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This work tries to derive ideas for thread allocation in CMP-based network processors per-
forming general applications by Continuous-Time Markov Chain modeling and Petri net
simulations. The concept of P–M ratio, where P and M indicate the computational and
memory access overhead when processing a packet, is introduced and the relation to
thread allocation is explored. Results indicate that the demand of threads in a processor
diminishes rapidly as P–M ratio increases to 0.066, and decreases slowly afterwards. Obser-
vations from a certain P–M ratio can be applied to various software–hardware combina-
tions having the same ratio.
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1. Introduction

The advantages of traditional multithreaded-multiprocessor architectures are three-fold: increasing the computing
power considerably by interconnecting a number of processing elements; sharing limited memory resource with others
and thus form a distributed shared-memory, and tolerating the memory access overhead by multithreading. However,
the memory subsystem tends to be the performance bottleneck because of the burden of long access delay. Fortunately, to-
day’s technology has made it possible to put several processors and memory banks on a single chip such that memory access
latency is significantly reduced. This kind of architectures is emerging as chip multiprocessor (CMP)-based multithreaded pro-
cessors [1–3].

Though the architecture is promising in its scalability and extensibility, especially in the form of some network processors
[4–6], the determination of architectural parameters such as numbers of processors, threads in a processor, and memory
banks, is not trivial given a specific application and a performance target. Furthermore, since one proper configuration today
may not be suitable tomorrow due to different evolving speeds of manufacturing technologies of the functional units, some
general guidelines may be demanded for efficient and appropriate parameter determination.

Analytical approaches have been favored in many researches for its capability of fast evaluation of the systems under
investigation [7]. Rafael et al. propose a model to predict the performance, in terms of processor efficiency, of a multithread-
ed architecture with varying number of threads [8]. The effect of multiprocessor can be mimicked by adjusting the memory
access latency which is assumed geometrically distributed. This model possesses good abstraction of the architecture; how-
ever, the interaction between the processing elements and the memory subsystem is disregarded.

This problem is remedied in [9] by including the memory subsystem in their model, in which the processing elements as
well as the memories are distributed and shared. Each thread is capable of a complete packet processing, and has a rate to
. All rights reserved.
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access local/remote memory modules during processing. Nevertheless, the model is not feasible since the queuing network
adopted is a closed one, and thus does not consider the packet arrivals and departures of networking applications.

A number of recent works concerning the modeling of CMP-based multithreaded network processors can be found in [10–
14]. Though detailed parameters are included and programming paradigms are analyzed, the discussion of thread allocation
is substantially ignored. Lakshmanamurthy et al. propose a methodology for analyzing the performance of the Intel IXP2400
[4]. But they focus only on the validation of the system performance; the processor and memory utilizations are not ad-
dressed and design guidelines are not comprehensively investigated.

In this work, we aim to unveil possible hints for future design of the architecture by (1) developing a preliminary analyt-
ical model and (2) building a Petri net simulation environment for model validation and design implications observation. Our
approach considers both memory and ready queuing effects that are often ignored in other works. Though the validated ana-
lytical model is found not scalable enough for deep observations, the simulation results demonstrate interesting design
implications. We propose a concept named P–M ratio, where P and M represent the computational and memory access over-
heads of an application, and estimate a projection between P–M ratios and the corresponding appropriate number of threads
in a processor. Workarounds to the memory bottleneck occurring at small P–M ratios are also discussed. Parsons and Sevcik
[15] and Zuberek et al. [16] address similar issues of computational and memory bounds; nonetheless, instruction-level sta-
tistics from real implementations are not provided as the input of their models.

Another feature in our approach is the consideration of thread allocation schemes. Thread allocation schemes decide how
threads in a processor are arranged for processing packets; adopting an improper scheme could result in unbalanced load
distribution among processors. We compare four possible allocation schemes and choose the most appropriate one as the
base assumption throughout this work. Factors influencing the selection include the amount of hardware resources, design
complexity, and flexibility in processing.

The rest of this article is organized as follows. Section 2 reviews related works and introduces the concept of thread allo-
cation schemes. Section 3 elaborates the analytical model. Section 4 details the construction of the Petri net simulation envi-
ronment, validates the analytical model, and presents some interesting simulation results. Conclusive remarks and future
work are given in Section 5.
2. Architectural assumption on the thread allocation scheme

Thread allocations should be carefully discussed before analyzing the architecture. Four thread allocation schemes are
possible to real implementations, in which at most one thread is active in a processor. The first is that a thread is responsible
for a complete packet processing. Nonetheless, this scheme may require intricate inter-thread communications in order to
maintain the packet ordering in a flow.

Fig. 1 presents another two schemes, the homogeneous and heterogeneous thread allocations. In the homogeneous allo-
cation, all threads in a processor belong to the same type, e.g. receiver, scheduler, transmitter, etc. Each thread in a processor
deals with only part of the packet processing and after that, it signals a certain thread in the succeeding processor for further
processing. A thread in a processor may have either fixed or dynamic task assignment, namely it may stick to a certain input
port or may support other ports whenever necessary. Notably, since all threads in a processor are of the same type, this
scheme has a relaxed requirement for instruction memory size. Nonetheless, the processing load is unlikely to be distributed
to processors evenly, and packet ordering is hard to maintain.

This situation can be avoided with the heterogeneous allocation, where traffic is assigned to processors by some load-bal-
ancing hardware and mechanisms [17]. In this scheme, threads in a processor belong to different types and are supposed to
take an equal charge in the packet processing. Though a large instruction memory is needed to support various tasks, it will
not be a problem because general header processing applications consist of less than 5K instructions [18], which has already
been supported in many commercial products such as the Intel IXP2400 [19] and Motorola C-5 [20]. Another edge of the
scheme is the minor synchronization overhead, since the inter-thread communication is done using global registers in
the processor. A comparison between these two schemes is shown in Table 1. For the reasons discussed above, we take
the heterogeneous allocation as the base assumption in our model throughout this work.
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Fig. 1. Homogeneous and heterogeneous thread allocations. At most one thread is active per processor.



Table 1
Comparison between the homogeneous and heterogeneous schemes.

Allocation strategy Threads in a processor Packet processing Instruction memory Load balancing Sync. overhead

Homogeneous Same type Partially Small Hard High
Heterogeneous Diff. types Completely Large Easy Low
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It is also possible to use the hybrid allocation scheme, in which processors of homogeneous or heterogeneous allocations
are incorporated. This scheme preserves the strengths of efficient instruction memory usage and high data locality of the
homogeneous allocation. However, the advantages of load balancing and packet ordering of the heterogeneous scheme
are canceled by the homogeneous scheme.
3. Analytical model

In this section we present an approximate analysis of the architecture using the Continuous-Time Markov Chain. We de-
fine the state space of the model, derive the transition rates, and solve the model. In addition to the heterogeneous allocation
determined in the previous section, we proceed with the assumption of blocking processing as shown in Fig. 2. The blocking
processing contrasts with the non-blocking processing in that no buffer exists between two adjacent threads. That is, a
thread cannot pass the processed packet to its successor if the successor is busy. Since normally the packet processing over-
head, including computation and memory access, is fairly distributed among threads, this simplified assumption has limited
influence on the correctness of the model while considerably reducing the state space.

3.1. State definition and state space determination

Our model considers I processors, each of which contains J threads, and aims to characterize the behaviors of processors,
threads and memory. To do that, we need to clarify possible activities, i.e. status transitions, of a thread. They are depicted in
Fig. 3 and elaborated below. When a packet arrives at an idle thread, the thread either enters the ready queue of the processor
waiting for execution, or enters the active status if no thread is currently active. Sometimes it issues a memory access to, for
instance, perform table lookups and manipulate packet descriptors. Once serviced it re-enters the ready queue, or goes di-
rectly back to execution if the ready queue is empty. Normally, the thread becomes idle again after the packet is processed
Fig. 2. The blocking and non-blocking packet processing schemes. A thread Tt accesses memory with rate rt during the processing.

Fig. 3. Status transitions of a thread.
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and passed to the succeeding thread. Nonetheless, it may get stuck and enter the finished status if the succeeding thread is
busy with a packet.

According to the above descriptions we can formally define a state of the system as
S ¼ ðs0;0; . . . ; s0;j; . . . ; si;jÞ; 0 6 i < I and 0 6 j < J;
where si;j 2 f0 : idle; 1 : active; 2 : mem; 3 : ready; 4 : finishedg represents the status of Ti;j, the jth thread in processor i. Fur-
thermore we define SðkÞ ¼ fsi;jjsi;j ¼ k; 0 6 i < I and 0 6 j < Jg, so that the number of executing processors and number of
accesses in the memory system equal to jSð1Þj and jSð2Þj, respectively. We also define hðiÞ ¼ fsi;jjsi;j ¼ 2; 0 6 j < Jg so that
the number of queued memory accesses of processor i is denoted by jhðiÞj. Besides, the RSS (Random Selection for Service),
rather than the FIFO, is assumed as the queuing discipline for both memory and ready queues. This assumption further
diminishes the state space by disregarding the ordering information in the queues, and is proven not to affect the correctness
of the analytical result in Section 4. Taking (I, J) = (2,2) as an example, the state space can be derived by excluding unreach-
able states exhibiting the following properties:

1. A processor has more than one active thread. For instance, (1,1,0,0).
2. At least one ready thread but no active thread, such as (2,3,0,0). One of the ready threads must enter the active status as

long as the previous active thread completes its processing.
3. si;j ¼ 4 while si;jþ1 ¼ 0; 0 6 j < J � 1. In this case Ti;j must pass the packet immediately to Ti;jþ1 rather than staying finished.
4. si;J�1 ¼ 4; similar to 3, Ti;J�1 must send out the packet directly.
3.2. Determination of the status transition diagram and state transition matrix

We will need the state transition matrix in order to solve the model. To derive the matrix, however, we have to deal with
the status transition rate diagram of threads since a state change occurs when one or more threads alter its status. By assum-
ing the packet arrival rate for processor i as ki, memory access rate and service time of the jth thread in that processor as ri;j

and 1=li;j, memory service rate as m, and number of queued memory accesses from the processor as h, we can have the sta-
tus transition rate diagram shown in Fig. 4. Notably the service rates, as well as the memory access rates, of threads having
same thread index in all processors are set the same because of the homogeneity among those threads. That is, li;j ¼ lj and
ri;j ¼ rj. Packet arrival rates for all processors, which are also homogeneous, are set to k.

Two additional transitions can be discovered out of Fig. 3 and shown in Fig. 4, the active to active and active to ready
transitions. The former occurs when an active thread switches out and is then chosen again to process the packet from
its finished predecessor; the latter is similar except that it is not chosen for execution but put into the ready queue.
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Notice that two dotted status transitions in Fig. 4 do not have a rate because of being follower transitions. A status tran-
sition of a thread is regarded as a follower if it does not initiate a status transition but simply follows a certain activator tran-
sition which is launched by another thread actively. For example, a finished thread blocked by its successor can transit to the
idle status (firing the follower transition) only after the successor finishes processing and passes down the packet (firing the
activator transition). Another example is that a ready thread will never enter the active status unless a thread switches out
from active.

The state transitions and transition matrix can therefore be determined according to the status transition diagram. Spe-
cifically, a state transition is considered valid if there exists only one activation event containing an activator transition and
possibly a number of corresponding follower transitions. Assuming (I, J) = (1,6), Fig. 5 shows six example state transitions,
among which four of them are finishing packet processing, one is issuing memory access (all five transitions are by T0;3)
and one is completing the memory access (by T0;0). The rate is l3

4 for four packet-finishing transitions since they are randomly
chosen among each other for firing. The matrix derivation is detailed in Appendix A.
3.3. Performance estimation for the analytical model

The performance metrics that we are interested in from the analytical model include the processor and memory efficien-
cies. We can compute these measures from the stationary probability vector, p, for the Markov chain [21]. The mean number
of executing processors, which we call processing power ðPpowerÞ, and the processor utilization, which we call processor effi-
ciency ðPefficiencyÞ, are then calculated from the vector as
Ppower ¼
X

S

ðpðSÞ � jSð1ÞjÞ; and ð1Þ

Pefficiency ¼ Ppower=I: ð2Þ
Memory utilization, which we call memory efficiency ðMefficiencyÞ, number of memory accesses in memory system ðMaccessesÞ,
and ready queue length of a processor ðRlengthÞ can be calculated as
Mefficiency ¼
X

S:9si;j¼2

pðSÞ; ð3Þ

Maccess ¼
X

S

pðSÞ � jSð2Þj; and ð4Þ

Rlength ¼
X

S

pðSÞ � jSð3Þj
 !,

I: ð5Þ
4. Simulation

Some tools have been available for simulating the CMP-based multithreaded architecture [22,23]. Though accurate, they
focus mainly on the low-level configuration such as cache structure and lack flexibility in thread allocation. In this section,
we describe the construction of the simulation environment based on timed, colored Petri nets (CPNs) [16,24]. It is used to
validate the analytical model discussed in the previous section as well as to observe possible hints for future design.
4.1. Design of the Petri net-based simulation environment

The key challenge in simulating memory queuing effect is that an outgoing memory access must go back to the thread
where it is issued. For that purpose, we adopt the event-driven CPN-Tools [25] as our simulator. The features it supports,
including the colored tokens, stochastic functions and hierarchical editing, provide efficiency in the construction of timed,
colored Petri nets corresponding to our model. To give a general idea of the design of the Petri net-based model, we use
an example whose configuration of (I, J) is (1,2) shown in Fig. 6. Simulations for larger I and J are constructed in a similar way.

The sample Petri net implements the processor and memory subsystems shown in Fig. 6(a) and (b), respectively, and
works as following. A token is added as the initial marking in places such as the P0_token (for processor 0), TK0_0 and
TK0_1 (for thread 0 and 1), Pkt_Gen0 (for packet generator), and Init (for memory). Among those tokens the one in Pkt_Gen0
is designed to be a colored token, which represents a packet and carries information about the processor index (i), thread
index (j), and the number of memory accesses (k) the thread is obligated to perform to process the packet. The tokens of
the others are simply non-colored ones.

In the processor subsystem, the inter-arrival time of packets is exponentially distributed with mean E using the function
expDelay, and the availability of a thread is dependent on whether a token is in both places of the processor and thread.
When a packet arrives at B0_0, namely a colored token is fired by the transition Delay0, and if there is a token in both P0_to-
ken and TK0_0, the packet is admitted by consuming those three tokens and firing the transition Tran0_0_0. After that, the
packet is processed for P/J computation cycles (active state) and M/J memory accesses are assigned to the thread by setting



Fig. 6. An example hierarchical CPN describing (a) a processor containing two threads, and (b) the memory subsystem.
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k = M/J, where P and M denote the numbers of computational instructions and memory accesses required to process a packet,
respectively. The CPI (cycle per instruction) is assumed to be 1.
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The memory access takes place by firing transitions Tran0_0_1 and S1 through P_out which is a common interface for all
processors. The packet then enters the queue (M_buf) of the memory subsystem and gets serviced if no other is present. After
a service time of L cycles (memory access state), the packet is passed back to T0_0 where it is issued according to the i and j in
the token. The same procedure executes repeatedly until k becomes 0. The packet is passed to B0_1, waiting to be admitted
by the next thread where operations similar to the above are carried out before leaving the system.

The simulation design differs from the analytical model in that the memory access rate and thread service rate are deter-
ministic. The memory queue not shown in the above example is implemented in the M_buf using utilities of the CPN-Tools.
4.2. Model validation by the simulation

The analytical model is validated by simulations. Parameters for the analytical model as well as the simulation are listed
in Table 2.

Our first observation is that, as presented in Table 3, the analytical results are mostly within 10% of the blocking simu-
lation results. The discrepancy comes from the different assumptions between the model and the simulation. The former
assumes non-deterministic behaviors in the instruction processing, memory access rate and memory service time, while
the latter uses deterministic ones in order to be realistic. In fact, the discrepancy can be reduced to be less than 3% if all activ-
ities are presumed to be non-deterministic in the simulation. Second, the deviation further extends to be within 5–25% when
comparing the blocking with the non-blocking simulation, meaning that the existence of buffer fairly influences the preci-
sion of the model. Due to the state-space explosion of the analytical model, we focus on the simulation, specifically the non-
blocking scheme which real implementations often adopt.
4.3. Simulation setup

Two networking applications, Simple Forwarding (SF) and DiffServ (DS), are involved in the simulations. The former re-
lates to the plain forwarding of packets from one interface of an edge route to another without any further intervention. The
latter employs the concept of differentiated service (DiffServ) in which packets are labeled with a priority-like DiffServ Code
Point (DSCP), by which packets are classified and selectively forwarded. The statistics of the computational and memory ac-
cess instructions for handling a packet are configured according to [4] that uses a CMP-based multithreaded network pro-
Table 2
Parameter setup in the model validation. P = 555 and M = 30; the system clock rate is denoted by C and set to 600 MHz.

Simulation Analysis

Packet arrival E = 7300 (cyc/pkt) k ¼ C � 1
E (pkt/s)

Instruction processing capability of a thread P/J (cyc/pkt) li ¼ C � J=P (pkt/s)
Memory access intensity of a thread M/J (acc/pkt) ri ¼ li � M

J (acc/s)

Memory service time L = 90 (cyc/acc) m ¼ C � 1
L (acc/s)

Table 3
Validation of the analytical model against the blocking and non-blocking cases.

(I, J) Processor utilization (%)

Ana. Blocking Non-Blocking % (ana-B) % (B-NB)

(a)
(1,4) 5.35 6.17 7.58 13.29 18.6
(2,2) 5.31 5.78 7.76 8.13 25.5
(2,3) 6.84 7.13 7.8 4.06 8.6
(2,4) 6.97 7.21 7.75 3.33 6.97
(3,2) 4.82 5.2 6.85 7.31 24.1
(4,2) 4.57 4.79 5.11 4.59 6.26

Memory utilization (%)

Ana. Blocking Non-Blocking % (ana-B) % (B-NB)

(b)
(1,4) 26.56 29.31 36.56 9.38 19.83
(2,2) 51.1 56.57 74.15 9.67 23.7
(2,3) 67.77 70.63 74.92 4.05 5.72
(2,4) 68.45 71.26 74.58 3.94 4.45
(3,2) 68.78 77.11 99.84 10.8 22.76
(4,2) 87.43 99.84 99.99 4.14 8.78



Table 4
Different kinds of P–M ratios: (a) smaller than 1, (b) close to 1, and (c) larger than 1. Memory access latencies are configured as those of the IXP1200 and
IXP2400.

App. Comp. overhead Mem. access overhead P–M ratio

SF 235 12� 90 ¼ 1080 (a) 235/1080 = 0.217
12� 20 ¼ 240 (b) 235/240 = 0.98 ffi 1
12� 5 ¼ 60 (c) 235/60 = 3.92

DS 555 30� 90 ¼ 2700 (a) 555/2700 = 0.205
30� 20 ¼ 600 (b) 555/600 = 0.925 ffi 1
30� 5 ¼ 150 (c) 555/150 = 3.7
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cessor. For simplicity, we assume that all memory accesses are of the same type, so the (P,M)s of the SF and DS are configured
as (235,12) and (555,30).

Our goal is to investigate the relationship among processors, threads and memory banks. To do this, a term named P–M
ratio is defined as
computational overhead
memory access overhead

¼ # of computational instructions
# of memory accesses� latency per access

;

and three sets of simulations are conducted: simulations with P–M ratio smaller than 1, close to 1, and larger than 1, respec-
tively. A large (small) P–M ratio means the processor overhead is relatively higher (lower) than the memory’s and is thought
to be an unbalanced processor–memory combination, whereas a P–M ratio close to 1 is considered sensible. In fact all net-
working applications can be categorized into these three aspects. Table 4 details the configurations of three different P–M
ratios for the SF and DS. The memory service times of SRAM are set to 20 and 90 cycles, respectively, referring to the Intel
IXP1200 and IXP2400 [26] network processors. A memory service time of 5 cycles is also incorporated to simulate the case in
which P–M ratio is larger than 1.
4.3.1. Effect of the RSS memory queuing discipline
Before proceeding with the issues mentioned above, we need to justify the use of the RSS queuing discipline in memory

and ready queues. As mentioned in Section 3, the RSS is assumed to be the queuing discipline for both memory and ready
queues without affecting the correctness of the result. For the blocking case, according to Fig. 7, it proves that the processor
utilizations using RSS are very close to the corresponding ones using FIFO. Similar observation is seen for the non-blocking
case. This is because of the power of averaging, namely memory accesses serviced early this time could be late next time. The
explanation applies to the memory queue and is believed to hold for the ready queue.
4.3.2. Unbalanced load among threads
Another concern is the resilience of the heterogeneous allocation against the unbalanced load distribution among threads.

We evaluate the impact by involving the unbalance ratios in which a ratio of n means the load of a thread is n times greater
than that of its predecessor. Take as an example a processor with three threads and an unbalance ratio of 1.5. In this case the
load of the second thread is 1.5 times of the first; likewise, the load of the third thread is 1.5 times of the second and thus
2.25 times of the first. Note that the load here is specific to only computational instructions. Fig. 8 depicts the number of
packets in the system for two ratios. From the figure it is clear that only a slight raise is seen when ratio = 1.5, meaning that
the system is resilient to the unbalanced load among threads. Nonetheless, for ratio = 2 the number of packets in system in-
creases notably as J increases.
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4.3.3. Simulations with three P–M ratios
4.3.3.1. Simulations with aP–M ratio smaller than 1. Fig. 9 shows the results of the simulations with P–M ratios smaller than 1
taken from Table 4. Apparently the memory access overhead is relatively so large that the processor efficiency is low and
only two threads are enough to utilize the memory. The SF and DS have similar processor and memory utilizations because
of similar P–M ratios.

4.3.3.2. Simulations with a P–M ratio close to 1. Fig. 10 shows the simulation results using a P–M ratio close to 1. SDRAM, an-
other popular memory architecture in addition to the SRAM with a service time of 40 cycles is involved for comparison. From
the figure we can see that for SRAM-SF and SRAM-DS the utilizations of both processor and memory are similar because the
ratios are close to 1. Moreover, the benefit of utilizing memory from adding threads, taking the SDRAM-SF as an example,
becomes less obvious as the memory utilization exceeds 90%. This observation also suggests that J = 5 is most appropriate
for applications with a P–M ratio close to 1, since the memory utilization of the SRAM-SF has reached 90% when J is 5
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and the benefit from adding extra thread is limited. Specifically, we can further assert that J < 5 is appropriate for the VPN
(Virtual Private Network) processing [27] while J > 5 for the Intrusion Detection and Prevention (IDP) [28] as well as the Anti-
Virus. This is because empirically the former has a P–M ratio larger than one (computational intensive due to cryptographic
operations), whereas the latter two have P–M ratios smaller than one (memory access intensive due to string-match
operations).

4.3.3.3. Simulations with aP–M ratio larger than 1. Fig. 11 shows the performance improvement by increasing the number of
processors. The memory service time is assumed to be 5 cycles so that memory overhead is relatively less than that of the
processor. The corresponding P–M ratios are 235

5�12 ffi 3:9 and 555
5�30 ffi 3:7, respectively, for SF and DS. The memory sustains the

access load until four processors are incorporated for both SF and DS. Interestingly, though memory is apparently not a bot-
tleneck when I = 1 and 2, the processor is not fully utilized as shown in Fig. 12. This suggests that the J, which could lead to
the low processor utilization, must be carefully estimated before using a fast memory module. Furthermore, the fifth pro-
cessor contributes limitedly to utilizing the memory while resulting in low processor efficiency, implying that J, rather than
I, should be increased to 4 when (I, J) = (4,3).

4.3.3.4. Discussions. The processing overhead of a packet is determined by the software, i.e. application, and hardware spec-
ifications, in which the former affects the number of computational and memory access operations while the latter deter-
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Fig. 13. Projection on the P–M ratios and the corresponding J’s. 10 and 13 are estimated for J when practically executing the Intrusion Detection and
Prevention application with the Aho–Corasick and Wu–Manber algorithms, respectively.
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mines the duration of each operation. Since the processing time is measured in cycles instead of normal time scales (ex: ls),
the metric of P–M ratio is independent of any single specification but their relative overhead; so are the discovered obser-
vations. Furthermore, examination on one P–M ratio can be applied to various software–hardware combinations. Therefore,
rather than by involving several applications to gain software/hardware-dependent observations which is frequently unfea-
sible due to significant implementation effort, this approach derives general ideas by classifying all combinations into three
aspects, namely smaller than one, close to one and larger than one.

With the investigation on these aspects and results from one of our previous studies [28], a projection can be estimated
between P–M ratios and their corresponding J, as shown in Fig. 13. It is interesting to see that the demand for J rapidly lessens
as the P–M ratio increases to 0.066, and slowly decreases afterwards. Notably the projection should be ladder-like in practice
since J is always an integer.

4.3.4. Solutions for the memory bottleneck
Memory usually becomes the bottleneck because of not only the nature of the application but the speed gap between

processor and memory. To tackle the problem, three common solutions are investigated and compared: enlarging the cache
size for better hit ratio; adopting a memory access efficient algorithm, and adding more memory banks. Fig. 14 compares the
effectiveness of the solutions for the DS when (I, J) = (5,5) and L = 20. The hit ratio is assumed to be 16.6% and 33.3%, respec-
tively, by reducing the number of memory accesses from 30 to 25 and 20. As for the memory access efficient algorithm, we
proceed by supposing a classification algorithm having memory accesses 50% less (from 10 to 5 accesses) while computational
instructions 100% more (from 160 to 320 instructions) than the original algorithm, i.e. (P,M) from (555,30) to (715,25). The
idea is that more computational instructions are usually traded for less memory accesses. We consider the effect of multiple
banks by employing two banks and looking into two situations in which memory accesses are (1) evenly distributed and (2)
distributed with ratios of 1:2 and 1:4. The cause of the second situation is the data structure and the nature of the application
or the algorithm. For example, in a pattern matching application using the classic Aho–Corasick algorithm [29], it is unlikely
to split the goto table evenly into memory banks, resulting in unbalanced memory access locality. Even if it is possible, the
problem remains since the matching frequently returns to the root state stored in a certain bank.

From the figure we can see that with a hit ratio of 16.6%, an improvement of 21% can be obtained. The improvement ad-
vances to 51.5%, 2.5 times of that of 16.6% ratio, for a hit ratio of 33.3%. The benefit from a memory access efficient algorithm
is 21.5%, similar to the one with 16.6% hit ratio, despite the increased number of computational instructions. The perfor-
mance gain is best when introducing another memory bank. However, it degrades from 81% to 15% as the distribution of
memory accesses becomes unbalanced.
5. Conclusions and future work

In this work, we try to derive possible design implications for CMP-based multithreaded network processors by develop-
ing a preliminary analytical model as well as simulations based on the timed, colored Petri net. To date, this work is the first
research that practically models I processors and J threads per processor based on the thread allocation discussions and
queuing effect considerations for memory and ready queues.

Although the analytical model is verified to have similar behavior to the non-blocking simulation which real implemen-
tations prefer, we focus on the latter in order to have precise observations. The concept of P–M ratio, which is intended to
cover general networking applications, is introduced and investigated; a projection is estimated between P–M ratios and the
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corresponding appropriate number of threads in a processor. It is found that the demand for J rapidly lessens as the P–M ratio
increases to 0.066, and slowly decreases afterwards. Observations from a certain P–M ratio can be applied to various software–
hardware combinations having the same ratio.

As to solving the memory bottleneck resulted from small P–M ratio, adding memory banks best improves the perfor-
mance, though the effectiveness depends heavily on the data structure of the application/algorithm.

Some issues are to be investigated in the future. First, the analytical model may be revised for large (I, J)’s by considering
the homogeneity among processors to avoid state-space explosion. Moreover, since the ordinary multi-bank memory suffers
from the uneven splitting of the data structure, a multi-port memory which services multiple accesses at once may be incor-
porated in our model. Finally, benefits from the flexibility of the hybrid scheme are to be explored.
Appendix A. Transition matrix derivation

A state transition of a non-zero rate corresponds to an activation event which contains an activator transition and pos-
sibly a number of follower transitions. To verify a state transition, we need to characterize the activation event, namely the
activator and follower transitions. Obviously, a transition initiated by a thread in the active(1) or the memory access(2) sta-
Table 5
Activation events initiated by Ti;j , and the corresponding examples ðI ¼ 1; J 2 f3;4gÞ and conditions. si;j and s0i;j denote the source and destination status of Ti;j ,
respectively. The status transition rates are shown in Fig. 4.

Activator trans. Example Condition(s)

act(1)) fin(4)

Ex: (3,1,2)) (1,4,2)

1. j < J � 1 and si;jþ1 2 f2;3;4g
2. if ð8j0 – j; si;j0 – 3Þ then si;j0 ¼ s0i;j0

else 9!j0 – j; si;j0 ¼ 3; s0i;j0 ¼ 1

act(1))mem(2) Ex: (3,1,2)) (1,2,2) The same with condition 2 in 1) 4

act(1)) idle(0) Ex: (3,1,0)) (1,0,3)
) (3,0,1)

1. if j < J � 1 then si;jþ1 ¼ 0; s0i;jþ1 2 f1;3g
2. if j > 0 then si;j�1 – 4; s0i;j�1 – 4
3. The same with condition 2 in 1) 4 except j0 R fj; jþ 1g

mem(2)) rdy(3)

Ex: (1,2,4)) (1,3,4)

1. 8j0 – j; si;j0 ¼ s0i;j0
2. There exists an active thread

mem(2)) act(1) Ex: (2,2,4)) (2,1,4) 8j0 – j; si;j0 ¼ s0i;j0

act(1)) act(1)

Ex: (4,4,1,0)) (0,3,1,3)

1. si;j�1 ¼ 4; si;jþ1 ¼ 0; s0i;jþ1 ¼ 3
2. while n > 0 {# n = j � 1

s0i;n ¼ f ðsi;n�1Þ, where
f ð4Þ ¼ 3; f ð0Þ ¼ f ð2Þ ¼ f ð3Þ ¼ 0
if s0i;n ¼ 0 then break
else n ¼ n� 1}

3. for j’s other than the above, si;j0 ¼ s0i;j0

act(1)) rdy(3)

Ex: (4,4,1,0)) (0,1,3,3)

1. j > 0; si;j�1 ¼ 4
2. if j ¼ 1 then s0i;j�1 ¼ 0
3. if j < J � 1 then si;jþ1 ¼ 0; s0i;jþ1 2 f1;3g
4. The same with 1) 1 except f ð4Þ 2 f1;3g.
5. for j’s other than above, si;j0 ¼ s0i;j0

idle(0)) act(1) Ex: (0,2,4)) (1,2,4) j ¼ 0; 8j0 – 0; si;j0 ¼ s0i;j0

idle(0)) rdy(3) Ex: (0,1,4)) (3,1,4) j ¼ 0; 8j0 – 0; si;j0 ¼ s0i;j0
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tus is always an activator transition, whereas a transition performed by a thread in the idle(0), ready(3) or finished(4) status
is a follower transition with two exceptions. The exceptions occur when the thread in transitioning is first in a processor, in
which (1) idle-to-active or (2) idle-to-ready activator transitions are possible because of the packet arrival.

With the observations above, all activation events can be identified as summarized in Table 5. An activation event is valid
if the conditions corresponding to the activator transition are satisfied. Take the first case in the table for example, to rec-
ognize an activation event initiated by an active-to-finished activator transition, namely a certain thread Ti;j finishes a packet
but gets blocked by its successor, two conditions need to be met. First, j < J � 1 and si;jþ1 2 f2;3;4g, since if j equals J � 1 or
si;jþ1 ¼ 0, the thread would have been able to send out the packet rather than been blocked. Second, if threads other than Ti;j

in processor i are all not in the ready status, their statuses should remain unchanged since no ready-to-active transition will
occur; otherwise one thread shall be chosen for execution. For further exemplification, when (I, J) = (1,3), the activation
events (2,2,1)) (2,2,4), (2,1,0)) (2,4,0), which both violate the first condition, and (3,1,2)) (3,4,2) which violates the
second condition and should transit to (1,4,2) are all invalid.
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