 
Percent occupancy 1 9 0.021 Not saturated 

 
Table 5-3 Parameters of 1-minute traffic trajectories for five workdays (station 433) 

Date Variable Time 
delay (τ )

Embedding 
dimension (m)

The largest 
Lyapunov exponent 

Correlation 
dimension (d)

Flow 1 7 0.108 Not saturated 
Time-mean-speed 1 6 0.076 Not saturated 2004. 

02.02 Percent occupancy 1 6 0.067 Not saturated 
Flow 1 7 0.121 Not saturated 
Time-mean-speed 1 6 0.085 Not saturated 2004. 

02.04 Percent occupancy 1 6 0.057 Not saturated 
Flow 1 7 0.134 Not saturated 
Time-mean-speed 1 6 0.085 Not saturated 2004. 

02.06 Percent occupancy 1 6 0.073 Not saturated 
Flow 1 7 0.127 Not saturated 
Time-mean-speed 1 6 0.077 Not saturated 2004. 

02.11 Percent occupancy 1 6 0.075 Not saturated 
Flow 1 6 0.164 Not saturated 
Time-mean-speed 1 6 0.078 Not saturated 2004. 

02.12 Percent occupancy 1 6 0.062 Not saturated 

 
Table 5-4 Parameters of traffic trajectories measured with various time scales on a 

typical workday (station 433) 
Time 
scale Variable Time 

delay (τ )
Embedding 

dimension (m)
The largest 

Lyapunov exponent 
Correlation 

dimension (d)
Flow 1 10 0.081 Not saturated 
Time-mean-speed 1 9 0.039 Not saturated 20- 

second Percent occupancy 1 9 0.021 Not saturated 
Flow 1 7 0.121 Not saturated 
Time-mean-speed 1 6 0.085 Not saturated 1- 

minute Percent occupancy 1 6 0.057 Not saturated 
Flow 1 4 0.198 Not saturated 
Time-mean-speed 1 4 0.201 Not saturated 3- 

minute Percent occupancy 1 4 0.120 Not saturated 
Flow 1 4 0.216 Not saturated 
Time-mean-speed 1 3 0.320 Not saturated 9- 

minute Percent occupancy 1 3 0.273 Not saturated 
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Table 5-5 Parameters of ten-workday traffic trajectories measured in various time 

scales and intervals (station 433) 
 Time 

interval 
Time 
scale 

Time 
delay 

Embedding dimension
(m) 0λ  Correlation dimension 

20-sec 234 (6~7) -0.002 (0.4,0.9,1.3,1.7,2.1,2.6,3.0,3.3,3.3,3.3) 
1-min 77 (6~7) 0.003 (0.4,0.8,1.2,1.6,2.0,2.4,2.5,2.8,3.1,3.5) 
3-min 26 (5~6) 0.005 (0.5,0.9,1.3,1.7,2.1,2.6,2.7,2.9,3.0,3.1) 

00:00- 
03:00 

9-min 9 4 0.009 (0.5,0.9,1.2,1.5,1.6,1.8,1.9,2.1,2.4,2.5) 
20-sec 129 (10~11) 0.004 (0.8,1.5,2.1,2.7,3.3,3.8,4.3,4.5,4.9,5.5) 
1-min 42 (8~9) 0.006 (0.8,1.6,2.2,2.8,3.4,3.8,4.0,4.5,4.7,4.8) 
3-min 14 5 0.009 (0.8,1.5,2.1,2.4,2.6,2.8,2.8,3.0,3.2,3.4) 

06:00- 
09:00 

9-min 4 4 0.010 (0.8,1.4,1.9,2.0,2.4,2.6,2.7,2.8,3.1,3.3) 
20-sec 246 (12~13) 0.002 (0.7,1.4,2.0,2.6,3.3,3.9,4.6,5.1,5.4,6.0) 
1-min 82 (10~11) 0.005 (0.8,1.6,2.3,2.8,3.3,3.6,4.4,4.7,4.8,5.3) 
3-min 28 (8~9) 0.011 (0.8,1.6,2.4,3.1,3.9,4.0,4.4,4.6,4.7,4.9) 

12:00- 
15:00 

9-min 10 (8~9) 0.014 (0.9,1.8,2.6,3.2,3.6,3.9,4.1,4.1,4.2,4.4) 
20-sec 182 (10~11) 0.005 (0.7,1.5,2.2,2.9,3.3,4.0,4.3,4.5,5.1,5.6) 
1-min 62 (10~11) 0.007 (0.8,1.6,2.4,3.1,3.6,4.3,4.6,4.8,5.2,5.3) 
3-min 21 7 0.009 (0.9,1.7,2.2,2.5,2.8,2.9,3.2,3.3,3.6,3.7) 

flo
w

 

18:00- 
21:00 

9-min 7 6 0.012 (0.8,1.5,2.0,2.2,2.5,2.7,2.8,3.1,3.3,3.5) 
20-sec 1 12 0.02 Not saturated 
1-min 1 8 0.08 Not saturated 
3-min 1 6 0.04 Not saturated 

00:00- 
03:00 

9-min 1 5 0.05 Not saturated 
20-sec 115 8 0.006 (0.6,1.2,1.7,2.3,2.8,3.3,3.8,4.1,4.4,4.5) 
1-min 38 6 0.007 (0.6,1.1,1.6,2.1,2.6,3.1,3.4,3.5,3.6,3.9) 
3-min 13 5 0.008 (0.6,1.1,1.5,2.0,2.4,2.7,2.8,2.9,3.0,3.0) 

06:00- 
09:00 

9-min 5 5 0.009 (0.6,1.0,1.3,1.6,1.9,2.1,2.2,2.2,2.2,2.2) 
20-sec 92 10 0.001 (0.5,0.9,1.4,1.8,2.3,2.8,3.2,3.6,4.0,4.6) 
1-min 32 7 0.003 (0.5,0.9,1.3,1.7,2.2,2.6,3.0,3.3,3.7,4.0) 
3-min 10 6 0.005 (0.4,0.7,1.0,1.4,1.7,2.0,2.3,2.6,2.7,2.8) 

12:00- 
15:00 

9-min 5 5 0.006 (0.3,0.6,0.8,1.1,1.3,1.5,1.6,1.9,2.1,2.2) 
20-sec 149 10 0.009 (0.7,1.4,2.1,2.8,3.5,4.1,4.8,5.0,5.6,5.8) 
1-min 60 8 0.013 (1.0,1.4,2.1,2.8,3.6,4.2,4.7,5.0,5.2,5.6) 
3-min 20 4 0.028 (0.8,1.6,2.4,3.2,3.8,4.1,4.6,4.9,5.2,5.5) 

sp
ee

d 

18:00- 
21:00 

9-min 8 4 0.029 (0.8,1.8,2.7,3.5,3.7,4.1,4.,0,4.1,4.2,4.2) 
20-sec 231 (7~8) -0.001 (0.6,0.9,1.5,1.9,2.2,2.7,3.2,3.2,3.2,3.2) 
1-min 77 (7~8) 0.003 (0.5,0.8,1.4,1.7,2.1,2.5,3.0,3.2,3.5,3.7) 
3-min 26 (6~7) 0.004 (0.5,0.8,1.4,1.7,2.3,2.6,3.1,3.2,3.5,3.9) 

00:00- 
03:00 

9-min 9 5 0.010 (0.5,0.8,1.4,1.6,2.2,2.8,2.9,3.1,3.4,3.8) 
20-sec 115 (8~9) 0.004 (0.8,1.6,2.2,2.6,3.3,3.7,4.1,4.3,4.6,4.9) 
1-min 39 (7~8) 0.006 (0.8,1.6,2.2,2.8,3.4,3.8,3.9,4.3,4.7,4.8) 
3-min 13 6 0.011 (0.8,1.5,2.4,2.7,3.2,3.3,3.3,3.4,3.5,3.6) 

06:00- 
09:00 

9-min 5 5 0.013 (0.7,1.4,1.8,2.2,2.5,2.8,3.0,3.0,3.1,3.3) 
20-sec 89 (8~9) 0.002 (0.7,1.4,1.7,2.2,2.3,2.8,3.4,3.7,3.9,4.0) 
1-min 30 (6 ~ 8) 0.004 (0.8,1.5,1.8,2.2,2.4,2.6,3.2,3.4,3.4,3.5) 
3-min 10 5 0.009 (0.8,1.4,1.7,2.1,2.3,2.5,2.6,2.8,3.1,3.4) 

12:00- 
15:00 

9-min 5 4 0.010 (0.6,0.8,1.6,1.8,2.3,2.4,2.6,2.6,2.6,2.7) 
20-sec 182 (9~10) 0.009 (0.7,1.5,2.2,2.5,3.2,3.4,3.6,3.8,3.9,4.2) 
1-min 60 6 0.011 (0.8,1.5,1.8,2.4,2.6,2.8,3.4,3.6,3.8,3.9) 
3-min 20 5 0.02 (0.8,1.6,1.9,2.3,2.5,2.7,3.2,3.3,3.6,3.7) 

oc
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18:00- 
21:00 

9-min 7 5 0.02 (0.6,1.3,1.6,1.8,2.2,2.5,2.6,2.8,2.8,2.9) 
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5.3 Some Observed Details for Paired- and Three-variable Traffic Evolutions 
 
The above empirical study has not only demonstrated the traffic patterns by mapping 
the 1-D traffic series into 3-D state spaces, but has also estimated the most appropriate 
time delay and embedding dimensions for real-world traffic series. Apart from these, 
the present study further compares the paired (speed-flow, speed-occupancy, and 
flow-occupancy) traffic features with and without relation to the sequential order. 
Figure 5-8 illustrates the 9-minute paired-traffic features on a typical workday (station 
421). From the upper panel (without sequential order), one can at most figure out the 
relationships between speed-flow, speed-occupancy and flow-occupancy. However, 
these relationships do not explain the detailed evolution of traffic behaviors. From the 
lower panel (with sequential order), in contrast, we can trace the detailed evolution of 
traffic behaviors. Obviously, sequential order is taken into consideration and more 
detailed information on traffic evolution dynamics can be found, which could help 
understand the possible causes of formation of congested traffic phase in such a way 
that one could propose more effective traffic managements, e.g., regulation of 
low-speed vehicles in free-flow phase, determination of start-up for ramp metering, 
and so on. 
 
To illustrate the more detailed information, we trace some selected points to elucidate 
the daily evolution of the 9-minute paired-traffic by observing the chronological order 
of speed-flow diagram. We start with the first point in the early hours at time 01:12 
(flow: 7 vehicles/9-min, speed: 101 kph) at the upper left corner indicating a free 
traffic phase. As time evolves, the dynamics of speed-flow advances along a southeast 
direction to the second point in the morning peak hours at time 08:25 (289 
vehicles/9-min, 80 kph), which moves southbound to the third point near noon at time 
11:58 (313 vehicles/9-min, 60 kph) indicating a congested traffic phase. After that, the 
dynamics moves back and forth in the middle of diagram, representing phase 
transitions, during the day-time off-peak hours, e.g., the fourth point at time 15:12 
(129 vehicles/9-min, 87 kph). After the afternoon peak hours the dynamics of 
speed-flow returns to the original upper left corner (free traffic phase); e.g., the fifth 
point at time 23:08 (48 vehicles/9-min, 97 kph). 
 
In the light of the sequential order of speed-flow dynamics, we can see that congestion 
or near congestion can easily formulate as traffic switches from a high-speed, 
low-volume free-flow phase to an irregular moderate-speed, moderate-volume 
synchronized phase or the low-speed, low-volume congested phase. In reality, the 
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transition occurs whenever the occupancy has exceeded a critical level. Once the 
traffic dynamics enters the congestion phase, it takes a long time for traffic to return to 
free-flow, and meanwhile delay accumulates. We also notice that from Figure 5-8 
there is a sixth point in the early hours at time 02:22 (136 vehicles/9-min, 53 kph) 
which indicates a relatively slow traffic flow, an outlier for free flow. It could have 
arisen from erratic driver behaviors, heterogeneous vehicle performances, any other 
incident or all at the same time. In contrast to Figure 5-8, the paired-traffic in Figure 
5-9 seems to be quite fluent. From the locations at station 433 and station 421, one can 
definitely know that commuters regularly drive vehicles to work from their origin 
through station 433 to the destination (station 421) in the morning peak-hour. Such 
situations have caused congestion or near congestion traffic phase at station 421. 
Although a congestion traffic phase, i.e., high volume (235 vehicles/9-min), low speed 
(30 kph), high occupancy (33.1%) can also be seen at station 433 at rush hour, the 
congested traffic phase disappears after morning peak-hours. Compared with station 
433, the congested traffic phase at station 421 doesn’t disappear instantaneously but 
get worse because of the tremendous number of vehicles continuously coming from 
on-ramps. Hence, for seriously congested locations, such as station 421, had a rapid 
detection system successfully diagnosed the recurring congestions and a smart control 
measure actuated accordingly, the congestions have been immediately mitigated or 
alleviated. 
 
In a similar way, three-variable traffic (flow-speed-occupancy) dynamics in 
three-dimensions is shown in Figure 5-10. The trajectory moves from the coordinate 
(flow = 0, speed = 100, occupancy = 0), advances along a diagonal direction, i.e., 
coordinate (flow = 350, speed = 40, occupancy = 50) till morning peak hours, when it 
moves back and forth as time evolves. Finally, similar to the one-day dynamics, the 
trajectory moves back to the original coordinate. In order to understand the 
progression in traffic dynamics, the dotted lines in Figure 5-10 represent those speeds 
less than 70 kph, and they appear intermittently among the straight lines which speed 
is over than 70 kph. It suggests that the quality of traffic flow progresses in a 
moderately dense platoon, in which traffic cannot move smoothly, but moves in a stop 
and go motion. If traffic data is collected from upstream ahead of a bottleneck, some 
trajectories of dotted lines would probably not appear intermittently, but show together 
in some part of space. Obviously, from traffic control and management practice 
perspectives depicting traffic characteristics with three variables simultaneously and 
with sequential order in three dimensional spaces is more subtle than just presenting 
any of these three variables in one-dimensional space. 
 



 73

Summarizing, the speed-flow dynamical graphs with sequential order can not only 
interpret the conventional speed-flow relationship but also present details of traffic 
phase-transition, which could provide more useful information for management and 
control purposes. Similarly, Figure 5-8 and Figure 5-9 have been used to compare 
graphical data for the dynamics of speed-occupancy and flow-occupancy without 
sequential order and with sequential order. From the above observations, we have 
learned that there are various traffic phases under normal circumstance: a free flow 
phase, which typically takes place in the early hours; a moving jam phase, which 
typically happens in the peak periods; and a synchronized traffic phase, a repeated 
back and forth transition, which more likely coexists with a moving jam. 
 

 
Figure 5-8 The paired-traffic relationship and dynamics (station 421, 2004.02.04) 
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Figure 5-9 The paired-traffic relationship and dynamics (station 433, 2004.02.04) 
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Figure 5-10 The flow-speed-occupancy dynamics in three-dimensions 
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5.4 Sensitivity Analysis for Short-term Prediction 
 
After entirely elucidating the temporal features of traffic dynamics in multi- 
dimensional spaces as well as the paired- and three-variable traffic evolutions, we 
would like to further take advantage of the analytic results to obtain better accuracy on 
predicting the future short-term traffic dynamics. Here, we adopted two techniques, 
radial basis function neural network (RBFNN) and real-time recurrent learning (RTRL) 
algorithm, to execute sensitivity analysis with manipulating different time intervals, 
time lags and times of day. The main reason for choosing the RBF neural network as 
well as RTRL algorithm to train a nonlinear traffic dynamics is that both of the RBF 
and RTRL algorithms can iteratively modify performance errors and update its 
weighted parameters to meet the characteristics of traffic dynamics, which is neither 
deterministic nor complete random series but exhibits various features with times of 
day instead. In addition, many disadvantages pertaining to original techniques, such as 
determining center neurons randomly in the beginning of iterations and undesirable 
convergence characteristics, have also been improved. Therefore, among the neural 
network techniques, the RBFNN and RTRL algorithms are effective tools available to 
predict nonlinear time series, both for long-interval and short-interval traffic dynamics. 
 
Since flow, speed and occupancy time series carry different units and cover a diverse 
range, it makes no sense to compare their relative predictive accuracies by the criterion 
of RMSE. For comparison purposes, therefore, all the traffic data studied were 
standardized using Eq. (5.1). 

Ni
xx

xxx
MAX

i
i ,...,2,1,~

min

min =
−

−
=  (5.1) 

where ix  is the ith observed data point; xmin is the minimum in observed points; xMAX 

is the maximum in observed points; ix~  is the ith standardized data point. The 

prediction results for flow, speed, and occupancy series measured in different time 
intervals, time lags, and times of day, are detailed as follows. 
 
5.4.1 Various Intervals 
 
Before a network is trained, it’s necessary to clarify the input and output of the neural 
network. For RBFNN, according to Lan et al (2007d) the traffic series measured with 
time lag (=1) in three-dimensional state spaces provides a satisfying training effect. 
Namely, the input vector is [ ])1(~),2(~),3(~ −−− txtxtx ; output vector is )(~ tx , where 
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)(~ tx  represents the standardized traffic data at time t. For RTRLNN, the input vector 
is )1(~ −tx  and the output vector is )(~ tx , wherein the network output at time t consists 
of the current input vector )1(~ −tx  and network outputs of the previous layer. At 
station 433, the number of lane-base data points to be analyzed were 1,440 and 480 
respectively, for 1-minute and 3-minute traffic series, thus a 24-hour workday 
(2004.02.04) data set was selected for training and another 24-hour workday 
(2004.02.12) data set for testing. At station N27.9, we also used 1,440 and 480 
approach-base data points for 5-minute and 15-minute traffic series, respectively, thus 
a consecutive five-workday (2004.02.09 ~ 2004.02.13) data set was selected for 
training and another consecutive five-workday (2004.02.16 ~ 2004.02.20) data set for 
testing. 
 
The results of prediction are summarized in Table 5-6 and Table 5-7. From the tables, 
all of the RMSEs are sufficiently small to show that both the RTRL and RBFNN model 
are highly satisfactory in predicting the real-world short-term traffic series. Figure 5-11 
and Figure 5-12 depict the difference between network outputs and observed values by 
adopting RTRL algorithms, in which a portion of the data points are picked 
deliberately to clearly depict the differences in the lower panel. However, it is noted 
that in Figure 5-13 the curve of difference using the RTRL model oscillates up and 
down more significantly than the curve of difference using the RBF model for the first 
fifteen steps or even longer period. Such oscillations are similar to our preliminary 
testing demonstrated in the above chapter. In addition, due to the convergent ability of 
the RTRL network, the average predictability for RTRL networks and for RBFNN is 
about the same. Further comparing the RMSEs in more detail, we find that for both 
RTRL networks and RBF networks, the RMSEs(3-min) are smaller than the RMSEs(1-min); 
similarly, the RMSEs(15-min) are smaller than the RMSEs(5-min). The findings suggest that 
the predictive accuracy for traffic dynamics measured in longer time intervals is better 
than those measured in shorter intervals. 
 
Table 5-6 Prediction results of traffic series measured in different time intervals 

(station 433) 

RTRL-RMSE RBF- RMSE Time 
interval 

Traffic 
variable 

Time 
lag 
τ  

train 
(2004.02.04)

test 
(2004.02.12)

train 
(2004.02.04) 

test 
(2004.02.12)

flow 1 0.0943 0.1049 0.0851 0.0907 
speed 1 0.0510 0.0600 0.0556 0.0678 

1- 
minute occupancy 1 0.0566 0.0600 0.0433 0.0477 

flow 1 0.0787 0.0800 0.0593 0.0734 
speed 1 0.0500 0.0600 0.0547 0.0555 

3- 
minute occupancy 1 0.0510 0.0557 0.0392 0.0458 
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Table 5-7 Prediction results of traffic series measured in different time intervals 
(Station N27.9) 

RTRL-RMSE RBF-RMSE 
Time 

interval 
Traffic 
variable 

Time 
lag 
τ  

train 
(2004.02.09-
2004.02.13)

test 
(2004.02.16-
2004.02.20)

train 
(2004.02.09- 
2004.02.13) 

test 
(2004.02.16-
2004.02.20)

flow 1 0.0671 0.0686 0.0819 0.0623 
speed 1 0.0574 0.0640 0.0624 0.0587 

5- 
minute occupancy 1 0.0806 0.0500 0.0494 0.0549 

flow 1 0.0663 0.0648 0.0620 0.0602 
speed 1 0.0449 0.0574 0.0590 0.0575 

15- 
minute occupancy 1 0.0755 0.0475 0.0428 0.0513 
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Figure 5-11 The RTRL network outputs and observed values of flows measured in 

different time intervals (Station 433) 
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Figure 5-12 The RTRL network outputs and observed values of flows measured in 

different time intervals (Station N27.9) 
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Figure 5-13 The RTRL and RBF network outputs and observed values of flows 

measured in 3-minute intervals for the first 15 steps 
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5.4.2 Various Lags 
 
As mentioned previously, it is important to determine a proper time lag τ  when 
analyzing time series, especially when the time series in one-dimension is mapped into 
multidimensional spaces. For the RTRL algorithms and RBFNN, it is postulated that 
the training process is a sequential learning scheme and that the traffic time series at 
time t and at time (t+1) have relevant dependence, i.e., the time series is a first-order 
process or Markov process. Therefore, in this study, when considering the vector 
[ ])(),...,)1(( ττ −−− txqtx  as inputs and using the input vector to predict the desired 
value, x(t), we set 1=τ . Nevertheless, would the accuracy of prediction be better if 
we used other time lags? For instance, for a deterministic function, using the 
Mackey-Glass equation with a time lag 6=τ  would produce the best accuracy of 
prediction compared with adopting other time lags. 
 
Accordingly, Table 5-8 shows the prediction results for various time lags. For traffic 
data sets with 1-minute and 3-minute intervals, we find that the prediction accuracy 
declines with increasing time lags for both RTRL algorithms and RBFNN, i.e., 
RMSE( 1=τ ) < RMSE( 2=τ ) < RMSE( 3=τ ). Likewise, for traffic data sets with 
5-minute and 15-minute intervals, the prediction accuracy also declines with 

increasing time lags, i.e., RMSE( 1=τ ) < RMSE(
2
1

=τ time delay) < RMSE( =τ time delay), 

except for one RBF case marked in gray (RMSE_flow_15-minute( =τ time delay) < 

RMSE_flow_15-minute(
2
1

=τ time delay)). 

Table 5-8 Prediction results of traffic dynamics for various time lags using RTRL and 
RBF 

RMSE RMSE RMSE Time interval Traffic 
variable 

Time 
lag RTRL RBF

Time 
lag RTRL RBF 

Time 
lag RTRL RBF

flow 1 0.0943 0.0851 2 0.0968 0.0960 3 0.0979 0.1074
speed 1 0.0510 0.0556 2 0.0632 0.0606 3 0.0669 0.06551-minute (one 

workday, station 433) 
occupancy 1 0.0566 0.0433 2 0.0612 0.0458 3 0.0677 0.0466
flow 1 0.0787 0.0593 2 0.0790 0.0659 3 0.0792 0.0679
speed 1 0.0500 0.0547 2 0.0547 0.0666 3 0.0727 0.07543-minute (one 

workday, station 433) 
occupancy 1 0.0510 0.0392 2 0.0599 0.0471 3 0.0662 0.0576
flow 1 0.0686 0.0623 30 0.1897 0.0911 60 0.1947 0.1023
speed 1 0.0640 0.0587 42 0.0984 0.1484 84 0.0998 0.1718

5-minute (five 
workdays, station 
N27.9) occupancy 1 0.0500 0.0549 30 0.0870 0.0951 60 0.0895 0.1009

flow 1 0.0648 0.0602 10 0.2011 0.093 20 0.2829 0.0898
speed 1 0.0574 0.0575 13 0.1024 0.0903 27 0.1062 0.1266

15-minute (five 
workdays, station 
N27.9) occupancy 1 0.0557 0.0513 10 0.1171 0.0748 20 0.1384 0.0763
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The above results seem to indicate that the characteristics of short-interval traffic 
dynamics extracted from real world detectors measured within 15-minute intervals and 
involving numerous noises are more stochastic than deterministic; therefore, in the 
prediction of nonlinear short-interval traffic dynamics, stochastic characteristics can be 
stronger than deterministic characteristic which is similar to the famous Mackey-Glass 
equation. Nevertheless, the only one exception for RBF model in Table 5-8 reveals that 
the 15-minute flows have shown a slight tendency towards deterministic 
characteristics, so a better accuracy of prediction for 15-minute flows using a proper 
time lag (i.e., time delay) occurs, compared to using half time delay. However, with 
regard to RTRL, owing to its real-time recurrent algorithms, the prediction accuracy 
significantly declines with increasing time lags. Figure 5-14 presents the differences 
between RTRL network outputs and observed values of flows for various time lags. In 
this Figure, the same training data as Chapter 4 was employed; but only a portion of 
data points are picked deliberately to clearly depict the differences. 
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Figure 5-14 The RTRL network outputs and observed values of flows for various time 

lags 

 
5.4.3 Various Times of Day 
 
Although different time intervals and time lags have been investigated above, the most 
interesting aspects applicable for practical prediction of traffic dynamics are to detect 
when the most necessary time-of-day is to predict and how to improve their accuracy. 
In general, doing efforts on precise prediction of traffic dynamics in the real world 
should solve more important issues, such as the daily recurrent congestions during 
rush hours. In other words, in view of efficient management, what we mostly need to 
predict is a “critical” span that may cause serious traffic jams rather than prediction for 
a long period of time, such as twenty-four hours. Based on this, in this subsection, we 
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attempt to identify the most critical times-of-day for prediction and how to improve 
the prediction accuracy. Accordingly, we tested the proposed algorithms using 
different data sets collected in times of day. Table 5-9 provides the corresponding 
prediction results. Observed from this table, we find that the values of RMSE in four 
time periods are different. In terms of 1-minute flow, for RBFNN, the results are 
RMSE(18:00-21:00) > RMSE(06:00-09:00) > RMSE(12:00-15:00) > RMSE(00:00-03:00). Likewise, other 
3-minute traffic variables, speed and occupancy, also have different RMSE values, 
depending on various time periods. Corresponding results for an RTRL network are 
RMSE(18:00-21:00) > RMSE(06:00-09:00) > RMSE(00:00-03:00) > RMSE(12:00-15:00) which compared 
with the values of RMSE, it’s noted that the order of RMSE(00:00-03:00)  and 
RMSE(12:00-15:00) are reversed. This is because an oscillation often occurs during the 
beginning steps whenever one adopts the RTRL algorithms to train a network, hence 
the RMSE(00:00-03:00) > RMSE(12:00-15:00). Such results may reveal that in general the 
morning and evening peak-hour periods remain the most critical for accurate 
prediction compared to other periods because serious jams are constantly incurred 
during such periods. Figure 5-15 illustrates the difference between RTRL outputs and 
observed values of flows during various periods of time in a workday (2004.02.04) at 
station 433. 
 
To improve the accuracy of prediction during peak-hours, a feasible method is to train 
a network that only consists of historical data for a specific time period, e.g., 06:00 – 
09:00 or 18:00 – 21:00, in other words, to predict traffic dynamics at the same time 
period rather than to train a whole-day network to predict a specific time period of 
traffic dynamics. Table 5-10 illustrates the improved prediction results using this 
feasible method. It indicates that the prediction performance obtained from the 
network of historical data at specific time periods is better than that obtained from a 
whole-day network, that is RMSE(8days_1-min_06:00-09:00) < RMSE(1day_1-min 00:00-24:00) and 
RMSE(8days_3-min_06:00-09:00) < RMSE(1day_3-min 00:00-24:00). 
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Table 5-9 Prediction results of traffic dynamics during different time periods (Station 
433) 

RMSE(1-min) RMSE(3-min) Time period Traffic 
variable 

Time 
lag RTRL RBF RTRL RBF 

flow 1 0.0653  0.0322 0.0548 0.0213 
speed 1 0.0510  0.0479 0.0493 0.0395 00:00-03:00 
occupancy 1 0.0411  0.0101 0.0338 0.0082 
flow 1 0.1187  0.0954 0.1022 0.0755 
speed 1 0.0533  0.0673 0.069 0.0603 06:00-09:00 
occupancy 1 0.0864  0.0538 0.0851 0.0499 
flow 1 0.0693  0.0941 0.0532 0.0582 
speed 1 0.0405  0.0391 0.0286 0.0305 12:00-15:00 
occupancy 1 0.0401  0.0414 0.0315 0.0298 
flow 1 0.1258  0.1142 0.1059 0.0812 
speed 1 0.0638  0.059 0.0558 0.0586 18:00-21:00 
occupancy 1 0.0732  0.0647 0.0647 0.0527 
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Figure 5-15 The difference between RTRL network outputs and observed values of 

flows during various time periods (station 433) 
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Table 5-10 Prediction results based only on peak-hours traffic data for network 
training 

RMSE 
(1-day,1-min)

RMSE 
(1-day,3-min)

RMSE 
(8-days,1-min) 

RMSE 
(8-days,3-min)Time 

period 
Traffic 
variable 

Time 
lag RTRL RBF RTRL RBF RTRL RBF RTRL RBF

flow 1 0.1187  0.0954 0.1022 0.0755 0.0908 0.0742 0.0845 0.0645
speed 1 0.0533  0.0673 0.0690 0.0603 0.0501 0.0667 0.0461 0.0568

06:00 
- 

09:00 occupancy 1 0.0864  0.0538 0.0851 0.0499 0.0694 0.0531 0.0674 0.0414
flow 1 0.1258  0.1142 0.1059 0.0812 0.1006 0.0812 0.0882 0.0711
speed 1 0.0638  0.0590 0.0558 0.0586 0.0594 0.0511 0.0501 0.0485

18:00 
- 

21:00 occupancy 1 0.0732  0.0647 0.0647 0.0527 0.0562 0.0366 0.0510 0.0334
 
5.4.4 Various Dimensions 
 
The above analyses are based on input vectors of three dimensions and output vectors 
of one dimension to examine the prediction results of traffic dynamics measured in 
various time intervals for various time lags. In reality, more information can be 
obtained by mapping the traffic time series into higher-dimensional spaces (see, for 
example, Lan, et al., 2007c), thus varying the input dimensions is also attempted in the 
present study. Table 5-11 summarizes the variety of prediction results for RBFNN with 
various input dimensions. According to the RMSEs in this table, it is found that the 
smallest RMSE for traffic dynamics with 1-minute and 3-minute intervals is located on 
input vectors of four dimensions, while the smallest RMSE for flow and percent 
occupancy with 5-minute and 15-minute intervals is located on input vectors of three 
dimensions. This finding provides us with a useful rule that, in general, the traffic time 
series measured in shorter intervals (e.g., 1-minute and 3-minute) would need higher 
dimensional inputs to train in order to acquire a good prediction; in contrast, 
longer-interval traffic time series (e.g., 5-minute and 15-minute) would produce a good 
prediction as long as lower dimensional inputs are used if the RBF algorithm was 
adopted to train a network. 
 
In sum, in terms of RBFNN, for short-interval (within 15-minute) traffic dynamics, 
multidimensional inputs of at least two dimensions are needed. Depending on the 
purposes or objectives the researchers would like to achieve, if high accuracy of 
prediction is desired with no concern for the training time, high-dimensional inputs 
(say, four or five dimensions) are recommended for short-interval traffic dynamics. Yet, 
if one hopes to consider both the accuracy and training time, lower-dimensional inputs 
(say, three dimensions) are acceptable. Certainly, if the traffic dynamics are measured 
in long intervals (e.g., 30-minute or longer), two-dimensional inputs are enough to 
produce a good prediction. 
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Table 5-11 Prediction results of traffic dynamics embedded in various dimensions 

Time interval Traffic 
variable 

Time 
lag 

RMSE 
(1-D) 

RMSE 
(2-D) 

RMSE 
(3-D) 

RMSE 
(4-D) 

flow 1 0.1276 0.1236 0.0851 0.0706 
speed 1 0.0919 0.0888 0.0556 0.0493 1-minute (one day, 

station 433) 
occupancy 1 0.0755 0.0576 0.0433 0.0392 
flow 1 0.0756 0.0735 0.0593 0.0576 
speed 1 0.0614 0.0573 0.0547 0.0538 3-minute (one day, 

station 433) 
occupancy 1 0.0562 0.0424 0.0392 0.0363 
flow 1 0.0813 0.0634 0.0623 0.0634 
speed 1 0.0772 0.0690 0.0587 0.0616 

5-minute (five 
workdays, station 
N27.9) occupancy 1 0.0594 0.0573 0.0549 0.0556 

flow 1 0.0695 0.0603 0.0602 0.0619 
speed 1 0.0697 0.0655 0.0575 0.0688 

15-minute (five 
workdays, station 
N27.9) occupancy 1 0.0606 0.0556 0.0513 0.0538 
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CHAPTER 6 CONCLUSIONS AND 
SUGGESTION 

 
 
In this study, real world traffic variable (flow, speed, and occupancy) patterns 
extracted from isolated detecting stations have been characterized with varied trends 
and drastic fluctuations in reconstructed state spaces. Meanwhile, some traffic 
evolutions for paired- and three-variable were observed. In addition, sensitivity 
analysis was implemented for short-term (within 15-minute) prediction of traffic 
dynamics with various time intervals, time lags, times of day and dimensions. After 
comparing the diverse features of traffic time series in reconstructed state spaces and 
predictability of various techniques, we summarize some important findings and 
explain their nature here. 
 
6.1 Temporal and Spatiotemporal Patterns 
 
We have conceptualized the reconstruction of traffic series by creating appropriate 
embedding spaces to investigate the temporal traffic patterns. From the four indexes, 
time delay, embedding dimension, the largest Lyapunov exponent and correlation 
dimension, we would like to stress that traditional methods of time series analysis are 
mainly concerned with decomposing the variation in a series into trend, seasonal 
variation, other cyclic changes, and the remaining “irregular” fluctuations. However, 
recent research claimed that random input is not the only possible source of 
irregularity in a system’s output. A nonlinear dynamics (e.g., chaotic system) can 
produce very irregular data with purely deterministic equations of motion in an 
autonomous way. Therefore, a complex system, such as traffic dynamics, requires a 
nonlinear approach to detecting whether the apparently irregular behaviors are purely 
random or not. Such requirement is exactly the core rationales for adopting the four 
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proposed parameters to investigating our current study topics. We believe this study 
will be most valuable in presenting a systematical nonlinear approach to exploring 
more information of temporal traffic dynamics as of now. 
 
According to the parameters of successive one-month versus one-day traffic time 
series, the former state trajectories, which exhibit distinct time delay, unchangeable 
embedding dimension, near zero largest Lyapunov exponent and saturated correlation 
dimension, are characterized as having periodic-like patterns, which is as anticipated. 
In contrast, the latter state trajectories of very short times (i.e., 20-second and 1-minute) 
display random motions, and since their time delay is equal to one, embedding 
dimension is larger with increasing quantity of data, and correlation dimension is not 
saturated. Both state trajectories exhibit nonlinear dynamic features, one is 
periodic-like dynamic and the other is random dynamic. Following the above, we 
investigated a ten-workday traffic time series at various times of day and inspected 
their parameters. The diversity of patterns which contain fixed point, deterministic-like 
patterns and stochastic patterns were explored. In other words, different nonlinear 
phenomena were found to emerge depending on the measured time scales, time-of-day 
and history data. However, the chaotic feature was not obtained in traffic time series 
extracted from dual-loop detectors. Perhaps, further inspecting spatiotemporal features 
of congested traffic patterns can answer the question about chaotic or other complex 
behavior traffic characteristic. 
 
We regard those traffic patterns attributed to deterministic-like dynamics as having 
some intrinsic rules governing the regularity. What do the real meanings or 
phenomena imply for such intrinsic rules in our daily life? We may assume that most 
trip makers get to work by 9 am and finish work at 5 pm on workdays, that is, they 
leave their homes or work places at approximately the same times, using the same 
modes, and/or choosing the same routes everyday. Such macroscopic regularities have 
caused “similar but not exactly the same” trends (i.e., slight fluctuations still exist) 
from day to day. Moreover, due to the constraints of travel demand, roadway capacity, 
speed limit, and so on, the observed traffic flows would not go beyond two extreme 
values: zero (free or jam) flow and maximum (capacity) flow. The speed and 
occupancy dynamics are also bounded within two extreme values (from free-flow 
speed or near zero occupancy to near zero speed or jammed occupancy). Thus, if we 
investigate the traffic time series on successive days, many recurrent curves are 
expected to be exhibited in 1-D plot, and cyclic patterns would appear in 3-D spaces. 
The macroscopic regularities indeed dominate the shape (trend) of such 
deterministic-like traffic patterns. 
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However, it’s noticed that not every driver is completely confined by such 
macroscopic regularities. The majority of drivers always control his/her vehicle at a 
desired speed and safe spacing and clearance so as to best interact with roadway 
environments and neighboring vehicles. The presence of human behavior is perhaps a 
key factor making traffic dynamics more complicated than many other physical 
systems that do not involve human behavior. Besides, roadway traffic is essentially 
composed of heterogeneous vehicles with diverse powers or maneuver capabilities. 
Hence, due to the heterogeneity across drivers and vehicles, the microscopic traffic 
dynamics will always fluctuate and surge along with the macroscopic traffic trend. 
Namely, the heterogeneity of drivers and vehicles not only elucidates the random 
feature of one-workday traffic series but also explains the phenomenon of “similar but 
not exactly the same” patterns for successive (many-workday) traffic series. 
 
Although our research attempt only aimed at characterizing the evolutional trajectories 
of time-varying traffic features, we also probed the traffic phases between upstream 
and downstream stations in this paper. For example, we found congested traffic at 
station 421 in the morning peak-hour. According to three-phase traffic theory, 
congested traffic occurs most at freeway bottlenecks where can be a result of 
road-works, on- and off-ramps, a decrease in the number of freeway lanes, road curves 
and road gradients, etc. For an isolated bottleneck, there are two types of patterns in 
congested traffic: “synchronized flow pattern (SP)” and “general pattern (GP).” The 
GP is a congested pattern, which consists of synchronized flow upstream of an 
effectual bottleneck and wide moving jams that emerge spontaneously in that 
synchronized flow. For two or more adjacent bottlenecks, then an expanded congested 
pattern (EP) can be formed. In the EP, a synchronized flow phase or a complex 
interactive process among various moving jams could be anticipated. However, 
conventional theories, such as shock wave theory and queuing theories, and those 
models based on the fundamental diagram approach or a few results simulated by 
cellular automata (CA) models are hampered by lack of capability of predicting 
fundamental empirical features of phase transitions and spatiotemporal congested 
pattern features of real traffic. This is because spatiotemporal solutions of these 
models are in a fundamental qualitative contradiction with empirical (measured) traffic 
breakdown and the resulting congested patterns. Only the main spatiotemporal pattern 
features are fully understood, additional study of some nonlinear pattern features can 
be performed (Kerner, 2004). 
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By contrast, in the example of our paired-traffic features, speed and flow can 
transform from a free-flow phase in the early hours to a synchronized or congested 
phase in the morning peak-hours, during which the 9-minute lane-flow rates can range 
from 7 vehicles to 289 vehicles and the corresponding time-mean-speed can drop from 
101 kph to 80 kph. This suggests that an influx of vehicles in the morning peak-hour 
pushes the occupancy over a critical level, forcing the free-traffic phase into the 
moving jam or synchronized phase. The onset of traffic congestion is accompanied by 
a sharp drop in average vehicle speed, known as “the breakdown phenomenon.” Even 
near noon, the flow rates remain high and the congested traffic does not disappear until 
around 14:00 PM. Unfortunately, the afternoon peak-hour arrives quickly thereafter 
thus the traffic state does not return to free-flow. Such irregular back-and-forth 
speed-flow features in the real world indicate that the synchronized traffic phase and 
the moving jams are alternative, which is similar to general pattern (GP). For such 
recurrent congestion, if a smart ramp metering instantaneously holds back the 
incoming vehicles in such a way that occupancy is kept below its critical value, traffic 
would flow freely and congestion could be avoided altogether. In sum, our observed 
paired- and three-variable traffic evolutions at the isolated detectors in effect provide 
evidence in support of Kerner’s three-phase traffic theory and tackle the field 
problems. 
 
6.2 Temporal Features and Short-term Prediction 
 
In this study, four techniques, including a linear method, simple nonlinear prediction, 
RTRL algorithms and a RBFNN model were employed to compare their predictability. 
Wherein, a first order autoregressive model and a first-order differential-delay 
equation were used to test the predictability between the linear method, simple 
nonlinear prediction and RTRL algorithms. After validating the prediction power of 
RTRL algorithms, we further implemented the sensitivity analysis by employing the 
short-term (within 15-minute) traffic series, including flow, speed and occupancy 
measured with various time intervals, time lags and times of day. In accordance with 
the above investigation, we summarize some important findings as follows. 
 
From the comparison between different techniques, we have learned that it is very 
important to take into account the characteristics of traffic series before prediction. 
Without a prerequisite analysis, it is hasty to claim or determine which technique is 
better or able to precisely predict a nonlinear time series because different 
characteristics of the time series could greatly affect the accuracy of prediction. For 
instance, we have learned that the traffic flows in the midnight measured in very short 



 89

intervals are so lull that most drivers can freely drive their vehicles, i.e., the features of 
traffic dynamics is a random pattern and even the trajectories converge to some fixed 
points. If we want to predict such a random pattern in the midnight, then it is not 
suitable to adopt the simple nonlinear algorithms, since the postulation of simple 
nonlinear algorithms are in effect mainly based on the theory that different time series 
with equal states may exhibit equal futures and similar states, while such a postulation 
is not exhibited for random patterns. Furthermore, it is less important compared with 
predicting traffic volume for other times of day, since the volume in the midnight is 
low. Even if an incident occurs in this period, the impact to traffic flow will quickly 
dissipate with the light traffic. In contrast to the random pattern exhibited during 
midnight, the intrinsic structures of successive traffic dynamics during morning and 
evening peak hours may show deterministic-like patterns. Such deterministic features 
or deterministic-like features with slight noises could be predicted using simple 
nonlinear algorithms. In regard to the stochastic features or deterministic-like features 
with considerable noises, iterative learning algorithms, such as RBFNN or RTRL 
algorithms would become a candidate to predict such features. 
 
In addition, different methods of prediction may only provide a certain function for a 
specific purpose rather than being capable of error-free predicting including all aspects. 
For example, the simple nonlinear technique can immediately learn the intrinsic rules 
of the dynamics to precisely catch the trajectories in multidimensional spaces within a 
few time steps. However, the requirement is that the underlying dynamics be 
deterministic or a time series with slight noises. Likewise, we successfully predict the 
short-term nonlinear traffic dynamics extracted from the dual-loop detectors by 
employing RTRL algorithms as well as RBFNN. Nevertheless, at the present time, the 
problems of how to decide the proper hidden neurons, hidden layers and training time 
can only be solved by a trial and error method. Consequently, in terms of prediction, 
characteristic analysis of a time series is important and is a prerequisite for prediction. 
Furthermore, what we would like to do in practice is to select a technique that permits 
predicting the short-term traffic dynamics to meet the requirements of ATMS rather 
than arbitrarily searching for a method for perfect prediction without any errors. 
 
Aside from the above statements, the traffic time series measured in different time 
intervals (1-minute, 3-minute, 5-minute, 15-minute), with different time lags (time 
lag=1, one-half time delay, 1-time delay) and during different times of day (00:00 – 
03:00, 06:00 – 09:00, 12:00 – 15:00, 18:00 – 21:00) have been trained to predict traffic 
dynamics. According to our field study, several findings have been illustrated to 
support the accuracy of prediction when influenced by various time intervals, time lags 
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and time periods. We have found that the accuracy of predicting traffic dynamics for 
longer-intervals (15-minute) is better than for shorter-intervals (5-minute); likewise, 
3-minute is better than 1-minute. In addition, a deterministic model with a proper time 
delay can precisely predict the dynamic state, for instance, 6=τ  is a good time delay 
for the Mackey-Glass equation. In contrast, a stochastic time series for short time-lag 
(e.g., 1=τ ) will produce a better prediction than adopting other time lags. 
Short-interval traffic dynamics extracted from detectors are very likely close to 
stochastic patterns, thus the training results of adopting time lag being equal to one 
produce optimum prediction compared to adopting other time lags. Furthermore, we 
have also found that traffic dynamics in the morning and evening peak-hours are the 
most difficult to predict compared to other time periods, but this situation can be 
improved by training a historical network using the traffic data composed of only the 
same time periods, i.e., gathering several historical data at the same time periods will 
produce a better training network to predict traffic dynamics. Nevertheless, it is 
noticed that one has to carefully select proper historical data when adopting the above 
approach to train a neural network, wherein the “proper historical data” means to pick 
similar historical data that emulates the trend and variance as the future traffic 
dynamics. Improper historical data (e.g., that involving serious incidents, bad weather, 
etc.) may contribute to unexpected inaccuracy in prediction. 
 
6.3 Extensive Applications 
 
The current research outcomes can be employed to tackle the field problems like 
recurrent congestions and non-recurrent congestions that exist ubiquitously in various 
transport systems in our daily life (Lan et al., 2007a). Theoretically, for recurrent 
congestion, what we can do is altering the service process more closely matching the 
arrival patterns; making the arrival process more closely matching the service capacity; 
or imposing proper service disciplines to cut down the overall delay costs or the size of 
delays. The main challenge is to determine proper time and intensity for actuating the 
control mechanism. For non-recurrent congestion, what we need to do is expediting 
the system capacity retrieval and the main challenge is to diagnose and remove the 
incidents as soon as possible, as delay is proportional to square of the incident 
duration. 
 
As we have emphasized, more information of state trajectories of traffic dynamics can 
be obtained via converting the conventional traffic series (flow, speed, occupancy) in 
1-D space into reconstructed multidimensional spaces. We can take advantages of 
outstanding multidimensional parameters of traffic series for management and control 
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purposes. Here we further present two examples. In the paper “Diagnosis of Freeway 
Traffic Incidents with Chaos Theory,” Lan et al. (2003a) attempted to use the change 
of multidimensional parameters for flow series, including largest Lyapunov exponent, 
capacity dimension, correlation dimension, relative complexity, Kolmogorov entropy, 
delay time, and Hurst exponent to examine the existence of traffic incident. Through a 
deliberately-arranged incident experiment in Taiwan Freeway No. 1, they found that 
the largest Lyapunov exponent parameter of flow series has presented much more 
sensitive than the change in flow rate, a conventional expression of flow in 1-D space. 
Thus, the largest Lyapunov exponent was used for incident detection and the off-line 
tests showed that overall average detection rate can reach 93.75%, better than that by 
the conventional incident detection algorithms (fuzzy neural network, with detection 
rate ranging from 80% to less than 90%) using 1-D flow information. 
 
In addition, in the example of our paired-traffic features, speed and flow transit from 
free-flow phase in the midnight to synchronized- or jammed- phase in the morning 
peak-hours. This indeed suggests that an influx of vehicles in the morning peak-hours 
has pushed the occupancy over a critical level, forcing the free-traffic into the phase of 
congestion or synchronization. Then, we can anticipate that there could be heavy 
delays for a long time on each typical workday. For such recurrent congestions, if a 
smart ramp metering could instantaneously hold back the incoming vehicles in such a 
way that occupancy is kept below its critical value, traffic would flow more freely in 
most occasions and the congestion size would be downsized altogether.  
 
As another example, Lan et al. (2003b) argued that a self-organization phenomenon 
might exist when the phase shifts from non-congested to congested state within a system. 
They employ cellular automaton (CA) traffic simulator to investigate the self-organization 
forming process as the occupancy grows. Real traffic data are used to examine whether 
the power law, an indicator of self-organization phenomenon, exists or not. The empirical 
evidence on a two-lane freeway shows that self-organization phenomenon appears 
when the occupancy exceeds 45%; however, the edge of chaos is at a level of 
occupancy 33.8%, which should be the starting control point (e.g., ramp metering) for 
the recurrent congestions. 
 
The above two examples may support that the proposed method and concept in this 
study can be used to develop traffic management schemes which are practically 
applicable in dynamic control. 
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6.4 Follow-up 
 
According to our empirical results, the proposed analytical method permits extracting 
more information on traffic series in reconstructed state spaces, particularly, unfolding 
the motions of flow, speed, and occupancy state trajectories, which could converge, 
diverge, or perform periodic motions. In addition, the analytical results in terms of 
flow, speed, and occupancy time series as well as their paired data have illustrated 
various traffic phases and traffic stream characteristics. They would help understand 
the possible causes of formation of recurrent congested traffic phase in such a way that 
one could propose more effective traffic management. However, in contrast with 
temporal traffic patterns that occur only in time at specific locations, spatiotemporal 
traffic patterns that occur in both time and space can also be investigated with various 
perspectives. Different methodologies having certain advantages may achieve some 
purposes and thus we intend to further investigate more spatiotemporal patterns in 
future research. 
 
Nevertheless, cellular automaton (CA) simulation has been widely used to explicate 
the behaviors of traffic flows. These modification models, however, mainly devoted 
efforts to introduce more realistic CA rules that can better govern the maneuvers of 
vehicles or drivers. The main bottleneck of this study that the traffic series extracted 
from “isolated” stations can only provide us to explore the temporal patterns of traffic 
dynamics may be conquered by modified CA model. The interface which transforms 
spatiotemporal features depicted in CA model to temporal state trajectories mainly 
remains investigation how to calibrate the traffic data derived from CA model and 
measure the position of vehicles using mathematical equations. More fundamentals of 
traffic dynamics associated with microscopic models as well as macroscopic models 
will be explored when the temporal features and spatiotemporal patterns are disclosed 
then. 
 
Apart from the above issues being of investigative value, a few new topics associated 
with pattern recognition need to be tackled and mulled over. For example, from the 
results of our empirical study, it is stated that different nonlinear traffic patterns could 
emerge depending on the observed time-scale, history data and time-of-day. However, 
do the different patterns of traffic dynamics exhibit a distinct boundary? If so, what are 
these boundaries? Or, one may be curious to know whether different traffic patterns 
could transform into each other without distinct boundaries under a certain situation or 
during a specific time period. All the above subjects are worth further investigation.  
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In addition, this study places its emphasis on sequential order. However, another issue 
we hope to understand is whether or not the sequential order also possesses intrinsic 
rules/naturals depending on the observed times of day. For instance, the sequential 
order of traffic dynamics in the midnight should be different from that in the peak 
hours. The former may regularly change their positions because of light traffic while 
the latter could dramatically alter their trajectories and even stay for a while with the 
increasing volume. As the traffic parameters involving with sequential order are 
several traffic variables (speed, flow, occupancy) in multi-dimensions, we can take 
advantage of these parameters and adequately dominate the traffic dynamics. Namely, 
if the naturals of sequential order can be investigated well, we could more precisely 
diagnose the causes of formation of congestion and promptly deal with the incidents, 
thereby reinforcing the scheme of traffic management. 
 
Moreover, we have claimed that different characteristics of the time series could 
greatly affect the accuracy of prediction; however, recently more novel techniques or 
hybrid methods, such as rough set theory, gray theory and artificial neural networks 
combined with genetic algorithms have been developed to predict short-term traffic 
dynamics. Future research can make use of the new approaches to predict short-term 
traffic dynamics while considering both accuracy and “real time” factors, but also to 
take advantage of the characteristics of traffic dynamics to effectively implement 
management in practice. In addition, it is recommended to add a naïve model or other 
available models in the future study for comparison purposes. Furthermore, attempt of 
other proper indexes to elucidate the prediction error, such as RMSPE, deserves 
further exploration. 
 
Finally, it remains difficult to reproduce the multi-dimensional traffic time series by 
mathematical forms, which serve dynamic traffic forecasting in a shorter time scale, 
such as 20-sec and 1-min. Therefore, another challenge for further study is to develop 
rationales for modeling and predicting the traffic dynamics in the multi-dimensional 
reconstructed spaces. Development of effective traffic management and control tactics 
by utilizing such processed traffic information from the reconstructed spaces may also 
warrant more exploration. 
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APPENDIX A TERMINOLOGIES 

 
 
Correlation dimension: Correlation dimension is a measure of the extent to which the 

presence of a data point affects the position of other points lying on the 
attractor. 

Deterministic time series: To measure values x1, x2,…xn,… at time t1,t2,…,tn,… of a 
time dependent random variable x(t), the existence and uniqueness of solutions 
of xn are ensured. 

Dynamics: A dynamical system whose state evolves (changes) with time t. 
Embedding dimension: A sequence of observations { })( nt xsS =  performed with some 

measurement function )(⋅s , wherein the one-dimensional traffic time series 
embedded into multiple dimensions reconstructed space is denoted as 

)...,,,( )1(2 τττ −+++= mttttt ssssS , Nt ,...,2,1=  where the parameter integer m is called 
embedding dimension. 

Fixed point: For a system described by a set of first-order differential equations, a 
point in the state space for which all of the time derivatives of the state space 
variables are 0 is said to be a fixed point. 

Linear dynamics: Time series can be represented by linear equations of motions. 
Markov process: A time series is a purely random process with mean zero and variance 

2σ . The process is said to be an autoregressive process of first order or Markov 
process when the order equals one. 

Nonlinear dynamics: Time series can be represented via nonlinear Eqs. of motion, e.g., 
differential Eqs, iteration of maps, etc. 

Periodic trajectory: The trajectories show that the sequence of peaks is periodic-2, 
periodic-3,…, and so on. 

Quasi-periodic trajectories: A type of motion occurring in three-dimensional state 
space has two different frequencies associated with it. 

Random data: In general, if the data obtained from the experiment are not repeatable 
with the bounds of the experimental error under identical conditions, then the 
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corresponding system can be called a random system. The data obtained from a 
random system is called random data. 

Reconstructed spaces: Map the one-dimensional traffic series into m-dimensional 
reconstructed spaces via the determination of appropriate time delay and 
embedding dimension. 

Spatiotemporal traffic features: Traffic variables (flow, time-mean-speed, percent 
occupancy) vary transversely across the highway between lanes and direction of 
travel, and longitudinally along the highway or street as time evolution. 

State space/Phase space: In the nonautonomous case, the equations are of the form 
),( txFx =& , where x is finite dimension, nRx∈ , Rt ∈  and F explicitly 

depends on t. The vector x is called a state vector and the space nR  in which x 
evolves is called a state space. 

State trajectory: Traffic variables (flow, time-mean-speed, percent occupancy), which 
were tracked and recorded in reconstructed state spaces over time. 

Stochastic processes: To measure values x1, x2,…xn,… at time t1,t2,…,tn,…,a set of 
probability distribution denoting that at time tn the value xn can be found. 

Temporal traffic features: Traffic variables (flow, time-mean-speed, percent occupancy) 
vary over time at specific locations in a highway system. 

Time delay: A sequence of observations { })( nt xsS =  performed with some 
measurement function )(⋅s , wherein the one-dimensional traffic time series 
embedded into multiple dimensions reconstructed space is denoted as 

)...,,,( )1(2 τττ −+++= mttttt ssssS , Nt ,...,2,1=  where the parameter τ  is called time 
delay. 

Traffic dynamics/ Traffic time series: The evolution or temporal variation of any traffic 
variables (flow, time-mean-speed, percent occupancy) measured in a sequential 
(chronological) order. 

Traffic patterns: Those characteristics of vehicle groups pass a point or short segment 
during a specified span or traveling over longer sections of highway. 
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APPENDIX B NOTATIONS 

 
 
τ  Time delay 
m Embedding dimension 
λ  The Lyapunov exponent 

0λ  The largest Lyapunov exponent 
d  Correlation dimension/Attractor dimension 
r Distance 

ijθ  Average mutual information (AMI) 
pij The probability of finding a time series value in the i-th interval. 
pij(τ ) The joint probability that an observation falls into the i-th interval and 

an observation time τ  later falls into the j-th interval. 
ji,ε  The ratio of false nearest neighbor (FNN) 

m
is  A point si is located in an m-dimensional space. 

m
js  A point sj is located in an m-dimensional space which is a 

considerable near neighbor of m
is . 

)( tΔζ  Stretching factor: an estimate of the largest Lyapunov exponent 0λ  
per time step. 

( )isΨ  The neighborhood of is  with diameter r 
)(rμ  The correlation integral. 

Θ  Heaviside step function 
xn Gaussian random variable 
MMA The order of MA model 
MAR The order of AR model 

ts  The embedding vector at time t 

0ts  A predictor of ts  

Tts +0  The embedding vector 0ts  at future time (t+T) 
)(⋅φ  Radial Basis Function (RBF) 
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Ut An input multidimensional time series of RBFNN 
Yt An output multidimensional time series of RBFNN 
w, v Weight matrix 

0w  A bias term weight of hidden neuron 
jc  The center of the jth Gaussian function 
jσ  The width of the Gaussian function 

nϕ  White Gaussian noise 
d(p) The pth desired value 
y(p) The pth network output 
e(p) The pth difference between the desired value and the network output, 

i.e., e(p)=d(p)-y(p) 
E The total values of e(p) in network 
y(t) The n-tuple of outputs of the n-processing neurons at time t 
x(t) The m-tuple of external inputs to the network at time t 
dk(t) The desired value of the k-th neuron at time t 
zk(t) The network output 
ek(t) The difference between the desired value and the network output at 

time t, i.e., ek(t)= dk(t)- zk(t) 
E(t) The total values of ek(t) at time t 

1η , 2η  The learning rate 
tocci The individual occupancy time (seconds) 
tif The instant time that ith vehicle is detected (seconds) 
tir The instant time that ith vehicle is off detected (seconds) 

1, +ii xx &&   Speed of ith and (i+1)th vehicle 
BA DD ,  Detector A and detector B length 

D Distance between detector A and detector B 
iq  Flow rate at ith time interval 
iu  Time-mean-speed at ith time interval 
Tq  Accumulated flow rate 
Tu  Weighted time-mean-speed 
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