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A Hamiltonian cycle C = (u1, ua, ..., un(G), u1) With n(G) = number of vertices of G, is a cycle
C(u1; G), where u; is the beginning and ending vertex and u; is the ith vertex in C and u; # u; for
anyi # j,1 <i,j <n(G).Asetof Hamiltonian cycles {C1, Ca, ..., Cy} of G is mutually independent if
any two different Hamiltonian cycles are independent. For a hamiltonian graph G, the mutually indepen-
dent Hamiltonianicity number of G, denoted by /(G), is the maximum integer & such that for any vertex
u of G there exist k-mutually independent Hamiltonian cycles of G starting at . In this paper, we prove
that h(B,) =n — 1 if n > 4, where B, is the n-dimensional bubble-sort graph.

Keywords: Hamiltonian cycle; bubble-sort networks; interconnection networks; mutually independent
Hamiltonian cycles; Cayley graph

2000 AMS Subject Classifications: 05C38; 05C45; 05C75; 05C90; 68M10

1. Introduction

Let H be a group, and let S be a generating set of H with S~* = . The Cayley graph on a group
H with generating set S, denoted by Cay(H; S), is the graph with vertex set H, and for two
vertices u and v in H, u is adjacent to v if and only if v = us for some s € S. Hamiltonian cycles
in Cayley graphs exist naturally in computing and communication [10], in the study of word-
hyperbolic groups and automatic groups [6], in changing-ringing [13], in creating Escher-like
repeating patterns in hyperbolic plane 1 [4], and in combinatorial designs [4]. It is conjectured
that every connected Cayley graph with more than three vertices is Hamiltonian [3]. Up to now,
this conjecture is unsolved. Yet, some Cayley graphs have many more Hamiltonian cycles than we
expected. In this paper, we introduce and study the concept of mutually independent Hamiltonian
(MIH) cycles in Cayley graphs.

For graph definitions and notations we follow [2]. G = (V, E) isagraphif V isa finite set and
E is a subset of {(u, v) | (u, v) is an unordered pair of V}. We say that V is the vertex set and E
is the edge set. We use n(G) to denote |V|. Let S be a nonempty subset of V (G). The subgraph
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induced by S is the subgraph of G with its vertex set S and with its edge set consisting of all
edges of G joining any two vertices in S. We use G — S to denote the subgraph of G induced by
V — S. Two vertices u and v are adjacent if (u, v) is an edge of G. The set of neighbours of «,
denoted by N¢ (u), is {v | (u, v) € E}. The degree of a vertex u of G, deg («), is the number of
edges incident with u. The minimum degree of G, §(G), is min{deg;(x) | x € V}. Agraph G is
k-regular if deg; (u) = k for every vertex u in G. A path between vertices vy and vy is a sequence
of vertices represented by (vg, v1, ..., vy) with no repeated vertex and (v;, v; 1) is an edge of G
foreveryi,0 <i <k — 1. We use Q(i) to denote the ith vertex v; of O = (v1, v, ..., vr). We
also write the path (vo, v1, ..., v) as (vo, ..., v, Q, v, ..., vx), where Q is a path form v; to
v;j. A cycleis a path with at least three vertices such that the first vertex is the same as the last.
A Hamiltonian cycle of G is a cycle that traverses every vertex of G. A graph is Hamiltonian
if it has a Hamiltonian cycle. A graph G = (B U W, E) is bipartite with bipartition B and W if
V(G)=BUW,BNW =@, and E(G) is a subset of {(u,v) |u € Bandv € W}. Let G be a
bipartite graph with bipartition B and W. We say that a Hamiltonian bipartite graph is Hamiltonian
laceableif there is a Hamiltonian path between any pair of vertices {x, y}, where x in B and y in
W. Leta, b, m € Z with m > 0. Then q is said to be congruent to » modulo m, denoted a = b
mod m, if m|(a — b).

A Hamiltonian cycle C(uy; G) of a Hamiltonian graph G is described as C(ui; G) =
(U1, uz, ..., uyc), u1) to emphasize the order of vertices in C. Thus, u; is the beginning ver-
tex and u; is the ith vertex in C. Two Hamiltonian cycles of G beginning at the vertex x,
C1=C(u; G) = (u1, U2, «« oy Un(G)>» Ltl) and C,=C(v;; G) = (vl, V2, -« Un(G)>s U1>, are inde-
pendent if x = u; = vy and u; # v; for every i, 2 <i < n(G). Let G be a Hamiltonian graph.
A set of Hamiltonian cycles {C1, C», ..., Ci} of G is mutually independent if any two different
Hamiltonian cycles are independent. The mutually independent Hamiltonianicity number of a
Hamiltonian graph G, called the MIH number of G and denoted by i(G), is the maximum inte-
ger k such that for any vertex u of G there exist k-mutually independent Hamiltonian cycles of
G starting at u. Obviously, 2(G) < §(G) for a Hamiltonian graph G. The concept of MIH cycles
can be applied in many different areas. Interested readers can refer to [7, 9, 11, 12] for a more
detailed introduction.

In this paper, we study MIH cycles of n-dimensional bubble-sort graph B,. In the following
section, we give some basic properties for the n-dimensional bubble-sort graph. In Section 3, we
construct MIH cycles in B, and compute 4 (B,), the MIH number of B,.

2. Thebubble-sort graphs

We set (n) = {1, 2, ...,n} if n is a positive integer and we set (0) being the empty set. The n-
dimensional bubble-sort graph, B,,, is the graph with vertex set V(B,,)) = {u1, ..., u, | u; € (n)
and u; # u; fori # j}. The adjacency is defined as follows: u1, ..., u;—1, u;, ..., u, is adjacent
to vy, ..., v;_1, Vi, ..., v, through an edge of dimension i with 2 <i <n if v; = u; for every
jem —{i—1i},vi_1 =u;,andv; = u;_1,1.e,swap u;_; and u;. The bubble-sort graphs By,
B3, and By are illustrated in Figure 1. It is known that the connectivity of B, is (n — 1). We use
boldface to denote vertices in B,. Hence, us, Uy, ..., U, denote a sequence of vertices in B,,.

By definition, B, is an (n — 1)-regular graph with n! vertices. We use e to denote the vertex
1,2,...,n. Itis known that B, is a bipartite graph with one partite set containing those vertices
corresponding to odd permutations and the other containing those vertices corresponding to even
permutations. We use white vertices to represent those even permutation vertices and use black
vertices to represent those odd permutation vertices. Letu = us, ug, ..., u, be an arbitrary vertex
of the bubble-sort graph B,,. We say that «; is the ith coordinate of u, (u);, for1 <i < n. For
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Figure 1. The graphs B, B3, and Bs.

1<i<n,let Bni 1 be the subgraph of B, induced by those vertices u with (u),, = i. Then B, can
be decomposed into » subgraphs B!, 1 <i < n, and each B!"', is isomorphic to B,_;. Thus,
the bubble-sort graph can also be constructed recursively. Let 7 be any subset of (n). We use B! _;
to denote the subgraph of B, induced by |, V(Bn’ - For any two distinct elements i and j

in (n), we use E-/, to denote the set of edges between B\, and BY),. By the definition of B,,
there is exactly one neighbour v of u such that u and v are adjacent through an i-dimensional
edge with 2 < i < n. For this reason, we use (u)’ to denote the unique i-neighbour of u. We have
((uy)" = uand (uy" € B\,

LEmma 1 Leti and j be any two distinct elementsin (n) with n > 3. Then |En 1| =(n-2).
Moreover, there are (n — 2)!/2 edgesjoining black vertices of B'"!, to white vertices of B'/),.

THEOREM 1 (See [8]) The bubble-sort graph B, is Hamiltonian laceable if and only if n # 3.

THEOREM 2 (See [1]) Let x be a black vertex in B, with n > 4. Suppose that u and v are two
distinct white verticesin B,,. There isa Hamiltonian path of B, — {x} joiningu tov.

LEMMA 2 Let] = {al,ag, ...,a,} beasubset of (n )for SOIT\Gr € (n) withn > 5. Assume that
u is a white vertex in B and v is a black vertex in B 1- Then there is a Hamiltonian path
(U = X1, H1, Y1, X2, Ha, yg, .. x,, H,, y, = V) of B’ 1 Jommg u to v such that x; = u, y,=v,
and H; isa Hamiltonian path of B lJommgx toy; foreveryi,1 <i <r.

Proof We set x; = u and y, = v. By Theorem 1, this lemma holds for r = 1. Suppose that
r > 2. By Lemma 1, there are (n — 2)!/2 > 3 edges joining black vertices of B,” ta:} 1 to white
vertices of B for every i € (- —1). We can choose an edge (yi, Xi41) € EX “’“ with y;
being a black vertex and x;,; being a Whlte vertex for every i € (r —1). By Theorem 1,
there is a Hamiltonian path H; of Bn 1 joining x; to y; for every i € (r). Then the path
(U=Xq, H1, Y1, X2, Hs, Y2, ..., %X, H., Yy, = V) is the desired path. [ |
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LemMA 3 Let B,{f_’l and B,{l”_}1 be two distinct subgraphs of B, withn > 5. Let sbe a black vertex
in B!, lett beawhitevertexin B!”),, let u beawhite vertexin B!*),, and et v be a black vertex
in B . Then thereis a Hamiltonian path of B!“?! — (s, t} joiningu tov.

Proof Let x be a white vertex in B, — {u} with (x)" being a black vertex in B'”, — {v}. By
Theorem 2, there are Hamiltonian paths: Q; of B”“ 1 — {s} joining u to x; Q, of Bf’fl —{t}

joining (x)" to v. Then (u, Q1, X, (X)", Q2, V) is the Hamiltonian path of B{“ b — {s, t} joining u
tov. m

LemMA 4 For n > 5, let u be a black vertex in B!, and let v be a white vertexin B!",. Then
thereis a Hamiltonian path of B, — {e, ()"} joining u to v.

Proof Lety be awhite vertexin Bfl”_’ll} with (y),—1 = n — 2. By Lemma 3, there isa Hamiltonian

path Ql of B "L _ fe ()"} joining U to y. By Lemma 2, there is a Hamiltonian path Q, of

Uiz 12 B, 1 Jomlng the black vertex (y)" to v. Then (u, Q1,Y, (¥)", Q2, V) is a Hamiltonian path
of B, — {e, ()"} joiningu to v. |

3. TheMIH property of B,

For every i in (n — 1) with n > 5, we set ) = (e)'** and we set z; = (23,71)"““/+1 for any j in
(n —i —1). Let A2 be the empty set, let Ay = {Z) | j € (4 —i) U {0}} forany i in (4), and let
_{z’ | jen—i—1)uU{0}} foranyiin (n—1) forn > 6. We set X} = AU A2 U {g},
A,% UAtU(el, X3 =A3U A% U (e}, and X4 = A3 U A> U (e} foranyn > 5. Weset Y/ =
Aﬁ,UAfflU{e}forn >6andfor3 <i <n-—2.

LemMMA 5 Thereis a Hamiltonian path of Bs — X? joining a vertex u with (u)s = 5 to a vertex
v with (v)s = 1 such that the colour of u and the colour of v are distinct.

Proof We set Q1 = (12435, 21435, 24135, 24315, 42315, 42135, 41235, 14235, 14325, 41325,
43125, 34125, 31425, 31245, 32145, 32415, 34215, 43215). Note that Q; is a Hamiltonian path
of B{Y — (X! — {2} = 23451, Z3 = 13452}) joining the black vertex 12435 to the white vertex
43215.

Casel Supposethatuisablack vertexandv isawhite vertex. We setu = 12435and x = 43215.
Let w be a black vertex in Bfll} with (w)4 = 2. By Theorem 2, there is a Hamiltonian path Q, of

— {2}} joining the black vertex (x)° to w. Let y be any black vertex in le} with (y)4 = 4.
Without loss of generality, we write Q, = ((x)°, Ry, Yy, m, R, w). By Theorem 2, there is a
Hamiltonian path Q3 of Bf} - {z%} joining a white vertex swith (s); = 3 to (w)°. By Lemma 2,
there is a Hamiltonian path Q, of B{>* joining the white vertex (y)S to the black vertex (s). We
letv = m. Then (u, @1, X, (X)°, Ry, Y, (¥)°, Q4. (9°, S, 03, W)°, W, R, m = v) is the desired
path.

Case 2 Suppose that u is a white vertex and v is a black vertex. We set u = 43215 and x =
12435. Let v be a black vertex in B, and let s be a white vertex in B{? with (s); = 4. By
Lemma 3, there is a Hamiltonian path Q, of le’Z} — {2}, Z3} joining sto v. By Lemma 2, there
is a Hamiltonian path Q3 of Bf"” joining the white vertex (x)° to the black vertex (s)®. Then

(u, 071, x, ()%, 03, (9°,'s, 02, V) is the desired path. [ ]
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LEmmaA 6 For n > 5, thereis a Hamiltonian path of B, — X,} joining a vertex u with (u),, = n
to a vertex v with (v),, = 1 such that the colour of u and the colour of v are distinct.

Proof We prove this statement by induction on n. By Lemma 5, this statement holds for n = 5.
We suppose that this statement holds for » — 1 with n > 6. We have the following cases.

Casel Suppose thatu is a black vertex and v is a white vertex.

Casel.l Suppose that n is even. Thus, z}_, is a black vertex in B _1 and Z2_, is a white vertex
in B,H. By induction, there is a Hamlltonlan path Q; of B, — (X! — {z} ,,Z2 ,}) joining
u to a white vertex g with (g),_1 = 1. Obviously, (q)" is the black vertex in B'",. Let sand
w be two white vertices in Bfll_}l with (s),-1 =n —1 and (w),_1 = 2. By Theorem 2, there
is a Hamiltonian path Q, of B 1 — {z%_,} joining w to s. Without loss of generality, we write
0, = (W, R;,m, (Q)", Ry, 9). Lettbeablackvertexm Bn lwith (t),—1 = 3.ByTheorem 2, there
is a Hamiltonian path Q3 of 31 1 {z2 3} joining t to the black vertex (w)". By Lemma 2, there is
aHamiltonian path Q4 of J'_; B,” 1 joining the black vertex (s)" in B, tn— 1} to the white vertex (t)”

in Bn_l.We setv =m. Then (u, 01,0, (Q)", Rz, S, (9", Qy4, (1)", 1, Q3, W), w, R;,m=vV)is
the desired path.

Case 1.2 Suppose thatn is odd. Thus, z}_, is a white vertex in Bn ,and Z2_, is a black vertex
in anl. The proof of this case is similar to Case 1.1.

Case2 Suppose that u is a white vertex and v is a black vertex.

Case2.1 Suppose that n is even. Thus, z-_, is a black vertex in B\”| and 22_, is a white vertex
in B!/, By induction, there is a hamiltonian path Q; of B, — (X} —{Z2_,.z2_.}) joining
u to a black vertex p with (p),_1 =n — 1. Let sand t be any two white vertices in B!"; with
(S)p—1 = 2and (t),_1 = 2.By Theorem 2, there isa Hamiltonian path Q, of B,Et}l — {zﬁfz}joining
sto t. Let y be any white vertex in B, — {s, t} with (y),_; = 3. Without loss of generality,
we write @, = (S, Ry, Y, M, Ry, t). By Theorem 2, there is a Hamiltonian path Q3 of B*, —
{25_3} joining the black vertex (s)" to the black vertex (t)"”. By Lemma 2, there is a Hamiltonian
path Q4 of U”‘l ii’l joining the white vertex (p)” to the black vertex (y)". Let v =m. Then
(u, Q1,p, (P)", Qa, V", Y, R{ 7,5 (9", O3, ()", 1, R, = V) is the desired path.

Case2.2 Suppose that n is odd. Thus, Z:_, is a white vertex in B 1 and z2_, is a black vertex
in anl. Note that » is odd. The proof of this case is similar to Case 2.1. |

LEmMMA 7 Thereis a Hamiltonian path of Bs — X§ joining a white vertex u with (u)s =5toa
white vertex v with (v)s = 1.

Proof We set Q1 = (24135, 42135, 41235, 41325, 14325, 14235, 12435, 21435, 21345, 23145,
32145, 31245, 31425, 34125, 43125, 43215, 42315, 24315, 23415, 32415, 34215) being a hamil-
tonian path of B{” — (X2 — {z3 = 13452, z} = 12354}) joining the black vertex p = 24135to the
black vertex q = 34215. Let r be any black vertex in Q1 with (r)4 = 4. Obviously, (q)° is a white
vertex in B{". Without loss of generality, we rewrite Q; = (p, Ri, m, r, R,, q). Let sbe a white
vertex in B{Y with (s)4 = 1, and let w be a black vertex in B}*' with (w), = 2. By Theorem 1,
there is a Hamiltonian path Q, of B} joining the white vertex (p)° to w. By Lemma 3, there is a
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Hamiltonian path Q3 of B{"? — {2, (q)®} joining the white vertex (w)® to the black vertex ()°.
By Theorem 2, there is Hamiltonian path Q4 of B{* — {23} joining sto (r)®. We setv = (q)® and
u=m.Then (u=m, R;",p, (p)°, Q2. W, W)°, 03, (5°, S, Q4. (N°, 1, Ro, 0, ()° = V) is the
desired path. ]

LEmma 8 For n > 5, thereis a Hamiltonian path of B, — Xﬁ joining a vertex u with (u), = n
to a vertex v with (v),, = 1, where both u and v are black verticesif n is even, and both u and v
are white verticesif n isodd.

Proof We prove this statement by induction on n. By Lemma 7, this statement holds on n = 5.
We suppose that this statement holds on n — 1 with n > 6.

Casel Suppose that n is even. It is easy to know that z2_, and z* . are two white vertices. By
induction, there is a Hamiltonian path Q3 of B, — (X2 — {Z2_,, Z*_.}) joining a white vertex
p with (p),_1 = n — 1 to a white vertex q with (q),_1; = 1. Obviously, (q)" is a black vertex
in B,{llfl. Let t be a white vertex in Q1 with (t),_1 = 2. We rewrite Q3 = (p, R1, m, t, R>, Q).
Let s be a black vertex in B'?, with (s),_; = 1, and let w be a black vertex in B!, with
(W),—1 = 3. By Lemma 2, there is a Hamiltonian path Q, of (U;’:‘;B,{fll U B,E}l) joining the
black vertex (p)" to the white vertex (w)". By Lemma 3, there is a Hamiltonian path Q3
of BT —{z*_.. (@)} joining w to white vertex (5)". By Theorem 2, there is a Hamilto-
nian path Q4 of B'?, — {z2_,} joining s to the black (t)". We set v = (q)" and u = m. Then
(u=m, Rl‘l, p, (P)", Q2, W)", W, Qz, (9",S, Qs, (1)", 1, Rz, q, (Q)" = V) is the desired path.

Case2 Suppose that » is odd. It is easy to know that z2_, and z* . are two black vertices. The
proof of this case is similar to Case 1.

This completes the proof. |

LeEmma 9 Thereisa Hamiltonian path of Bs — X2 joining a vertex u with (u)s = 5 to a vertex
v with (v)s = 1 such that the colour of u and the colour of v are distinct.

Proof We set Q1 = (21435, 21345, 23145, 23415, 32415, 32145, 31245, 13245, 13425,
31425, 34125, 43125, 41325, 14325, 14235, 41235, 42135, 24135, 24315, 42314, 43215,
34215). Obviously, Q; isa Hamiltonian path of B} — (X3 — {z3 = 12453, z = 12354)} joining
the white vertex 21435 to the black vertex 34215.

Case1l Suppose u is a white vertex and v is a black vertex. We set u = 21435 and x = 34215.
Obviously, (x)° is the white vertex in B{". Let w be a black vertex in B{" with (w), = 2. Note

that ()5 is the white vertex in B}, By Theorem 1, there is a Hamiltonian path Q, of B}" joining
() to w. Let y be any white vertex in B{" with (y)4 = 3. Without loss of generality, we write
Q2 = ((X)%, R1.y. M, Ry, w). Let t be a white vertex in B\" with (t); = 2. By Lemma 3, there
is a Hamiltonian path Q3 of BI>* — {23, 4} joining the black vertex (y)® to t. By Theorem 1,

there is a Hamiltonian path Q4 of Bf} joining the black vertex (t)° to (w)®°. Let v.=m. Then
(U, Q1. %X, (%, Ry, Y, (¥)°, Q3. t, (1)°, Q4. W)*, W, Ry, m = v) is the desired path.

Case2 Suppose u is a black vertex and v is a white vertex. We set u = 34215 and x = 21435.
Let y be a white vertex in B\" with (y); = 2. By Lemma 3, there is a Hamiltonian path Q; of

B> — {23, Z8} joining the black vertex (x)° toy. Let v be any white vertex in B}". By Lemma 2,
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there is a Hamiltonian path Qs of B{"? joining the black vertex (y)® to the white vertex v. Then
(u, 071 X, (%)%, Q2. Y, (¥)°, Q3, V) is the desired path. -

LemMa 10 For n > 5, thereis a hamiltonian path of B, — X3 joining a vertex u with (u), = n
to a vertex v with (v),, = 1, where the colour of u and the colour of v are distinct.

Proof We prove this statement by induction on n. By Lemma 9, this statement holds for n = 5.
We suppose that this statement holds for n» — 1 withn — 1 > 5.

Casel Suppose that u is a white vertex and v is a black vertex.

Casel.l Suppose that n is even. Thus, z°_, is a black vertex in Bf_}l and z*_. is a white vertex
in B!*,. By induction, there is a Hamiltonian path Q; of B!", — (X3 —(z%_,,Z*_.}) joining a
white vertex u to a black vertex q with (q),_; = 1. Obviously, (q)" is a white vertex in B!
Let w be a black vertex in Bil_}l with (w),_; = 2. By Theorem 1, there is a Hamiltonian path
0, of B,‘llfl joining (g)" to w. Let y be any white vertex in B,ﬁt}l with (y),_1 = 4. Without loss
of generality, we rewrite O, = ((Q)", R1,y, m, R, w). Let t be a white vertex in Bf’_}l with
(t),—1 = 5. By Lemma 3, there is a Hamiltonian path Q3 of B,{f:i’ —{Z_,,Z*_.} joining the
black vertex (y)" to t. By Lemma 2, there is a Hamiltonian path Q4 of (/5 B,{f_’l U Biz_’l)
joining the black vertex (t)” in B!, to the white vertex (w)” in B!”,. We let v = m. Then
(U, 01,4, (@", Ry, Y, V)", @3, 1, ()", Qa, W)", W, Ry}, m = v) is the desired path.

Casel.2 Suppose that n is odd. Thus, Z_, is a white vertex in B,{ffl and z*_. is a black vertex
in B,S‘ﬂl. The proof of this case is similar to Case 1.1.

Case2 Suppose that u is a black vertex and v is a white vertex.

Case2.1 Suppose thatn iseven. Thus, z3_, isablack vertex in Bff_}l and z}_. isawhite vertex in
B!, . By induction, there is a Hamiltonian path Q; of B"", — (X3 — {Z3_,, Z*_.}) joining a black
vertex u to a white vertex q with (q),_; = n — 1. Obviously, (q)" isablack vertex in B Lety
be a white vertex in B'”| with (y),_1 = 4, and let she a white vertex in B>, with (s),_; = 1. By
Lemma 2, there is a Hamiltonian path Q, of (Uj’;,,l Bﬂl U B,{,Zjl) joining ()" toy. By Lemma 3,
there is a Hamiltonian path Q3 of B!>Y — {z3_,, Z*_.} joining the black vertex (y)" to s. Let

v be any white vertex in B'",. By Theorem 1, there is a Hamiltonian path Q4 of B'”, joining
the black vertex (s)" tov. Then (u, Q1, q, (@)", Q2,Y, ()", Os, S, (9", Q4, V) isthe desired path.

Case2.2 Suppose that n is odd. Thus, Z3_, is a white vertex in B!”, and z*_; is a black vertex
in B! The proof of this case is similar to Case 2.1, -

LEmma 11 There isa Hamiltonian path of Bs — Xg‘ joining a black vertex u with (u)s = 5toa
black vertex v with (v)s = 1.

Proof Weset Q; = (34215, 43215, 42315, 24315, 24135, 42135, 41235, 14235, 14325, 41325,
43125, 34125, 31425, 13425, 13245, 31245, 32145, 32415, 23415, 23145, 21345, 21435). Obvi-
ously, Q; is a Hamiltonian path of B> — (X# — {z3 = 12453}) joining the black vertex 34215
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to the white vertex 21435. Let u = 34215 and x = 21435, Let Y be a black vertex in B* with
(Y)4 = 4. By Theorem 2, there is a Hamiltonian path Q, of B4 {23} joining the black vertex

(X)° to'y. Let v be a black vertex in B{". By Lemma 2, there is a hamiltonian path Q3 of B}"**
joining the white vertex (y)® tov. Then (u, Q1, X, (X)°, Q2. Y, (Y)°, O3, v) isthe desired path. M

Lemma 12 For n > 5, thereisa Hamiltonian path of B, — X;‘ joining a vertex u with (u),, = n
to a vertex v with (v),, = 1, where both u and v are white vertices if n is even and both u and v
are black verticesif n isodd.

Proof We prove this statement by induction for n. By Lemma 11, this statement holds forn = 5.
We suppose that this statement holds on n — 1 with n > 6.

Casel Suppose thatn is even. It is easy to know that z>_ and z3_, are two black vertices. By

induction, there is a Hamiltonian path Q, of Bn”}l (Xﬁ {22_4, n—G}) joining a black vertex
p with (p),_1 = n — 1 to a black vertex q with (q),_1 = 1. Let t be a black vertex in Q; with
(t),—1 = 3. Werewrite 01 = (p, R1, m, t, Ry, q). Let she awhite vertexin Bﬁ}l with (s),_1 =1,
and let w be awhite vertex in B,f}l with (w),_; = 4. By Lemma 2, there is a Hamiltonian path O,
of (U;Z 61 B RS Bn 1 )joining the white vertex (p)” to the black vertex (w)". By Lemma 3, there
is a Hamiltonian path Q3 of B,{l1 ‘;_’ {Z2_¢, ()"} joining w to the black vertex (s)". By Theorem 2,
there is a Hamiltonian path Q, of Bf_}l — {22_4} joining sto the white vertex (t)". We setv = ()"
andu =m.Then (u=m, R;*, p, ()", Q2. W)", W, O3, ()", S, Q4. (D", 1, R, 0, (@)" = V) is
the desired path.

Case2 Suppose that n is odd. It is easy to know that zZ>_, and z>_ are two white vertices. The
proof of this case is similar to Case 1. ]

LemMA 13 Forn > 6, thereisaHamiltonian path of B, — Y*~2 joining avertexu with (u),, = n
to a vertex v with (v),, = 1, where the colour of u and the colour of v are distinct.

Proof Weknowthat Y2 = A"=2U A""1 U {g}, whereAn 2={@©" (e H}and A7 =

{(e)"}. By Lemma 4, there is a Hamiltonian path Q; of Bn . — {(®"~1, e} joining a black vertex
p with (p),_1 = n — 1 to a white vertex q with (q),,_1 = 1.

Case 1 Suppose that u is a black vertex and v is a white vertex. Let y be a black ver-
tex in B!Y, with (y),_1 =n —1, and let s be a white vertex in B", with (s),_; = 2. By
Theorem 1, there is a Hamiltonian path Q, of B,{llfl joining the black vertex (q)" to s. Without

loss of generality, we write O, = ((q)", R1,Y, M, Rz, S). Let w be a black vertex in Bnn 12} with

(W),_1 = n — 3. By Lemma 3, there is a Hamiltonian path Qs of B ;*"™Y — {((&"1)", (e)”}
joining the white vertex (y)" to w. By Lemma 2, there is a Hamiltonian path Q4 of [/, 3 B, }1
joining the white vertex (w)" to the black vertex (s)”. We set u =p and v =m. Then (u=

P, 01,4, (@", R, Y, ()", Q3, W, (W)", Q4, (9", S, R;*, m = v) is the desired path.

Case 2 Suppose that u is a white vertex and v is a black vertex. Let w be a black vertex

in B".? with (w),_; = n — 3. By Lemma 3, there is a Hamiltonian path Qz of BI" 2"

{((®"H", (e)"} joining the white vertex (p)” to w. Let v be a black vertex in Bn .- By Lemma 2,
there is a Hamiltonian path Q3 of | J!_; 3 B{’ 1 Joining the white vertex (w)” to v. We setu = Q.
Then (u =g, 075, p, (p)", Q2, W, (W)", O3, V) is the desired path. n
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LEMMA 14 Letn > 6. For every 3 <i < n — 2, thereisa Hamiltonian path of B, — Y,;' joining
a vertex u with (u), = n to a vertex v with (v),, = 1, where the colour of u and the colour of v
aredistinct.

Proof We prove this statement by induction on . We have ¥¢ = X§. By Lemmas 10 and 13,
the statement holds on n = 6. We suppose that this statement holds on n — 1 withn > 7.
By induction, there is a Hamiltonian path Q of Bi"_}l — (Y] —{Z_, ,,Z* ,})joining awhite

vertex p with (p),_1 = n — 1to a black vertex q with (q),,_1 = 1.

Casel Suppose that u is a white vertex and v is a black vertex.

it is a white vertex in B!, and 1, is a black vertex in B!,

Let y be a white vertex in an1 with (y),_1 =i+ 2 and x be a black vertex in anl W|th

(X),—1 =i + 1. By Theorem 1, there is a Hamiltonian path Q, of B,{ll_}l joining the white vertex
()" to x. Wlthout loss of generality, we rewrite Q, = ((q)", R1, Y, M, Rz, X). Let w be a white
vertex in Bn 1 ! with (W),—1 = i. By Lemma 2, there is a Hamiltonian path Q3 of B _, with
I=(n-1)— {1, i, i+ 1} joining the black vertex (y)" tow. By Lemma 3, there |saHam|Iton|an
path Q4 of B —{z .| Z*1  yjoining the black vertex (w)" to the white vertex (x)". We set
u=pandv =m.Then = P, 01,9, (@", R, Y, V)", Q3, W, (W)", Qa, 00", X, Ry*, m = v)
is the desired path.

Case 1.1 Suppose that Z/

Case12 SupposethatZ , , isa black vertex in B!!, and Z*1 , is a white vertex in B/ *",

The proof of this case is similarly to Case 1.1.
Case2 Suppose that u is a black vertex and v is a white vertex.

Case2.1 SupposethatZ, , , isawhitevertexin B!, and Zi*1 , isablack vertexin B! Let
w be a white vertex in B{” i) " with (W),_1 = i. By Theorem 1, there is a Hamiltonian path 0, of

i~ joining the black vertex (p)" tow. Lety be awhite vertexin B/""M with (y),_1 = i 4+ 2.By
Lemma 3, there is a Hamiltonian path Q3 of B, i Hh —{Z_, ., ﬁfll 2} joining the black vertex

(w)" to the white vertex y. Let v be any white vertex in B{” By Lemma 2, there is a hamiltonian
path Q4 of B! | with I = (n — 2) — {i, i + 1} joining the black vertex (y)" to v. We setu = q.

Then (u=q, 0% p, (p)", Q2. W, (W)", Q3. Y, (¥)", Qa, V) is the desired path.

Case22 SupposethatZ _, , isa white vertex in B”', and z'*1 _, is a black vertex in B'*",

The proof of this case is similarly to Case 2.1. Thus, thls Iemma is proved. .

THEOREM 3 For the bubble-sort graph Bs with e the vertex denoting identity permutation, there
exist four MIH cycles starting at vertex e.

We give the proof of Theorem 3 in Appendix 1.
Now, we can find the MIH of the bubble-sort graph B,,.

THEOREM 4 Letn > 6.Wehaveh(B,) > n — 1.

Proof Since B, is vertex transitive, we show that there are (n — 1)-mutually independent Hamil-
tonian cycles of B, form e. Suppose that n > 6. Let vi, V2, ..., v} be the vertices of B,il_’l,

B? B™ with (v3), 1 =4, (v}), 1 =5 (v, 1 =3 (V),a=1and (v)), 1=, +1

N1
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for5 < j < n — 1, respectively. By Theorem 1, there are Hamiltonian paths: H? of Bf_}l joining
22 ,tov2; H? of B joining (v2)" tov4, H3 of B'®, joining (v)" to v and H; of BP, joining
(v3)" to v3. By Theorem 1, there is a Hamiltonian path H; of 3;5111 joining (vi™)" to v for
6 <i <n — 1. By Lemma 6, there is a Hamiltonian path H;' of B}, — X! | joining (v{~1)" to
V2. By Theorem 1, there is a hamiltonian path H; of B!”; joining (v’})" to z}i 2 We set C; =

(e, ng-w Zy g Hi. Vi, (V)" Hl,Vl,(V“)” Hl,Vi V)", HY VS, (V)" HE VS, L., (ViR
HL v iy JHE v (it HE 2, 2L, .., 28, €) being a Hamiltonian cycle of B,
forme.

Let vi, v, ..., v2 be the vertices of B™M,, B . . B with (v3),_1 =4, (v}),_; =5,

(vz),, 1=3, (V)1 =1,and (vz)n 1= ] +1for5<j<n-1, respectlvely By Theorem 1,
there are Hamlltonlan paths H; of Bn 1 joining z . to v3; Hj of Bn 1 joining (v3)" to
v3; and H of B L joining (v3)" to v3. By Theorem 1, there is a Hamiltonian path H)
of anl joining (v Y to vh for 6 <i <n —1. By Lemma 8, there is a Hamiltonian path
H} of B{” — X2_, joining (vj~ by to V5. By Theorem 1, there are Hamiltonian paths:
H} of B 1 Jomlng (V5)" to v2 and H2? of Bn 1 joining (vz)’Z to 22 5. We set C; = (g,
zO,...,zﬁ_S, HY, V3, (v, H3, V3, V3", H3, V3, (v3)", HS, VS, ..., (vi~d", Hy L vt
Vo h", HY L VvE, (V) Hy, V3, (V3! HE, 225,72, ..., Z2, €) being a Hamiltonian cycle of B,
forme Let/ = (n — 1)(n — 1)! — (n — 2) + 1. The Ith vertex of Cy is (v})", which is in B'Y,,
and the /th vertex of C; is v3, also in B,{,ljl. Obviously, ((V{)"),—1 =n and (V3),_1 = 2, then
(V" # Vi

Let vi, v, ..., V2 be the vertices of B'Y,, B ... BY with (v3),_1 =4, (v3),1 =5,
(vg‘),,,l =3, (V3)s-1=1,and (vé),,,l =j+1for5 < j <n—1,respectively. By Theorem 1,
there is a Hamiltonian path H3 of Bﬂl joining z8_, to v and a Hamiltonian path H3 of Bfi}l
joining (v3)" to V5. By Theorem 1, there is a Hamiltonian path H; of B!, joining (vj 1)
to Vi for 6 <i <n—1. By Lemma 10, there is a Hamiltonian path Hj of B\, — x3 ,
joining (vi™Y)" to v4. Let v} be a vertex in B!Y, with (v}), ; =2 such that the vertex
v% ¢ N((v3)") and there exists a vertex se N(v%) with s # (v3)". By Theorem 2, there is
a Hamiltonian path Hi of B,{ll_}1 — v} joining the vertex (v4)" to s. Let vZ be a vertex in
B,{fjl with (v3),_1 = 4 such that the vertex vZ ¢ N((v3)") and there exists a vertex t € N(v3)
with t # (v3)". By Theorem 2, there is a Hamiltonian path H2 of B,{lz_}1 joining the vertex
(v})" to t. By Theorem 1, there are Hamiltonian paths: H} of B!, joining (v2)" to vi;
H2 of B, joining (v})" to v3; and HZ of B, joining (v3)" to Z*_,. We set Cs = (&
Z, ..., 2, HE V3 (v, HS, V3, (v, HE VS, .., (v, HE TR v, (vithn, HY,
VA, (VA Hi, s, Vi, (VAT HE t VR (VA HY 2 2 ..., 2, e) being a Hamiltonian cycle
of B, forme. Let! = m(n — D!+ (n —4) + 1forl < m < n — 4. The Ith vertices are coincided
in the same subgraph between C;, and C3. Obviously, the (n — 1)-th position of the /-th vertices
in C, and Cj are different.

Let vi, V2, ..., v} be the vertices of B!Y,, B!?, ..., B, with (v3), 1 =4, v}),.1 =5,
(v4)n 1=3, (V)n-1=1,and (v4'),1 1= j +1for5 < j < n — 1, respectively. By Theorem 1,
there is a Hamiltonian path H; of Bﬂ 1 jomlng _¢ to V5. By Theorem 1, there is a
Hamiltonian path H; of B{ 21 Jommg (v Hn to v4 for 6 <i <n-—1. By Lemma 12,
there is a Hamiltonian path Hj of B 1—X,‘1‘ 1 Jjoining (v;~ by to vy, By Theorem 1,
there are Hamiltonian paths: H1 of B 1 joining (v4)" to vi; HZ of Bn L joining (v})"
to vZ; H} of B,{l‘”l joining (v&)* to vi; H? of B, joining (vi)" to 2, We set
Ca=(82,....20 ¢ H, V3, (VD" HE, VS, ..., (v; )", Hy t vyt vy by, HE v, (v,
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HE VL, (v, HE, (V3 HE v, v HY, 2,2, ..., 23, €) being a Hamiltonian cycle of
B, form e.

Case3.1 Supposethatn = 6. Letvi, vZ, v, v2 and v¢ be the vertices of B{", B, B!, B! and
BéB} with (v})s = 2, (v3)s = 4, (V)5 = 3, (v3)s = 5,and (vg’)s = 1, respectively. By Theorem 1,
thereisa Hamiltonian path HE of 856 joiningeto V. Let v}, v2, v#, and v be the vertices in B\,
B?  B™.  and Bn 1, with (vl)” V=2, ()"t =4, (v}t =3, and (v})"~! =5, such that
Vi ¢ N((V§™M), V& ¢ N((vD)"), V¢ ¢ N((vi)”) and v§ ¢ N((vp)"), respectively. And there exist
S) e N(Vi), & e N(v2), &t € N(v2), and s € N(vi). By Theorem 2, there are Hamiltonian
paths: HZ of B{" — vk joining (v2)" to si; HZ of B¥) — V2 joining (v})" to &; HZ of B
joining (v2)" to s¢; and H2 of BL* — v joining (v&)" to X, By Theorem 1, there is a Hamiltonian
path HZ of B!, joining (v3)" to Z5. We set Cs = (e, HS, V&, (v8)8, HE, <L, vi, (vh)®, HZ, &, V2,
(v3, HE &vi (vE, H3, S, vE, (vD)®, HE, Z3, ) being a Hamiltonian cycle of B, form e.

Then {Cy, C», ..., Cs} forms a set of five-mutually independent Hamiltonian cycles.

Case3.2 Suppose thatn > 6. Let vi, V2, ..., V¥ be the vertices of B\",, B!, ... B! with
(Va1 =4 (Vu1=5 (Vi1 =3 (vur=1 and (v),1=j+1for5<j<n—1,
respectively. By Theorem 1, there is a Hamiltonian path HS of B'®, joining z°_, to V8. By
Theorem 1, there is a Hamiltonian path H of Bni 1 joining (vg’l)” tovifor6 <i <n—1.By
Lemma 14, there is a Hamiltonian path HZ of B, f Y5, joining (vi~1)" tove. Letvg, vZ, vé, and
V¢ be the vertices in B!Y,, B, B!Y 1 and B*, Wlth viHrt=2, (vz)” l=4, (vg‘)n 1=3,
and (v3)"~1 =5, such that v} ¢ N((v&)"), V2 ¢ N((vh"), v& ¢ N((v3)"), and V3 ¢ N((vH)"),
respectively. And there exist st € N(v), &t € N(v2), st € N(v2),andsi € N(v2). By Theorem 2,
there are Hamiltonian pathS' HE of BY, — vl joining (v)" to st; HZ of B/”, — V2 joining
b to &; HE of B, — V2 joining (vA)" to &; and HZ of B!¥| — v2 joining (v})" to . By
Theorem 1, there is a Hamiltonian path HZ of B!, joining (v3)" to 25 4. We set Cs = (e,

Zgr ng R Zn—761 H561 Vgr (Vg)n! H571 V;a crt (V5 )nl H5nr V51 (Vs)nr H51| S})a V51 (Vs)nl H52| %a
VZ, (VA)", HZ, S, ve, (v, H3, S, V8, (V)" H2, 22 ¢, Z0_+, ..., Z3, €) isaHamiltonian cycle of
B, forme.

Assume that 6 <i <n — 2. Let v, v2, ..., v" be the vertices of B, B, ..., B!, with

VD1 =4 (V)1 =5, (V)1 =3, (Vf )H =1,and (V)1 =j+1for5<j<n-1,
respectively. By Theorem 1, there is a Hamiltonian path H"+1 of B joining sz%fz to
vitl. By Theorem 1, there is a Hamiltonian path H of B\ L joining (vi ™Yy to Z _, ,. By

Theorem 1, there is a Hamiltonian path H,/ of Bn L joining (v/~ Y to v/ for6 < j <n—1land
j ¢ {i,i +1). By Lemma 14, there is a Hamiltonian path H of B, — v/ | joining (v/~%)"
to v” By Theorem 1, there are Hamiltonian paths: H! of B!Y, joining (v”)” to vi; H? of
%, joining (v1)" to v5, H* of B! joining (v2)" to v¢; and H? of B!*, joining (v“)n to

5.Wesetc (e z)" z;*l,..., ;f} 0o HiTH vitt (v'+1)n 2 A VA (VA L & ARV
V)" HEVE (V)" HEVE () HE VA HENS, () HENE, L Y HEL 2,
Z ., ...,Z,€) being a Hamiltonian cycle of B, forme

Let vi ,, V2 ,,...,v"_, be the vertices of Bn » BPL . BY with (V2 ), 1 =4,
V3 D1 =5,V D1 =3, (V"_)p1 =1, and(vn Dno1 = j +1for5 < j <n —1,respec-
tively. By Theorem 1, there is a Hamlltonlan path ', of Bn , Joining eto v/;_,. Again, there

is a Hamiltonian path H'_, of B, joining vi~% to vi  for6>i>n-2. Moreover, there is
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a Hamiltonian path H"~ 11 of B Y joining (v'~2)" to zi~L. By Theorem 1, there are Hamilto-
nian paths. H! , of B!Y, joining (v 1)” to v,% 1, H2 , of BY?, joining (v )" tov? ,; HY |
of B! L Joining (vV2_)" to v4_;; H3, of B'¥ joining (vn D" to V3 y We set C,o1 = (g
Hy g, Vg, (V)" Higy Vyy, (V D' HE g Ve, (Vi)' Hyg Vg, (Vi)' HY g,
V3 L (V) HS VS L, (v H'L 2071 ) being a Hamiltonian cycle of B, form e.

Then {Cy1, Ca, ..., C,_1} isaset of (n — 1)- mutually independent Hamiltonian cycles for B,
frome |

CoroLLARY 1 For n > 4, wehave h(B,) = n — 1. Moreover, h(B3) = 1.

Proof Since §(B,) =n — 1, h(B,) < n — 1. Since Bgs is a cycle with six vertices, it is easy to
check that 2(B3) = 1. To show h(B,)) = n — 1 for n > 4, we need to construct (n — 1)-mutually
independent Hamiltonian cycles of B, from every vertex u. Since B, is vertex transitive, we show
that there are (n — 1)-mutually independent Hamiltonian cycles of B, from e.

Casel Suppose thatn = 4. We set

C1 = (1234, 2134, 2143, 2413, 2431, 2341, 2314, 3214, 3241, 3421, 4321, 4231,
4213, 4123, 4132, 4312, 3412, 3142, 3124, 1324, 1342, 1432, 1423, 1243, 1234),
= (1234, 1243, 1423, 1432, 4132, 4123, 4213, 4231, 4321, 4312, 3412, 3421,
3241, 2341, 2431, 2413, 2143, 2134, 2314, 3214, 3124, 3142, 1342, 1323, 1234), and
C3 = (1234, 1324, 3124, 3142, 1342, 1432, 1423, 1243, 2143, 2413, 4213, 4123,
4132,4312, 3412, 3421, 4321, 4231, 2431, 2341, 3241, 3214, 2314, 2134, 1234).

Then {C1, C,, C3} is a set of three-mutually independent Hamiltonian cycles for B, from e.

Case2 Supposethatn > 5. By Theorems 3 and 4, there isa set of (n — 1)-mutually independent
Hamiltonian cycles on B, from e.

Summarily, Case 1 and Case 2, we have h(B,) =n — 1 forn > 4. |
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Appendix 1. The proof of Theorem 3

Proof of Theorem3  Since Bs is vertex transitive, we show that there are four-mutually independent Hamiltonian cycles
of Bs frome.

Obviously, (22)° = 13452 is a black vertex in B[{f’. LetvZ beawhite vertex in Bff} with (v3)4 = 4. By Theorem 1, there
isa Hamiltonian path H? of Bflz’ joining (z2)° tov2. Let v} be awhite vertex in Bfl‘” with (v})4 = 3. By Theorem 1, there is
a Hamiltonian path H;' of 344 joining the black vertex (v§)® tov4. Let v = 12453 be awhite vertex in Bf , then we have
(v3)5 = 12435isablack vertex in B4 . By Theorem 1, there is a Hamiltonian path H1 of B4 Joming the black vertex (v{ 4)5
to v3 Let H7 bethe Hamiltonian path Q1 of Lemma 5 joining (v3)® to the white vertex 43215 = v5. Letvi be awhite vertex
in B{Y withv} = (z})5 = 23451, By Theorem 1, there is a Hamiltonian path H of B}" joining the black vertex (v3)® to V2.
Then C1 = (e 75 = 13245, 22 = 13425, (2)°, HZ, V2, v3)°, HE, vi, vDH®, HE V3, (v, HP V3, (vD)°, HE VY, 2 =
23415, 7} = 23145, z§ = 21345, €) is the desired cycle.

Obviously, (e)° is a black vertex in Bff”. Let v‘z‘ be a white vertex in Bfl‘” with (v‘2‘)4 = 3. By Theorem 1, there is a
Hamiltonian path H; of B44 joining (6)° tov4. Letv = 24153 that is a white vertex in B4 . Thenwe have (v3)® = 24135
is a black vertex in 34 By Theorem 1, there is a Hamiltonian path H2 of B4 joining the black vertex (v2)5 to v2 Let
H25 be the Hamiltonian path Q1 of Lemma 7 joining (v3)® to the black vertex 34215 = v3. Let v} be a black vertex in
B4 ! with (v3)a = 2. By Theorem 1, there is a Hamiltonian path H} of B4 joining the white vertex (v3)® to v3. Let v3
be a black vertex in Bftz) with v2 = (22)° = 13452, By Theorem 1, there is a Hamiltonian path H2 of B42 joining the
white vertex (v3)® to vZ. We set C, = (e, (©)°, Hy, V3, (v2)5 H2 V3, (VP HY VS, (v3)S, H2 , V3, (v2)5 H2 V3,2 =
13425, z0 = 13245, e). The 94th vertex of Cl is (v§ 5)5in B4 , and the 94th vertex of C; is v2 also in B4 . Obviously,
((vl) )4 = 5and (v%)4 = 2, then (V1)5 * v2 Therefore, Cs is the desired cycle

Obviously, z0 = 12435 is a black vertex and (20)5 is a white vertex in B . Let v3 = 21453 that is a black vertex in
B{¥, and (v3)5 is the white vertex in B\>'. By Theorem 1, there is a Hamiltonian path H3 of B} ]omlng (23)° to V3.
Let H35 be the Hamiltonian path Q3 of Lemma 9 joining (v3)5 to the black vertex 34215 = vg Let v be a black vertex
in B V with (v3)4 = 2 such that the vertex v3 ¢ N((vz) ) and there exists a white vertex s € N(v3) and s # (v2)5 By
Theorem 2, there is a Hamiltonian path H3 of B4 v3 joining the white vertex (v3)°® to s. Let v2 be a black vertex
in B}l with (v3)4 = 4 such that the vertex v3 ¢ N((vz) ) and there exists a white vertex t € N(v3) andt # (v2)5 By
Theorem 1, there is a Hamiltonian path H3 of B4 {v3} joining the white vertex (v3)5 to t. Obviously, (e)° is a black
vertex in Bfl‘”. By Theorem 1, there is a Hamiltonian path He‘f of Bfl‘” joining the white vertex (v%)5 to (e)°. We set
C3 = (e ng (20)5 H3 V3, (v, H3, V3, (v3)5 Hi,s, v3, 35, HZ,t, V2, (v3)5 H$, (©)°, &). The 26th vertex of C is
(vz)5 in B4 , and the 26th vertex of C3 is v3 also in B4 3) Obviously, ((vz) )4 =4 and (v )4 =5, then (vz)5 * v3
Therefore, C3 is the desired cycle.

We set HP = (21435, 24135, 24315, 23415, 23145, 32145, 31245, 13245, 13425, 31425, 34125, 43125, 41325,
14325, 14235, 41235, 42135 42315, 43215, 34215, 32415 = v35). Obviously, v4 is the White vertex in Bf}, and (v3)®
is a black vertex in Bj". Let V1, v2, and v4 be the white vertices in BY", B{?, and B}", with (v})s =2, (v})s = 4,
and (v§)4 = 3, respectively. It is easy to know that (vi)%, (v3)5, and (v})® are the black vertices in Bﬁz’, Bff”, and
Bfﬁ’, respectively. By Theorem 1, there are the Hamiltonian paths: H} of Bft”, HZ of Bftz), and Hj of Bff” join-
ing (v)® to vi, (vD)® to vZ and (v3)® to v§, respectively. We know that z5 = 12435 is a black vertex and (z3)°
is a white vertex in Bf’. By Theorem 1, there is a Hamiltonian path H43 of B Joming (v4)5 to (20)5 We set
Cy =675, (zp)% HY, V5, (v9)°, HE Vi, WD, HZ,v3, (v])°, H}, v, (vo, HS, (20)5, Z3, e) is the desired cycle (see
Figure Al).
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Figure Al. The mutually independent Hamiltonian cycles of Bs.



