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摘要 

 

 

本論文由三部分構成(1) 兩個耦合渾沌系統不可能完全同步定理及一個渾

沌同步的充份必要定理，兩個耦合系統不可能廣義同步定理。 (2) 藉由變強度

線性耦合及級數形式之 Lyapunov 函數導數相同系統之渾沌同步及不相同系統之

適應渾沌同步。 (3) 應用部分區域穩定性理論之廣義渾沌同步及渾沌控制。 
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Student：Pu-Chien Tsen               Advisor：Zheng-Ming Ge 

 
Department of Mechanical Engineering 

National Chiao Tung University 
 
 
 
 

Abstract 
 
 

This thesis consists of three parts：(1) two theorems of unsynchronizability and 

synchronization for coupled chaotic systems and two theorems of generalized 

unsynchronization for coupled chaotic systems. (2) chaos synchronization by variable 

strength linear coupling and Lyapunov function derivative in series form and adaptive 

chaos synchronization by variable strength linear coupling. (3) chaos generalized 

synchronization and chaos control by partial region stability theory. 
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Chapter 1 
Introduction 

In recent years, synchronization in chaotic dynamic system is a very interesting 

problem and has been widely studied [1-8]. Synchronization means that the state 

variables of a response system approach eventually to that of a drive system. There 

are many control techniques to synchronize chaotic systems, such as linear error 

feedback control, adaptive control, active control [9-19]. Besides, generalized 

synchronization also has been investigated in various fields. Generalized 

synchronization means that there is a functional relation between the states of driving 

system and response system. 

Recently, the synchronization criteria of unidirectional coupled chaotic systems 

by partial stability theory are presented [20]. In Chapter 2 of this thesis, we propose 

two theorems which give the criteria of unsynchronizability for two different chaotic 

dynamic systems. Chen system, Rössler system and Duffing system with 

corresponding new chaotic systems proposed are presented as simulated examples for 

these two theorems [21-22]. 

In Chapter 3, we propose two theorems which give the criteria of generalized 

unsynchronization for two different chaotic dynamic systems with whatever large 

strength of linear coupling. Chen system and Rössler system with corresponding new 

chaotic systems proposed are presented as simulated examples for these two theorem . 

In Chapter 4, a new general strategy to achieve chaos synchronization by 

variable strength linear coupling without another active control is proposed, in which 

Lyapunov function derivative in series form is first used. This method can give either 

local synchronization which is usually good enough or global synchronization which 
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is usually an unnecessary high demand [23-25]. Lorenz system, Duffing system, 

Rössler system and Hyper-Rössler system are presented as simulated examples. 

There are many control techniques to synchronize chaotic systems, but most of 

them are based on the exact knowledge of the system structure and parameters. In 

practice, some or all of the system parameters are uncertain, adaptive control method 

in used. In Chapter 5, we propose a general strategy to achieve adaptive chaos 

synchronization by variable strength linear coupling solely without using another 

active control which is usually rather complex. Furthermore, Lyapunov function 

derivative in series form is first used, which is easier to be obtained than the 

traditional negative sum of the square of error variables. Lorenz system, Duffing 

system and Rössler system are presented as simulation examples. 

In Chapter 6, a new chaos generalized synchronization strategy by partial region 

stability theory is proposed [26-27]. By using the theory of stability on partial region 

the Lyapunov function is a simple linear homogeneous function of states and the 

controllers are simpler and have less simulation error because they are in lower order 

than that of traditional controllers where the stability of solutions on the whole 

neighborhood region of the origin is demanded. Lorenz system and Rössler system 

are used as simulated examples. 

In Chapter 7, a new scheme to achieve chaos control by partial region stability 

theory is proposed [28]. By using the theory of stability on partial region the 

Lyapunov function is a simple linear homogeneous function of states and the 

controllers are simpler and have less simulation error. 

In Chapter 8, conclusions of this thesis are given. 
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Chapter 2 

The Theorems of Unsynchronizability and Synchronization 

for Coupled Chaotic Systems 

2.1 Preliminary 

Synchronization in chaotic dynamic system is a very interesting problem and has 

been widely studied in these years. Synchronization means that the state variables of a 

response system approach eventually to that of a drive system. There are many control 

techniques to synchronize chaotic systems, such as linear error feedback control, 

adaptive control, active control. Recently, the synchronization criteria of 

unidirectional coupled chaotic systems by partial stability theory are presented. In this 

Chapter, we propose two theorems which give the criteria of unsynchronizability for 

two different chaotic dynamic systems. Chen system and a new chaotic system which 

we proposed are presented as simulated examples for the first theorem. Rössler 

system and Duffing system with two corresponding new chaotic systems proposed are 

presented as simulated examples for the second theorem. 

 

2.2 Two Theorems of Unsynchronizability 

Consider the following nonautomonous systems 

1 1( , )t=x f x  (2.1) 

where 1
n∈x R , 1: n n

+Ω ⊂ × →f R R R . Eq. (2.1) is considered as a master system. A 

slave system is given by 

2 2( , )t=x g x  (2.2) 

where 2
n∈x R , 2: n n

+Ω ⊂ × →g R R R . Both f and g satisfy Lipschitz condition 
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and ( , ) ( , )t t= =f 0 g 0 0 . 1Ω , 2Ω  are domains containing the origin. Assume that 

the solutions of Eqs. (2.1) and (2.2) are bounded then they must exist for infinite time. 

That is, for given 0 10 20 1 2( , , )t ∈Ω Ωx x ∩  the solutions 1 0 10 20( , , , )t tx x x , 

2 0 10 20( , , , )t tx x x  of Eqs. (2.1) and (2.2) exist for 0tt ≥ . If , ,t t=f( x) g( x) , system 

(2.1) and (2.2) are two identical systems. When , ,t t≠f( x) g( x) , they are two 

different systems. 

Now we consider the following unidirectional nonautonomous coupled system 

1 1

2 2 1 2

( , )
( , ) ( , , )
t
t t

=
= +

x f x
x g x U x x

 (2.3) 

where 1 2( , , )tU x x  is a coupled term. In order to discuss the synchronization of 1x  

and 2x , define 12 xxe −=  as the state error. Error equation can be written as 

1 1 1 1( , ) ( , ) ( , , )t t t= + − + +e g e x f x U x e x  (2.4) 

Now the first theorem will be given for a special case of Eqs. (2.3). Consider 

unidirectional coupled nonautonomous systems as 

1 1

2 2 1 2

( , )
( , ) ( )
t
t

=
= + −

x f x
x g x Γ x x     (2.5) 

where f  and g  satisfy Lipschitz condition, and the Lipschitz constant of g  is L . 

n nM ×∈Γ  is a constant diagonal matrix with positive entries, represents the strength 

of the linear coupling term 1 2−x x . Since 12 xxe −= , the error dynamic equation 

can be obtained as 

1 1( , ( )) ( , ( ))t t t t= + − −e g e x f x Γe   (2.6) 

which is a nonautonomous system of differential equations for state e  and has a null 

solution 10, 0= =e x . Now we give a definition of unsynchronizability: 

Definition If no positive constant C can be found such that 0→e  as t →∞  for all 

0( )t C<e , systems (2.5) are unsynchronizable. 

Theorem 2.1  Two different dynamic systems in Eq. (2.5) are unsynchronizable for 
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however large coupling strength Γ  with positive entries, if 1 1( , ) ( , )i if t g t≤x x  

( 1, , )i n= …  in 1 2Ω Ω∩ , and 1 1( , ) ( , ) 0t t− >f x g x  except at origin, for any 

solution 1( )tx . 

Proof.  Choose a Lyapunov function 1 2( ) nV e e e=e  which is positive in quadrant 

1 20, 0, , 0ne e e> > > , then V  along any state trajectory of system (2.6) [25] 

becomes: 

2 3 1 1 3 2 1 2 1

2 3 1 1 1 1 1 1 1 3 2 1 2 1 2 2

1 2 1 1 1

2 3 1 1 1 1 1 1 1 1 1 1

[ ( , ) ( , ) ] [ ( , ) ( , ) ]
[ ( , ) ( , ) ]

[ ( , ) ( , ) ( , ) ( , ) ]

n n n n

n n

n n n n n

n

V e e e e e e e e e e e e
e e e g t f t e e e e g t f t e

e e e g t f t e
e e e g t g t g t f t e e

−

−

= + + +
= + − − Γ + + − − Γ

+ + − − Γ
= + − + − − Γ + +

e x x e x x
e x x

e x x x x 1 2 1

1 1 1 1

[
( , ) ( , ) ( , ) ( , ) ]

n

n n n n n n

e e
g t g t g t f t e

−

+ − + − − Γe x x x x

 

When 1 20, 0, , 0ne e e> > > , we have 

2 3 1 1 1 1 1 1 1 1 1 1 1 2 1

1 1 1 1

2 3 1 1 1 1 1 1

[ ( , ) ( , ) ( , ) ( , ) ] [

( , ) ( , ) ( , ) ( , ) ]

[ ( , ) ( , ) ]

n n

n n n n n n

n

V e e e g t g t g t f t e e e e

g t g t g t f t e

e e e L g t f t e

−≤ + − + − − Γ + +

+ − + − − Γ

≤ + − − Γ +

e x x x x

e x x x x

e x x

 

 (2.7) 

where 1 1 1 1( , ) ( , )g t g t L+ − ≤e x x e  follows the Lipschitz condition. When 1e , 

the terms of lower degree of error components 2 3 1 1 1 1[ ( , ) ( , )]ne e e g t f t−x x , 

1 3 2 1 2 1[ ( , ) ( , )]ne e e g t f t−x x , can be neglected when the sign of V  is considered, 

then 

2 3 1 1 1 3 2 2[ ] [ ]n nV e e e L e e e e L e≤ − Γ + − Γ +e e  (2.8) 

For sufficient large iΓ , V  can be negative in the quadrant 1 0e > , 2 0e > , , 

0ne > . So the state point tends to decrease ( )te   with time when 0e  is 

sufficiently large. When 1e , the proof is as follows. Now when 
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1 20, 0, , 0ne e e> > > , V  is expressed as 

2 3 1 1 1 1 1 1 1 1 1 1

2 3 1 1 1 1 1 1

[ ( , ) ( , ) ( , ) ( , ) ]

[ ( , ) ( , ) ]
n

n

V e e e g t g t g t f t e

e e e L g t f t e

≥ − + − + − − Γ +

≥ − + − − Γ +

e x x x x

e x x
 (2.9) 

When 1e , the terms of higher degree 2 3 1 1[ ]ne e e L e− − Γe , can be neglected 

when the sign of V  is considered, then 

2 3 1 1 1 1 1 3 2 1 2 1[ ( , ) ( , )] [ ( , ) ( , )]n nV e e e g t f t e e e g t f t≥ − + − +x x x x  (2.10) 

By the condition 1 1( , ) ( , ) 0t t− >f x g x , 1 1( , ) ( , )i if t g t=x x ( 1, , )i n=  do not occur 

simultaneously except at the origin 1 =x 0 . Therefore the right-hand side of above 

inequality is positive, i.e. V  is positive in region D of Fig. 2.1, which is the quadrant 

1 0e > , 2 0e > , , 0ne >  of the neighborhood of the origin. 

Choose 0r >  such that for the ball { }n
rB R r= ∈ ≤e e , we have  

{ ( ) 0}rD B V= ∈ >e e  (2.11) 

of which the boundary is the surface ( ) 0V =e  and the sphere r=e . Since 

( ) 0V =0 , the origin lies on the boundary of D inside rB . The point 0e  is in the 

interior of D and 0( ) 0V b= >e . Now we prove that the trajectory ( )te  started at 

0(0) =e e  must leave the set D, i.e. the trajectory must leave the neighborhood of 

origin, e  cannot approach zero. To see this point, notice that as long as ( )te  is 

inside D, ( ( ))V t b≥e  since ( ) 0V >e  in D. Let 

min{ ( ) ( ) }V D and V bβ = ∈ ≥e e e  (2.12) 

which exists since the continuous function ( )V e  has a minimum over the compact 

set { ( ) }D and V b∈ ≥e e { , ( ) }rB and V b= ∈ ≥e e  [29]. Then, 0β >  and 

0 0 0
( ( )) ( ) ( ( ))

t t
V t V V s ds b ds b tβ β= + ≥ + = +∫ ∫e e e  (2.13) 

This inequality shows that ( )te  cannot stay forever in D because ( )V e  is bounded 
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on D. Now, ( )te  cannot leave D through the surface ( ) 0V =e  since ( ( ))V t b≥e . 

Hence, it must leave D through the sphere r=e , i.e. it must leave the neighborhood 

of the origin, e  can never approach zero. Two different dynamic systems in Eq.(2.5) 

are unsynchronizable for however large Γ . 

Theorem 2.2  Two different dynamic systems in Eq. (2.5) is unsynchronizable for 

however large coupling strength Γ , if 1 1( , ) ( , )i if t g t≥x x ( 1, , )i n= …  in 1 2Ω Ω∩ , 

and 1 1( , ) ( , ) 0f t g t− >x x  except at origin, for any solution 1( )tx . 

Proof.  Choose a Lyapunov function 1 2( ) nV e e e=e , then V  along any state 

trajectory of system (2.6) becomes: 

Case 1. When n  is odd, ( )V e  is negative in quadrant 1 20, 0, 0ne e e< < < . 

2 3 1 1 3 2 1 2 1

2 3 1 1 1 1 1 1 1 1 1 1 1 2 1

1 1 1 1

[ ( , ) ( , ) ( , ) ( , ) ] [
( , ) ( , ) ( , ) ( , ) ]

n n n n

n n

n n n n n n

V e e e e e e e e e e e e
e e e g t g t g t f t e e e e
g t g t g t f t e

−

−

= + + +
= + − + − − Γ + +

+ − + − − Γ
e x x x x

e x x x x
 

When 1 20, 0, 0ne e e< < < , we have 

2 3 1 1 1 1 1 1 1 1 1 1 1 2 1

1 1 1 1

2 3 1 1 1 1 1 1

[ ( , ) ( , ) ( , ) ( , ) ] [

( , ) ( , ) ( , ) ( , ) ]

[ ( , ) ( , ) ]

n n

n n n n n n

n

V e e e g t g t g t f t e e e e

g t g t g t f t e

e e e L g t f t e

−≥ − + − + − − Γ + +

− + − + − − Γ

≥ − + − − Γ +

e x x x x

e x x x x

e x x

 

 (2.14) 

where 1 1 1 1( , ) ( , )g t g t L+ − ≤e x x e  follows the Lipschitz condition. When 1e , 

the terms of lower degree of error components 2 3 1 1 1 1[ ( , ) ( , )]ne e e g t f t−x x , 

1 3 2 1 2 1[ ( , ) ( , )]ne e e g t f t−x x , can be neglected when the sign of V  is considered, 

then 

2 3 1 1 1 3 2 2

2 3 1 1 1 3 2 2

[ ] [ ]

[ ] [ ]
n n

n n

V e e e L e e e e L e

e e e L e e e e L e

≥ − − Γ + − − Γ +

= − + Γ − + Γ +

e e

e e
 (2.15) 
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For sufficient large iΓ , V  can be positive in the quadrant 1 0e < , 2 0e < , , 

0ne < . So the state point tends to decrease ( )te  with time when 0e  is 

sufficiently large. When 1e , the proof is as follows. Now when 1 0,e <  2 0,e <  

0ne < , V  is expressed as  

2 3 1 1 1 1 1 1 1 1 1 1

2 3 1 1 1 1 1 1

[ ( , ) ( , ) ( , ) ( , ) ]

[ ( , ) ( , ) ]
n

n

V e e e g t g t g t f t e

e e e L g t f t e

≤ + − + − − Γ +

≤ + − − Γ +

e x x x x

e x x
 (2.16) 

When 1e , the terms of higher degree 2 3 1 1[ ]ne e e L e− Γe , can be neglected 

when the sign of V  is considered, then 

2 3 1 1 1 1 1 3 2 1 2 1[ ( , ) ( , )] [ ( , ) ( , )]n nV e e e g t f t e e e g t f t≤ − + − +x x x x  (2.17) 

By the condition 1 1( , ) ( , ) 0t t− >f x g x , 1 1( , ) ( , )i if t g t=x x ( 1, , )i n=  do not occur 

simultaneously except at 1 =x 0 . Therefore the right-hand side of above inequality is 

negative, i.e. V  is negative in region D of Fig. 2.2, which is the quadrant 1 0e < , 

2 0e < , , 0ne <  of the neighborhood of the origin. 

Choose 0r >  such that for the ball { }n
rB R r= ∈ ≤e e , we have  

{ ( ) 0}rD B V= ∈ <e e  (2.18) 

By the similar reasoning as that in the latter part of the proof for Theorem1, we can 

prove that the state trajectory started from D must leave the neighborhood of the 

origin, e  can never approach zero. Two different dynamic systems in Eq. (2.5) are 

unsynchronizable for however large Γ . 

 

Case 2. When n  is even, ( )V e  is positive in quadrant 1 20, 0, 0ne e e< < < . 
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2 3 1 1 3 2 1 2 1

2 3 1 1 1 1 1 1 1 1 1 1 1 2 1

1 1 1 1

[ ( , ) ( , ) ( , ) ( , ) ] [
( , ) ( , ) ( , ) ( , ) ]

n n n n

n n

n n n n n n

V e e e e e e e e e e e e
e e e g t g t g t f t e e e e
g t g t g t f t e

−

−

= + + +
= + − + − − Γ + +

+ − + − − Γ
e x x x x

e x x x x
 

When 1 20, 0, 0ne e e< < < , we have 

2 3 1 1 1 1 1 1 1 1 1 1 1 2 1

1 1 1 1

2 3 1 1 1 1 1 1

[ ( , ) ( , ) ( , ) ( , ) ] [

( , ) ( , ) ( , ) ( , ) ]

[ ( , ) ( , ) ]

n n

n n n n n n

n

V e e e g t g t g t f t e e e e

g t g t g t f t e

e e e L g t f t e

−≤ − + − + − − Γ + +

− + − + − − Γ

≤ − + − − Γ +

e x x x x

e x x x x

e x x

 

 (2.21) 

where 1 1 1 1( , ) ( , )g t g t L+ − ≤e x x e  follows the Lipschitz condition. When 1e , 

the terms of lower degree of error components 2 3 1 1 1 1[ ( , ) ( , )]ne e e g t f t−x x , 

1 3 2 1 2 1[ ( , ) ( , )]ne e e g t f t−x x , can be neglected when the sign of V  is considered, 

then 

2 3 1 1 1 3 2 2

2 3 1 1 1 3 2 2

[ ] [ ]

[ ] [ ]
n n

n n

V e e e L e e e e L e

e e e L e e e e L e

≤ − − Γ + − − Γ +

= − + Γ − + Γ +

e e

e e
 (2.22) 

For sufficient large iΓ , V  can be negative in the quadrant 1 0e < , 2 0e < , , 

0ne < . So the state point tends to decrease ( )te  with time when 0e  is 

sufficiently large. When 1e , the proof is as follows. Now when 1 0e < , 2 0e < , 

, 0ne < , V  is expressed as  

2 3 1 1 1 1 1 1 1 1 1 1

2 3 1 1 1 1 1 1

[ ( , ) ( , ) ( , ) ( , ) ]

[ ( , ) ( , ) ]
n

n

V e e e g t g t g t f t e

e e e L g t f t e

≥ + − + − − Γ +

≥ + − − Γ +

e x x x x

e x x
 (2.23) 

When 1e , the terms of higher degree 2 3 1 1[ ]ne e e L e− Γe , can be neglected 

when the sign of V  is considered, then 

2 3 1 1 1 1 1 3 2 1 2 1[ ( , ) ( , )] [ ( , ) ( , )]n nV e e e g t f t e e e g t f t≥ − + − +x x x x  (2.24) 
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By the condition 1 1( , ) ( , ) 0t t− >f x g x , 1 1( , ) ( , )i if t g t=x x ( 1, , )i n=  do not occur 

simultaneously except at 1 =x 0 . Therefore the right hand side of above inequality is 

positive, i.e. V  is positive in region D of Fig. 2.2 which is the quadrant 1 0e < , 

2 0e < , , 0ne <  of the neighborhood of the origin. 

By the same reasoning as that in the latter part of the proof for Theorem 1, we 

can prove that the state trajectory started from the neighborhood of the origin in the 

quadrant 1 0e < , 2 0e < , , 0ne <  must leave the neighborhood and can never 

approach zero. Two different dynamic systems in Eq. (2.5) are unsynchronizable for 

however large iΓ . 

It was proved that for sufficient large Γ , , ,t t=f( x) g( x)  is the sufficient 

condition for synchronization of systems (2.5) [20]. By the above two theorems, 

, ,t t=f( x) g( x)  is enhanced as the necessary and sufficient condition for 

synchronization of systems (2.5): 

Theorem 2.3 If in 1 2Ω Ω∩ , ( , ) ( , ) 0f t g t− >x x  except at 1 =x 0 , we have 

( , ) ( , )i if t g t≥x x , ( , ) ( , )i if t g t≤x x  or ( , ) ( , )i if t g t=x x  ( 1, , )i n= … . With sufficient 

large Γ , the necessary and sufficient condition for synchronization of systems (2.5) 

is ( , ) ( , )i if t g t=x x , ( 1, , )i n= …  in 1 2Ω = Ω = Ω . 

 

2.3 Simulated Examples  

An example for the first theorem is Chen system with a new chaotic system 

proposed. Consider the following unidirectional coupled systems with linear coupling 

in the form of Eq. (2.5): 

( )
( )

x a y x
y c a x xz cy
z xy bz

= −
= − − +
= −

 (2.25a) 
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2

2

2

( ) sin ( )

( ) ( )
( )

x a y x x x x

y c a x xz cy x y y
z xy bz x z z

γ

γ

γ

= − + + −

= − − + + + −

= − + + −

 (2.25b) 

where 300γ =  which is sufficiently large. Eq. (2.25a) is Chen system and Eq. (2.25b) 

is a new chaotic system which we proposed. The chaotic attractor and Lyapunov 

exponent diagrams for system (2.25a) and (2.25b) without coupling term are shown in 

Fig. 2.3, Fig. 2.4, Fig. 2.5 and Fig. 2.6. For initial states (0.5,1,5), (30,20,18) and 

system parameters 35, 3a b= =  and 28c = , three state errors versus time are 

shown in Fig. 2.7 and Fig. 2.8.  Fig. 2.7 shows that state errors decreases with time 

when state error is large, but one can clearly find in Fig. 2.8 that the errors cannot 

approach zero as time evolves. 

An example for the second theorem is Rössler system with a new chaotic system 

proposed. Consider the following unidirectional coupled systems with linear coupling 

in the form of Eq. (2.5): 

( )

x y z
y x ay
z b z x c

= − −
= +
= + −

 (2.26a) 

2

2

2

sin ( )

sin ( )
( ) sin ( )

x y z y x x

y x ay y y y
z b z x c z z z

γ

γ

γ

= − − − + −

= + − + −

= + − − + −

 (2.26b) 

where 300γ = . The Lyapunov exponent diagrams for system (2.26a) and (2.26b) 

without coupling term are shown in Fig. 2.9 and Fig. 2.10. For initial states (20,10,25), 

(2.5,2,2.5) and system parameter 0.2, 0.2a b= =  and 5.7c = , three state errors 

versus time are shown in Fig. 2.11.  Fig. 2.11 shows that state errors decreases with 

time when state error is large, but one can clearly find that the errors cannot approach 

zero as time evolves. 

Finally, second example for the second theorem is Duffing system with a new 
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chaotic system proposed for 2n = . Consider the following unidirectional coupled 

systems with linear coupling in the form of Eq. (2.5): 

1 2
3

2 2 1 1 cos

x x

x x x x a tδ α β ω

=

= − + − +
 (2.27a) 

1 2 1 1

3 2
2 2 1 1 2 2 2

( )

cos 0.05 ( )

x x x x

x x x x a t x x x

γ

δ α β ω γ

= + −

= − + − + − + −
 (2.27b) 

where 30γ = . The chaotic attractor and Lyapunov exponent diagrams for system 

(2.27a) and (2.27b) without coupling term are shown in Fig. 2.12 and Fig. 2.13. For 

initial states (2,2), (0.1,0) and system parameters 0.15,δ =  1α β ω= = =  and 

3a = , three state errors versus time are shown in Fig. 2.14.  Fig. 2.14 shows that 

state errors decreases with time when state error is large, but one can clearly find that 

the errors cannot approach zero as time evolves. 

 

2.4 Summary 

In this Chapter two theorems which give the criteria of unsynchronizability for 

two different chaotic dynamic systems are presented. A sufficient criterion for 

synchronization is enhanced to necessary and sufficient one. Three simulated 

examples are given to illustrate the theory. 

 

 

 

 

 

 

 



13 

 

D

o r

 
   Fig. 2.1 D region for n=2.  
 
 
 
 
 
 
 
 
 
 
 

o
r

D

 
Fig. 2.2 D region for n=2. 
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Fig. 2.3  Chaotic attractor for Chen system (2.25a), with 35, 3a b= =  and 28c = , 

initial condition (0.5,1,5). 
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Fig. 2.4  Lyapunov exponents for Chen system (2.25a), with 3b =  and 28c = , 

initial condition (0.5,1,5). 
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Fig. 2.5  Chaotic attractor for chaotic system (2.25b) , with 35, 3a b= =  and 

28c = , initial condition (30,20,18). 
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Fig. 2.6  Lyapunov exponents for chaotic system (2.25b) , with 3b =  and 28c = , 

initial condition (30,20,18). 
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Fig. 2.7  State errors versus time for unidirectional coupled systems (2.25) , with 

35,a =  3b =  and 28c = , initial conditions (0.5,1,5), (30,20,18). 
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Fig. 2.8  State errors versus time for unidirectional coupled systems (2.25) , with 

35, 3a b= =  and 28c = , initial conditions (0.5,1,5), (30,20,18). 
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Fig. 2.9  Lyapunov exponents for Rössler system (2.26a), with 0.2b =  and 5.7c = , 

initial condition (20,10,25). 
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Fig. 2.10  Lyapunov exponent for chaotic system (2.26b) , with 0.2b =  and 

5.7c = , initial condition (2.5,2,2.5). 
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Fig. 2.11  State errors versus time for unidirectional coupled systems (2.26) , with 

0.2, 0.2a b= =  and 5.7c = , initial conditions (20,10,25), (2.5,2,2.5). 
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Fig. 2.12  Lyapunov exponents for Duffing system, with 1α β ω= = =  and 

0.15,δ = initial condition (2,2). 
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Fig. 2.13  Lyapunov exponents for chaotic system (2.27b) , with 1α β ω= = =  and 

0.15,δ = initial condition (0.1,0). 
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Fig. 2.14  State errors versus time for unidirectional coupled systems (2.27) , with 

0.15,δ = 1α β ω= = =  and 3a = , initial conditions (2,2), (0.1,0). 
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Chapter 3 

Two Theorems of Generalized Unsynchronization for 

Coupled Chaotic Systems 

3.1 Preliminary 

In this Chapter, we propose two theorems which give the criteria of generalized 

unsynchronization for two different chaotic dynamic systems with whatever large 

strength of linear coupling. Chen system and a new chaotic system which we 

proposed are presented as a simulated example for the first theorem. Rössler system 

with corresponding new chaotic system proposed are presented as simulated examples 

for the second theorem. 

 

3.2 Two Theorems of Generalized Unsynchronizability 

Consider the following nonautomonous systems 

( , )t=x f x  (3.1) 

where n∈x R , 1: n n
+Ω ⊂ × →f R R R . Eq. (3.1) is considered as a master system. A 

slave system is given by 

( , )t=y g y  (3.2) 

where n∈y R , 2: n n
+Ω ⊂ × →g R R R . Both f and g satisfy Lipschitz condition. 

1Ω , 2Ω  are domains containing the origin. Assume that the solutions of Eqs. (3.1) 

and (3.2) have bounds then they must exist for infinite time.  

Now we consider the following unidirectional nonautonomous coupled system 

( , )
( , ) ( , , )
t
t t

=
= +

x f x
y g y U x y

 (3.3) 

where ( , , )tU x y  is a coupled term.  
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Definition The system (3.3) is generalized synchronized if there is a continuous 

function ( )H x  and let error ( )H= −e y x  s.t. lim 0
t→∞

=e . But, if no positive 

constant C can be found such that 0→e  as t →∞  for all 0( )t C<e , systems (3.3) 

are generalized unsynchronizable. 

In order to discuss the generalized synchronization of x  and y , define 

( )H=z x  and error = −e y z . Error equation can be written as 

( , ) ( , ) ( , , )Ht t t∂
= − = + − + +

∂
e y z g e z f x U z e z

x
 (3.4) 

Now the first theorem will be given for a special case of Eqs. (3.3). Consider 

unidirectional coupled nonautonomous systems as 

( , )
( , ) ( )
t
t

=
= + −

x f x
y g y Γ z y

    (3.5) 

where f  and g  satisfy Lipschitz condition, and the Lipschitz constant of g  is L . 

n nM ×∈Γ  is a constant diagonal matrix with positive entries which represents the 

strength of the linear coupling term −z y . Since ( )H= − = −e y x y z , the error 

dynamic equation can be obtained as 

( , ) ( , )Ht t∂
= − = + − −

∂
e y z g e z f x Γe

x
  (3.6) 

Let ( , ) ( , )Ht t∂
=
∂

h z f x
x

, system (3.6) can be written as 

( , ) ( , )t t= − = + − −e y z g e z h z Γe  (3.7) 

which is a nonautonomous system of differential equations for state e .  

 

Theorem 3.1  Two different dynamic systems in Eq. (3.5) are of generalized 

unsynchronizability for however large coupling strength Γ  with positive entries, if 

( , ) ( , )i ih t g t≤z z  ( 1, , )i n= …  in 1 2Ω Ω∩ , and ( , ) ( , ) 0t t− >h z g z  except at origin, 

for any solution ( )tz . 
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Proof.  Choose a Lyapunov function 1 2( ) nV e e e=e  which is positive in quadrant 

1 20, 0, , 0ne e e> > > , then V  along any state trajectory of system (3.6) becomes 

[25]: 

2 3 1 1 3 2 1 2 1

2 3 1 1 1 1 1 3 2 2 2 2

1 2 1

2 3 1 1 1 1 1 1 1 2 1

[ ( , ) ( , ) ] [ ( , ) ( , ) ]
[ ( , ) ( , ) ]

[ ( , ) ( , ) ( , ) ( , ) ] [

n n n n

n n

n n n n n

n n

V e e e e e e e e e e e e
e e e g t h t e e e e g t h t e

e e e g t h t e
e e e g t g t g t h t e e e e
g

−

−

−

= + + +

= + − −Γ + + − −Γ

+ + − −Γ

= + − + − −Γ + +

e z z e z z
e z z

e z z z z
( , ) ( , ) ( , ) ( , ) ]n n n n n nt g t g t h t e+ − + − −Γe z z z z

 

When 1 20, 0, , 0ne e e> > > , we have 

2 3 1 1 1 1 1 1 1 2 1

2 3 1 1 1 1

[ ( , ) ( , ) ( , ) ( , ) ] [

( , ) ( , ) ( , ) ( , ) ]

[ ( , ) ( , ) ]

n n

n n n n n n

n

V e e e g t g t g t h t e e e e

g t g t g t h t e

e e e L g t h t e

−≤ + − + − −Γ + +

+ − + − −Γ

≤ + − −Γ +

e z z z z

e z z z z

e z z

 

 (3.8) 

where 1 1( , ) ( , )g t g t L+ − ≤e z z e  follows the Lipschitz condition. When 1e , 

the terms of lower degree of error components 2 3 1 1[ ( , ) ( , )]ne e e g t h t−z z , 

1 3 2 2[ ( , ) ( , )]ne e e g t h t−z z , can be neglected when the sign of V  is considered, 

then 

2 3 1 1 1 3 2 2[ ] [ ]n nV e e e L e e e e L e≤ − Γ + − Γ +e e  (3.9) 

For sufficient large iΓ , V  can be negative in the quadrant 1 0e > , 2 0e > , , 

0ne > . So the state point tends to decrease ( )te   with time when 0e  is 

sufficiently large. When 1e , the proof is as follows. Now when 

1 20, 0, , 0ne e e> > > , V  is expressed as 

2 3 1 1 1 1 1 1

2 3 1 1 1 1

[ ( , ) ( , ) ( , ) ( , ) ]

[ ( , ) ( , ) ]
n

n

V e e e g t g t g t h t e

e e e L g t h t e

≥ − + − + − −Γ +

≥ − + − −Γ +

e z z z z

e z z
 (3.10) 
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When 1e , the terms of higher degree 2 3 1 1[ ]ne e e L e− − Γe , can be neglected 

when the sign of V  is considered, then 

2 3 1 1 1 3 2 2[ ( , ) ( , )] [ ( , ) ( , )]n nV e e e g t h t e e e g t h t≥ − + − +z z z z  (3.11) 

By the condition ( , ) ( , )i ih t g t≤z z  ( 1, , )i n= …  in 1 2Ω Ω∩ , ( , ) ( , ) 0t t− >h z g z , 

( , ) ( , )i if t g t=z z ( 1, , )i n=  do not occur simultaneously. Therefore the right-hand 

side of above inequality is positive, i.e. V  is positive in region D of Fig. 3.1, which 

is the quadrant 1 0e > , 2 0e > , , 0ne >  of the neighborhood of the origin. 

Choose 0r >  such that for the ball { }n
rB R r= ∈ ≤e e , we have  

{ ( ) 0}rD B V= ∈ >e e  (3.12) 

of which the boundary is the surface ( ) 0V =e  and the sphere r=e . Since 

( ) 0V =0 , the origin lies on the boundary of D inside rB . The point 0e  is in the 

interior of D and 0( ) 0V b= >e . Now we prove that the trajectory ( )te  started at 

0(0) =e e  must leave the set D, i.e. the trajectory must leave the neighborhood of 

origin, e  cannot approach zero. To see this point, notice that as long as ( )te  is 

inside D, ( ( ))V t b≥e  since ( ) 0V >e  in D. Let 

min{ ( ) ( ) }V D and V bβ = ∈ ≥e e e  (3.13) 

which exists since the continuous function ( )V e  has a minimum over the compact 

set { ( ) }D and V b∈ ≥e e { , ( ) }rB and V b= ∈ ≥e e  [29]. Then, 0β >  and 

0 0 0
( ( )) ( ) ( ( ))

t t
V t V V s ds b ds b tβ β= + ≥ + = +∫ ∫e e e  (3.14) 

This inequality shows that ( )te  cannot stay forever in D because ( )V e  is bounded 

on D. Now, ( )te  cannot leave D through the surface ( ) 0V =e  since ( ( ))V t b≥e . 

Hence, it must leave D through the sphere r=e , i.e. it must leave the neighborhood 

of the origin, e  can never approach zero. Two different dynamic systems in Eq.(3.5) 
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are unsynchronizable for however large Γ . 

Theorem 3.2  Two different dynamic systems in Eq. (3.5) are of generalized 

unsynchronizability for however large coupling strength Γ , if ( , ) ( , )i ih t g t≥z z  

( 1, , )i n= …  in 1 2Ω Ω∩ , and ( , ) ( , ) 0t t− >h z g z  except at origin, for any solution 

( )tz . 

Proof.  Choose a Lyapunov function 1 2( ) nV e e e=e , then V  along any state 

trajectory of system (3.6) becomes: 

Case 1. When n  is odd, ( )V e  is negative in quadrant 1 20, 0, 0ne e e< < < . 

2 3 1 1 3 2 1 2 1

2 3 1 1 1 1 1 1 1 2 1[ ( , ) ( , ) ( , ) ( , ) ] [
( , ) ( , ) ( , ) ( , ) ]

n n n n

n n

n n n n n n

V e e e e e e e e e e e e
e e e g t g t g t h t e e e e
g t g t g t h t e

−

−

= + + +

= + − + − −Γ + +
+ − + − −Γ

e z z z z
e z z z z

 

When 1 20, 0, 0ne e e< < < , we have 

2 3 1 1 1 1 1 1 1 2 1

2 3 1 1 1 1

[ ( , ) ( , ) ( , ) ( , ) ] [

( , ) ( , ) ( , ) ( , ) ]

[ ( , ) ( , ) ]

n n

n n n n n n

n

V e e e g t g t g t h t e e e e

g t g t g t h t e

e e e L g t h t e

−≥ − + − + − −Γ + +

− + − + − −Γ

≥ − + − −Γ +

e z z z z

e z z z z

e z z

 

 (3.15) 

where 1 1( , ) ( , )g t g t L+ − ≤e z z e  follows the Lipschitz condition. When 1e , 

the terms of lower degree of error components 2 3 1 1[ ( , ) ( , )]ne e e g t h t−z z , 

1 3 2 2[ ( , ) ( , )]ne e e g t h t−z z , can be neglected when the sign of V  is considered, 

then 

2 3 1 1 1 3 2 2

2 3 1 1 1 3 2 2

[ ] [ ]

[ ] [ ]
n n

n n

V e e e L e e e e L e

e e e L e e e e L e

≥ − − Γ + − − Γ +

= − + Γ − + Γ +

e e

e e
 (3.16) 

For sufficient large iΓ , V  can be positive in the quadrant 1 0e < , 2 0e < , , 

0ne < . So the state point tends to decrease ( )te  with time when 0e  is 
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sufficiently large. When 1e , the proof is as follows. Now when 1 0,e <  2 0,e <  

0ne < , V  is expressed as  

2 3 1 1 1 1 1 1

2 3 1 1 1 1

[ ( , ) ( , ) ( , ) ( , ) ]

[ ( , ) ( , ) ]
n

n

V e e e g t g t g t h t e

e e e L g t h t e

≤ + − + − −Γ +

≤ + − −Γ +

e z z z z

e z z
 (3.17) 

When 1e , the terms of higher degree 2 3 1 1[ ]ne e e L e− Γe , can be neglected 

when the sign of V  is considered, then 

2 3 1 1 1 3 2 2[ ( , ) ( , )] [ ( , ) ( , )]n nV e e e g t h t e e e g t h t≤ − + − +z z z z  (3.18) 

By the condition ( , ) ( , ) 0t t− >h z g z , ( , ) ( , )i ih t g t=z z ( 1, , )i n=  do not occur 

simultaneously. Therefore the right-hand side of above inequality is negative, i.e. V  

is negative in region D of Fig. 3.2, which is the quadrant 1 0e < , 2 0e < , , 0ne <  

of the neighborhood of the origin. 

Choose 0r >  such that for the ball { }n
rB R r= ∈ ≤e e , we have  

{ ( ) 0}rD B V= ∈ <e e  (3.19) 

By the similar reasoning as that in the latter part of the proof for Theorem1, we can 

prove that the state trajectory started from D must leave the neighborhood of the 

origin, e  can never approach zero. Two different dynamic systems in Eq. (3.5) are 

unsynchronizable for however large Γ . 

 

Case 2. When n  is even, ( )V e  is positive in quadrant 1 20, 0, 0ne e e< < < . 

2 3 1 1 3 2 1 2 1

2 3 1 1 1 1 1 1 1 2 1[ ( , ) ( , ) ( , ) ( , ) ] [
( , ) ( , ) ( , ) ( , ) ]

n n n n

n n

n n n n n n

V e e e e e e e e e e e e
e e e g t g t g t h t e e e e
g t g t g t h t e

−

−

= + + +

= + − + − −Γ + +
+ − + − −Γ

e z z z z
e z z z z

 

When 1 20, 0, 0ne e e< < < , we have 
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2 3 1 1 1 1 1 1 1 2 1

2 3 1 1 1 1

[ ( , ) ( , ) ( , ) ( , ) ] [

( , ) ( , ) ( , ) ( , ) ]

[ ( , ) ( , ) ]

n n

n n n n n n

n

V e e e g t g t g t h t e e e e

g t g t g t h t e

e e e L g t h t e

−≤ − + − + − −Γ + +

− + − + − −Γ

≤ − + − −Γ +

e z z z z

e z z z z

e z z

 

 (3.20) 

where 1 1( , ) ( , )g t g t L+ − ≤e z z e  follows the Lipschitz condition. When 1e , 

the terms of lower degree of error components 2 3 1 1[ ( , ) ( , )]ne e e g t h t−z z , 

1 3 2 2[ ( , ) ( , )]ne e e g t h t−z z , can be neglected when the sign of V  is considered, 

then 

2 3 1 1 1 3 2 2

2 3 1 1 1 3 2 2

[ ] [ ]

[ ] [ ]
n n

n n

V e e e L e e e e L e

e e e L e e e e L e

≤ − − Γ + − − Γ +

= − + Γ − + Γ +

e e

e e
 (3.21) 

For sufficient large iΓ , V  can be negative in the quadrant 1 0e < , 2 0e < , , 

0ne < . So the state point tends to decrease ( )te  with time when 0e  is 

sufficiently large. When 1e , the proof is as follows. Now when 1 0e < , 2 0e < , 

, 0ne < , V  is expressed as  

2 3 1 1 1 1 1 1

2 3 1 1 1 1

[ ( , ) ( , ) ( , ) ( , ) ]

[ ( , ) ( , ) ]
n

n

V e e e g t g t g t h t e

e e e L g t h t e

≥ + − + − −Γ +

≥ + − −Γ +

e z z z z

e z z
 (3.22) 

When 1e , the terms of higher degree 2 3 1 1[ ]ne e e L e− Γe , can be neglected 

when the sign of V  is considered, then 

2 3 1 1 1 3 2 2[ ( , ) ( , )] [ ( , ) ( , )]n nV e e e g t h t e e e g t h t≥ − + − +z z z z  (3.23) 

By the condition ( , ) ( , ) 0t t− >h z g z , ( , ) ( , )i ih t g t=z z ( 1, , )i n=  do not occur 

simultaneously. Therefore the right hand side of above inequality is positive, i.e. V  

is positive in region D of Fig. 3.2 which is the quadrant 1 0e < , 2 0e < , , 0ne <  

of the neighborhood of the origin. 
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By the same reasoning as that in the latter part of the proof for Theorem 1, we 

can prove that the state trajectory started from the neighborhood of the origin in the 

quadrant 1 0e < , 2 0e < , , 0ne <  must leave the neighborhood and can never 

approach zero. Two different dynamic systems in Eq. (3.5) are unsynchronizable for 

however large iΓ . 

 

3.3 Simulated Examples  

An example for the first theorem is Chen system with a new chaotic system 

proposed. Consider the following unidirectional coupled systems: 

( )
( )

x a y x
y c a x xz cy
z xy bz

= −
= − − +
= −

 (3.24a) 

2
1

2
2

2
3

( ) sin

( )

x a y x x e

y c a x xz cy x e

z xy bz x e

γ

γ

γ

= − + −

= − − + + −

= − + −

 (3.24b) 

= −e y z , ( )H= = +z x Ax b  

1 0 0
0 1 0
0 0 1

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

A , 

3
5
7

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

b  

where 1000γ =  which is sufficiently large. Eq. (3.24a) is Chen system and Eq. 

(3.24b) without coupling is a new chaotic system which we proposed. The chaotic 

attractor and Lyapunov exponent diagrams for system (3.24a) and (3.24b) without 

coupling term are shown in Figs. 3.3 ~ 3.6. For initial states (0.5,1,5), (30,20,18) and 

system parameters 35, 3a b= =  and 28c = , three state errors and error versus time 

are shown in Figs. 3.7 ~ 3.9.  Fig. 3.8 shows that errors decreases with time when 

error is large, but one can clearly find in Fig. 3.9 that the errors cannot approach zero 

as time evolves. 
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An example for the second theorem is Rössler system with a new chaotic system 

proposed. Consider the following unidirectional coupled systems with linear coupling 

in the form of Eq. (3.5): 

( )

x y z
y x ay
z b z x c

= − −
= +
= + −

 (3.25a) 

2
1

2
2

2
3

sin

sin

( ) sin

x y z y e

y x ay y e

z b z x c z e

γ

γ

γ

= − − − −

= + − −

= + − − −

 (3.25b) 

= −e y z , ( )H= = +z x Ax b  

1 0 0
0 1 0
0 0 1

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

A , 

3
5
7

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

b  

where 300γ = . The Lyapunov exponent diagrams for system (3.25a) and (3.25b) 

without coupling term are shown in Figs. 3.10 ~ 3.11. For initial states (20,10,25), 

(2.5,2,2.5) and system parameter 0.2, 0.2a b= =  and 5.7c = , three state errors and 

errors versus time are shown in Figs. 3.12 ~ 3.14.  Fig. 3.13 shows that errors 

decreases with time when error is large, but one can clearly find in Fig. 3.14 that the 

errors cannot approach zero as time evolves. 

 

3.4 Summary 

In this Chapter, two theorems are proposed. They give the criteria of generalized 

unsynchronization for two different chaotic dynamic systems with whatever large 

strength of linear coupling. Chen system and Rössler system with two corresponding 

new chaotic systems proposed are used as simulation examples which effectively 

confirm the theorems. 
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Fig. 3.2 D region for n=2. 
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Fig. 3.3  Chaotic attractor for Chen system (3.24a), with 35, 3a b= =  and 28c = , 

initial condition (0.5,1,5). 
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Fig. 3.4  Lyapunov exponents for Chen system (3.24a), with 3b =  and 28c = , 

initial condition (0.5,1,5). 
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Fig. 3.5  Chaotic attractor for chaotic system (3.24b) , with 35, 3a b= =  and 

28c = , initial condition (30,20,18). 
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Fig. 3.6  Lyapunov exponents for chaotic system (3.24b) , with 3b =  and 28c = , 

initial condition (30,20,18). 
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Fig. 3.7  State errors versus time for unidirectional coupled systems (3.24) , with 

35, 3a b= =  and 28c = , initial conditions (0.5,1,5), (30,20,18). 
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Fig. 3.8  Errors versus time for unidirectional coupled systems (3.24) , with 35,a =  

3b =  and 28c = , initial conditions (0.5,1,5), (30,20,18). 
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Fig. 3.9  Errors versus time for unidirectional coupled systems (3.24) , with 

35, 3a b= =  and 28c = , initial conditions (0.5,1,5), (30,20,18). 
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Fig. 3.10  Lyapunov exponents for Rössler system (3.25a), with 0.2b =  and 

5.7c = , initial condition (20,10,25). 
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Fig. 3.11  Lyapunov exponent for chaotic system (3.25b) , with 0.2b =  and 

5.7c = , initial condition (2.5,2,2.5). 
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Fig. 3.12  State errors versus time for unidirectional coupled systems (3.25) , with 

0.2, 0.2a b= =  and 5.7c = , initial conditions (20,10,25), (2.5,2,2.5). 
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Fig. 3.13  Errors versus time for unidirectional coupled systems (3.25) , with 

0.2, 0.2a b= =  and 5.7c = , initial conditions (20,10,25), (2.5,2,2.5). 
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Fig. 3.14  Errors versus time for unidirectional coupled systems (3.25) , with 

0.2, 0.2a b= =  and 5.7c = , initial conditions (20,10,25), (2.5,2,2.5). 
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Chapter 4 
Chaos Synchronization by Variable Strength Linear 

Coupling and Lyapunov Function Derivative in Series Form 

4.1 Preliminary 

In this Chapter, a new general strategy to achieve chaos synchronization by 

variable strength linear coupling is proposed. This method, in which the time 

derivative of Lyapunov function in series form is firstly used, can give either local 

synchronization which is usually good enough or global synchronization which is 

usually an unnecessary high demand.  

 

4.2 Synchronization Strategy by Variable Strength Linear Coupling and 

Lyapunov Function Derivative in Series Form 

(a) Consider the following unidirectional coupled identical chaotic systems  

( )
( ) ( )

= +
= + + −

x Ax f x
y Ay f y Γ y x

 (4.1) 

where [ ]1 2, , , T n
nx x x R= ∈x , [ ]1 2, , , T n

ny y y R= ∈y  denote two state vectors, 

A is an n n×  constant coefficient matrix, f  is a nonlinear vector function, and Γ  

is an n n×  matrix which gives the variable strength of the linear coupling term 

( )−y x . 

In order to study the synchronization of x  and y , define = −e y x  as the state 

error. Error equation can be written as 

( ) ( ) ( )= + + − − −e Ay f y Γ y x Ax f x  (4.2) 

By Taylor expansion 

HOT of
HOT of

′ +
= +

f(y) - f(x) = f(x + e) - f(x)= f (x)e e
F(x)e e

 (4.3) 
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where ′f (x)  is the time derivative f(x) , and '=F(x) f (x) . 

Theorem 4.1. The chaotic systems in Eq. (4.1) can be locally completely 

synchronized, if 2e  is smaller than a bounded value and Γ is chosen such that 

A +Γ + F = -C  where C is positive definite diagonal matrix. 

Proof. Choose a positive definite function as 

1( )
2

TV =e e e        (4.3) 

Then 

( )
( ( ) ( ) ( ))
( ( ) ( ))
( ) HOT of

T

T

T

T

V =

= + + − − −

= + + −

= + + +

e e e
e Ay f y Γ y x Ax f x
e Ae Γe f y f x
e A Γ F e e

  (4.4) 

Since 2e  is smaller than a bounded value and Γ is chosen such that 

A +Γ + F = -C , Eq. (4.4) becomes ( ) HOT of 0TV = − + <e e Ce e , since T−e Ce  is a 

definite form, the higher order terms of e have no influence on the definiteness of  V , 

provided that 2e  is smaller than a bounded value. The proof of this theorem can be 

found in [24, 25], which is used extensively in the theory of stability of motion. By 

Lyapunov asymptotical stability theorem, the origin of error equation (4.2) is locally 

asymptotically stable and the chaotic systems in Eq. (4.1) are locally completely 

synchronized. □ 

Corollary 1. If ( ) ( )+ −f x e f x  is a linear function of e, De, Eq. (4.4) become 

( ) ( )TV = + +e e A Γ D e . Let A +Γ + D = -C , then ( ) 0TV = − <e e Ce . By Lyapunov 

asymptotical stability theorem, the origin of error equation (4.2) is globally 

asymptotically stable. Hence, the chaotic systems in Eq. (4.1) are globally completely 

synchronized. □ 

(b) Consider the following two unidirectional coupled different chaotic systems  
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( )
ˆ ( )

= +

= + +

x Ax f x

y Ay f y u
 (4.5) 

where [ ]1 2, , , T n
nx x x R= ∈x , [ ]1 2, , , T n

ny y y R= ∈y  denote two state vectors, A  

and Â  are two different n n×  constant coefficient matrices, f  is a nonlinear 

vector function, and u  is the coupling vector of which the elements are functions of 

x and y. 

In order to study the synchronization of x  and y , define = −e y x  as the state 

error. Error equation can be written as 

ˆ ( ) ( )= + + − −e Ay f y u Ax f x  (4.6) 

By Taylor expansion 

HOT of
HOT of

′ +
= +

f(y) - f(x) = f(x + e) - f(x)= f (x)e e
F(x)e e

 (4.7) 

Theorem 4.2. Choose − −Γ = -C A F  and = −B A , where C is positive definite 

diagonal matrix and ˆ=A A - A . The chaotic systems in Eq. (4.5) can be locally 

completely synchronized, if 2e  is smaller than a bounded value and = +u Γe By . 

Proof. Choose a positive definite function as 

1( )
2

TV =e e e        (4.8) 

Then 

( )
ˆ( ( ) ( ))

( ( ) ( ))

T

T

T

V =

= + + − −

= + + + −

e e e

e Ay f y u Ax f x

e Ay Ae u f y f x
  (4.9) 

Let = +u Γe By , Eq.(4.9) becomes 

( ) ( ( ) ( ))

( ) ( ) HOT of

T

T T

V = + + + + −

= + + + + +

e e Ay Ae Γe By f y f x

e A Γ F e e A B y e
 (4.10) 

Since 2e  is smaller than a bounded value, Γ  and B is chosen such that 
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A +Γ + F = -C  and = −B A , Eq. (4.9) becomes ( ) HOT of 0TV = − + <e e Ce e . By 

Lyapunov asymptotical stability theorem, the origin of error equation (4.6) is locally 

asymptotically stable and the chaotic systems in Eq. (4.5) are locally completely 

synchronized. □ 

Corollary 2. If ( ) ( )+ −f x e f x  is a linear function of e, De, Eq. (4.10) become 

( ) ( ) ( )T TV = + + + +e e A Γ D e e A B y . Let A +Γ + D = -C  and = −B A , then 

( ) 0TV = − <e e Ce . By Lyapunov asymptotical stability theorem, the origin of error 

equation (4.6) is globally asymptotically stable, and the chaotic systems in Eq. (4.5) 

are globally completely synchronized. □ 

 

4.3 Numerical Results for Typical Chaotic Systems 

First example for Theorem 4.1 is Rössler system. Consider following two 

unidirectional coupled chaotic Rössler systems: 

1 1 1

1 1 1

1 1 1( )

x y z
y x ay
z b z x c

= − −
= +
= + −  (4.11) 

2 2 2 11 1 12 2 13 3

2 2 2 21 1 22 2 23 3

2 2 2 31 1 32 2 33 3( )

x y z e e e
y x ay e e e
z b z x c e e e

= − − +Γ +Γ +Γ
= + +Γ +Γ +Γ
= + − +Γ +Γ +Γ  

where 

0 1 1
1 0
0 0

a
c

− −⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥−⎣ ⎦

A  (4.12) 

Choose a Lyapunov function in the form of a positive definite function: 

2 2 2
1 2 3 1 2 3

1( , , ) ( )
2

V e e e e e e= + +  (4.13) 

by Taylor Formula  
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1 1 1 3 1 3 1 1 1 3

0 0 0 0 0
0 0 0 0 0

0z e x e e e z x e e

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = +⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥+ +⎣ ⎦ ⎣ ⎦ ⎣ ⎦

= +

f(y) - f(x) e

Fe

 (4.14) 

Let  

1 1

1 1 1
1 1 0

0 1
a

z c x

−⎡ ⎤
⎢ ⎥= = − − −⎢ ⎥
⎢ ⎥− − + −⎣ ⎦

Γ -I - A - F  (4.15) 

According to Theorem 4.1, we obtain 

2 2 2
1 2 3 HOT of 0V e e e= − − − + <e   (4.16) 

is negative definite when 2e  is smaller than a bounded value . The Rössler systems 

in Eq.(4.11) are locally synchronized. For initial states (-20,10,25), (-21,10.5,25) and 

system parameters 0.2,a =  0.2b = , 5.7c = , the chaotic phase portraits and state 

errors versus time are shown in Fig. 4.1 and Fig. 4.2. 

Second example for Corollary 4.1 is Hyper-Rössler system. Consider following 

two unidirectional coupled chaotic hyper-Rössler systems: 

1 2 3

2 1 2 4

3 1 3

4 4 3

x x x
x x ax x
x b x x
x cx dx

= − −
= + +
= +
= −  (4.17) 

1 2 3 11 1 12 2 13 3 14 4

2 1 2 4 21 1 22 2 23 3 24 4

3 1 3 31 1 32 2 33 3 34 4

4 4 3 41 1 42 2 43 3 44 4

y y y e e e e
y y ay y e e e e
y b y y e e e e
y cy dy e e e e

= − − +Γ +Γ +Γ +Γ
= + + +Γ +Γ +Γ +Γ
= + +Γ +Γ +Γ +Γ
= − +Γ +Γ +Γ +Γ  

where 

0 1 1 0
1 0 1
0 0 0 0
0 0

a

d c

− −⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥−⎣ ⎦

A  (4.18) 
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Choose a Lyapunov function in the form of a positive definite function: 

2 2 2 2
1 2 3 4 1 2 3 4

1( , , , ) ( )
2

V e e e e e e e e= + + +  (4.19) 

3

1 3 1 3 1

0 0 0 0
0 0 0 0 0

0 0 0
0 0 0 0 0

y

y y x x x

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= = =
⎢ ⎥ ⎢ ⎥−
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

f(y) - f(x) e De

 (4.20) 

Let  

3

1

1 1 1 0
1 1 0 1

0 0 1 0
0 0 1

y
a

x
d c

− −⎡ ⎤
⎢ ⎥− − − −⎢ ⎥= =
⎢ ⎥− −
⎢ ⎥− −⎣ ⎦

Γ -C - A - D  (4.21) 

According to Corollary 1, we obtain 

2 2 2 2
1 2 3 4 0V e e e e= − − − − <   (4.22) 

The Hyper-Rössler systems in Eq.(4.17) are globally synchronized. For initial states 

(-20,0,0,15), (-20,10.15,15) and system parameters 0.25,a =  3b = , 0.05c = , 

0.5d = , the chaotic phase portraits and state errors versus time are shown in Fig. 4.3 

and Fig. 4.4. 

Third example for Theorem 4.2 is Duffing system. Consider following two 

unidirectional coupled chaotic Duffing systems: 

1 2
3

2 2 1 1 cos

x x

x x x x a tδ α β ω

=

= − + − +
 (4.23) 

1 2 1

3
2 2 1 1 2

ˆ ˆ cos

y y u

y y y y a t uδ α β ω

= +

= − + − + +
  

where 1 2[ , ]Tu u=u  is the coupling term. 

0 1
α δ
⎡ ⎤

= ⎢ ⎥−⎣ ⎦
A   (4.24) 

Choose a Lyapunov function in the form of a positive definite function: 
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2 2
1 2 1 2

1( , ) ( )
2

V e e e e= +  (4.25) 

by Taylor expansion 

3 3 2 2
1 1 1 1 1

0 0 0 0
3 0 6

H.O.T.of
y x x x eβ β β β

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= = +⎢ ⎥ ⎢ ⎥ ⎢ ⎥− + − − +⎣ ⎦ ⎣ ⎦ ⎣ ⎦
= +

f(y) - f(x) e

Fe e
 (4.26) 

Let = +u Γe By  

2
1

1 1
3 1xα β δ
− −⎡ ⎤

= = ⎢ ⎥− + − +⎣ ⎦
Γ -I - A - F  (4.27) 

0 0
ˆα̂ α δ δ

⎡ ⎤
= = ⎢ ⎥

− − +⎣ ⎦
B -A  (4.28) 

According to Theorem 2, we obtain 

2 2
1 2 HOT of 0V e e= − − + <e  (4.29) 

is negative definite when 2e  is smaller than a bounded value . The Duffing systems 

(4.23) are locally synchronized. For initial states (2,2), (5,5) and system parameters 

0.01α = − , 0.1δ = , 1β ω= = , 10a = , ˆ 1α =  and ˆ 0.15δ = , the chaotic phase 

portrait and state errors versus time are shown in Fig. 4.5 and Fig. 4.6.  

Last example for Corollary 4.2 is Lorenz system. Consider following two 

unidirectional coupled chaotic Lorenz systems: 

1 1 1

1 1 1 1 1

1 1 1 1

( )x y x
y x x z y
z x y z

σ
γ

β

= −
= − −
= −  (4.30) 

2 2 2 1

2 2 2 2 2 2

2 2 2 2 3

ˆ ( )
ˆ

ˆ

x y x u
y x x z y u

z x y z u

σ
γ

β

= − +
= − − +

= − +

 

where 1 2 3[ , , ]Tu u u=u  is the coupling term. 
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0
1 0

0 0

σ σ
γ

β

−⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥−⎣ ⎦

A   (4.31) 

Choose a Lyapunov function in the form of a positive definite function: 

2 2 2
1 2 3 1 2 3

1( , , ) ( )
2

V e e e e e e= + +  (4.32) 

2 2 1 1 2 1

2 2 1 1 2 1

0 0 0 0
0

0
x z x z z x

x y x y y x

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= − + = − − =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

f(y) - f(x) e De  (4.33) 

Let = +u Γe By  

2 1

2 1

1 0
0

1
z x

y x

σ σ
γ

β

− −⎡ ⎤
⎢ ⎥= = − +⎢ ⎥
⎢ ⎥− − −⎣ ⎦

Γ -I - A - D  (4.34) 

6 6 0
17.92 0 0

40 0 3

⎡ ⎤−⎢ ⎥
⎢ ⎥= = −
⎢ ⎥
⎢ ⎥⎣ ⎦

B -A  (4.35) 

According to Corollary 2, we obtain 

2 2 2
1 2 3 0V e e e= − − − <  (4.36) 

is negative definite. The Lorenz systems (4.30) are global synchronized. For initial 
states (0.5,1,5), (0.6,2,5.3) and system parameters 10σ = , 28γ = , 8 3β = , ˆ 16σ = , 

ˆ 45.92γ =  and ˆ 4β = , the chaotic phase portraits and state errors versus time are 

shown in Fig. 4.7 and Fig. 4.8.  
 

4.4 Summary 

In this Chapter, two theorems for chaos synchronization are proposed by using 

variable strength linear coupling without another active control, while the time 

derivative of Lyapunov function in series form is firstly used, which makes the 

demand for Lyapunov function derivative as negative sum of the square of state 
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variables, lower. They give the criteria of chaos synchronization for two identical 

chaotic systems and for two different chaotic dynamic systems. Either local 

synchronization which is mostly good enough or global synchronization which is 

mostly an unnecessary high demand, can be obtained. Lorenz system, Duffing system, 

Rössler system and Hyper-Rössler system are used as simulation examples which 

effectively confirm the scheme. 
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Fig. 4.1  Chaotic phase portraits for Rössler system. 
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Fig. 4.2  Time histories of errors for two Rössler systems. 
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Fig. 4.3  Chaotic phase portraits for Hyper-Rössler system. 
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Fig. 4.4  Time histories of errors for two synchronized Hyper-Rössler systems. 
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Fig. 4.5  Chaotic phase portrait for Duffing system. 
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Fig. 4.6  Time histories of errors for two synchronized Duffing systems. 
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Fig. 4.7  Chaotic phase portraits for Lorenz system. 
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Fig. 4.8  Time histories of errors for two synchronized Lorenz systems. 

 
 

 



49 

Chapter 5 
Adaptive Chaos Synchronization by Variable Strength 

Linear Coupling 

5.1 Preliminary 

Synchronization of chaotic dynamic systems is a very interesting problem and 

has been widely studied. Most of them are based on the exact knowledge of the 

system structure and parameters. But in practice, some or all of the system parameters 

are uncertain, adaptive control method in used. In this Chapter, we propose a general 

strategy to achieve adaptive chaos synchronization by variable strength linear 

coupling solely without using another active control which is usually rather complex. 

Furthermore, Lyapunov function derivative in series form is first used in this Chapter, 

which is easier to be obtained than the traditional negative sum of the square of error 

variables. Lorenz system, Duffing system and Rössler system are presented as 

simulation examples. 

 

5.2 Adaptive Chaos Synchronization Strategy by Variable Strength Linear 

Coupling 

Consider the following two unidirectional coupled system  

( )
ˆ ( ) ( )

= +

= + + −

x Ax f x

y Ay f y Γ y x
 (5.1) 

where [ ]1 2, , , T n
nx x x R= ∈x , [ ]1 2, , , T n

ny y y R= ∈y  denote two state vectors, 

A is an n n×  uncertain constant coefficient matrix, Â  is an n n×  estimated 

coefficient matrix, f  is a nonlinear vector function, and Γ  is a matrix which gives 

the variable strength of the linear coupling term ( )−y x . 

In order to study the synchronization of x  and y , define = −e y x  as the state 
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error. From Eq. (5.1), error equation can be written as 

ˆ ( ) ( ) ( )= + + − − −e Ay f y Γ y x Ax f x  (5.2) 

Choosing an appropriate Γ , our goal is that the state error can approach zero and the 

estimated coefficient matrix Â  can approach the coefficient matrix A . 

Choose a positive definite function as 

1 1( , )
2 2

T T
c c cV = +e A e e A A        (5.3) 

where ˆ=A A - A , cA  is a column matrix whose elements are all the elements of 

matrix A . Then the time derivative of V through Eq. (5.2) is 

( , )
ˆ( ( ) ( ) ( ))

( ( ) ( ))
ˆ( ) ( ( ) ( ))

ˆ( ) ( ) [ ( ) ( )]

T T
c c c

T T
c c

T T
c c

T T T T T
c c

T T T T
c c

V = +

= + + − − − +

= + + + − +

= + − + + − +

= + + − + + + −

e A e e A A

e Ay f y Γ y x Ax f x A A

e Ay Ae Γe f y f x A A

e Ay e A A e e Γe e f y f x A A

e A Γ e e A y e A A e f x e f x

  (5.4) 

In general, there are two ways to express ( ) ( )+ −f x e f x . Firstly, it is a linear function 

of e, Be, where the elements of B are variable. Then Eq. (5.4) become 

ˆ( , ) ( ) ( )
ˆ( ) ( )

T T T T
c c c

T T T
c c

V = + + − + +

= + + + − +

e A e A Γ e e A y e A A e Be

e A Γ B e e A y e A A
 (5.5) 

Secondly, it can be developed to a Taylor series:  

ˆ( , ) ( ) ( ) '( )
HOT of

T T T T
c c cV = + + − + +

+

e A e A Γ e e A y e A A e f x e
e

 (5.6) 

where '( )f x  is time derivative of ( )f x . 

If we can choose appropriate estimated coefficient matrix cA and Γ  so that 

−T TV = -e Ce A PA  or HOT of ,− +T TV = -e Ce A PA e  where C  and P are a 

diagonal positive definite matrices. This series form of V  is easier to be obtained 
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than the traditional negative sum of error variables. Then V  is a negative definite 

function of e  and is a negative semi-definite function of e  and all the elements of 

cA . In general, the elements of Γ  may be functions of the state variables which are 

all bounded for chaotic system. So the elements of Γ  are all bounded. 

In current scheme of synchronization, traditional Lyapunov asymptotical stability 

theorem and Babalat lemma are used to prove the error vector approaches zero, as 

time approaches infinity.  

5.3 Numerical Results for Typical Chaotic Systems 

The first example is two Lorenz systems, with the following unidirectional 

coupling: 

1 1 1

1 1 1 1 1

1 1 1 1

( )x y x
y x x z y
z x y z

σ
γ

β

= −
= − −
= −

 (5.9) 

2 2 2 11 1 12 2 13 3

2 2 2 2 2 21 1 22 2 23 3

2 2 2 2 31 1 32 2 33 3

ˆ ( )
ˆ

ˆ

x y x e e e
y x x z y e e e

z x y z e e e

σ
γ

β

= − +Γ +Γ +Γ
= − − +Γ +Γ +Γ

= − +Γ +Γ +Γ

 

The error dynamics is 

1 2 1 2 2 1 1 11 1 12 2 13 3

2 2 1 2 2 2 2 1 1 1 1 21 1 22 2 23 3

3 2 1 2 2 2 1 1 1 31 1 32 2 33 3

ˆ ( ) ( )
ˆ ( )

ˆ ( )

e x x y x y x e e e
e y y x x z y x x z y e e e

e z z x y z x y z e e e

σ σ
γ γ

β β

= − = − − − +Γ +Γ +Γ
= − = − − − − − +Γ +Γ +Γ

= − = − − − +Γ +Γ +Γ

(5.10) 

where 

0
1 0

0 0

σ σ
γ

β

−⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥−⎣ ⎦

A   (5.11) 

In this example, we find 

2 2 1 1 2 1

2 2 1 1 2 1

0 0 0 0
0

0
x z x z z x

x y x y y x

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= − + = − − =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

f(y) - f(x) e Be  (5.12) 
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Choose a Lyapunov function in the form of a positive global definite function: 

1 2 3

2 2 2 2 2 2
1 2 3

( , , , , , )
1 ( )
2

V e e e

e e e

σ γ β

σ γ β= + + + + +
 (5.13) 

where ˆσ σ σ= − , ˆγ γ γ= − , ˆβ β β= −  and σ̂ , γ̂ , β̂  are estimates of uncertain 

parameters σ , γ  and β  respectively. 

Its time derivative through error dynamics (5.9) is 

1 2 2 1 1 11 1 12 2 13 3

2 2 2 2 2 1 1 1 1 21 1 22 2 23 3

3 2 2 2 1 1 1 31 1 32 2 33 3

ˆ[ ( ) ( ) ]
ˆ[ ( ) ]

ˆ[ ( ) ]

V e y x y x e e e
e x x z y x x z y e e e

e x y z x y z e e e

σ σ
γ γ

β β

σσ γγ ββ

= − − − +Γ +Γ +Γ

+ − − − − − +Γ +Γ +Γ

+ − − − +Γ +Γ +Γ

+ + +

 (5.14) 

Choose  

2 1

2 1

ˆ ˆ1 0
ˆ ˆ 0

ˆ 1

z x

y x

σ σ
γ

β

⎡ ⎤− −
⎢ ⎥

= = − +⎢ ⎥
⎢ ⎥− − −⎣ ⎦

Γ -I - A - B  (5.15) 

2
2 3 3

ˆ z e eβ β β= = − −  

2
2 1 2 1 1 2 1ˆ x e y e e e eσ σ σ= = − + − −  (5.16) 

2 2 1 2ˆ x e e eγ γ γ= = − + −  

Introducing Eqs. (5.15) and (5.16) into Eq. (5.14), we obtain 

2 2 2 2 2 2
1 2 3 0V e e e σ γ β= − − − − − − ≤  (5.17) 

By Lyapunov asymptotical stability theorem, 1 2 3 0e e e σ γ β= = = = = =  is 

asymptotically stable. The initial states is (0.5,1,5), (30,20,18) and system parameters 

10σ = , 28γ = , 8 3β =  and initial values of estimate for uncertain parameters 

ˆˆˆ 0σ γ β= = = . Three state errors and estimated parameters versus time are shown in 

Fig. 5.1 and Fig. 5.2. Fig. 5.1 shows that state errors quickly approach zeros. The 
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estimated parameters approach to the uncertain parameters as shown in Fig. 5.2. The 

synchronization is global synchronization. 

The second example is two Duffing systems, with the following unidirectional 

coupling: 

1 2
3

2 2 1 1 cos

x x

x x x x a tδ α β ω

=

= − + − +
 (5.18) 

1 2 11 1 12 2

3
2 2 1 1 21 1 22 2

ˆ ˆ cos

y y e e

y y y y a t e eδ α β ω

= +Γ +Γ

= − + − + +Γ +Γ
 (5.19) 

The error dynamics is 

1 1 1 2 11 1 12 2

3 3
2 2 2 2 1 1 2 1 1 21 1 22 2

ˆ ˆ ( )

e y x e e e

e y x y y y x x x e eδ α β δ α β

= − = +Γ +Γ

= − = − + − − − + − +Γ +Γ

 (5.20) 

where 

0 1
α δ
⎡ ⎤

= ⎢ ⎥−⎣ ⎦
A  (5.21) 

By Taylor expansion 

3 3 2 2
1 1 1 1 1

0 0 0 0
3 0 6

H.O.T.of
y x x x eβ β β β

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= = +⎢ ⎥ ⎢ ⎥ ⎢ ⎥− + − − +⎣ ⎦ ⎣ ⎦ ⎣ ⎦
= +

f(y) - f(x) e

Be e
 (5.22) 

Choose a Lyapunov function in the form of a positive definite function: 

2 2 2 2
1 2 1 2

1( , , , ) ( )
2

V e e e eδ α δ α= + + +  (5.23) 

where ˆδ δ δ= − , ˆα α α= −  and δ̂ , α̂  are estimates of uncertain parameters δ  

and α . 

Its time derivative through error dynamics (5.20) is 

1 2 11 1 12 2

3 3
2 2 1 1 2 1 1 21 1 22 2

( )
ˆ ˆ( ( ) )

V e e e e

e y y y x x x e eδ α β δ α β

δδ αα

= +Γ +Γ

+ − + − − − + − +Γ +Γ

+ +
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 (5.24) 

Choose  

2
1

1 1ˆ
ˆˆ 3 1xα β δ

− −⎡ ⎤
= = ⎢ ⎥

− + − +⎣ ⎦
Γ -I - A - B  (5.25) 

2
2 2 2

ˆ y e eδ δ δ= = − −  

1 2 1 2ˆ y e e eα α α= = − + −  (5.26) 

We obtain 

2 2 2 2
1 2 H.O.T.of 0V e e eδ α= − − − − + ≤  (5.27) 

By Lyapunov asymptotical stability theorem, 1 2 0e e δ α= = = =  is asymptotically 

stable. The initial states is (2,2), (5,5) and system parameters 0.15,δ =  

1α β ω= = = , 3a = ,  and initial values of estimate for uncertain parameters 

ˆ ˆ 0δ α= = , The state errors and estimated parameters versus time are shown in Fig. 

5.3 and Fig. 5.4.  Fig. 5.3 shows that state errors quickly approach zeros. The 

estimated parameters approach the uncertain parameters as shown in Fig. 5.4.  

The last example is two Rössler systems, with the following unidirectional 

coupling: 

1 1 1

1 1 1

1 1 1( )

x y z
y x ay
z b z x c

= − −
= +
= + −

 (5.28) 

2 2 2 11 1 12 2 13 3

2 2 2 21 1 22 2 23 3

2 2 2 31 1 32 2 33 3

ˆ
ˆ( )

x y z e e e
y x ay e e e
z b z x c e e e

= − − +Γ +Γ +Γ
= + +Γ +Γ +Γ
= + − +Γ +Γ +Γ

 (5.29) 

The error dynamics is 

1 2 3 11 1 12 2 13 3

2 1 2 1 21 1 22 2 23 3

3 2 2 1 1 31 1 32 2 33 3

ˆ
ˆ( ) ( )

e e e e e e
e e ay ay e e e
e z x c z x c e e e

= − − +Γ +Γ +Γ
= + − +Γ +Γ +Γ
= − − − +Γ +Γ +Γ

 (5.30) 

where 
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0 1 1
1 0
0 0

a
c

− −⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥−⎣ ⎦

A  (5.31) 

By Taylor expansion,  

1 1 1 3 1 3 1 1 1 3

1 3

0 0 0 0 0
0 0 0 0 0

0

0
0

z e x e e e z x e e

e e

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = +⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥+ +⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎡ ⎤
⎢ ⎥= + ⎢ ⎥
⎢ ⎥⎣ ⎦

f(y) - f(x) e

Be

 (5.32) 

Choose a Lyapunov function in the form of a positive definite function: 

2 2 2 2 2
1 2 3 1 2 3

1( , , , , ) ( )
2

V e e e a c e e e a c= + + + +  (5.33) 

where ˆa a a= − , ˆc c c= −  and â , ĉ  are estimates of uncertain parameters a  and 

c . 

Its derivative through the error dynamics is 

1 2 3 11 1 12 2 13 3

2 1 2 1 21 1 22 2 23 3

3 2 2 1 1 31 1 32 2 33 3

[ ]
ˆ[ ]

ˆ[ ( ) ( ) ]

V e e e e e e
e e ay ay e e e
e z x c z x c e e e

aa cc

= − − +Γ +Γ +Γ
+ + − +Γ +Γ +Γ

+ − − − +Γ +Γ +Γ

+ +

 (5.34) 

Choose  

1 1

1 1 1
ˆ ˆ1 1 0

ˆ0 1
a

z c x

−⎡ ⎤
⎢ ⎥= = − − −⎢ ⎥
⎢ ⎥− − + −⎣ ⎦

Γ -I - A - B  (5.35) 

2
2 2 2ˆa a y e e a= = − + −  

2
2 3 3ˆc c z e e c= = − −  (5.36) 

We obtain 

2 2 2 2 2
1 2 3 H.O.T.of 0V e e e a c e= − − − − − + ≤  (5.37) 
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By Lyapunov asymptotical stability theorem, 1 2 3 0e e e a c= = = = =  is 

asymptotically stable. The initial states is (-20,10,25), (-20.1,10.5,25) and system 

parameters 0.2,a =  0.2b = , 5.7c = ,  and initial values of estimate for uncertain 

parameters ˆ ˆ 0a c= = . The state errors and estimated parameters versus time are 

shown in Fig. 5.5 and Fig. 5.6.  Fig. 5.5 shows that state errors quickly approach 

zeros. The estimated parameters approach the uncertain parameters as shown in Fig. 

5.6. In the second and third examples, the synchronizations are local synchronization. 

5.4 Summary 

In this Chapter a general strategy to achieve adaptive chaos synchronization by 

variable strength linear coupling is studied. Lyapunov function derivative in series 

form is first used in this Chapter, which is easier to be obtained than the traditional 

negative sum of the square of error variables. In most cases, local synchronization is 

good enough, while global synchronization is an unnecessary high demand. Lorenz 

system, Duffing system and Rössler system are used as simulation examples which 

effectively confirm the scheme and our opinion. 
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Fig. 5.1 Time histories of errors for Lorenz system. 
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Fig. 5.2 Time histories of estimated parameters for Lorenz system. 
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Fig. 5.3 Time histories of errors for Duffing system.  
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Fig. 5.4  Time histories of estimated parameters for Duffing system. 
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Fig. 5.5  Time histories of errors for Rössler system. 
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Fig. 5.6  Time histories of estimated parameters for Rössler system. 
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Chapter 6 

Chaos Generalized Synchronization by Partial Region 

Stability Theory 

6.1 Preliminary 

In this Chapter, a new chaos generalized synchronization strategy by partial 

region stability theory is proposed. By using the theory of stability on partial region 

the Lyapunov function is a simple linear homogeneous function of states and the 

controllers are simpler and have less simulation error because they are in lower order 

than that of traditional controllers. Lorenz system and Rössler system are used as 

simulated examples. 

 

6.2 Chaos Generalized Synchronization Strategy by Partial Region Stability 

Theory 

Consider the following unidirectional coupled chaotic systems  

( , )
( , )
t
t

=
= +

x f x
y h y u

 (6.1) 

where [ ]1 2, , , T n
nx x x R= ∈x , [ ]1 2, , , T n

ny y y R= ∈y  denote two state vectors, f  

and h  are nonlinear vector functions, and [ ]1 2, , , T n
nu u u R= ∈u  is a control input 

vector. 

The generalized synchronization can be accomplished when t →∞ , the limit of 

the error vector [ ]1 2, , , T
ne e e=e  approaches zero: 

lim 0
t→∞

=e   (6.2) 

where 

( )= −e G x y  (6.3) 
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By using the theory of stability on partial region, the Lyapunov function is easier 

to find, since the terms of first degree can be used to construct the definite Lyapunov 

function and the controller can be designed in lower order. 

6.2.1 Definition of the Stability on Partial Region 

Consider the differential equations of disturbed motion of a nonautonomous 
system in the normal form 

1( , , , ), ( 1, , )s
s n

dx X t x x s n
dt

= =  (6.4) 

where the function sX  is defined on the intersection of the partial region Ω  

(shown in Fig. 6.1) and 

2
s

s
x H≤∑  (6.5) 

and 0t t> , where 0t  and H are certain positive constants. sX which vanishes when 

the variables sx  are all zero, is a real valued function of t, 1, , nx x . It is assumed 

that sX  is smooth enough to ensure the existence, uniqueness of the solution of the 

initial value problem. When sX  does not contain t explicitly, the system is 

autonomous. 

Obviously, 0 ( 1, )sx s n= =  is a solution of Eq. (6.4). We are interested to 
the asymptotical stability of this zero solution on partial region Ω  (including the 
boundary) of the neighborhood of the origin which in general may consist of several 
subregions (Fig. 6.1). 

Definition 1: 

For any given number 0ε > , if there exists a 0δ > , such that on the closed 
given partial region Ω  when 

2
0 , ( 1, , )s

s
x s nδ≤ =∑  (6.6) 

for all 0t t≥ , the inequality 

2 , ( 1, , )s
s

x s nε≤ =∑  (6.7) 

is satisfied for the solutions of Eq.(6.4) on Ω , then the disturbed motion 

0 ( 1, )sx s n= =  is stable on the partial region Ω . 
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Definition 2: 

If the undisturbed motion is stable on the partial region Ω , and there exists a 
' 0δ > , so that on the given partial region Ω  when 

2 '
0 , ( 1, , )s

s
x s nδ≤ =∑  (6.8) 

The equality 

2lim 0st s
x

→∞

⎛ ⎞ =⎜ ⎟
⎝ ⎠
∑  (6.9) 

is satisfied for the solutions of Eq.(6.4) on Ω , then the undisturbed motion 

0 ( 1, )sx s n= =  is asymptotically stable on the partial region Ω . 

The intersection of Ω  and region defined by Eq.(6.8) is called the region of 
attraction. 

Definition of Functions 1( , , , )nV t x x : 

Let us consider the functions 1( , , , )nV t x x  given on the intersection 1Ω  of 
the partial region Ω  and the region 

2 , ( 1, , )s
s

x h s n≤ =∑  (6.10) 

for 0 0t t≥ > , where 0t  and h are positive constants. We suppose that the functions 

are single-valued and have continuous partial derivatives and become zero when 

1 0nx x= = = . 

Definition 3: 

If there exists 0 0t >  and a sufficiently small 0h > , so that on partial region 

1Ω  and 0t t≥ , 0V ≥  (or 0≤ ), then V is a positive (or negative) semidefinite, in 
general semidefinite, function on the 1Ω  and 0t t≥ . 

Definition 4: 

If there exists a positive (negative) definitive function 1( )nW x x…  on 1Ω , so 
that on the partial region 1Ω  and 0t t≥  

0 ( 0),V W or V W− ≥ − − ≥  (6.11) 

then 1( , , , )nV t x x…  is a positive definite function on the partial region 1Ω  and 

0t t≥ . 

Definition 5: 

If 1( , , , )nV t x x…  is neither definite nor semidefinite on 1Ω  and 0t t≥ , then 
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1( , , , )nV t x x…  is an indefinite function on partial region 1Ω  and 0t t≥ . That is, for 
any small 0h >  and any large 0 0t > , 1( , , , )nV t x x…  can take either positive or 
negative value on the partial region 1Ω  and 0t t≥ . 

Definition 6: Bounded function V 

If there exist 0 0t > , 0h > , so that on the partial region 1Ω , we have 

1( , , , )nV t x x L<…  

where L is a positive constant, then V is said to be bounded on 1Ω . 

Definition 7:  Function with infinitesimal upper bound 

If V is bounded, and for any 0λ > , there exists 0μ > , so that on 1Ω  when 
2
s

s
x μ≤∑ , and 0t t≥ , we have 

1( , , , )nV t x x λ≤…  

then V admits an infinitesimal upper bound on 1Ω . 

6.2.2 Theorem of stability and of asymptotical stability on partial region 

Theorem 6.1 

If there can be found for the differential equations of the disturbed motion (Eq. 
6.4) a definite function 1( , , , )nV t x x…  on the partial region, and for which the 
derivative with respect to time based on these equations as given by the following : 

1

n

s
s s

dV V V X
dt t x=

∂ ∂
= +
∂ ∂∑  (6.12) 

is a semidefinite function on the paritial region whose sense is opposite to that of V, or 

if it becomes zero identically, then the undisturbed motion is stable on the partial 

region. 

Proof: 

Let us assume for the sake of definiteness that V is a positive definite function. 

Consequently, there exists a sufficiently large number 0t  and a sufficiently small 

number h < H, such that on the intersection 1Ω  of partial region Ω  and 

2 , ( 1, , )s
s

x h s n≤ =∑ …  

and 0t t≥ , the following inequality is satisfied 
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1 1( , , , ) ( , , ),n nV t x x W x x≥… …  

where W is a certain positive definite function which does not depend on t. Besides 

that, Eq. (6.12) may assume only negative or zero value in this region. 

Let ε  be an arbitrarily small positive number. We shall suppose that in any case 

hε < . Let us consider the aggregation of all possible values of the quantities 

1, , nx x… , which are on the intersection 2ω  of 1Ω  and 

2 ,s
s

x ε=∑  (6.13) 

and let us designate by 0l >  the precise lower limit of the function W under this 

condition. by virtue of Eq. (6.11), we shall have 

1( , , , )nV t x x l≥…  for 1( , , )nx x…  on 2ω . (6.14) 

We shall now consider the quantities sx  as functions of time which satisfy the 

differential equations of disturbed motion. We shall assume that the initial values 0sx  

of these functions for 0t t=  lie on the intersection 2Ω of 1Ω and the region 

2 ,s
s

x δ≤∑  (6.15) 

where δ  is so small that 

0 10 0( , , , )nV t x x l<…   (6.16) 

By virtue of the fact that 0( ,0, ,0) 0V t =… , such a selection of the number δ  is 

obviously possible. We shall suppose that in any case the number δ  is smaller than 

ε .Then the inequality 

2 ,s
s

x ε≤∑   

being satisfied at the initial instant will be satisfied, in the very least, for a sufficiently 

small 0t t− , since the functions ( )sx t  very continuously with time. We shall show 

that these inequalities will be satisfied for all values 0t t> . Indeed, if these 

inequalities were not satisfied at some time, there would have to exist such an instant 

t=T for which this inequality would become an equality. In other words, we would 
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have 

2 ( ) ,s
s

x T ε=∑  

and consequently, on the basis of Eq. (6.14) 

1( , ( ), , ( ))nV T x T x T l≥…   (6.17) 

On the other hand, since hε < , the inequality (Eq.(10)) is satisfied in the entire 

interval of time [t0, T], and consequently, in this entire time interval 0dV
dt

≤ . This 

yields 

1 0 10 0( , ( ), , ( )) ( , , , ),n nV T x T x T V t x x≤… …   

which contradicts Eq. (6.17) on the basis of Eq. (6.16). Thus, the inequality (Eq.(6.7)) 

must be satisfied for all values of 0t t> , hence follows that the motion is stable. 

Finally, we must point out that from the view-point of mathematics, the stability 

on partial region in general does not be related logically to the stability on whole 

region. If an undisturbed solution is stable on a partial region, it may be either stable 

or unstable on the whole region and vice versa. From the viewpoint of dynamics, we 

wre not interesting to the solution starting from 2Ω  and going out of Ω . 

Theorem 6.2 

If in satisfying the conditions of Theorem 1, the derivative dV
dt

 is a definite 

function on the partial region with opposite sign to that of V and the function V itself 

permits an infinitesimal upper limit, then the undisturbed motion is asymptotically 

stable on the partial region. 

Proof: 

Let us suppose that V is a positive definite function on the partial region and that 

consequently, dV
dt

 is negative definite. Thus on the intersection 1Ω  of Ω  and the 

region defined by Eq. (6.10) and 0t t≥  there will be satisfied not only the inequality 
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(Eq.(6.11)), but the following inequality as will: 

1 1( , ),n
dV W x x
dt

≤ − …  (6.18) 

where 1W  is a positive definite function on the partial region independent of t. 

Let us consider the quantities sx  as functions of time which satisfy the 

differential equations of disturbed motion assuming that the initial values 0 0( )s sx x t=  

of these quantities satisfy the inequalities (Eq. (6.15)). Since the undisturbed motion is 

stable in any case, the magnitude δ  may be selected so small that for all values of 

0t t≥  the quantities sx  remain within 1Ω . Then, on the basis of Eq. (6.18) the 

derivative of function 1( , ( ), , ( ))nV t x t x t…  will be negative at all times and, 

consequently, this function will approach a certain limit, as t increases without limit, 

remaining larger than this limit at all times. We shall show that this limit is equal to 

some positive quantity different from zero. Then for all values of 0t t≥  the following 

inequality will be satisfied: 

1( , ( ), , ( ))nV t x t x t α>…  (6.19) 

where 0α > . 

Since V permits an infinitesimal upper limit, it follows from this inequality that 

2 ( ) , ( 1, , ),s
s

x t s nλ≥ =∑ …  (6.20) 

where λ  is a certain sufficiently small positive number. Indeed, if such a number λ  

did not exist, that is , if the quantity ( )s
s

x t∑  were smaller than any preassigned 

number no matter how small, then the magnitude 1( , ( ), , ( ))nV t x t x t… , as follows 

from the definition of an infinitesimal upper limit, would also be arbitrarily small, 

which contradicts (6.19). 

If for all values of 0t t≥  the inequality (Eq. (6.20)) is satisfied, then Eq. (6.18) 

shows that the following inequality will be satisfied at all times: 



67 

1,
dV l
dt

≤ −  

where 1l  is positive number different from zero which constitutes the precise lower 

limit of the function 1 1( , ( ), , ( ))nW t x t x t…  under condition (Eq. (6.20)). Consequently, 

for all values of 0t t≥  we shall have: 

0
1 0 10 0 0 10 0 1 0( , ( ), , ( )) ( , , , ) ( , , , ) ( ),

t

n n nt

dVV t x t x t V t x x dt V t x x l t t
dt

= + ≤ − −∫… … …
 

which is, obviously, in contradiction with Eq.(6.19). The contradiction thus obtained 

shows that the function 1( , ( ), , ( ))nV t x t x t…  approached zero as t increase without 

limit. Consequently, the same will be true for the function 1( ( ), , ( ))nW x t x t…  as well, 

from which it follows directly that 

lim ( ) 0, ( 1, , ),st
x t s n

→∞
= = …  

which proves the theorem. 

 

6.3 Numerical Simulations 

The following example is two Lorenz systems x and y, with the unidirectional 

coupling: 

1 2 1

2 1 1 3 2

3 1 2 3

( )x x x
x x x x x
x x x x

σ
γ

β

= −
= − −
= −

 (6.21) 

1 2 1 1

2 1 1 3 2 2

3 1 2 3 3

( )y y y u
y y y y y u
y y y y u

σ
γ

β

= − +
= − − +
= − +

 

CASE I. The generalized synchronization error function is 100= − +e x y . 

Our goal is 100= +y x , i.e. lim lim( 100) 0
t t→∞ →∞

= − + =e x y  (6.22) 

The error dynamics becomes 

1 1 1 2 1 2 1 1

2 2 2 1 1 3 2 1 1 3 2 2

3 3 3 1 2 3 1 2 3 3

( ) ( )
( )

( )

e x y x x y y u
e x y x x x x y y y y u
e x y x x x y y y u

σ σ
γ γ

β β

= − = − − − −
= − = − − − − − −
= − = − − − −

 (6.23) 
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Let initial states is 10 20 30( , , )x x x = (0.5, 1, 5), 10 20 30( , , )y y y = (0.6, 3, 10) and system 

parameters 10σ = , 28γ = , 8 3β = , we find the error dynamic always exist in first 

quadrant showed in Fig. 6.2 By partial region stability, one can choose a Lyapunov 

function in the form of a positive definite function in first quadrant: 

1 2 3V e e e= + +   

Its time derivative is 

( ) ( )
( )

1 2 3

2 1 2 1 1 1 1 3 2 1 1 3 2 2

1 2 3 1 2 3 3

( ) ( ) ( )

( )

V e e e
x x y y u x x x x y y y y u

x x x y y y u

σ σ γ γ

β β

= + +

= − − − − + − − − − − −

+ − − − −

 (6.24) 

Choose  

1 2 1 2 1 1

2 1 1 3 2 1 1 3 2 2

3 1 2 3 1 2 3 3

( ) ( )
( )

( )

u x x y y e
u x x x x y y y y e
u x x x y y y e

σ σ
γ γ

β β

= − − − +
= − − − − − +
= − − − +

 (6.25) 

We obtain 

1 2 3 0V e e e= − − − <  (6.26) 

which is negative definite function. Three state errors versus time and time histories 

of states are shown in Fig. 6.3 and Fig. 6.4.  

CASE II. The generalized synchronization error function is sin 100i i ie x y F tω= − + + , 

i=1, 2, 3. 

Our goal is sin 100tω= + +y x F , i.e. lim lim( sin 100) 0i i it t
e x y F tω

→∞ →∞
= − + + = , 

1,2,3i =  

The error dynamics become 

1 2 1 2 1 1

2 1 1 3 2 1 1 3 2 2

3 1 2 3 1 2 3 3

( ) ( ) cos
( ) cos

( ) cos

e x x y y u F t
e x x x x y y y y u F t
e x x x y y y u F t

σ σ ω ω
γ γ ω ω

β β ω ω

= − − − − +
= − − − − − − +
= − − − − +

 (6.27) 

Let initial states is 10 20 30( , , )x x x = (0.5, 1, 5), 10 20 30( , , )y y y = (0.6, 3, 10) and system 
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parameters 10σ = , 28γ = , 8 3β = , 10F =  and  0.1ω = , we find the error 

dynamic always exists in first quadrant showed in Fig. 6.5. By partial region stability, 

one can choose a Lyapunov function in the form of a positive definite function in first 

quadrant: 

1 2 3V e e e= + +   

Its time derivative is 

( ) (
) ( )

2 1 2 1 1 1 1 3 2 1 1 3 2

2 1 2 3 1 2 3 3

( ) ( ) cos ( )

cos ( ) cos

V x x y y u t x x x x y y y y

u t x x x y y y u t

σ σ ω ω γ γ

ω ω β β ω ω

= − − − − + + − − − − −

− + + − − − − +

 (6.28) 

Choose  

1 2 1 2 1 1

2 1 1 3 2 1 1 3 2 2

3 1 2 3 1 2 3 3

( ) ( ) cos
( ) cos

( ) cos

u x x y y t e
u x x x x y y y y t e
u x x x y y y t e

σ σ ω ω
γ γ ω ω

β β ω ω

= − − − + +
= − − − − − + +
= − − − + +

 (6.29) 

We obtain 

1 2 3 0V e e e= − − − <  (6.30) 

which is negative definite function. Three state errors versus time and time histories 

of 100i ix y− +  are shown in Fig. 6.6 and Fig. 6.7.  

CASE III. The generalized synchronization error function is 21 100
2i i ie x y= − + , i=1, 

2, 3. 

Our goal is 21 100
2

= +y x , i.e. 21lim lim( 100) 0
2t t→∞ →∞

= − + =e x y  

The error dynamics become 

1 1 1 1 1 2 1 2 1 1

2 2 2 2 2 1 1 3 2 1 1 3 2 2

3 3 3 3 3 1 2 3 1 2 3 3

( ) ( )
( ) ( )
( ) ( )

e x x y x x x y y u
e x x y x x x x x y y y y u
e x x y x x x x y y y u

σ σ
γ γ

β β

= − = − − − −
= − = − − − − − −
= − = − − − −  (6.31) 

Let initial states is 10 20 30( , , )x x x = (0.5, 1, 5), 10 20 30( , , )y y y = (0.6, 3, 10) and 

system parameters 10σ = , 28γ = , 8 3β = , we find the error dynamic always exist 
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in first quadrant showed in Fig. 6.8. By partial region stability, one can choose a 

Lyapunov function in the form of a positive definite function in first quadrant: 

1 2 3V e e e= + +   

Its time derivative is 

( ) ( )
( )
1 2 1 2 1 1 2 1 1 3 2 1 1 3 2 2

3 1 2 3 1 2 3 3

( ) ( ) ( ) ( )

( ) ( )

V x x x y y u x x x x x y y y y u

x x x x y y y u

σ σ γ γ

β β

= − − − − + − − − − − −

+ − − − −

 (6.32) 

Choose  

1 1 2 1 2 1 1

2 2 1 1 3 2 1 1 3 2 2

3 3 1 2 3 1 2 3 3

( ) ( )
( ) ( )
( ) ( )

u x x x y y e
u x x x x x y y y y e
u x x x x y y y e

σ σ
γ γ

β β

= − − − +
= − − − − − +
= − − − +

 (6.33) 

We obtain 

1 2 3 0V e e e= − − − <  (6.34) 

which is negative definite function. Three state errors versus time are shown in Fig. 

6.9.  

CASE IV. The generalized synchronization error function is 100= − + +e x y z , z 

is the state vector of Rössler system. 

The goal system for synchronization is Rössler system and initial states is (20, 10, 

25), system parameters 0.2a = , 0.2b = , 5.7c = . 

1 2 3

2 1 2

3 3 1( )

z z z
z z az
z b z z c

= − −
= +
= + −  

We have lim lim( 100) 0
t t→∞ →∞

= − + + =e x y z  

The error dynamics become 

1 2 1 2 1 1 2 3

2 1 1 3 2 1 1 3 2 2 1 2

3 1 2 3 1 2 3 3 3 1

( ) ( )
( )

( ) ( )

e x x y y u z z
e x x x x y y y y u z az
e x x x y y y u b z z c

σ σ
γ γ

β β

= − − − − − −
= − − − − − − + +
= − − − − + + −  (6.35) 
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Let initial states is 10 20 30( , , )x x x = (0.5, 1, 5), 10 20 30( , , )y y y = (0.6, 3, 10) and 

system parameters 10σ = , 28γ = , 8 3β = , we find the error dynamic always exist 

in first quadrant showed in Fig. 6.10. By partial region stability, one can choose a 

Lyapunov function in the form of a positive definite function in first quadrant: 

1 2 3V e e e= + +   

Its time derivative is 

( )
( )
( )

2 1 2 1 1 2 3

1 1 3 2 1 1 3 2 2 1 2

1 2 3 1 2 3 3 3 1

( ) ( )

( )

( ) ( )

V x x y y u z z

x x x x y y y y u z az

x x x y y y u b z z c

σ σ

γ γ

β β

= − − − − − −

+ − − − − − − + +

+ − − − − + + −  (6.36) 

Choose  

1 2 1 2 1 2 3 1

2 1 1 3 2 1 1 3 2 1 2 2

3 1 2 3 1 2 3 3 1 3

( ) ( )
( )

( ) ( )

u x x y y z z e
u x x x x y y y y z az e
u x x x y y y b z z c e

σ σ
γ γ

β β

= − − − − − +
= − − − − − + + +
= − − − + + − +

 (6.37) 

We obtain 

1 2 3 0V e e e= − − − <  (6.38) 

which is negative definite function. Three state errors versus time and time histories 

of 100i ix y− +  are shown in Fig. 6.11 and Fig. 6.12. 

6.4 Summary 

In this Chapter, a new strategy to achieve chaos generalized synchronization by 

partial region stability is proposed. By using the theory of stability on partial region 

the Lyapunov function is a simple linear homogeneous function of states and the 

controllers are simpler and have less simulation error because they are in lower order 

than that of traditional controllers. The Lorenz system and Rössler system are used as 

simulation examples which effectively confirm the scheme. 

 

 



72 

subregion 2

subregion 3

subregion 1

Ω Ω

Ω

X1

O

X2

Ω1

Ω1

Ω1

 
Fig. 6.1 Partial region Ω  and 1Ω . 
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Fig. 6.2 Phase portrait of error dynamics for Case I. 
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Fig. 6.3 Time histories of errors for Case I. 
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Fig. 6.4 Time histories of x1, x2, x3, y1, y2, y3 for Case I. 
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Fig. 6.5 Phase portrait of error dynamics for Case II. 
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Fig. 6.6 Time histories of errors for Case II. 

 



75 

0 50 100 150
-100

0

100

200

0 50 100 150
-100

0

100

200

0 50 100 150
-100

0

100

200

time(sec)
 

Fig. 6.7 Time histories of 100i ix y− +  and sinF tω−  for Case II. 
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Fig. 6.8 Phase portrait of error dynamics for Case III. 
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Fig. 6.9 Time histories of errors for Case III. 

 

 

 

50

100

150

50

100

150
50

100

150

200

e1
e2

e3

 
Fig. 6.10 Phase portrait of error dymanics for Case IV. 
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Fig. 6.11 Time histories of errors for Case IV. 
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Fig. 6.12 Time histories of 100− +x y  and −z  for Case IV. 
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Chapter 7 

Chaos Control by Partial Region Stability Theory 

7.1 Preliminary 

In this Chapter, a new scheme to achieve chaos control by partial region stability 

is proposed. By using the theory of stability on partial region the Lyapunov function is 

a simple linear homogeneous function of states and the controllers are simpler and 

have less simulation error because they are in lower order than that of traditional 

controllers. The Lorenz system is used as simulation examples. 

 

7.2 Chaos Control Scheme 

Consider the following chaotic systems 

( , )t=x f x  (7.1) 

where [ ]1 2, , , T n
nx x x R= ∈x  is a the state vector, : n nR R R+ × →f  is a vector 

function.  

The goal system which can be either chaotic or regular is  

( , )t=y g y  (7.2) 

where [ ]1 2, , , T n
ny y y R= ∈y  is a state vector, : n nR R R+ × →g  is a vector 

function. 
In order to make the chaos state x  approaching the goal state y , define 

= −e x y  as the state error. The chaos control is accomplished in the sense that: 

lim lim( ) 0
t t→∞ →∞

= − =e x y   (7.3) 

In this Chapter, we will use examples in which the e state is placed in the first 

quadrant of coordinate system and use the theory of stability on partial region, the 

Lyapunov function is a simple linear homogeneous function of states and the 

controllers are simpler because they are in lower order than that of traditional 
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controllers 

7.3 Numerical Simulations 

The following chaotic system is the Lorenz system of which the old origin is 

translated to 1 2 3( , , ) (100,100,100)x x x =  and the chaotic motion always happens in 

the first quadrant of coordinate system 1 2 3( , , )x x x . This special Lorenz system is 

presented as simulated examples which the initial conditions is x1(0) =80, x2(0) =100, 

x3(0) =90, 10σ = , 28γ = , 8 3β = . The chaotic motion showed in Fig. 7.1. 

1 2 1

2 1 1 3 2

3 1 2 3

(( 100) ( 100))
( 100) ( 100)( 100) ( 100)

( 100)( 100) ( 100)

x x x
x x x x x
x x x x

σ
γ

β

= − − −
= − − − − − −
= − − − −

 (7.4) 

In order to lead (x1, x2, x3) to the goal, we add control terms u1, u2 and u3 to each 

equation of Eq. (7.4), respectively. 

1 2 1 1

2 1 1 3 2 2

3 1 2 3 3

(( 100) ( 100))
( 100) ( 100)( 100) ( 100)

( 100)( 100) ( 100)

x x x u
x x x x x u
x x x x u

σ
γ

β

= − − − +
= − − − − − − +
= − − − − +

 (7.5) 

CASE I. Control the chaotic motion to zero. 

In this case we will control the chaotic motion of the Lorenz system (7.4) to zero. 

The goal is 0=y . The state error is = − =e x y x  and error dynamics becomes 

1 1 2 1 1

2 2 1 1 3 2 2

3 3 1 2 3 3

(( 100) ( 100))
( 100) ( 100)( 100) ( 100)

( 100)( 100) ( 100)

e x x x u
e x x x x x u
e x x x x u

σ
γ

β

= = − − − +
= = − − − − − − +
= = − − − − +

 (7.6) 

In Fig. 7.2, we see that the error dynamics always exists in first quadrant.  

By partial region stability, one can easy choose a Lyapunov function in the form 

of a positive definite function in first quadrant as: 

1 2 3V e e e= + +  (7.7) 

Its time derivative through error dynamics (7.6) is 

1 2 3

2 1 1 1 1 3

2 2 1 2 3 3

(( 100) ( 100)) ( 100) ( 100)( 100)
( 100) ( 100)( 100) ( 100)

V e e e
e e u e e e

e u e e e u
σ γ

β

= + +

= − − − + + − − − −
− − + + − − − − +

 (7.8) 
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Choose  

1 2 1 1

2 1 1 3 2 2

3 1 2 3 3

(( 100) ( 100))
( ( 100) ( 100)( 100) ( 100))
(( 100)( 100) ( 100))

u e e e
u e e e e e
u e e e e

σ
γ

β

= − − − − −
= − − − − − − − −
= − − − − − −

 (7.9) 

We obtain 

1 2 3 0V e e e= − − − <   

which is negative definite function. The numerical results are shown in Fig. 7.3. After 

30 sec, the motion trajectories approach the origin. 

CASE II. Control the chaotic motion to a sine function. 

In this case we will control the chaotic motion of the Lorenz system (7.4) to sine 

function of time. The goal is sin tω=y F . The error equation  

sin t= − = −e x y x F ω   (7.10) 

lim lim( sin ) 0, 1,2,3i i i it t
e x F t iω

→∞ →∞
= − = =   

and cos , 1,2,3i i i i ie x F t iω ω= − =  and 1 2 3F F F= = . 

and the error dynamics is 

1 1 1 1 2 1 1 1 1

2 2 2 2 1 1 3 2 2 2 2

3 3 3 3 1 2 3 3 3 3

cos (( 100) ( 100)) cos
cos ( 100) ( 100)( 100) ( 100) cos
cos ( 100)( 100) ( 100) cos

e x F t x x F t u
e x F t x x x x F t u
e x F t x x x F t u

ω ω σ ω ω
ω ω γ ω ω
ω ω β ω ω

= − = − − − − +
= − = − − − − − − − +
= − = − − − − − +

 (7.11) 

In Fig. 7.4, we see that the error dynamics always exists in first quadrant. 

By partial region stability, one can easy choose a Lyapunov function in the form 

of a positive definite function in first quadrant as: 

1 2 3V e e e= + +   

Its time derivative is 

1 2 3

2 1 1 1 1 1

1 3 2 2 2 2

1 2 3 3 3 3

(( 100) ( 100)) cos ( 100)
( 100)( 100) ( 100) cos
( 100)( 100) ( 100) cos

V e e e
x x F t u x

x x x F t u
x x x F t u

σ ω ω γ
ω ω

β ω ω

= + +

= − − − − + + −
− − − − − − +

+ − − − − − +

 (7.12) 
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1 2 1 1 1 1

2 1 1 3 2 2 2 2

3 1 2 3 3 3 3

( (( 100) ( 100)) cos )
( ( 100) ( 100)( 100) ( 100) cos )
(( 100)( 100) ( 100) cos )

u x x F t e
u x x x x F t e
u x x x F t e

σ ω ω
γ ω ω

β ω ω

= − − − − − −
= − − − − − − − − −
= − − − − − − −

 (7.13) 

We obtain 

1 2 3 0V e e e= − − − <   

which is negative definite function. The numerical results are shown in Fig. 7.5 and 

Fig. 7.6, where 10F = , 1 0.7ω = , 2 0.5ω =  and 3 0.3ω = . After 30 sec., the errors 

approach zero and the motion trajectories approach to sine functions. 

CASE III. Control the chaotic motion of Lorenz system to chaotic motion of a Rössler 

system. 

In this case we will control chaotic motion of Lorenz system (7.4) to that of a 

Rössler system. The goal system is Rössler system: 

1 2 3

2 1 2

3 3 1( )

z z z
z z az
z b z z c

= − −
= +
= + −

 (7.14) 

The error equation is , lim 0
t→∞

= − =e x z e . The error dynamics become 

1 1 1 2 1 2 3 1

2 2 2 1 1 3 2 1 2 2

3 3 3 1 2 3 3 1 3

(( 100) ( 100)) ( )
( 100) ( 100)( 100) ( 100) ( )

( 100)( 100) ( 100) ( ( ))

e x z x x z z u
e x z x x x x z az u
e x z x x x b z z c u

σ
γ

β

= − = − − − − − − +
= − = − − − − − − − + +
= − = − − − − − + − +

 (7.15) 

By Fig. 7.7, we know the error dynamic always exist in first quadrant. 

By partial region stability, one can easy choose a Lyapunov function in the form 

of a positive definite function in first quadrant as: 

1 2 3V e e e= + +   

Its time derivative is 
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( )
( )
( )

1 2 3

2 1 2 3 1

1 1 3 2 1 2 2

1 2 3 3 1 3

(( 100) ( 100)) ( )

( 100) ( 100)( 100) ( 100) ( )

( 100)( 100) ( 100) ( ( ))

V e e e
x x z z u

x x x x z az u

x x x b z z c u

σ

γ

β

= + +

= − − − − − − +

+ − − − − − − − + +

+ − − − − − + − +

 (7.16) 

Choose  

( )
( )

1 2 1 2 3 1

2 1 1 3 2 1 2 2

3 1 2 3 3 1 3

(( 100) ( 100))
( 100) ( 100)( 100) ( 100) ( )

( 100)( 100) ( 100) ( ( ))

u x x z z e
u x x x x z az e

u x x x b z z c e

σ
γ

β

= − − − − − − −

= − − − − − − − − + −

= − − − − − − + − −

 (7.17) 

We obtain 

1 2 3 0V e e e= − − − <   

which is negative definite function. The numerical results are shown in Fig.7.8 and 

Fig. 7.9 where 0.2,a =  0.2b =  and 5.7c = . After 30 sec., the errors approach zero 

and the chaotic trajectories of Lorenz system approach to that of the Rössler system. 

 

7.4 Summary 

In this Chapter, a new strategy to achieve chaos control by partial region stability 

is proposed. By using theory of stability on partial region the Lyapunov function is a 

simple linear homogeneous function of error states and the controller is simpler 

because they are of lower order. The Lorenz system in the first quadrant is used as 

simulation examples which effectively confirm the scheme. 
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Fig. 7.1 Chaotic phase portrait for Lorenz system in the first quadrant.  
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Fig. 7.2 Phase portrait of error dynamics for Case I. 
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Fig. 7.3 Time histories of x1, x2, x3 for Case I. 
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Fig. 7.4 Phase portrait of error dynamics for Case II. 
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Fig. 7.5 Time histories of errors for Case II. 
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Fig. 7.6 Time histories of x1, x2, x3 for Case II. 
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Fig. 7.7 Phase portrait of error dynamics for Case III. 
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Fig. 7.8 Time histories of errors for Case III. 
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Fig. 7.9 Time histories of x1, x2, x3 for Case III. 
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Chapter 8 

Conclusions 

Chaotic systems exhibit sensitive dependence on initial conditions. Slight errors 

of initial conditions will lead to completely different trajectories. Because of this 

property, chaotic systems are thought difficult to be synchronized or controlled. There 

are many control techniques which are presented to synchronize and control chaotic 

systems. In this thesis, the theorems of unsynchronizability, synchronization and 

generalized unsynchronization for coupled chaotic systems, chaos synchronization 

and adaptive chaos synchronization by variable strength linear coupling and chaos 

synchronization and control by partial region stability are presented. 

In Chapter 2, two theorems which give the criteria of unsynchronizability for two 

different chaotic dynamic systems are presented. A sufficient criterion for 

synchronization is enhanced to necessary and sufficient one. Three simulated 

examples are given to illustrate the theory. 

In Chapter 3, two theorems are proposed. They give the criteria of generalized 

unsynchronization for two different chaotic dynamic systems with whatever large 

strength of linear coupling. Chen system and Rössler system with two corresponding 

new chaotic systems proposed are used as simulation examples which effectively 

confirm the theorems. 

In Chapter 4, two theorems for chaos synchronization are proposed by using 

variable strength linear coupling without another active control, while the time 

derivative of Lyapunov function in series form is firstly used, which makes the 

demand for Lyapunov function derivative as negative sum of the square of state 

variables, lower. They give the criteria of chaos synchronization for two identical 
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chaotic systems and for two different chaotic dynamic systems. Either local 

synchronization which is mostly good enough or global synchronization which is 

mostly an unnecessary high demand can be obtained. Lorenz system, Duffing system, 

Rössler system and Hyper-Rössler system are used as simulation examples which 

effectively confirm the scheme. 

In Chapter 5, adaptive chaos synchronization by variable strength linear coupling 

is studied. By using adaptive synchronization, we not only obtain the synchronization 

of chaotic states only by variable strength linear coupling without using another active 

control which is usually rather complex, but also obtain parameter pursuance. 

Furthermore, Lyapunov function derivative in series form is used in this paper. In 

most cases, local synchronization is good enough, while global synchronization is an 

unnecessary high demand. Lorenz system, Duffing system and Rössler system are 

used as simulation examples which effectively confirm the scheme and our opinion. 

In Chapter 6, a new strategy to achieve chaos generalized synchronization by 

partial region stability is proposed. By using the theory of stability on partial region 

the Lyapunov function is a simple linear homogeneous function of states and the 

controllers are simpler and have less simulation error because they are in lower order 

than that of traditional controllers. The Lorenz system and Rössler system are used as 

simulation examples which effectively confirm the scheme. 

In Chapter 7, a new strategy to achieve chaos control by partial region stability is 

proposed. By using theory of stability on partial region the Lyapunov function is a 

simple linear homogeneous function of error states and the controller is simpler 

because they are of lower order. The Lorenz system in the first quadrant is used as 

simulation examples which effectively confirm the scheme. 
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