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For positive integers p, q, r, s and t satisfying rt � p and st � q, let

G(p, q; r, s; t) be the bipartite graph with partite sets {u1, . . . , up}
and {v1, . . . , vq} such that ui and vj are not adjacent if and only if

there exists a positive integer kwith 1� k � t such that (k − 1)r +
1� i � kr and (k − 1)s + 1� j � ks. In this paper we study the

largest eigenvalues of bipartite graphs which are nearly complete.

We first compute the largest eigenvalue (and all other eigenvalues)

of G(p, q; r, s; t), and then list nearly complete bipartite graphs ac-

cording to themagnitudes of their largest eigenvalues. These results

give an affirmative answer to [1, Conjecture 1.2] when the number

of edges of a bipartite graph with partite sets U and V , having

|U| = p and |V | = q for p� q, is pq − 2. Furthermore, we refine

[1, Conjecture 1.2] for the case when the number of edges is at least

pq − p + 1.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction and preliminary

Let G be a (simple) graph with vertex set V(G) = {v1, . . . , vn} and edge set E(G) = {vi, vj|vi and vj
are adjacent}. If H is a graph with V(H) ⊆ V(G) and E(H) ⊆ E(G), then H is a subgraph of G. If H /= G,

then H is a proper subgraph. If H is a proper subgraph of G, and there is no proper subgraph H′ of G
such that H is a proper subgraph of H′, then H is a maximal proper subgraph of G.
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The adjacency matrix of G on n vertices is the n by nmatrix A(G) whose entries aij are given by

aij =
{
1, if vi, vj ∈ E(G);
0, otherwise.

Note that A(G) is symmetric. Hence, all the eigenvalues of A(G) are real. The eigenvalues of A(G) are

called eigenvalues of the graph G. We can list the eigenvalues of graph G in non-increasing order

λ1(G) � λ2(G) � · · · � λn(G).

By [4, Theorem 8.4.5], we have the following result.

Proposition 1. If H is a subgraph of G, then

λ1(H) � λ1(G).

A graph G is bipartite if its vertex set can be partitioned into two parts U and V , so called partite sets,

such that every edge has one end in U and the other in V . Let G be a bipartite graph with partite sets

U = {u1, . . . , up} and V = {v1, . . . , vq}, and A be the (p + q) by (p + q) adjacency matrix of G of the

form [
O B

BT O

]
, (1)

where B = [bij] is the p by qmatrix such that

bij =
{
1, if ui and vj are adjacent;
0, otherwise.

If B is the p by q matrix with each entry equal to 1, then the bipartite graph G is a complete bipartite

graph, and denoted by Kp,q. The following two results describe spectral properties of bipartite graphs

(Theorem 2; see [8, Theorem 8.6.9]) and the matrix product of the form BBT (Proposition 3; see [4]).

Theorem 2. Let G be a bipartite graph, and A be its adjacency matrix. Then the eigenvalues of A are

symmetric about the origin, i.e., if λ ∈ σ(A), then −λ ∈ σ(A). Moreover, μ(� 0) is an eigenvalue of A2 if

and only if ±√
μ are eigenvalues of A.

For eachx ∈ Rn, if annbyn real symmetricmatrixM satisfiesxTMx � 0, thenM is apositive semidef-

inite matrix. It is well known that each eigenvalue of a positive semidefinite matrix is a nonnegative

real number (see [4]).

Proposition 3. Let B be a p by q matrix. Then

(a) The rank of B is equal to that of the p by p matrix BBT .
(b) The matrix BBT of order p is positive semidefinite.
(c) The number of nonzero eigenvalues of BBT is equal to the rank of BBT .
(d) If p� q, then the q by q matrix BTB has the same eigenvalues as BBT of order p, counting multiplicity,

together with additional (q − p) eigenvalues equal to 0.

For positive integers p, q, r, s and t satisfying rt � p and st � q, we define G(p, q; r, s; t) to be the

bipartite graphwith partite sets {u1, . . . , up} and {v1, . . . , vq} such that ui and vj are not adjacent if and

only if there exists a positive integer k with 1� k � t such that (k − 1)r + 1� i � kr and (k − 1)s +
1� j � ks. In Fig. 1 there is an edge between ui and vj if and only if they are not connected by a dotted

line.

In [2,3] the largest and the second largest eigenvalues of certain types of trees are obtained. This

motivatesour studyof the largest eigenvaluesofbipartite graphswhichare close toa completebipartite

graph. In this paperwefind all the eigenvalues of the bipartite graphG(p, q; r, s; t)by computing eigen-

values of the square of the adjacencymatrix of G(p, q; r, s; t), and list its eigenvalues according to their
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Fig. 1. G(5, 6; 1, 2; 2).

magnitudes. Using this result, we list nearly complete bipartite graphs according to the magnitudes

of their largest eigenvalues. These results give an affirmative answer to [1, Conjecture 1.2] when the

number of edges of a bipartite graph with partite sets U and V , having |U| = p and |V | = q for p� q,

is pq − 2. Furthermore, by Theorem 7, we refine [1, Conjecture 1.2] when the number of edges is at

least pq − p + 1 (see Conjecture 11).

2. Eigenvalues of G(p, q; r, s; t)
Let A be the adjacency matrix of G(p, q; r, s; t) of the form (1). If we can compute eigenvalues of A2,

then, by Theorem 2, we can find the eigenvalues of A. Note that

A2 =
[
O B

BT O

] [
O B

BT O

]
=

[
BBT O

O BTB

]
.

By Proposition 3(d), it suffices to compute eigenvalues of BBT .

Let (a)r×s be the r by smatrix each of whose entries is a. When r = s, we use (a)r to denote (a)r×r .

Then

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

(0)r×s (1)r×s · · · (1)r×s

(1)r×s (0)r×s

. . .
...

...
. . .

. . . (1)r×s (1)rt×(q−st)

(1)r×s · · · (1)r×s (0)r×s

(1)(p−rt)×st (1)(p−rt)×(q−st)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,

and

BBT =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

(q − s)r (q − 2s)r · · · (q − 2s)r

(q − 2s)r (q − s)r
. . .

...
...

. . .
. . . (q − 2s)r (q − s)rt×(p−rt)

(q − 2s)r · · · (q − 2s)r (q − s)r
(q − s)(p−rt)×rt (q)(p−rt)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

Assume that p > rt and q > st. Then it can be shown that, by elementary row and column opera-

tions, B has the same rank as that of the (t + 1) by (t + 1) matrix

C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 1 · · · 1 1

1 0
. . .

...
...

...
. . .

. . . 1
...

1 · · · 1 0 1

1 · · · 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (2)
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If t = 1, then

C =
[
0 1

1 1

]
,

which is nonsingular. For t � 2, note that the (1, 1)-block of C is (1)t − It , which is nonsingular. Let Ri
be the ith row of the matrix (2). By using the row operation (t − 1)Rt+1 and then Rt+1 − Ri for each

i = 1, 2, . . . , t, we can obtain the following matrix whose rank is equal to that of C:⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 1 · · · 1 1

1 0
. . .

...
...

...
. . .

. . . 1
...

1 · · · 1 0 1

0 · · · 0 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

This implies that the rank of C (and hence BBT ) is t + 1.

If p = rt (resp. q = st), then thematrix C is obtained by deleting the last row (resp. the last column)

from the matrix in the form (2). By Proposition 3(a) and (c), we get the following result.

Proposition 4. If p > rt and q > st, then BBT has t + 1 nonzero eigenvalues, and if p = rt or q = st, then

BBT has t nonzero eigenvalues.

The p by pmatrix BBT can be rewritten as follows:

BBT = (q − 2s)(1)p + sM, (3)

where

M =

⎡
⎢⎢⎢⎢⎣
(1)r O

. . . (1)rt×(p−rt)

O (1)r
(1)(p−rt)×rt (2)p−rt

⎤
⎥⎥⎥⎥⎦
p×p

. (4)

In the following we find some eigenvalues and their corresponding eigenvectors ofM and use them to

find the eigenvalues of BBT . The vector ei denotes the vector with exactly one nonzero entry that is 1

and located in the ith position. For a square matrixM of order p and a p by 1 vector x, ifMx = 0, then

x is a nullvector ofM.

Proposition 5. For p > rt and q > st, let BBT be of the form (3), and M be the p by p matrix of the form

(4). Then the following hold:
(a) The p − (t + 1) nonzero vectors in the set

{erk+1 − erk+j|k = 0, 1, . . . , t − 1 and j = 2, . . . , r} ∪ {ert+1 − ej|j = rt + 2, . . . , p} (5)

are linearly independent nullvectors of M.
(b) The p − (t + 1) linearly independent vectors in (5) are nonzero nullvectors of BBT .
(c) For t � 2, the scalar r is an eigenvalue of M with multiplicity t − 1, and the t − 1 nonzero vectors

in the set⎧⎨
⎩xk

∣∣∣∣∣∣xk =
r∑

i=1

ei −
r∑

j=1

erk+j , k = 1, . . . , t − 1

⎫⎬
⎭ (6)

are linearly independent eigenvectors corresponding to the eigenvalue r.
(d) When t � 2, the (t − 1) nonzero vectors in (6) are linearly independent eigenvectors of BBT corre-

sponding to the eigenvalue rs.
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Proof. A direct computation proves (a) and (c). Since the nonzero vectors in (5) and (6) are nullvectors

of the matrix (1)p in (3), (b) and (d) follow. �

By Proposition 4, when p > rt and q > st, there are t + 1 nonzero eigenvalues of BBT . Hence, by

Proposition 5, there are two more nonzero eigenvalues of BBT to be computed. Let W1 and W2 be

subspaces of Rp. We say that W1 and W2 are perpendicular (denoted by W1 ⊥ W2) provided that for

any vectors w1 ∈ W1 and w2 ∈ W2, w1 is perpendicular to w2, i.e., w
T
1w2 = 0. For a subspace W of

Rp, we define W⊥ as follows:

W⊥ = {z|zTw = 0 for each w ∈ W}.
Let S be a p by p matrix. We say that W is invariant under S if Sw ∈ W for each w ∈ W . The following

result can be found in [6, Theorems 4.2 and 4.3].

Theorem 6. Let S be a p by p real symmetric matrix. Then the following hold:
(a) If E1 and E2 are the eigenspaces of S corresponding to distinct eigenvalues, then

E1 ⊥ E2.

(b) If W is a subspace of Rp which is invariant under S, then W⊥ is also invariant under S.

Let W be the vector space spanned by the vectors in (5) and (6). It can be verified that W⊥ is

spanned by z1 and z2, i.e.,

W⊥ = 〈z1, z2〉,
where

z1 =
[

(1)rt×1

(0)(p−rt)×1

]
and z2 =

[
(0)rt×1

(1)(p−rt)×1

]
.

Moreover, by Theorem 6, the eigenvectors of BBT corresponding to the remaining two nonzero eigen-

values are in W⊥, and (BBT )z ∈ W⊥ for every z ∈ W⊥. Let Z = {z1, z2}. Then the eigenvalues of the

2 by 2 Z-matrix for BBT (see [7, p. 329]) are the remaining two eigenvalues of BBT (see [5, Proposition

1.5.4]). To find the Z-matrix for BBT , we compute (BBT )zi for each i = 1, 2:

(BBT )z1 = [r(q − s) + r(t − 1)(q − 2s)]z1 + [rt(q − s)]z2,
(BBT )z2 = [(p − rt)(q − s)]z1 + [q(p − rt)]z2.

Hence, the 2 by 2 Z-matrix for BBT is

[
r(q − s) + r(t − 1)(q − 2s) (p − rt)(q − s)

rt(q − s) q(p − rt)

]
.

By computing the eigenvalues of the Z-matrix for BBT , we get the eigenvalues of BBT :

pq − 2rst + rs ±
√

(pq − 2rst + rs)2 − 4rs(p − rt)(q − st)

2
. (7)

By Theorem 2, Propositions 3, 4 and 5 along with the eigenvalues of BBT in (7), we have found all the

eigenvalues of G(p, q; r, s; t).
Theorem 7. Let A be the adjacency matrix of the bipartite graph G(p, q; r, s; t). Then the following

hold:
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(a) For p > rt, q > st and t � 2, the eigenvalues of A are

λ1 =
√√√√pq − 2rst + rs +

√
(pq − 2rst + rs)2 − 4rs(p − rt)(q − st)

2
� λ2 = √

rs

λ3 =
√√√√pq − 2rst + rs −

√
(pq − 2rst + rs)2 − 4rs(p − rt)(q − st)

2
� λ4 = 0

� − λ3 � −λ2 � −λ1.

Moreover, the multiplicities of ±λ1 and ±λ3 are 1, the multiplicities of ±λ2 are t − 1, and the

multiplicity of λ4 = 0 is (p + q) − 2(t + 1).
(b) If p = rt or q = st with t � 2, then the eigenvalues of A are

λ1 = √
pq − 2rst + rs� λ2 = √

rs� λ3 = 0� −λ2 � −λ1.

(c) If t = 1, then the eigenvalues of A are

λ1 =
√√√√pq − rs +

√
(pq − rs)2 − 4rs(p − r)(q − s)

2

� λ2 =
√√√√pq − rs −

√
(pq − rs)2 − 4rs(p − r)(q − s)

2

� 0� −λ2 � −λ1.

Proof. We here show that for nonnegative λ1, λ2 and λ3 in (a), λ2
1 � λ2

2 � λ2
3 when p� rt, q� st and

t � 2. Then the orders of eigenvalues according to their magnitudes in (a), (b) and (c) follow.

We first show that λ2
1 � λ2

2. Since p� rt and q� rt, it follows that

pq − 2rst + rs � rst2 − 2rst + rs

= rs(t2 − 2t + 1)

= rs(t − 1)2.

Hence, for t � 3, λ2
1 � λ2

2. Let t = 2. Consider

pq − 3rs +
√

(pq − 3rst)2 − 4rs(p − 2r)(q − 2s)

2
− rs. (8)

If pq� 5rs, then (8) is nonnegative and hence λ2
1 � λ2

2.

Suppose that pq < 5rs, i.e., 5rs − pq > 0. We show that

(pq − 3rs)2 − 4rs(p − 2r)(q − 2s) − (5rs − pq)2 (9)

is nonnegative. By a simple calculation, it can be shown that (9) is equal to

8rs2p + 8r2sq − 32r2s2.

Since p� 2r and q� 2s, we have

8rs2p + 8r2sq − 32r2s2 � 16r2s2 + 16r2s2 − 32r2s2 = 0.

Hence, λ2
1 � λ2

2.
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Next, we show that λ2
2 � λ2

3 when p� rt, q� st and t � 2. The difference λ2
2 − λ2

3 is equal to

rs + 2rst − pq +
√

(pq − 2rst + rs)2 − 4rs(p − rt)(q − st)

2
.

If rs + 2rst − pq� 0, λ2
2 � λ2

3.

Suppose that rs + 2rst − pq < 0, i.e., pq − 2rst − rs > 0. Then, in order to showλ2
2 � λ2

3, it suffices

to show that

(pq − 2rst + rs)2 − 4rs(p − rt)(q − st) − (pq − 2rst − rs)2 (10)

is nonnegative. By a simple calculation, it can be shown that (10) is equal to

4rs2tp + 4r2stq − 4r2s2t2 − 8r2s2t.

Since p� rt, q� st and t � 2, we have

4rs2tp + 4r2stq − 4r2s2t2 − 8r2s2t � 4r2s2t2 + 4r2s2t2 − 4r2s2t2 − 8r2s2t

= 4r2s2t(t − 2)

� 0.

Hence, the result follows. �

3. List of nearly complete bipartite graphs

Wenow list bipartite graphs, missing atmost two edges from a complete bipartite graph, according

to the magnitudes of their largest eigenvalues λ1. We denote by G(i) the bipartite graph with the ith

largest λ1 among all bipartite graphs with 2n vertices.

Theorem 8. For n� 3, G(1) = Kn,n, G
(2) = Kn−1,n+1, G

(3) = G(n, n; 1, 1; 1), G(4) = G(n − 1, n + 1;
1, 1; 1), G(5) = G(n, n; 2, 1; 1), G(6) = G(n, n; 1, 1; 2), G(7) = Kn−2,n+2, G(8) = G(n − 1, n + 1; 2,
1; 1), G(9) = G(n − 1, n + 1; 1, 2; 1) and G(10) = G(n − 1, n + 1; 1, 1; 2).
Proof. Let H be a subgraph of Kp,q with 1� p� q and p + q = 2n. Note that

λ1(Kp,q) = √
pq (11)

and
√

pq� n. Furthermore, by Proposition 1, λ1(H) � √
pq. Hence,

G(1) = Kn,n.

By Proposition 1 and the fact that
√

pqwith p + q = 2n is increasing as the value of p grows from

1 to n, it is sufficient to consider G(n, n; 1, 1; 1) and Kn−1,n+1 for G(2). By Theorem 7 and (11), we have

λ1(G
(2)) = max

{
1√
2
[(n2 − 1) + (n4 − 6n2 + 8n − 3)1/2]1/2, (n2 − 1)1/2

}
. Note that 1√

2
[(n2 − 1)

+ (n4 − 6n2 + 8n − 3)1/2]1/2 � 1√
2
[(n2 − 1) + (n4 − 6n2 + 8n − 3 + 4n2 − 8n + 4)1/2]1/2 � (n2

− 1)1/2. Hence,

G(2) = Kn−1,n+1.

Similarly, in order to find G(3), it suffices to consider G(n, n; 1, 1; 1), G(n − 1, n + 1; 1, 1; 1) and

Kn−2,n+2.We compute the largest largest eigenvalues of these three bipartite graphs by Theorem7 and

(11), and then use the facts, n4 − 6n2 + 8n − 3 + 4n2 − 8n + 4� n4 − 8n2 + 8n + 4 for n� 3 and

(n − 4)1/2 = 1√
2
[(n2 − 1) + (n4 − 14n2 + 49)1/2]1/2 in order to compare the largest eigenvalues.

This gives

G(3) = G(n, n; 1, 1; 1).
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Next, we consider the maximal proper subgraphs of G(1), G(2), G(3), and the complete bipartite

graph Kn−2,n+2 for G
(4), using Theorem 7 and (11). By repeating this process, considering themaximal

subgraphs of G(1), . . . , G(i), and a complete bipartite graph Kp,q with p + q = 2n (which was not

considered in the previous steps), we can get G(i+1) for i = 3, . . . , 9. �

Example 9. The following is the list of bipartite graphs with 40 vertices according to the magnitudes

of the largest eigenvalues:

Graph λ1

1. K20,20 20
2. K19,20 19.97498436
3. G(20, 20; 1, 1; 1) 19.95227248
4. G(19, 21; 1, 1; 1) 19.92720282
5. G(20, 20; 2, 1; 1) 19.90663008
6. G(20, 20; 1, 1; 2) 19.90432602
7. K18,20 19.89974874
8. G(19, 21; 2, 1; 1) 19.88164226
9. G(19, 21; 1, 2; 1) 19.88138664
10. G(19, 21; 1, 1; 2) 19.87920160

The computation of λ1 can be done by the open source mathematical software SAGE (see

http://www.sagemath.org). The following is a SAGE code for λ1(G(20, 20; 2, 1; 1)):
p = 20; q = 20; r = 2; s = 1; t = 1

def a(i, j):
for k in [1..t]:
if (i in [r ∗ (k − 1) + 1..r ∗ k]) and (j in [s ∗ (k − 1) + 1..s ∗ k]):
return 0

else:

return 1

B = matrix([[a(i, j) for j in [1..q]] for i in [1..p]])
E = (B ∗ B.transpose()).eigenvalues()
print sqrt(E[p − 1])

From Theorem 8 it follows that

λ1(G(p, q; 2, 1; 1)) � λ1(G(p, q; 1, 2; 1)) � λ1(G(p, q; 1, 1; 2))
for (p, q) ∈ {(n, n), (n − 1, n + 1)}. This can be generalized to the case for any positive integers p, q

with 2� p� q.

Proposition 10. Let p and q be positive integers. If 2� p� q, then

λ1(G(p, q; 2, 1; 1)) � λ1(G(p, q; 1, 2; 1)) � λ1(G(p, q; 1, 1; 2)).
Proof. This can be shown by first computing the eigenvalues, using Theorem 7, and then using a direct

comparison. �

Proposition 10 gives an affirmative answer to [1, Conjecture 1.2] when the number of edges of a

bipartite graph with partite sets U and V , having |U| = p and |V | = q for p� q, is pq − 2. By Theorem

7, we can refine [1, Conjecture 1.2] when the number of edges is at least pq − p + 1.



614 Y.-F. Chen et al. / Linear Algebra and its Applications 432 (2010) 606–614

Conjecture 11. For positive integers p, q and k satisfying p� q and k < p, let G be a bipartite graph with

partite sets U and V, having |U| = p and |V | = q, and |E(G)| = pq − k. Then

λ1(G) � λ1(G(p, q; k, 1; 1)) =
√√√√pq − k +

√
p2q2 − 6pqk + 4pk + 4qk2 − 3k2

2
.
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