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The process of coherent creation of particle-hole excitations by an electric field in graphene is quantitatively
described beyond linear response. We calculate the evolution of current density, number of pairs and energy in
ballistic regime for electric field E using the tight-binding model. While for ballistic flight times smaller than
tnl�E−1/2 current is linear in E and independent of time, for larger ballistic times the current increases after tnl

as J�E3/2t and finally at yet larger times �t� tB�E−1� Bloch oscillations set in. It is shown that the number of
pairs follows the 2D generalization of the Schwinger’s creation rate n�E3/2 only on certain time segments with
a prefactor different from that obtained using the asymptotic formula.
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I. INTRODUCTION

It became increasingly evident that electronic mobility in
graphene is extremely large exceeding that in best semicon-
ductor two-dimensional �2D� samples.1 Since the system is
so clean the transport becomes ballistic, especially in sus-
pended graphene samples2,3 so that interactions of electrons
with phonons, ripplons, disorder and among themselves can
be neglected. Therefore there is a chance to observe various
theoretically predicted exotic phenomena like nonlinear re-
sponse and Bloch oscillations.4

Generally ballistic transport occurs due to two distinct
phenomena. If a mobile charge carrier is available �as in an
electron gas in a metal�, electric field accelerates it, so that
current increases linearly in time. In addition, an electric
field can create new charge carriers �the process typically
suppressed by energy gaps�. A peculiarity of the ballistic
transport in graphene with the Fermi level pinned right on
the two Dirac points5 �which happens naturally in suspended
graphene samples2� is that there are no charge carriers
present at all. The Fermi surface therefore shrinks to just two
points. The carriers are created solely by an applied electric
field like in the Zener tunneling effect in semiconductors,4

but energy gap vanishes due to “ultrarelativistic” dispersion
relation, �=vg�k�, where vg�106 m /s is the graphene veloc-
ity.

The electron-hole pairs are created fast enough to make
the current linear in electric field and constant in time, so that
it looks like a Drude type linear response due to disorder
rather than the ballistic acceleration J� t of an electron gas
with finite carrier density. The illusion of the “Ohmic” be-
havior however cannot continue indefinitely in the absence
of scatterers, and should eventually cross over to some sort
of “acceleration” or even Bloch oscillations at large times.
The behavior is expected to become nonlinear as function of
electric field as indicated by the nonlinearity of the pair-
creation rate. It was shown long time ago,6 in the context of
particle physics, that the pair-creation rate at asymptotically
large times is proportional to E3/2.

Ambiguities in the application of the standard Kubo ap-
proach for the ultrarelativistic spectrum7 led us to propose a
dynamic approach to the tight-binding model of graphene.8

Within leading order in E �linear response� we found that the

dc conductivity is �2= �
2

e2

h rather than the often cited value
4
�

e2

h obtained from the Kubo formula.9 In this note we solve
the tight-binding model for arbitrary constant electric field.
The evolution of current density demonstrates that the cross-
over from the “Ohmic” regime to the nonlinear one occurs at
the experimentally achievable time scale tnl�E−1/2. Bloch
oscillations are shown to set in on scale tB�E−1 much longer
than tnl for experimentally accessible dc electric fields. We
discuss the relevance of the 2D generalization of the
Schwinger’s creation rate formula10 to physics of graphene.

II. TIGHT-BINDING MODEL AND ITS EXACT
SOLUTION

Electrons in graphene are described sufficiently well for
our purposes by the 2D tight-binding model of nearest-
neighbor interactions on a honeycomb lattice.5 The
Hamiltonian in momentum space is

Ĥ = �
k

�ck
1† ck

2† �Hp�ck
1

ck
2 � , Hp = � 0 hp

hp
� 0

� , �1�

where

hp = − ��exp�i
apy

	3
� + b exp�− i

apy

2	3
�
 �2�

with �=2.7 eV being the hopping energy and sum is over
the Brillouin zone. Nearest neighbors are separated by dis-
tance a=3 Å and b=2 cos�akx /2� and pseudospin index de-
notes two triangular sublattices. We consider the system in a
constant and homogeneous electric field E along the y
direction switched on at t=0. It is described by the minimal
substitution p=�k+ e

cA with vector potential A= �0,−cEt�
for t�0. Since the crucial physical effect of the field is a
coherent creation of electron-hole pairs, mostly near the two
Dirac points, a convenient formalism to describe the pair
creation is the “first quantized” formulation described in de-
tail in Refs. 8 and 11. To consider the ballistic transport at
zero temperature, T=0 dynamically, one starts at time t=0
from the zero-field state in which all the negative-energy
one-particle states, −�hk��−�k, are occupied. The second
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quantized state evolving from it is uniquely characterized by
the first quantized amplitude,

	k�t� = �	k
1�t�

	k
2�t�

� , �3�

which is a “spinor” in the sublattice space. It obeys the ma-
trix Schroedinger equation

i��t	k = Hp	k. �4�

It is a peculiar property of tight-binding matrix Eq. �1� that
solution for arbitrary ky can be reduced to that for ky =0 and
has the Fourier series

	k
1�t� = �

s=
1
As �

m=−�

�

pm
s exp�− i�m

s t̄�

	k
2�t� = − �

s=
1
As �

m=−�

�
pm

s + bpm−1
s

�m
−s exp�i�m

−st̄� , �5�

where t̄= t− t�aky /E and �m
s =�s+3
m for frequency


=E / �2	3t��; E=E /E0. The relevant microscopic time scale
is t�=� /� and field E0=� / �ea�. Recursion relations for the
Fourier amplitudes pm,

pm = ���m
2 − 8
�m + 15
2 − 1�/b − b��m − 5
�
pm−1

−
�m − 2


�m − 5

pm−2, �6�

has two solutions ps, s= 
1 with two Floquet frequencies12

�s. The recursion is easily solved numerically and has the
following convergent expansion in b in the whole relevant
range, 0�b�2,

�s = �0
s +

b2

�0
s2 − 
2� �0

s − 2


6
�2�0
s + 
�

+
�0

s

2
− 



−
b2��0

s − 5
�
6
��0

s − 
���0
s − 2
��2�0

s − 5
�
+ O�b4� , �7�

with �0
s =s
+	t�

−2+
2. It turns out that the two Floquet fre-
quencies obey the relation obeying �+=2
−�−, again pecu-
liar to graphene, as can be checked by both the perturbation
theory, Eq. �7�, and numerical results. For experimentally
accessible cases 
� t�

−1 and the frequencies are just 
t�
−1.

Coefficients As are fixed by initial conditions

	k�t = 0� = uk = � 1

− hk
�/�k

� . �8�

This solution is used to calculate evolution of current density,
energy and the number of electron-hole pairs.

III. TIME SCALE FOR OBSERVATION OF THE BLOCH
OSCILLATIONS IN GRAPHENE

Evolution of the current density during the ballistic “flight
time” tbal is the integral over Brillouin zone �multiplied by
factor 2 due to spin�,8

Jy�t� = − 2e�
k

	k
†�t�

�Hp

�py
	k�t� . �9�

The current density divided by electric field, ��t��Jy�t� /E,
is shown in Figs. 1 and 2 for various values of the dimen-
sionless electric field E in the range 2−8–2−5.

Fig. 1 in which evolution is shown up to ballistic time of
120t�, demonstrates that after an initial fast increase on the
microscopic time scale t� �shown in more detail, using linear
response, in Ref. 8�, ��t� approaches the universal value �2
and settles there. Beyond linear response one does not expect
the current density to hold up to this value indefinitely. In a
ballistic system the energy initially increases, as follows
from the Joule law. The total energy of electrons can be
written in the first quantized formalism as

Utot�t� = 2�
k

	k
†�t�Hp	k�t� � 2�	�t��H�	�t�� . �10�

It can be shown using Eq. �4� that the power

P�t� =
d

dt
Utot = 2�	�

d

dt
H�	� = − 2eE�	�

�Hp

�py
�	� = EJy�t� , �11�

is indeed proportional to current density. Since in the tight-
binding model electron’s energy cannot exceed the upper
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FIG. 1. �Color� The time evolution of the current density �three
bottom curves� and the scaled pair creation rate �three top curves� at
relatively short times for various fields. The shaded parts indicate
the linear response periods.
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FIG. 2. �Color� The time evolution of the current density is
shown for various fields up to 1000t�.
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band-edge energy 3�, hence at some time scale tB the energy
increase is reversed. The physics which takes over is that of
the Bloch oscillations and is similar to that in ordinary ma-
terials, namely, electrons’ energies are elevated by the elec-
tric field4 due to the quasimomentum shift. This feature is not
related to the unique “relativistic” feature of the graphene
spectrum.

The current, shown in Fig. 2 for ballistic times up to
1000t�, indeed exhibits Bloch oscillations. It turns out that
the current vanishes at points given exactly at multiples of
tB /2 with

tB =
8�

	3

�

eEa
=

8�

	3

t�

E
�12�

being the period of the Bloch oscillations. The Bloch time is
approximately the time required for the electric field to shift
the momentum across the Brillouin zone �py =eEtB�� /a.
These times are very long for experimentally achieved fields,
much longer than the ballistic flight time. One observes in
Fig. 2 another peculiar feature that �apart from the “relativ-
istic” initial constant segment� time dependence of ��t� is
similar for different electric fields. Indeed, if one plots J /	E
versus tE, all the curves nearly coincide. Moreover

J�t� = 	3�2E0
1/2E1/2 sin�2�t

tB
� �13�

is an excellent fit.
For a sample of submicron dimensions, L=0.5 �m,

W=1.5 �m, the ballistic time can be estimated as
tbal=L /vg�2.3·103t� with vg=

	3
2

�a
� . For large currents

�Imax in the mA region� the electric field is
Emax=

Imax

W�2
=107 V /m corresponding to E=10−3 �the voltage

would be quite large Vmax=5 V�. The first maximum
of the Bloch oscillation will be seen at flight time of
tB /4=3.6·103t�, which is of the same order as tbal. For a dc
current typical to transport measurements I=50 �A, the
electric field is just E=5�105 V /m corresponding
E=5�10−5, tB /4=7.2�104t�� tbal and is therefore at this
time out of reach. �Yet Bloch oscillations have been
experimentally observed for ac fields.13�

IV. CROSSOVER FROM LINEAR TO NONLINEAR
REGIMES

In Fig. 1 one clearly observes a remarkable feature: there
is a much smaller crossover time tnl, after which the conduc-
tivity rises linearly with time above the constant “universal”
value �2,

J�t� = �2�	3

2
E�3/2� evg

�
�1/2

t . �14�

The onset of the nonlinear behavior can hence be defined at

tnl =
23/2

33/4	 �

eEvg
�

1.3

	E
t�. �15�

It becomes the same as the ballistic time tbal=2.3�103t�,
mentioned above, for relatively weak fields E=104 V /m

corresponding to E=10−6. Therefore some of the transport
measurements performed might be influenced by the physics
beyond linear response.

A qualitative picture of this resistivity without dissipation
is as follows. The electric field creates electron-hole excita-
tions mostly in the vicinity of the Dirac points in which
electrons behave as massless relativistic fermions with the
graphene velocity vg playing a role of velocity of light. For
such particles the absolute value of the velocity is vg and
cannot be altered by the electric field and is not related to the
wave vector k. On the other hand, the orientation of the
velocity is influenced by the applied field. The electric cur-
rent is ev, thus depending on orientation, so that its projec-
tion on the field direction y is increased by the field. The
energy of the system �calculated in a way similar to the cur-
rent� is increasing continuously if no channel for dissipation
is included. Therefore the “Ohmic” conductivity originates in
creation of pairs near the Dirac points with an additional
contribution due to the alignment of the particles’ motion
with the field’s direction. At times of order tB his process
exhausts itself due to the following processes. Electrons gain
momentum from the electric field and leave eventually the
neighborhoods of the Dirac points. They are no longer ul-
trarelativistic and are described by �positive or negative� ef-
fective mass4 and the more customary physics takes over.

The crossover to the nonlinear regime can be detected
from within the perturbation theory in electric field. Indeed
we found that the E2 correction to conductivity is

J�t�/E = �2�1 +
3

64
E2 t4

t�
4 + O�E4�
 . �16�

The correction therefore becomes as large as the leading or-
der for t=2.1t� /E1/2� tnl. To gain more insight into the na-
ture of the crossover to nonlinear response we calculated also
evolution of the energy and number of electron-hole pairs
during the ballistic flight.

V. SCHWINGER’S PAIR-CREATION FORMULA AND
GRAPHENE

The states in the conduction band for each momentum k
in the Brillouin zone are described by a pseudospinor,

vk = � 1

hk
�/�k

� �17�

orthogonal to uk defined in Eq. �8�. The amplitude of lifting
of an electron into the conduction band is Ak= �	�t� �vk� and
consequently the density of pairs �factor 2 for spin� reads as

Np�t� = 2�
k

�Ak�2 = 2�
k
�	1

� +
hk

�

�k
	2

��2

, �18�

and the rate d
dtNp is shown in Fig. 1 as function of time. Its

time dependence exhibits several time scales. At times
smaller than tnl expansion in electric field is applicable and
the leading-order result is
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d

dt
Np = − 2� eE

�
�2

t�
k
�h�py

h� − cc

�2 sin�2�t

�
�
2

. �19�

This is analogous to the “linear response” for the current.
Immediately after the switching on the electric field �times of
order t�� the pair-creation rate per unit area behaves as t3. For
t�� t� tnl the pair-creation rate per unit area rises linearly
�with logarithmic corrections�,

d

dt
Np �

2

�
� eE

�
�2

t log� t

t�
� , �20�

and is dominated by the neighborhood of the Dirac points.
However it is clear from Fig. 1 that the expansion breaks

down at tnl, when the rate stabilizes approximately at

d

dt
Np = 3.7vg

−1/2� eE

�
�3/2

.

and scales as the power E3/2. The rate continues to rise in a
series of small jumps till Bloch oscillations set in. At that
stage �actually at about tB /4� number of electrons elevated
into the conduction band becomes of order one, consistent
with Eq. �12�. Then it oscillates. The power E3/2 is, up to a
constant, the same as the rate of the vacuum breakdown due
to the pair production calculated beyond perturbation theory
by Schwinger in the context of particle physics �when gen-
eralized to the 2+1 dimensions and zero fermion mass6,10�.
This is not surprising since the power E3/2 is dictated by
dimensionality assuming ultrarelativistic approximation is
valid. However the physical meaning is somewhat different.
We have used here a definition of the pairs number with
respect to Fermi level of the system before the electric field
is switched on �equivalently when an electrons are injected
into a graphene sheet from a lead�. This is different not only
from the Schwinger’s path-integral definition in which the
Fermi level is “updated” along the work of electric field and
from the definition proposed recently10 in connection with
graphene. The asymptotics at very large times is not relevant
for experimentally achievable ballistic times, so that the pre-
dicted relatively short plateau segments are more important.

VI. SUMMARY

Ballistic transport in single graphene sheet near Dirac
point was investigated using the dynamic approach beyond

linear-response theory. We found that, while the observation
of the Bloch oscillations is difficult, there exists a time scale
tnl, see Eq. �15�, of transition to a nonlinear regime which is
within reach of current experimental techniques. The physics
of the ballistic transport in graphene can be described as a
succession of four time segments with different character:

�i� at microscopic ballistic times t� t� the current reacts
fast to electric field and depends on microscopic details;

�ii� the current density at zero temperature stays constant
�2E for ballistic times t�� t� tnl and physics is partially uni-
versal in the following sense. There are generally two con-
tributions to the current. While one contribution is dominated
by Dirac points, the other is related to the band structure.
However the second contribution vanishes due to symmetry
properties of the Brillouin zone, see ref. 8.

�iii� For tnl� t� tB the current density during the flight
would rise above this value. It is dominated solely by the
close vicinity of each of the two Dirac points. Perhaps the
increase of conductivity might be at least partly responsible
for the “missing �“ problem,5,14 namely, that experimentally
measured minimal conductivity is higher than �2 even in
suspended samples.2

�iv� Finally at t� tB Bloch oscillations set in. The physics
is again dominated again by the band structure, is “nonrela-
tivistic” and is not directly related to the Dirac points.

It should be noted that in addition to limitations of the
tight-binding model used which ignores impurities, interac-
tions, deviation of the chemical potential from the Dirac
point and temperature beyond linear response such “relativ-
istic” effects like the pair annihilation neglected. For very
large electric fields the effects of radiation of energy into
space �radiative friction� might in principle be observable
and should be investigated. On the other hand influence of
temperature and nonzero chemical potential in nonlinear re-
gime are expected to be similar to those in linear response
studied in Ref. 8.
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