On the largest eigenvalues of bipartite graphs which are nearly complete

Yi-Fan Chen ${ }^{\text {a }}$, Hung-Lin Fu ${ }^{\text {a }}$, In-Jae Kim ${ }^{\text {b,* }}$, Eryn Stehr ${ }^{\text {b }}$, Brendon Watts ${ }^{\text {c }}$
${ }^{\text {a }}$ Department of Applied Mathematics, National Chiao Tung University, Hsin Chu 30050, Taiwan, ROC
${ }^{\text {b }}$ Department of Mathematics and Statistics, Minnesota State University, Mankato, MN 56001, United States
${ }^{\text {c }}$ Department of Mathematics, University of Oklahoma, Norman, OK 73019-0315, United States

A R T I C L E I N F O

Article history:

Received 10 June 2009
Accepted 4 September 2009
Available online 14 October 2009
Submitted by S. Kirkland

AMS classification:

05C50
15A18

Keywords:
Bipartite graph
Eigenvector
Largest eigenvalue

Abstract

For positive integers p, q, r, s and t satisfying $r t \leqslant p$ and $s t \leqslant q$, let $G(p, q ; r, s ; t)$ be the bipartite graph with partite sets $\left\{u_{1}, \ldots, u_{p}\right\}$ and $\left\{v_{1}, \ldots, v_{q}\right\}$ such that u_{i} and v_{j} are not adjacent if and only if there exists a positive integer k with $1 \leqslant k \leqslant t$ such that $(k-1) r+$ $1 \leqslant i \leqslant k r$ and $(k-1) s+1 \leqslant j \leqslant k s$. In this paper we study the largest eigenvalues of bipartite graphs which are nearly complete. We first compute the largest eigenvalue (and all other eigenvalues) of $G(p, q ; r, s ; t)$, and then list nearly complete bipartite graphs according to the magnitudes of their largest eigenvalues. These results give an affirmative answer to [1, Conjecture 1.2] when the number of edges of a bipartite graph with partite sets U and V, having $|U|=p$ and $|V|=q$ for $p \leqslant q$, is $p q-2$. Furthermore, we refine [1, Conjecture 1.2] for the case when the number of edges is at least $p q-p+1$.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction and preliminary

Let G be a (simple) graph with vertex set $V(G)=\left\{v_{1}, \ldots, v_{n}\right\}$ and edge set $E(G)=\left\{v_{i}, v_{j} \mid v_{i}\right.$ and v_{j} are adjacent $\}$. If H is a graph with $V(H) \subseteq V(G)$ and $E(H) \subseteq E(G)$, then H is a subgraph of G. If $H \neq G$, then H is a proper subgraph. If H is a proper subgraph of G, and there is no proper subgraph H^{\prime} of G such that H is a proper subgraph of H^{\prime}, then H is a maximal proper subgraph of G.

[^0]The adjacency matrix of G on n vertices is the n by n matrix $A(G)$ whose entries $a_{i j}$ are given by

$$
a_{i j}= \begin{cases}1, & \text { if } v_{i}, v_{j} \in E(G) \\ 0, & \text { otherwise }\end{cases}
$$

Note that $A(G)$ is symmetric. Hence, all the eigenvalues of $A(G)$ are real. The eigenvalues of $A(G)$ are called eigenvalues of the graph G. We can list the eigenvalues of graph G in non-increasing order

$$
\lambda_{1}(G) \geqslant \lambda_{2}(G) \geqslant \cdots \geqslant \lambda_{n}(G)
$$

By [4, Theorem 8.4.5], we have the following result.
Proposition 1. If H is a subgraph of G, then

$$
\lambda_{1}(H) \leqslant \lambda_{1}(G) .
$$

A graph G is bipartite if its vertex set can be partitioned into two parts U and V, so called partite sets, such that every edge has one end in U and the other in V. Let G be a bipartite graph with partite sets $U=\left\{u_{1}, \ldots, u_{p}\right\}$ and $V=\left\{v_{1}, \ldots, v_{q}\right\}$, and A be the $(p+q)$ by $(p+q)$ adjacency matrix of G of the form

$$
\left[\begin{array}{cc}
O & B \tag{1}\\
B^{T} & O
\end{array}\right],
$$

where $B=\left[b_{i j}\right]$ is the p by q matrix such that

$$
b_{i j}= \begin{cases}1, & \text { if } u_{i} \text { and } v_{j} \text { are adjacent; } \\ 0, & \text { otherwise }\end{cases}
$$

If B is the p by q matrix with each entry equal to 1 , then the bipartite graph G is a complete bipartite graph, and denoted by $K_{p, q}$. The following two results describe spectral properties of bipartite graphs (Theorem 2; see [8, Theorem 8.6.9]) and the matrix product of the form $B B^{T}$ (Proposition 3; see [4]).

Theorem 2. Let G be a bipartite graph, and A be its adjacency matrix. Then the eigenvalues of A are symmetric about the origin, i.e., if $\lambda \in \sigma(A)$, then $-\lambda \in \sigma(A)$. Moreover, $\mu(\geqslant 0)$ is an eigenvalue of A^{2} if and only if $\pm \sqrt{\mu}$ are eigenvalues of A.

For each $\mathbf{x} \in \mathbb{R}^{n}$, if an n by n real symmetric matrix M satisfies $\mathbf{x}^{T} M \mathbf{x} \geqslant 0$, then M is a positive semidefinite matrix. It is well known that each eigenvalue of a positive semidefinite matrix is a nonnegative real number (see [4]).

Proposition 3. Let B be a p by q matrix. Then
(a) The rank of B is equal to that of the p by p matrix $B B^{T}$.
(b) The matrix $B B^{T}$ of order p is positive semidefinite.
(c) The number of nonzero eigenvalues of $B B^{T}$ is equal to the rank of $B B^{T}$.
(d) If $p \leqslant q$, then the q by q matrix $B^{T} B$ has the same eigenvalues as $B B^{T}$ of order p, counting multiplicity, together with additional $(q-p)$ eigenvalues equal to 0 .

For positive integers p, q, r, s and t satisfying $r t \leqslant p$ and $s t \leqslant q$, we define $G(p, q ; r, s ; t)$ to be the bipartite graph with partite sets $\left\{u_{1}, \ldots, u_{p}\right\}$ and $\left\{v_{1}, \ldots, v_{q}\right\}$ such that u_{i} and v_{j} are not adjacent if and only if there exists a positive integer k with $1 \leqslant k \leqslant t$ such that $(k-1) r+1 \leqslant i \leqslant k r$ and $(k-1) s+$ $1 \leqslant j \leqslant k s$. In Fig. 1 there is an edge between u_{i} and v_{j} if and only if they are not connected by a dotted line.

In $[2,3]$ the largest and the second largest eigenvalues of certain types of trees are obtained. This motivates our study of the largest eigenvalues of bipartite graphs which are close to a complete bipartite graph. In this paper we find all the eigenvalues of the bipartite graph $G(p, q ; r, s ; t)$ by computing eigenvalues of the square of the adjacency matrix of $G(p, q ; r, s ; t)$, and list its eigenvalues according to their

Fig. 1. $G(5,6 ; 1,2 ; 2)$.
magnitudes. Using this result, we list nearly complete bipartite graphs according to the magnitudes of their largest eigenvalues. These results give an affirmative answer to [1, Conjecture 1.2] when the number of edges of a bipartite graph with partite sets U and V, having $|U|=p$ and $|V|=q$ for $p \leqslant q$, is $p q-2$. Furthermore, by Theorem 7, we refine [1, Conjecture 1.2] when the number of edges is at least $p q-p+1$ (see Conjecture 11).

2. Eigenvalues of $G(p, q ; r, s ; t)$

Let A be the adjacency matrix of $G(p, q ; r, s ; t)$ of the form (1). If we can compute eigenvalues of A^{2}, then, by Theorem 2, we can find the eigenvalues of A. Note that

$$
A^{2}=\left[\begin{array}{cc}
O & B \\
B^{T} & O
\end{array}\right]\left[\begin{array}{cc}
O & B \\
B^{T} & O
\end{array}\right]=\left[\begin{array}{cc}
B B^{T} & O \\
O & B^{T} B
\end{array}\right] .
$$

By Proposition 3(d), it suffices to compute eigenvalues of $B B^{T}$.
Let $(a)_{r \times s}$ be the r by s matrix each of whose entries is a. When $r=s$, we use $(a)_{r}$ to denote $(a)_{r \times r}$. Then

$$
B=\left[\begin{array}{cccc|c}
(0)_{r \times s} & (1)_{r \times s} & \cdots & (1)_{r \times s} & \\
(1)_{r \times s} & (0)_{r \times s} & \ddots & \vdots & \\
\vdots & \ddots & \ddots & (1)_{r \times s} & (1)_{r t \times(q-s t)} \\
(1)_{r \times s} & \cdots & (1)_{r \times s} & (0)_{r \times s} & \\
\hline & & (1)_{(p-r t) \times s t} & & (1)_{(p-r t) \times(q-s t)}
\end{array}\right],
$$

and

$$
B B^{T}=\left[\begin{array}{cccc|c}
(q-s)_{r} & (q-2 s)_{r} & \cdots & (q-2 s)_{r} & \\
(q-2 s)_{r} & (q-s)_{r} & \ddots & \vdots & \\
\vdots & \ddots & \ddots & (q-2 s)_{r} & (q-s)_{r t \times(p-r t)} \\
(q-2 s)_{r} & \cdots & (q-2 s)_{r} & (q-s)_{r} & \\
\hline & & (q-s)_{(p-r t) \times r t} & & (q)_{(p-r t)}
\end{array}\right] .
$$

Assume that $p>r t$ and $q>s t$. Then it can be shown that, by elementary row and column operations, B has the same rank as that of the $(t+1)$ by $(t+1)$ matrix

$$
C=\left[\begin{array}{cccc|c}
0 & 1 & \cdots & 1 & 1 \tag{2}\\
1 & 0 & \ddots & \vdots & \vdots \\
\vdots & \ddots & \ddots & 1 & \vdots \\
1 & \cdots & 1 & 0 & 1 \\
\hline 1 & \cdots & & 1 & 1
\end{array}\right]
$$

If $t=1$, then

$$
C=\left[\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right]
$$

which is nonsingular. For $t \geqslant 2$, note that the $(1,1)$-block of C is $(1)_{t}-I_{t}$, which is nonsingular. Let R_{i} be the i th row of the matrix (2). By using the row operation $(t-1) R_{t+1}$ and then $R_{t+1}-R_{i}$ for each $i=1,2, \ldots, t$, we can obtain the following matrix whose rank is equal to that of C :

$$
\left[\begin{array}{cccc|c}
0 & 1 & \cdots & 1 & 1 \\
1 & 0 & \ddots & \vdots & \vdots \\
\vdots & \ddots & \ddots & 1 & \vdots \\
1 & \cdots & 1 & 0 & 1 \\
\hline 0 & \cdots & & 0 & -1
\end{array}\right]
$$

This implies that the rank of C (and hence $B B^{T}$) is $t+1$.
If $p=r t$ (resp. $q=s t$), then the matrix C is obtained by deleting the last row (resp. the last column) from the matrix in the form (2). By Proposition 3(a) and (c), we get the following result.

Proposition 4. If $p>r t$ and $q>s t$, then $B B^{T}$ has $t+1$ nonzero eigenvalues, and if $p=r t$ or $q=s t$, then $B B^{T}$ has t nonzero eigenvalues.

The p by p matrix $B B^{T}$ can be rewritten as follows:

$$
\begin{equation*}
B B^{T}=(q-2 s)(1)_{p}+s M, \tag{3}
\end{equation*}
$$

where

$$
M=\left[\begin{array}{ccc|c}
(1)_{r} & & 0 & \tag{4}\\
& \ddots & & (1)_{r t \times(p-r t)} \\
0 & & (1)_{r} & (2)_{p-r t}
\end{array}\right]_{p \times p}
$$

In the following we find some eigenvalues and their corresponding eigenvectors of M and use them to find the eigenvalues of $B B^{T}$. The vector \mathbf{e}_{i} denotes the vector with exactly one nonzero entry that is 1 and located in the i th position. For a square matrix M of order p and a p by 1 vector \mathbf{x}, if $M \mathbf{x}=\mathbf{0}$, then \mathbf{x} is a nullvector of M.

Proposition 5. For $p>r$ and $q>s t$, let $B B^{T}$ be of the form (3), and M be the p by p matrix of the form (4). Then the following hold:
(a) The $p-(t+1)$ nonzero vectors in the set

$$
\begin{equation*}
\left\{\mathbf{e}_{r k+1}-\mathbf{e}_{r k+j} \mid k=0,1, \ldots, t-1 \text { and } j=2, \ldots, r\right\} \cup\left\{\mathbf{e}_{r t+1}-\mathbf{e}_{j} \mid j=r t+2, \ldots, p\right\} \tag{5}
\end{equation*}
$$

are linearly independent nullvectors of M.
(b) The $p-(t+1)$ linearly independent vectors in (5) are nonzero nullvectors of $B B^{T}$.
(c) For $t \geqslant 2$, the scalar r is an eigenvalue of M with multiplicity $t-1$, and the $t-1$ nonzero vectors in the set

$$
\begin{equation*}
\left\{\mathbf{x}_{k} \mid \mathbf{x}_{k}=\sum_{i=1}^{r} \mathbf{e}_{i}-\sum_{j=1}^{r} \mathbf{e}_{r k+j}, k=1, \ldots, t-1\right\} \tag{6}
\end{equation*}
$$

are linearly independent eigenvectors corresponding to the eigenvalue r.
(d) When $t \geqslant 2$, the $(t-1)$ nonzero vectors in (6) are linearly independent eigenvectors of $B B^{T}$ corresponding to the eigenvalue rs.

Proof. A direct computation proves (a) and (c). Since the nonzero vectors in (5) and (6) are nullvectors of the matrix (1) $)_{p}$ in (3), (b) and (d) follow.

By Proposition 4, when $p>r t$ and $q>s t$, there are $t+1$ nonzero eigenvalues of $B B^{T}$. Hence, by Proposition 5, there are two more nonzero eigenvalues of $B B^{T}$ to be computed. Let W_{1} and W_{2} be subspaces of \mathbb{R}^{p}. We say that W_{1} and W_{2} are perpendicular (denoted by $W_{1} \perp W_{2}$) provided that for any vectors $\mathbf{w}_{1} \in W_{1}$ and $\mathbf{w}_{2} \in W_{2}, \mathbf{w}_{1}$ is perpendicular to \mathbf{w}_{2}, i.e., $\mathbf{w}_{1}^{T} \mathbf{w}_{2}=0$. For a subspace W of \mathbb{R}^{p}, we define W^{\perp} as follows:

$$
W^{\perp}=\left\{\mathbf{z} \mid \mathbf{z}^{T} \mathbf{w}=0 \text { for each } \mathbf{w} \in W\right\} .
$$

Let S be a p by p matrix. We say that W is invariant under S if $S \mathbf{w} \in W$ for each $\mathbf{w} \in W$. The following result can be found in [6, Theorems 4.2 and 4.3].

Theorem 6. Let S be a p by p real symmetric matrix. Then the following hold:
(a) If E_{1} and E_{2} are the eigenspaces of S corresponding to distinct eigenvalues, then

$$
E_{1} \perp E_{2} .
$$

(b) If W is a subspace of \mathbb{R}^{p} which is invariant under S, then W^{\perp} is also invariant under S.

Let W be the vector space spanned by the vectors in (5) and (6). It can be verified that W^{\perp} is spanned by \mathbf{z}_{1} and \mathbf{z}_{2}, i.e.,

$$
W^{\perp}=\left\langle\mathbf{z}_{1}, \mathbf{z}_{2}\right\rangle,
$$

where

$$
\mathbf{z}_{1}=\left[\begin{array}{c}
(1)_{r t \times 1} \\
(0)_{(p-r t) \times 1}
\end{array}\right] \quad \text { and } \quad \mathbf{z}_{2}=\left[\begin{array}{c}
(0)_{r t \times 1} \\
(1)_{(p-r t) \times 1}
\end{array}\right] .
$$

Moreover, by Theorem 6, the eigenvectors of $B B^{T}$ corresponding to the remaining two nonzero eigenvalues are in W^{\perp}, and $\left(B B^{T}\right) \mathbf{z} \in W^{\perp}$ for every $\mathbf{z} \in W^{\perp}$. Let $\mathcal{Z}=\left\{\mathbf{z}_{1}, \mathbf{z}_{2}\right\}$. Then the eigenvalues of the 2 by $2 \mathcal{Z}$-matrix for $B B^{T}$ (see [7, p. 329]) are the remaining two eigenvalues of $B B^{T}$ (see [5, Proposition 1.5.4]). To find the \mathcal{Z}-matrix for $B B^{T}$, we compute $\left(B B^{T}\right) \mathbf{z}_{i}$ for each $i=1,2$:

$$
\begin{aligned}
& \left(B B^{T}\right) \mathbf{z}_{1}=[r(q-s)+r(t-1)(q-2 s)] \mathbf{z}_{1}+[r t(q-s)] \mathbf{z}_{2}, \\
& \left(B B^{T}\right) \mathbf{z}_{2}=[(p-r t)(q-s)] \mathbf{z}_{1}+[q(p-r t)] \mathbf{z}_{2} .
\end{aligned}
$$

Hence, the 2 by $2 \mathcal{Z}$-matrix for $B B^{T}$ is

$$
\left[\begin{array}{cc}
r(q-s)+r(t-1)(q-2 s) & (p-r t)(q-s) \\
r t(q-s) & q(p-r t)
\end{array}\right] .
$$

By computing the eigenvalues of the \mathcal{Z}-matrix for $B B^{T}$, we get the eigenvalues of $B B^{T}$:

$$
\begin{equation*}
\frac{p q-2 r s t+r s \pm \sqrt{(p q-2 r s t+r s)^{2}-4 r s(p-r t)(q-s t)}}{2} . \tag{7}
\end{equation*}
$$

By Theorem 2, Propositions 3, 4 and 5 along with the eigenvalues of $B B^{T}$ in (7), we have found all the eigenvalues of $G(p, q ; r, s ; t)$.

Theorem 7. Let A be the adjacency matrix of the bipartite graph $G(p, q ; r, s ; t)$. Then the following hold:
(a) For $p>r t, q>$ st and $t \geqslant 2$, the eigenvalues of A are

$$
\begin{aligned}
\lambda_{1} & =\sqrt{\frac{p q-2 r s t+r s+\sqrt{(p q-2 r s t+r s)^{2}-4 r s(p-r t)(q-s t)}}{2}} \geqslant \lambda_{2}=\sqrt{r s} \\
\lambda_{3} & =\sqrt{\frac{p q-2 r s t+r s-\sqrt{(p q-2 r s t+r s)^{2}-4 r s(p-r t)(q-s t)}}{2}} \geqslant \lambda_{4}=0 \\
& \geqslant-\lambda_{3} \geqslant-\lambda_{2} \geqslant-\lambda_{1} .
\end{aligned}
$$

Moreover, the multiplicities of $\pm \lambda_{1}$ and $\pm \lambda_{3}$ are 1, the multiplicities of $\pm \lambda_{2}$ are $t-1$, and the multiplicity of $\lambda_{4}=0$ is $(p+q)-2(t+1)$.
(b) If $p=r t$ or $q=$ st with $t \geqslant 2$, then the eigenvalues of A are

$$
\lambda_{1}=\sqrt{p q-2 r s t+r s} \geqslant \lambda_{2}=\sqrt{r s} \geqslant \lambda_{3}=0 \geqslant-\lambda_{2} \geqslant-\lambda_{1} .
$$

(c) If $t=1$, then the eigenvalues of A are

$$
\begin{aligned}
\lambda_{1} & =\sqrt{\frac{p q-r s+\sqrt{(p q-r s)^{2}-4 r s(p-r)(q-s)}}{2}} \\
& \geqslant \lambda_{2}=\sqrt{\frac{p q-r s-\sqrt{(p q-r s)^{2}-4 r s(p-r)(q-s)}}{2}} \\
& \geqslant 0 \geqslant-\lambda_{2} \geqslant-\lambda_{1} .
\end{aligned}
$$

Proof. We here show that for nonnegative λ_{1}, λ_{2} and λ_{3} in (a), $\lambda_{1}^{2} \geqslant \lambda_{2}^{2} \geqslant \lambda_{3}^{2}$ when $p \geqslant r t, q \geqslant s t$ and $t \geqslant 2$. Then the orders of eigenvalues according to their magnitudes in (a), (b) and (c) follow.

We first show that $\lambda_{1}^{2} \geqslant \lambda_{2}^{2}$. Since $p \geqslant r t$ and $q \geqslant r t$, it follows that

$$
\begin{aligned}
p q-2 r s t+r s & \geqslant r s t^{2}-2 r s t+r s \\
& =r s\left(t^{2}-2 t+1\right) \\
& =r s(t-1)^{2}
\end{aligned}
$$

Hence, for $t \geqslant 3, \lambda_{1}^{2} \geqslant \lambda_{2}^{2}$. Let $t=2$. Consider

$$
\begin{equation*}
\frac{p q-3 r s+\sqrt{(p q-3 r s t)^{2}-4 r s(p-2 r)(q-2 s)}}{2}-r s \tag{8}
\end{equation*}
$$

If $p q \geqslant 5 r s$, then (8) is nonnegative and hence $\lambda_{1}^{2} \geqslant \lambda_{2}^{2}$.
Suppose that $p q<5 r s$, i.e., $5 r s-p q>0$. We show that

$$
\begin{equation*}
(p q-3 r s)^{2}-4 r s(p-2 r)(q-2 s)-(5 r s-p q)^{2} \tag{9}
\end{equation*}
$$

is nonnegative. By a simple calculation, it can be shown that (9) is equal to

$$
8 r s^{2} p+8 r^{2} s q-32 r^{2} s^{2}
$$

Since $p \geqslant 2 r$ and $q \geqslant 2 s$, we have

$$
8 r s^{2} p+8 r^{2} s q-32 r^{2} s^{2} \geqslant 16 r^{2} s^{2}+16 r^{2} s^{2}-32 r^{2} s^{2}=0
$$

Hence, $\lambda_{1}^{2} \geqslant \lambda_{2}^{2}$.

Next, we show that $\lambda_{2}^{2} \geqslant \lambda_{3}^{2}$ when $p \geqslant r t, q \geqslant s t$ and $t \geqslant 2$. The difference $\lambda_{2}^{2}-\lambda_{3}^{2}$ is equal to

$$
\frac{r s+2 r s t-p q+\sqrt{(p q-2 r s t+r s)^{2}-4 r s(p-r t)(q-s t)}}{2}
$$

If $r s+2 r s t-p q \geqslant 0, \lambda_{2}^{2} \geqslant \lambda_{3}^{2}$.
Suppose that $r s+2 r s t-p q<0$, i.e., $p q-2 r s t-r s>0$. Then, in order to show $\lambda_{2}^{2} \geqslant \lambda_{3}^{2}$, it suffices to show that

$$
\begin{equation*}
(p q-2 r s t+r s)^{2}-4 r s(p-r t)(q-s t)-(p q-2 r s t-r s)^{2} \tag{10}
\end{equation*}
$$

is nonnegative. By a simple calculation, it can be shown that (10) is equal to

$$
4 r s^{2} t p+4 r^{2} s t q-4 r^{2} s^{2} t^{2}-8 r^{2} s^{2} t
$$

Since $p \geqslant r t, q \geqslant s t$ and $t \geqslant 2$, we have

$$
\begin{aligned}
4 r s^{2} t p+4 r^{2} s t q-4 r^{2} s^{2} t^{2}-8 r^{2} s^{2} t & \geqslant 4 r^{2} s^{2} t^{2}+4 r^{2} s^{2} t^{2}-4 r^{2} s^{2} t^{2}-8 r^{2} s^{2} t \\
& =4 r^{2} s^{2} t(t-2) \\
& \geqslant 0
\end{aligned}
$$

Hence, the result follows.

3. List of nearly complete bipartite graphs

We now list bipartite graphs, missing at most two edges from a complete bipartite graph, according to the magnitudes of their largest eigenvalues λ_{1}. We denote by $G^{(i)}$ the bipartite graph with the i th largest λ_{1} among all bipartite graphs with $2 n$ vertices.

Theorem 8. For $n \geqslant 3, G^{(1)}=K_{n, n}, G^{(2)}=K_{n-1, n+1}, G^{(3)}=G(n, n ; 1,1 ; 1), G^{(4)}=G(n-1, n+1$; $1,1 ; 1), G^{(5)}=G(n, n ; 2,1 ; 1), G^{(6)}=G(n, n ; 1,1 ; 2), G^{(7)}=K_{n-2, n+2}, G^{(8)}=G(n-1, n+1 ; 2$, $1 ; 1), G^{(9)}=G(n-1, n+1 ; 1,2 ; 1)$ and $G^{(10)}=G(n-1, n+1 ; 1,1 ; 2)$.

Proof. Let H be a subgraph of $K_{p, q}$ with $1 \leqslant p \leqslant q$ and $p+q=2 n$. Note that

$$
\begin{equation*}
\lambda_{1}\left(K_{p, q}\right)=\sqrt{p q} \tag{11}
\end{equation*}
$$

and $\sqrt{p q} \leqslant n$. Furthermore, by Proposition $1, \lambda_{1}(H) \leqslant \sqrt{p q}$. Hence,

$$
G^{(1)}=K_{n, n}
$$

By Proposition 1 and the fact that $\sqrt{p q}$ with $p+q=2 n$ is increasing as the value of p grows from 1 to n, it is sufficient to consider $G(n, n ; 1,1 ; 1)$ and $K_{n-1, n+1}$ for $G^{(2)}$. By Theorem 7 and (11), we have $\lambda_{1}\left(G^{(2)}\right)=\max \left\{\frac{1}{\sqrt{2}}\left[\left(n^{2}-1\right)+\left(n^{4}-6 n^{2}+8 n-3\right)^{1 / 2}\right]^{1 / 2},\left(n^{2}-1\right)^{1 / 2}\right\}$. Note that $\frac{1}{\sqrt{2}}\left[\left(n^{2}-1\right)\right.$ $\left.+\left(n^{4}-6 n^{2}+8 n-3\right)^{1 / 2}\right]^{1 / 2} \leqslant \frac{1}{\sqrt{2}}\left[\left(n^{2}-1\right)+\left(n^{4}-6 n^{2}+8 n-3+4 n^{2}-8 n+4\right)^{1 / 2}\right]^{1 / 2} \leqslant\left(n^{2}\right.$ $-1)^{1 / 2}$. Hence,

$$
G^{(2)}=K_{n-1, n+1}
$$

Similarly, in order to find $G^{(3)}$, it suffices to consider $G(n, n ; 1,1 ; 1), G(n-1, n+1 ; 1,1 ; 1)$ and $K_{n-2, n+2}$. We compute the largest largest eigenvalues of these three bipartite graphs by Theorem 7 and (11), and then use the facts, $n^{4}-6 n^{2}+8 n-3+4 n^{2}-8 n+4 \geqslant n^{4}-8 n^{2}+8 n+4$ for $n \geqslant 3$ and $(n-4)^{1 / 2}=\frac{1}{\sqrt{2}}\left[\left(n^{2}-1\right)+\left(n^{4}-14 n^{2}+49\right)^{1 / 2}\right]^{1 / 2}$ in order to compare the largest eigenvalues. This gives

$$
G^{(3)}=G(n, n ; 1,1 ; 1)
$$

Next, we consider the maximal proper subgraphs of $G^{(1)}, G^{(2)}, G^{(3)}$, and the complete bipartite graph $K_{n-2, n+2}$ for $G^{(4)}$, using Theorem 7 and (11). By repeating this process, considering the maximal subgraphs of $G^{(1)}, \ldots, G^{(i)}$, and a complete bipartite graph $K_{p, q}$ with $p+q=2 n$ (which was not considered in the previous steps), we can get $G^{(i+1)}$ for $i=3, \ldots, 9$.

Example 9. The following is the list of bipartite graphs with 40 vertices according to the magnitudes of the largest eigenvalues:

	Graph	λ_{1}
1.	$K_{20,20}$	20
2.	$K_{19,20}$	19.97498436
3.	$G(20,20 ; 1,1 ; 1)$	19.95227248
4.	$G(19,21 ; 1,1 ; 1)$	19.92720282
5.	$G(20,20 ; 2,1 ; 1)$	19.90663008
6.	$G(20,20 ; 1,1 ; 2)$	19.90432602
7.	$K_{18,20}$	19.89974874
8.	$G(19,21 ; 2,1 ; 1)$	19.88164226
9.	$G(19,21 ; 1,2 ; 1)$	19.88138664
10.	$G(19,21 ; 1,1 ; 2)$	19.87920160

The computation of λ_{1} can be done by the open source mathematical software SAGE (see http://www.sagemath.org). The following is a SAGE code for $\lambda_{1}(G(20,20 ; 2,1 ; 1))$:

```
p=20;q=20;r=2;s=1;t=1
def }a(i,j)
    for }k\mathrm{ in [1..t]:
        if (i in [r*(k-1)+1..r*k]) and (j in [s*(k-1)+1..s*k]):
            return 0
    else:
        return 1
B=matrix([[a(i,j) for j in [1..q]] for i in [1..p]])
E=(B*B.transpose()).eigenvalues()
print sqrt(E[p-1])
```

From Theorem 8 it follows that

$$
\lambda_{1}(G(p, q ; 2,1 ; 1)) \geqslant \lambda_{1}(G(p, q ; 1,2 ; 1)) \geqslant \lambda_{1}(G(p, q ; 1,1 ; 2))
$$

for $(p, q) \in\{(n, n),(n-1, n+1)\}$. This can be generalized to the case for any positive integers p, q with $2 \leqslant p \leqslant q$.

Proposition 10. Let p and q be positive integers. If $2 \leqslant p \leqslant q$, then

$$
\lambda_{1}(G(p, q ; 2,1 ; 1)) \geqslant \lambda_{1}(G(p, q ; 1,2 ; 1)) \geqslant \lambda_{1}(G(p, q ; 1,1 ; 2)) .
$$

Proof. This can be shown by first computing the eigenvalues, using Theorem 7, and then using a direct comparison.

Proposition 10 gives an affirmative answer to [1, Conjecture 1.2] when the number of edges of a bipartite graph with partite sets U and V, having $|U|=p$ and $|V|=q$ for $p \leqslant q$, is $p q-2$. By Theorem 7, we can refine [1, Conjecture 1.2] when the number of edges is at least $p q-p+1$.

Conjecture 11. For positive integers p, q and k satisfying $p \leqslant q$ and $k<p$, let G be a bipartite graph with partite sets U and V, having $|U|=p$ and $|V|=q$, and $|E(G)|=p q-k$. Then

$$
\lambda_{1}(G) \leqslant \lambda_{1}(G(p, q ; k, 1 ; 1))=\sqrt{\frac{p q-k+\sqrt{p^{2} q^{2}-6 p q k+4 p k+4 q k^{2}-3 k^{2}}}{2}} .
$$

Acknowledgements

The work of Yi-Fan Chen and Hung-Lin Fu was supported in part by NSC 94-2115-M-009-017. The work of In-Jae Kim was supported in part by the Presidential Teaching Scholar Fellowship from the Minnesota State University, Mankato, and the work of Brendon Watts was done as a part of SAMER activity while he was a PSEO student at the Minnesota State University, Mankato.

References

[1] A. Bhattacharya, S. Friedland, U.N. Peled, On the first eigenvalue of bipartite graphs, Electron. J. Combin. 15 (2008) \#R144.
[2] Xiang En Chen, On the largest eigenvalues of trees, Discrete Math. 285 (2004) 47-55.
[3] M. Hofmeister, On the two largest eigenvalues of trees, Linear Algebra Appl. 260 (1997) 43-59.
[4] R. Horn, C.R. Johnson, Matrix Analysis, Cambridge Univeristy Press, 1985.
[5] I. Gohberg, P. Lancaster, L. Rodman, Invariant Subspaces of Matrices with Applications, SIAM, 2006.
[6] S. Lang, Linear Algebra, Springer, 2001.
[7] D.C. Lay, Linear Algebra and its Applications, Addison Wesley, 2006.
[8] D.B. West, Introduction to Graph Theory, Prentice-Hall, 1996.

[^0]: * Corresponding author.

 E-mail address: in-jae.kim@mnsu.edu (I.-J. Kim).

