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Abstract 

The coexistence of RVB, flux phase, and antiferromagnetic states for the t -J  model is studied within the frame work 
of the mean-field theory by means of the slave-boson approach. Two simple relations among these three order parameters 
manifesting the cooperative behavior of these states are derived. A phase diagram separating the antiferromagnetic from the 
non-antiferromagnetic state is obtained. Comparison with available previous work shows that our result agrees reasonably 
well. @ 1997 Elsevier Science B.V. 
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Although few exact results were attained after Hub- 
bard's original work, it was believed that Hubbard's 
model could yield rich phases as temperature, dop- 
ing, and the parameter t /U  were changed. The model 
attracted lots of attention again when high tempera- 
ture superconductors (HTSC) were discovered. After- 
wards, various numerical calculations have been per- 
formed for the 1D and 2D Hubbard (and t - J )  models. 

For the 1D system, many interesting phases, such as 
phase separation [ 1 ], were obtained as the parameters 
were changed. For the 2D system, a phase separated 
region was also observed [ 2 ]. From the results of nu- 
merical works it was conjectured that superconducting 
instability might occur in the neighborhood of phase 
separation [3],  which lies along the line going from 
low doping, large t /J ,  to large doping, small t /J .  

Although some numerical results also indicated that 
there is no superconducting phase for the t - J  model 

1 Corresponding author. 

when the doping concentration is non-zero [4],  it does 
not, however, mean that the superconducting phase 
should be ruled out when the model is modified. For 
example, Anderson [5,6] argued that an increasing 
quantum fluctuation, such as including the next near- 
est hopping or phonon effect, would make the antifer- 
romagnetic state unstable and the resonance valence 
bond (RVB) state would stabilize it. For this reason, 
various mean-field ground states, such as the *r-flux 
phase [7], the staggered flux phase [8], the commen- 
surate flux phase [ 9], and the uniform flux phase [ 10], 
have been proposed to explain the unusual properties 
of HTSC. 

The above-mentioned mean-field states are not in- 
dependent from each other. It is found that, at half fill- 
ing, the ,r-flux phase (commensurate flux phase), the 
s +/d-wave RVB state [ 11 ], and the state of d-wave 
RVB coexisting with ,r-flux phase [ 12] are all equiv- 
alent by a local SU(2) transformation. Lieb [ 13] also 
proved exactly that, among the various flux phases, 

0921-4534//97/$17.00 © 1997 Elsevier Science B.V. All rights reserved. 
P11S0921-4534(97)00101-9 



H.L Chiueh, D.S. Chuu / Physica C 278 (1996) 78-84 79 

the ~r-flux phase is the one with the lowest energy. Re- 
cently, Wen and Lee [ 14] proposed a SU(2) mean- 
field theory to emphasize the local SU(2) symme- 
try and to explain the properties in the under-doped 
region. But all these states are unstable in contrast 
with the antiferromagnetic ground state at half filling, 
which was not taken into account in their work. 

Among these slave-boson based mean-field theo- 
ries attentions have been directed to the competition 
between various flux states and RVB state, but these 
states do not yield good magnetic properties near half 
filling. Although these theories obtained plausible suc- 
cess to explain the properties in the superconducting 
and strange-metal region, they failed in the antiferro- 
magnetic region. With the expectation of being a uni- 
fied theory, the inclusion of the N6el order is needed to 
connect the antiferromagnetic phase smoothly to the 
other phases. Recently, Inaba et al. [ 15] have consid- 
ered these three orders together in the frame work of 
the mean-field theory with an approach different from 
ours which will be described below. 

Although the slave-fermion based mean-field theo- 
ries [ 16] could explain various magnetic properties, 
they seemed to be unable to make good progress be- 
yond that region. In this work, we will investigate the 
relationship between the Nbel state, staggered flux, 
and the spin singlet state for the t - J  model by using 
the slave-boson technique. 

The Hamiltonian is written as 

H = - ,  

(i,j) ,o" 

(i j) 

_ l . t Z ' ~ i - - i Z a i ( ~ i + n ~ i i  - -1  ) . ( 1 )  

i i 

In the above expression, the electron operator c~,, has 
been decomposed as ci,, = fi,~b +, where f ia is the 
fermionic (spinon) operator, and b~ is the hard core 
ix)sonic (holon) operator. These operators satisfy the 
single occupancy constraint + b+bi 1 
at each site and the Lagrangian multiplier ai is in- 
troduced to fulfill that constraint. The J term in 
Eq. ( 1 ) should be expressed in the electronic opera- 
tor representation, but it can also be represented by 
spinon operators without employing any approxima- 

tion under the single occupancy constraint, namely 
= ( 1 / 2 ) y ~ f + ~ ' , ~ f i a ,  and "ni = ~ f + f i ~  in 

Eq. ( 1 ). Because of the operator identities 

ani  • nj = - 2"iJ  ,g 

and 

1^ ~j= 1 
4 . - a n , .  + - , 

where 

= s a s h -  = = 

and ,~iy = ~ f + f j ~ ,  one gets 

2 
_ T1 ~ ' + 7  

1 ^ . ~ j  _ _ -2  ~ij --ij 

7/2 
- ~ (xoxJ~ + ~i" ~j - ~i) 

"~-7/~ ( ~ ' ~ - -  ¼ n i , n j )  , ( 2 )  

with 9,12 + 7/2 2 + 3~3 2 = 1. In what follows, we will ap- 
ply the Hubbard-Stratonovich (HS) transformation 
for the Tt, T2, and 7/3 terms. It will then repro- 
duce the spin singlet order parameter (RVB) A~* = 
(f~ fj~ -- f ~  fj~ }, the particle-hole channel order pa- 

+ rameter X O. = (~-~ fi~rfj~}, and the antiferromagnetic 

order parameter S~ ° = (S z - S~), respectively. 

In the usual Hartree-Fock approximation, T12 = T~ = 
7/3 2 = 1 is used with the assumption that these three 
order parameters contribute to the mean-field Hamil- 
tonian equivalently in different ranges of momentum 
space. As will be shown later, this is not true in the 
present case. With the HS transformation method we 
used here no such assumption is needed. Furthermore, 
one is able to know how significantly these three order 
parameters contribute to the dynamics of Hamiltonian 
by observing the 7/values. For example, for larger T1, 
the order parameter A~j* will affect the dynamics more 
significantly. Besides, by observing the T values, we 
could study how significant the quantum fluctuation is 
by these three order parameters. Again, for 7/1 * 0, 
even if A~j* = 0, the quantum fluctuation produced by 
the order parameter A~* still exists and the fluctua- 
tion is more significant when 3'1 is larger. Therefore, 
it is interesting to ask what will be the appropriate 
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values for the 7's? In the conventional approaches, 
the 7's were chosen to be 2 2 2 (7],72,73) = (1,0,0) 
[6,12], (71, 2 2 72,73) = ( 3 / 4 , 3 / 4 , - 1 / 2 )  [8,17] or 

2 2 2 (Y], 72, 73) = (0, 1/2, 1/2) [ 18]. Usually, one could 
not give good reasons to explain why these y's have 
to be chosen in that way except for the second case 
by Lee et al. Lee decomposed these three terms by 
expressing them as sums of some components. They 
required the components contained in the sum of any 
two terms were excluded from components contained 
in the other tenn. Such kind of choice is not suitable 
for the discussion of antiferromagnetic order. In fact 
722 = - 1 / 2  corresponds to the case of ferromagnetic 
order rather than antiferromagnetic order, so one has 
to choose zero magnetic moment at each site [ 8] to 
avoid this difficulty. In our study we treat the Y param- 
eters as free parameters and minimize the free energy 
with respect to them to obtain suitable values for Y- 
The minimization of the free energy results two sim- 
ple closed expressions among the order parameters 
A O, X ° and S~if °. From these two expressions, one can 
find that a cooperative behavior between them exists, 
instead of competition of these order parameters. To 
see this, let us rewrite the Hamiltonian in Eq. ( 1 ) as 

Y2 J E ~+ ~ij _ y2 J ~f'~ 
/-/= - T  T (i j) (i j) 

72 J 2 

, } 
(27  + 

J E ~i~j - (],t - 72J) E ni 
4 

(o) i 

--t E { x i j G j i + h . c . ) - - i E a i ( n i - l - n ~ i i -  1), 
(i j) i 

(3) 

w h e r e  Gji = b+bi. Now,  make the HS transformation 
for the three 7 terms by mult iplying'T'  in each r-slice 
into the functional integral of Lagrangian: 

1 = ~  27r-----~ e x p -  (Aij-- 71 ~+) (C.C.) 

If d~jdxij exp [ ½(Xij 72Xij)(c.c.)] 
2 21ri 

= 2idS~ 1 "~exp{-~[S~/I-W,(~/-~j)]2} • 

(4) 

The HS fields can be evaluated self-consistently to be 
Zlij = 71AO, Xij = 72X O" and ~ ,o = 73S~u . By employ- 
ing the single occupancy constraint, we rewrite and 
decompose the term in Eq. (3) by using the HS trans- 
formation and obtain ninj = (1/2)  [ ('~i+'~j) 2 - ('~2 i + 
~-/2) ] ._+ ( 1 / 2 ) (  3 _ 477) (~i + ~ j )  - 2(1 - 77) 2. The 
factor 272 + 9, 2 contained in the fifth term of Eq. (3) 
must be carefully treated when the HS transformation 
is applied. Noting that for the requirement of normal- 
ization of HS transformation: 

oo 

~ i d x e x p [ - a ( x - x ) 2 ] = l '  
--00 

the prefactor X / ~ =  exp (½ In ~) must be included 
as decoupling some operator ~2; and this factor could 
be absorbed into the mean-field Hamiltonian as an ex- 
tra term: -½ Into If a is a constant, then its presence 
will not introduce any effect. However, a is not a con- 
stant in our decoupling of the "~i'~j term, instead it is 
272 + y], which is a variable. Therefore, it will intro- 
duce some important effects in the mean-field Hamil- 
tonian when we minimize the free energy with re- 
spect to yi. The t term in Eq. (3) can be decomposed 
as xi jaj i  ~ x °  Gji + a~jiXij - X°  ~jji by introducing 
two decoupling fields X °, ~ji. According to Ref. [ 8 ], 
the spin singlet order parameter is assumed as: A 0 = 
Ae +it, where the plus sign refers to j = i ± ~ and oth- 
erwise; the order parameter Xo(X  °, ~iij) is assumed 
to be staggered: XU = x e + i ~ ( x  0 = X Oe~i~°, ~jji = 

G°e -I'R° ), where the plus sign is taken as the direction 
j ---, i is the same as that indicated in Fig. 1 and mi- 
nus sign is taken otherwise. Note that X ° and G~j i, in- 

stead of Gij, are assumed to be in phase. The N6el or- 
der is assumed to be along the z-direction only: SZj = 
( - ) i S  = ( - ) i 7 3  S0, S u = S t = 0, where ( _ ) i  = +1 if 

position i belongs to the A sublattice and ( - ) i  = _ 1 
otherwise. This is equivalent to the case that sublattice 
A is dominated by spin-up spinons and sublattice B 
by spin-down spinons. It is noted that there is no local 
SU(2) symmetry even at half filling, when S ~ 0 and 
the spin singlet order parameter no longer has to be 
the d-wave. (Strictly speaking, if Y are not set to be 
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Fig. 1. Each vertex in the above figures corresponds m a lattice 
site. The phase of Xq = X e±~ is +~o if the direction j --~ i points 
along the arrow on the bond and is -~o otherwise. As a result, 
Xi) has a staggered flux of 4~p on each plaquette, aij = Ae +r is 
given a phase +r ( - r )  if the bond ij is in the x'(~ direction. 

constant, local SU(2) symmetry does not exist even 
when S = 0.) 

With the above assumptions, the mean-field Hamil- 
tonian can be written as ( J  = 1): 

k k 

where 

+ 

- _ / . q  

Mk = ek 
0 

--1.l,  b 
Nk = ebk. 

:17 :"-.T], 
, 

ek 0 Ak 

- / x t  A-k 0 
A*__ k ,u t - e k  

0 --ek lzT 

--~bJ  

(6) 

N [ X2 $2 R= ~ 2 ( A 2 + + + tzo - - ~ )  + btGoxo 

+ (zr  + (1 - 
1 - ~ln (2y~ +y~) .  

In the above expression, we have redefined the spin- 
up (-down) spinon to be spin-down (-up) on sublat- 
rice B and the summation over k is restricted to the 
reduced Brillouin zone. The Hamiltonian is similar 
to that of Ref. [ 19], which employed the renormal- 
ized mean-field approach. In the above expression, N 
is the number of  sites, ek = - y 2  (X + 2tGO/y2) y~, 

eb k = - 2 t X ° y ~ ,  y~ " k = e~* cos kxa + e -i~ cos kya, Ak = 
Yl AT~, and tzb = iao is the mean value of the La- 
grangian multiplier and can be treated as the chemical 

potential of holon, ~ = / z  +/Zb -- y2 2 -- (3/2) y 2 3 + 
( 1 -- 6) (2y 2 + ~3), /zT = g + 2y3S, and/z  I = g - 
2y3 S. The last two expressions play the roles of  chem- 
ical potentials of the (redefined) spin-up and spin- 
down spinon, respectively. 

We would like to emphasize some important effect 
here. The Yl-term contributes to the mean-field Hamil- 
tonian as a form like: A ~A+ ~B+ zakJkT J-k1  + h.c. and the Y2 

term contributes as the form like: --Y2XYkfkT~ A+ f~iB + 
h.c. Since Ak oc y~,, which is non-zero in the entire 
Brillouin zone rather than in the vicinity of Fermi sur- 
face only as the conventional s-wave superconductor 
does, the Yl term contributes to the dynamics of the 
system in the entire Brillouin zone instead of in the 
neighborhood of Fermi surface. Furthermore, the Y2 
term contributes to the dynamics mainly in the region 
of the momentum space below the Fermi energy. As 
a result, the regions of momentum space, where these 
two terms contribute significantly to the system, over- 
lap with each other. Therefore, in the Hartree-Fock 
approach, the assumption of yl 2 = y2 = y3 z = 1 would 
result in overcounting of the dynamics displayed by 
the exchange term and the path integral method which 

,,2 + y2 = 1 should be more reliable. requires y~ + :z  3 
As a usual procedure, the Hamiltonian in Eq. (5) 

can be diagonalized by unitary transformation. There- 
fore, the free energy can be written as 

F = - l / 3  k,~_~,n [ ln(1 + e-#e,I~) 

- l n  ( 1 -  e-t~e~-)] + R,  

where 

(7) 

efk =-efk, 

+8 3s + + lek , 

with a plus (minus) sign for m = 1(3) and Eh+ = 

4- I eb I --/d'b" The saddle point solution can be obtained 
by minimizing the free energy with respect to auxiliary 
fields A, X, S, G °, X °, ~o, r, ~ and/Xb. These yield the 
following nine simultaneous equations: 
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[ i, 
]y;12 tanh + N A, o= ;g 

k 

v/: +141 = 

O=-2y3 2y3S 4- V/~ 2 + I~;I = 

x tanh ~ } + NS, 

,!" = ~2,t  "° , 

o= Z [ :  - r (eg_)] Ir;I + 2NG°, 
k 

n=1,3 
2 2c°skxac°sky a 

0 = s in(2~o)  - ~ Y2~  
k /~':,k 

2y3S ~ tanh/3E.f. 
X 1 4- &/~-2 + 141 =) u (8) 

+ ~ [ fh (E~+) - fh (E~_)] 2tX ° 
k 

cos kxa cos kya I 

n=l,3 
0 = sin (2r) Z ~ A2 cos kxa cos kya tanh/3En~ 

k Efk 2 ' 

.=;,3 2g ( 2y-2S ~ tanh flEfk 
N S = -  Z E--'.f~k 14- i41 =) 2 ' 

:¢8= [: + :  (eL)], 
k 

where the 4- sign is used to represent that plus sign is 
taken for n -- 1 and minus sign is taken for n = 3. If we 
take Yl and Yz as free parameters and minimize F with 
respect to them, then by using the above simultaneous 
equations we obtain the following two simple relations 
between the order parameters: 

(X°) 1 -  ( A ° ) 2 = 2 8 ( 1 - 6 >  , (9) 

( : ) 2 _  (X0)2__(1_8>2 1 
1 - 1.12 4- "y~" ( 1 0 )  

The second term on the right-hand side ofEq. (10) is 
important in determining the order parameters of the 
system. It comes from the careful treatment of the nor- 
realization constant introduced by the HS transforma- 
tion on the ~i~j term as mentioned above. An impor- 
tant conclusion can be made from Eqs. (9) and (10) 
that because of the minus sign between order param- 
eters contained in the above two equations, it mani- 
fests that these three order parameters favor coexis- 
tence rather than competition with each other. 

Fig. 2 presents the result of the saddle point so- 
lution. It shows the variation of three order parame- 
ters with temperature for 8 = 0 and 0.05. All the re- 
sults presented in this work correspond to the d-wave 
(r  = ~r/2) except those shown in Fig. 4, where the 
s +/d-wave, 7r flux state is also presented. In con- 
trast with previous works, the ~r-flux (~o = ¢r/4) can 
not be obtained in our work as the RVB order is the 
d-wave, instead, the staggered flux (= 4q0 changes 
from 0 to about 1.4 as the doping increases from 0 
to critical doping. Previous work showed the d-wave 
together with the ~r-flux phase is the lowest energy 
solution when 8 = 0. This state is equivalent to the 
pure RVB s +/d-wave state by a local SU(2) trans- 
formation. The absence of this solution in our works 

1.2 

1.0 

0.8 
r- 
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~ = 0 :  
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O O O O O O ~ o O O O O  
~ 0 0 0 0  ~ 0  

l U i l i I • • .  

- -••m m %@ 8 = 0.05 : • 

A ° • 

• S ° • 
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J t w 
0.4  0 .5  

0.0 i J I 
0.0 0.1 0.2 0.3 

Temperature 
Fig. 2. The variation of X O, A 0 and S O with temperature for the 
d-wave(r = ~r/2) solution. The doping & = 0.0 and 8 = 0.05 are 
shown hem. 



H.I. Chiueh, D.S. Chuu / Physica C 278 (1996) 78-84 83  

may be due to the absence of local SU(2) symmetry 
when the NEel order is introduced. At half filling, it 
shows that X ° = A °, as can be seen from Eq. (9).  Our 
result shows that all of the three order parameters fall 
to zero when 6 = 0 as temperature exceeds the N6el 
temperature, TN. This implies that, at exact half fill- 
ing, the phase changes from antiferromagnetic state to 
paramagnetic state when T is larger than TN, which is 
consistent with experiments. 

The values o f y  for d-wave and s+id-wave solutions 
are found to be almost constant for temperatures from 
0 to TN. They are approximately Yl '~ 0.7, Y2 " 0.5 
and Y3 '~ 0.45 when 6 = 0.05, and yl "~ 0.6, Y2 
0.66, Y3 " 0.35 when 6 = 0 respectively. With J 
0.1 eV, 6 = 0 one obtains the N6el temperature TN --~ 
0.45J ~ 530 K, which is about twice the value of 
that of  La2CuO4. Inaba et al. [ 15] used the standard 
Hartree-Fock decoupling scheme and took the spin 
density wave mean field on the spin-spin interaction 
sector. Their result yielded a value of Tu = 0.5J for 
t/J = 4. One can note that our result agrees quite 
satisfactorily with their result. 

Fig. 3 shows how doping affects the order param- 
eters at a constant temperature T = 0.1J. When 8 = 
0, the exact value of staggered magnetization m(= 
I (S/,z)]) is yet unknown and various numerical simu- 
lations have been performed by variational and Monte 
Carlo methods. The calculated results of m range from 

0.42 to 0.3 [20]. In our work, the staggered magneti- 
zation m was calculated from the parameter S O ~ 0.92. 
The value of m was shown to be m = 0.46, which is 
slightly larger than the upper bound of the previous 
numerical results [20]. Inaba et al. [15] also calcu- 
lated the staggered magnetization, however, their re- 
sults cannot provide a reasonable m. In their work, 
the calculated result of  m ~- 1 exceeded the saturation 
value (m ~< 0.5). Therefore, our decoupling scheme is 
more reasonable and better than that of  Ref. [ 15 ]. Our 
work also shows that staggered magnetization drops 
quickly as holes are introduced. The other two order 
parameters are less affected by holes and do not ap- 
proach zero when the N6el temperature is attained. 

Fig. 4 presents the phase diagram for the d-wave 
and s -t-/d-wave in t-J model. There is a cusp near 
6 = 0.01 for both cases. The cusp may be introduced 
artifactly by our approximation on the holon part. In 
evaluating our results, we have frozen the holon part, 
i.e. we assume all the states are Bose condensed to 
the lowest energy state for any temperature and hole 
concentration. This is a good numerical approximation 
except for holons being far away from condensation. 
This occurred for small 6 and high temperature, and 
it just happens in the case of  the cusp. Although, our 
calculated critical doping is Bc = 0.068(0.9) for the d- 
wave (s + /d-wave)  which is three (four) fold larger 
than that of La2CuO4, however, our results are still 
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~= 0.6 =< 

°~ 0.4 

0.2 

T =  0.1J 

o X ° Oooe%% 
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• S ° • 

0.0 t I X 
0.00 0.02 0.04 0.06 0.08 
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Fig. 3. The variation of X °, zl ° and S o with doping, ~ for the 
d-wave solution. The temperature is fixed at 0.1 J. 
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smaller than that obtained by Ref. [ 15] which gave a 
value of 8c -~ 0.15. 

The region below TN is the antiferromagnetic phase 
where S O ~ 0. The region above Tic, where SO = 0, 
and/or beyond critical doping can be divided into two 
regions according to whether Bose-Einstein conden- 
sation occurred or not. The region is superconducting 
if it is below the Bose-Einstein condensation temper- 
ature and is a pseudospin state otherwise. It is still an 
open question whether spin singlet order leads to su- 
perconducting when the N6el order exists. The inter- 
play between these two orders is interesting and de- 
serves future study. 

In conclusion, we have shown the coexistence of 
the N6el order, the flux phase and the RVB state. Sim- 
ple relations are obtained among order parameters by 
optimizing the free energy with respect to the various 
y. The connection between the antiferromagnetic state 
and the superconducting state can be obtained when 
the hole concentration is varied. 
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