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The Self-Duality of Discrete Short-Time Fourier
Transform and Its Applications

Tzu-Hsien Sang, Member, IEEE

Abstract—The self-duality of short-time Fourier trans-
form (STFT) is an elegant property and is useful in shedding
light on the construction of STFT and its resolution capability. In
this paper, the discrete version of self-duality is studied, and the
property is interpreted in the context of resolution capabilities
of time frequency distributions. In addition, two applications are
provided as showcases of these insights obtained from the inter-
pretation. In the first application, the problem of STFT synthesis
is considered, and self-duality serves as an important indication
of whether the synthesis problem at hands is properly formulated.
In the second application, a new kind of high-resolution time-fre-
quency distribution is constructed based on the understandings
obtained by contrasting two of the most popular time-frequency
analysis tools, namely, the STFT and the Wigner distribution.

Index Terms—Discrete short-time Fourier transform (STFT),
self-duality, signal synthesis, time-frequency analysis.

I. INTRODUCTION

T HE self-duality of short-time Fourier transform (STFT)
has been known for some time, for example, in the con-

text of radar signal processing [1]. It is an elegant result, yet
the usefulness of it has been far from fully demonstrated. To de-
scribe the self-duality of STFT of continuous signals, a modified
definition of STFT was used:

(1)

where is the signal-to-be-analyzed, is the window
function, and denote the STFT. Notice the extra
phase term which guarantees the symplectic covari-
ance [2]–[4] and does not exist in the usual definition. With this
little change, the following equation is easily shown to hold:

(2)

where is the time-reversal of . In particular, if is time-
symmetric, then the two-dimensional inverse Fourier transform
of the STFT is proportional to the scaled version of the STFT
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itself; hence we call the relation self-duality. The short-hand
notation is used to denote such a relation.

Notice that the commonly known Fourier duality between any
two orthogonal directions on the time-frequency plane refers to
the conjugation of pairs of operations along each direction. A
quick review can be found in [5]. Here the self-duality refers to,
however, the functional resemblance between the Fourier pairs
in the and domain. One typical Fourier dual pair is the
scaling operation, namely, expanding a function in one domain
leads to the contraction of its Fourier pair in the other domain
and vice versa. Applying the scaling duality to the STFT and
its Fourier pair, one would get a duality which is, with a figu-
rative short-hand notation, . Apparently
this relation is quite different from the self-duality which reads

. Nevertheless, they are not conflicting
each other, as matters will be explained with more details in
Section II.

In this paper, the self-duality is established for STFT based
on discrete-time Fourier transform (DTFT). In Section II suf-
ficient conditions for this version self-duality to hold will be
identified and the implications will be discussed. A pure discrete
version of self-duality of STFT based on discrete Fourier trans-
form (DFT) is also formulated for the implementation purpose.
It can be viewed as an approximation to the exact self-duality, as
long as the sampling and truncation of the signal and window
function are done with precautions. Next, an interesting inter-
pretation of self-duality, focusing on the supposed poor resolu-
tion capability of STFT/spectrogram via contrasting it with the
Wigner distribution (WD), raises the possibility of linking self-
duality and the resolution issue. Furthermore, in Sections III and
IV two algorithms based on the aforementioned understanding
of self-duality were developed for applications in STFT syn-
thesis and the construction of high-resolution time-frequency
distribution (TFD). The algorithms powerfully demonstrate the
beauty and usefulness of this elegant property.

II. SELF-DUALITY OF DISCRETE STFT

For a discrete signal , the STFT based on DTFT is de-
fined as

(3)

in which the signal and the window function are as-
sumed to be band-limited within frequency bands and

respectively, and both are properly sampled. The slice
of along the frequency axis is a continuous and peri-
odic function, while along the time axis is a discrete sequence.
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To demonstrate the self duality, first take a mixed two-dimen-
sional inverse Fourier transform of :

(4)

It is now shown that if certain condi-
tions are met. Continue with (4) [see (5), shown at the bottom of
the page]. The inner-most integration produces a sinc function;
therefore,

(6)

The inner summation can be viewed as the modulated se-
quence being convolved with a low-pass sinc filter.
At the first glance, it seems necessary that shall be
within the pass-band of the sinc filter, i.e., ,
to further proceed the derivation of self-duality. With a closer
scrutiny, however, it becomes clear that the condition is unnec-
essarily strict. The reason is that, as long as , the
convolution of with the filtered version of will
have the same result as in the case where is within
the passing band of the sinc filter.

With the assumption that the afore-mentioned condition
holds, we can proceed with the case where is
band-limited within the passing band of the sinc filter and the
output is

(7)

If the window function is symmetric, then

(8)

That is, the self-duality based on discrete-time Fourier transform
is established with the sufficient conditions that both and

are band-limited and properly sampled, and their band-
widths satisfy .

To facilitate algorithm implementation, a version of approxi-
mate self-duality based on discrete Fourier transform is needed.
Next, such a version will be presented without elaborations on

derivation. The details pretty much follow the derivation of (8).
The result can be viewed as a sampled version of

, and the self-duality holds as long as the “edge ef-
fect” caused by substituting DTFT with DFT can be ignored.

Let be a length- discrete signal and its discrete
STFT is defined as

(9)
for , and . No-
tice that the range of indexes is chosen such that the indexing can
be simplified. The discrete inverse Fourier transform of
is

(10)
The self-duality states that

(11)

if the following conditions on and are met1:
1) the time supports should satisfy ;
2) the frequency supports should satisfy .
These sufficient conditions agree with the intuition derived

from the argument of avoiding “edge effects.” The discrete ver-
sion of self-duality is now established. In the following, an inter-
pretation of self-duality, mainly focusing on the resolution issue
on the time-frequency plane, is provided. Furthermore, the ob-
tained insights will be utilized to develop two example applica-
tions that powerfully demonstrate the beauty and usefulness of
self-duality.

A. Interpretation of Self-Duality and the Resolution Capability

An interesting interpretation of the self-duality is presented
to provide useful insights on the resolution capability of STFT,
and with analogy, of general time-frequency distributions. To
facilitate discussions, a single Gabor logon centered at the origin
of the time-frequency plane will be used as an example, and the
continuous instead of discrete version will be discussed for the
simpler notations. A single Gabor logon is

(12)

1The window function and the signal should be essentially time and band-
limited, even though in strict sense this is not possible. Let their effective time
supports be ���� �� and ���� ��, and the effective frequency supports ������
and ����� � respectively.

(5)
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and its STFT is

(13)

satisfies the self-duality

(14)

The corresponding spectrogram, i.e., the squared magnitude of
the STFT, is

(15)

In addition, the WD

(16)

will be generated to demonstrate its superior resolution, which
is regarded as its trademark [6]–[10], and its different yet some-
what similar self-duality relation. Through the exercise, it is
hoped to demonstrate the correspondence between resolution
capabilities and different self-duality relations.

The WD of the same Gabor logon is

(17)

Commonly, it is treated as an energy distribution function, and
its corresponding “amplitude” distribution, which is to be com-
pared with the STFT, is then

(18)

Notice that it satisfies a different self-dual relation:

(19)

or, in the short-hand notation, .
The contrast is clearly represented in Fig. 1. The different de-

grees of concentration of the “amplitude” distribution functions
on the time-frequency plane can be easily observed. Different
dual relations govern the two “amplitude” distribution func-
tions: for STFT, it is , i.e., the self-dual
function is more concentrated on the plane; for ,
it is , i.e., the self-dual function remains
the same shape on the plane. Notice the observation that
the STFT is more concentrated on the plane corresponds
to its “excessive” spreads on the time-frequency plane, espe-

Fig. 1. Scaling relation between the time-frequency domain and the �-� do-
main. (a) shows an STFT and (b) is its two-dimensional inverse Fourier trans-
form. (c) is the “amplitude” function of the Wigner distribution of the same
signal, and (d) is its two-dimensional IFT.

cially when compared to the “amplitude” function of the Wigner
distribution.2

On the alleged superior resolution of WD, there is an instruc-
tive equation that shows the construction of the Wigner distri-
bution through auto-convolution of the STFT on the time-fre-
quency plane: [see equation (21) at the bottom of the page], in
which and is the STFT. This equa-
tion is a 2-dimensional extension of [13, eq. (3)] where the WD
is related to the STFT via an auto-convolution in the frequency
domain. There are two insights in (21) worth noting. The first is
that, by the analogy to the claim that matching windows to lo-
calized signals results in high-resolution adaptive spectrograms
[14], the auto-convolution in (21) also contributes to the supe-
rior resolution of WD. The second is that the oscillating term

2Please be noted that the self-duality relation presented here for the “ampli-
tude” function of the WD is only for the single Gabor logon and cannot be ex-
tended to general signals. It should be viewed as merely an instructive example.
For general signals, there is an interesting relation similar to what is found in
[11], [12], regarding the “phased” WD, i.e., � � ��� ��. It goes like this:

���� � ��� ��� �
�

�
� �

�

�
	

�

�
(20)

in which �� denotes the two-dimensional inverse Fourier transform. Notice
the “scaling” in the � -domain signal and the �-domain spectrum on the right-
hand side. This equation conforms to the reasoning that expansion in the � �
� domain means tighter concentration of signal components and therefore a
superior resolution in the time-frequency domain.

(21)
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gives indications on how the distinctive fast-
oscillating “cross terms” arise in the midpoint of “auto terms.”

The self-dual relation does not conflict with the well-known
tradeoff of the resolution capability of Fourier analysis on
the time-frequency plane. In the tradeoff, when the resolu-
tion capability along the frequency axis is enhanced through
using a long window, the resolution along time axis is in-
evitably compromised in a similar way as shown by the
Fourier transform pairs of Gabor logon
and which demonstrate the nego-
tiation of spreads between two domains. This tradeoff can
be clearly stated not only by the scaling duality but also the
development of the uncertainty principle for time-frequency
distributions [15]–[18] and may be figuratively understood
through the short-hand notation . The
scaling dual relation and the self-duality
provide two different aspects to restrict the expression of STFT
on the time-frequency plane.

The following sections present two applications of self-du-
ality to general time-frequency analysis/synthesis. Notice that
the main character of these applications is in recognizing the
self-duality as an indication of the resolution limitation as well
as a regulation on the expression of TFDs on the time-frequency
plane.

III. APPLICATION I: SIGNAL SYNTHESIS FROM GIVEN

TIME-FREQUENCY TEMPLATES

The synthesis of STFT is to construct a valid STFT, that is,
a 2-dimensional function which is mathematically related to a
signal and a window function through (1), to match closely to
a given time-frequency template. Some works have been done
on related problems; for example, in [19], a finite-support dis-
crete signal is reconstructed by using only the magnitude part
of its STFT. TFDs other than STFT have also been studied in
signal synthesis applications [20]–[22]. Here, the STFT syn-
thesis problem is stated as follows.

1) The STFT Synthesis Problem: Given a power distribution
template on the time-frequency plane, find a legitimate
STFT such that the spectrogram is closest to

.
The self-dual (2) is a necessary condition for a function to be

an STFT with symmetric window. Therefore, if there exists an
STFT whose magnitude is close to . , there must exist
self-dual functions whose magnitude is also close to the given
template. The STFT synthesis problem may be solved by first
find a self-dual function such that its magnitude, i.e.,

, is close to . The function can be
found with similar approaches adopted in the classical problem
of two-dimensional signal retrieval using only the magnitude
information of Fourier transform [23]–[29].

After the self-dual function is found, the next step
is to construct a legitimate STFT such that

is minimized. Assume a given symmetric
window function as a design parameter, a convex norm-min-
imization problem can be formulated and can be effectively
solved through readily-available convex optimization software
packages [30].

Fig. 2. STFT synthesizing algorithm is used to reconstruct a signal. (a) shows
the time-frequency template function. (b) shows the real part of the self-dual
function ���� �� generated by Step 1. The real part of the original signal (the
dashed line) and the synthesized signal (the solid line) are shown in (c), and (d)
shows the magnitude of the STFT generated by the reconstructed signal and the
same window function.

The self-dual function serves as an intermediate vari-
able in the synthesis process. Notice that the phase-retrieval
problem is nevertheless a non-trivial problem. In practice, most
popular procedures are based on Iterative Fourier transform al-
gorithm (ITF) [23], [26]. Here a variation of ITF is adopted as
the core of the synthesis procedure. Start with an initial function

where is a random phase
function, we proceed to the following algorithm.

2) The STFT Synthesis Algorithm:
Step 1) Generate , where de-

notes the 2-dimensional inverse Fourier transform.
Set . Go to Step 2.

Step 2) Update with
where denotes the 2-dimen-

sional Fourier transform. Set .
Go back to Step 1 or go to Step 3 if the updating
term is small.

Step 3) Given a window function as a synthesis pa-
rameter, get via solving a norm-minimization
problem. The details are in Appendix I.

Two examples are provided to illustrate the STFT synthesis
algorithm. The results are shown in Figs. 2 and 3. In the first ex-
ample (shown in Fig. 2), the spectrogram of a frequency-mod-
ulated signal is used as the template. The STFT synthesis algo-
rithm successfully reconstructs the signal up to a phase term,
with only the magnitude of STFT is used. The next example
demonstrates the role of the window function as a parameter in
the synthesis process. Fig. 3(a) shows a template in the shape of
a square with the length of 3.13 seconds and the width of 3.13
radians. Fig. 3(b) shows the real part of the self-dual function
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Fig. 3. (a) shows the time-frequency template function. (b) shows the real part
of the self-dual function ���� �� generated by Step 1. (c) and (d) show the
optimal signal and the spectrogram generated with a short window; (e) and (f)
show the results with a longer window.

found in Step 1. Fig. 3(c) and (e) shows, respectively,
two norm-minimizing solutions obtained with a short and a long
Gaussian window, and shown in Fig. 3(d) and (f) are the re-
sulting spectrograms.

Since there are two duality relations (one is about self resem-
blance and the other scaling duality), i.e.,
and , that regulate the expression of STFT
on the time-frequency plane, a given template can be judged
whether is reasonable in the sense whether it is possible to exit a
legitimate STFT having magnitude reasonably close to the given
template. Indeed, since the self-duality is the necessary condi-
tion of an STFT with a symmetric window, Steps 1 and 2 can be
used as a reality check for a given time-frequency template. If
the magnitude of the generated self-dual function differs greatly
from the given template, it means that the template function is
ill chosen and there exists no signal that can possibly result in a
spectrogram that is close to the given template.

Moreover, the scaling duality also regulates the concentration
of signal energy, e.g., a signal cannot be concentrated along time
axis without spreading on the frequency axis. With these two
dual relations, sometimes it is straightforward to judge whether
a given template can possibly be a suitable choice. For example,

Fig. 4. Effect of ill-chosen templates. (a) shows a square template with the
length of 6.26 s and the width of 6.26 rad, and the magnitude of the self-dual
function generated in Step 1 is shown in (b).

consider a square plateau with the length and width of . By
self-duality, its two-dimensional IFT would have a magnitude
function in the shape of a square plateau with the length and
width of . At the same time, by the scaling duality, the length
and width of the significant part of the IFT should be around

. Hence, for choosing a reasonable template, one should
set , i.e., should be around ; otherwise, the
square plateau is not proper as a magnitude template for STFTs.
Fig. 4 illustrates the effect of an ill-chosen template that has a
plateau too large for a reasonable template. Fig. 4(a) shows such
a template function, and the magnitude of the self-dual function
generated in Step 1 is shown in Fig. 4(b). Since the template has
a plateau much larger than what can be generated by a legitimate
STFT, there is no self-dual function that can come close to the
template and inevitably “hole” and “cracks” will develop in the
magnitude of the self-dual function.

IV. APPLICATION II: HIGH-RESOLUTION TIME-FREQUENCY

DISTRIBUTIONS

The contrast between the self-dual relations regarding the
spectrogram and the WD [(14) and (19)] and the fact that the
WD holds a remarkable resolution capability despite the an-
noying cross terms [31] leads to an interesting question: Could
the self-duality be worked into the for-
mulation of designing high-resolution TFDs with suppressed
cross terms whose super-fine structure does not seem to con-
form to self-duality? In the following, such a plan is devised
to find a 2-dimensional function, call it , for a given
signal such that satisfies the high-resolution version of
self-duality and also optimizes a certain cri-
terion regarding the relevance between the signal and ,
and will be shown to be worthwhile considering as a
high-resolution TFD.

First the problem of formulating a proper criterion of rele-
vance is addressed. The Wigner distribution, despite its problem
of cross terms, has been widely regarded as a plausible time-fre-
quency representation with high-resolution capability for time-
varying signals. Therefore, a straightforward choice is to mini-
mize the norm between and , i.e., to min-
imize the term

(22)
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Intuitively, the approach can be understood as to create the func-
tion by harnessing two forces which compensate each
other. The minimization of the norm makes the resulting

assemble the Wigner distribution and hopefully keep
the high resolution capability; while self duality eliminates spu-
rious cross terms whose ultra-localized features on the time-fre-
quency plane cannot meet the requirement. Later an example
will be provided to illustrate this point. Take the formulation
with continuous signals as a model, we now proceed to define
the first version of the algorithm to construct high-resolution
TFD for discrete signals.

1) The High-Resolution TFD Problem (I): Find a 2-D func-
tion which satisfies the high-resolution version of self-
duality, i.e., , and whose squared magni-
tude should be as close to the Wigner distribution
as possible.

A procedure based on the ITF algorithm can also be used
to solve this problem. First, start with a discrete function

where is an
arbitrary random phase function. Then it goes to the following
iterative procedure.

2) The High-Resolution TFD Algorithm (I):
Step 1) Generate . Set

. Go to Step 2.
Step 2) Update with

. Set
. Go to Step 1 or exit if

the updating term is small.
More often than not the TFD design problem involves time

and frequency marginal functions, since they represent the in-
formation available on the time and frequency axes to which
most attention is often given. These kinds of considerations usu-
ally are formulated as equality constraints in the TFD designing
posed as a convex optimization problem [32].

Generalized marginal functions derived from the fractional
Fourier transform [33]–[35] have also been proposed for the
TFD design problem, for instance, in [36]. Here a novel ap-
proach towards considering multiple marginal functions is pro-
posed, and it is called the collective marginal error. In short, the
goal is to find a TFD that does not aim at satisfying a specific
set of marginal functions, but to minimize the collective error of
all generalized marginal functions. This criterion is particularly
suitable for exploratory signal analysis where no preference for
any marginal function is set a priori.

In [37], the authors proposed to use the Radon transform [38],
to facilitate the kernel design [39] procedure for TFDs to achieve
high resolution with suppressed cross terms. The Radon trans-
form is performed on the modulus of the ambiguity function
[6], [7] for observing of how the auto terms are distributed in
the ambiguity domain (the domain) and use that infor-
mation to design an adaptive kernel function. In this paper, the
Radon transform will be used on the time-frequency domain to
develop the idea of collective marginal error. In addition, the
Radon transform only serves as a conceptual tool and is not cal-
culated in the final algorithm.

Let denote the Radon transform on the axis obtained by
counterclockwise rotating the time axis with the angle and

be the signal’s generalized marginal on the rotated axis.

The collective marginal error of a power distribution
is defined as

(23)

Let , i.e., the difference between
the target power distribution and the Wigner distribution, then
the collective marginal error has an intuitive expression in the
ambiguity domain as follows:

(24)

where is the 2-dimensional Fourier transform
of . The mathematical derivation is presented in
Appendix II.

Notice that the collective marginal error emphasizes the low-
pass part on the ambiguity, i.e., - , domain. Usually it is the
case that the so-called cross terms occupy regions away from
the origin of the ambiguity domain. Accordingly, the collective
marginal error criterion is expected to be compatible with de-
signing TFDs aimed at suppressing cross terms. Furthermore,
notice that is also a measure of how close is a TFD to the
WD. Therefore, the resulting TFD is also expected to retain the
resolution capability of the WD.

3) The High-Resolution TFD Problem (II): Find a 2-D func-
tion which satisfies the self-duality
and whose squared magnitude minimizes the discrete
collective marginal error:

(25)

Notice that is made to be zero by forcing the total
energy of equal to that of .

The minimization of only involves the magnitude of
. Indeed is a convex function of , and it

is straightforward to find the -minimizing . Once
given a magnitude template, via ITF, a self-dual function whose
magnitude close to the template can be found. The overall
procedure contains iterations between two operations. The
operations result in the following heuristic algorithm.

4) The High-Resolution TFD Algorithm (II):
Step 1) Find the -minimizing mask function via

the steepest-gradient method.
Step 2) Generate . Set

. Go to Step 3.
Step 3) Update with

. Set
and normalize the

energy. Go back to Step 2 or exit if the updating
term is small.

Simulation results show that this procedure performs better
than the first algorithm and it does generate superb results
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Fig. 5. Several time-frequency distributions of a pair of crossing chirped Gabor
logons are shown for comparison. (a) and (b) are spectrograms generated with
a short and a long window respectively. The Wigner distribution is shown in (c)
and (d) shows the RID. Finally, (e) and (f) show the results generated with the
high-resolution TFD algorithm I and II, respectively.

for signals that are typically difficult to be handled by other
well-known time-frequency analysis tools. Fig. 5 illustrates
an example of two chirped Gabor logons crossing each other.
Fig. 5(a) and (b) shows the spectrograms generated with a
relatively short and a long Gaussian window respectively. Ei-
ther spectrogram fails to represent these chirped Gabor logons
in a visually appealing way for an intuitive interpretation.
The WD is shown in Fig. 5(c), and its signature features (the
so-called cross terms) are so obtrusive that they obscure the
superb resolution of the WD in representing the crossing chirp
signals. The Choi–Williams distribution [39], a member of
the reduced interference distribution (RID) class, is shown in
Fig. 5(d) for comparison. While generating the RID, careful
adjustment of the kernel function is made via minimizing the
Rényi information measure [40]–[42] in an attempt to achieve
a visual balance between showing details of the signal and
reducing interference terms. However, for chirped signals, the
end result is not very satisfying. Fig. 5(e) and (f) shows the
results of high-resolution TFD algorithm I and II respectively.
The TFDs approach the high resolution typically associated

Fig. 6. WD is shown in (a) while the high-resolution TFD in (b). Notice that
the spurious cross terms are substantially reduced in (b).

with the WD and substantially suppressing the annoying cross
terms, especially in the case of Fig. 5(f).

Finally, an example of two well-separated Gabor logons is
provided to show that fast-oscillating “cross terms” can be sub-
stantially reduced by the ITF which enforces self-duality. No-
tice that applying collective marginal error does reduce the cross
terms; yet a heavy suppression is only achieved after the ITF.

V. CONCLUSION

The sufficient conditions for the approximate self-duality of
discrete STFT to hold are presented. Self-duality is interpreted
in the context of resolution capabilities of time-frequency dis-
tributions. Furthermore, two signal processing applications , the
first be the STFT synthesis and the other the construction of
high-resolution TFD, are provided to demonstrate the power and
beauty of the concept.

APPENDIX I
NORM MINIMIZATION IN STFT SYNTHESIS

Let be the self-dual function found in Step 1 of the
STFT synthesis algorithm. We would like to find the discrete
signal such that its STFT with the given window
function minimized the norm

(26)

The definition of STFT in (1) can be viewed as an inner product:

(27)

where

(28)

representing the combination of windowing operation and
Fourier transform. The norm-minimizing thus comes
from the complex-valued least-squares solution of the equation

(29)

in which is an matrix stacked up with the row
vectors , and is an vector stacked up with
corresponding .
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(31)

(32)

Notice that not all row vectors of any and need
to be selected for the equation system. A system with much re-
duced size can be constructed with only corresponding
to region of interests. According to the sampling theory of dis-
crete STFT, as few as equations may be sufficient to deter-
mine a legitimate STFT; as the number of selected equations
goes small, however, solving the norm-minimization problem
encounters the problem of numerical accuracy. The best selec-
tion of and efficient numerical method to solve for op-
timal is beyond the scope of this paper.

APPENDIX II
THE COLLECTIVE MARGINAL ERROR

First consider the case of continuous signals. The term
in the collective marginal error can be written as

(30)

where denotes the Fourier transform and the convolution
in the variable . By invoking the projection theorem [38], the
expression becomes [see (31), shown at the top of the page],
and the collective marginal error becomes [see (32), shown
at the top of the page]. Notice that the final expression em-
phasizes the low-pass part of the error through the weighting
factor ; the suppression of high-pass components is
a common feature of the so-called reduced-interference distri-
bution [39].

As for discrete signals, the weighting term
with and being not simultaneously zero is used in evalu-
ating the collective marginal error in double summation, and

is made to be zero by forcing the total energy of
equal to that of .
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