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Abstract

This thesis consists of three parts : (1) two theorems of unsynchronizability and

synchronization for coupled chaotic. systems and two theorems of generalized
unsynchronization for coupled chaoti¢ systems. (2) chaos synchronization by variable
strength linear coupling and Lyapunov function derivative in series form and adaptive
chaos synchronization by variable strength linear coupling. (3) chaos generalized

synchronization and chaos control by partial region stability theory.
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Chapter 1

Introduction

In recent years, synchronization in chaotic dynamic system is a very interesting
problem and has been widely studied [1-8]. Synchronization means that the state
variables of a response system approach eventually to that of a drive system. There
are many control techniques to synchronize chaotic systems, such as linear error
feedback control, adaptive control, active control [9-19]. Besides, generalized
synchronization also has been investigated in various fields. Generalized
synchronization means that there is a functional relation between the states of driving
system and response system.

Recently, the synchronizatien criteria of unidirectional coupled chaotic systems
by partial stability theory are presented [20]. In Chapter 2 of this thesis, we propose
two theorems which give the criteria*of unsynchronizability for two different chaotic
dynamic systems. Chen system, Réssler’ system and Duffing system with
corresponding new chaotic systems proposed are presented as simulated examples for
these two theorems [21-22].

In Chapter 3, we propose two theorems which give the criteria of generalized
unsynchronization for two different chaotic dynamic systems with whatever large
strength of linear coupling. Chen system and Rdossler system with corresponding new
chaotic systems proposed are presented as simulated examples for these two theorem .

In Chapter 4, a new general strategy to achieve chaos synchronization by
variable strength linear coupling without another active control is proposed, in which
Lyapunov function derivative in series form is first used. This method can give either

local synchronization which is usually good enough or global synchronization which



is usually an unnecessary high demand [23-25]. Lorenz system, Duffing system,
Rossler system and Hyper-Rdssler system are presented as simulated examples.

There are many control techniques to synchronize chaotic systems, but most of
them are based on the exact knowledge of the system structure and parameters. In
practice, some or all of the system parameters are uncertain, adaptive control method
in used. In Chapter 5, we propose a general strategy to achieve adaptive chaos
synchronization by variable strength linear coupling solely without using another
active control which is usually rather complex. Furthermore, Lyapunov function
derivative in series form is first used, which is easier to be obtained than the
traditional negative sum of the square of error variables. Lorenz system, Duffing
system and Rossler system are presented as simulation examples.

In Chapter 6, a new chaos generalized synchtonization strategy by partial region
stability theory is proposed [26-27].'By using-the theory of stability on partial region
the Lyapunov function is a simple [linear-homogeneous function of states and the
controllers are simpler and have less simulation error because they are in lower order
than that of traditional controllers where the stability of solutions on the whole
neighborhood region of the origin is demanded. Lorenz system and Rdossler system
are used as simulated examples.

In Chapter 7, a new scheme to achieve chaos control by partial region stability
theory is proposed [28]. By using the theory of stability on partial region the
Lyapunov function is a simple linear homogeneous function of states and the
controllers are simpler and have less simulation error.

In Chapter 8, conclusions of this thesis are given.



Chapter 2

The Theorems of Unsynchronizability and Synchronization

for Coupled Chaotic Systems

2.1 Preliminary

Synchronization in chaotic dynamic system is a very interesting problem and has
been widely studied in these years. Synchronization means that the state variables of a
response system approach eventually to that of a drive system. There are many control
techniques to synchronize chaotic systems, such as linear error feedback control,
adaptive control, active control. Recently, the synchronization criteria of
unidirectional coupled chaotic systems by partial stability theory are presented. In this
Chapter, we propose two theorems which give the €riteria of unsynchronizability for
two different chaotic dynamic systems. Chen system-and a new chaotic system which
we proposed are presented as ‘simulated examples for the first theorem. Rossler
system and Duffing system with two corresponding new chaotic systems proposed are

presented as simulated examples for the second theorem.

2.2 Two Theorems of Unsynchronizability

Consider the following nonautomonous systems

%, =1(t, x)) 2.1)
where x, €R", f:Q cR, xR" > R". Eq. (2.1) is considered as a master system. A

slave system is given by
X, =g(t, x,) (2.2)

where x, €eR", g:Q, cR,xR" > R". Both fand gsatisfy Lipschitz condition



and f(t, 0)=g(t,0)0=0. Q,, Q, are domains containing the origin. Assume that
the solutions of Egs. (2.1) and (2.2) are bounded then they must exist for infinite time.
That is, for given (t,, X, X,,) €Q,1Q, the solutions x,(t, t,, X,,, X,y) »
x,(t, t,, X0, X,,) Of Egs. (2.1) and (2.2) exist for t>t,. If f(t, x) =g(t, x), system
(2.1) and (2.2) are two identical systems. When f(t, x) = g(t, x), they are two
different systems.

Now we consider the following unidirectional nonautonomous coupled system
x, =f(t, x,)

. 2.3)
X, :g(t: X2)+U(t» X]axz)

where U(t, x,,X,) is a coupled term. In order to discuss the synchronization of x,
and x,, define e =x, —x, as the state error. Error equation can be written as

e=g(t, e+x))—f(t, x)+U(t, x,,e+Xx,) (2.4)

Now the first theorem will.be given|ifor'a special case of Egs. (2.3). Consider

unidirectional coupled nonautonomous systems as

x, =f(t,x,)

X, =g(L,x,) + (X 5%y) (2.5)
where f and g satisfy Lipschitz condition, and the Lipschitz constant of g is L.

I'e M, is a constant diagonal matrix with positive entries, represents the strength

of the linear coupling term x, —x,. Since e =X, —X,, the error dynamic equation
can be obtained as

e=g(t,e+x,(t)—f(t,x,(t)— Ie (2.6)
which is a nonautonomous system of differential equations for state e and has a null

solution e =0, x, =0. Now we give a definition of unsynchronizability:

Definition If no positive constant C can be found such that e >0 as t—> oo for all

||e(t0)|| < C, systems (2.5) are unsynchronizable.

Theorem 2.1 Two different dynamic systems in Eq. (2.5) are unsynchronizable for



however large coupling strength I' with positive entries, if f(t,x,)<g9;(t,x,)
(i=1...,n) in QNQ,, and ||f(t,x1)—g(t,x1)||>0 except at origin, for any
solution x,(t).

Proof. Choose a Lyapunov function V(e)=e¢ge,---e, which is positive in quadrant
e >0,e,>0,---,e >0, then V along any state trajectory of system (2.6) [25]

becomes:

V=eeg,---€€ +ee,---€€ +---+ee,---e, €
=ee,---e[g,(t,e+x)— f(t,x)-Tel+ee---e[0,(t,e+x,)—- f,(t,x,)-T,e]
~-+ee,---e [0,(te+x,)—f (t,x)-T,€e,]
=ee,---e[9,(t,e+x)—0,(tx)+0,tx)- ftx)-Tel+---+ee,---e [
gn(t’e+xl)_gn(t’xl)+ gn(taxl)_ fn(t’xl)_rnen]

When € >0,e,>0,---,e, >0, we havé

V <epe -elgte+x)—g@x)|+0tx)=ft.x)-Tel+ -+ee, e[
|gn(t9e+ Xl) - gn(tﬁxl)| + gn(tﬂxl)_ fn(tﬂxl)_rnen]
Se2e3"'en[|-||e||+ gl(t’X])_ f](taxl)_rlel]+"'

(2.7)
where |gl(t,e+ X,)— gl(t,xl)| < L||e|| follows the Lipschitz condition. When ||e|| >1,

the terms of lower degree of error components ee,---€[g,(t,x,)— f(t,x))],

ee,---e,[0,(t,x,)— f,(t,x,)], ---can be neglected when the sign of V is considered,

then

V <ee,-e[Lle|-Tel+ee elL]e|-T.e]+: (2.8)
For sufficient large I',, V can be negative in the quadrant e >0, e, >0, ---
e, >0. So the state point tends to decrease ||e(t)|| with time when ||e0|| is

sufficiently large. When ||e|| <1, the proof is as follows. Now when



e >0,e >0,---,e, >0, V s expressed as

V>ee e [-|g(te+x)—g,(tx)|[+g,tx)- fit,x)-Tel+

(2.9)
>e,e, e [-Llle[+g,(t.x) - fi(t,x)-T e+

When ||e|| <1, the terms of higher degree e.e,-- -en[—L||e|| —I'e ], can be neglected

when the sign of V is considered, then

V Zeze3"'en[gl(tsxl)_ fl(t’xl)]"'ele}"'en[gz(tax1)_ fz(tax1)]+"’ (2-10)

By the condition ||f(t,x1) —g(t,xl)” >0, f(t,x,)=0(tx,) (i=1L--,n) do not occur
simultaneously except at the origin x, =0. Therefore the right-hand side of above

inequality is positive, i.e. V is positive in region D of Fig. 2.1, which is the quadrant

e, >0, e,>0, ---, e >0 of the neighborhood of the origin.

Choose r >0 such that fortheball B, ={e eR"

||e|| <r}, we have
D = {e e B,|Vi(e) > 0} (2.11)

of which the boundary is the surfaceV(€)=0 and the sphere ||e||: r . Since

V(0) =0, the origin lies on the boundary of D inside B,. The point e, is in the
interior of D and V(e,)=b>0. Now we prove that the trajectory e(t) started at
e(0) =e, must leave the set D, i.e. the trajectory must leave the neighborhood of
origin, e cannot approach zero. To see this point, notice that as long as e(t) is

inside D, V(e(t))>b since V(e)>0 inD. Let
B =min{V(e)| ee DandV (e) > b} (2.12)

which exists since the continuous function V(e) has a minimum over the compact

set {eeDandV(e)>b} ={eeB,,andV(e)>b} [29]. Then, >0 and
V(e)=V(e,) + [ V(e(s)ds b+ [ fds=b+ft (2.13)

This inequality shows that e(t) cannot stay forever in D because V(e) is bounded

6



on D. Now, e(t) cannot leave D through the surface V(e)=0 since V(e(t))>b.

Hence, it must leave D through the sphere ||e|| =T, i.e. it must leave the neighborhood

of the origin, e can never approach zero. Two different dynamic systems in Eq.(2.5)
are unsynchronizable for however large T".
Theorem 2.2 Two different dynamic systems in Eq. (2.5) is unsynchronizable for

however large coupling strength T', if f,(t,x,)>g,(t,x) (i=1...,n) in QNQ,,

and || f(t,x,)— g(t,xl)” >0 except at origin, for any solution x,(t).

Proof. Choose a Lyapunov function V(e)=eg,---€,, then V along any state

n>?°

trajectory of system (2.6) becomes:

Case 1. When n isodd, V(e) isnegative in quadrant ¢ <0,e, <0,---e, <0.

V=eeg,---€€ +ee,---e6 +--£€86,-:6._ 6
:e2e3"'en[gl(tae+xl)_ gl(t’xl)+ gl(taxl)_ fl(t9xl)_rlel]+“'+elez'“en—l[
gn(t’e+xl)_ gn(t>X1)+ gn(taxl)_ fn(taxl)_rnen]

When e <0,e,<0,---¢, <0, we'have

V> e2e3---en[—|gl(t,e+ Xl) - gl(t9X1)| + gl(t’xl) - fl(tﬂxl)_rlel]_'_'“-i_elez.“en—l[

_|gn(t=e+ Xl) - gn(t,X1)| + gn(taxl)_ fn(t’xl) _Fnen]
> e, [-Lle|+g,tx) - fit.x)-Tel+-

(2.14)
where |gl(t,e +X,)— gl(t,x1)| < L||e|| follows the Lipschitz condition. When ||e|| >1,
the terms of lower degree of error components ee,---€[0,(t,x,)— f(t,x))] ,
ee,---e[9,(t,x,)— f,(t,x,)], ---can be neglected when the sign of V is considered,

then

VaeeelLid-Talree e Ld-Telr
=—ee,---e[L|e|+Tel-ee---e[L|e|+Tel+



For sufficient large T',, V can be positive in the quadrant e <0, e, <0, ---
e, <0. So the state point tends to decrease ||e(t)|| with time when ||e0|| 1s
sufficiently large. When ||e|| <1, the proof is as follows. Now when e <0, e, <0,

...e, <0, V isexpressed as

V<ee -gllgte+rx)—gtx)|+gtx)-ft,x)-Tel+
<e,e,---e [Llle|+g,t.x) - fi(t,x)-T e+

(2.16)
When ||e|| <1, the terms of higher degree ee,-- -en[L||e|| —-I'e], ---can be neglected
when the sign of V is considered, then

V<ee,---e[g,(tx)- ftx)]+ee--e[g,tx)- f,Etx)]+- (2.17)
By the condition ||f(t,x1) —g(t,xl)” >0, f(,x)=0(tx,) (@{=1L--,n) do not occur
simultaneously except at x, = 0. Therefore the right-hand side of above inequality is
negative, i.e. V is negative in tegion' D of Fig. 2:2, which is the quadrant e <0,

e, <0, ---, ¢, <0 ofthe neighborhood of the origin.

Choose r >0 such that for the ball B, ={eeR"

||e|| <r}, we have
D={eecB|V(e)<0} (2.18)

By the similar reasoning as that in the latter part of the proof for Theoreml, we can
prove that the state trajectory started from D must leave the neighborhood of the
origin, e can never approach zero. Two different dynamic systems in Eq. (2.5) are

unsynchronizable for however large T'.

Case 2. When n iseven, V(e) is positive in quadrant e <0,e, <0,---¢, <0.



V =gee,-€6+ee, €6 +-+ee,-e 6

=ee,---e[0,(t,e+x)—0,(tx)+0,(tx)- ft,x)-Tel+--+eeg,

"'en—l[
gn(tae+ X1)_ gn(t,Xl) + gn(t,Xl) - fn(taxl) _Fnen]

When e <0,e,<0,---¢, <0, we have

V <epe, e [-|g(te+x)—g,(tx)|+0,tx)- fit,x)-Tel+-+ee,-e_[
_|gn(tae+xl)_ gn(taX1)|+ gn(tax1)_ fn(t,xl)—Fnen]
<e,e;---e [-Lle|+g,t.x) - fit,x,)-Te]+-

(2.21)
where |gl(t,e+ X,)— gl(t,xl)| < L||e|| follows the Lipschitz condition. When ||e|| >1,

the terms of lower degree of error components e, ---€[0,(t,x,)— f(t,x)],

ee,---e,[0,(t,x,)— f,(t,x,)], ---can be neglected when the sign of V is considered,

then

V <ee e l[-lfe-Tel+ees e [-Lle|-T,el+

(2.22)
=—e,e,--gL|e|+TFel—ee, - [L|e|+T,e]+
For sufficient large T',, V can be negative in the quadrant € <0, e, <0, -
e, <0. So the state point tends to decrease ||e(t)|| with time when ||e0|| 1s
sufficiently large. When ||e|| <1, the proof is as follows. Now when € <0, e, <0,

-, e,<0, V isexpressed as

V>ee -ellgte+rx)—gtx)|+9tx)-fit,x)-Tel+ 2.23)
>ee, e [Lle|+g,t.x) - fit,x)-T e+

When ||e|| <1, the terms of higher degree eze3---en[L||e||—l"1el] ,--~can be neglected

when the sign of V is considered, then

Vv >e,e,-6,[0,(tx) - fit,x)]+ee e [0,(tx) - ftx)]+-- (224



By the condition [f(t,x,)—g(t,x,))|>0, f(t,x,)=g(t,x) (i=1:--,n) do not occur
simultaneously except at x, = 0. Therefore the right hand side of above inequality is
positive, i.e. V is positive in region D of Fig. 2.2 which is the quadrant e <0,

e, <0, -+, e, <0 ofthe neighborhood of the origin.
By the same reasoning as that in the latter part of the proof for Theorem 1, we

can prove that the state trajectory started from the neighborhood of the origin in the

quadrant € <0, e, <0, ---, € <0 must leave the neighborhood and can never

approach zero. Two different dynamic systems in Eq. (2.5) are unsynchronizable for

however large T;.
It was proved that for sufficient large ', f(t, x)=g(t, x) is the sufficient

condition for synchronization of systems (2.5), [20]. By the above two theorems,

f(t, x)=g(t, x) is enhanced =as the |-necessary: and sufficient condition for

synchronization of systems (2.5):

Theorem 2.3 If in Q NQ,;

f(t,x)— g(t,x)” >0 except at x, =0, we have
f.(t,x)>0,(t,x), f(t,x)<g(t,x) or f(t,x)=0,(t,x) (i=L...,n). With sufficient

large I, the necessary and sufficient condition for synchronization of systems (2.5)

iS fi(t,X)Zgi(t,X)a (izla'-'an) in Q:QIZQ2'

2.3 Simulated Examples
An example for the first theorem is Chen system with a new chaotic system
proposed. Consider the following unidirectional coupled systems with linear coupling

in the form of Eq. (2.5):

x=a(y-Xx)
y=(C—a)X—Xz+cy (2.252)
z=xy-bhz
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x-
Il

a(y — X) +sin’ K+ y(x— X)
J=(C—-a)X—XZ+cj+ % +y(y—7Y) (2.25b)
7=%-bZ+ % +y(z-12)

where y =300 which is sufficiently large. Eq. (2.25a) is Chen system and Eq. (2.25b)
is a new chaotic system which we proposed. The chaotic attractor and Lyapunov
exponent diagrams for system (2.25a) and (2.25b) without coupling term are shown in
Fig. 2.3, Fig. 2.4, Fig. 2.5 and Fig. 2.6. For initial states (0.5,1,5), (30,20,18) and
system parameters a=35,b=3 and c=28, three state errors versus time are
shown in Fig. 2.7 and Fig. 2.8. Fig. 2.7 shows that state errors decreases with time
when state error is large, but one can clearly find in Fig. 2.8 that the errors cannot
approach zero as time evolves.

An example for the second theorém-is Rossler system with a new chaotic system
proposed. Consider the following unidirectional coupled systems with linear coupling

in the form of Eq. (2.5):
X=-y-12
y=Xx+ay (2.26a)
Z=b+1z(x-c)

Xt
Il

—§—2Z—sin’* §+ y(Xx—X)
§=%+ay—sin’ §+y(y—V) (2.26b)
7=b+Z(X—c)—sin’ 7+ y(z - ?)

where y =300. The Lyapunov exponent diagrams for system (2.26a) and (2.26b)
without coupling term are shown in Fig. 2.9 and Fig. 2.10. For initial states (20,10,25),
(2.5,2,2.5) and system parameter a=0.2,b=0.2 and c=5.7, three state errors
versus time are shown in Fig. 2.11. Fig. 2.11 shows that state errors decreases with
time when state error is large, but one can clearly find that the errors cannot approach
zero as time evolves.

Finally, second example for the second theorem is Duffing system with a new

11



chaotic system proposed for n=2. Consider the following unidirectional coupled

systems with linear coupling in the form of Eq. (2.5):

X, =X,

. ; (2.27a)
X, ==0X, + aX, — fX +acoswt

X =%, + (X - X

1T (% =X%) (2.27b)
X, =

=-0%, +aX — % +acoswt —0.05% + (X, — X,)

where y =30. The chaotic attractor and Lyapunov exponent diagrams for system
(2.27a) and (2.27b) without coupling term are shown in Fig. 2.12 and Fig. 2.13. For
initial states (2,2), (0.1,0) and system parameters o6 =0.15, a=f=w=1 and
a=3, three state errors versus time are shown in Fig. 2.14. Fig. 2.14 shows that
state errors decreases with time when state error is large, but one can clearly find that

the errors cannot approach zero asitime evolves.

2.4 Summary

In this Chapter two theorems which give the criteria of unsynchronizability for
two different chaotic dynamic systems are presented. A sufficient criterion for
synchronization is enhanced to necessary and sufficient one. Three simulated

examples are given to illustrate the theory.

12
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=28,

with a=35,b=3 and ¢

initial cendition: (0.5,1,5).

2

Fig. 2.3  Chaotic attractor for Chen system (2.25a)
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Fig. 2.4 Lyapunov exponents for Chen system (2.25a), with b

initial condition (0.5,1,5).
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Fig. 2.5 Chaotic attractor for chaotic system (2.25b) , with a=35,b

28, initial condition (30,20,18).
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Fig. 2.6 Lyapunov exponents for chaotic system (2.25b) , with b

initial condition (30,20,18).
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Fig. 2.7 State errors versus time for unidirectional coupled systems (2.25) , with
a=35 b=3 and c =28, initial conditions (0.5,1,5), (30,20,18).
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Fig. 2.8 State errors versus time for unidirectional coupled systems (2.25) , with
a=35,b=3 and c =28, initial conditions (0.5,1,5), (30,20,18).
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Fig. 2.9 Lyapunov exponents for Rdssler system (2.26a), with b=0.2 and c=5.7,
initial condition (20,10,25).
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Fig. 2.10 Lyapunov exponent for chaotic system (2.26b) , with b=0.2 and
¢ =5.7, initial condition (2.5,2,2.5).
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Fig. 2.11 State errors versus time for unidirectional coupled systems (2.26) , with
a=02,b=02 and c=5.7, initial conditions (20,10,25), (2.5,2,2.5).
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Fig. 2.12 Lyapunov exponents for Duffing system, with a=f=w=1 and
0 =0.15, initial condition (2,2).
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Fig. 2.13 Lyapunov exponents for chaotic system (2.27b) , with a =f=w=1 and
0 =0.15, initialicondition (0.1,0).
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Fig. 2.14 State errors versus time for unidirectional coupled systems (2.27) , with
0=0.15, a=pf=w=1 and a=3, initial conditions (2,2), (0.1,0).
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Chapter 3

Two Theorems of Generalized Unsynchronization for

Coupled Chaotic Systems

3.1 Preliminary

In this Chapter, we propose two theorems which give the criteria of generalized
unsynchronization for two different chaotic dynamic systems with whatever large
strength of linear coupling. Chen system and a new chaotic system which we
proposed are presented as a simulated example for the first theorem. Rossler system
with corresponding new chaotic system proposed are presented as simulated examples

for the second theorem.

3.2 Two Theorems of Generalized Unsynchronizability
Consider the following nonautomenous systems
x=f(t, x) (3.1)

where xeR", f:Q, cR, xR" > R". Eq. (3.1) is considered as a master system. A

slave system is given by
y=g(t y) (3.2)
where yeR", g:Q, c R, xR" > R". Both fand gsatisfy Lipschitz condition.

Q,, Q, are domains containing the origin. Assume that the solutions of Egs. (3.1)
and (3.2) have bounds then they must exist for infinite time.

Now we consider the following unidirectional nonautonomous coupled system
x=f(t, x)
y=gt y)+Utxy)

where U(t,x,y) is acoupled term.

(3.3)
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Definition The system (3.3) is generalized synchronized if there is a continuous

function H(x) and let error e=y—H(x) s.t. %im”e”:O. But, if no positive

constant C can be found such that e >0 as t— o forall ||e(t0)|| < C, systems (3.3)

are generalized unsynchronizable.
In order to discuss the generalized synchronization of x and y, define

z=H(x) anderror e=y—z. Error equation can be written as
T oH
e=y—-z=g(t, e+z)—a—f(t,x)+U(t, Z,e+27) 3.4)
X

Now the first theorem will be given for a special case of Egs. (3.3). Consider

unidirectional coupled nonautonomous systems as
x =f(t,x)
y=gty)+I'(z-y)
where f and g satisfy Lipschitz condition;.and the Lipschitz constantof g is L.

(3.5)

I'eM, , is a constant diagonal matrix with positive entries which represents the

n

strength of the linear coupling. term. z—y.-Since e=y—H(x)=y—-z, the error

dynamic equation can be obtained as
é:y—i=g(t,e+z)—ﬁf(t,x)—l“e (3.6)
Ox
oH )
Let h(t,z)= 6_f (t,x), system (3.6) can be written as
X

e=y-z=g(t,e+z)-h(t,z)-Te (3.7)

which is a nonautonomous system of differential equations for state e.

Theorem 3.1 Two different dynamic systems in Eq. (3.5) are of generalized

unsynchronizability for however large coupling strength I' with positive entries, if
h(t,z)<g,(t,z) (i=L...,n) in QNQ,,and ||h(t,z)—g(t,z)|| >0 except at origin,

for any solution z(t).

21



Proof. Choose a Lyapunov function V(e)=e¢ge,---e, which is positive in quadrant

e >0,e, >0,---,e >0, then V along any state trajectory of system (3.6) becomes
[25]:

V=ee--e6+ee---e6 +---+ee,---e 6
=ee, ---e[0,(t,e+z)-h(t,z)-T'e]+ee,---e[0g,(t,e+z)-h,(t,z)-T,e,]
”'+ele2”'en—l[gn(t’e_l'z)_hn(taz)_rnen]
=ee,---e[0,(t,e+z)—0g,(t,z)+9,(t,z)-h(t,z)-T'e]+---+ee,---e [
gn(tae+z)_ gn(taz)—l_ gn(taz)_hn(taz)_rnen]

When € >0,e,>0,---,e, >0, we have

V <ee, -ellgte+z)—g(tz)|+9,tz)-h(tz)-Tel+ -+ee, e[
|gn(tae+z)_gn(taz)|+ gn(taz)_hn(taz)_rnen]
<eye,--e[L|e|+g,(t,z)—-h(tz)-Te]+

(3.8)
where |gl(t,e+z)—g](t,z)|s L||e|| follows the Lipschitz condition. When ||e|| >1,
the terms of lower degree “of rerror'-components e.e,---e [0, (t,z)—h(t,z)] ,
ee,---e[9,(t,z)—h,(t,z)], ---can be neglected when the sign of V is considered,
then

V <ee, e[Lle|-Tel+ee elL]e|-T.el+: (3.9)
For sufficient large I',, V can be negative in the quadrant e >0, e, >0, ---
e, >0. So the state point tends to decrease ||e(t)|| with time when ||e0|| is
sufficiently large. When ||e|| <1, the proof is as follows. Now when
e >0,e >0,---,e, >0, V s expressed as

V>ee -e[-|g(te+z)—g,(tz)+0(tz)-h(tz)-Tel+

(3.10)
>e.e, e [-L|e|+g,(t,z)-h(tz)-Te]+
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When ||e|| <1, the terms of higher degree e.e,-- -en[—L||e|| —I'e],---can be neglected

when the sign of V is considered, then
V>ee, e[g,tz)-h(t,z)]+ee -e[d,tz)—h(tz)]+ (3.11)
By the condition h (t,z)<g;(t,z) (i=L...,n) inQNQ,, ||h(t,z)—g(t,z)|| >0,

f.(t,z)=0,(t,z) (i=1,---,n) do not occur simultaneously. Therefore the right-hand

side of above inequality is positive, i.e. V is positive in region D of Fig. 3.1, which

is the quadrant e >0, e, >0, ---, e >0 ofthe neighborhood of the origin.

Choose r >0 such that for the ball B, ={e eR"

||e|| <r}, we have
D ={eeB,|V(e)>0} (3.12)

of which the boundary is the sufface V(e)'=0 and the sphere ||e||: r . Since

V(0) =0, the origin lies on the boundary of D inside B, . The point e, is in the
interior of D and V(e,)=b > 0. Now we prove that the trajectory e(t) started at
e(0) =e, must leave the set D, 1'e. the trajectory must leave the neighborhood of
origin, e cannot approach zero. To see this point, notice that as long as e(t) is
inside D, V(e(t))=b since V(e)>0 inD. Let

B =min{V(e)| e DandV (e) > b} (3.13)
which exists since the continuous function V(e) has a minimum over the compact
set {eeDandV(e)>b} ={eeB,,andV(e)>b} [29]. Then, >0 and

V(et)=V(e,) + [ V(e(s)ds b+ [ pds=b+ft (3.14)
This inequality shows that e(t) cannot stay forever in D because V(e) is bounded

on D. Now, e(t) cannot leave D through the surface V(e)=0 since V(e(t))>b.

Hence, it must leave D through the sphere ||e|| =T, i.e. it must leave the neighborhood

of the origin, e can never approach zero. Two different dynamic systems in Eq.(3.5)
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are unsynchronizable for however large T".

Theorem 3.2 Two different dynamic systems in Eq. (3.5) are of generalized

unsynchronizability for however large coupling strength I', if h(t,z)>g;(t,z)
(i=1...,n) in Q NQ,, and ||h(t,z)—g(t,z)|| >0 except at origin, for any solution

z(1).

Proof. Choose a Lyapunov function V(e)=eeg,---¢,, then V along any state

n>?°

trajectory of system (3.6) becomes:

Case 1. When n isodd, V(e) isnegative in quadrant € <0,e, <0,---e, <0.

V =ee,---e € +ee,---e€ +---+€8€,---€ €
=e,6,--¢[g,(t,e+2)—0,(t,2)+0,(t,z)-h(t,z)-T'e]+--+ee,---e [
gn(t7e+z)_ gn(tez)—l— gn(taz)_hn(taz)_rnen]

When e <0,e,<0,---¢, <0, wethave

V 2ee, -e[-|g (te+z)— git,z)|+ g, (t;2)—h (t,z)-T\e ]+ +ee, e[

~|g.(t,e+2)— g, (t,2)|+ gL, )= hy(t;z)=T €]
>ee, e [-Lle|+g,(t,2)-hta)-T e+

(3.15)
where |gl(t,e+z)—g](t,z)|s L||e|| follows the Lipschitz condition. When ||e|| >1,
the terms of lower degree of error components e, ---€[g,(t,z)—h(t,z)] ,
ee,---e[9,(t,z)—h,(t,z)], ---can be neglected when the sign of V is considered,

then

V>ee --e[-L|e|-Tel+ee e[-Lle|-T,el+- G16)
=—ee, e [L]e|+T e 1-ee e [L]ef+Te]+: '

For sufficient large I',, V can be positive in the quadrant e <0, e,<0, ---,

e, <0. So the state point tends to decrease ||e(t)|| with time when ||e0|| 1s
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sufficiently large. When ||e|| <1, the proof is as follows. Now when e <0, e, <0,

...e, <0, V isexpressed as

V<ee el (te+z)-gt,2)|+g(tz)-h(tz)-Tel+

(3.17)
<e,e,---e[L|e|+g,tz)—h(tz)-Tel+

When ||e|| <1, the terms of higher degree ee,-- -en[L||e|| —-I'e], ---can be neglected

when the sign of V is considered, then

V <ee, --e[g,(tz)-h(tz)]+ee---€[g,(tz)—h(tz)]+ (3.18)
By the condition ||h(t,z)—g(t,z)||>0, h(t,z)=g,(t,z) (i=1---,n) do not occur

simultaneously. Therefore the right-hand side of above inequality is negative, i.e. V

is negative in region D of Fig. 3.2, which is‘the.quadrant ¢ <0, e, <0, ---, € <0

n

of the neighborhood of the origin.

Choose I >0 such that for the ball“B, ={e  R"| |¢| <}, we have

D={ecB|V(e)<0} (3.19)

By the similar reasoning as that in the latter part of the proof for Theoreml, we can
prove that the state trajectory started from D must leave the neighborhood of the
origin, e can never approach zero. Two different dynamic systems in Eq. (3.5) are

unsynchronizable for however large I.

Case 2. When n iseven, V(e) is positive in quadrant € <0,e, <0,---e, <0.

V =ee,---e € +ee,---e€ +---+€8€,---€ €
=e,6,--¢[g,(t,e+2)—0,(t,2)+0,(t,z)-h(t,z)-Te]+--+ee,---e [
gn(t7e+z)_ gn(tez)—l— gn(taz)_hn(taz)_rnen]

When e <0,e,<0,---¢, <0, we have
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v <68, "'en[_|gl(t:e+z)_gl(taz)|+ gl(t’z)_hl(t’z)_rle1]+."+ele2“'en—l[

—|gn(t,e+z)—gn(t,z)|+ 9,(t,z)—h (t,z)-T e, ]
<e.e, ~--en[—L||e||+ 9,(t,z)—h(t,z)-T e ]+

(3.20)
where |g1(t,e+z)—gl(t,z)|£ L||e|| follows the Lipschitz condition. When ||e|| >1,
the terms of lower degree of error components e,e,---e[g,(t,z)—h(t,z)] ,
ee,---e[g,(t,z)—h,(t,z)], ---can be neglected when the sign of V is considered,

then

V< 6283---en[—L||e||—Flel]+ele3---en[—L“e" —1.8 ]+ (3.21)
=—ee,---e[L|e|+Te]-ee---e[L|e|+Te]+

For sufficient large I, V can be megative. in the quadrant e <0, e <0, -
e, <0. So the state point tends| to decrease ||e(t)|| with time when ||e0|| is
sufficiently large. When ||e|| < 1, the'proofisas follows. Now when e <0, e, <0,
-, e, <0, V ois expressed as

V2epe elg(tetz)—g,(tz)|+0,(tz)-h(tz)-Tel+
Zeze3--~en[L||e||+gl(t,z)—hl(t,z)—l“lel]+~--

(3.22)

When ||e|| <1, the terms of higher degree e2e3~--en[L||e||—Flel] ,--~can be neglected

when the sign of V is considered, then
V>ege,---e[g(tz)-h(tz)+ee---e[g,(tz)—h,(tz)]+ (3.23)

By the condition |[h(t,z)-g(t,z)|>0, h(t,z)=g;(t,z) (i=1--,n) do not occur

simultaneously. Therefore the right hand side of above inequality is positive, i.e. V

is positive in region D of Fig. 3.2 which is the quadrant e <0, e, <0, ---, € <0

n

of the neighborhood of the origin.
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By the same reasoning as that in the latter part of the proof for Theorem 1, we
can prove that the state trajectory started from the neighborhood of the origin in the

quadrant € <0, e,<0, ---, ¢ <0 must leave the neighborhood and can never

approach zero. Two different dynamic systems in Eq. (3.5) are unsynchronizable for

however large T';.

3.3 Simulated Examples
An example for the first theorem is Chen system with a new chaotic system

proposed. Consider the following unidirectional coupled systems:

x=a(y—Xx)

y=(C—a)Xx—Xz+cy (3.24a)
Z=xy-bhz

X =a(y—X)+sin’ X—ye,

§=(C—a)X=KZ +cy+ %= ye (3.24b)
7 =%y bz +X — 78,

where y=1000 which is sufficiently large. Eq. (3.24a) is Chen system and Eq.
(3.24b) without coupling is a new chaotic system which we proposed. The chaotic
attractor and Lyapunov exponent diagrams for system (3.24a) and (3.24b) without
coupling term are shown in Figs. 3.3 ~ 3.6. For initial states (0.5,1,5), (30,20,18) and
system parameters a=35,b=3 and =28, three state errors and error versus time
are shown in Figs. 3.7 ~ 3.9. Fig. 3.8 shows that errors decreases with time when
error is large, but one can clearly find in Fig. 3.9 that the errors cannot approach zero

as time evolves.
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An example for the second theorem is Rossler system with a new chaotic system
proposed. Consider the following unidirectional coupled systems with linear coupling
in the form of Eq. (3.5):

X=-y-12
y=Xx+ay (3.25a)
Z=b+1z(x-c)

X
||

—§—Z-sin’y—ye
y=X+ay-sin’ y-ye, (3.25b)
Z=b+Z(X-c)—sin’Z-ye,

e=y-z, z=H(x)=Ax+b

>

Il
o o~
S~ o
- o o

where y =300. The Lyapunov .exponentdiagrams for system (3.25a) and (3.25b)
without coupling term are shown‘in Figs. 3:10 ~ 3.11. For initial states (20,10,25),
(2.5,2,2.5) and system parametet ‘@ =0.2,b=0.2 ‘and c=5.7, three state errors and
errors versus time are shown in Figs. 3.12°~ 3.14. Fig. 3.13 shows that errors
decreases with time when error is large, but one can clearly find in Fig. 3.14 that the

errors cannot approach zero as time evolves.

3.4 Summary

In this Chapter, two theorems are proposed. They give the criteria of generalized
unsynchronization for two different chaotic dynamic systems with whatever large
strength of linear coupling. Chen system and Rossler system with two corresponding
new chaotic systems proposed are used as simulation examples which effectively

confirm the theorems.
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Fig. 3.3 Chaotic attractor for Chen system(3.24a), with a=35,b=3 and c
initial condition (0.5:1,5).
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Fig. 3.4 Lyapunov exponents for Chen system (3.24a), with b=3 and c=28,
initial condition (0.5,1,5).
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Fig. 3.5 Chaotic attractor for chaotic system (3.24b) , with a=35,b=3 and
c =28, initial condition (30,20,18).

|

Fig. 3.6 Lyapunov exponents for chaotic system (3.24b) , with b=3 and c=28,
initial condition (30,20,18).

31



1 1 1 1
0 50 100 150 200 250 300

_lo 1 1 1 1 1
0 50 100 150 200 250 300

A L o L A L L L1 LA L A M Y LS R RN e R

_15 L L L L L
0 50 100 150 200 250 300

Fig. 3.7 State errors versus time for unidirectional coupled systems (3.24) , with
a=35,b=3 and c =28, initial:conditions (0.5,1,5), (30,20,18).
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Fig. 3.8 Errors versus time for unidirectional coupled systems (3.24) , with a =35,
b=3 and c =28, initial conditions (0.5,1,5), (30,20,18).
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Fig. 3.9 Errors versus time for unidirectional coupled systems (3.24) , with
a=35,b=3 and c =28, initial:conditions (0.5,1,5), (30,20,18).

O N U

6 I I I I
0 0.05 0.1 0.15 0.2 0.25

a

Fig. 3.10 Lyapunov exponents for Rossler system (3.25a), with b=0.2 and
¢ =5.7, initial condition (20,10,25).
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Fig. 3.11 Lyapunov exponent for chaotie system (3.25b) , with b=0.2 and
¢ =5.7,nitial condition (2.5,2,2.5).
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Fig. 3.12 State errors versus time for unidirectional coupled systems (3.25) , with
a=02,b=0.2 and c=5.7, initial conditions (20,10,25), (2.5,2,2.5).
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Fig. 3.13  Errors versus time for unidirectional coupled systems (3.25) , with
a=02,b=0.2 and c=5.7, initial conditions (20,10,25), (2.5,2,2.5).
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Fig. 3.14 Errors versus time for unidirectional coupled systems (3.25) , with
a=02,b=0.2 and c=5.7, initial conditions (20,10,25), (2.5,2,2.5).
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Chapter 4

Chaos Synchronization by Variable Strength Linear

Coupling and Lyapunov Function Derivative in Series Form

4.1 Preliminary

In this Chapter, a new general strategy to achieve chaos synchronization by
variable strength linear coupling is proposed. This method, in which the time
derivative of Lyapunov function in series form is firstly used, can give either local
synchronization which is usually good enough or global synchronization which is

usually an unnecessary high demand.

4.2 Synchronization Strategy: by -Variable Strength Linear Coupling and
Lyapunov Function Derivative in Series Form

(a) Consider the following unidirectional coupled identical chaotic systems
x = Ax+f(x)

_ 4.1
y=Ay+f(y)+I'(y—x)

where x=[X,%,,,X,]' €R", y=[V,,¥,,",¥,] €R" denote two state vectors,

Ais an nxn constant coefficient matrix, f is a nonlinear vector function, and T’
is an nxn matrix which gives the variable strength of the linear coupling term
(y—x).
In order to study the synchronization of x and y, define e=y—x as the state
error. Error equation can be written as
e=Ay+f(y)+TI'(y—x)—Ax—f(x) (4.2)

By Taylor expansion
f(y) - f(x) = f(x + e)-f(x)=f'(x)e + HOT of e

(4.3)
=F(x)e+HOT of e
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where f(x) is the time derivative f(x), and F(x)=f'(x).
Theorem 4.1. The chaotic systems in Eq. (4.1) can be locally completely

synchronized, if ||e||2 is smaller than a bounded value and T is chosen such that

A+TI'+F =-C where C is positive definite diagonal matrix.

Proof. Choose a positive definite function as
1+
V(e) =Ee e (4.3)
Then

V(e)=e'é
=e' (Ay +f(y)+T(y —x) - Ax—f(x))
=e' (Ae+Te+f(y)—f(x))
=e' (A+T +F)e+HOT of e

(4.4)

Since ||e||2 is smaller than a% bounded wvalue and T is chosen such that
A+T+F=-C, Eq. (4.4) becomes V(e)==e'Ce+HOT of e<0, since —e'Ce isa
definite form, the higher order térms 'of-e haveno influence on the definiteness of V|

provided that ||e||2 is smaller than a bounded value. The proof of this theorem can be

found in [24, 25], which is used extensively in the theory of stability of motion. By
Lyapunov asymptotical stability theorem, the origin of error equation (4.2) is locally
asymptotically stable and the chaotic systems in Eq. (4.1) are locally completely
synchronized. [

Corollary 1. If f(x+e)—f(x) is a linear function of e, De, Eq. (4.4) become
V(e)=e' (A+T'+D)e. Let A+I'+D=-C, then V(e)=—e Ce<0. By Lyapunov
asymptotical stability theorem, the origin of error equation (4.2) is globally
asymptotically stable. Hence, the chaotic systems in Eq. (4.1) are globally completely
synchronized. [

(b) Consider the following two unidirectional coupled different chaotic systems
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x = Ax+f(x)
- (4.5)
y=Ay+f(y)+u

wherex=[xl,xz,-~,xn]T eR", y =[yl,y2,---,yn]T e R" denote two state vectors, A
and A are two different nxn constant coefficient matrices, f is a nonlinear
vector function, and u is the coupling vector of which the elements are functions of

x andy.

In order to study the synchronization of x and y, define e=y—x as the state
error. Error equation can be written as
é=Ay+f(y)+u—Ax—f(x) (4.6)

By Taylor expansion
f(y) - f(x) = f(x +e)-f(x)=1f'(x)e + HOT of e

4.7)
=F(x)e+HOT of e

Theorem 4.2. Choose I =-C—A —F aiid B ==A, where C is positive definite

diagonal matrix and A=A-A. The chaoiic systems in Eq. (4.5) can be locally

completely synchronized, if ||e||2 1s smaller than a bounded value and u=Te+ By .

Proof. Choose a positive definite function as

V(e) :%eTe (4.8)
Then
V(e)=e'é
=3 (éy +f(y)+u—Ax—f(x)) 4.9)
=e' (Ay + Ae+u+f(y)—f(x))
Let u=Te+By, Eq.(4.9) becomes
V(e)=e (Ay+Ae+Te+By+f(y)—f(x)) (4.10)

=e'(A+T'+F)e+e (A+B)y+HOT of e

Since ||e||2 is smaller than a bounded value, I' and B is chosen such that
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A+T'+F=-C and B=-A, Eq. (4.9) becomes V(e)=—e Ce+HOT of e<0. By

Lyapunov asymptotical stability theorem, the origin of error equation (4.6) is locally
asymptotically stable and the chaotic systems in Eq. (4.5) are locally completely
synchronized. [

Corollary 2. If f(x+e)—f(x) is a linear function of e, De, Eq. (4.10) become

V(e)=e' (A+T'+D)e+e' (A+B)y . Let A+I'+D=-C and B=-A , then

V(e)=—e"Ce<0. By Lyapunov asymptotical stability theorem, the origin of error
equation (4.6) is globally asymptotically stable, and the chaotic systems in Eq. (4.5)

are globally completely synchronized. [

4.3 Numerical Results for Typical«Chaetic Systems
First example for Theorem 4.1 is: Rossler system. Consider following two

unidirectional coupled chaotic Rossler systems:

Xl ==Y, -1
Y, =X +ay,
2, =b+12z(x —c) @.11)

Xz =-Y,— 17, +Fllel +F12e2 + r13e3
yz =X, +ay, + leel +F2282 +F2393
z2,=b+z,(x,-c)+I, e+, +T,6,

where
0 -1 -1
A=(1 a 0 (4.12)
0 0 -

Choose a Lyapunov function in the form of a positive definite function:
1
V(el,ez,e3):5(e12+e22+e32) (4.13)

by Taylor Formula
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Let

0 0 0 0 0
f(y)-f(x) = 0 =0 0 Ofe+| O
¥ -1(x) @.14)
Z,e +Xe, +ee, z, 0 X €6,
=Fe+---
-1 1 1
I'=-1-A-F=| -1 -l-a 0 (4.15)
-7, 0 -1+c-X
According to Theorem 4.1, we obtain
V=-¢ —€—e +HOT of e<0 (4.16)

is negative definite when ||e||2 is smaller than a bounded value . The Rdssler systems

in Eq.(4.11) are locally synchronized.!For initial, states (-20,10,25), (-21,10.5,25) and

system parameters a=0.2,

errors versus time are shown in‘Fig. 4.1 and Fig. 4.2.

b=0.2, €=5.7, the chaotic phase portraits and state

Second example for Corollary 4.1 is Hyper-Rossler system. Consider following

two unidirectional coupled chaotic hyper-Rossler systems:

where

X ==X, =X,
X, = X +aX, + X,
X, =b+ XX,
X, =Cx, —dXx,

Yi==Y,—Y;+T &+ 8 +T 6+ 8,
Yo=Y +ay, +y,+1,6 +0e +1e+Te,
Ys=b+yy,+T;8 +T e, +T,.6,+T 8,

Yo =Cy,— dy3 +T6+08 +T .6+ 8,

0 -1 -1 0
a 0 1
A=
O 0 0 o
0 0 -d ¢
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Choose a Lyapunov function in the form of a positive definite function:

1
V(el,ez,e3,e4) 25(812 +922 +e32 +e42)

0 y, 0 0 0
£(y)-£x) 0 0 0 0 O D
y)-f(x) = = e=De
Yi¥Ys =X X% 0 0 X 0
0 0 0 0 O
Let
~1-y, 1 1 0
-1 -l-a 0 -1
I'=-C-A-D-=
0 0 -l1-x, 0
0 0 d -1-c¢

According to Corollary 1, we obtain

V=—ge—el—e —€ <0

(4.19)

(4.20)

(4.21)

(4.22)

The Hyper-Rossler systems in Eq.(4.17)are globally synchronized. For initial states

(-20,0,0,15), (-20,10.15,15) and system parameters a=0.25, b=3, c=0.05,

d =0.5, the chaotic phase portraits and state errors versus time are shown in Fig. 4.3

and Fig. 4.4.

Third example for Theorem 4.2 is Duffing system. Consider following two

unidirectional coupled chaotic Duffing systems:

X

X, =
X, = —0X, + aX — fX +acoswt

Y=Yty

Y, :—5Ay2 +ay, - By, +acoswt +u,

where u=[u,u,]" is the coupling term.

S

Choose a Lyapunov function in the form of a positive definite function:
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1
V(e.e,) :E(elz +e22) (4.25)

by Taylor expansion

Y- ) 0 0 0 0
WO gy T ame o) T eprer o] @2e)

=Fe+H.O.T.of e
Let u=TI'e+By
-1 -1
I'=-1-A-F= 5 (4.27)
—a+3B8% —1+0
~ 0 0
B=-A=| ) (4.28)
a-a —-0+0

According to Theorem 2, we obtain

V =—¢’ —e + HOT of e <0 (4.29)

is negative definite when ||e||2 is smaller than a bounded value . The Duffing systems
(4.23) are locally synchronized. For initial states (2,2), (5,5) and system parameters
a=-0.01, §=0.1, f=w=1, a=10, a=1 and 320.15, the chaotic phase

portrait and state errors versus time are shown in Fig. 4.5 and Fig. 4.6.

Last example for Corollary 4.2 is Lorenz system. Consider following two

unidirectional coupled chaotic Lorenz systems:

X =o(y,—X)
Vi =7X —XZ Y,
4, =X%Y,~ Pz (4.30)

Xz :&(yz _X2)+ul
yz =7;X2_X222_y2+u2

Z, =x2y2—,6’22+u3

where u=[u,u,,u,]" is the coupling term.
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- o 0
A=y -1 0 (4.31)
0O 0 -p

Choose a Lyapunov function in the form of a positive definite function:

V(e.e,.€,) :%(el2 +e,° +8,) (4.32)

0 0 0 O
f(y)-fx)=| —X,2, + Xz, |=| -2, 0 -=X |[e=De (4.33)
XY, = XY, Y, X 0

Let u=TI'e+By

oc-1 -o 0
F=-I-A-D=|—y+z, 0 X (4.34)
—Y, —X p-1
6 =610
B=-A=[-1792" 0 0 (4.35)

0 o4
According to Corollary 2, we Obtain
V=-——g—-e-ge <0 (4.36)

is negative definite. The Lorenz systems (4.30) are global synchronized. For initial
states (0.5,1,5), (0.6,2,5.3) and system parameters o =10, y =28, f=8/3, 6=16,

y=45.92 and ,5’ =4, the chaotic phase portraits and state errors versus time are

shown in Fig. 4.7 and Fig. 4.8.

4.4 Summary

In this Chapter, two theorems for chaos synchronization are proposed by using
variable strength linear coupling without another active control, while the time
derivative of Lyapunov function in series form is firstly used, which makes the

demand for Lyapunov function derivative as negative sum of the square of state
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variables, lower. They give the criteria of chaos synchronization for two identical
chaotic systems and for two different chaotic dynamic systems. Either local
synchronization which is mostly good enough or global synchronization which is
mostly an unnecessary high demand, can be obtained. Lorenz system, Duffing system,
Rossler system and Hyper-Rossler system are used as simulation examples which

effectively confirm the scheme.
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Fig. 4.2 Time histories of errors for two Rossler systems.
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Fig. 4.4 Time histories of errors for two synchronized Hyper-Rossler systems.
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Fig. 4.5 Chaotic phase portrait for Duffing system.
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Fig. 4.6 Time histories of errors for two synchronized Duffing systems.

47



50

40

30

20

10

-40 -20 0 20 40
y

0
-20 -10 0 10 20 -20

-10

Fig. 4.7 Chaotic phase portraits for Lorenz system.

20

50

1.2
--- el
ir -—e2 | |
—— e3
_02 | | | | | | | | |
0 5 10 15 20 25 30 35 40 45

Time(sec)
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Chapter 5
Adaptive Chaos Synchronization by Variable Strength

Linear Coupling

5.1 Preliminary

Synchronization of chaotic dynamic systems is a very interesting problem and
has been widely studied. Most of them are based on the exact knowledge of the
system structure and parameters. But in practice, some or all of the system parameters
are uncertain, adaptive control method in used. In this Chapter, we propose a general
strategy to achieve adaptive chaos synchronization by variable strength linear
coupling solely without using another active control which is usually rather complex.
Furthermore, Lyapunov function derivative-n-series, form is first used in this Chapter,
which is easier to be obtained than the traditional negative sum of the square of error
variables. Lorenz system, Duffing .system ‘and Rossler system are presented as

simulation examples.

5.2 Adaptive Chaos Synchronization Strategy by Variable Strength Linear
Coupling

Consider the following two unidirectional coupled system
x = Ax +f(x)

o 5.1)

y=Ay+f(y)+I'(y-x)

whereXZ[Xl,Xz,---,xn]TeR”, y=[y1,y2,~-,yn]T€R" denote two state vectors,

A

Ais an nxn uncertain constant coefficient matrix, A is an nxn estimated
coefficient matrix, f is a nonlinear vector function, and I' is a matrix which gives
the variable strength of the linear coupling term (y —x).

In order to study the synchronization of x and y, define e=y—x as the state
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error. From Eq. (5.1), error equation can be written as
é=Ay+1(y)+I(y —x)— Ax —f(x) (5.2)

Choosing an appropriate I', our goal is that the state error can approach zero and the

~

estimated coefficient matrix A can approach the coefficient matrix A .

Choose a positive definite function as
~ 1+ 1~7+
V (e, AC)=5e e+5ACAC (5.3)

~ A ~

where A=A-A, A, is a column matrix whose elements are all the elements of

matrix A . Then the time derivative of V through Eq. (5.2) is

Vie,A,)=e'é+AlA,
=" (Ay +£(y)+ T(y —x)— Ax—f(x)) + ATA_
— ¢ (Ay + A€ Te+F{§)—f(x) + Al A, (5.4)

=e'Ay¥e' (A—A)e+rellexe’ (f(y)-f(x)+AA,

—¢ (At DetelA(y-e)+AT A, +e'[f(x+e)—f(x)]

In general, there are two ways to express f(x+e)—f(x). Firstly, it is a linear function

of e, Be, where the elements of B are variable. Then Eq. (5.4) become

V (e, A)=¢" (A+T)e+e' A(y—e)+A A_+e Be

X ~ . (5.5)
=e'(A+T+Ble+e'A(y—e)+AlA,
Secondly, it can be developed to a Taylor series:
Vie,A)=¢€ (A+T)e+e' A(y—e)+ AI?&C +e'f'(x)e (5.6)

+HOT of e

where f'(x) istime derivative of f(x).
If we can choose appropriate estimated coefficient matrix 1;&0 and T' so that
V=-"Ce—A"PA or V=-¢"Ce—A"PA+HOTofe, where C and P are a

diagonal positive definite matrices. This series form of V is easier to be obtained
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than the traditional negative sum of error variables. Then V is a negative definite

function of e and is a negative semi-definite function of e and all the elements of

A, . In general, the elements of I' may be functions of the state variables which are

all bounded for chaotic system. So the elements of I' are all bounded.

In current scheme of synchronization, traditional Lyapunov asymptotical stability
theorem and Babalat lemma are used to prove the error vector approaches zero, as
time approaches infinity.

5.3 Numerical Results for Typical Chaotic Systems

The first example is two Lorenz systems, with the following unidirectional

coupling:
X =o(y,—X)
Vi =7X —XZ — Y (5.9
2, = XY, _ﬁzl

X, =6(Y, = %) +I 8 + e, +1 58
Y, = VX, — %L, — Yybdseek 6, + T e,

2, =X,Y, = f1,+Fye + e, 4T e
The error dynamics is

& =X—X= (9()/2 —X)—o(y, = %)+l e+l e+ €
éz = Y2 - Y1 = 7;X2 —X%4,-Y, _(7/Xl —XZ - yl)+rzlel +F2282 +F23e3 (5-10)

é3 =12,-7,=XY, _ﬁzz _(X1y1 _ﬂz1)+rsle1 +I5,e, +15:6,

where
- o 0
A=y -1 0 (5.11)
0O 0 -4

In this example, we find

0 0 0 0
f(y)-fx)=| —x,z,+ Xz, |=|-2z, 0 =X |e=Be (5.12)
XY, = XY, Y, X 0
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Choose a Lyapunov function in the form of a positive global definite function:

V(e.e,.e,6,7,5)
1 2 2 2 ~2  ~2 H2 (5'13)
:E@l+%4£3+a-m/+ﬂ)

A

where 6=6-0, 7=y—-y, f=B-B and &, 7, B are estimates of uncertain
parameters o, y and [ respectively.

Its time derivative through error dynamics (5.9) is

\Y :e1[6'(y2 —X%)—o(y,—x)+I e +I.e +T €]
+82[77X2 —X%4,-Y, _(7X1 =Xz - yl)+r21e1 +F2282 +F23e3]

A (5.14)
+e3[x2y2 _ﬁzz _(lel _ﬁzl)+FSIel +r3zez +F33e3]
+66+ 7+ Bf
Choose
=1 =6, 0
F=-1-A-B=|—7+2, | 0% X% (5.15)
-Y =X ﬁ_l
B:ﬁ:zze3—e§ Voi
G=6=x8—Y,e+ee —e -G (5.16)
75:?5: —X,€,1€6, -7
Introducing Egs. (5.15) and (5.16) into Eq. (5.14), we obtain
V=—t-el-e-6"-7-p*<0 (5.17)

By Lyapunov asymptotical stability theorem, e =e,=¢,=6=y= B=0 is

asymptotically stable. The initial states is (0.5,1,5), (30,20,18) and system parameters

o=10, y=28, =8/3 and initial values of estimate for uncertain parameters

6 =y = =0. Three state errors and estimated parameters versus time are shown in

Fig. 5.1 and Fig. 5.2. Fig. 5.1 shows that state errors quickly approach zeros. The
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estimated parameters approach to the uncertain parameters as shown in Fig. 5.2. The
synchronization is global synchronization.

The second example is two Duffing systems, with the following unidirectional

coupling:
X, =X
o . (5.18)
X, ==0X, + aX, — X +acoswt
=Y, +I' g +I8 (5.19)

y, ==Y, +ay, -y} +acosawt+T,e +T,8,
The error dynamics is
&=V, —-X=¢6+I,6€+1,€,
&, =V, —X, ==8Y, +ay, — By — (6%, +ax, — fx)+T,e +T e,
(5.20)

where
o s
A= (5.21)

By Taylor expansion

f(y) - f(x) = 0 0 |
&)-1)= pyi+px ] |pe 0] —epxe ] (5.22)
=Be+H.O.T.of e

Choose a Lyapunov function in the form of a positive definite function:

V(e,e,,d,a) =%(ef +e, +67+a?) (5.23)

~ A A
A

where 6=0-6, a=a—-a and 6, a are estimates of uncertain parameters o
and «.
Its time derivative through error dynamics (5.20) is

v =e(e,+I'g+I8)
+92(—$y2 +dy1 _/Byl3 _(_5)(2 +ax —ﬂxf)+l“2,el +1“22e2)
+86+aa
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(5.24)

Choose
-1 -1
r=-1-A-B=| _ A (5.25)
—Q+38%. -1+
5=56=ye -e -6
d=da=-ye,+ee, —d (5.26)
We obtain
V=-t-e-6"-a+HOT.ofe<0 (5.27)

By Lyapunov asymptotical stability theorem, € =e,=0=a =0 is asymptotically

stable. The initial states is (2,2), .(5,5) and system parameters o =0.15,

a=F=w=1, a=3, and initial values of estimate for uncertain parameters

5=d =0, The state errors and estimated parameters versus time are shown in Fig.
5.3 and Fig. 5.4. Fig. 5.3 shows~that'state ertors quickly approach zeros. The
estimated parameters approach the uncertain parameters as shown in Fig. 5.4.

The last example is two Rossler systems, with the following unidirectional

coupling:
X =-Y,—Z
Y, =X +ay, (5.28)
2, =b+2z/(x —c)
X, ==Y,—2,+I' &, +I,e,+ 1_‘13e3
Y, =X,+ay,+1,e +I,.e +I,¢e, (5.29)
2, =b+z,(x,-C)+T,e +T,e,+I,6,

The error dynamics is

g =-e-¢e+I e +I,e +I,6e
€, =e +ay,—ay, +I,e +I.e +T,¢e, (5.30)
€& =7,(X, - ¢)— z,(x,—c)+Ie +I,e, +T8,

where

54



A=l1 a 0 (5.31)
0 0 -c

By Taylor expansion,

0 0 0 O 0
f(y)-f(x) = 0 =0 0 Ole+| O
2,6 +Xe +ee z, 0 X ee
1~1 173 173 1 1 1~3 (532)
0
=Be+| 0
ele3
Choose a Lyapunov function in the form of a positive definite function:
V(el,ez,e3,é,6):%(e12+e22+e32+€12+62) (5.33)

where d=4-a, €=C—c and &,+€ are estimates of uncertain parameters a and

C.
Its derivative through the etror dynamics is
V= el-e,—e +Ie +I'.e +16]
+e,[e +ay,—ay, +T", e +I,.e, +I' 8] (5.34)
+ 93[22()(2 - C) —Z (X1 - C) + rSlel + Fazez + F33e3]
+48a+¢6c
Choose
-1 1 1
r=-I-A-B=| -1 -1-4 0 (5.35)
-2, 0 -1+C-X
d=4=-y,e +e -4
=C¢=ze,—€2-¢ (5.36)
We obtain
V=-=t—-¢-¢e-8-¢+HO.T.ofe<0 (5.37)
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By Lyapunov asymptotical stability theorem, e =¢,=€,=8=C=0 is
asymptotically stable. The initial states is (-20,10,25), (-20.1,10.5,25) and system
parameters a=0.2, b=0.2, ¢=5.7, and initial values of estimate for uncertain
parameters a=C=0. The state errors and estimated parameters versus time are
shown in Fig. 5.5 and Fig. 5.6. Fig. 5.5 shows that state errors quickly approach
zeros. The estimated parameters approach the uncertain parameters as shown in Fig.
5.6. In the second and third examples, the synchronizations are local synchronization.
5.4 Summary

In this Chapter a general strategy to achieve adaptive chaos synchronization by
variable strength linear coupling is studied. Lyapunov function derivative in series
form is first used in this Chapter, which is easier to be obtained than the traditional
negative sum of the square of errot variables. In‘most cases, local synchronization is
good enough, while global synehronization is an,unnecessary high demand. Lorenz
system, Duffing system and Rossler:system-ate used as simulation examples which

effectively confirm the scheme and our opinion:
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Chapter 6

Chaos Generalized Synchronization by Partial Region

Stability Theory

6.1 Preliminary

In this Chapter, a new chaos generalized synchronization strategy by partial
region stability theory is proposed. By using the theory of stability on partial region
the Lyapunov function is a simple linear homogeneous function of states and the
controllers are simpler and have less simulation error because they are in lower order
than that of traditional controllers. Lorenz system and Rdssler system are used as

simulated examples.

6.2 Chaos Generalized Synchronization Strategy by Partial Region Stability
Theory

Consider the following unidirectional coupled chaotic systems
x =f(t, x)

§=h(t.y)+u ©D

.
wherex:[xl,xz,---,xn]T eR", y=[Y,.¥,+.¥,] €R" denote two state vectors, f

. . T . .
and h are nonlinear vector functions, and u= [ul,uz,-n,un] € R" is a control input

vector.

The generalized synchronization can be accomplished when t — oo, the limit of

.
the error vector e=[e,,e,,--,e,] approaches zero:

lime=0 (6.2)

t—owo

where

e=G(x)-y (6.3)
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By using the theory of stability on partial region, the Lyapunov function is easier
to find, since the terms of first degree can be used to construct the definite Lyapunov
function and the controller can be designed in lower order.

6.2.1 Definition of the Stability on Partial Region

Consider the differential equations of disturbed motion of a nonautonomous
system in the normal form

dx,

dt

=Xs(taxl,"'axn)a (S:L"',n) (64)
where the function X, is defined on the intersection of the partial region Q

(shown in Fig. 6.1) and
S <H (6.5)

and t>t,, where t, and H are certain positive constants. X which vanishes when
the variables X, are all zero, is a‘real valued function of t, X,---,X . It is assumed
that X, is smooth enough to ensure the existence, uniqueness of the solution of the
initial value problem. When =X, idoes _mnot_contain t explicitly, the system is

autonomous.

Obviously, X, =0 (s=1,---n) is a solution of Eq. (6.4). We are interested to
the asymptotical stability of this zero solution on partial region Q (including the
boundary) of the neighborhood of the origin which in general may consist of several
subregions (Fig. 6.1).

Definition 1:

For any given number & >0, if there exists a 6 >0, such that on the closed

given partial region € when

D> Xy <8, (s=1--,n) (6.6)
for all t=>t,, the inequality

D xi<e, (s=1--,M) (6.7)

is satisfied for the solutions of Eq.(6.4) on Q, then the disturbed motion

X, =0 (s=1,---n) is stable on the partial region Q.

S
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Definition 2:

If the undisturbed motion is stable on the partial region ), and there exists a

& >0, so that on the given partial region Q when

X<, (s=1-,n) (6.8)
The equality

t—o

lim[z xfj =0 (6.9)

is satisfied for the solutions of Eq.(6.4) on Q, then the undisturbed motion
X, =0 (s=1,---n) is asymptotically stable on the partial region Q.

The intersection of Q and region defined by Eq.(6.8) is called the region of
attraction.

Definition of Functions V (t,X,---, X ):

Let us consider the functions V(t,X,---,X,) given on the intersection €, of

the partial region Q and the region
> xi<h, (s=1)-n) (6.10)

for t>t, >0, where t, and h'are positive constants. We suppose that the functions

are single-valued and have continuous. partial derivatives and become zero when

Definition 3:

If there exists t, >0 and a sufficiently small h>0, so that on partial region
Q, and t=t,, V>0 (or <0), then V is a positive (or negative) semidefinite, in

general semidefinite, function on the €, and t2>t,.

Definition 4:

If there exists a positive (negative) definitive function W(X,...X,) on €, so

that on the partial region Q, and t>t,
V-W2=0(or-V-W=>0), (6.11)

then V(t,X,...,X,) 1s a positive definite function on the partial region €, and
t>t,.

Definition 5:

If V(t,X,...,X,) is neither definite nor semidefinite on €2, and t>t , then
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V(t,X,...,X,) is an indefinite function on partial region €, and t=>t,. That is, for
any small h>0 and any large t, >0, V(t,X,...,X,) can take either positive or

negative value on the partial region €0, and t>t,.

Definition 6: Bounded function V

If there exist t, >0, h>0, so that on the partial region Q,, we have
V(t,%,....x)| < L
where L is a positive constant, then V is said to be bounded on Q, .

Definition 7: Function with infinitesimal upper bound

If V is bounded, and for any A >0, there exists x>0, so that on Q, when

D> x2<p,and t>t,, wehave
S

V(tX,....%)| <2

then V admits an infinitesimal upper bound on €, .

6.2.2 Theorem of stability and of asymptotical stability on partial region

Theorem 6.1

If there can be found for the differential @quations of the disturbed motion (Eq.
6.4) a definite function V(t,X,%.;X,) on the partial region, and for which the

derivative with respect to time based on these equations as given by the following :
dv. ov Gov

—=—14) —X,
dt ot <5 0ox,

(6.12)
is a semidefinite function on the paritial region whose sense is opposite to that of V, or
if it becomes zero identically, then the undisturbed motion is stable on the partial
region.
Proof:

Let us assume for the sake of definiteness that V is a positive definite function.

Consequently, there exists a sufficiently large number t;, and a sufficiently small

number h < H, such that on the intersection Q, of partial region Q and
> xX<h, (s=1...,n)

and t>t,, the following inequality is satisfied
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V(t,X,....% ) ZW(X,...,X,),
where W is a certain positive definite function which does not depend on t. Besides
that, Eq. (6.12) may assume only negative or zero value in this region.
Let & be an arbitrarily small positive number. We shall suppose that in any case

e<h. Let us consider the aggregation of all possible values of the quantities

X;,..., X, , which are on the intersection @, of €, and
DX =g, (6.13)
S

and let us designate by | >0 the precise lower limit of the function W under this
condition. by virtue of Eq. (6.11), we shall have

V(,X,....x,) =1 for (X,...,X,) on ,. (6.14)

We shall now consider the quantities, X, as functions of time which satisfy the

differential equations of disturbed:motions Wesshall assume that the initial values X,

of these functions for t=t, liconthe intersection €, of € and the region

Y X <o, (6.15)

S

where o 1is so small that
V (), Xigs---s Xp0) <1 (6.16)
By virtue of the fact that V (t,,0,...,0) =0, such a selection of the number s is
obviously possible. We shall suppose that in any case the number & is smaller than

£ .Then the inequality

> xi<e,

s
being satisfied at the initial instant will be satisfied, in the very least, for a sufficiently
small t—t,, since the functions X (t) very continuously with time. We shall show
that these inequalities will be satisfied for all values t>t,. Indeed, if these
inequalities were not satisfied at some time, there would have to exist such an instant

t=T for which this inequality would become an equality. In other words, we would
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have
D XXM =¢,

and consequently, on the basis of Eq. (6.14)
V(TJXI(T)V--:Xn(T))ZI (617)

On the other hand, since ¢ < h, the inequality (Eq.(10)) is satisfied in the entire

interval of time [ty, T], and consequently, in this entire time interval Z—t <0. This

yields
VT, X (T, X, (T)) SV (), Xgseees X))o
which contradicts Eq. (6.17) on the basis of Eq. (6.16). Thus, the inequality (Eq.(6.7))
must be satisfied for all values of t >t,, hence follows that the motion is stable.
Finally, we must point out that. ffom the view-point of mathematics, the stability
on partial region in general does not be: related logically to the stability on whole
region. If an undisturbed solution is stable on a partial region, it may be either stable

or unstable on the whole region and vice versa. From the viewpoint of dynamics, we

wre not interesting to the solution starting from €, and going out of Q.

Theorem 6.2

If in satisfying the conditions of Theorem 1, the derivative cij_\t/ is a definite

function on the partial region with opposite sign to that of V and the function V itself
permits an infinitesimal upper limit, then the undisturbed motion is asymptotically
stable on the partial region.

Proof:

Let us suppose that V is a positive definite function on the partial region and that
dav . : : . .
consequently, o is negative definite. Thus on the intersection €2, of Q and the

region defined by Eq. (6.10) and t>t, there will be satisfied not only the inequality
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(Eq.(6.11)), but the following inequality as will:

dv
Eg—wl(xl,...xn), (6.18)

where W, is a positive definite function on the partial region independent of t.

Let us consider the quantities X, as functions of time which satisfy the
differential equations of disturbed motion assuming that the initial values X, = X (t,)
of these quantities satisfy the inequalities (Eq. (6.15)). Since the undisturbed motion is
stable in any case, the magnitude ¢ may be selected so small that for all values of
t>t, the quantities X, remain within Q, . Then, on the basis of Eq. (6.18) the
derivative of function V(t,X (t),...,X (t)) will be negative at all times and,
consequently, this function will approach a certain limit, as t increases without limit,
remaining larger than this limit at all times..We shall show that this limit is equal to

some positive quantity different from zeroyThen for,all values of t>t, the following
inequality will be satisfied:

V(X (1),.... % 1)>a (6.19)
where a>0.

Since V permits an infinitesimal upper limit, it follows from this inequality that

dxXM=a, (s=1...,n), (6.20)

where A is a certain sufficiently small positive number. Indeed, if such a number A

did not exist, that is , if the quantity ZXS (t) were smaller than any preassigned
S

number no matter how small, then the magnitude V(t,X(t),...,X (t)), as follows

from the definition of an infinitesimal upper limit, would also be arbitrarily small,
which contradicts (6.19).

If for all values of t>t, the inequality (Eq. (6.20)) is satisfied, then Eq. (6.18)

shows that the following inequality will be satisfied at all times:
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where | is positive number different from zero which constitutes the precise lower
limit of the function W, (t, X, (t),...,X,(t)) under condition (Eq. (6.20)). Consequently,

for all values of t>t, we shall have:
tdV
V(t,xl(t),...,xn(t)):V(tO,xlo,...,Xn0)+J.tOEdtSV(tO,xm,...,xno)—ll(t—to),

which is, obviously, in contradiction with Eq.(6.19). The contradiction thus obtained
shows that the function V(t,X(t),...,X,(t)) approached zero as t increase without
limit. Consequently, the same will be true for the function W (X, (1),...,X, (t)) as well,
from which it follows directly that

%imxs(t)zo, (s=1...,n),

which proves the theorem.

6.3 Numerical Simulations

The following example is two' Lorenz systems x and y, with the unidirectional

coupling:
X =0(X, —X)
X, = 7X — XX — X, (6.21)
Xy = XX, = %
Yy =o(y,=y)+y,

Yo=Y =YY Y.+,
ys = ylyz_ﬂy3+u3

CASE I. The generalized synchronization error functionis e=x-y-+100.
Our goal is y=x+100, i.e. %ime = %im(x -y+100)=0 (6.22)
The error dynamics becomes
& =%—-Y,=0(X-x)-a(y,-y)-U

€, =X =Y, =X XX = X% =Y, = Y\Ys— ¥,)—U, (6.23)
& =XV, = XX — % —(V,Y, = BY;)—U,
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Let initial states is (X;y, Xy0» X30) = (0.5, 1, 5), (V,0> V0> Y30) = (0.6, 3, 10) and system
parameters o =10, y =28, S =8/3, we find the error dynamic always exist in first
quadrant showed in Fig. 6.2 By partial region stability, one can choose a Lyapunov
function in the form of a positive definite function in first quadrant:

V=g +e,+¢€,

Its time derivative is

V=g +e,+¢,
:(O-(Xz_Xl)_o-(yz_yl)_ul)+(7X1 _X1X3 _Xz_(7y1 _y1y3_y2)_uz)
+(X1X2 _ﬂx3_(y1yz_ﬂy3)_u3)

(6.24)
Choose
U =0 (X, = X)—o(Yasi¥)t g
Uy, = 7% = XX 5% — (7Y = YaYs =Y,) + €, (6.25)
U; = XX, _:HX3 _(ylyz _ﬂy3)+e3
We obtain

V=-g-6€-6%<0 (6.26)

which is negative definite function. Three state errors versus time and time histories
of states are shown in Fig. 6.3 and Fig. 6.4.

CASE Il. The generalized synchronization error function ise, = X, — Y, + F sinwt +100,
i=1, 2, 3.

Our goal is y=x+Fsinot+100, i.e. %imei =}im(xi—yi+Fsina)t+lOO)=0,

1=1,2,3

The error dynamics become
€ =o0(X,—X)—o(Yy,—-Y,)—U +Fwcoswt
€ =X = XX =X =Y, - Y,Y;—Y,)—U, + Focoswt (6.27)
&, = XX, — X —(Y,Y, = BY;)—U; + Focosat

Let initial states is (X,q, X0, X30) = (0.5, 1, 5), (Y,0> V20> Y30) = (0.6, 3, 10) and system
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parameters o=10, y=28, f=8/3, F=10 and ®=0.1, we find the error
dynamic always exists in first quadrant showed in Fig. 6.5. By partial region stability,
one can choose a Lyapunov function in the form of a positive definite function in first
quadrant:
V=g +e,+¢€,
Its time derivative is

Vv :(O'(Xz -X)—o(Y, -y, +a)COSQ)t)+(7/X1 = XX =% = (7Y, = Y1Y; = Y,)
—U, + @cosot) + (XX, — % — (¥, Y, = BY;) —U; + @wcos wt)

(6.28)
Choose
U =o(X,—X)—o(y,—Y,)+wcosawt+e
Uy = 7% = XX =X, 5 (¥ snYyYs —Y,) + @cos ot +e, (6.29)
Uy = XX, = 8% =YY, =4Y;) F@cos ot +e,
We obtain

V=-—g-e-8<0 (6.30)

which is negative definite function. Three state errors versus time and time histories

of X, —Y,+100 are shown in Fig. 6.6 and Fig. 6.7.
CASE 1ll. The generalized synchronization error function is € :%Xf -y, +100, i=1,
2,3.
. 1 2 . . . 1 2
Our goal is 'y =EX +100, 1.e. ¥1me = Pm(ix -y+100)=0
The error dynamics become

& =XX =Y, =X0(X—X)-0o(Y,-Y) -\,
€, = XX =¥, =X (X =X X% = X) = (7Y, = Y, Ys — ¥,) — U,
€, = X% — V5 = X, (X X, — BX) = (Y, Y, — BY;)— U, (6.31)

Let initial states is (X, X59,> X30) = (0.5, 1, 5), (Vy0> Ya0»> Y30)= (0.6, 3, 10) and

system parameters o =10, y =28, B=238/3, we find the error dynamic always exist
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in first quadrant showed in Fig. 6.8. By partial region stability, one can choose a
Lyapunov function in the form of a positive definite function in first quadrant:
V=g +e,+¢€,

Its time derivative is

v :(Xlo-(xz —-X)—o(y, - yl)_u1)+(xz(7xl = X% =X) = (Vi = Y1 Ys— Y,) _uz)
+(X3(X1X2 _ﬂx3)_(yly2 _ﬂy3)_u3)

(6.32)
Choose
U, =xo(X,=x)-o(y,—-y,)+¢
U, =X, (X = XX = X)= (7Y, = Y,Y; = ¥,) +& (6.33)
u, = X3(X1X2 —,b’x3)—(y1y2 _:Hy3)+e3
We obtain

V=-—e-6-6%<0 (6.34)

which is negative definite function. Three state errors versus time are shown in Fig.
6.9.

CASE V. The generalized synchronization error functionis e=x-y+z+100, z
is the state vector of Rdssler system.

The goal system for synchronization is Rdssler system and initial states is (20, 10,

25), system parameters a=0.2, b=0.2, ¢c=5.7.
2, =-1,-1,
z,=12+az,
z,=b+12z,(z,-c)

We have 1ime=¥im(x—y+z+100)=0

The error dynamics become

& =0(X,—X)-o(y,—y)-U—-2,-1
€ =X = XX =X =Yy, —-VY,Y;—Y,)—U,+27 +az,
e3:Xlxz_IBX3_(ylyz_ﬂy3)_u3+b+z3(zl_C) (6.35)
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Let initial states is (X5, X59, X30) = (0.5, 1, 5), (V0> Y20 Y30)= (0.6, 3, 10) and
system parameters o =10, y =28, S =8/3, we find the error dynamic always exist
in first quadrant showed in Fig. 6.10. By partial region stability, one can choose a
Lyapunov function in the form of a positive definite function in first quadrant:

V=g +e,+¢€,

Its time derivative is

Vv :(U(X2_X1)_U(yz_y1)_u1_z2_z3)
+(7X1—X1X3—X2—(]/yl—yly3—yz)—U2+Zl+a22)

+(XIX2_ﬂX3_(ylyz_lBy3)_u3+b+Z3(zl_C)) (636)
Choose
U1 = G(X2 _X1)_G(y2 - yl)_zz _23 +e1
Uy =X = XX =X = (7Y, = Y,Y; = Y,)+ 2, +az, +¢, (6.37)
U; = XX, _:BX3 _(y1Y2 _,By3)+b+ 23(21 _C)+e3
We obtain

V=—g-e —€<0 (6.38)
which is negative definite function: Three state errors versus time and time histories
of X, —Y,+100 are shown in Fig. 6.11 and Fig. 6.12.

6.4 Summary

In this Chapter, a new strategy to achieve chaos generalized synchronization by
partial region stability is proposed. By using the theory of stability on partial region
the Lyapunov function is a simple linear homogeneous function of states and the
controllers are simpler and have less simulation error because they are in lower order
than that of traditional controllers. The Lorenz system and Rossler system are used as

simulation examples which effectively confirm the scheme.
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Fig. 6.2 Phase portrait of error dynamics for Case I.

72

140



200

100

el

40
150

50

60

70

80

90

100

e2

40

50

60

70

80

90

-100 | | | |
0 10 20 30 40

50

time(sec)

Fig. 6.3 Time histories of errors for Case 1.
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Fig. 6.12 Time histories of x—y+100 and -z for Case IV.
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Chapter 7
Chaos Control by Partial Region Stability Theory

7.1 Preliminary

In this Chapter, a new scheme to achieve chaos control by partial region stability
is proposed. By using the theory of stability on partial region the Lyapunov function is
a simple linear homogeneous function of states and the controllers are simpler and
have less simulation error because they are in lower order than that of traditional

controllers. The Lorenz system is used as simulation examples.

7.2 Chaos Control Scheme

Consider the following chaoti¢ systems

x=f(t, %) (7.1)
where x:[xl,xp.--,xn]T e R" 1s. a.the state vector, f:R, xR" > R" is a vector

function.

The goal system which can be either chaotic or regular is
y=g(ty) (7.2)
where y=[y,Y¥,," Y, ]T eR" is a state vector, g:R xR"—>R" is a vector

function.
In order to make the chaos state x approaching the goal state y, define

e=Xx-Y as the state error. The chaos control is accomplished in the sense that:
%ime = }im(x—y) =0 (7.3)
In this Chapter, we will use examples in which the e state is placed in the first
quadrant of coordinate system and use the theory of stability on partial region, the

Lyapunov function is a simple linear homogeneous function of states and the

controllers are simpler because they are in lower order than that of traditional
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controllers
7.3 Numerical Simulations

The following chaotic system is the Lorenz system of which the old origin is
translated to (X, X,,X;)=(100,100,100) and the chaotic motion always happens in
the first quadrant of coordinate system (X,X,,X,). This special Lorenz system is

presented as simulated examples which the initial conditions is x1(0) =80, x2(0) =100,

x3(0) =90, o =10, y =28, B =8/3. The chaotic motion showed in Fig. 7.1.
X, = o((X, —100)—(x, —100))
X, = y(Xx, —100) — (x, —100)(X, —100) — (X, —100) (7.4)
X, = (X, —100)(x, —100) — S(x, —100)

In order to lead (X;, X2, X3) to the goal, we add control terms U;, U, and U3 to each

equation of Eq. (7.4), respectively.
X, = o((X, =100) = (X, —100))+ u,
X, = y(X, —100) — (X, =100)(X, —100) — (X, —100) +u, (7.5)
X, = (X, —100)(X; =100) — A(X, =100) + u,

CASE |. Control the chaotic motion to.zero-

In this case we will control the¢ chaotic meotion of the Lorenz system (7.4) to zero.

The goal is y =0. The state error is e=x—-y =x and error dynamics becomes

X, = o((X, =100) - (x, —100)) +u,

X, = (X, —100)— (X, —100)(X, —100) — (X, —100) +u, (7.6)
X, = (X, —100)(x, —100) — B(X, —100) +u,

e.1
e.2
é3
In Fig. 7.2, we see that the error dynamics always exists in first quadrant.
By partial region stability, one can easy choose a Lyapunov function in the form
of a positive definite function in first quadrant as:
V =g +e, +¢, (7.7)

Its time derivative through error dynamics (7.6) is

V =¢ +6, +¢,
=o((e, —100)—(e, —100)) +u, + (e, —100)— (e, —100)(e, —100) (7.8)
—(e, —100)+u, + (e, —100)(e, —100) - B(e, —100) +u,
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Choose
=-o((e, —100)—(e, —100)) —e,
=—(y(e,—100)— (e, —100)(e, —100) - (e, —100)) —e, (7.9)

l"l]
u, =
U, =~((&, ~100)(e, ~100) - S(e, ~100)) —e,

We obtain
V=-—g-e-6<0

which is negative definite function. The numerical results are shown in Fig. 7.3. After
30 sec, the motion trajectories approach the origin.
CASE I1. Control the chaotic motion to a sine function.

In this case we will control the chaotic motion of the Lorenz system (7.4) to sine

function of time. The goal is y = Fsinwt . The error equation

e=x—-y=x-Fsinot (7.10)
%im e = %im(xi = F sinat) =0, =123
and & =X —oF cosat, i=1,2,3 and F =F, =F,.

and the error dynamics is

& =X —aoF cosat = o((X, —100) - (X, =100)) — &, F cos ot +u,

&, =X, —o,F cosm,t = y(X, —100) — (x, =100)(x, —100) — (x, —=100) — @, F cos w,t +u,
&, =X, —a,F cosa,t = (X, —100)(x, —=100) — B(X; —100) — @,F cos w;t + U,

(7.11)

In Fig. 7.4, we see that the error dynamics always exists in first quadrant.

By partial region stability, one can easy choose a Lyapunov function in the form
of a positive definite function in first quadrant as:
V=g +e,+¢€,

Its time derivative is

V =¢ +6, +¢,
=o((X, —100) - (x, =100)) — e, F coswt +u, + y(X, —100)
— (X, —100)(x; =100) — (X, =100) — @, F cos w,t +u,
+(X, —100)(x, —=100) — B(X; —100) — @, F cos w,t +u,

(7.12)
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Choose

U, =—(o((x, =100) = (x, =100)) — &, F cos ot) — g,
u, =—(y(x, =100) — (X, =100)(X, =100) — (x, —=100) — @, F cos w,t)—e, (7.13)
u, =—((x, =100)(x, —=100) — B(X, —100) — @,F cos w;t) —e,

We obtain

V=-—g-e-6<0

which is negative definite function. The numerical results are shown in Fig. 7.5 and

Fig. 7.6, where F =10, @, =0.7, ®,=0.5 and w, =0.3. After 30 sec., the errors
approach zero and the motion trajectories approach to sine functions.

CASE I1l. Control the chaotic motion of Lorenz system to chaotic motion of a Rossler

system.
In this case we will control chaotic,motion of Lorenz system (7.4) to that of a

Rossler system. The goal system.is Rosslet system:
2, =-12,-1,
Z,=12+az, (7.14)
z, =b+12,(z,—¢)

The error equationis e=x-z, lime='0.The error dynamics become
t

€ =X —2, =o((X,—100)—(x, —100)) = (-2, — ;) + U,
€, =X, =2, = y(X, —100) - (x, =100)(x, —100) - (x, —=100) - (z, + az,) + u,
€, =X, —Z, = (X, —100)(X, —100) — S(X, —100) - (b + z,(z, - C)) + U,

(7.15)
By Fig. 7.7, we know the error dynamic always exist in first quadrant.
By partial region stability, one can easy choose a Lyapunov function in the form
of a positive definite function in first quadrant as:
V=g +e,+¢

Its time derivative is
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V =¢ +6, +6,
=(o((x,—100) - (x, =100)) - (-2, — ;) +U,)
+(7(%, =100) = (x, ~100)(x, ~100) — (X, —100) - (, +az,) +U, )
+((x, =100)(x, —100) — S(x, —=100) - (b + z,(z, —C)) + ;)

(7.16)
Choose

U, =—o((x, =100) - (x, —=100)) -z, — z, — ¢,
U, = —(7(x, —100)— (x, ~100)(x, ~100) - (x, ~100) — (, +az,))—e, (7.17)
u, = —((x, —100)(x, —100) - S(x, ~100) — (b +z,(z, —C))) —&,

We obtain
V=-g-6€-6<0
which is negative definite function. The numerical results are shown in Fig.7.8 and

Fig. 7.9 where a=0.2, b=0.2%and c=75:7:After 30 sec., the errors approach zero

and the chaotic trajectories of Lorenz system approach to that of the Rdssler system.

7.4 Summary

In this Chapter, a new strategy to achieve chaos control by partial region stability
is proposed. By using theory of stability on partial region the Lyapunov function is a
simple linear homogeneous function of error states and the controller is simpler
because they are of lower order. The Lorenz system in the first quadrant is used as

simulation examples which effectively confirm the scheme.
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Fig. 7.1 Chaotic phase portrait for Lorenz system in the first quadrant.
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Fig. 7.2 Phase portrait of error dynamics for Case I.
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Fig. 7.3 Time histories of x;, X,, X3 for Case I.
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Fig. 7.4 Phase portrait of error dynamics for Case II.
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Fig. 7.7 Phase portrait of error dynamics for Case II1.
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Fig. 7.8 Time histories of errors for Case III.
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Chapter 8

Conclusions

Chaotic systems exhibit sensitive dependence on initial conditions. Slight errors
of initial conditions will lead to completely different trajectories. Because of this
property, chaotic systems are thought difficult to be synchronized or controlled. There
are many control techniques which are presented to synchronize and control chaotic
systems. In this thesis, the theorems of unsynchronizability, synchronization and
generalized unsynchronization for coupled chaotic systems, chaos synchronization
and adaptive chaos synchronization by variable strength linear coupling and chaos
synchronization and control by partial regionstability are presented.

In Chapter 2, two theorems which give thecriteria of unsynchronizability for two
different chaotic dynamic systems are  presented. A sufficient criterion for
synchronization is enhanced to necessary-—and sufficient one. Three simulated
examples are given to illustrate the theory.

In Chapter 3, two theorems are proposed. They give the criteria of generalized
unsynchronization for two different chaotic dynamic systems with whatever large
strength of linear coupling. Chen system and Rossler system with two corresponding
new chaotic systems proposed are used as simulation examples which effectively
confirm the theorems.

In Chapter 4, two theorems for chaos synchronization are proposed by using
variable strength linear coupling without another active control, while the time
derivative of Lyapunov function in series form is firstly used, which makes the
demand for Lyapunov function derivative as negative sum of the square of state

variables, lower. They give the criteria of chaos synchronization for two identical
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chaotic systems and for two different chaotic dynamic systems. Either local
synchronization which is mostly good enough or global synchronization which is
mostly an unnecessary high demand can be obtained. Lorenz system, Duffing system,
Rossler system and Hyper-Rossler system are used as simulation examples which
effectively confirm the scheme.

In Chapter 5, adaptive chaos synchronization by variable strength linear coupling
is studied. By using adaptive synchronization, we not only obtain the synchronization
of chaotic states only by variable strength linear coupling without using another active
control which is usually rather complex, but also obtain parameter pursuance.
Furthermore, Lyapunov function derivative in series form is used in this paper. In
most cases, local synchronization is good enough, while global synchronization is an
unnecessary high demand. Lorenz system, Duffing system and Rossler system are
used as simulation examples which etfectively confirm the scheme and our opinion.

In Chapter 6, a new strategy to-achieve-chaos generalized synchronization by
partial region stability is proposed. By using the theory of stability on partial region
the Lyapunov function is a simple linear homogeneous function of states and the
controllers are simpler and have less simulation error because they are in lower order
than that of traditional controllers. The Lorenz system and Rossler system are used as
simulation examples which effectively confirm the scheme.

In Chapter 7, a new strategy to achieve chaos control by partial region stability is
proposed. By using theory of stability on partial region the Lyapunov function is a
simple linear homogeneous function of error states and the controller is simpler
because they are of lower order. The Lorenz system in the first quadrant is used as

simulation examples which effectively confirm the scheme.
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