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Abstract

The characterization of the dynamics of traffic states remains fundamental to seeking
for the solutions of diverse traffic problems while short-term prediction of dynamic
traffic states remains critical in the field of advanced traffic management systems
(ATMS) and related areas. However, the scarcity of information provided by
conventional one-dimensional traffic time-series data and the hasty prediction without
deliberately taking into account the characteristics. of traffic dynamics as well as
affected factors may have shed light on the lack which need to be solved urgently.

Conventional analysis of traffic time series may play a part in the investigation of
traffic patterns characterized by linear statistics. A certain number of studies working
at the vehicle trajectories or their interactions within a time-space domain have
significant contributions. Nevertheless, most of the results simulated by formulated
models are not easy to be calibrated by real data. To gain more insights in traffic
dynamics in the temporal domain, this paper explored traffic patterns in
higher-dimensional state spaces, where we attempted to map the one-dimensional
traffic series into appropriate multidimensional space by Takens’ algorithm. After such
a state space reconstruction, we then made use of the largest Lyapunov exponent to
depict the rate of expansion or contraction of traffic state trajectories in the
reconstructed spaces. The correlation dimension was further estimated to examine if
the traffic state trajectories exhibited chaotic-like or stochastic-like motions. In
accordance with the above procedures, a novel filtering approach was proposed to
inspect the characteristics of real-world temporal traffic flow dynamics.

In addition, a radial basis function neural network (RBFNN) and a real-time recurrent
learning algorithm (RTRL) were proposed to learn about whether or not the dynamics
of short-term traffic states characterized in different time intervals, collected in diverse
time lags, dimensions and times of day have significant influence on the performance
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of the proposed model relative to the published forecasting methods. Furthermore, we
also dabble in comparing pair predictability of linear method-RTRL algorithms and
simple nonlinear method-RTRL algorithms individually using a first-order
autoregressive stochastic time series AR(1) and a deterministic first-order
differential-delay equation.

Finally, an empirical study and a sensitivity analysis were conducted. Wherein, flow,
speed, and occupancy time-series data as well as the speed-flow, speed-occupancy, and
flow-occupancy paired data collected from dual-loop detectors on a freeway of Taiwan
was processed in the empirical study and the same traffic data was fulfilled in the
sensitivity analysis with various time intervals, time lags and times of day. The
numerical results revealed that different nonlinear traffic patterns could emerge
depending on the observed time-scale, history data and time-of-day. In addition, with
consideration of sequential order and spatiotemporal features, more information about
traffic dynamical evolution was extracted. On the other hand, the performances of
RBFNN and RTRL algorithms in predicting short-term traffic dynamics are
satisfactorily accepted. Furthermore, it is found that the dynamics of short-term traffic
states characterized in different time intervals, collected in diverse time lags and times
of day may have significant effects on the prediction accuracy of the proposed
algorithms. The above findings may support that the proposed methods in this study
can be used to develop traffic management schemes which are practically applicable in
dynamic control.

Keywords: temporal traffic pattern, reconstructed state spaces, sequential order, radial
basis function neural network, real-time recurrent learning algorithm
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CHAPTER 1 INTRODUCTION

1.1 Background and Motivations

Traffic patterns are those characteristics of vehicle groups passing a point or short
segment during a specified span or traveling over longer sections of highway. Various
applications of cooperative driving or any kind of driver information and assistance
systems are strongly dependent on actual and predicted traffic features. In terms of
temporal features, traffic time-series data measured in different time scales or intervals
serve different purposes. In planning, for instance, one might wish to estimate the
annual traffic volume over the planned horizon for proposed infrastructure alternatives.
The annual volume is then used for estimating the expected saving in travel time for
economic feasibility studies. For design purposes, however, hourly traffic volume is
often required to determine the facilities’ capacity. Thus, accurately predicting the
hourly flow variations would become essential to avoid an over- or under-design of
new facilities. For operational purposes, much shorter-term traffic information, such as
minute-flow, is essential for real-time traffic management and control. In addition to
flow, other traffic data in temporal perspectives such as occupancy and speed are also
crucial for various practical purposes. Further, traffic occurs in space and time, i.e.,
spatiotemporal features. If we explore the spatiotemporal traffic patterns, more
insightful information may provide us an understanding of freeway traffic that can be
used for effective traffic management, traffic control, organization and other
engineering applications, which should increase freeway capacity, improve traffic
safety and result in high-quality mobility. In particular, surveying the congested traffic
patterns could give us necessary information for efficient collective management
strategies, including such well-know methods as ramp metering and traffic assignment.
Varaiya (2005) pointed out that effective management on highway congestion through
investigation of traffic patterns can significantly reduce congestion. As such,



disclosure of the traffic dynamical patterns deserves in-depth exploration.

Traffic time series represent the evolution or temporal variation of any traffic variables
measured in a sequential (chronological) order. The diverse characteristics of traffic
time series, from random series, short-term correlation, non-stationary series to
seasonal fluctuations, can be depicted according to various observing time intervals.
Conventional analysis of time series may shed light on investigating into the features
of time-series data such as trend, seasonality, outliers and discontinuities against time.
Such a measure may merely apply to describing general linear phenomena such as
mathematical moments mean, variance, auto-covariance and autocorrelation rather
than the whole spectra of nonlinear dynamic phenomena, which exhibit not only trend
but also the resulting anomalous fluctuation. The intrinsic information behind traffic
fluctuation, which is an essence for many advanced traffic control and management
practices in intelligent transportation systems (ITS), may need an advanced method to
exploit. Therefore, researching the features of traffic time series via an innovative
technique deserves in-depth exploration, too.

On the other hand, accurately characterizing and predicting the traffic dynamics,
especially measured in short time intervals, has become a prerequisite in the
development of advanced traffic management systems (ATMS). Here, traffic dynamics
(or termed as traffic time series) refer to are regarded as temporal evolution of such
traffic states as flow, speed and occupancy, measured in a sequential (chronological)
order with identical time intervals. Numerous adaptive intelligent signal control
mechanisms, for instance, are established on the basis of instantaneous or predicted
S-minute or shorter flow data. Smart incident detection may require 1-minute or
shorter traffic states as inputs. Lam et al. (2002) further pointed out that the short-term
traffic forecasting results can be used for validation of the regional and territory-wide
transport models required in various transport studies, such as the freight transport
study and parking demand study, and the development of traffic flow simulator to
provide the off-line short-term travel time and traffic flow forecasting database. Due to
the complex nature of traffic time series with considerable fluctuations and noises,
accurately capturing and predicting short-term traffic dynamics is more challenging
than the long-term (e.g., hourly or daily traffic) dynamics wherein conspicuous
fluctuations have essentially been smoothed out. In view of traffic dynamics measured
in different ways would provide more informative insights into its complex nature,
developing the prediction models to better elucidate its evolution, measured in
different time intervals, periods, lags, and times of day, deserves in-depth exploration.
And this also motivates our study.



With regard to the fact that how to apply the results of characterizing and predicting
the traffic dynamics to help developing methods for real time traffic control is an
extensive issue which furthers more research in the development of advanced traffic
management systems (ATMS). For instance, recurrent traffic congestion has been
recognized as a critical issue to solve in the development of advanced freeway traffic
dynamics systems. Generally speaking, recurrent traffic congestion often happens
during peak hours and affects most of commuters day after day. If we can reduce the
top fluctuation of flows, we may postpone the peak hour, which mainly bring about
traffic block to eliminate most of delay by some control rules. However, it had been
inefficient to stop on-ramp vehicles entering freeway whenever one fond the flows
increase drastically in the twinkling of an eye. So, it is necessary to develop a forward
strategy to control fluctuation of flows. Otherwise the suddenly high flow will
influence obviously the next step flow. Therefore, we would like to learn whether or
not the critical problems of recurrent congestion and non-recurrent congestion daily
occur could be alleviated or avoided via the characterizing and predicting of traffic
dynamics. The significance is the fourth reason to trigger our study.

1.2 Objectives and Values

In view of the scarcity of information provided by one-dimensional traffic time series,
and the lack of considering sequential order in fundamental diagrams proposed by
traffic stream models, the main objective of this study was to characterize evolutional
state trajectories in - appropriately reconstructed state spaces and chronological
relationship for paired- and three- traffic variables in multiple dimensions at an
isolated station as well as between two nearby stations. From successive days with
coarse scales to within a day using subtle observation (20-second, 1-minute, etc.), then
to several days with different time intervals, we have attempted to gain in-depth
insights into the evolution of traffic time series. By investigating the temporal patterns
of traffic dynamics in reconstructed state spaces, we can understand the characteristics
of traffic series and further develop effective managements, such as incident detection,
extended delay prevention and ramp metering other than those known in
one-dimensional space. Furthermore, a close look at traffic time series not only
provides useful information for application in ITS, but improves upon the shortage of
linear models for conventional stochastic processes. Aside from the above temporal
patterns, we believe that this analysis may have a sense as the first step for
understanding of complex behavior of spatiotemporal features of congested traffic
patterns.



With considering the above features of traffic dynamics exhibited in multidimensional
state spaces and predictabilities between various techniques suiting different types of
traffic series, the second purpose of this study is to propose a radial basis function
neural network-based (RBFNN) and a real-time recurrent learning-based (RTRL)
algorithm to know whether or not the dynamics of short-term traffic states
characterized in different time intervals, collected in diverse time lags and times of day
have significant influence on the performance of the proposed model relative to the
published forecasting methods. In addition to assessing the relative performance of the
proposed RBFNN and RTRL algorithms, we further compare the pair predictability of
linear method versus RTRL algorithms and simple nonlinear method versus RTRL
algorithms individually using a first order autoregressive time series AR(1) and a
deterministic function to elucidate the significance that the characteristics of traffic
dynamics affect the accuracy of prediction. After a well-trained network is built and
various techniques are compared, the accurate understanding for traffic dynamics and
reliable prediction would be anticipated.

1.3 Benefits and Significance

In this study, we adopt three traffic variables, flow, speed and percent occupancy, to
explore the temporal features of traffic dynamics. To see the benefits of inspecting
features of a time series, we set an example to elucidate the conceptual difference
between numeric data and features. For instance, one normally does not have a distinct
awareness that traffic is light or heavy when one is told that the traffic volume equals
20 vehicles per lane with a 1-minute time interval. At most, one perhaps can ask when
the traffic volume occurs during the day to help discriminate between light and heavy
traffic. Nevertheless, as depicted in Figure 1-1, one easily gets confused, since the
specific volume, 20 vehicles per minute, happens at several time points during the day.
Therefore, the information provided by traffic data is extremely limited, in particular
when figures are derived from one variable.

From Figure 1-2 (a), it can be seen that heavy traffic seemingly occurs, because traffic
speed drops off and occupancy increases, at two time points in the day, around 10:00
am and 14:00 pm, when the other two curves of variables, speed and occupancy, are
added in Figure 1-1. Meanwhile, the corresponding traffic dynamics with volumes
equal to 52 vehicles per 3 minutes and 154 vehicles per 9 minutes are displayed in
Figures 1-2 (b) and (c) respectively. For the larger intervals, it seems that the
associated information is getting less. However, no matter what time scale we employ,



the useful information provided by traffic data is incomplete and even misunderstood
compared with that provided by features shown in Figure 1-3. From Figure 1-3, it can
be clearly seen that traffic series measured with different time scales reveal similar
trends or structures. As the time scale used as a measurement becomes smaller,
fluctuations surging along with the general patterns become more conspicuous.
Specifically, the traffic time series patterns in one dimension from day to day look
very similar but never exactly repeat. The patterns are essentially non-reproducible
(with oscillations) each day.

In spite of the benefits of features, the display of traffic dynamics in multidimensional
spaces may reveal more valuable information. To see the benefits of a time series
presented in reconstructed state spaces in this study and illustrate two well-known
nonlinear time series: the first one is Lorenz series generated by Eq. (1.1), which is
known as a deterministic (chaotic) time series. The second one is a random time series
generated by Eq. (1.2), which is proven as a stochastic (random) time series (Sprott
and Rowlands, 1995).

dX/dt=10(Y-X); dY/dt=28X-Y-XZ; dZ/dt=XY-8Z/3 (1.1)
Xn+1=AX,+B(modC) (1.2)

For the one-dimensional plots, X(t) versus t, shown in Figure 1-4, we notice that a
chaotic time series (Figure 1-4(a)) is less distinguishable from a random time series
(Figure 1-4(b)). Namely, it is faint to distinguish, by visualization method, between a
chaotic system and a stochastic system because both have very similar irregularity in
one-dimensional space; however, it seems existent a few rules in the Lorenz time
series. If we reconstruct these two time series in a three-dimensional state spaces, X(1)
versus X(t+7) versus X(t+27), where z is a proper time lag, we would see the
difference as shown in Figure 1-5. Notice that the chaotic system has revealed
discernible structure (Figure 1-5(a)), in which the trajectories are governed by certain
deterministic rules. In contrast, the random system does not reveal any structure at all,
which plots just scatter uniformly in the three-dimensional state spaces (Figure 1-5(b)).
This illustration provides good advice that a very simple tool, which is one of methods
of nonlinear time series, can reveal certain deterministic rules in multidimensional
state spaces.
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Figure 1-5 Three-dimensional state spaces plots for Lorenz and a random time series

Through the state space reconstruction, one may find out the noticeable patterns for a
chaotic system. However, one still cannot figure out how the series trajectories would
evolve over time because mapping the one-dimensional series into higher dimension
does not explain its sequential order. To see the importance of the sequential order,
this study further demonstrates another nonlinear time series, known as Logistic map,

generated by Eq. (1.3).
X(n+1)=3.75x(n)(1- x(n)) (1.3)

Let the initial condition of the series be X(0)=0.1. Figure 1-6 presents the difference of
the series in two-dimensional state spaces with revealing and without revealing its
sequential dynamics. One can clearly observe the back-forth dynamical behaviors by
only taking the sequential order of the series into consideration (Figure 1-6(a) marked
with numbers). In contrast, without considering its sequential order the series can only
reveal its patterns, not the dynamical behaviors (Figure 1-6(b)).
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Figure 1-6 Logistic map x(n+1)=3.75x(n)(1- X(n)), where x(0)=0.1

Next, another well-known example is further demonstrated in Figure 1-7 to elucidate
the significance of tracing when we face the intangible variance of traffic dynamics. In
this figure, the relationship between speed and flow without sequential order is
displayed in the top left plot (entitled original data (a)), while the identical relationship
between speed and flow, when completely shuffled, without sequential order is
displayed next to the original data (a), and which we name surrogate data (b). From the
above two plots, it seems that the distribution representation only tells us the numerical
relationship between the two traffic variables rather than the rationale of the dynamics.
However, when their sequential order is taken into consideration, the slight difference
between the original data and the surrogate data can be seen, depicted as original data
(c) and surrogate data (d) respectively in Figure 1-7. Moreover, if a small area from the
original data (c) is selected and the sequential order tracked, then we find the trace
scattering depicted in the original data (a) and original data(c) of the right hand side
plots, which represent the plots of ten points in the early hours and morning peak hours.
Obviously, there are distinct differences between the original data (plot (a) and (c)) and
the surrogate data (plot (b) and (d)) after tracing along the ten points. Accordingly,
such tracings play an important role in investigating traffic dynamics.
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Figure 1-7 The relationship between speed and flow with/without tracing

The above illustrations imply that one can gain insights into a time series by looking at
its patterns in multidimensional state spaces, rather in a conventional one-dimensional
space, and by considering its sequential order to realize its actual dynamical behaviors.
Some challenging issues may arise from these implications. For instance, what is the
most appropriate time lag? How high the dimension should be embedded to reveal the
best features? Do nonlinear phenomena really exhibit in the nature of traffic dynamics?
What types of nonlinear phenomena may exist? What are the core logics for modeling
the traffic sequential orders? Why do we need to predict? What is the best prediction?
What is the cause and effect relationship between features and prediction? What is the
difference of predictability between various techniques? The following chapters will
address these issues in detail.

1.4 Limitation and Scope

In this study, traffic time series were directly extracted from dual-loop detectors
installed at a given 3~4-lane mainline segment of the northbound Sun Yat-Sen
Freeway of Taiwan, located in the northern area of Taipei County. The traffic series
extracted from “isolated” stations can only provide us to explore the temporal patterns
of traffic dynamics, not spatiotemporal features over several adjacent segments. This is
the restriction of our empirical investigation. In addition, traffic state trajectories in
this dissertation refer to traffic variables (flow, time-mean-speed, percent occupancy),
which were tracked and recorded in reconstructed state spaces over time rather than
vehicles changing their position with time evolution.
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1.5 Organization and Framework

The following chapters of the dissertation begin with the literature review and
description of our rationales for methodology development, followed by a brief of
preliminary testing and discussion of analytical results. We conclude with an
elaboration of the research and follow-up for future work. Figure 1-8 is the framework
of dissertation and Figure 1-9 is the research framework.

Chapter 1 Introduction

--Background and Motivations
--Objectives and Values
--Benefits and Significance
--Limitation and Scope
--Organization and Framework

Chapter 2 Literature Review

--Temporal Traffic Features
--Spatiotemporal Traffic Patterns
--Linear and Nonlinear Prediction
--Neural Network

Chapter 3 Methodology

--Reconstruction of State Spaces

--Motions of Traffic State Trajectories

--Linear and Simple Nonlinear Predicting Algorithms
--Rationales for RBFNN and RTRL

Chapter 4 Preliminary Testing

--Calculation and Statistics for Data
--A Filtering Approach

--Result of Filtering Approach
--Preliminary Testing for Predictability

Chapter 5 Empirical Study

--Temporal Traffic Patterns

--Diverse Temporal Patterns

--Paired- and Three-variable Traffic Evolutions
--Sensitivity Analysis

Chapter 6 Conclusions and Suggestion

--Temporal and Spatiotemporal Patterns
--Temporal Features and Short-term Prediction
--Extensive Applications

--Follow-up

Figure 1-8 Framework of dissertation
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CHAPTER 2 LITERATURE REVIEW

Numerous researchers have devoted their efforts to the study of traffic dynamics, and
we can categorize their achievements into four types: temporal features,
spatiotemporal patterns, linear and nonlinear prediction and artificial neural networks,
which are presented in this chapter.

2.1 Characteristics of Temporal Traffic Time Series

Most of the early paradigms have employed stochastic processes to depict the traffic
time series by using some presumed mathematical (probabilistic) distributions. Taking
headways as an example, May (1990) categorized their features into random, constant,
and intermediate states. Wherein, headways categorized as the intermediate case is the
most difficult to model, although it is the most frequently encountered case in a
real-world situation. Likewise, traffic flows are often modeled by different stochastic
processes. For instance, Poisson distributions are widely acknowledged in low-volume
conditions where the mean and the variance of counting traffic are about the same.
Such traffic conditions can be associated with random headway states. In contrast,
binomial distributions are often utilized for near-capacity conditions where the mean
of flow rates is typically larger than its variance. These traffic conditions correspond to
nearly constant headway states. The intermediate flow count between these two
boundary states can be very complex, and has been modeled by different probabilistic
distributions. In the late 1970s, autoregressive integrated moving average (ARIMA)
processes had become very popular in the study of linear stochastic time series (Box et
al., 1976; Jenkins and Alavi, 1981). Moreover, a large amount of literature has
extended analytical tasks from pure time-series models to dynamically generalized
linear models (Ansley et al., 1977; Clarke, 1983; Maravall, 1983; Liu, 1991; Chang
and Miaou, 1999; Lee and Fambro, 1999; Lingras et al., 2000; Williams, 2001;
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Williams and Hoel, 2003), and to multivariate time series state space models
(Stathopoulos and Karlaftis, 2003) assuming that the dynamics of traffic flow may
follow a linear system or can be modeled with a time invariant linear filter by Wold’s
decomposition.

Other paradigms treat traffic series as a nonlinear system. For instance, Disbro and
Frame (1989) utilized chaos theory, a nonlinear system with aperiodic determinism, to
describe traffic flow phenomena, and Dendrinos (1994), Zhang and Jarrett (1998), Lan
et al. (2003a) and Shang et al. (2005) in their analysis of traffic data also found that
chaotic characteristics exist in traffic systems. In addition, Smith et al. (2002) stated
that the presence of “chaotic like” behavior cannot be completely dismissed, especially
during congestion when traffic flow is unstable and a stronger causative link may be
operating in the time dimension. In reality, at times it is very difficult to make such a
spatiotemporal analysis of empirical data extracted from “isolated” stationary detectors.
Under such restriction - only temporal traffic patterns were investigated, nonlinear
phenomena such as equilibrium (stable) fixed points, periodic, quasi-periodic motions
or chaotic characteristics, and stochastic or random behaviors could be analyzed in a
traffic dynamical system. Therefore, it may not be appropriate to view any traffic
series as a pure deterministic or a complete random time series. Instead, traffic flow
dynamics may be characterized in a comprehensive spectrum featured in the range
between random and deterministic (Lan et al., 2007b). Only through sufficient
evidence from field observations can we be sure of the dynamical behaviors of traffic
series, thereby in turn, enabling modeling (elucidating or predicting) the traffic series
in a more accurate manner for practical applications.

2.2 Spatiotemporal Traffic Patterns

A certain number of previous studies also have aimed at the trajectories of traffic
patterns varying in the spatial domain for specific purposes such as geometric design
of traffic systems and advanced traffic control. Such spatial traffic patterns, which vary
transversely across the highway between lanes and direction of travel and
longitudinally along the highway or street, may also provide useful information for
control and design purposes, such as incident detection, accident investigation,
roadway design, etc. For example, Sheu et al. (2004) presented a discrete-time
nonlinear stochastic model to characterize the traffic states under the condition of
lane-blocking incidents on surface street. In the late 1990s, a “three-phase traffic
theory” was developed to depict the spatiotemporal traffic patterns (Kener, 1998, 1999,
2002a, b). Subsequently, several models, including Kerner-Klenov model, CA model,

14



FOTO and ASDA models, were presented to recognize and track traffic breakdown
and spatiotemporal congested patterns (Kener and Klenov, 2002; Kerner et al., 2002,
2004). In addition, Kerner (2004) and Kerner et al. (2006) further pointed out a few
drawbacks of fundamental diagram approaches in describing of spatiotemporal
congested freeway patterns. By Kerenr’s three-phase traffic theory, the spatiotemporal
relationship among traffic variables has been elaborately illustrated. In addition,
cellular automaton (CA) simulation has been widely used to explicate the behaviors of
traffic flows. Nagel and Schreckenberg (1992) first proposed a CA model to reproduce
the basic features of real traffic. In the late 1990s, a considerable number of modified
CA models have been developed or extended in the past decade (Nagel, 1996, 1998;
Rickert et al., 1996; Chowdhury et al., 1997; Barlovi¢ et al., 1998; Nagel et al., 1998;
Knospe et al., 2000; Bham and Benekohal, 2004; Larraga et al., 2005). Most of these
modified works dealt only with pure traffic flows (only one type of vehicles). Hsu, et
al. (2007) proposed refined cellular automata (CA) rules to explore the fundamental
traffic features and stated that the proposed refined CA models are capable of
capturing the essential features of traffic flows.

2.3 Techniques for Linear and Nonlinear Prediction

Techniques for predicting time series can be generally divided into two categories:
linear and nonlinear. Linear techniques, such as autoregressive integrated moving
average (ARIMA) methods, aim to characterize homogeneous time-series data, either
stationary, or non-stationary that can be further transformed into a stationary series
(Kalman, 1960; Box and Jenkins, 1970; Granger and Newbold, 1976; Oller, 1985).
Additional comparisons between linear technique (ARIMA) and other predicting
methods, for instance neural network (NN), non-parametric regression (NPR) and
Gaussian maximum likelihood (GML) are also conducted for extensive applications
(Smith et al., 2002; Tam et al., 2004; Lam et al., 2006). In contrast, linear models may
not be applicable in characterizing inhomogeneous data due to their weakness in
transforming the non-stationarity of traffic states into stationarity.

The nonlinear techniques for predicting the inhomogeneous time series are in effect
strongly based on the underlying postulation that different time series with equal states
may have equal futures and similar states will also evolve similarly, at least in the short
run. According to such postulation, Iokibe et al. (1995) proposed a fuzzy local
reconstruction method which was adequate in prediction of some experimental
nonlinear time-series cases. Sakawa et al. (1998) proposed a fuzzy neighborhood
method which proved effective in some deterministic nonlinear predictions. Lan and
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Lin (2001) proposed a phase-space local approximation method for satisfactorily
predicting short-interval flow dynamics. In the prediction literature, most successfully
modeling for nonlinear time-series data have been generated in laboratory experiments
and rarely have they been found outside the laboratory due to the complex fluctuations
with noises of most real time-series data. This has stimulated some attempts to
combine nonlinearity and stochasticity in modeling and making predictions (Gardiner,
1997; Ragwitz and Kantz, 2000, 2002).

2.4 Neural Network

Undoubtedly, considerable literature has elaborated the predicting approaches from
neural network (Clark et al., 1993; Dochy et al., 1996; Dougherty and Cobbett, 1997,
Smith and Demetsky, 1997; Kirby et al., 1997) to wavelet analysis (He and Ma, 2002)
and to hybrid method (Li, 2002; Soltani, 2002). One of neural network based
approaches, called radial basis function neural network (RBFNN), is worth to further
illustrate because of its successful application on predicting. the traffic dynamics
(Wedding and Cios, 1996; Chen and Grant-Muller, 2001) with reasonable training time
from practical perspectives. Ham and Kostanic (2001) and Kecman (2001) proposed
an effective technique, called OLS (Orthogonal Least Squares), to improve the
disadvantages pertaining to the original RBFNN, which had made RBFNN more
useful and practical in prediction (Chen et al., 1991). Another neural network based
approach, real-time recurrent learning (RTRL), is also noteworthy because it is not
only able to manipulate the mapping of single input-output, i.e., static process, but also
capable of incorporating time sequential order into operating the non-stationary
process, in which the chronological order is a very important factor to accurately
predict traffic dynamics (Haykin, 1999; Chang et al. 2002). Because of the recurrent
feedback loops, a recurrent neural network (RNN) is able to process temporal patterns
and time-vary systems (Chang and Mak, 1999). Wherein, the real-time recurrent
learning algorithm applied to train RNN developed by Williams and Zipser (1989) is
one of the successful learning algorithms. In particular, it is suitable for on-line
training of RNN (Mak et al. 1999). Afterward, Mak et al. (1999), Chang and Mak
(1999) and Goh (2003) proposed modified learning algorithms as well as an adaptive
gradient computation to improve the convergence capability of the RTRL algorithms,
which have made RTRL algorithms more useful and practical in prediction.

Despite the improvement in computation of above approaches, most previous literature

may either lack empirical analysis of the characteristics of traffic dynamics before
prediction, or hastily train a network without considering the effects that influence the
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prediction accuracy from diverse perspectives, for example, observing the different
training results of traffic series measured in different time intervals, time lags, times of
day and in multidimensional state spaces. Accordingly, it is necessary to further
understand the pros and cons between various predicting techniques and the affected
factors under different scenarios when one would like to thoroughly acquire more
information from the procession of prediction.
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CHAPTER 3 METHODOLOGY

This chapter mainly describes the methods of this study, including reconstruction of
state spaces, motions of traffic state trajectories, linear and simple nonlinear predicting
algorithms, RBFNN and RTRL algorithms. In addition, we also use a few well-known
examples to elucidate the algorithms and make them readable.

3.1 Reconstruction of State Spaces

Reconstruction of state spaces involves two main steps: (1) determination of
appropriate time delay and (2) embedding dimension. In the study, the fundamentals of
Takens’ method were utilized to determine appropriate time delay. Note that Takens’
method has been extensively applied to many disciplines of science and engineering
(Abarbanel, 1996; Kantz and Schreiber, 2004). In Takens (1981), it was proved that,
under fairly general conditions, the underlying dynamical system could be faithfully
reconstructed from time series, in the sense that a one-to-one correspondence can be
established between the reconstructed and the true but unknown dynamical systems.
Details about the developmental procedures and rationales for state space
reconstruction were depicted in the following, including determination of time delay,
embedding dimension and how to measure the motion of trajectories in reconstructed
space via largest Lyapunov exponent and attractor dimension.

3.1.1 Determination of Time Delay
First, let us specify a dynamic system to elaborate traffic dynamics and its properties.
In the study, traffic dynamics (including flow, speed and occupancy) is named

interchangeably as traffic time series or traffic series referring to the temporal
evolution of any traffic variable or its state trajectories measured in a chronological
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sequence with equal time interval. Now, let X(t) denote the traffic series describing the
time evolution in phase space, then it can be expressed by on ordinary differential
equation X(t)=F(x(t)) , teR ; or in discrete time t=nAt by maps of the

formx,,, = f(x,), neZ, where X is a state vector that is finite dimensional xeR",

and f and F are referred to as vector fields explicitly depending on n and t. The space
R" in which x evolves is called a state space. A traffic time series can also be

considered as a sequence of observations {S, =s(x,)} performed with some

measurement function s(-), wherein the one-dimensional traffic time series embedded

into multiple dimensions reconstructed space is denoted as S, =(s,,S,,.,S S ),

t+72 St+27° 2 Ct+(m-1)7

t=12,...,N where the parameter 7 is called time delay and the integer m is called
embedding dimension. In space, geometric objects with non-integer dimensions are
called fractals, whereas a geometric object, which characterizes the long-term
behavior of a system in the phase space, is called an attractor. Correlation dimension is
a measure of the extent to which the presence of a data point affects the position of the
other point lying on the attractor.

Accordingly, time delay for any traffic series can be conceptualized with Figure 3-1.
In the top panel, the points of square, diamond and circle represent the value of series
at time t; t+7 and t+2r respectively; in contrast to the low panel, one can find
their corresponding places in the multidimensional space through reconstruction. If the
time delay is different, the portrait in multidimensional space will change immediately.
Thus, it is important to decide a proper time delay when one map a time series into a
multidimensional space, that is the quality of reconstructed portraits for a traffic time

series depended on the value of 7. For small 7z, s, and s . are very close to each

t+7

other, whereas for a large value of 7, s, and s, can be completely independent of

t+7
each other, and any connection between them is random. Consequently, we need a

criterion for an intermediate choice that is large enough so that s, and s, are

t+7

independent but not completely independent in a statistical sense.
There are two alternatives to estimate the time delay required by the embedding

theorem from an observed traffic time series. The first one is calculating the linear
autocorrelation function (ACF) of the data points and selecting 7 as the time of its
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first zero-crossing. The rationale behind this approach is that the time when ACF

reaches a zero value marks the point beyond which the s . sample is completely

t+7

de-correlated from s,. However, this approach is suitable only for linear time series.

The second one involves the calculation of data from a nonlinear autocorrelation
function called average mutual information (AMI), which is proposed by Fraser and

Swinney (1986) and can be expressed as 6, in Eq. (3.1):
Rij (7)

iF]

0; = _z p; (7)1In (3.1)
i

where for some partition on the real numbers, pjj is the probability of finding a time
series value in the i-th interval, and pjj(z ) is the joint probability that an observation
falls into the i-th interval and an observation time z later falls into the j-th interval. In
theory, this expression has no systematic dependence on the size of the partition
elements and can be quite easily computed. There exist good arguments that if the time
delayed mutual information exhibits a marked minimum at a certain value of 7, then
this is a good candidate for a reasonable time delay. In practice, one may not be
interested in the absolute values of mutual information but rather in its first minimum,
and thus the first minimum of AMI usually signal a proper time delay for the time
series. Compared with ACF that only measures linear correlations, AMI also takes into
account nonlinear correlations, therefore this paper will use the AMI approach by
Fraser and Swinney (1986) to determine the proper time delay for traffic time series.

21



20

s(t)

Il Il Il
350 400 450

s(t+2*tau)

s(t+tau) ’ i s(t)
Figure 3-1 The concept of traffic series time delay in 1-D and 3-D spaces
3.1.2 Determination of Embedding Dimension

The purpose of the reconstructed state spaces is-to find a Euclidean space that is large
enough so that the set of points describing the attractor can be unfolded without
ambiguity. Kennel et al. (1992) proposed a false nearest neighbor (FNN) algorithm to
determine the minimal sufficient embedding dimension m. The FNN algorithm is to

search for point s; in the time series and to look for its nearest neighbor s; in an
m-dimensional space, followed by calculating the distance Hsi - JH and iterating both

the points, and then computing the ratio ¢ ; of Eq. (3.2) in an m-dimensional space.

m+1 m+1

‘Si _s] ..
g =0 2 ii=12,.,N (3.2)

s —s]

If the ratio & ; exceeds a given heuristic threshold &, this point s; is marked as
having a false nearest neighbor, wherein in general, the value of the threshold &, is
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recommended as lying between 10 to 15 (Nayfeh, 1995; Abarbanel, 1996). The
criterion that the embedding dimension is high enough is that the fraction of points for

which ¢ ;> ¢ 1is zero, or at least sufficiently small.

Figure 3-2 illustrates an example depicting the FNN algorithm. In the top panel, the
square point is the nearest point to the circle point within 500 points in one-dimension,
wherein their Euclidean’s distance is 0.02. A simple method is used to project the
square point and the circle point to the y-axis, where after it is apparent that the
distance between the two circles is very close. However, the value becomes 10.01 if
one calculates the Euclidean distance in a two-dimensional plane (middle panel)
according to proper time delay. Because the ratio of 10.01 divided by 0.02 is greater

than the threshold, ¢,, thus, the square point is a false neighbor of the circle point. If

one further calculates the ratio of distances between a two-dimensional plane and a
three-dimensional space (low panel), then it demonstrates that the ratio dropped
drastically because the Euclidean distance is 10.4 in three-dimensional space. Since

the ratio is no longer greater than the threshold, ¢, it suggests that an embedding

dimension of m = 2 is sufficient. After we examine every point in this time series
according to the above algorithm, the proper embedding dimension can be decided.
However, if there are a multitude of i1dentical values in a realistic time series, then
FNN algorithm probably cannot work precisely. In that case, the embedding dimension
would be determined approximately by correlation dimension instead.
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Figure 3-2 The concept of measuring the distance of traffic time series by FNN

algorithm
3.2 Motions of Traffic State Trajectories

Once the appropriate time delay and embedding dimension for a traffic series are
determined, one can map the one-dimensional traffic series into M-dimensional
reconstructed spaces. After that, one is interested in knowing how traffic state
trajectories moved in this space over time. Note that traffic state trajectories in this
paper refer to traffic variables (flow, time-mean-speed, percent occupancy), which
were tracked and recorded in reconstructed state spaces over time rather than vehicles
changing their position with time evolution. This paper makes use of the Lyapunov
exponent to measure the rate of expansion or contraction of traffic state trajectories
and is described hereinafter.
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3.2.1 Estimation of the Largest Lyapunov Exponent

If we take two points s; and s; in the reconstructed space, and indicate the distance

between them as ‘si -s j‘ =0, , then, after a time span At, it is expected that the new

AAL

distance ¢ will be equal to 6 =0, , where 1 1is called the Lyapunov exponent.

For an m-dimensional space, the rate of expansion or contraction of trajectories is
described for each direction by one Lyapunov exponent, resulting in m different A1s.

Of the m different As, the largest value 4, (largest Lyapunov exponent) is of main

interest since it can be easily calculated even without the explicit construction of a

model for the traffic time series. If A4, is negative, the traffic state trajectories will
converge to a fixed point. If A, is zero, the traffic state trajectories are periodic

motions. If A, is positive, the traffic state trajectories may exhibit other motions such

as an aperiodically deterministic chaos or stochastic randomness (Hilborn, 2000;
Kantz and Schreiber, 2004).

In theory, the largest Lyapunov exponent can be used to identify the traffic state
trajectories moving in the reconstructed state spaces. However, in practice, there will
be fluctuations in the calculation of the largest Lyapunov exponent due to noisy traffic
data. For instance, in a true state space, distances do not always grow everywhere on
the attractor at the same rate, and in fact they may even shrink locally. To minimize
the influence of noisy field traffic data on calculating the largest Lyapunov exponent,
one can employ an appropriate averaging statistic when computing the average
exponential growth of distance. To realize this, the following procedures are proposed:

(1) Choosing a point s; of the traffic time series in the reconstructed space and select

all neighbors with a distance smaller than r. (2) Computing the average over the
distance of all neighbors to the reference part of the trajectories as a function of the
relative time. The logarithm of the average distance at time t is some effective
expansion rate over the time span At (plus the logarithm of the initial distance)
containing all the deterministic fluctuations due to projection and dynamics. (3)
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Repeating this for many values of i, thereby averaging out the fluctuations of the
effective expansion rates. (Kantz and Schreiber, 2004)

The above procedures can be represented as Eq. (3.3), wherein the curves of stretching
factor ¢(At) exhibit a robust linear increase, slope of which is an estimate of the

largest Lyapunov exponent A, per time step.

—-S

Si+At J+At

J,i, j=12,..,N (3.3)

(At =— 21 e )IZ

s e‘F(Si)

where ¥(s;) is the neighborhood of s, with diameter r.

Figure 3-3 demonstrates an example of Lorenz time series', which is known as a
deterministic (chaotic) time series in estimating the largest Lyapunov exponent
according to the above proposed procedures. In this figure, we observe that the dotted
line, i.e., slope of bundle curves (each curve represents m-th dimension) is positive and

the largest Lyapunov exponent is 4, = 0.044 £ 0.002. Note that the curves of stretching

factor in the left panel (Figure 3-3(a)) are rather steeper than those in the right panel
(Figure 3-3(b)) because the distance r = 0.199 is smaller than r = 0.353. Consequently,
choosing a proper distance is also essential.

(a)r = 0.199 (b) r = 0.353

Stretching factor
Stretching factor

6.5 | | | . 6 . . . .
0 10 20 30 40 50 0 10 20 30 40 50

iteration iteration

Figure 3-3 An example of estimating the largest Lyapunov exponent

' dX/dt=10(Y-X); dY/dt=28X-Y-XZ; dZ/dt=XY-8Z/3
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3.2.2 Estimation of the Correlation Dimension

Correlation dimension is a measure of the extent to which the presence of a data point
affects the position of other points lying on the attractor. Among the number of
methods available for distinguishing between chaotic motions and stochastic motions
of time-series trajectories, the correlation dimension is perhaps the most fundamental
one (Shang et al.,, 2005). A seemingly irregular phenomenon arising from any
deterministic time-series dynamics will have a limited number of degrees of freedom
equal to the smallest number of first-order differential equations that capture the most
important features of the time series. Thus, when one reconstructs spaces with
increasing dimensions for an infinite data set, a point will be reached where the
dimensions are equal to the number of degrees of freedom, and beyond which
increasing the dimension of the representation will not have any significant effect on
the correlation dimension. Under this circumstance, we view the correlation dimension
of the attractor as saturated. If the attractor dimension is saturated in low-dimensions
(normally, five-dimensions), then it signalizes that the time-series trajectories exhibit
aperiodic motions,'which is essentially deterministic.chaos. In contrast, if an attractor
dimension cannot reach saturation or is saturated in very high-dimensions, then the
trajectories of that time series could be stochastic.

Grassberger and Procaccia (1983) showed that correlation dimension d can be
evaluated by using the correlation integral x(r), which is the probability that a pair of

points (S;, S;) chosen randomly in the reconstructed space are separated by a distance
less than r. If N is the' number of points in the reconstructed vector time series S, the
correlation integral can be approximated by the following sum in Eq. (3.4):

) = " D6l s =) (3.4)

j =li=j+1

where O denotes the Heaviside step function and ‘si -s j‘ stands for the distance
between points S; and S;; G)(r—‘si —sj‘)=0, if r—‘si —sj‘so and @(r—‘si —sj‘)=1, for
r —‘si -S j‘ >0. In the limit of an infinite amount of data (N — o) and for small r, we

expect u, to scale like a power law:

u(m,r) o ar® (3.5)
where « 1s a constant and d is the correlation dimension or the slope of the
In (r) versus Inr plot given by
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d = lim lim 2048 (M1
r-0 N—w alnr

(3.6)
To observe whether a time series exhibits deterministic features, the correlation
dimension (or local slope) values are plotted against the corresponding embedding
dimension values. If the value of the correlation dimension 1s finite, low and
non-integer, then the system is possibly exhibiting as low-dimensional chaos. The
saturation value of the correlation dimension is defined as the correlation dimension of
the attractor, or so-called attractor dimension. In general, an embedding dimension (M)
is no less than double the attractor dimension (2d) plus one. In contrast, if the
correlation dimension increases without bound with increase in the embedding
dimension, then the system is considered as stochastic.

Figure 3-4 demonstrates "an example of Lorenz time series by calculating its
correlation dimension. The left panel (Figure 3-4(a)) is a plot of correlation integral

4y (m,r) versus distance r on logarithmic scale; whereas the right panel (Figure 3-4(b))

1s its local slope. In the right panel, the increasing curve is flat when embedding
dimension is about equal to 4, suggesting that the Lorenz time series is deterministic
chaos with attractor dimension (saturated value) nearly equaling 2.01.

(b)

251

Correlation function
Correlation dimension

1.5F

\ \ \ \ \ \ \ \
=15 =il -0.5 0 0.5 1 15 2 0 5 10 15
Distance r Embedding dimension

Figure 3-4 An example of estimating the correlation dimension of attractor
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3.3 Linear and Simple Nonlinear Predicting Algorithms
3.3.1 Linear Prediction

After understanding algorithms of reconstructing the state spaces as well as motions of
the state trajectories, let us start out from the fundamentals of linear and nonlinear
predicting algorithms. Given a sequence of observations S;, t=1,...,N, we intend to
predict the outcome of the following measurements, Si+;. One often wants to find the

prediction S,,,, which minimizes the expectation value of the squared prediction error

t+1 2

<(§t+1 -S., > When we assume the time series is stationary, we can estimate this

expectation value by its average over the available measured values. If we further
restrict the minimization to linear time-series models which incorporate the K last
measurements, we can express this by

K
SHED I A (3.7)
j=1
and minimize
N-1
Z(SHI - StH)z (38)
t=k
with respect to the parameters a;, J=1,...,k. Here we have assumed that the mean of the
time series has already been subtracted from the measurements. By requiring that the

derivatives with respect to all the a;s to be zero, we obtain the solution by solving the
linear set of equations

Kk N-1
D> Cia; =D SuiSiii»  i=L.,k (3.9)
j=1 t=k
Here Cjj is the kxk auto-covariance matrix
N-1
Cij = z St—k+iSt—k+j (3.10)
t=k

Note that the linear relation, Eq. (3.7), is justified for harmonic as well as for linear
stochastic processes. The most popular stochastic models for linear time series,
autoregressive (AR) models and moving average (MA) models, either consisted of
linear filters acting on a series of independent noise inputs as expressed in Eq. (3.11)
or on past values of the signal itself as expressed in Eq. (3.12), while Eq. (3.13)
represents the ARMA model. (Chatfield, 1996)
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MMA

X, = bo, 3.11)
j=0
MAR
X, =D 8 X, + ¢, (3.12)
j=1
J MAR MMA
X, =a,+ ) ax_.+ > bo . (3.13)
n 0 i n—i J7n—]
i=1 j=0

where X, 1s a Gaussian random variable
aj, bj are parameters
Mpwma, Mar are the order of MA model and AR model

@, 1s white Gaussian noise

3.3.2 Simple Nonlinear Prediction

Nevertheless, most time series of traffic dynamics exhibited in the real world are
nonlinear and more complex than the time series formulated by linear models. A local
linear method in multidimensional spaces was employed to predict nonlinear time
series if the data base was large and the noise level was small (Kantz and Schreiber,
2004). The original concept relevant to nonlinear prediction was used in tests for
determinism by Kennel and Isabelle (1992). The resulting method is very simple.

Recall the time-series expression in multidimensional spaces: S, = (S;,S,,,-»St.(np) ) »
t=1,2,..., N, and for all measurements S, ...,S; the corresponding delay vectors
(8158 14r s Steimotye )> -+ o> (StsStsp-+rStaqmoyye) 1N Multidimensional spaces can be found. In

order to predict a future measurement S, ., one can find the embedding vector s,

closest to s, and use s,,; as a predictor. However, owing to multiple dimensions,

we have to choose the parameter ¢ of the order of the resolution of the measurements

and form a neighborhood W, (s,) of radius & around the point s,. For all points
S, €V,(s,), 1.e., all points closer than ¢ to s,, look up the individual predictors

S,0.7 - Lhe prediction is then the average of all these individual predictors.
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Here |¥,(s,)| denotes the number of elements of the neighborhood W, (s,). If no

neighbors closer than & can be found, one might just increase the value of & until
some neighbors are found.

The concept of multidimensional spaces and simple nonlinear prediction for any traffic
series is demonstrated in Figure 3-5. In the left top panel (a), the points of square,
diamond and circle respectively represent the values of the series at time t; t+7 and
t+27; in contrast, in the right top panel (b), one can find their corresponding
trajectories in the multidimensional spaces through reconstruction. When a proper time
delay is determined, we can map the traffic series from one dimension into three
dimensional spaces. On the other hand, in the left bottom panel (c), if we choose one
small section part of the state trajectories in the multidimensional spaces and enlarge it
as right bottom panel (d) to observe the trajectory motions, it indicates that the
trajectories within radius ¢, i.e., in the black circle, move towards the same direction
and one can predict the square point at time (t+T) by averaging the four closed points
marked start at time (t+T). That is, in this case we assume that the underlying
relationship between the current observation and its nearest neighbors remains
stationary with short-term time evolution, the points marked start already known their
values are the neighbors of the current observation (the square point at time t) and then
a prediction (the square point at time t+T) can be made by using the relationship and
tracking the movements of the nearest neighbors.

31



20
15
20
10 10
=)
) N\Q
- N
1 )
0 | %10
s(t
5 20
20
-10
-15
0 s(t) 20 -20 s(t+tau)
c d
TN =TT
_ aadl R ol T
T _ A e - PR
20 -- PN R 2077 AT T
- N 7SN NN
T I ‘ ATTT N T
,! N ~ S - | N ~ o
Ty . SRR
§ o (@ Nh S N
g (@D i b
& ol - ‘“:\\‘\}';/V_;///é,/ J**Zt\ﬂ\ T
NS —————pr SN |
s(t,thtau, t+2taw = T+ 2tau)
20 -7
20

s(t) 20 -20 s(t+tau) s(t) 0 -12 s(t+tau)

Figure 3-5 The concept of prediction for traffic series in multidimensional spaces

3.4 Rationales for RBFNN and RTRL
3.4.1 RBFNN Algorithms

Likewise, a traffic series can be considered as a sequence of observations {S, = s(x,)}

performed with some measurement function s(-), wherein an one-dimensional series

embedded into multiple dimensional spaces can be transformed into

St = (Sttmaiye> Sty Sers S )s £=1,2,.,N? (Lan et al., 2007d). Accordingly, if input

is a (g-dimensional series U, =(U_q U qoyeliHU), t=12,, N with

? Another type of identical expression is S = (S, Sy, ; 5+ St m_pyr ) » =125, N
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corresponding output a k-dimensional series
Y = Vs Yicoayerons Yioes ¥ )» t=12,.,N, then Y, can be generated by some
unknown nonlinear multidimensional series of the form:

Y = TV Yictenye Yoo Ui qunes Yiqeayeomo Up)s T=1,2,0,N (3.15)

where f(-) is an unknown nonlinear function.

With using the above as a basis, a radial basis function neural network (RBFNN) can

be constructed, wherein the multi-dimensional traffic series U, is used as input to the

network, and Y, will be the corresponding output series. Formulation of network

output data is accomplished through a hidden layer consisting of M neurons. Each of
the M neurons in the hidden layer applies an activation function which is a function of
the Euclidean distance between the input and a multiple dimensional prototype vector.
Each hidden neuron contains its own prototype vector as a parameter. The output of
each hidden neuron is then weighted and passed to an output layer. The outputs of the
network consist of sums of the weighted hidden layer neurons. That is, formulation of
output response to an input multidimensional time series is postulated as a linear
combination through the hidden layer responses, and can be expressed as below:

Y =W, +iwj -M\Ut —ch) ,1=12,.,M (3.16)
]

where ¢(-) is a radial basis function (RBF) -- a response of the jth hidden neuron to

an input multidimensional time series U,, w.

; is a weight of the jth hidden neuron for

defining the contribution of the hidden neuron to a particular output, and w, is a bias

term. The RBF hidden neuron responses z; are given by

U. —cC.
Z; =¢J(”UtCJH)=eXp[M} ,j=12,...M (3.17)

20'j

where c; is the center of the jth Gaussian function and o, is the width of the

Gaussian.
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As input traffic series are presented to the RBFNN, the network iteratively creates new
center neurons to reduce its performance error (i.e. Euclidean distance). Allocation of
the new hidden neurons is determined by orthogonal least squares (OLS), which
employs a Gram-Schmidt algorithm and Cholesky decomposition (Chang and Chang,
2005) to create new center neurons under a given threshold. In other words, the widths
and center locations of the existing hidden neurons can be adjusted during the learning

process. As to the method of adjusting weight w;, Broomhead and Lowe (1988)

proposed a recursive least mean squares (LMS) algorithm to obtain an acceptable error
as follows. If d(p) is the pth desired value, then y(p) is the pth network output. The e(p)
is the pth difference between the desired value and the network output. When e(p)
equals zero, the pth network output is thereby able to fit the pth desired value entirely.
As such, the total values of e(p).in network can be a minimum:
N N
E=2[e(m] =X @(P)-y(p)’ (3.18)
p= p=1

1 =

When E has a minimum value, then the gradient vector

oE(p)
ow;

Substituting agv(vp) =0 into Eq. (3.18) will obtain W =(¢"¢)"'¢'d(p) . The

i

is equal to zero.

parameters w; are iteratively updated until the learning processes stably converge. In
the algorithms, because the parameters c;,o; in the hidden layer have been

previously determined, thus the recursive adjustment of weight w; is capable of

significantly reducing learning time when compared to error back propagation. The
advantage of effectively reducing learning time is an important factor for choosing the
RBF algorithm as the basis for our prediction model because in addition to capturing
the traffic trend, we are also predicting the variance of traffic dynamics in the short run.
If a prediction model is slow to respond to changing variables, the utility of the
prediction model will be greatly restricted. Figure 3-6 depicts the typical architecture
of a RBF neural network in the context of predicting traffic dynamics, collected from
loop detectors.
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Figure 3-6 A typical RBF network and traffic dynamics from loop detectors

3.4.2 RTRL Algorithms

In contrast to the static learning algorithms, such as RBFNN, the real-time recurrent
neural network (RTRNN) can be considered as a BPN with feedback loops connecting
to every hidden node, which exhibits dynamical learning algorithms. The main
difference compared with BPN is that the outputs are used as part of the next
sequentially timed input, i.e., the output at time (t+1) is based upon the current input
and previous outputs. Furthermore, the RTRNN consists of three layers: a
concatenated input-output layer with (m+n) nodes, a processing (hidden) layer with n
nodes and an output layer with K outputs. Let y(t) denote the n-tuple of outputs of the
n-processing neurons at time t and X(t) the m-tuple of external inputs to the network at
time t. We concatenate y(t) and x(t) to form the (m+n)-tuple u(t), with B denoting the
set of indices for the processing neurons and A the set of indices for the external inputs,
so that

Ui(t):{xi(t) if ieA (3.19)

y(t) if ieB

By adopting the indexing convention just described, a hidden network net; at time t is
obtained by summing up the weighted inputs with a weight matrix w. After the
network is transferred by an activation function f( ), the output yj(t) is used as a
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feedback input in the next time step and summing up the weighted feedback inputs
with a weight matrix Vv is repeated. Likewise, after the transformation, the network
output, z,(t), is passed to an output layer. The above said procedure can be expressed as
the following equations:

net; (t) = ; E\g/vji(t —u, (t-1) (3.20)
y; () = f(net;(t)) (3.21)
net, (t) = > v, (O, (1) (3.22)
z,(t) = f(net, () (3.23)

Concerning the algorithms for computing the weight matrix w, v as well as the error
function, we denote dy(t) as the desired value of the K-th neuron at time t and define
ex(t) to be the difference between the desired value and the network output at time t,

1.€.,
e () =d, () =z,(t) (3.24)
Then we define the error function, E(t):
K
E(t) :%Zeﬁ(t) (3.25)
k=1
According to the steepest descent method, the amount of adjusted weight for v,(t) and
for w, (t):
OE(t)
Av, (1) =— 3.26
Vk]( ) m 8ij (t) ( )
OE(t)
Aw, (t-1)=-n, ——— 3.27
Wmn( ) 772 ann (t _ 1) ( )
where 7,, 7, are the learning rate,
And
OE(1) :
=—e, (t)f'(net (t))y. (t 3.28
vy (0 (O T(net (D) y; (D) (3.28)
OE(t) K , ay; (1)
—_—= —-e (H)f t, OV (1) | ——— 3.29
WD) {Z e (1) (nek<>)vkj(>}awmn(t_l) (3.29)

According to error back propagation algorithms (Chang and Chang, 2005), a new

variable with three dimension can be defined as =), (t) which is called a dynamic
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variable

) ov. (t
7 (1) = yl(t)) for all jeB, meB, neAUB (3.30)
Accordingly
AW, (t = 1) = 7,3 e, (0 F/(net, (D), (D ]z, (1) (3.31)

In brief, the steps involved in RTRL algorithms can be summarized as follows and
depicted in Figure 3-7:

Step 1. Randomly initialize the weight Wyn(0) and Vv,(0).
Step 2. Input the X;(t) into the RTRL network and compute the yj(t), z(t), then use

y;(t+7) as feedback to the concatenated input-output layer together with

X;(t+7) asnew inputs.

Step 3. Compute the difference between desired value di(t) and network output
Zk(t).
Step 4. Update Ay, (t) according to Eq. (3.26).

Step 5. Update Aw,_, (t —1) according to Eq. (3.27).

Step 6. Increment t by 1 and go to step 2.
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Figure 3-7 A typical RTRL network and traffic dynamics from loop detectors
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CHAPTER 4 PRELIMINARY TESTING

In this study, traffic time series.were directly -extracted from dual-loop detectors
installed at a given 3~4-lane mainline segment of the northbound Sun Yat-Sen
Freeway of Taiwan, located in the northern area of Taipei County. Figure 4-1 is the
sites of detector stations. In order to discover the features of traffic time series in
different situations, we divided the collected raw data into three groups. Data in the
first group was counted aggregately by average flow, time-mean-speed and percent
occupancy per S-minute per approach. The data was extracted from station N27.9 near
station 433, collected from traffic inbounds to Taipei City. Data in the second group
contained flow, time-mean-speed and percent occupancy per 20-second per lane
recorded in median lane. The data was collected from stations 402, 404, 421 and 433.
Stations 402 and 404 are outbound from Taipei City, whereas stations 421 and 433 are
inbound to the City. Data in the third group was a processed data set, i.e., we
combined ten-workday time series, which every workday time series was come from
the second group data. Then, we divided the combined time series into four subgroups
according to four time-of-day intervals, i.e., 00:00-03:00, 06:00-09:00, 12:00-15:00
and 18:00-21:00. The purpose of processing the traffic time series was to compare
different features of traffic series between four time-of-day intervals. Similarly, in
order to examine the features between traffic time series with various time scales, in
the second group, we further accumulated the 20-second traffic series into longer-term
data, including 1-minute, 3-minute and 9-minute series, of which, flows were directly
summed from each 20-second flow, speeds were the weighted average of each
20-second time-mean-speed multiplied by its corresponding flow and occupancies
were the arithmetic mean of each 20-second occupancy. Likewise, in the first group,
the 5-minute approach data sets were accumulated into 15-minute, 30-minute and one
hour time series via the above method. The above detailed calculations and related
statistics were illustrated as the following Section 4.1.
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Figure 4-1 Sites of detector stations 402, 404, 421, 433 and 27.9
4.1 Calculation and Statistics of Data

As above mention, our empirical data is extracted directly from stationary sensors. The
calculation and acquisition of data from stationary sensors are described as follows.
When a vehicle enters the detection zone, the sensor is activated and remains so until
the vehicle leaves the detection zone. We consider “0” and “1” signal to individually
represent the absence of a vehicle and the presence of a vehicle. Figure 4-2(a) is the
signals output from a detector during an observing time T, and Figure 4-2(b) is the plot
of vehicles passing over a paired detector A and B. The on-time referred to as the
vehicle occupancy time requires the i™ vehicle to travel a distance equivalent to its
length plus the length of the detection zone. The off-time between vehicles is the time
gap. Apparently, the i vehicle occupancy time and percent occupancy can be easily
obtained by

toeei = tair —tar OF too =g — gy 4.1)

N
Z tocci

% occ:%xloo (4.2)
T

N = Zisignall (43)
t=0

where to; : the individual occupancy time (seconds)
ti¢ : the instant time that i vehicle is detected (seconds)
t;r : the instant time that i vehicle is off detected (seconds)
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% occ : percent occupancy
N : number of vehicles detected in time period T
T : selected time period (seconds)

Since vehicle occupancy time is a function of vehicle speed, vehicle length and
distance between two detectors as shown in the following equations:

D, +D
5, _Dy+tD . x =82 (4.4)
tair —Lai toir —Tair
where X, :speed for vehicle i (meter per second)

D,, Dg :length of detector A and detector B (meter)
D : distance between detector A and detector B (meter)

X X
A A !
Dz |B

D m i Ve i e =
| N D / |
occupied 1 —— — - : |

I
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e I |
0CCl I |
em > |
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teir  tair tai+nyf tai+r
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Figure 4-2 Output signals from a detector and vehicles passing over two detectors

Because the traffic raw data are measured in 20-second, one further accumulates them
into 1-minute, 3-minute and 9-minute counts which can be calculated in the following

equations:
;
qT = ZQi (4-5)
i=1
T
2 (U *q)
ul =t (4.6)
q
i=1
;
> %occ,
%0cC’ = % (4.7)
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where ¢;: i flow rate (vehicles per 20-second per lane)
u i™ time-mean-speed (kilometer per hour per lane)

%0CC; : i™ percent occupancy time per lane

g : accumulated flow rate (vehicles per 20T-second per lane)
u' : weighted time-mean-speed (kilometer per hour per lane)
%occ’ : percent occupancy per lane for 20T-second time intervals
T: constant
Note: If T equals to 3, q"' means 60-second (i.e. 1-minute) volume; if T equals to 9, q'
means 180-second (i.e. 3-minute) volume, and so on---.

If one would like to gather the lane quantities into approach quantities, the calculation
of approach for traffic series are counted in following equations.

Q" =>q; (4.8)
J
Zn)(U,T *q5)
T =1l B (4.9)
qr
>_%occ]
%0CC" ="T (4.10)

where q : j™ lane accumulated flow rate (vehicles per 20T-second)
uj: j™ lane weighted time-mean-speed (kilometer per hour)

%0CC; : j™ lane percent occupancy for 20T-second time intervals

Q" : approach flow rate (vehicles per 20T-second per approach)
U": approach weighted time-mean-speed (kilometer per hour per approach)
%OCCT : approach percent occupancy for 20T-second time intervals

Nn: number of lanes

From our selected traffic time series, there are some invariant features noteworthy. For
instance, the outbound flow rates at stations 402 and 404 in the morning peak hours
(06:00-09:00) are relatively lower than the evening peak hours (18:00-21:00); while
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the inbound flow rates at stations 421 and 433 in the morning peak hours are
approximately equal to evening peak hours. This feature concurs with the
characteristics of working trips that most suburb commuters drive into Taipei City in
the morning peak hours and leave office in the evening peak hours, i.e., the temporal
flow patterns at different detection stations are influenced by direction. Similarly, the
speed and occupancy patterns are also affected by direction. In addition, we notice
from Table 4-1(a) and (b) that the degrees of variation of traffic series depend on times
of day in general. For instance, early hours (00:00-03:00) has the largest coefficient of
variation (CV) while the evening peak period (18:00-21:00) has the smallest CV. The
degrees of variation also decline with time scale, i.e., traffic series measured in
20-second has the largest CV, followed by 1-minute, 3-minute, and then 9-minute.
Moreover, the CVs of flow and occupancy are larger than the CV of speed. Perhaps
the speed limit regulation has reduced its degree of variation.

On the other hand, the mean and CV of successive traffic series at station N27.9 is
listed in Table 4-1(c). From this table, one can simply notice the individual values of
successive traffic series are not identical, but similar, including mean and CV. In
addition, the CV of speed is the smallest, while the CVs of flow and occupancy are
approximately equal. The variation degrees of successive traffic time series also
decline with increasing time scale. The above consistent statistic characters illustrate
that the reliability of our traffic series is (i.e., no apparent incidents). Figure 4-3
demonstrates the successive one-dimensional traffic time series measured in five
minutes; while Figure 4-4 shows the traffic series measured in 1-minute scale during
five workdays. Figure 4-5 displays a 24-hour traffic series exhibiting heavy traffic
with various time scales on a typical workday. From Figure 4-3 and Figure 4-4, it is
noted that the traffic time series, measured in 1-minute as well as 5-minute scale, vary
similarly and the traffic patterns exhibit in different days, but they never exactly repeat.
From Figure 4-5, we observe the fluctuation of 20-second time series is the most
severe. As the measured time interval gets larger, the degrees of variation decline.
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Table 4-1 The mean and coefficient of variation (CV) of traffic time series

(a) outbound

Measured Flow Speed Occupancy

Time  time Station 402 Station 404 Station 402 Station 404 Station 402 Station 404
interval \fean CV Mean CV Mean CV Mean CV Mean CV Mean CV

! 20-sec 2.1 0.84 0.9 1.36 92.14 0.13 9854 0.09 291 098 1.03 1.62
00:00 1-min 6.2 0.67 2.8 091 91.77 0.08 9855 006 292 0.75 1.03 1.10
03700 3-min 18.6 0.57 8.3 0.70 9123 0.05 9854 004 293 0.62 1.03 0281
9-min 56.1 0.51 248 0.58 91.07 0.04 9853 003 294 0.56 1.04 0.69

] 20-sec 4.8 0.64 2.8 094 87.03 0.11 9628 008 747 0.69 328 1.04
06:00 1-min 143 0.53 8.3 0.74 86.66 0.07 9628 005 746 057 327 0.80
09700 3-min 425 048 250 059 8644 0.05 9628 004 742 050 326 0.64
9-min 125.0 048 75.0 053 8640 0.04 9634 0.03 728 049 320 0.60

] 20-sec 5.9 0.44 33 0.76 81.55 0.11 9447 007 995 051 390 0.84
1200 1-min 17.7  0.30 9.8 0.53 81.10 0.08 9447 005 995 035 390 0.57
15?00 3-min 53.1 021 293 040 8086 0.05 9448 003 995 024 390 041
9-min 1590 0.16 879 032 8085 004 9450 003 993 0.18 388 0.35

] 20-sec 8.2 0.38 6.4 0.57 75.05 0.12 8641 0.10 1447 045 8.93 0.63
1800 1-min 246 027 192 042 7504 0.10 8641 0.07 1448 032 893 047
2;00 3-min 740 020 577 033 7503 0.08 8640 0.05 1450 024 896 0.36
9-min 2231 " 0.17 1733 029 7492 0.07 88.40 0.08 1459 020 889 042

(b) inbound
Measured Flow Speed Occupancy

Time time  Station 421 Station 433 Station421 Station 433 Station 421 Station 433
interval \ean CV Mean CV Mean CV Mean CV Mean CV Mean CV

! 20-sec 1.4 1.27 1.2 1.62 - 9423 021 9958 008 150 159 130 1.76
00:00 1-min 4.3 1.13 3.7 1.49 9419 0.19 9959 0.05 1.50 140 130 1.64
03;00 3-min 129 1.04 11.1 1.44 94.17 0.19 99.59 0.03 1.51 1.30 1.31 1.58
9-min 38.6 . 0.96 33.1 1.39 9334 0.18 -99.61 002 150 1.18 130 1.53

] 20-sec 7.2 0.68 7.2 064 9098 0.13 8256 028 924 079 1246 0.93
06:00 1-min 21,6  0.62 215 058 9066 0.12 8262 027 922 072 1242 0.88
09?00 3-min 644 061 642 055 9048 0.11 8274 027 9.14 0.69 1235 0.85
9-min 188.7 0.60 189.5 0.55 9052 0.10 83.14 026 892 0.69 12.03 0.85

] 20-sec 5.7 0.50 59 047 9277 0.14 9034 0.13 726 099 7.86 0.82
1200 1-min 170 0.34 178 035 9226 0.11 9034 0.12 726 0.75 7.86 0.73
15T00 3-min 51.0 024 534 027 91.84 0.10 9038 0.11 728 060 7.84 0.67
9-min 1525 0.19 159.8 0.22 91.76 0.09 90.38 0.11 726 049 781 0.65

y 20-sec 6.80 049 7.6 044 8995 0.12 8771 0.10 875 0.70 985 0.54
1800 1-min 203 036 227 033 8930 0.10 87.69 0.08 875 058 986 043
21700 3-min 612 027 682 026 8873 009 87.65 0.07 879 048 9.89 0.36
9-min 1855 023 2055 023 8840 0.08 8746 006 889 042 10.00 0.31

Units: flow = vehicles/time interval-lane; speed = kilometer/hour; occupancy = %

44



(c) station N27.9

Date Flow Speed Occupancy Date Flow Speed Occupancy
Mean CV Mean CV Mean CV Mean CV Mean CV Mean CV

1"Feb. 2523 0.529 90.97 0.035 6.17 0.562 16"Feb. 270.6 0488 8937 0037 697 0.509
2"Feb. 244.8 0.547 87.60 0.057 6.94 0.560 17°Feb. 263.7 0524 8675 0.156 755 0.698
3"Feb. 222.0 0.553 84.00 0.073 6.99 0.571 18"Feb. 273.6 0527 89.53 0031 739 0.592
4"Feb. 220.7 0.639 8398 0.091 6.82 0.530 19"Feb. 2683 0512 90.19 0030 687 0.526
5"Feb. 256.5 0.540 86.85 0.048 8.05 0.870 20"Feb. 2845 0.507 8826 0.039 7.54 0.524
6"Feb. 285.0 0.497 88.75 0.036 749 0.518 21"Feb. 2833 0462 9007 0033 7.12 0493
7"Feb. 285.1 0.486 89.60 0.037 7.04 0.522 22"Feb. 2549 0469 9034 0037 622 0.504
8"Feb. 261.4 0.458 89.92 0.032 641 0492 23"Feb. 2706 0488 8937 0037 697 0.509
9"Feb. 2704 0.491 89.00 0.043 7.09 0.510 24"Feb. 2886 0469 89.87 0.028 749 0481
10°Feb. 265.5 0.510 88.57 0.038 6.91 0.530 25"Feb. 2683 0.525 89.69 0036 7.17 0.537
11"Feb. 256.0 0.530 89.21 0.063 6.84 0.535 26"Feb. 2693 0522 88.80 0.038 739 0.550
12"Feb. 260.6 0.502 88.43 0.042 6.79 0.532 27"Feb. 287.1 0509 89.03 0035 7.62 0.529
13"Feb. 285.0 0.497 88.75 0.036 749 0.518 28"Feb. 259.8 0461 90.88 0.028 6.51 0482
14"Feb. 285.1 0.486 89.60 0.037 7.04 0.522 29"Feb. 2693 0408 91.19 0026 659 0422
15"Feb. 264.6 0.453 88.76 0.033_ 641 0.492

Units: approach flow = vehicles/5-minute time interval; approach speed = kilometer/hour; approach occupancy =

%
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Figure 4-3 One-dimensional successive (one month) traffic time series measured in

five minutes per approach (station N27.9)
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4.2 A Filtering Approach to Discriminate Features of Traffic Dynamics

Aside from research into the statistics of real traffic data, this study proposes a novel
filtering approach to inspect the characteristics of real-world traffic flow dynamics.
The proposed approach contains four steps as depicted in Figure 4-6. The first step is
to filter out periodic/quasi-periodic trajectories by the Fourier power spectrum. The
second step is to further filter out equilibrium (fixed) points by the precise largest
Lyapunov exponent. The third step is to distinguish random patterns from chaotic or
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stochastic patterns by comparing the iterated function system (IFS) clumpiness maps
between original and surrogate data. The final step is to filter out the plausible
stochasticity from chaoticity using correlation dimension. The rationales for the
proposed filtering approach are explained as follows.

Original data

Periodic or

ower spectra with

ew dominant peaks Qu.asn.-
periodic
argest Lyapunov Equilibrium
exponent negative? fixed points

IFS clumpiness
significantly different
between original and
surrogate data?

no

Surrogate date > » Randomness

Calculate
correlation
dimension,
saturated or not?

Stochasticity

Deterministic
Chaos

Figure 4-6 The proposed filtering approach (Lan et al., 2007¢)

Firstly, Fourier analysis lets us determine the frequency content of some signals. If the
signal is periodic or quasi-periodic, the Fourier power spectrum will consist of a
sequence of “spikes” at the fundamental frequencies, their harmonics. However, if the
signal is neither periodic nor quasi-periodic (for example, if it is chaotic), then the
Fourier power spectrum will be continuous. Thus, the sudden appearance of a
continuous power spectrum from a discrete spectrum, as some parameter of the system
is changed, is viewed as an indicator of the onset of chaotic behavior (Hilborn, 2000).
However, a continuous Fourier power spectrum can also arise if external noise is
present. Thus, the presence of a continuous power spectrum cannot necessarily be
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taken as conclusive evidence for the existence of chaos, unless that the noise is absent
and that the experimental resolution is sufficient to see all the frequencies that might
be present for the expected number of degrees of freedom. Sprott (2003) pointed out
that a stochastic system with a non-uniform power spectrum can masquerade for chaos.
Because of the noise influence, it seems easier to differentiate periodic and
quasi-periodic trajectories from continuous power spectrum. Besides, the power
spectrum can be affected by the noise of experimental data in such a way that a noisy
deterministic chaos might not definitely have a broadband spectrum. Hence, it is
suitable to distinguish periodic and quasi-periodic from chaotic trajectories, with
describing “main peak with broadband noise-like” rather than just “broadband

2

spectrum,” if we infer that nonlinear trajectories exist deterministic chaoticity. The

proposed filter approach will make use of the good features of power spectrum -- if the
power spectrum is narrow (clear) and has only few (two or three) dominant sharp
spikes, it must be periodic or quasi-periodic; if it i1s “main peak with broadband
noise-like” spectrum, it could be chaotic; if it is stochastic, there must be many
fundamental frequencies resolved with higher resolution.

Secondly, the exponential divergence of nearby trajectories in phase space is
recognized as the hallmark of chaotic behaviors (Drazin, 1994). If we take two points

in the phase space x, and X, and indicate their distance as |x, —x,,|=3,, then

after time t it is expected that the new distance & will be equal to & =5,e”, where

A 1s called the Lyapunov exponent. In general, for an m-dimensional phase spaces the
rate of expansion or contraction of trajectories is described for each direction by one
Lyapunov exponent, resulting in m different As, wherein positive value indicates
expansion of the orbit; zero value indicates periodic trajectories and negative value
indicates contraction. Of the m different A s, the main interest is to look at the largest

value 4, since it can be easily calculated and also yields evidence for the presence of
deterministic chaos in the observed data (Gencay, 1996). If A4, is positive, the time

series can be quasi-periodic, chaotic or stochastic. If 4, is zero, the trajectories will

eventually converge to a period-k sink (K is greater than or equal to 2); thus, the time

series 1s periodic. If A, is negative, the time series will converge toward stable sinks

-- equilibrium (fixed) points. Rosenstein et al. (1993) proposed a method to calculate
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4, from an observed times series. However, since 4, is very sensitive to the noise of

a time series, precisely estimating A4, is very critical. To obtain a precise value for 4,

one needs to know in advance the proper time delay and embedding dimension. In this
study, we employ average mutual information (AMI) method, proposed by Fraser and
Swinney (1986), to estimate the proper time delay. Besides, we employ false nearest
neighbors (FNN) algorithm, developed by Kennel et al. (1992), to estimate the
sufficient dimension for phase space reconstruction.

Thirdly, iterated function systems provide a well-defined method to produce fractals
with specific desired characteristics and appearance. It also suggests a data-analysis
method (Peak and Frame, 1994). Suppose we play a game with a time series of

uncorrelated random numbers 0< X, <1 on a square with moving a fraction f =0.5.

That is, label the corners of the square ABCD clockwise from the upper left. Start
anywhere in the square, such as the corner A. If the first value in the time series has
0< X, <0.25, move half way to A; if 0.25< X, <0.5, move half way to B, and so
forth. Continue iterating until the square begins to fill in. If the values are uncorrelated,
then the points will be uniformly scattered in the square. The clumpiness of the plot is
an indicator of determinism, whether it may be chaos, colored (correlated) noise or
white (uncorrelated) noise. Since the IFS clumpiness does not very well distinguish
chaos from colored (correlated) noise. It may be necessary to further compare the
properties between an original time series and its surrogates, which are designed to
mimic the statistical properties of the original data, but with the determinism removed.
The surrogate data can be easily generated by randomly shuffling the original data.
While shuffling the sequences will preserve the same probability distribution as the
original data, namely, the surrogates for any original time-series data must be random
(Theiler et al., 1992).

Lastly, correlation dimension is a measure used to examine the phenomenon that the
presence of a data point may affect the position of the other point lying on the attractor.
If the value of the correlation dimension is finite, low and non-integer, the system is
possibly considered as low-dimensional chaos. The saturation value of the correlation
dimension is defined as the correlation dimension of the attractor, or called attractor
dimension. In contrast, if an attractor dimension cannot reach saturation or is
saturated in very high-dimension, then the trajectories of that time series could be
stochastic (Shang et al. 2005). Grassberger and Procaccia (1983) showed that

49



correlation dimension d can be evaluated by using the correlation integral x(r), which
is the probability that a pair of points (S;, Sj) chosen randomly in the reconstructed
space are separated by a distance less than r. The details of calculating u(r) are as
the same as the Eq. (3.4) ~ (3.6).

4.3 Result of Filtering Approach

By using the proposed filtering approach, a systematic inspection on the nonlinear
features of temporal flow dynamics was carried out and the results of each step were
presented as follows.

Table 4-2 summaries the results of power spectra for different combinations, while
Figure 4-7 illustrates the power spectrum for the one-minute flows at station 421.
According to the power spectrum plots, one may find that, regardless of time intervals,
all data can be deemed as continuous in the form of so-called “noise-like broadband.”
Neither an obvious spike nor a sequence of spikes could be identified for the traffic
flow time series as periodic or quasi-periodic trajectories. However, there are still
some discrepancies between different periods. For instance, during the off-peak hours,
the power spectrum does not show main peaks. In other words, the traffic flow during
off-peak hours has revealed random coupled with no exhibiting order or determinism.
But the most important thing is that if one wishes to diagnose the characters of
nonlinear dynamics more precisely, one needs further diagnosis by proceeding from
the second step to the fourth step. The power spectrum in the first step is just to filter
out periodic or quasiperiodic trajectories from nonlinear dynamical properties.

In the second step, we use AMI and FNN methods to determine the most appropriate
time delay and embedding dimension, respectively. It should be noted that owing to
the noise effect of traffic data, it is difficult to decrease the percent of FNN to zero. In
this paper, we set the maximum acceptable percent of FNN as under 5%. Figure 4-8 is
an example of AMI and FNN analysis at station 421. The left-hand-side plot of Figure
4-8 shows that the first low point corresponding to time delay is one time steps and the
right-hand-side plot tells us if we set embedding dimension as 6, the percent of FNN
will drop as low as about 3%, which is lower than 5%. Therefore, we know the proper
time delay for the one-minute flows from 06:00 am to 09:00 am at station 421 is one
time step (equivalent to one-minute) and the proper embedding dimension is 6.
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Table 4-2 Summary of power spectra

Times of day Measured time interval Station 402 Station 404 Station 421 Station 433

20-sec + + + +
1-min + + + +
00:00-03:00 ;
3-min + + + +
9-min + + X X
20-sec + + + +
1-min + + + +
06:00-09:00 ;
3-min + + + +
9-min X X X X
20-sec - - - -
1-min X X - -
12:00-15:00 -
3-min X X + +
9-min X X X X
20-sec + + + +
1-min i + - -
18:00-21:00 -
3-min == + + +
9-min X X X X
+ represents one main peak with flat or descending noise-like
x represents peaks with noise-like
- represents flat noise-like or many fundamental frequencies
Station 421
00:00-03:00 g 06:00-09:00
Z g
[
n
=
-4
2
0o 01 02 03 04 0 01 02 03 04
frequency frequency
8 g
12:00-15:00 158:00-21:00
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Figure 4-7 An illustration of power spectra of one-minute flows (Station 421)
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Figure 4-8 An illustration of AMI and FNN of one-minute flows (Station 421)

After choosing appropriate time delay and embedding dimension, we can then

calculate the largest Lyapunov exponent 4,. The results are summarized in Table 4-3.

It is found that the'largest Lyapunov exponents are positive in most cases, indicating
that the state trajectories of traffic flow in workdays would not maintain equilibrium
fixed points (either zero flow or capacity flow) for a long time. The only exceptions
are the data from stations 421 and 433 during the early hours (00:00 am to 03:00 am).

The negative values of 4, for these two stations suggest that the traffic flows in early

hours measured in 20-second interval are so-lulled (very few travelers going into the
city) that the trajectories often converge to fixed points (zero flow or near zero

volume). In contrast, the positive values of A, for the two outbound stations 402 and

404 during 00:00 am to 03:00 am suggest that the 20-second flows in early hours will
not converge to zero. It agrees to the fact that quite a number of travelers leave Taipei
city after their night activities during the midnight.

The above two steps have successfully ruled out the empirical flow patterns being
periodic or quasi-periodic motions or converging to fixed points. However, we still
cannot distinguish if the traffic flow patterns are chaotic, stochastic or random. As
noted previously, IFS provides a well-defined method to produce fractals with specific
desired characteristics and appearance. Through the comparison of traffic flow
properties between an original time series data and its surrogates, one can easily
distinguish randomness from nonlinear complex time series since the clumpiness plot
of surrogate (randomized) data is expected to be uniformly dense and shows no
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fractals at all.

Table 4-3 Summary of the largest Lyapunov exponents

Time of day =~ Measured time interval Station 402 Station 404 Station 421 Station 433

20-sec 0.263 0.215 -0.115 -0.054

U 1-min 0.549 0.328 0.566 0.343
00:00-03:00 3-min 0.546 0.249 0.462 0.409
9-min 0.416 0.243 0.438 0.341

20-sec 0.553 0.390 0.585 0.578

U 1-min 0.600 0.317 0.744 0.590
06:00-09:-00 3-min 0.495 0.263 0.482 0.516
9-min 0.539 0.348 0.356 0.395

20-sec 0.573 0.454 0.628 0.596

P 1-min 0.716 0.441 0.744 0.688
1200-1500 3-min 0.598 0.366 0.559 0.570
9-min 0.410 0.376 0.413 0.487

20-sec 0.636 0.356 0.682 0.627

o 1-min 0.690 0.422 0.705 0.638
18:00-21:00 3-min 0.566 0.191 0.552 0.536
9-min 0.432 0.184 0.501 0.418

Table 4-4 summarizes the diagnosing results for various combinations. Figure 4-9
illustrates the IFS maps for the twenty-second flows during 06:00 am - 09:00 am at
station 421. The left clumpiness plot is for original data and the right plot is for
surrogate data. We find that noticeable difference exists in the IFS clumpiness maps
between the original data and its surrogates in periods 06:00 am - 09:00 am and 18:00
pm - 21:00 pm. However, off-peak data during 12:00 pm - 15:00 pm does not show
obvious difference between two IFS clumpiness maps. As to the state trajectories of
traffic flow in midnight, it is the fact that most of them are close to random because
their IFS clumpiness maps between the original data and its surrogates do not show
obvious difference. Such random patterns agree to the fact that most of drivers can
freely drive their vehicles as long as not speeding, i.e., there is no obvious relationship
between two vehicles shown in chronological order.
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Table 4-4 Summary of IFS clumpiness maps

Time of day =~ Measured time interval Station 402 Station 404 Station 421 Station 433

20-sec - - - -
1-min - - - -
3-min - - - -
9-min - - - -
20-sec + + + +
1-min + + + +
3-min + + + +

+ + + +

+

00:00-03:00

06:00—09:00

9-min

20-sec -

1-min - - - -

3-min + + + +

9-min + + + +

20-sec 1 + + +
+ + + +
+ + + +

12:00-15:00

1-min
3-min
9-min
+ represents obvious or visual difference (original data have obvious or secret fractals but surrogates do not
have; or both have fractal sets with dissimilar patterns)
- represents No visual ‘or secrete difference (both original and surrogate data have no fractal sets; or original
data have secret fractals but surrogates do not have)

18:00-21:00

+
.
N
N

IF5 clumpiness IFS clumpiness
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Figure 4-9 An illustration of IFS clumpiness maps of 20-second flows
(06:00 am - 09:00 am, Station 421)

The final traffic flows are observed with chaotic and stochastic features after we filter
out the above nonlinear patterns. Nevertheless, the external appearance of
deterministic chaoticity and stochasticity are similar. It is difficult to diagnose the
characteristics for such nonlinear time series by using a single figure, especially while
the short-term traffic flow dynamics surging along with extreme fluctuation as well as
involving with noise. In this study, a critical parameter, correlation dimension, is
employed to distinguish the patterns between them. Table 4-5 reveals that state
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trajectories of traffic flow during morning and evening peak-hours periods measured
with coarse time intervals, such as 9-minute, exhibit more deterministic-like (chaotic)
than stochastic patterns because the correlation dimensions are finite, low and
non-integer. In contrast, state trajectories of traffic flow with shorter interval, such as
20-second and 1-minute, will show stochastic pattern because their attractor
dimensions cannot reach saturation or converge in very high (over six) dimensions.

Table 4-5 also shows that during the off-peak period, traffic dynamics exhibit more
stochastic than chaotic patterns because their attractor dimensions are higher than
other corresponding time periods. Simultaneously, we notice that in the early hours
(00:00-03:00) the values of correlation dimension are low and non-integer, too. It does
not represent that the feature of traffic flow in the period is a deterministic chaoticity,
but it shows a random phenomenon as mentioned previously instead. An in-depth
inspection to the raw data clarifies that during the midnight the state trajectories of
traffic flow associated with copious zero- and identical volumes reconstructed in
multidimensional spaces will masquerade as a low attractor dimension. Fortunately,
the parameter of IFS clumpiness maps helps filter out the random pattern during the
early hours.

Table 4-5 Summary of the correlation dimension

Time of day ~ Measured time interval Station 402 Station 404 Station 421 Station 433

20-sec 33 3.7 33 33

00—03: 1-min 32 3.5 3.2 33
00: 3:00 3-min 2.9 3.3 2.8 3.1
9-min 2.7 3.2 2.5 2.6

20-sec - - - -

00-09: 1-min 54 52 5.6 5.6
06: 00 3-min 4.5 4.6 4.4 4.3
9-min 33 3.6 32 32

20-sec - - - -

. . 1-min - - - -
12:00-1500 3-min 54 5.1 5.4 5.3
9-min 4.6 4.6 49 4.7

20-sec - - - -

. . 1-min 5.7 5.7 5.8 5.7
18:00-21:00 3-min 4.8 4.9 4.7 4.5
9-min 3.7 39 3.5 34

- represents an attractor dimension cannot reach saturation over six dimensions
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In this section, a novel filtering approach was proposed to analyze the features of
nonlinear traffic flow time-series data directly extracted from four detector stations on
Taiwan Freeway. Different nonlinear patterns have been found, depending on the
measured time intervals, times of day and locations. During the peak hours, the
temporal flows measured in larger time intervals are in general close to chaotic-like
(deterministic) patterns; but they are close to stochastic-like patterns if measured in
shorter time intervals. During the off-peak period, the temporal flows are close to
stochastic-like patterns, too. At midnight, most temporal flows reveal random patterns;
some measured in 20-second interval even converge into equilibrium (fixed) points
when most of travelers depart downtown after their night activities during the
midnight.

4.4 Testing for Predictability of Various Techniques

In addition to the proposed filtering approach, in this section we further describes the
main procedures and testing results for the predictability of various techniques
depicted in Chapter 3. We generated two time-series data categories including linear
stochastic time series and nonlinear deterministic time series in advance of prediction
therein. The stochastic time series derived from a linear equation was adopted to
compare the predictability between the linear autoregressive method and the RTRL
algorithms while the nonlinear time series derived from a first-order differential-delay
equation was used to compare the predictability between the simple nonlinear method
and the RTRL algorithms. Details about the preliminary test procedures are described
as follows:

First, an AR(1) time series, (X, —0.4)=0.75(x, —0.4) +e, with e, o N(0,1) was used
to compare the predictability between the linear model and the RTRL algorithms. In
the AR(1) linear time series, two hundred independent points e;, which conformed to
Gausian distribution, were created and an initial X; was picked to iterate two hundred
times together with e, Then we set the order of the above model be equal to one to
compute the average prediction error and residuals for each time step. After
computation, we learned that the root-mean-square error (RMSE) was equal to 1.03.
Employing the same time series X; as an input as well as X+, as output, we adopted the
RTRL algorithms to train a network and calculated the RMSE, which equaled 0.979 for
one trained data set and 0.93 for another test data set. In order to train the AR(1) model,
in the RTRL neural network, six nodes were used to process the recurrent feedbacks
and the learning rate was set to 0.1. The goal of the RTRL network we set was either

56



that the RMSE equals 0.01 or the training times reached 700 times, whereupon the
training iterations would stop. In Figure 4-10, the panel (a) represents the difference
between the outputs of the AR(1) model and desired values; while the panel (d)
represents the difference between the outputs of the RTRL network and desired values.
It’s obvious to indicate that for a stochastic time series, the accuracy of prediction by
adopting RTRL algorithms is superior to adopting linear prediction both from
observing the difference in figure and comparing the values of RMSE.

Second, a first-order differential-delay equation, which is the famous Mackey-Glass
dx(t)  0.2x(t—1)
dt  1+x"“(t-1)

the simple nonlinear method and the RTRL algorithms. This equation represents a

equation:

—0.1x(t), was used to compare the predictability between

physiological responsive system, which can be used as an index to examine the
features of a nonlinear time series (Mackey and Glass, 1977). For instance, the series
displays periodic motions when 7 is a relatively small value, whereas for z larger
than 17, it displays a chaotic phenomenon. We employed an average mutual
information (AMI) approach and a false nearest neighbor (FNN) algorithm to search
for the proper time delay and to determine the minimal sufficient embedding
dimension. Once the appropriate time delay and the sufficient dimension were
determined, we were able to map the one-dimensional differential equation into
multidimensional spaces and make use of the neighboring measurements in
multidimensional spaces to predict future points. In accordance with this approach, a
time series which contained five hundred data points was reconstructed into
multidimensional spaces and was forward predicted five hundred time steps. The panel
(b) in Figure 4-10 represents the predicting results showing the difference between
output of the simple nonlinear technique and desired values. The RMSE was equal to
0.1268. Similarly, we adopted the RTRL algorithms to train a network, in which the
input and output are the as same as the above time series, to predict the first-order
differential-delay equation. In the RTRL network, twelve nodes were used to process
the recurrent feedbacks and the learning rate was set to 0.1. The goal of the RTRL
network we set was either that the RMSE equals 0.07 or the training times reached
2,000 times, whereupon the training iterations would stop. The panel (e) in Figure 4-10
represents the prediction results, showing the difference between output of RTRL
algorithms and desired values. The RMSE was equal to 0.07. From Figure 4-10 and
RMSE, again we learned that for a deterministic equation, the accuracy of prediction
by adopting RTRL algorithms is superior to adopting the simple nonlinear technique.
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Note that if further observing the top panel in Figure 4-10(b), we will find that the
errors of prediction by using the simple nonlinear technique are not the same as time
evolves, but rather the differences are getting larger, i.e., the accuracy of prediction is
getting low as time evolves. By contrast, the errors of prediction by using the RTRL
algorithms do not exhibit such a situation, but show large differences during the first
steps. The right panels of Figure 4-10 display the difference between the model output
and desired values by adopting the simple nonlinear technique (see panel c) and
adopting the RTRL network (see panel d) in the first twenty time steps. It can be
clearly seen that in the panel (c), the curve marked in red depicting the simple
nonlinear technique and the curve marked in blue depicting the desired values match
quite closely. The RMSE of short time steps (e.g., 20 steps) is equal to 0.0035, which is
greatly superior to the average RMSE of whole steps (e.g., the average RMSE of 500
time steps is equal to 0.1268). In other words, if one would like to forward predict a
nonlinear time series resulting from a deterministic function in short steps, then the
simple nonlinear technique is quite a good method to adopt. By contrast, in the panel
(f), the curve marked in red depicting RTRL algorithms and the curve marked in blue
depicting the desired values don’t match well'in the beginning but converge gradually.
It indicates that the RTRL algorithms is suitable to train a network to predict, and the
eventually average predictability compared with other techniques is satisfactory;
however, training time of the neural network is comparably long and is a factor that
should be taken into account in practice. Consequentially, in accordance with the
different purposes to be achieved, the predicting techniques with their particulars serve
various functions. In terms of the purpose of improving the accuracy of prediction in
this case, the RTRL network is a suitable technique because the results of training and
testing have revealed that the method can not only successfully simulate a linear time
series with stochastic characteristics, but also can capture the nonlinear dynamic
trajectories resulting from a deterministic function.
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Figure 4-10 The difference between model output and desired values by adopting
linear method, simple nonlinear method and RTRL algorithms

Furthermore, the prediction power of RBFNN was calibrated simultaneously. Two
deterministic functions were illustrated: one is a Sincos mathematical function and the
other is a first-order differential-delay equation being as same as the above equation.
Firstly, in a sincos mathematical function, we test f (X, y) = cos(3x)sin(2y) , wherein the
boundary of variable X and variable y is between -1 and 1. Four hundred (X, y) points
are created, of which three hundred points are used as the training sets and the
remaining one hundred points are used as the testing sets. Tolerance is set equal to 0.8.
Following the rules of RBFNN, we employ the OLS algorithm to determine centre
neurons and employ the LMS algorithm to modify weighted vectors. Figure 4-11(a)
presents the training results, which illustrate the difference between network outputs
and desired values in three dimensions. The RMSE (root-mean-square error) is equal to
0.0321.

Secondly, in a first-order differential-delay equation, we also employ the famous
Mackey-Glass equation. A vector [X(t-18), X(t-12), x(t-6), X(t)] is further used as input
and a vector X(t+6) is used as output, then the RBF network is applied to train the
model and the tolerance is set as 0.9. Five hundred vectors are used as both the training
and testing sets. Likewise, OLS algorithm is employed to determine the centre neurons
and LMS algorithm is used to modify the weighted vectors. Figure 4-11(b) presents
the test results showing the difference between network outputs and desired values in
three dimensions. The RMSE is equal to 0.0263. Figure 4-11(c) displays directly the
difference between network outputs and desired values in one dimension for this
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first-order differential-delay equation. The training and testing results have revealed
that the RBFNN is able to successfully simulate a mathematical function as well as
capture the dynamic trajectories of a nonlinear time series.
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Figure 4-11 The results of training and testing RBFNN with two deterministic functions
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CHAPTER 5 EMPIRICAL STUDY

To illustrate the potential advantages of proposed models in analyzing and predicting
traffic dynamics, an empirical study and a sensitivity analysis are conducted
individually, where the main procedures and analytical results together with
discussions are provided as follows.

5.1 Temporal Traffic Patterns and State Trajectory Evolution in Multi-
dimensional Spaces

The following demonstrates more interesting features of our empirical traffic series
mapped in a reconstructed state space. First, the 20-second traffic series for a typical
workday at station 433 is reconstructed into two and three-dimensional state spaces
with appropriate time delays. Figure 5-1 compares the same traffic series plotted in
1-D, 2-D and in 3-D spaces. With reference to time delay, it can be seen that points in
1-D numerically change with time evolution, while in the 2-D diagram points not only

change with time evolution but also composed of s, and s, . Similarly, in the 3-D

t+7 *

diagram every point is composed of s,, s, and s Consequently, variations in

t+7 t+27 °

1-D correspond to the degree of spread in 2-D and 3-D spaces, in addition, the steep
fluctuations in 1-D correspond to different areas in 2-D or in 3-D spaces. On the other
hand, the state trajectories in the 2-D and 3-D diagrams change with time enabling the
state trajectories to move back and forth. However, the curves always move forward
with time.

Figure 5-2 presents the three-dimensional 1-minute traffic series for five workdays at
station 433. The different features of traffic series in three-dimensional space from day
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to day are similar but not exactly the same. To see the effect of time scale, Figure 5-3
demonstrates the traffic patterns in three-dimensional reconstructed state spaces
measured in 20-second, 1-minute, 3-minute and 9-minute intervals respectively for one
workday at station 433. It is noticed that the traffic features become more explicit as
the time scale gets coarser. Figure 5-4 further compares the features of 20-second
traffic series over 24 hours and within various times of day arranged from midnight to
evening peak-hour period, i.e., 00:00-03:00, 06:00-09:00, 12:00-15:00 and
18:00-21:00. Investigating the dynamical behaviors at different times of day, one can
find that the conspicuous dynamics of traffic state trajectories come mainly from
periods 06:00-09:00 and 18:00-21:00. In the early hours, when traffic is very calm, the
occupancy trajectories shrink to very low values, but the speed trajectories can vary
rather significantly, which fully explains heterogeneous driver characteristics. Under
free flow conditions, some aggtessive drivers may move very fast while some
conservative drivers may ‘not, causing the wide diversity of speed dynamics. In
contrast, during the morning peak-hour period, speed trajectories tend to shrink to
some low values while flow trajectories can vary largely in a wide-range domain.
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Figure 5-1 Comparison of 1-D, 2-D and 3-D 20-second traffic series on a typical
workday (station 433)
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Figure 5-4 Three-dimensional 20-second traffic series in different times of day (station
433)

Let us take the 9-minute traffic series as an example to further explore the dynamical
behaviors of trajectories in more detail. In order to trace the sequential order, we only
illustrate a limited number of points of the dynamics, as shown in Figure 5-5, which
clearly indicates the dynamical behaviors of state trajectories in the reconstructed
spaces. For a typical workday, the flow state trajectories move around the lowest
corner, i.e., at the coordinate (0, 0, 0) with less fluctuation at midnight (00:00-03:00).
In the morning peak hours (06:00-09:00), however, the state trajectories advance along
the diagonal direction and sometimes move back and forth as time evolves, which
continue to advance until the later morning peak hours. During off-peak hours
(12:00-15:00), the state trajectories fluctuate in the middle of the 3-D spaces. After
evening peak hours (18:00-21:00), the state trajectories move back to the original
place. The whole sequence of features of the traffic flow series within a day are
demonstrated in Figure 5-6, which similarly shows that the motion of occupancy
trajectories advances along the diagonal direction from bottom to top in the
reconstructed space. The difference between the occupancy and flow state trajectories
is that the range of motion for occupancy is smaller than that for flow. Compared with
flow and occupancy, the direction of motion for speed state trajectories is just the
opposite, i.e., from top to bottom. It can be concluded that the direction of traffic state
trajectories in multidimensional spaces corresponds to that of the traffic series in 1-D
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space, especially when the data is measured on a coarse scale.

Figure 5-7 shows a comparison between 1-D and 3-D spaces for successive traffic
flow series. In the top panel, the flow series goes from left to right with time evolution
while the direction of traffic state trajectories goes anti-clockwise with time evolution
in reconstructed space. Four data points have been selected and marked with Arabic
numerals 1, 2, 3, and 4 in the top panel, wherein time delays between paired points i.e.,
point 1 vs. point 2; point 3 vs. point 4, are equal. After reconstruction, the four points
were projected into the bottom panel and correspondingly marked with the same
Arabic numerals 1, 2, 3, and 4. From Figure 5-7, it’s found that, in the top panel, the
difference in flow between points 1 and 2 is lower than between points 3 and 4,
therefore, in the bottom panel the distance between points 3 and 4 is larger than
between points 1 and 2. In addition, in the bottom panel, one circle distance of
trajectories going around the space approximately equals the variety of flow from
00:00 to 24:00 in the top panel. However, it’s noticed that not every circle moves
smoothly, but heads for one direction with variation and the degrees of variation
increase by the time scale shortening.
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Figure 5-5 The dynamics of 9-minute traffic trajectories in various time-of-day in 3-D
space (station 433)
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5.2 Diverse Temporal Patterns in Multidimensional Spaces

In this section, we employ the methodologies introduced in Chapter 3 to further
compute the related parameters that can disclose the features of traffic series. The
results are summarized in Table 5-1 — Table 5-5. From Table 5-1, it is found that the
relationship between time delay and time interval is an inverse proportion. The values
of embedding dimension are five or six, which illustrate that the successive traffic
series are not composed of a disorder data set, but rather, some state trajectories are
dominated by an intrinsic attractor, which may be called as a “deterministic-like”
feature. Furthermore, the numerals in the last column (correlation dimension) represent
attractor dimension changing with embedding dimension increasing. Further observing
the tendency for correlation dimension, it’s easily noticed that the slope of curve is
much smoother with increasing embedding dimension, and as the time scale gets larger,
the degree of smoothness becomes more obvious. In addition, although the largest
Lyapunov exponents. are positive; however, they are almost nearly equal to zero, which
means that the successive traffic series, reconstructed in reconstructed spaces, should
be periodic trajectories or they recur regularly day after day.

From Table 5-2'— Table 5-4, it’s found that the proper embedding dimensions for
20-second flow, speed and occupancy state trajectories are around 9 and 10, which are
rather high. It suggests that these 20-second traffic state trajectories exhibit much more
stochastic motions than deterministic-like motions, if observed within a typical
workday. Furthermore, the reason that the time delays of traffic series on different
workdays, stations and time scales are always equal to one is that the AMI exhibits a
fairly low value at (t+1) step, then the value doesn’t drop down to zero abruptly at
following steps but gradually decrease. In other words, the time delays at (t+1),
(t+2),...,(t+m-1) steps are relatively small corresponding to the time delay at t = 0, thus
the time delays (Table 5-1) can be considered as “one”. From Table 5-3, however, it is
found that the proper embedding dimensions for 1-minute flow, speed and occupancy
state trajectories are reduced to 6 and 7, lower than those of 20-second measurements,
in addition, in Table 5-4 the proper embedding dimensions have further reduced to 3 or
4 for the 9-minute traffic state trajectories, which indicates that an initial
deterministic-like pattern would have been observed if the measured time interval gets
longer.

From Table 5-5, the time delays of flow and occupancy, in contrast to those of a
typical workday, are no longer equal to one. Instead, like successive time series, they
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show different values with various time scales. In addition, the time delay declines
with increasing time scale. Such change in time delays from one to specific values
indicates that the pattern of traffic series has probably changed. For instance, road
users can drive freely in the early hours as long as they don’t speed, i.e., the speed
state trajectory is random so that the time delay of speed-series is equal to one;
embedding dimension is larger than five; the largest Lyapunov exponent is positive
and correlation dimension is not saturated. However, aside from midnight
(00:00-03:00), in the morning peak hours 06:00-09:00, for example, commuters’
speeds are mainly confined by heavy traffic volumes, thereby the time delay is no
longer equal to one, instead diverse time delays are exhibited and there is evidence for
other parameters. Hence, we are convinced that the random features must have
disappeared.

Apart from time delay, Table 5-5 also provides additional details regarding embedding
dimension. According to the various embedding dimension in Table 5-5, the
characteristics of very short-term traffic time series (e.g., 20-sec.and 1-min) seemingly
should be stochastic because of relatively high dimensions. Finally, like the successive
traffic time series, parts of the curve for correlation dimension in Table 5-5 gradually
become smooth with increasing embedding dimension, which indicates that an initial
attractor has been developing to make correlation dimension be saturated. In addition,

the negative values of A, for flow and occupancy in the early hours suggest that

flows and occupancy at such times measured in 20-second intervals should be
equivalent to fixed point under steady state. Such pattern could result from the fact that
traffic flow and occupancy are so lulled (very few travelers going into City) that the
state trajectories eventually converge to fixed points in reconstructed state spaces.

Table 5-1 Four parameters of successive one-month traffic series

Traffic  Time Time  Embedding The largest

Variable  scales delay  dimension  Lapunov Correlation dimension (d)
(7) (m) exponent
5-min 61 6 0.002 (0.87,1.64,2.12,2.56,2.85,3.01, 3.28, 3.36, 3.64, 3.89)
Flow 15-min 20 6 0.002 (0.87,1.62,2.06,2.46,2.80,3.17,3.60, 3.59,3.87,3.72)
30-min 10 5 0.005 (0.88,1.66,2.22,2.72,2.83,3.16,3.44,3.46,3.59,3.72)
60-min 5 5 0.005 (0.88, 1.65,2.10,2.40,2.46,2.74,2.71,2.86,2.74,2.78)
5-min 84 6 0.001 (0.76,1.49,2.17,2.74,3.11,3.33,3.53,3.76,3.96,4.13)
Speed 15-min 27 6 0.001 (0.79,1.53,2.15,2.58,3.14,3.14,3.18,3.42,3.65, 3.89)
30-min 13 5 0.005 (0.85,1.64,2.30,2.65,3.02,3.13,3.45,3.72,3.52,3.70)
60-min 6 5 0.005 (0.86,1.65,2.17,2.59,2.62,2.75,2.87,3.01,3.16,3.17)
5-min 61 6 0.002 (0.52,0.99,1.38,1.73,2.03,2.25,2.37,2.42,2.45,2 48)
Occupancy 15-min 20 6 0.002 (0.70,1.32,1.84,2.23,2.48,2.74,3.14,3.01,3.01,3.11)
30-min 10 6 0.003 (0.81,1.51,2.12,2.69,2.55,2.91,3.19,3.05,3.25,341)
60-min 5 5 0.005 (0.79,1.50,2.07,2.21,2.45,2.43,2.67,2.61,2.76,2.67)
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Table 5-2 Parameters of 20-second traffic trajectories at different stations on a typical

workday
Station Variable ; TimeT .Embe.dding The largest .Correl.ation
clay (*) dimension (m) Lyapunov exponent dimension (d)

Flow 1 10 0.104 Not saturated

402  Time-mean-speed 1 9 0.044 Not saturated
Percent occupancy 1 9 0.101 Not saturated

Flow 1 9 0.085 Not saturated

404  Time-mean-speed 1 9 0.097 Not saturated
Percent occupancy 1 9 0.085 Not saturated

Flow 1 10 0.112 Not saturated

421  Time-mean-speed 1 9 0.066 Not saturated
Percent occupancy 1 9 0.036 Not saturated

Flow 1 10 0.081 Not saturated

433  Time-mean-speed 1 9 0.039 Not saturated
Percent occupancy 1 9 0.021 Not saturated

Table 5-3 Parameters of 1-minute traffic trajectories for five workdays (station 433)

Dat Variabl Time Embedding The largest Correlation
ate anaby delay (7)) dimension (m) Lyapunov exponent dimension (d)

2004. Flow 1 7/ 0.108 Not saturated
Time-mean-speed 1 6 0.076 Not saturated

02.02 Percent occupancy 1 6 0.067 Not saturated
2004. Flow 1 7 0.121 Not saturated
Time-mean-speed 1 6 0.085 Not saturated

02.04 Percent occupancy 1 6 0.057 Not saturated
2004. Flow 1 7 0.134 Not saturated
Time-mean-speed 1 6 0.085 Not saturated

02.06 Percent occupancy 1 6 0.073 Not saturated
2004. Flow 1 7 0.127 Not saturated
Time-mean-speed 1 6 0.077 Not saturated

02.11 Percent occupancy 1 6 0.075 Not saturated
2004. Flow 1 6 0.164 Not saturated
Time-mean-speed 1 6 0.078 Not saturated

02.12 Percent occupancy 1 6 0.062 Not saturated

Table 5-4 Parameters of traffic trajectories measured with various time scales on a
typical workday (station 433)

Time . Time Embedding The largest Correlation
Variable . . . .

scale delay (7) dimension (m) Lyapunov exponent dimension (d)
20- Flow 1 10 0.081 Not saturated
Time-mean-speed 1 9 0.039 Not saturated
second Percent occupancy 1 9 0.021 Not saturated
1- Flow 1 7 0.121 Not saturated
. Time-mean-speed 1 6 0.085 Not saturated
minute Percent occupancy 1 6 0.057 Not saturated
3. Flow 1 4 0.198 Not saturated
. Time-mean-speed 1 4 0.201 Not saturated
minute Percent occupancy 1 4 0.120 Not saturated
9. Flow 1 4 0.216 Not saturated
. Time-mean-speed 1 3 0.320 Not saturated
minute Percent occupancy 1 3 0.273 Not saturated
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Table 5-5 Parameters of ten-workday traffic trajectories measured in various time
scales and intervals (station 433)

Time Time Time Embedding dimension y) Correlation dimension
interval  scale  delay (m) 0
20-sec 234 (6~7) -0.002 (0.4,0.9,1.3,1.7,2.1,2.6,3.0,3.3,3.3,3.3)
00:00- 1-min 77 (6~7) 0.003 (0.4,0.8,1.2,1.6,2.0,2.4,2.5,2.8,3.1,3.5)
03:00 3-min 26 (5~6) 0.005 (0.5,0.9,1.3,1.7,2.1,2.6,2.7,2.9,3.0,3.1)
9-min 9 4 0.009 (0.5,0.9,1.2,1.5,1.6,1.8,1.9,2.1,2.4,2.5)
20-sec 129 (10~11) 0.004 (0.8,1.5,2.1,2.7,3.3,3.8,4.3,4.5,4.9,5.5)
06:00- 1-min 42 (8~9) 0.006 (0.8,1.6,2.2,2.8,3.4,3.8,4.0,4.5,4.7,4.8)
09:00  3-min 14 5 0.009 (0.8,1.5,2.1,2.4,2.6,2.8,2.8,3.0,3.2,3.4)
= 9-min 4 4 0.010 (0.8,1.4,1.9,2.0,2.4,2.6,2.7,2.8,3.1,3.3)
= 20-sec 246 (12~13) 0.002 (0.7,1.4,2.0,2.6,3.3,3.9,4.6,5.1,5.4,6.0)
12:00- 1-min 82 (10~11) 0.005 (0.8,1.6,2.3,2.8,3.3,3.6,4.4,4.7,4.8,5.3)
15:00  3-min 28 89) 0.011 (0.8,1.6,2.4,3.1,3.9,4.0,4.4,4.6,4.7,4.9)
9-min 10 (8~9) 0.014 (0.9,1.8,2.6,3.2,3.6,3.9,4.1,4.1,4.2,4.4)
20-sec 182 (10~11) 0.005 (0.7,1.5,2.2,2.9,3.3,4.0,4.3,4.5,5.1,5.6)
18:00- 1-min 62 (10~11) 0.007 (0.8,1.6,2.4,3.1,3.6,4.3,4.6,4.8,5.2,5.3)
21:00  3-min 21 7 0.009 (0.9,1.7,2.2,2.5,2.8,2.9,3.2,3.3,3.6,3.7)
9-min 7 6 0.012 (0.8,1.5,2.0,2.2,2.5,2.7,2.8,3.1,3.3,3.5)
20-sec 1 12 0.02 Not saturated
00:00- 1-min 1 8 0.08 Not saturated
03:00 3-min 1 6 0.04 Not saturated
9-min 1 5 0.05 Not saturated
20-sec 115 8 0.006 (0.6,1.2,1.7,2.3,2.8,3.3,3.8,4.1,4.4,4.5)
06:00- 1-min 38 6 0.007 (0.6,1.1,1.6,2.1,2.6,3.1,3.4,3.5,3.6,3.9)
09:00  3-min 13 5 0.008 (0.6,1.1,1.5,2.0,2.4,2.7,2.8,2.9,3.0,3.0)
3 9-min 5 5 0.009 (0.6,1.0,1.3,1.6,1.9,2.1,2.2,2.2,2.2.2.2)
08)- 20-sec 92 10 0.001 (0.5,0.9,1.4,1.8,2.3,2.8,3.2,3.6,4.0,4.6)
12:00- 1-min 32 7 0.003 (0.5,09,1.3,1.7,2.2,2.6,3.0,3.3,3.7,4.0)
15:00  3-min 10 6 0.005 (0.4,0.7,1.0,1.4,1.7,2.0,2.3,2.6,2.7,2.8)
9-min 5 5 0.006 (0.3,0.6,0.8,1.1,1.3,1.5,1.6,1.9,2.1,2.2)
20-sec 149 10 0.009 (0.7,1.4,2.1,2.8,3.5,4.1,4.8,5.0,5.6,5.8)
18:00- 1-min 60 8 0.013 (1.0,1.4,2.1,2.8,3.6,4.2,4.7,5.0,5.2,5.6)
21:00  3-min 20 4 0.028 (0.8,1.6,2.4,3.2,3.8,4.1,4.6,4.9,5.2,5.5)
9-min 8 4 0.029 (0.8,1.8,2.7,3.5,3.7,4.1,4.,0,4.1,4.2,4.2)
20-sec 231 (7~8) -0.001 (0.6,0.9,1.5,1.9,2.2.2.7,3.2,3.2,3.2,3.2)
00:00- 1-min 77 (7~8) 0.003 (0.5,0.8,1.4,1.7,2.1,2.5,3.0,3.2,3.5,3.7)
03:00 3-min 26 (6~7) 0.004 (0.5,0.8,1.4,1.7,2.3,2.6,3.1,3.2,3.5,3.9)
9-min 9 5 0.010 (0.5,0.8,1.4,1.6,2.2,2.8,2.9,3.1,3.4,3.8)
20-sec 115 (8~9) 0.004 (0.8,1.6,2.2,2.6,3.3,3.7,4.1,4.3,4.6,4.9)
06:00- 1-min 39 (7-8) 0.006 (0.8,1.6,2.2,2.8,3.4,3.8,3.9,4.3,4.7,4.8)
2 09:00 3-min 13 6 0.011 (0.8,1.5,2.4,2.7,3.2,3.3,3.3,3.4,3.5,3.6)
S 9-min 5 5 0.013 (0.7,1.4,1.8,2.2,2.5,2.8,3.0,3.0,3.1,3.3)
% 20-sec 89 (8~9) 0.002 (0.7,1.4,1.7,2.2,2.3,2.8,3.4,3.7,3.9,4.0)
8 12:00- 1-min 30 (6~8) 0.004 (0.8,1.5,1.8,2.2,2.4,2.6,3.2,3.4,3.4,3.5)
15:00  3-min 10 5 0.009 (0.8,1.4,1.7,2.1,2.3,2.5,2.6,2.8,3.1,3.4)
9-min 5 4 0.010 (0.6,0.8,1.6,1.8,2.3,2.4,2.6,2.6,2.6,2.7)
20-sec 182 (9~10) 0.009 (0.7,1.5,2.2,2.5,3.2,3.4,3.6,3.8,3.9,4.2)
18:00- 1-min 60 6 0.011 (0.8,1.5,1.8,2.4,2.6,2.8,3.4,3.6,3.8,3.9)
21:00  3-min 20 5 0.02 (0.8,1.6,1.9,2.3,2.5,2.7,3.2,3.3,3.6,3.7)
9-min 7 5 0.02 (0.6,1.3,1.6,1.8,2.2,2.5,2.6,2.8,2.8,2.9)
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5.3 Some Observed Details for Paired- and Three-variable Traffic Evolutions

The above empirical study has not only demonstrated the traffic patterns by mapping
the 1-D traffic series into 3-D state spaces, but has also estimated the most appropriate
time delay and embedding dimensions for real-world traffic series. Apart from these,
the present study further compares the paired (speed-flow, speed-occupancy, and
flow-occupancy) traffic features with and without relation to the sequential order.
Figure 5-8 illustrates the 9-minute paired-traffic features on a typical workday (station
421). From the upper panel (without sequential order), one can at most figure out the
relationships between speed-flow, speed-occupancy and flow-occupancy. However,
these relationships do not explain the detailed evolution of traffic behaviors. From the
lower panel (with sequential order), in contrast, we can trace the detailed evolution of
traffic behaviors. Obviously, sequential order is taken into consideration and more
detailed information on traffic evolution dynamics can be found, which could help
understand the possible causes of formation of congested traffic phase in such a way
that one could propose more effective traffic managements, e.g., regulation of
low-speed vehicles in free-flow phase, determination of start-up for ramp metering,
and so on.

To illustrate the more detailed information, we trace some selected points to elucidate
the daily evolution of the 9-minute paired-traftic by observing the chronological order
of speed-flow diagram. We start with the first point in the early hours at time 01:12
(flow: 7 vehicles/9-min, speed: 101 kph) at the upper left corner indicating a free
traffic phase. As time evolves, the dynamics of speed-flow advances along a southeast
direction to the second point in the morning peak hours at time 08:25 (289
vehicles/9-min, 80 kph), which moves southbound to the third point near noon at time
11:58 (313 vehicles/9-min, 60 kph) indicating a congested traffic phase. After that, the
dynamics moves back and forth in the middle of diagram, representing phase
transitions, during the day-time off-peak hours, e.g., the fourth point at time 15:12
(129 vehicles/9-min, 87 kph). After the afternoon peak hours the dynamics of
speed-flow returns to the original upper left corner (free traffic phase); e.g., the fifth
point at time 23:08 (48 vehicles/9-min, 97 kph).

In the light of the sequential order of speed-flow dynamics, we can see that congestion
or near congestion can easily formulate as traffic switches from a high-speed,
low-volume free-flow phase to an irregular moderate-speed, moderate-volume
synchronized phase or the low-speed, low-volume congested phase. In reality, the

71



transition occurs whenever the occupancy has exceeded a critical level. Once the
traffic dynamics enters the congestion phase, it takes a long time for traffic to return to
free-flow, and meanwhile delay accumulates. We also notice that from Figure 5-8
there is a sixth point in the early hours at time 02:22 (136 vehicles/9-min, 53 kph)
which indicates a relatively slow traffic flow, an outlier for free flow. It could have
arisen from erratic driver behaviors, heterogeneous vehicle performances, any other
incident or all at the same time. In contrast to Figure 5-8, the paired-traffic in Figure
5-9 seems to be quite fluent. From the locations at station 433 and station 421, one can
definitely know that commuters regularly drive vehicles to work from their origin
through station 433 to the destination (station 421) in the morning peak-hour. Such
situations have caused congestion or near congestion traffic phase at station 421.
Although a congestion traffic phase, i.e., high volume (235 vehicles/9-min), low speed
(30 kph), high occupancy (33.1%) can also be seen at station 433 at rush hour, the
congested traffic phase disappears after morning peak-hours. Compared with station
433, the congested traffic phase at station 421 doesn’t disappear instantaneously but
get worse because of the tremendous number of vehicles continuously coming from
on-ramps. Hence, for seriously congested locations, such as station 421, had a rapid
detection system successfully diagnosed the recurring congestions and a smart control
measure actuated accordingly, the congestions have been immediately mitigated or
alleviated.

In a similar way, three-variable traffic (flow-speed-occupancy) dynamics in
three-dimensions is shown in Figure 5-10. The trajectory moves from the coordinate
(flow = 0, speed = 100, occupancy = 0), advances along a diagonal direction, i.e.,
coordinate (flow = 350, speed = 40, occupancy = 50) till morning peak hours, when it
moves back and forth as time evolves. Finally, similar to the one-day dynamics, the
trajectory moves back to the original coordinate. In order to understand the
progression in traffic dynamics, the dotted lines in Figure 5-10 represent those speeds
less than 70 kph, and they appear intermittently among the straight lines which speed
1s over than 70 kph. It suggests that the quality of traffic flow progresses in a
moderately dense platoon, in which traffic cannot move smoothly, but moves in a stop
and go motion. If traffic data is collected from upstream ahead of a bottleneck, some
trajectories of dotted lines would probably not appear intermittently, but show together
in some part of space. Obviously, from traffic control and management practice
perspectives depicting traffic characteristics with three variables simultaneously and
with sequential order in three dimensional spaces is more subtle than just presenting
any of these three variables in one-dimensional space.
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Summarizing, the speed-flow dynamical graphs with sequential order can not only
interpret the conventional speed-flow relationship but also present details of traffic
phase-transition, which could provide more useful information for management and
control purposes. Similarly, Figure 5-8 and Figure 5-9 have been used to compare
graphical data for the dynamics of speed-occupancy and flow-occupancy without
sequential order and with sequential order. From the above observations, we have
learned that there are various traffic phases under normal circumstance: a free flow
phase, which typically takes place in the early hours; a moving jam phase, which
typically happens in the peak periods; and a synchronized traffic phase, a repeated
back and forth transition, which more likely coexists with a moving jam.
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5.4 Sensitivity Analysis for Short-term Prediction

After entirely elucidating the temporal features of traffic dynamics in multi-
dimensional spaces as well as the paired- and three-variable traffic evolutions, we
would like to further take advantage of the analytic results to obtain better accuracy on
predicting the future short-term traffic dynamics. Here, we adopted two techniques,
radial basis function neural network (RBFNN) and real-time recurrent learning (RTRL)
algorithm, to execute sensitivity analysis with manipulating different time intervals,
time lags and times of day. The main reason for choosing the RBF neural network as
well as RTRL algorithm to train a nonlinear traffic dynamics is that both of the RBF
and RTRL algorithms can iteratively modify performance errors and update its
weighted parameters to meet the characteristics of traffic dynamics, which is neither
deterministic nor complete random series but exhibits various features with times of
day instead. In addition, many disadvantages pertaining to original techniques, such as
determining center neurons randomly in the beginning of iterations and undesirable
convergence characteristics, have also been improved. Therefore, among the neural
network techniques, the RBFNN and RTRL algorithms are effective tools available to
predict nonlinear time series, both for long-interval and short-interval traffic dynamics.

Since flow, speed and occupancy time series carry different units and cover a diverse
range, it makes no sense to compare their relative predictive accuracies by the criterion
of RMSE. For comparison purposes, therefore, all the traffic data studied were
standardized using Eq. (5.1).

g = Xwn Tj_12 N (5.1)

|
Xyax ~ Xinin

where x; is the i™ observed data point; Xyin 18 the minimum in observed points; Xyax

is the maximum in observed points; X is the i" standardized data point. The

prediction results for flow, speed, and occupancy series measured in different time
intervals, time lags, and times of day, are detailed as follows.

5.4.1 VVarious Intervals

Before a network is trained, it’s necessary to clarify the input and output of the neural
network. For RBFNN, according to Lan et al (2007d) the traffic series measured with
time lag (=1) in three-dimensional state spaces provides a satisfying training effect.
Namely, the input vector is [X(t—3),%X(t—2),X(t-1)]; output vector is X(t), where
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X(t) represents the standardized traffic data at time t. For RTRLNN, the input vector
1s X(t—1) and the output vector is X(t), wherein the network output at time t consists
of the current input vector X(t—1) and network outputs of the previous layer. At
station 433, the number of lane-base data points to be analyzed were 1,440 and 480
respectively, for I-minute and 3-minute traffic series, thus a 24-hour workday
(2004.02.04) data set was selected for training and another 24-hour workday
(2004.02.12) data set for testing. At station N27.9, we also used 1,440 and 480
approach-base data points for 5-minute and 15-minute traffic series, respectively, thus
a consecutive five-workday (2004.02.09 ~ 2004.02.13) data set was selected for
training and another consecutive five-workday (2004.02.16 ~ 2004.02.20) data set for
testing.

The results of prediction are summarized in Table 5-6 and Table 5-7. From the tables,
all of the RMSEs are sufficiently small to show that both the RTRL and RBFNN model
are highly satisfactory in predicting the real-world short-term traffic series. Figure 5-11
and Figure 5-12 depict the difference between network outputs and observed values by
adopting RTRL algorithms, in which  a portion .of the data points are picked
deliberately to clearly depict the differences in the lower panel. However, it is noted
that in Figure 5-13 the curve of difference using the RTRL model oscillates up and
down more significantly than the curve of difference using the RBF model for the first
fifteen steps or even longer period. Such oscillations are similar to our preliminary
testing demonstrated in the above chapter. In addition, due to the convergent ability of
the RTRL network, the average predictability for RTRL networks and for RBFNN is
about the same. Further comparing the RMSEs in more detail, we find that for both
RTRL networks and RBF networks, the RMSES3_in) are smaller than the RMSES.min);
similarly, the RMSES;5.miny are smaller than the RMSESs.inin). The findings suggest that
the predictive accuracy for traffic dynamics measured in longer time intervals is better
than those measured in shorter intervals.

Table 5-6 Prediction results of traffic series measured in different time intervals

(station 433)
) Time RTRL-RMSE RBF- RMSE
Time Traffic - -
interval  variable lag train test train test
T (2004.02.04) (2004.02.12) (2004.02.04) (2004.02.12)
. flow 1 0.0943 0.1049 0.0851 0.0907
. speed 1 0.0510 0.0600 0.0556 0.0678
minute - oancy 1 0.0566 0.0600 0.0433 0.0477
3. fow 1 0.0787 0.0800 0.0593 0.0734
. speed 1 0.0500 0.0600 0.0547 0.0555
minute " oancy 1 0.0510 0.0557 0.0392 0.0458
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Table 5-7 Prediction results of traffic series measured in different time intervals

(Station N27.9)
) RTRL-RMSE RBF-RMSE
. Time - ;
Time Traffic la train test train test
interval variable z_g (2004.02.09- (2004.02.16- (2004.02.09- (2004.02.16-
2004.02.13)  2004.02.20) 2004.02.13) 2004.02.20)
5. flow 1 0.0671 0.0686 0.0819 0.0623
. speed 1 0.0574 0.0640 0.0624 0.0587
minute " cupancy 1 0.0806 0.0500 0.0494 0.0549
15- flow 1 0.0663 0.0648 0.0620 0.0602
inut speed 1 0.0449 0.0574 0.0590 0.0575
mInute o upancy 1 0.0755 0.0475 0.0428 0.0513
1-minute 3-minute
60 150
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Figure 5-11 The RTRL network outputs and observed values of flows measured in
different time intervals (Station 433)
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Figure 5-12 The RTRL network outputs and observed values of flows measured in
different time intervals (Station N27.9)
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Figure 5-13 The RTRL and RBF network outputs and observed values of flows
measured in 3-minute intervals for the first 15 steps
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5.4.2 Various Lags

As mentioned previously, it is important to determine a proper time lag r when
analyzing time series, especially when the time series in one-dimension is mapped into
multidimensional spaces. For the RTRL algorithms and RBFNN, it is postulated that
the training process is a sequential learning scheme and that the traffic time series at
time t and at time (t+1) have relevant dependence, i.e., the time series is a first-order
process or Markov process. Therefore, in this study, when considering the vector
[X(t=(q=1)7),.... x(t —7)] as inputs and using the input vector to predict the desired
value, X(t), we set 7 =1. Nevertheless, would the accuracy of prediction be better if
we used other time lags? For instance, for a deterministic function, using the
Mackey-Glass equation with a time lag 7 =6 would produce the best accuracy of
prediction compared with adopting other time lags.

Accordingly, Table 5-8 shows the prediction results for various time lags. For traffic
data sets with 1-minute and 3-minute intervals, we find that the prediction accuracy
declines with increasing time lags for both RTRL algorithms and RBFNN, i.e.,
RMSE 7z =1y < RMSE(7 =2y < RMSE(; =3,. Likewise, for traffic data sets with
S5-minute and I5-minute intervals, the prediction accuracy also declines with

increasing time lags, i.e., RMSE(z=1) < RMSE(,_ ! iime detay) < RMSE(7 =ime delay),
2

except for one RBF case marked in gray (RMSE_flow_ 15-minute z = time delay) <

RMS E_ﬂOW_l 5 -minute( P l time delay)) .
2

Table 5-8 Prediction results of traffic dynamics for various time lags using RTRL and
RBF

Traffic  Time RMSE Time RMSE Time RMSE

Time interval variable lag RTRL RBF lag RTRL RBF lag RTRL RBF

| minute (one flow 1 0.0943 0.0851 2 0.0968 0.0960 3  0.0979 0.1074
! . speed 1 0.0510 0.0556 2  0.0632 0.0606 3  0.0669 0.0655
workday, station 433)
occupancy 1 0.0566 0.0433 2 0.0612 0.0458 3  0.0677 0.0466
3-minute (one flow 1 0.0787 0.0593 2 0.0790 0.0659 3  0.0792 0.0679
! . speed 1 0.0500 0.0547 2  0.0547 0.0666 3  0.0727 0.0754
workday, station 433)
occupancy 1 0.0510 0.0392 2  0.0599 0.0471 3 0.0662 0.0576
5-minute (five flow 1 0.0686 0.0623 30  0.1897 0.0911 60  0.1947 0.1023
workdays, station speed 1 0.0640 0.0587 42  0.0984 0.1484 84  0.0998 0.1718
N27.9) occupancy 1 0.0500 0.0549 30 0.0870 0.0951 60  0.0895 0.1009
15-minute (five flow 1 0.0648 0.0602 10  0.2011 0.093 20  0.2829 0.0898
workdays, station speed 1 0.0574 0.0575 13 0.1024 0.0903 27  0.1062 0.1266
N27.9) occupancy 1 0.0557 0.0513 10 0.1171 0.0748 20  0.1384 0.0763
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The above results seem to indicate that the characteristics of short-interval traffic
dynamics extracted from real world detectors measured within 15-minute intervals and
involving numerous noises are more stochastic than deterministic; therefore, in the
prediction of nonlinear short-interval traffic dynamics, stochastic characteristics can be
stronger than deterministic characteristic which is similar to the famous Mackey-Glass
equation. Nevertheless, the only one exception for RBF model in Table 5-8 reveals that
the 15-minute flows have shown a slight tendency towards deterministic
characteristics, so a better accuracy of prediction for 15-minute flows using a proper
time lag (i.e., time delay) occurs, compared to using half time delay. However, with
regard to RTRL, owing to its real-time recurrent algorithms, the prediction accuracy
significantly declines with increasing time lags. Figure 5-14 presents the differences
between RTRL network outputs and observed values of flows for various time lags. In
this Figure, the same training data as Chapter 4 was employed; but only a portion of
data points are picked deliberately to clearly depict the differences.
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Time Time Time

Figure 5-14 The RTRL network outputs and observed values of flows for various time
lags

5.4.3 Various Times of Day

Although different time intervals and time lags have been investigated above, the most
interesting aspects applicable for practical prediction of traffic dynamics are to detect
when the most necessary time-of-day is to predict and how to improve their accuracy.
In general, doing efforts on precise prediction of traffic dynamics in the real world
should solve more important issues, such as the daily recurrent congestions during
rush hours. In other words, in view of efficient management, what we mostly need to
predict is a “critical” span that may cause serious traffic jams rather than prediction for
a long period of time, such as twenty-four hours. Based on this, in this subsection, we
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attempt to identify the most critical times-of-day for prediction and how to improve
the prediction accuracy. Accordingly, we tested the proposed algorithms using
different data sets collected in times of day. Table 5-9 provides the corresponding
prediction results. Observed from this table, we find that the values of RMSE in four
time periods are different. In terms of 1-minute flow, for RBFNN, the results are
RMSE (18:00-21:00) > RMSE 06:00-09:00) > RMSE 12.00-15:00) > RMSE00.00-03:00)- Likewise, other
3-minute traffic variables, speed and occupancy, also have different RMSE values,
depending on various time periods. Corresponding results for an RTRL network are
RMSE (18:00-21:00) > RMSE 6:00-09:00) > RMSE 00:00-03:00)> RMSE 12.00-15:00) Which compared
with the values of RMSE, it’s noted that the order of RMSE.00-03:000 and
RMSE 12.00-15:00) are reversed. This is because an oscillation often occurs during the
beginning steps whenever one adopts the RTRL algorithms to train a network, hence
the RMSE 90.00-03:000 > RMSE(12:00-15:00). Such results may reveal that in general the
morning and evening peak-hour periods remain the most critical for accurate
prediction compared to other periods because serious jams are constantly incurred
during such periods.. Figure 5-15 illustrates the difference between RTRL outputs and
observed values of flows during various periods of time in a workday (2004.02.04) at
station 433.

To improve the accuracy of prediction during peak-hours, a feasible method is to train
a network that only consists of historical data for a specific time period, e.g., 06:00 —
09:00 or 18:00 — 21:00, in other words, to predict traffic dynamics at the same time
period rather than to train a whole-day network to predict a specific time period of
traffic dynamics. Table 5-10 illustrates the improved prediction results using this
feasible method. It indicates that the prediction performance obtained from the
network of historical data at specific time periods is better than that obtained from a
whole-day network, that is RMSE gdays 1-min 06:00-09:000 < RMSE(1day 1-min 00:00-24:00) and

RMS E(8daysf3-min706:00-09:00) <RMS E(ldayj -min 00:00-24:00)-
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Table 5-9 Prediction results of traffic dynamics during different time periods (Station

433)
. . Traffic  Time RMSE(1-min) RMSE(3-min)
Time period .
variable  lag RTRL RBF RTRL RBF
flow 1 0.0653 0.0322 0.0548 0.0213
00:00-03:00 speed 1 0.0510 0.0479 0.0493 0.0395
occupancy 1 0.0411 0.0101 0.0338 0.0082
flow 1 0.1187 0.0954 0.1022 0.0755
06:00-09:00 speed 1 0.0533 0.0673 0.069 0.0603
occupancy 1 0.0864 0.0538 0.0851 0.0499
flow 1 0.0693 0.0941 0.0532 0.0582
12:00-15:00 speed 1 0.0405 0.0391 0.0286 0.0305
occupancy 1 0.0401 0.0414 0.0315 0.0298
flow 1 0.1258 0.1142 0.1059 0.0812
18:00-21:00 speed 1 0.0638 0.059 0.0558 0.0586
occupancy 1 0.0732 0.0647 0.0647 0.0527
00-03 06-09
120 120
-----e--=- Network output
100 - - - - — - — — _ —e— Obsened value 100 - - - - - - - YL e - -
80—~ —--——-——-—-——————————~ R
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Figure 5-15 The difference between RTRL network outputs and observed values of

flows during various time periods (station 433)

82



Table 5-10 Prediction results based only on peak-hours traffic data for network
training

RMSE RMSE RMSE RMSE

(1-day,1-min) (1-day,3-min) (8-days,1-min) (8-days,3-min)
RTRL RBF RTRL RBF RTRL RBF RTRL RBF

0.1187 0.0954 0.1022 0.0755 0.0908 0.0742 0.0845 0.0645
0.0533  0.0673 0.0690 0.0603 0.0501 0.0667 0.0461 0.0568
0.0864 0.0538 0.0851 0.0499 0.0694 0.0531 0.0674 0.0414
0.1258 0.1142 0.1059 0.0812 0.1006 0.0812 0.0882 0.0711
0.0638  0.0590 0.0558 0.0586 0.0594 0.0511 0.0501 0.0485
0.0732  0.0647 0.0647 0.0527 0.0562 0.0366 0.0510 0.0334

Time Traffic Time
period variable lag

06:00 flow
speed

09:00 occupancy
18:00 flow
speed

— = | = =] =] =

21:00 occupancy

5.4.4 VVarious Dimensions

The above analyses are based on input vectors of three dimensions and output vectors
of one dimension to examine the prediction results of traffic dynamics measured in
various time intervals for various time lags. In reality, more information can be
obtained by mapping the traffic time series into higher-dimensional spaces (see, for
example, Lan, et al., 2007¢), thus varying the input dimensions is also attempted in the
present study. Table 5-11 summarizes the variety of prediction results for RBFNN with
various input dimensions. According to the RMSEs in this table, it is found that the
smallest RMSE for traffic dynamics with 1-minute and 3-minute intervals is located on
input vectors of four dimensions, while the smallest RMSE for flow and percent
occupancy with 5-minute and 15-minute intervals is located on input vectors of three
dimensions. This finding provides us with a useful rule that, in general, the traffic time
series measured in shorter intervals (e.g., 1-minute and 3-minute) would need higher
dimensional inputs to train in order to acquire .a good prediction; in contrast,
longer-interval traffic time series (e.g., S-minute and 15-minute) would produce a good
prediction as long as lower dimensional inputs are used if the RBF algorithm was
adopted to train a network.

In sum, in terms of RBFNN, for short-interval (within 15-minute) traffic dynamics,
multidimensional inputs of at least two dimensions are needed. Depending on the
purposes or objectives the researchers would like to achieve, if high accuracy of
prediction is desired with no concern for the training time, high-dimensional inputs
(say, four or five dimensions) are recommended for short-interval traffic dynamics. Yet,
if one hopes to consider both the accuracy and training time, lower-dimensional inputs
(say, three dimensions) are acceptable. Certainly, if the traffic dynamics are measured
in long intervals (e.g., 30-minute or longer), two-dimensional inputs are enough to
produce a good prediction.
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Table 5-11 Prediction results of traffic dynamics embedded in various dimensions

Time interval Traffic Time RMSE RMSE RMSE RMSE
e IMEVal  Variable  lag  (1-D) (2-D) (3-D) (4-D)
-minute (one day flow 1 0.1276 0.1236 0.0851 0.0706
station 433) > speed 1 0.0919 0.0888 0.0556 0.0493
occupancy 1 0.0755 0.0576 0.0433 0.0392

3-minute (one day flow 1 0.0756 0.0735 0.0593 0.0576
station 433) > speed 1 0.0614 0.0573 0.0547 0.0538
occupancy 1 0.0562 0.0424 0.0392 0.0363

5-minute (five flow 1 0.0813 0.0634 0.0623 0.0634
workdays, station  speed 1 0.0772 0.0690 0.0587 0.0616
N27.9) occupancy 1 0.0594 0.0573 0.0549 0.0556
15-minute (five flow 1 0.0695 0.0603 0.0602 0.0619
workdays, station  speed 1 0.0697 0.0655 0.0575 0.0688
N27.9) occupancy 1 0.0606 0.0556 0.0513 0.0538
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CHAPTER 6 CONCLUSIONS AND
SUGGESTION

In this study, real world traffic variable (flow, speed, and occupancy) patterns
extracted from isolated detecting stations have been characterized with varied trends
and drastic fluctuations in reconstructed state spaces. Meanwhile, some traffic
evolutions for paired- and three-variable were observed. In addition, sensitivity
analysis was implemented for short-term (within 15-minute) prediction of traffic
dynamics with various time intervals, time lags, times of day and dimensions. After
comparing the diverse features of traffic time series in reconstructed state spaces and
predictability of various techniques, we summarize some important findings and
explain their nature here.

6.1 Temporal and Spatiotemporal Patterns

We have conceptualized the reconstruction of traffic series by creating appropriate
embedding spaces to investigate the temporal traffic patterns. From the four indexes,
time delay, embedding dimension, the largest Lyapunov exponent and correlation
dimension, we would like to stress that traditional methods of time series analysis are
mainly concerned with decomposing the variation in a series into trend, seasonal
variation, other cyclic changes, and the remaining “irregular” fluctuations. However,
recent research claimed that random input is not the only possible source of
irregularity in a system’s output. A nonlinear dynamics (e.g., chaotic system) can
produce very irregular data with purely deterministic equations of motion in an
autonomous way. Therefore, a complex system, such as traffic dynamics, requires a
nonlinear approach to detecting whether the apparently irregular behaviors are purely
random or not. Such requirement is exactly the core rationales for adopting the four

85



proposed parameters to investigating our current study topics. We believe this study
will be most valuable in presenting a systematical nonlinear approach to exploring
more information of temporal traffic dynamics as of now.

According to the parameters of successive one-month versus one-day traffic time
series, the former state trajectories, which exhibit distinct time delay, unchangeable
embedding dimension, near zero largest Lyapunov exponent and saturated correlation
dimension, are characterized as having periodic-like patterns, which is as anticipated.
In contrast, the latter state trajectories of very short times (i.e., 20-second and 1-minute)
display random motions, and since their time delay is equal to one, embedding
dimension is larger with increasing quantity of data, and correlation dimension is not
saturated. Both state trajectories exhibit nonlinear dynamic features, one is
periodic-like dynamic and the other is random dynamic. Following the above, we
investigated a ten-workday traffic time series at various times of day and inspected
their parameters. The diversity of patterns which contain fixed point, deterministic-like
patterns and stochastic patterns were explored. In other words, different nonlinear
phenomena were found to emerge depending on the measured time scales, time-of-day
and history data. However, the chaotic feature was not obtained in traffic time series
extracted from dual-loop detectors. Perhaps, further inspecting spatiotemporal features
of congested traffic patterns can answer the question about chaotic or other complex
behavior traffic characteristic.

We regard those traffic patterns attributed to deterministic-like dynamics as having
some intrinsic rules’ governing the regularity. What ‘do the real meanings or
phenomena imply for such intrinsic rules in our daily life? We may assume that most
trip makers get to work by 9 am and finish work at 5 pm on workdays, that is, they
leave their homes or work places at approximately the same times, using the same
modes, and/or choosing the same routes everyday. Such macroscopic regularities have
caused “similar but not exactly the same” trends (i.e., slight fluctuations still exist)
from day to day. Moreover, due to the constraints of travel demand, roadway capacity,
speed limit, and so on, the observed traffic flows would not go beyond two extreme
values: zero (free or jam) flow and maximum (capacity) flow. The speed and
occupancy dynamics are also bounded within two extreme values (from free-flow
speed or near zero occupancy to near zero speed or jammed occupancy). Thus, if we
investigate the traffic time series on successive days, many recurrent curves are
expected to be exhibited in 1-D plot, and cyclic patterns would appear in 3-D spaces.
The macroscopic regularities indeed dominate the shape (trend) of such
deterministic-like traffic patterns.
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However, it’s noticed that not every driver is completely confined by such
macroscopic regularities. The majority of drivers always control his/her vehicle at a
desired speed and safe spacing and clearance so as to best interact with roadway
environments and neighboring vehicles. The presence of human behavior is perhaps a
key factor making traffic dynamics more complicated than many other physical
systems that do not involve human behavior. Besides, roadway traffic is essentially
composed of heterogeneous vehicles with diverse powers or maneuver capabilities.
Hence, due to the heterogeneity across drivers and vehicles, the microscopic traffic
dynamics will always fluctuate and surge along with the macroscopic traffic trend.
Namely, the heterogeneity of drivers and vehicles not only elucidates the random
feature of one-workday traffic series but also explains the phenomenon of “similar but
not exactly the same” patterns for successive (many-workday) traffic series.

Although our research attempt only aimed at characterizing the evolutional trajectories
of time-varying traffic features, we also probed the traffic phases between upstream
and downstream stations in this paper. For example, we found congested traffic at
station 421 in the morning peak-hour. According to three-phase traffic theory,
congested traffic occurs most at freeway bottlenecks where can be a result of
road-works, on- and off-ramps, a decrease in the number of freeway lanes, road curves
and road gradients, etc. For an isolated bottleneck, there are two types of patterns in
congested traffic: “synchronized flow pattern (SP)” and “general pattern (GP).” The
GP is a congested pattern, which consists of synchronized flow upstream of an
effectual bottleneck and wide moving jams that emerge spontaneously in that
synchronized flow. For two or more adjacent bottlenecks, then an expanded congested
pattern (EP) can be formed. In the EP, a synchronized flow phase or a complex
interactive process among various moving jams could be anticipated. However,
conventional theories, such as shock wave theory and queuing theories, and those
models based on the fundamental diagram approach or a few results simulated by
cellular automata (CA) models are hampered by lack of capability of predicting
fundamental empirical features of phase transitions and spatiotemporal congested
pattern features of real traffic. This is because spatiotemporal solutions of these
models are in a fundamental qualitative contradiction with empirical (measured) traffic
breakdown and the resulting congested patterns. Only the main spatiotemporal pattern
features are fully understood, additional study of some nonlinear pattern features can
be performed (Kerner, 2004).
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By contrast, in the example of our paired-traffic features, speed and flow can
transform from a free-flow phase in the early hours to a synchronized or congested
phase in the morning peak-hours, during which the 9-minute lane-flow rates can range
from 7 vehicles to 289 vehicles and the corresponding time-mean-speed can drop from
101 kph to 80 kph. This suggests that an influx of vehicles in the morning peak-hour
pushes the occupancy over a critical level, forcing the free-traffic phase into the
moving jam or synchronized phase. The onset of traffic congestion is accompanied by
a sharp drop in average vehicle speed, known as “the breakdown phenomenon.” Even
near noon, the flow rates remain high and the congested traffic does not disappear until
around 14:00 PM. Unfortunately, the afternoon peak-hour arrives quickly thereafter
thus the traffic state does not return to free-flow. Such irregular back-and-forth
speed-flow features in the real world indicate that the synchronized traffic phase and
the moving jams are alternative, which is similar to general pattern (GP). For such
recurrent congestion, if a smart ramp metering instantaneously holds back the
incoming vehicles in such a way that occupancy is kept below its critical value, traffic
would flow freely and congestion could be avoided altogether..In sum, our observed
paired- and three-variable traffic evolutions at the isolated detectors in effect provide
evidence in support of Kerner’s three-phase traffic theory and tackle the field
problems.

6.2 Temporal Features and Short-term Prediction

In this study, four techniques, including a linear method, simple nonlinear prediction,
RTRL algorithms and-a RBFNN model were employed to compare their predictability.
Wherein, a first order autoregressive model and a first-order differential-delay
equation were used to test the predictability between the linear method, simple
nonlinear prediction and RTRL algorithms. After validating the prediction power of
RTRL algorithms, we further implemented the sensitivity analysis by employing the
short-term (within 15-minute) traffic series, including flow, speed and occupancy
measured with various time intervals, time lags and times of day. In accordance with
the above investigation, we summarize some important findings as follows.

From the comparison between different techniques, we have learned that it is very
important to take into account the characteristics of traffic series before prediction.
Without a prerequisite analysis, it is hasty to claim or determine which technique is
better or able to precisely predict a nonlinear time series because different
characteristics of the time series could greatly affect the accuracy of prediction. For
instance, we have learned that the traffic flows in the midnight measured in very short
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intervals are so lull that most drivers can freely drive their vehicles, i.e., the features of
traffic dynamics is a random pattern and even the trajectories converge to some fixed
points. If we want to predict such a random pattern in the midnight, then it is not
suitable to adopt the simple nonlinear algorithms, since the postulation of simple
nonlinear algorithms are in effect mainly based on the theory that different time series
with equal states may exhibit equal futures and similar states, while such a postulation
is not exhibited for random patterns. Furthermore, it is less important compared with
predicting traffic volume for other times of day, since the volume in the midnight is
low. Even if an incident occurs in this period, the impact to traffic flow will quickly
dissipate with the light traffic. In contrast to the random pattern exhibited during
midnight, the intrinsic structures of successive traffic dynamics during morning and
evening peak hours may show deterministic-like patterns. Such deterministic features
or deterministic-like features with slight noises could be predicted using simple
nonlinear algorithms. In regard to the stochastic features or deterministic-like features
with considerable noises, iterative learning algorithms, such as RBFNN or RTRL
algorithms would become a candidate to predict such features.

In addition, different methods of prediction may only provide a certain function for a
specific purpose rather than being capable of error-free predicting including all aspects.
For example, the simple nonlinear technique can immediately learn the intrinsic rules
of the dynamics to precisely catch the trajectories in multidimensional spaces within a
few time steps. However, the requirement is that the underlying dynamics be
deterministic or a time series with slight noises. Likewise, we successfully predict the
short-term nonlinear traffic dynamics extracted from the dual-loop detectors by
employing RTRL algorithms as well as RBFNN. Nevertheless, at the present time, the
problems of how to decide the proper hidden neurons, hidden layers and training time
can only be solved by a trial and error method. Consequently, in terms of prediction,
characteristic analysis of a time series is important and is a prerequisite for prediction.
Furthermore, what we would like to do in practice is to select a technique that permits
predicting the short-term traffic dynamics to meet the requirements of ATMS rather
than arbitrarily searching for a method for perfect prediction without any errors.

Aside from the above statements, the traffic time series measured in different time
intervals (1-minute, 3-minute, 5-minute, 15-minute), with different time lags (time
lag=1, one-half time delay, 1-time delay) and during different times of day (00:00 —
03:00, 06:00 — 09:00, 12:00 — 15:00, 18:00 — 21:00) have been trained to predict traffic
dynamics. According to our field study, several findings have been illustrated to
support the accuracy of prediction when influenced by various time intervals, time lags
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and time periods. We have found that the accuracy of predicting traffic dynamics for
longer-intervals (15-minute) is better than for shorter-intervals (5-minute); likewise,
3-minute is better than 1-minute. In addition, a deterministic model with a proper time
delay can precisely predict the dynamic state, for instance, 7 =6 1is a good time delay
for the Mackey-Glass equation. In contrast, a stochastic time series for short time-lag
(e.g., 7=1) will produce a better prediction than adopting other time lags.
Short-interval traffic dynamics extracted from detectors are very likely close to
stochastic patterns, thus the training results of adopting time lag being equal to one
produce optimum prediction compared to adopting other time lags. Furthermore, we
have also found that traffic dynamics in the morning and evening peak-hours are the
most difficult to predict compared to other time periods, but this situation can be
improved by training a historical network using the traffic data composed of only the
same time periods, i.e., gathering several historical data at the same time periods will
produce a better training network to predict traffic dynamics. Nevertheless, it is
noticed that one has to carefully select proper historical data when adopting the above
approach to train a neural network, wherein the “proper historical data” means to pick
similar historical data that emulates the trend and variance as the future traffic
dynamics. Improper historical data (e.g., that involving serious incidents, bad weather,
etc.) may contribute to unexpected inaccuracy in prediction.

6.3 Extensive Applications

The current research outcomes can be employed to tackle the field problems like
recurrent congestions-and non-recurrent congestions that exist ubiquitously in various
transport systems in our daily life (Lan et al., 2007a). Theoretically, for recurrent
congestion, what we can do is altering the service process more closely matching the
arrival patterns; making the arrival process more closely matching the service capacity;
or imposing proper service disciplines to cut down the overall delay costs or the size of
delays. The main challenge is to determine proper time and intensity for actuating the
control mechanism. For non-recurrent congestion, what we need to do is expediting
the system capacity retrieval and the main challenge is to diagnose and remove the
incidents as soon as possible, as delay is proportional to square of the incident
duration.

As we have emphasized, more information of state trajectories of traffic dynamics can
be obtained via converting the conventional traffic series (flow, speed, occupancy) in
1-D space into reconstructed multidimensional spaces. We can take advantages of
outstanding multidimensional parameters of traffic series for management and control
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purposes. Here we further present two examples. In the paper “Diagnosis of Freeway
Traffic Incidents with Chaos Theory,” Lan et al. (2003a) attempted to use the change
of multidimensional parameters for flow series, including largest Lyapunov exponent,
capacity dimension, correlation dimension, relative complexity, Kolmogorov entropy,
delay time, and Hurst exponent to examine the existence of traffic incident. Through a
deliberately-arranged incident experiment in Taiwan Freeway No. 1, they found that
the largest Lyapunov exponent parameter of flow series has presented much more
sensitive than the change in flow rate, a conventional expression of flow in 1-D space.
Thus, the largest Lyapunov exponent was used for incident detection and the off-line
tests showed that overall average detection rate can reach 93.75%, better than that by
the conventional incident detection algorithms (fuzzy neural network, with detection
rate ranging from 80% to less than 90%) using 1-D flow information.

In addition, in the example of our paired-traffic features, speed and flow transit from
free-flow phase in the midnight to synchronized- or jammed- phase in the morning
peak-hours. This indeed suggests that an influx of vehicles in the morning peak-hours
has pushed the occupancy over a critical level, forcing the free-traffic into the phase of
congestion or synchronization. Then, we can anticipate that there could be heavy
delays for a long time on each typical workday. For such recurrent congestions, if a
smart ramp metering could instantaneously hold back the incoming vehicles in such a
way that occupancy is kept below its critical value, traffic would flow more freely in
most occasions and the congestion size would be downsized altogether.

As another example, Lan et al. (2003b) argued that a self-organization phenomenon
might exist when the phase shifts from non-congested to congested state within a system.
They employ cellular automaton (CA) traffic simulator to investigate the self-organization
forming process as the occupancy grows. Real traffic data are used to examine whether
the power law, an indicator of self-organization phenomenon, exists or not. The empirical
evidence on a two-lane freeway shows that self-organization phenomenon appears
when the occupancy exceeds 45%; however, the edge of chaos is at a level of
occupancy 33.8%, which should be the starting control point (e.g., ramp metering) for
the recurrent congestions.

The above two examples may support that the proposed method and concept in this

study can be used to develop traffic management schemes which are practically
applicable in dynamic control.
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6.4 Follow-up

According to our empirical results, the proposed analytical method permits extracting
more information on traffic series in reconstructed state spaces, particularly, unfolding
the motions of flow, speed, and occupancy state trajectories, which could converge,
diverge, or perform periodic motions. In addition, the analytical results in terms of
flow, speed, and occupancy time series as well as their paired data have illustrated
various traffic phases and traffic stream characteristics. They would help understand
the possible causes of formation of recurrent congested traffic phase in such a way that
one could propose more effective traffic management. However, in contrast with
temporal traffic patterns that occur only in time at specific locations, spatiotemporal
traffic patterns that occur in both time and space can also be investigated with various
perspectives. Different methodologies having certain advantages may achieve some
purposes and thus we intend to further investigate more spatiotemporal patterns in
future research.

Nevertheless, cellular automaton (CA) simulation has been widely used to explicate
the behaviors of traffic flows. These modification models, however, mainly devoted
efforts to introduce more realistic CA rules that can better govern the maneuvers of
vehicles or drivers. The main bottleneck of this study that the traffic series extracted
from “isolated” stations can only provide us to explore the temporal patterns of traffic
dynamics may be conquered by modified CA model. The interface which transforms
spatiotemporal features depicted in CA model to temporal state trajectories mainly
remains investigation how to calibrate the traffic data derived from CA model and
measure the position of vehicles using mathematical equations. More fundamentals of
traffic dynamics associated with microscopic models as well as macroscopic models
will be explored when the temporal features and spatiotemporal patterns are disclosed
then.

Apart from the above issues being of investigative value, a few new topics associated
with pattern recognition need to be tackled and mulled over. For example, from the
results of our empirical study, it is stated that different nonlinear traffic patterns could
emerge depending on the observed time-scale, history data and time-of-day. However,
do the different patterns of traffic dynamics exhibit a distinct boundary? If so, what are
these boundaries? Or, one may be curious to know whether different traffic patterns
could transform into each other without distinct boundaries under a certain situation or
during a specific time period. All the above subjects are worth further investigation.
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In addition, this study places its emphasis on sequential order. However, another issue
we hope to understand is whether or not the sequential order also possesses intrinsic
rules/naturals depending on the observed times of day. For instance, the sequential
order of traffic dynamics in the midnight should be different from that in the peak
hours. The former may regularly change their positions because of light traffic while
the latter could dramatically alter their trajectories and even stay for a while with the
increasing volume. As the traffic parameters involving with sequential order are
several traffic variables (speed, flow, occupancy) in multi-dimensions, we can take
advantage of these parameters and adequately dominate the traffic dynamics. Namely,
if the naturals of sequential order can be investigated well, we could more precisely
diagnose the causes of formation of congestion and promptly deal with the incidents,
thereby reinforcing the scheme of traffic management.

Moreover, we have claimed that different characteristics of the time series could
greatly affect the accuracy of prediction; however, recently more novel techniques or
hybrid methods, such as rough set theory, gray theory and artificial neural networks
combined with genetic algorithms have been developed to predict short-term traffic
dynamics. Future research can make use of the new approaches to predict short-term
traffic dynamics while considering both accuracy and “real time” factors, but also to
take advantage of the characteristics of traffic dynamics to effectively implement
management in practice. In addition, it is recommended to add a naive model or other
available models in the future study for comparison purposes. Furthermore, attempt of
other proper indexes to elucidate the prediction error, such as RMSPE, deserves
further exploration.

Finally, it remains difficult to reproduce the multi-dimensional traffic time series by
mathematical forms, which serve dynamic traffic forecasting in a shorter time scale,
such as 20-sec and 1-min. Therefore, another challenge for further study is to develop
rationales for modeling and predicting the traffic dynamics in the multi-dimensional
reconstructed spaces. Development of effective traffic management and control tactics
by utilizing such processed traffic information from the reconstructed spaces may also
warrant more exploration.
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APPENDIX A TERMINOLOGIES

Correlation dimension: Correlation dimension is a measure of the extent to which the
presence of a data point affects the position of other points lying on the
attractor.

Deterministic time series: To measure values Xi, Xo,...Xp,... at time t;,b,...t,... of a
time dependent random variable x(t), the existence and uniqueness of solutions
of X, are ensured.

Dynamics: A dynamical system whose state evolves (changes) with time t.

Embedding dimension: A sequence of observations {S, =s(x,)} performed with some
measurement function s(-), wherein the one-dimensional traffic time series

embedded into multiple dimensions-reconstructed, space is denoted as
St = (S5Stae»Staresr Stemany ) s - L =1,2,..., N where the parameter integer m is called

embedding dimension.

Fixed point: For a system described by a set of first-order differential equations, a
point in the state space for which all of the time derivatives of the state space
variables are 0 is said to be'a fixed point.

Linear dynamics: Time series can be represented by linear equations of motions.

Markov process: A time series is a purely random process with mean zero and variance
o’ . The process is said to be an autoregressive process of first order or Markov
process when the order equals one.

Nonlinear dynamics: Time series can be represented via nonlinear Egs. of motion, e.g.,
differential Eqs, iteration of maps, etc.

Periodic trajectory: The trajectories show that the sequence of peaks is periodic-2,
periodic-3,..., and so on.

Quasi-periodic trajectories: A type of motion occurring in three-dimensional state
space has two different frequencies associated with it.

Random data: In general, if the data obtained from the experiment are not repeatable
with the bounds of the experimental error under identical conditions, then the
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corresponding system can be called a random system. The data obtained from a
random system is called random data.

Reconstructed spaces: Map the one-dimensional traffic series into m-dimensional
reconstructed spaces via the determination of appropriate time delay and
embedding dimension.

Spatiotemporal traffic features: Traffic variables (flow, time-mean-speed, percent
occupancy) vary transversely across the highway between lanes and direction of
travel, and longitudinally along the highway or street as time evolution.

State space/Phase space: In the nonautonomous case, the equations are of the form
x=F(x,t), where X is finite dimension, xeR", teR and F explicitly
depends on t. The vector X is called a state vector and the space R" in which X
evolves is called a state space.

State trajectory: Traffic variables (flow, time-mean-speed, percent occupancy), which
were tracked and recorded in reconstructed state spaces over time.

Stochastic processes: To measure values X;, Xp,...X,,... at time t,t,....t,,...,a set of
probability distribution denoting that at time t, the value x,, can be found.

Temporal traffic features: Traffic variables (flow, time-mean-speed, percent occupancy)
vary over time at specific locations in a highway system.

Time delay: A sequence of observations  {S,=s(x,)} performed with some
measurement function s(-), wherein the one-dimensional traffic time series

embedded into multiple dimensions reconstructed space is denoted as
St = (8>S, 2Str2r-+ Stomine)» L= 12,..., N where the parameter 7 is called time

delay.

Traffic dynamics/ Traffic time series: The evolution or temporal variation of any traffic
variables (flow, time-mean-speed, percent occupancy) measured in a sequential
(chronological) order.

Traffic patterns: Those characteristics of vehicle groups pass a point or short segment
during a specified span or traveling over longer sections of highway.
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APPENDIX B NOTATIONS

T Time delay

m Embedding dimension

A The Lyapunov exponent

Ao The largest Lyapunov. exponent

d Correlation dimension/Attractor dimension

r Distance

b; Average mutual information (AMI)

Pij The probability of finding a time series value in the i-th interval.

Pii(7) The joint probability that an observation falls into the i-th interval and
an observation time ¢z later falls into the j-th interval.

& The ratio of false nearest neighbor (FNN)

5" A point S; 1s located in an m-dimensional space.

s," A point s is located in an m-dimensional space which is a
considerable near neighbor of s," .

S (At) Stretching factor: an estimate of the largest Lyapunov exponent A,
per time step.

¥(s,) The neighborhood of s, with diameter r

u(r) The correlation integral.

C) Heaviside step function

Xn Gaussian random variable

Mwua The order of MA model

Mar The order of AR model

S, The embedding vector at time t

Sto A predictor of s,

SiosT The embedding vector s,, at future time (t+T)

P() Radial Basis Function (RBF)
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An input multidimensional time series of RBFNN

Yi An output multidimensional time series of RBFNN

W, v Weight matrix

W, A bias term weight of hidden neuron

C; The center of the jth Gaussian function

o The width of the Gaussian function

?, White Gaussian noise

d(p) The pth desired value

y(p) The pth network output

e(p) The pth difference between the desired value and the network output,
i.c., &(p)=d(p)-y(p)

E The total values of e(p) in network

y(1) The n-tuple of outputs of the n-processing neurons at time t

X(1) The m-tuple of external inputs to the network at time t

d(t) The desired value of the k-th neuron at time t

Z(t) The network output

ex(t) The difference between the desired value and the network output at
time t, i.c., ep(t)= di(t)- ()

E(t) The total values of g(t) at time t

n, 1, The learning rate

focci The individual occupancy time (seconds)

tie The instant time that i vehicle is detected (seconds)

tir The instant time that i vehicle is off detected (seconds)

Xi s Xisy Speed of i™ and (i+1)™ vehicle

D,, Dg Detector A and detector B length

D Distance between detector A and detector B

a; Flow rate at i time interval

U; Time-mean-speed at i time interval

q Accumulated flow rate

u’ Weighted time-mean-speed
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