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Abstract 

This paper presents a PD-like self-tuning fuzzy controller (STFC) based on the tuning of scaling factors. A two-stage tuning 
method including a direct tuning stage and indirect tuning stage is proposed. For most linear controlled plants, application of 
the direct tuning stage alone is enough to yield satisfactory system responses. The proposed STFC can automatically detect 
the operating ranges of input variables and then adjust the scaling factors. In the indirect tuning stage the back-propagation 
algorithm can be directly applied to fine-tune the scaling factors when a more complicated plant is controlled. Furthermore, 
a simple but efficient method for fully compensating for steady-state error, which is the main problem in a PD-like fuzzy 
logic control system, is proposed so that tuning for fuzzy logic rule bases is unnecessary. Simulation results with linear 
time-invariant systems and a nonlinear unstable system as the controlled plants show that the proposed technique yields zero 
steady-state error responses very quickly without overshoot or oscillatory behavior. @ 1997 Elsevier Science B.V. 

Keywords: Control theory; PD controller; Fuzzy controller; Scaling factor; Steady-state error 

1. Introduction 

The concept of  a fuzzy set can be directly attributed 
to the seminal work o f  Zadeh in 1965 [24]. Inspired 
by Zadeh, Mamdani  and his associates [13] used a 
rule-based system with fuzzy parameters to construct 
a controller that emulated the performance of  a hu- 
man operator. Sugeno, who appreciated the power  of  
this new fuzzy rule-based paradigm for building con- 
trollers, began developing applications for this new 
methodology [ 19]. The main advantage of  the fuzzy 
logic controller (FLC)  is that it can be applied to 
plants that are difficult to model  mathematically,  and 
the controller can be designed to apply heuristic rules 
that reflect the experience of  human experts. 

* Corresponding author. 

The first step in the design of  an FLC is to deter- 
mine the input and output variables of  the FLC [22]. 
In this step, the designers determine whether they will 
be using a PI-like, PD-like, or PID-like FLC. Since 
it is unrealistic to expect that an operator or expert 
can formulate reasonable control rules, considering 
third and higher dimensions, most common FLCs are 
PI-like or PD-like controllers [22]. Though the FLC 
exhibits superior applicabil i ty to the traditional PID 
controller [5, 20] and is highly robust [3], PI-like and 
PD-like FLCs possess mainly the same characteristics 
as traditional PI and PD controllers, respectively. That 
is, the PI-like FLC adds damping to a system and re- 
duces steady-state error, but yields penalized rise time 
and settling time. The PD-like FLC adds damping and 
reliably predicts large overshoots, but does not im- 
prove the steady-state response. 

0165-0114/97/$17.00 (~) 1997 Elsevier Science B.V. All rights reserved 
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Much research on the PD-like FLC has either con- 
sidered only simulation examples with no steady-state 
error problem [4] or reduced the steady-state error 
by fine tuning the rule bases, performing parameter 
optimization, and increasing the number of rules [8]. 
On the other hand, though the PI-like FLC can solve 
the steady-state error problem, techniques such as 
scaling-factor adjustment, rule modification [ 12], and 
membership-function shifting [25] are required in 
order to reduce the rise time and improve oscillatory 
behavior in the step response. 

Once the membership functions and the rule-base of  
the FLC are set up, the next problem related to its im- 
plementation is the issue of tuning. The scaling factors 
(SF) are the main parameters used for tuning the FLC. 
If  we demonstrate the virtual PI (or PD) approxima- 
tion of the PI-like (or PD-like) FLC, we can find that 
variations in the SFs result in modification of the poles 
of  the overall transfer function and its zero [7]. This 
is the reason that changes in the SFs have a dramatic 
influence on the overall dynamics of  the closed loop 
system. There is still no standard method for tuning 
the SFs. Thus an FLC that incorporates a systematic 
method for adjusting the SFs is urgently needed. Tun- 
ing rules for tuning the FLC by manipulating the SFs 
have been proposed in [6, 12, 15]. In these methods, 
however, the SFs can be tuned simultaneously only af- 
ter information such as rise-time, overshoot, degree of 
oscillation, settling time, and steady-state error is ob- 
tained. In [4], many tuning tables, in numerical form, 
were constructed for real-time simultaneous tuning of 
SFs. However, care must be taken in determining sev- 
eral parameters in [4]. 

In recent years there have been considerable de- 
velopments in the tuning of parameters in fuzzy logic 
systems [9, 10, 21 ] using the gradient-descent-based 
back-propagation (BP) algorithm [16], similar to 
methods in neural networks [ 14]. However, to use the 
BP method in the fuzzy logic systems, most authors 
construct the so-called neural-network-based fuzzy 
logic systems [10, 11,21]. We can find that it is time- 
consuming to take hundreds of learning epochs to 
train so many parameters in the fuzzy neural networks. 

In this paper we favor the PD-like FLC, because it 
yields quick response with less oscillation than the PI- 
like FLC. Moreover, the problem of compensating for 
steady-state error in the PD-like FLC can be solved by 
a simple method in the proposed system. Owing to the 

advantages of the proposed controller, the tuning pro- 
cedure for SF tuning is so simple that a direct tuning- 
stage alone is sufficient for the control of most linear 
plants. In the direct tuning-stage, the operating ranges 
of the input variables of the FLC can be detected auto- 
matically. When the controlled plant is more compli- 
cated, on the other hand, the BP algorithm is applied 
to adaptively tune the SFs in the indirect tuning stage. 
We do not need to construct a fuzzy-neural-network 
structure that there are only three parameters to be di- 
rectly tuned in this way. Furthermore, since the indi- 
rect tuning stage is based on the results obtained in the 
above direct tuning stage, only few learning steps are 
required. Simulation results indicate that the proposed 
self-tuning fuzzy controller (STFC) is indeed efficient. 

The network structure and the tuning methods of the 
proposed STFC will be described in Section 2. A sim- 
ple method for compensating for the steady-state error 
in a PD-like FLC is presented in Section 3. Section 4 
describes the proposed two-stage tuning method. The 
results of  simulations conducted to evaluate the pro- 
posed STFC are presented in Section 5. Section 6 con- 
cludes the paper. 

2. The proposed STFC 

In this section, several tables are constructed that 
will be used in the tuning procedures in the proposed 
STFC. The procedure for detecting the operating 
ranges of the input variables and the supervised learn- 
ing used for adaptively tuning the SFs will also be 
described. 

2.1. Modified decision table 

A block diagram of a basic feedback control sys- 
tem is shown in Fig. 1. The purpose of the feedback 
controller under consideration is to maintain the out- 
put y ( k )  close to the set point sp. This is the so-called 
regulation problem. The definitions for the error e(k)  
and error change Ae (k  ) are 

e ( n ) = s p - -  y(n),  (1) 

Ae(n)  = e ( n )  -- e (n - -  1 ) =  - - (y(n)  y(n -- 1)), 

(2) 
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set- r ~ Y  
point 

Fig. 1. Block diagram of a basic feedback control system. 

Table 1 
The control rules 

E • 

AE* NL NM NS Z PS PM PL 

NL NL NL NM NM NS NS Z 
NM NL NM NM NS NS Z PS 
NS NM NM NS NS Z PS PS 

Z NM NS NS Z PS PS PM 
PS NS NS Z PS PS PM PM 
PM NS Z PS PS PM PM PL 
PL Z PS PS PM PM PL PL 

l NL N M  NS ,_71:: PS PM PL 

o 

- 0 l 

Fig. 2. Membership functions applied for the control rules. 

y (t) 

Fig. 3. Responses of process. 

where indices n and n - 1 indicate the present state 
and the previous state of  the system. 

The control rules with two inputs and a single out- 
put fuzzy variables E*, AE*, and U*, representing 
e*(k), Ae*(k),  and u*(k) of the controller, are shown 
in Table 1. We consider an FLC with the input and 
output SFs. The control rules in Table 1 are based on 
the characteristics of  the step response [ 18]. The term 
sets of E*, AE*, and U* include the linguistic la- 
bels "positive large" (PL), "positive medium" (PM), 
"positive small" (PS), "zero" (Z), "negative small" 
(NS), "negative medium" (NM), and "negative large" 
(NL). The membership functions of the respective ref- 
erence fuzzy sets are plotted in Fig. 2. We combine the 
well-known min-max inference method cooperating 
with the popular center-of-area (COA) defuzzification 
procedure to produce the look-up table in Table 2, 
which will be referred to below as the decision table 
(DT). 

The DT will be modified slightly so as to satisfy 
the two criteria shown below, where fixed SFs are 
considered. 

1. For two points in the system response with the 
same e*, the point with the greater Ae* should have 
the greater u* in control action. 

2. For two points in the system response with the 
same Ae*, the point with the greater e* should have 
the greater u* in control action. 

We need to note that the word "greater" means 
"greater in signed value", e.g., 5 is greater than 3 and 
- 3  is greater than - 5 .  It is reasonable that a PD- 
like FLC should obey these two criteria. The reason- 
ing behind these criteria is as follows. When plants 
are feedback-controlled, we can imagine obtaining the 
two responses shown in Fig. 3. Point A has the same 
error value as point B, but point A has a greater Ae 
than point B. A reasonable control output for point A 
should be greater than that for point B. On the other 
hand, suppose points C and D have the same error 
change, while the e for point C is significantly greater 
than that for point D. Then the control output for point 
C should be greater than that for point D. In the above 
cases, we have e > 0 and Ae < 0. The modified de- 
cision table (MDT) constructed by applying the above 
criteria is shown in Table 3, where the elements in 
bold-face have been modified from the original DT. 

Instead of quantizing the scaling results as the in- 
dices to map an element in the MDT, the mapped el- 
ement is obtained by performing interpolation. From 
the MDT, the approximate equations for calculating 
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Table 2 
The decision table (DT) 
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e • 

Ae* 1.2 -- 1.0 0.8 0.6 --0.4 --0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 

1.2 0.95 0.95 --0.92 --0.80 --0.75 --0.67 0.54 0.50 --0.41 --0.25 --0.17 0.12 0.00 
-1.0 -0.95 
-0.8 -0.92 
-0.6 --0.80 
-0.4 -0.75 
--0.2 -0.67 

0.0 -0.54 
0.2 -0.50 
0.4 -0.41 
0.6 -0.25 
0.8 --0.17 
1.0 0.12 

-0.85 0.84 -0.82 -0.68 -0.56 -0.56 0.47 -0.30 -0.15 -0.07 -0.00 
-0.84 0.75 0.75 -0.68 -0.52 -0.47 0.44 0.24 -0.09 0.00 0.07 
-0.82 0.75 0.56 -0.56 -0.52 -0.34 0.24 0.12 --0.00 0.09 0.15 
-0.68 -0.68 -0.56 0.40 -0.40 -0.26 -0.09 -0.00 0.12 0.24 0.30 
-0.56 -0.52 -0.52 -0.40 0.20 -0.09 0.00 0.09 0.24 0.44 0.47 
-0.56 -0.47 0.34 0.26 -0.09 0.00 0.09 0.26 0.34 0.47 0.56 
-0.47 -0.44 -0.24 0.09 0.00 0.09 0.20 0.40 0.52 0.52 0.56 
-0.30 -0.24 -0.12 -0.00 0.09 0.26 0.40 0.40 0.56 0.68 0.68 
-0.15 -0.09 -0.00 0.12 0.24 0.34 0.52 0.56 0.56 0.75 0.82 
-0.07 0.00 0.09 0.24 0.44 0.47 0.52 0.68 0.75 0.75 0.84 

0.00 0.07 0.15 0.30 0.47 0.56 0.56 0.68 0.82 0.84 0.85 

0.12 
0.17 
0.25 
0.41 
0.50 
0.54 
0.67 
0.75 
0.80 
0.92 
0.95 

1.2 --0.00 0.12 0.17 0.25 0.41 0.50 0.54 0.67 0.75 0.80 0.92 0.95 0.95 

Table 3 
The modified decision table (MDT) 

e* 

Ae* -- 1.2 -- 1.0 --0.8 --0.6 0.4 --0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 

--1.2 --0.95 0.95 --0.92 --0.80 --0.75 0.67 --0.54 --0.50 --0.41 --0.25 0.17 --0.12 --0.00 
- l . 0  --0.95 
--0.8 --0.92 
--0.6 --0.80 
--0.4 --0.75 

0.2 --0.67 
0.0 0.54 
0.2 --0.50 
0.4 -- 0.41 
0.6 --0.25 
0.8 --0.17 
1.0 --0.12 

-0.85 -0.84 -0.82 -0.69 -0.56 -0 .53 -0.47 -0.30 -0.15 -0.07 -0.00 
-0.84 -0 .76 0.75 -0.68 -0.52 -0.47 -0.44 -0.24 -0.09 0.00 0.07 
--0.82 --0.75 0.57 --0.56 --0.50 --0.34 --0.24 --0.12 --0.00 0.09 0.15 
--0.69 --0.68 0.56 --0.41 --0.40 --0.26 0.09 --0.00 0.12 0.24 0.30 
--0.56 --0.52 --0.50 0.40 --0.20 --0.09 0.00 0.09 0.24 0.44 0.47 
--0.53 --0.47 --0.34 0.26 --0.09 0.00 0.09 0.26 0.34 0.47 0.56 

0.47 --0.44 --0.24 -0.09 0.00 0.09 0.20 0.40 0.50 0.52 0.57 
--0.30 --0.24 --0.t2 --0.00 0.09 0.26 0.40 0.41 0.56 0.66 0.68 
--0.15 --0.09 --0.00 0.12 0.24 0.34 0.50 0.56 0.57 0.75 0.82 
--0.07 0.00 0.09 0.24 0.44 0.47 0.52 0.66 0.75 0.76 0,84 
--0.00 0.07 0.15 0.30 0.47 0.56 0.57 0.68 0.82 0.84 0.85 

0.12 
0.17 
0.25 
0.41 
0.50 
0.54 
0.67 
0.75 
0.80 
0.92 
0.95 

1.2 -0.00 0.12 0.17 0.25 0.41 0.50 0.54 0.67 0.75 0.80 0.92 0.95 0.95 

~u*/Oe* a n d  ~.u*/OAe* s h o w n  b e l o w  can  be  ob ta ined ;  

t he se  e q u a t i o n s  wi l l  be  u s e d  in the  ind i rec t  t u n i n g  

s tage:  

Ou* M D T ( A e * , e *  + I ( e * ) ) -  M D T ( A e * , e * )  

#e* I(e* ) ' 

fo r  I (e*)  ~ 0 ( 3 )  

Ou* M D T ( A e *  + I ( A e *  ), e* ) -- M D T ( A e * ,  e* ) 
OAe* I ( A e * )  

fo r  I ( Ae*  ) --, O, 

w h e r e  I (x)  is a f u n c t i o n  to take  little i n c r e m e n t  o n  x. 

In  the  p r o p o s e d  s y s t e m ,  w e  a s s i g n  I(e* ) = I( Ae* ) = 
0.01. W e  a lso  find that  the  i n f e r r ed  Ou*/cqe * and  

~u*/?~Ae* are pos i t i ve ,  as  r e q u i r e d  b y  c r i t e r ion  2 and  

c r i t e r ion  1, r e spec t ive ly .  M o r e o v e r ,  Eqs .  ( 3 )  and  ( 4 )  

ind ica te  tha t  a D T  or  M D T  w i t h  in te rva l  [ - 1 . 2 ,  1.2] 

is c o n v e n i e n t  fo r  p r o g r a m m i n g .  

2.2. Layered operation 

T h e  p r o p o s e d  f o u r - l a y e r  n e t w o r k  s t ruc tu re  o f  the 

( 4 )  S T F C  is i l lus t ra ted  in Fig.  4. In  th is  s u b s e c t i o n ,  w e  
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S l o p e  = s I = s e 

e-~~_, ~ 

Slope = s 2 = sa 

Z/* e*  

-1 
-0.8 

0 
0.2 

1 

-1 - 0 . 8  . . .  0 0 . 2  . . .  1 

(or S 3 ) 

U 

Layer 1 Layer 2 
Input layer Scaled layer 

Fig. 4. The network structure 

shall describe the signal propagation and the basic 
function of the nodes in each layer. We use netj  and J) 
to denote the summed net input and activation function 
of node j ,  respectively, and the superscript denotes 
the layer number. Moreover, x~ and y~ denote the 
input and output vector of  the j th node in layer k, 
respectively. 

L a y e r  1 : input  layer. For the jth, j = 1,2, node of 
layer one, the net input and the net output are 

net) : # and y) : f j l ( n e t ) )  : net) ,  (5)  

where x I = e andx~ = Ae. 

L a y e r  2: scaled  layer. In this layer, the operating 
ranges of  the measured variable e ( k )  and Ae(k)  are 
transformed to the normalized universe [ -  1, 1 ] by the 
scaling factors Se and Sd, respectively. Before the layer 
two operation, an S F - a d j u s t m e n t  procedure is per- 
formed: 

1/e i f  ese > 1 
se - 1 / e  i f e s e  < - 1  (6) 

1/Ae i f  Aesd  > 1 
S d =  - - 1 / A e  i f  Aesd  < --1 (7) 

The SF-adjustment procedure is crucial for the direct 
tuning stage, as will be explained in Section 4. We 
can find that the input scaling factors are changed only 
when the emax or Aemax is obtained. Thus, it seems 

Layer 3 Layer 4 
Table look-up layer Output layer 

of the proposed STFC. 

that we can predict the operating ranges O R  e and ORd 
of e and Ae, respectively, by 

ORe = [--e . . . .  emax] = [--1/Se, l/se], 

ORd = [--Aemax,Aemax] = [--1/Sd, 1/Sd]. 

After the SF-adjustment procedure, the operation in 
this layer is 

net } : s i * x  } and y } : # ( n e t  } ) : n e t  } . (8)  

We note that sj = Se, s2 = sd, yf = e*, and y2 = 
A c * .  

L a y e r  3: table look-up layer. In this layer, we per- 
form MDT-mapping for the scaling results e* and 
Ae*. Thus we have 

net 3 = M D T ( x ~ , x ~ )  and 
(9) 

y3 = u* = f 3 ( n e t 3 )  = ne t  3. 

L a y e r  4: output  layer. The mapped element in the 
last layer is also scaled by an SF, say s, (or s3), and 
is added by a constant gain Cg to arrive at the desired 
control signal. The final output of  the network is 

net 4 = su * x 4 ~- Cg and 
(lO) 

y4 = U = f 4 ( n e t 4 )  = ne t  4. 

The constant gain Cg is crucial for zeroing steady-state 
error, as will be explained in the next section. 
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2.3. Supervised gradient descent learning 

Since the proposed STFC is a four-layer feedfor- 
ward network, it is a straightforward task to apply the 
gradient-descent-based BP algorithm [16] to adap- 
tively adjust the SFs. The goal is to minimize a 
cost function, E, so that training pattern k is propor- 
tional to the square o f  the difference between the set 
point sp and the plant output y(k) .  Let E be defined 
by 

E = l ( s p  - y ( k ) )  2. ( 1 1 )  

If  si, i = 1,2, 3, is the adjusted SF, then the learning 
rule is 

aE 
s i ( k  4- 1) = s i ( k  ) - ~ i - ~ -  --  °~iAs i (k  ) ( 1 2 )  

(ps i 

and 

A s i ( k )  = s i ( k )  - s i ( k  - 1), (13) 

where qz is the learning rate and c~i, 0 < ~i < 1, is 
the momentum parameter. We will now to derive the 
learning law for each layer in the feedback direction. 

Layer  4: The gradient o f  error in (11 ) with respect 
to an arbitrary weighting vector W E R ~ is 

aE ,, a e ( k )  , , , a y ( k )  
bSY - et,~) ? ~  -- etK~ V Y  

, , ,  a y ( k )  au(k)  SO(k)  
= - e t t c ) ~ ( ~  ~ - - e ( k ) y , ( k ) ~ - - , ( 1 4 )  

where O(k)  is the output of  the STFC and S = 
yu(k)  = ay (k ) / au (k )  is the plant sensitivity. From 
(14), we can derive the propagating error term given 
by the output node 

34 _ _  - a E  _ e ( k ) y , ( k ) ~  = e(k)yu(k) .  (15) 
ane t  4 one t  

Then, we have 

c~E _ a E ay  4 anet 4 _ fi4y3 = 34u*. (16) 
6qs3 a y  4 ane t  4 as3 

Hence, by (12), the scaling factor s3 is updated by 

s3(k + 1) = s3(k) + ~1364(k)y3(k) + :~3As3(k). (17) 

Layer  3: The error term 33 is derived as follows: 

~ 5 3 - a E  _ - a E  a y  3 _ - a E  (18) 
anet 3 ay3 ane t  3 (~y3 

-- -- 6~E cy4 -- 34s3 . (19) 
ay  4 0y 3 

Layer  2: First, the error term is computed: 

-2 - -aE - a E  ay  2 

a j - a n e t  2 - ay  2 anet 2 

- a E  {3y3 "3 aY 3 
- ay-  ay? - 3  

,5 &-- for j = 1, 
ae* 

33 au* for j = 2. 
aAe* 

We can then derive 

_ a E  c~y~ _ a2 ayJ 2 x !  

I 

aE 

as, a7  " aN : 3,. , 

{ 2  2'  jX) for - 1  < y 2  < 1, 
forv  2 = l o r v 2 =  1. 

Thus, the update rules for s j, j = 1,2, are 

s j (k  + l )  = s j (k )  + ~ja2x) + ~jasj(k). 

(20) 

(21) 

(22) 

3. A simple method for zeroing steady-state error 

PD control can reliably predict and correct large 
overshoots, but the derivative control will affect the 
steady-state error of  a system only if the steady-state 
error varies with time. i f  the steady-state error of  a sys- 
tem is constant with respect to time, the time deriva- 
tive of  the error will be zero, and derivative control 
will have no effect on the steady-state error. In this pa- 
per we consider the steady-state error for a step input 
in a control system with PD control. We try to fully 
compensate for the steady-state error by a proposed 
simple method. 

Basically, the proposed STFC in Fig. 4 is composed 
of  a fuzzy PD controller and an added constant gain. In 
the following, we will show how to fully compensate 
for the steady-state error by this structure. From the 
operations in the table look-up layer, we shall demon- 
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WIs) 

r ,~ ,~ .p-~o , t ,  r-p . . . .  ~°1 ~ o~t, I . . . . . . .  I -y , t ,  

Fig. 5. Control system with PD control. 

We will make the linguistic trajectory converges 
exactly to the origin with the help of  the constant 
gain Cg. Considering the equilibrium point at x = 
[xa(t) x2(t)] T = [e(t) d(t)] T = 0, where the sys- 
tem output response is maintained at set point sp and 
the output of  the fuzzy PD controller is zero, we 
have 

strate the effect of  the normalization on the virtual PD 
approximation as 

u*(k) : / ( p e * ( k )  + KDAe*(k  ). (23) 

Thus, the following equality will be true for the real 
values: 

u( k ) = suu* ( k ) + Cg 

= Kp(suSe)e(k ) 4- [~D(SuSd)Ae(k) + Cg 

= / £ p e ( k )  + / £ D A e ( k )  4- Cg. (24) 

We can transform the above discrete expression to its 
continuous form 

u(t) = / £ p e ( t )  + TI£Dd(t ) + Cg, (25) 

where T is the sampling period. 
A control system with fuzzy PD control, added by 

a constanr gain, is shown in Fig. 5. Let Gp(s) denote 
the transfer function of  the linear controlled plant. I f  
we first ignore the constant gain Cg, the DC gain from 
set point sp to the plant output yp is 

G(O) -- KpGp(O) 
1 + /~pGp(O) '  (26) 

where G(s) is the transfer function of  the overall sys- 
tem and Gp(0), Gp(0) > 0, is the DC gain of  the plant. 
From (26), we can see that steady-state error due to a 
step-function input will always be present if  Gp(0) --+ 
oc is not satisfied. From the viewpoint of  the FLC, 
this means a trajectory converging to the origin (e = 
Ae -- 0) in linguistic space [1], with fuzzy variables E 
and A E  as its axes, is impossible unless Gp(0) --* cx) 
is satisfied. When Gp(0) does not approach infinity, 
the linguistic trajectory of  the overall control response 
will eventually reach a stable point in the neighbor- 
hood of  the origin with a certain degree of  steady-state 
error. 

cgGp(O) =sp.  (27) 

We find that the value of  Cg has no relationship with 
the control constant ga ins /£p or/£D. Also, it seems 
that if  we set 

sp (28) 
C g -  Gp(0) '  

we can solve the steady-state error problem. To show 
this, we can derive the output transfer function 

Gp(s)( TI(DS 4-/~p) 
Y(s) = Gp(s)(TI~DS 4-/~p) Jr- 1R(s) 

Gp(s) 

-f Gp(s)(TI£Ds 4-/(p) 4- 1 W(s), 
(29) 

where we can find that the step signal w(t) does not 
influence the stability of  the overall system. By substi- 
tuting sp/s and Cg/S, respectively, for R(s) and W(s) 
in (29), we have the steady-state output 

lim yp(t)-  
t ~ O C  

Gp(0)/(p 
sp 

Gp(0)Kp + 1 

Gp(O) sp 

Gp(0)Kp 4- 1 Gp(0) 

=sp,  (30) 

with steady-state error ess = 0. 

4. Two-stage tuning method 

In Sections 2 and 3, we obtained an important 
fact that variations in the SFs implies the varia- 
tions in the operating ranges ORe, ORd, and ORu. It 
means that if  we want to fine-tune SFs, the remaining 
problem is how to automatically detect the operat- 
ing ranges and then adjust the SFs. For brevity, we 
neglect the magnitude-constraint on the controller 
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output u(k). lnstead of tuning the SFs through trial- 
and-error, the proposed system employs a systematic 
approach: 

1. In the direct tuning stage, the SFs are directly 
and iteratively adjusted to reduce the error between the 
plant output and the set point. The supervised learning 
described in Section 2.3 is not used in this stage. 

2. In the indirect tuning stage, the BP algorithm 
is applied to fine-tune the SFs obtained in the above 
stage. This tuning stage can be omitted if the desired 
control result is achieved in the direct tuning stage. 

In the direct tuning-stage, we first initialize Se and 
Sd with large values and then increase the value of su, 
starting from a low value, in each iteration. Generally 
speaking, when the value of s3 increases, the operating 
range of e(k) and A e ( k )  will expand since the varia- 
tion in system response is greater. The SF-adjustment 
procedure in (6) and (7) will detect this situation and 
reduce the value of se and sd. Thus, though only the 
layered operation is performed in this stage, the SFs 
will be automatically adjusted. Of course, se will be 
adjusted as 

1 
se = - -  (31) 

sp 

in this tuning stage for most cases, except when the 
step response exhibits a small negative undershoot 
near the time index k = 0. Note that if the initial val- 
ues s~ and sd remain unchanged after the first iteration, 
this means that their values should be further enlarged. 
For most of the linear controlled plants studied in our 
simulations, this simple direct tuning stage is sufficient 
to provide the desired output. The user can record the 
performance indices such as the rise time, reach time, 
overshoot, and settling time after each iteration to de- 
termine whether the desired system response has been 
achieved. 

Furthermore, in the first iteration of the direct tuning 
stage, we can assume that Gp(0) --+ oc and let Cg = 0. 
If we obtain the system output with nonzero steady- 
state error, we then do approximation on 

G p ( 0 ) -  Yss (32) 
Uss 

by the steady-state input Uss and output Yss of the 
plant in the following tuning iterations. In this way, 
the proposed compensation method will be robust to 
varying sizes of DC disturbances of the controlled 

plant. This approach is adopted in the simulation 
examples in Section 5. 

If the desired control result is not achieved in the 
above stage, supervised learning can be applied in the 
indirect tuning stage, and a plant-identifier can be em- 
ployed to identify the plant sensitivity Yu to imple- 
ment the indirect adaptive FLC. We refer readers to 
reference [2], in which a FNN identifier is applied. 
It is not practical to simultaneously tune SFs Se, sa, 

and su to obtain a desired response with freely chosen 
initial values, because the process may be trial-and- 
error and learning convergence problems may arise. 
It is feasible to perform supervised learning based on 
the SFs obtained in the first tuning stage, however, 
because in this case the tuning method is likely to 
converge to a desired solution. In the proposed sys- 
tem, micro-tuning of the results of the first stage is 
performed in the second stage if we set all learn- 
ing parameters to smaller values. On the other hand, 
varying the SFs by setting all learning parameters to 
larger values can result in considerable nonlinearity 
of the fuzzy controller, but convergence is hard to be 
guaranteed in this approach. Simulation results indi- 
cate that the two-stage tuning method is feasible and 
efficient. 

5. Simulation examples 

In the following simulation examples, suppose each 
learning cycle takes te seconds with a step size of ts 

seconds. 

Example 1 (An under-damped system).  The plant 
to be controlled is described by the Laplace transfer 
function [8] 

20 
Gp(s ) -  s 2 + 8 s + 2 0  

Let te = 10, ts = 0.02, and sp = 4, we initialize 
se = Sd -- 1000 and su = 20. The value of su is in- 
creased by one in each iteration. Supervised learning 
is not applied here, so no plant-identifier is required. 
When steady-state error compensation method is 
applied, Table 4 shows values of the main parameters 
in the first five iterations. We find that the SFs are 
automatically tuned by the proposed SF-adjustment 
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Fig. 6. Step response of the process with su 60 in Example 1. The dashed line indicates the system response before steady-state 
error compensation (Se = 0.25 and sd = 2.77); the solid line indicates the response after steady-state error compensation (Se 0.25 and 
sa = 2.357). 

Table 4 
Values of the main parameters in the first five iterations 

Iteration Se Sd Su Cg Predicted ORe Predicted ORa yss 

1 0.25 7.35 20.0 0.00 [-4.0,4.0] [-0.136, 0.136] 2.934 
2 0.25 5.57 21.0 4.00 [-4.0,4.0] [-0.180,0.180] 4.000 
3 0.25 5.02 22.0 4.00 [-4.0,4.0] [-0.199,0.199] 4.000 
4 0.25 4.78 23.0 4.00 [-4.0,4.0] [-0.209,0.209] 4.000 
5 0.25 4.62 24.0 4.00 [-4.0,4.0] [-0.216,0.216] 4.000 

procedure.  To illustrate the eff iciency o f  the direct tun- 

ing stage, Fig. 6 shows the step responses  before  and 

after steady-state error compensa t ion  when  su = 60. 

W e  find that the original  steady-state error  o f  0.53 

quickly  decreases  to zero. W e  also find that the pro-  

posed  direct  tuning me thod  can automat ica l ly  adjust 
se and sa by detect ing the operat ing ranges o r e ( k )  and 
A e (  k ). 

E x a m p l e  2 (A  d a m p e d  oscillation s y s t em) .  The con-  

t rol led sys tem is a second-order  sys tem mode l ed  as 

fol lows:  

y ( t )  ÷ 0.40))(t) + 0 .54y( t )  = 19.54u(t).  

This  is a var ia t ion o f  a vehic le  speed control  system 

with  a potential  disorder  [ 12]. Let  te = 6, ts = 0.02, 

and sp = 60. Then  we  can control  the plant as wel l  
as that in Example  1. I f  the p roposed  compensa t ion  
me thod  is not  applied, most  designers  wou ld  increase 

the value  o f  su to reduce the steady-state error. Fig. 7 

presents  an example  which  shows that the steady-state 
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Fig. 7. Step response of the process with su = 400 in Example 2. The dashed line indicates the system response before steady-state error 
compensation (Se = 0.017 and sa = 0.294); the solid line indicates the response aider steady-state error compensation (se 0.017 and 
sd = 0.290). 

error cannot be completely eliminated even when s ,  
is increased to 400. When the proposed method is 
applied, however, the steady-state error is very quickly 
reduced from 0.56 to zero. 

Example  3 ( A t i m e - d e l a y  s y s t e m ) .  The transfer func- 
tion of  the controlled plant is 

1 
G p ( s )  = s ~ - ~ e x p ( - 0 . 5 s ) ,  

which involves a t ime delay. This example corre- 
sponds to situations often encountered in industrial 
processes. Let te = 20, ts = 0.02, and sp  = 1. As in 
the above examples,  we initialize Se = sa = 1000 and 
s~ = 1 and then increase the value of  s~ by  one in 
each iteration. Fig. 8 shows the step response before 
and after steady-state error compensation when s~ is 
19. The system response with zero steady-state error 
again confirms the applicabil i ty and efficiency of  the 
proposed system. 

Example  4 (A  non l inear  uns tab le  s y s t e m ) .  The plant 
is described by the differential equation [23] 

~ z  1 2 ~ y  - y + u .  

In this case we let te = 7.5, ts = 0.015, and sp  = 

2.0. In this example, the suggested two-stage tuning 
method is introduced because of  the complexi ty of  the 
controlled plant. In the direct tuning stage we initial- 
ize Se = sa = 1000 and su = 1 and then increase the 
value of  su by one in each iteration. The mean-square 
error of  the response gradually decreases as su in- 
creases until su = 39, at which time we have se -- 0.5 
and sd = 2.79. The step response is indicated in Fig. 9 
by the dashed line. Using the above result, we begin 
to perform micro-tuning of  SFs in the indirect tuning 
stage. Note that the plant sensitivity Yu is calculated 
by numerical approximation. We set r/i = cq = 0.001 
for i -- 1 to 3 and perform supervised learning. After 
50 learning epochs, we obtain the desired system re- 
sponse shown in Fig. 9 by the solid line. The respec- 
tive learning trajectories of  Se, sa, and s ,  in the 50th 
learning epoch are shown in Fig. 10. 
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Fig. 8. Step response  o f  the  p rocess  wi th  su = 19 in E x a m p l e  3. The  dashed  line indicates  the sys t em response  be fo re  s teady-s ta te  

er ror  c o m p e n s a t i o n  (Se = t .0  and Sd = 34.229) ;  the solid line indicates  the  r e sponse  af ter  s teady-s ta te  error  c o m p e n s a t i o n  (Se = 1.0 and 

sd = 29 .492) .  
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Fig. 9. Final  sy s t em response  for E x a m p l e  4. The  response  af ter  d i rect  tun ing  s tage  (Se ~ 0 . 5 ,  S d 2.79, and  Su 39)  is indica ted  by  

the dashed  line, that  a f te r  the indirect  tun ing  s tage  ind ica ted  b y  the sol id line. 
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Fig. 10, The learning trajectories of  the scaling factors in Example 4. (a) Se, (b) Sd, and (c) s~ 
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Fig. 10. Continued. 

6. Conclusion 

In this paper, we have described a PD-like self- 
tuning fuzzy controller (STFC) based on the tuning 
of scaling factors. We have solved the steady-state 
error problem in a PD-like FLC system by a simple 
but efficient method. Furthermore, to avoid tuning 
the SFs through trial-and-error, we have proposed 
a systematic two-stage tuning method. In the direct 
tuning stage, the proposed STFC automatically de- 
tects the operating ranges of  the input variables and 
then adjusts them. In the indirect tuning stage the 
design results of  the direct tuning stage are used to 
adaptively fine-tune the SFs if the desired result was 
not obtained in the previous stage. Simulation results 
for linear time-invariant systems and a nonlinear un- 
stable system show the proposed technique produces 
zero steady-state error responses very quickly without 
overshoot or oscillatory behavior. 
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