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A Hamiltonian cycle C = 〈u1, u2, . . . , un(G), u1〉 with n(G) = number of vertices of G, is a cycle
C(u1; G), where u1 is the beginning and ending vertex and ui is the ith vertex in C and ui �= uj for
any i �= j , 1 ≤ i, j ≤ n(G). A set of Hamiltonian cycles {C1, C2, . . . , Ck} of G is mutually independent if
any two different Hamiltonian cycles are independent. For a hamiltonian graph G, the mutually indepen-
dent Hamiltonianicity number of G, denoted by h(G), is the maximum integer k such that for any vertex
u of G there exist k-mutually independent Hamiltonian cycles of G starting at u. In this paper, we prove
that h(Bn) = n − 1 if n ≥ 4, where Bn is the n-dimensional bubble-sort graph.

Keywords: Hamiltonian cycle; bubble-sort networks; interconnection networks; mutually independent
Hamiltonian cycles; Cayley graph

2000 AMS Subject Classifications: 05C38; 05C45; 05C75; 05C90; 68M10

1. Introduction

Let H be a group, and let S be a generating set of H with S−1 = S. The Cayley graph on a group
H with generating set S, denoted by Cay(H ; S), is the graph with vertex set H , and for two
vertices u and v in H , u is adjacent to v if and only if v = us for some s ∈ S. Hamiltonian cycles
in Cayley graphs exist naturally in computing and communication [10], in the study of word-
hyperbolic groups and automatic groups [6], in changing–ringing [13], in creating Escher-like
repeating patterns in hyperbolic plane 1 [4], and in combinatorial designs [4]. It is conjectured
that every connected Cayley graph with more than three vertices is Hamiltonian [3]. Up to now,
this conjecture is unsolved.Yet, some Cayley graphs have many more Hamiltonian cycles than we
expected. In this paper, we introduce and study the concept of mutually independent Hamiltonian
(MIH) cycles in Cayley graphs.

For graph definitions and notations we follow [2]. G = (V , E) is a graph if V is a finite set and
E is a subset of {(u, v) | (u, v) is an unordered pair of V }. We say that V is the vertex set and E

is the edge set. We use n(G) to denote |V |. Let S be a nonempty subset of V (G). The subgraph
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induced by S is the subgraph of G with its vertex set S and with its edge set consisting of all
edges of G joining any two vertices in S. We use G − S to denote the subgraph of G induced by
V − S. Two vertices u and v are adjacent if (u, v) is an edge of G. The set of neighbours of u,
denoted by NG(u), is {v | (u, v) ∈ E}. The degree of a vertex u of G, degG(u), is the number of
edges incident with u. The minimum degree of G, δ(G), is min{degG(x) | x ∈ V }. A graph G is
k-regular if degG(u) = k for every vertex u in G. A path between vertices v0 and vk is a sequence
of vertices represented by 〈v0, v1, . . . , vk〉 with no repeated vertex and (vi, vi+1) is an edge of G

for every i, 0 ≤ i ≤ k − 1. We use Q(i) to denote the ith vertex vi of Q = 〈v1, v2, . . . , vk〉. We
also write the path 〈v0, v1, . . . , vk〉 as 〈v0, . . . , vi, Q, vj , . . . , vk〉, where Q is a path form vi to
vj . A cycle is a path with at least three vertices such that the first vertex is the same as the last.
A Hamiltonian cycle of G is a cycle that traverses every vertex of G. A graph is Hamiltonian
if it has a Hamiltonian cycle. A graph G = (B ∪ W, E) is bipartite with bipartition B and W if
V (G) = B ∪ W , B ∩ W = ∅, and E(G) is a subset of {(u, v) | u ∈ B and v ∈ W }. Let G be a
bipartite graph with bipartition B and W . We say that a Hamiltonian bipartite graph is Hamiltonian
laceable if there is a Hamiltonian path between any pair of vertices {x, y}, where x in B and y in
W . Let a, b, m ∈ Z with m > 0. Then a is said to be congruent to b modulo m, denoted a ≡ b

mod m, if m|(a − b).
A Hamiltonian cycle C(u1; G) of a Hamiltonian graph G is described as C(u1; G) =

〈u1, u2, . . . , un(G), u1〉 to emphasize the order of vertices in C. Thus, u1 is the beginning ver-
tex and ui is the ith vertex in C. Two Hamiltonian cycles of G beginning at the vertex x,
C1 = C(u1; G) = 〈u1, u2, . . . , un(G), u1〉 and C2 = C(v1; G) = 〈v1, v2, . . . , vn(G), v1〉, are inde-
pendent if x = u1 = v1 and ui �= vi for every i, 2 ≤ i ≤ n(G). Let G be a Hamiltonian graph.
A set of Hamiltonian cycles {C1, C2, . . . , Ck} of G is mutually independent if any two different
Hamiltonian cycles are independent. The mutually independent Hamiltonianicity number of a
Hamiltonian graph G, called the MIH number of G and denoted by h(G), is the maximum inte-
ger k such that for any vertex u of G there exist k-mutually independent Hamiltonian cycles of
G starting at u. Obviously, h(G) ≤ δ(G) for a Hamiltonian graph G. The concept of MIH cycles
can be applied in many different areas. Interested readers can refer to [7, 9, 11, 12] for a more
detailed introduction.

In this paper, we study MIH cycles of n-dimensional bubble-sort graph Bn. In the following
section, we give some basic properties for the n-dimensional bubble-sort graph. In Section 3, we
construct MIH cycles in Bn and compute h(Bn), the MIH number of Bn.

2. The bubble-sort graphs

We set 〈n〉 = {1, 2, . . . , n} if n is a positive integer and we set 〈0〉 being the empty set. The n-
dimensional bubble-sort graph, Bn, is the graph with vertex set V (Bn) = {u1, . . . , un | ui ∈ 〈n〉
and ui �= uj for i �= j}. The adjacency is defined as follows: u1, . . . , ui−1, ui, . . . , un is adjacent
to v1, . . . , vi−1, vi, . . . , vn through an edge of dimension i with 2 ≤ i ≤ n if vj = uj for every
j ∈ 〈n〉 − {i − 1, i}, vi−1 = ui , and vi = ui−1, i.e., swap ui−1 and ui . The bubble-sort graphs B2,
B3, and B4 are illustrated in Figure 1. It is known that the connectivity of Bn is (n − 1). We use
boldface to denote vertices in Bn. Hence, u1, u2, . . . , un denote a sequence of vertices in Bn.

By definition, Bn is an (n − 1)-regular graph with n! vertices. We use e to denote the vertex
1, 2, . . . , n. It is known that Bn is a bipartite graph with one partite set containing those vertices
corresponding to odd permutations and the other containing those vertices corresponding to even
permutations. We use white vertices to represent those even permutation vertices and use black
vertices to represent those odd permutation vertices. Let u = u1, u2, . . . , un be an arbitrary vertex
of the bubble-sort graph Bn. We say that ui is the ith coordinate of u, (u)i , for 1 ≤ i ≤ n. For
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2214 Y.-K. Shih et al.

Figure 1. The graphs B2, B3, and B4.

1 ≤ i ≤ n, let B{i}
n−1 be the subgraph of Bn induced by those vertices u with (u)n = i. Then Bn can

be decomposed into n subgraphs B
{i}
n−1, 1 ≤ i ≤ n, and each B

{i}
n−1 is isomorphic to Bn−1. Thus,

the bubble-sort graph can also be constructed recursively. Let I be any subset of 〈n〉. We use BI
n−1

to denote the subgraph of Bn induced by
⋃

i∈I V (B
{i}
n−1). For any two distinct elements i and j

in 〈n〉, we use E
i,j

n−1 to denote the set of edges between B
{i}
n−1 and B

{j}
n−1. By the definition of Bn,

there is exactly one neighbour v of u such that u and v are adjacent through an i-dimensional
edge with 2 ≤ i ≤ n. For this reason, we use (u)i to denote the unique i-neighbour of u. We have
((u)i)i = u and (u)n ∈ B

{(u)n−1}
n−1 .

Lemma 1 Let i and j be any two distinct elements in 〈n〉 with n ≥ 3. Then |Ei,j

n−1| = (n − 2)!.
Moreover, there are (n − 2)!/2 edges joining black vertices of B

{i}
n−1 to white vertices of B

{j}
n−1.

Theorem 1 (See [8]) The bubble-sort graph Bn is Hamiltonian laceable if and only if n �= 3.

Theorem 2 (See [1]) Let x be a black vertex in Bn with n ≥ 4. Suppose that u and v are two
distinct white vertices in Bn. There is a Hamiltonian path of Bn − {x} joining u to v.

Lemma 2 Let I = {a1, a2, . . . , ar} be a subset of 〈n〉 for some r ∈ 〈n〉 with n ≥ 5. Assume that
u is a white vertex in B

{a1}
n−1 and v is a black vertex in B

{ar }
n−1. Then there is a Hamiltonian path

〈u = x1, H1, y1, x2, H2, y2, . . . , xr , Hr, yr = v〉 of BI
n−1 joining u to v such that x1 = u, yr=v,

and Hi is a Hamiltonian path of B
{ai }
n−1 joining xi to yi for every i, 1 ≤ i ≤ r .

Proof We set x1 = u and yr = v. By Theorem 1, this lemma holds for r = 1. Suppose that
r ≥ 2. By Lemma 1, there are (n − 2)!/2 ≥ 3 edges joining black vertices of B

{ai }
n−1 to white

vertices of B
{ai+1}
n−1 for every i ∈ 〈r − 1〉. We can choose an edge (yi, xi+1) ∈ E

ai,ai+1
n−1 with yi

being a black vertex and xi+1 being a white vertex for every i ∈ 〈r − 1〉. By Theorem 1,
there is a Hamiltonian path Hi of B

{ai }
n−1 joining xi to yi for every i ∈ 〈r〉. Then the path

〈u = x1, H1, y1, x2, H2, y2, . . . , xr , Hr, yr = v〉 is the desired path. �

D
ow

nl
oa

de
d 

by
 [

N
at

io
na

l C
hi

ao
 T

un
g 

U
ni

ve
rs

ity
 ]

 a
t 2

3:
03

 2
4 

A
pr

il 
20

14
 



International Journal of Computer Mathematics 2215

Lemma 3 Let B
{a}
n−1 and B

{b}
n−1 be two distinct subgraphs of Bn with n ≥ 5. Let s be a black vertex

in B
{a}
n−1, let t be a white vertex in B

{b}
n−1, let u be a white vertex in B

{a}
n−1, and let v be a black vertex

in B
{b}
n−1. Then there is a Hamiltonian path of B

{a,b}
n−1 − {s, t} joining u to v.

Proof Let x be a white vertex in B
{a}
n−1 − {u} with (x)n being a black vertex in B

{b}
n−1 − {v}. By

Theorem 2, there are Hamiltonian paths: Q1 of B
{a}
n−1 − {s} joining u to x; Q2 of B

{b}
n−1 − {t}

joining (x)n to v. Then 〈u, Q1, x, (x)n, Q2, v〉 is the Hamiltonian path of B
{a,b}
n−1 − {s, t} joining u

to v. �

Lemma 4 For n ≥ 5, let u be a black vertex in B
{n}
n−1 and let v be a white vertex in B

{1}
n−1. Then

there is a Hamiltonian path of Bn − {e, (e)n} joining u to v.

Proof Let y be a white vertex in B
{n−1}
n−1 with (y)n−1 = n − 2. By Lemma 3, there is a Hamiltonian

path Q1 of B
{n−1,n}
n−1 − {e, (e)n} joining u to y. By Lemma 2, there is a Hamiltonian path Q2 of

⋃n−2
i=1 B

{i}
n−1 joining the black vertex (y)n to v. Then 〈u, Q1, y, (y)n, Q2, v〉 is a Hamiltonian path

of Bn − {e, (e)n} joining u to v. �

3. The MIH property of Bn

For every i in 〈n − 1〉 with n ≥ 5, we set zi
0 = (e)i+1 and we set zi

j = (zi
j−1)

i+j+1 for any j in
〈n − i − 1〉. Let A5

5 be the empty set, let Ai
5 = {zi

j | j ∈ 〈4 − i〉 ∪ {0}} for any i in 〈4〉, and let
Ai

n = {zi
j | j ∈ 〈n − i − 1〉 ∪ {0}} for any i in 〈n − 1〉 for n ≥ 6. We set X1

n = A1
n ∪ A2

n ∪ {e},
X2

n = A2
n ∪ A4

n ∪ {e}, X3
n = A3

n ∪ A4
n ∪ {e}, and X4

n = A3
n ∪ A5

n ∪ {e} for any n ≥ 5. We set Y i
n =

Ai
n ∪ Ai+1

n ∪ {e} for n ≥ 6 and for 3 ≤ i ≤ n − 2.

Lemma 5 There is a Hamiltonian path of B5 − X1
5 joining a vertex u with (u)5 = 5 to a vertex

v with (v)5 = 1 such that the colour of u and the colour of v are distinct.

Proof We set Q1 = 〈12435, 21435, 24135, 24315, 42315, 42135, 41235, 14235, 14325, 41325,
43125, 34125, 31425, 31245, 32145, 32415, 34215, 43215〉. Note that Q1 is a Hamiltonian path
of B

{5}
4 − (X1

5 − {z1
3 = 23451, z2

2 = 13452}) joining the black vertex 12435 to the white vertex
43215.

Case 1 Suppose that u is a black vertex and v is a white vertex. We set u = 12435 and x = 43215.
Let w be a black vertex in B

{1}
4 with (w)4 = 2. By Theorem 2, there is a Hamiltonian path Q2 of

B
{1}
4 − {z1

3} joining the black vertex (x)5 to w. Let y be any black vertex in B
{1}
4 with (y)4 = 4.

Without loss of generality, we write Q2 = 〈(x)5, R1, y, m, R2, w〉. By Theorem 2, there is a
Hamiltonian path Q3 of B

{2}
4 − {z2

2} joining a white vertex s with (s)4 = 3 to (w)5. By Lemma 2,
there is a Hamiltonian path Q4 of B

{3,4}
4 joining the white vertex (y)5 to the black vertex (s)5. We

let v = m. Then 〈u, Q1, x, (x)5, R1, y, (y)5, Q4, (s)5, s, Q3, (w)5, w, R−1
2 , m = v〉 is the desired

path.

Case 2 Suppose that u is a white vertex and v is a black vertex. We set u = 43215 and x =
12435. Let v be a black vertex in B

{1}
4 , and let s be a white vertex in B

{2}
4 with (s)4 = 4. By

Lemma 3, there is a Hamiltonian path Q2 of B
{1,2}
4 − {z1

3, z2
2} joining s to v. By Lemma 2, there

is a Hamiltonian path Q3 of B
{3,4}
4 joining the white vertex (x)5 to the black vertex (s)5. Then

〈u, Q−1
1 , x, (x)5, Q3, (s)5, s, Q2, v〉 is the desired path. �
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Lemma 6 For n ≥ 5, there is a Hamiltonian path of Bn − X1
n joining a vertex u with (u)n = n

to a vertex v with (v)n = 1 such that the colour of u and the colour of v are distinct.

Proof We prove this statement by induction on n. By Lemma 5, this statement holds for n = 5.
We suppose that this statement holds for n − 1 with n ≥ 6. We have the following cases.

Case 1 Suppose that u is a black vertex and v is a white vertex.

Case 1.1 Suppose that n is even. Thus, z1
n−2 is a black vertex in B

{1}
n−1 and z2

n−3 is a white vertex

in B
{2}
n−1. By induction, there is a Hamiltonian path Q1 of B

{n}
n−1 − (X1

n − {z1
n−2, z2

n−3}) joining

u to a white vertex q with (q)n−1 = 1. Obviously, (q)n is the black vertex in B
{1}
n−1. Let s and

w be two white vertices in B
{1}
n−1 with (s)n−1 = n − 1 and (w)n−1 = 2. By Theorem 2, there

is a Hamiltonian path Q2 of B
{1}
n−1 − {z1

n−2} joining w to s. Without loss of generality, we write

Q2 = 〈w, R1, m, (q)n, R2, s〉. Let t be a black vertex in B
{2}
n−1 with (t)n−1 = 3. By Theorem 2, there

is a Hamiltonian path Q3 of B
{2}
n−1 − {z2

n−3} joining t to the black vertex (w)n. By Lemma 2, there is

a Hamiltonian path Q4 of
⋃n−1

i=3 B
{i}
n−1 joining the black vertex (s)n in B

{n−1}
n−1 to the white vertex (t)n

in B
{3}
n−1. We set v = m. Then 〈u, Q1, q, (q)n, R2, s, (s)n, Q4, (t)n, t, Q3, (w)n, w, R1, m = v〉 is

the desired path.

Case 1.2 Suppose that n is odd. Thus, z1
n−2 is a white vertex in B

{1}
n−1 and z2

n−3 is a black vertex

in B
{2}
n−1. The proof of this case is similar to Case 1.1.

Case 2 Suppose that u is a white vertex and v is a black vertex.

Case 2.1 Suppose that n is even. Thus, z1
n−2 is a black vertex in B

{1}
n−1 and z2

n−3 is a white vertex

in B
{2}
n−1. By induction, there is a hamiltonian path Q1 of B

{n}
n−1 − (X1

n − {z1
n−2, z2

n−3}) joining

u to a black vertex p with (p)n−1 = n − 1. Let s and t be any two white vertices in B
{1}
n−1 with

(s)n−1 = 2 and (t)n−1 = 2. By Theorem 2, there is a Hamiltonian path Q2 of B
{1}
n−1 − {z1

n−2} joining

s to t. Let y be any white vertex in B
{1}
n−1 − {s, t} with (y)n−1 = 3. Without loss of generality,

we write Q2 = 〈s, R1, y, m, R2, t〉. By Theorem 2, there is a Hamiltonian path Q3 of B
{2}
n−1 −

{z2
n−3} joining the black vertex (s)n to the black vertex (t)n. By Lemma 2, there is a Hamiltonian

path Q4 of
⋃n−1

i=3 B
{i}
n−1 joining the white vertex (p)n to the black vertex (y)n. Let v = m. Then

〈u, Q1, p, (p)n, Q4, (y)n, y, R−1
1 , s, (s)n, Q3, (t)n, t, R−1

2 , m = v〉 is the desired path.

Case 2.2 Suppose that n is odd. Thus, z1
n−2 is a white vertex in B

{1}
n−1 and z2

n−3 is a black vertex

in B
{2}
n−1. Note that n is odd. The proof of this case is similar to Case 2.1. �

Lemma 7 There is a Hamiltonian path of B5 − X2
5 joining a white vertex u with (u)5 = 5 to a

white vertex v with (v)5 = 1.

Proof We set Q1 = 〈24135, 42135, 41235, 41325, 14325, 14235, 12435, 21435, 21345, 23145,
32145, 31245, 31425, 34125, 43125, 43215, 42315, 24315, 23415, 32415, 34215〉 being a hamil-
tonian path of B

{5}
4 − (X2

5 − {z2
2 = 13452, z4

0 = 12354}) joining the black vertex p = 24135 to the
black vertex q = 34215. Let r be any black vertex in Q1 with (r)4 = 4. Obviously, (q)5 is a white
vertex in B

{1}
4 . Without loss of generality, we rewrite Q1 = 〈p, R1, m, r, R2, q〉. Let s be a white

vertex in B
{4}
4 with (s)4 = 1, and let w be a black vertex in B

{3}
4 with (w)4 = 2. By Theorem 1,

there is a Hamiltonian path Q2 of B
{3}
4 joining the white vertex (p)5 to w. By Lemma 3, there is a
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Hamiltonian path Q3 of B
{1,2}
4 − {z2

2, (q)5} joining the white vertex (w)5 to the black vertex (s)5.
By Theorem 2, there is Hamiltonian path Q4 of B

{4}
4 − {z4

0} joining s to (r)5. We set v = (q)5 and
u = m. Then 〈u = m, R−1

1 , p, (p)5, Q2, w, (w)5, Q3, (s)5, s, Q4, (r)5, r, R2, q, (q)5 = v〉 is the
desired path. �

Lemma 8 For n ≥ 5, there is a Hamiltonian path of Bn − X2
n joining a vertex u with (u)n = n

to a vertex v with (v)n = 1, where both u and v are black vertices if n is even, and both u and v
are white vertices if n is odd.

Proof We prove this statement by induction on n. By Lemma 7, this statement holds on n = 5.
We suppose that this statement holds on n − 1 with n ≥ 6.

Case 1 Suppose that n is even. It is easy to know that z2
n−3 and z4

n−5 are two white vertices. By

induction, there is a Hamiltonian path Q1 of B
{n}
n−1 − (X2

n − {z2
n−3, z4

n−5}) joining a white vertex
p with (p)n−1 = n − 1 to a white vertex q with (q)n−1 = 1. Obviously, (q)n is a black vertex
in B

{1}
n−1. Let t be a white vertex in Q1 with (t)n−1 = 2. We rewrite Q1 = 〈p, R1, m, t, R2, q〉.

Let s be a black vertex in B
{2}
n−1 with (s)n−1 = 1, and let w be a black vertex in B

{4}
n−1 with

(w)n−1 = 3. By Lemma 2, there is a Hamiltonian path Q2 of (∪n−1
i=5 B

{i}
n−1

⋃
B

{3}
n−1) joining the

black vertex (p)n to the white vertex (w)n. By Lemma 3, there is a Hamiltonian path Q3

of B
{1,4}
n−1 − {z4

n−5, (q)n} joining w to white vertex (s)n. By Theorem 2, there is a Hamilto-

nian path Q4 of B
{2}
n−1 − {z2

n−3} joining s to the black (t)n. We set v = (q)n and u = m. Then
〈u = m, R−1

1 , p, (p)n, Q2, (w)n, w, Q3, (s)n, s, Q4, (t)n, t, R2, q, (q)n = v〉 is the desired path.

Case 2 Suppose that n is odd. It is easy to know that z2
n−3 and z4

n−5 are two black vertices. The
proof of this case is similar to Case 1.

This completes the proof. �

Lemma 9 There is a Hamiltonian path of B5 − X3
5 joining a vertex u with (u)5 = 5 to a vertex

v with (v)5 = 1 such that the colour of u and the colour of v are distinct.

Proof We set Q1 = 〈21435, 21345, 23145, 23415, 32415, 32145, 31245, 13245, 13425,

31425, 34125, 43125, 41325, 14325, 14235, 41235, 42135, 24135, 24315, 42314, 43215,

34215〉. Obviously, Q1 is a Hamiltonian path of B
{5}
4 − (X3

5 − {z3
1 = 12453, z4

0 = 12354)} joining
the white vertex 21435 to the black vertex 34215.

Case 1 Suppose u is a white vertex and v is a black vertex. We set u = 21435 and x = 34215.
Obviously, (x)5 is the white vertex in B

{1}
4 . Let w be a black vertex in B

{1}
4 with (w)4 = 2. Note

that (w)5 is the white vertex in B
{2}
4 . By Theorem 1, there is a Hamiltonian path Q2 of B

{1}
4 joining

(x)5 to w. Let y be any white vertex in B
{1}
4 with (y)4 = 3. Without loss of generality, we write

Q2 = 〈(x)5, R1, y, m, R2, w〉. Let t be a white vertex in B
{4}
4 with (t)4 = 2. By Lemma 3, there

is a Hamiltonian path Q3 of B
{3,4}
4 − {z3

1, z4
0} joining the black vertex (y)5 to t. By Theorem 1,

there is a Hamiltonian path Q4 of B
{2}
4 joining the black vertex (t)5 to (w)5. Let v = m. Then

〈u, Q1, x, (x)5, R1, y, (y)5, Q3, t, (t)5, Q4, (w)5, w, R−1
2 , m = v〉 is the desired path.

Case 2 Suppose u is a black vertex and v is a white vertex. We set u = 34215 and x = 21435.
Let y be a white vertex in B

{4}
4 with (y)4 = 2. By Lemma 3, there is a Hamiltonian path Q2 of

B
{3,4}
4 − {z3

1, z4
0} joining the black vertex (x)5 to y. Let v be any white vertex in B

{1}
4 . By Lemma 2,
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2218 Y.-K. Shih et al.

there is a Hamiltonian path Q3 of B
{1,2}
4 joining the black vertex (y)5 to the white vertex v. Then

〈u, Q−1
1 , x, (x)5, Q2, y, (y)5, Q3, v〉 is the desired path. �

Lemma 10 For n ≥ 5, there is a hamiltonian path of Bn − X3
n joining a vertex u with (u)n = n

to a vertex v with (v)n = 1, where the colour of u and the colour of v are distinct.

Proof We prove this statement by induction on n. By Lemma 9, this statement holds for n = 5.
We suppose that this statement holds for n − 1 with n − 1 ≥ 5.

Case 1 Suppose that u is a white vertex and v is a black vertex.

Case 1.1 Suppose that n is even. Thus, z3
n−4 is a black vertex in B

{3}
n−1 and z4

n−5 is a white vertex

in B
{4}
n−1. By induction, there is a Hamiltonian path Q1 of B

{n}
n−1 − (X3

n − {z3
n−4, z4

n−5}) joining a

white vertex u to a black vertex q with (q)n−1 = 1. Obviously, (q)n is a white vertex in B
{1}
n−1.

Let w be a black vertex in B
{1}
n−1 with (w)n−1 = 2. By Theorem 1, there is a Hamiltonian path

Q2 of B
{1}
n−1 joining (q)n to w. Let y be any white vertex in B

{1}
n−1 with (y)n−1 = 4. Without loss

of generality, we rewrite Q2 = 〈(q)n, R1, y, m, R2, w〉. Let t be a white vertex in B
{3}
n−1 with

(t)n−1 = 5. By Lemma 3, there is a Hamiltonian path Q3 of B
{3,4}
n−1 − {z3

n−4, z4
n−5} joining the

black vertex (y)n to t. By Lemma 2, there is a Hamiltonian path Q4 of (
⋃n−1

i=5 B
{i}
n−1

⋃
B

{2}
n−1)

joining the black vertex (t)n in B
{5}
n−1 to the white vertex (w)n in B

{2}
n−1. We let v = m. Then

〈u, Q1, q, (q)n, R1, y, (y)n, Q3, t, (t)n, Q4, (w)n, w, R−1
2 , m = v〉 is the desired path.

Case 1.2 Suppose that n is odd. Thus, z3
n−4 is a white vertex in B

{3}
n−1 and z4

n−5 is a black vertex

in B
{4}
n−1. The proof of this case is similar to Case 1.1.

Case 2 Suppose that u is a black vertex and v is a white vertex.

Case 2.1 Suppose that n is even. Thus, z3
n−4 is a black vertex in B

{3}
n−1 and z4

n−5 is a white vertex in

B
{4}
n−1. By induction, there is a Hamiltonian path Q1 of B

{n}
n−1 − (X3

n − {z3
n−4, z4

n−5}) joining a black

vertex u to a white vertex q with (q)n−1 = n − 1. Obviously, (q)n is a black vertex in B
{n−1}
n−1 . Let y

be a white vertex in B
{2}
n−1 with (y)n−1 = 4, and let s be a white vertex in B

{3}
n−1 with (s)n−1 = 1. By

Lemma 2, there is a Hamiltonian path Q2 of (
⋃n−1

i=5 B
{i}
n−1 ∪ B

{2}
n−1) joining (q)n to y. By Lemma 3,

there is a Hamiltonian path Q3 of B
{3,4}
n−1 − {z3

n−4, z4
n−5} joining the black vertex (y)n to s. Let

v be any white vertex in B
{1}
n−1. By Theorem 1, there is a Hamiltonian path Q4 of B

{1}
n−1 joining

the black vertex (s)n to v. Then 〈u, Q1, q, (q)n, Q2, y, (y)n, Q3, s, (s)n, Q4, v〉 is the desired path.

Case 2.2 Suppose that n is odd. Thus, z3
n−4 is a white vertex in B

{3}
n−1 and z4

n−5 is a black vertex

in B
{4}
n−1. The proof of this case is similar to Case 2.1. �

Lemma 11 There is a Hamiltonian path of B5 − X4
5 joining a black vertex u with (u)5 = 5 to a

black vertex v with (v)5 = 1.

Proof We set Q1 = 〈34215, 43215, 42315, 24315, 24135, 42135, 41235, 14235, 14325, 41325,
43125, 34125, 31425, 13425, 13245, 31245, 32145, 32415, 23415, 23145, 21345, 21435〉. Obvi-
ously, Q1 is a Hamiltonian path of B

{5}
4 − (X4

5 − {z3
1 = 12453}) joining the black vertex 34215
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to the white vertex 21435. Let u = 34215 and x = 21435. Let y be a black vertex in B
{3}
4 with

(y)4 = 4. By Theorem 2, there is a Hamiltonian path Q2 of B
{3}
4 − {z3

1} joining the black vertex
(x)5 to y. Let v be a black vertex in B

{1}
4 . By Lemma 2, there is a hamiltonian path Q3 of B

{1,2,4}
4

joining the white vertex (y)5 to v. Then 〈u, Q1, x, (x)5, Q2, y, (y)5, Q3, v〉 is the desired path. �

Lemma 12 For n ≥ 5, there is a Hamiltonian path of Bn − X4
n joining a vertex u with (u)n = n

to a vertex v with (v)n = 1, where both u and v are white vertices if n is even and both u and v
are black vertices if n is odd.

Proof We prove this statement by induction for n. By Lemma 11, this statement holds for n = 5.
We suppose that this statement holds on n − 1 with n ≥ 6.

Case 1 Suppose that n is even. It is easy to know that z5
n−6 and z3

n−4 are two black vertices. By

induction, there is a Hamiltonian path Q1 of B
{n}
n−1 − (X4

n − {z3
n−4, z5

n−6}) joining a black vertex
p with (p)n−1 = n − 1 to a black vertex q with (q)n−1 = 1. Let t be a black vertex in Q1 with
(t)n−1 = 3. We rewrite Q1 = 〈p, R1, m, t, R2, q〉. Let s be a white vertex in B

{3}
n−1 with (s)n−1 = 1,

and let w be a white vertex in B
{5}
n−1 with (w)n−1 = 4. By Lemma 2, there is a Hamiltonian path Q2

of (
⋃n−1

i=6 B
{i}
n−1 ∪ B

{2,4}
n−1 ) joining the white vertex (p)n to the black vertex (w)n. By Lemma 3, there

is a Hamiltonian path Q3 of B
{1,5}
n−1 − {z5

n−6, (q)n} joining w to the black vertex (s)n. By Theorem 2,

there is a Hamiltonian path Q4 of B
{2}
n−1 − {z3

n−4} joining s to the white vertex (t)n. We set v = (q)n

and u = m. Then 〈u = m, R−1
1 , p, (p)n, Q2, (w)n, w, Q3, (s)n, s, Q4, (t)n, t, R2, q, (q)n = v〉 is

the desired path.

Case 2 Suppose that n is odd. It is easy to know that z3
n−4 and z5

n−6 are two white vertices. The
proof of this case is similar to Case 1. �

Lemma 13 For n ≥ 6, there is a Hamiltonian path of Bn − Yn−2
n joining a vertex u with (u)n = n

to a vertex v with (v)n = 1, where the colour of u and the colour of v are distinct.

Proof We know that Yn−2
n = An−2

n ∪ An−1
n ∪ {e}, where An−2

n = {(e)n−1, ((e)n−1)n} and An−1
n =

{(e)n}. By Lemma 4, there is a Hamiltonian path Q1 of B
{n}
n−1 − {(e)n−1, e} joining a black vertex

p with (p)n−1 = n − 1 to a white vertex q with (q)n−1 = 1.

Case 1 Suppose that u is a black vertex and v is a white vertex. Let y be a black ver-
tex in B

{1}
n−1 with (y)n−1 = n − 1, and let s be a white vertex in B

{1}
n−1 with (s)n−1 = 2. By

Theorem 1, there is a Hamiltonian path Q2 of B
{1}
n−1 joining the black vertex (q)n to s. Without

loss of generality, we write Q2 = 〈(q)n, R1, y, m, R2, s〉. Let w be a black vertex in B
{n−2}
n−1 with

(w)n−1 = n − 3. By Lemma 3, there is a Hamiltonian path Q3 of B
{n−2,n−1}
n−1 − {((e)n−1)n, (e)n}

joining the white vertex (y)n to w. By Lemma 2, there is a Hamiltonian path Q4 of
⋃n−3

i=2 B
{i}
n−1

joining the white vertex (w)n to the black vertex (s)n. We set u = p and v = m. Then 〈u =
p, Q1, q, (q)n, R1, y, (y)n, Q3, w, (w)n, Q4, (s)n, s, R−1

2 , m = v〉 is the desired path.

Case 2 Suppose that u is a white vertex and v is a black vertex. Let w be a black vertex
in B

{n−2}
n−1 with (w)n−1 = n − 3. By Lemma 3, there is a Hamiltonian path Q2 of B

{n−2,n−1}
n−1 −

{((e)n−1)n, (e)n} joining the white vertex (p)n to w. Let v be a black vertex in B
{1}
n−1. By Lemma 2,

there is a Hamiltonian path Q3 of
⋃n−3

i=1 B
{i}
n−1 joining the white vertex (w)n to v. We set u = q.

Then 〈u = q, Q−1
1 , p, (p)n, Q2, w, (w)n, Q3, v〉 is the desired path. �
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Lemma 14 Let n ≥ 6. For every 3 ≤ i ≤ n − 2, there is a Hamiltonian path of Bn − Y i
n joining

a vertex u with (u)n = n to a vertex v with (v)n = 1, where the colour of u and the colour of v
are distinct.

Proof We prove this statement by induction on n. We have Y 3
6 = X3

6. By Lemmas 10 and 13,
the statement holds on n = 6. We suppose that this statement holds on n − 1 with n ≥ 7.

By induction, there is a Hamiltonian path Q1 of B
{n}
n−1 − (Y i

n − {zi
n−i−1, zi+1

n−i−2}) joining a white
vertex p with (p)n−1 = n − 1 to a black vertex q with (q)n−1 = 1.

Case 1 Suppose that u is a white vertex and v is a black vertex.

Case 1.1 Suppose that zi
n−i−1 is a white vertex in B

{i}
n−1 and zi+1

n−i−2 is a black vertex in B
{i+1}
n−1 .

Let y be a white vertex in B
{1}
n−1 with (y)n−1 = i + 2 and x be a black vertex in B

{1}
n−1 with

(x)n−1 = i + 1. By Theorem 1, there is a Hamiltonian path Q2 of B
{1}
n−1 joining the white vertex

(q)n to x. Without loss of generality, we rewrite Q2 = 〈(q)n, R1, y, m, R2, x〉. Let w be a white
vertex in B

{i−1}
n−1 with (w)n−1 = i. By Lemma 2, there is a Hamiltonian path Q3 of BI

n−1 with
I = 〈n − 1〉 − {1, i, i + 1} joining the black vertex (y)n to w. By Lemma 3, there is a Hamiltonian
path Q4 of B

{i,i+1}
n−1 − {zi

n−i−1, zi+1
n−i−2} joining the black vertex (w)n to the white vertex (x)n. We set

u = p and v = m. Then 〈u = p, Q1, q, (q)n, R1, y, (y)n, Q3, w, (w)n, Q4, (x)n, x, R−1
2 , m = v〉

is the desired path.

Case 1.2 Suppose that zi
n−i−1 is a black vertex in B

{i}
n−1 and zi+1

n−i−2 is a white vertex in B
{i+1}
n−1 .

The proof of this case is similarly to Case 1.1.

Case 2 Suppose that u is a black vertex and v is a white vertex.

Case 2.1 Suppose that zi
n−i−1 is a white vertex in B

{i}
n−1 and zi+1

n−i−2 is a black vertex in B
{i+1}
n−1 . Let

w be a white vertex in B
{n−1}
n−1 with (w)n−1 = i. By Theorem 1, there is a Hamiltonian path Q2 of

B
{n−1}
n−1 joining the black vertex (p)n to w. Let y be a white vertex in B

{i+1}
n−1 with (y)n−1 = i + 2. By

Lemma 3, there is a Hamiltonian path Q3 of B
{i,i+1}
n−1 − {zi

n−i−1, zi+1
n−i−2} joining the black vertex

(w)n to the white vertex y. Let v be any white vertex in B
{1}
n−1. By Lemma 2, there is a hamiltonian

path Q4 of BI
n−1 with I = 〈n − 2〉 − {i, i + 1} joining the black vertex (y)n to v. We set u = q.

Then 〈u = q, Q−1
1 , p, (p)n, Q2, w, (w)n, Q3, y, (y)n, Q4, v〉 is the desired path.

Case 2.2 Suppose that zi
n−i−1 is a white vertex in B

{i}
n−1 and zi+1

n−i−2 is a black vertex in B
{i+1}
n−1 .

The proof of this case is similarly to Case 2.1. Thus, this lemma is proved. �

Theorem 3 For the bubble-sort graph B5 with e the vertex denoting identity permutation, there
exist four MIH cycles starting at vertex e.

We give the proof of Theorem 3 in Appendix 1.
Now, we can find the MIH of the bubble-sort graph Bn.

Theorem 4 Let n ≥ 6. We have h(Bn) ≥ n − 1.

Proof Since Bn is vertex transitive, we show that there are (n − 1)-mutually independent Hamil-
tonian cycles of Bn form e. Suppose that n ≥ 6. Let v1

1, v2
1, . . ., vn

1 be the vertices of B
{1}
n−1,

B
{2}
n−1, . . . , B

{n}
n−1 with (v2

1)n−1 = 4, (v3
1)n−1 = 5, (v4

1)n−1 = 3, (vn
1)n−1 = 1 and (vj

1)n−1 = j + 1
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for 5 ≤ j ≤ n − 1, respectively. By Theorem 1, there are Hamiltonian paths: H 2
1 of B

{2}
n−1 joining

z2
n−3 to v2

1; H 4
1 of B

{4}
n−1 joining (v2

1)
n to v4

1, H 3
1 of B

{3}
n−1 joining (v4

1)
n to v3

1 and H 5
1 of B

{5}
n−1 joining

(v3
1)

n to v5
1. By Theorem 1, there is a Hamiltonian path Hi

1 of B
{i}
n−1 joining (vi−1

1 )n to vi
1 for

6 ≤ i ≤ n − 1. By Lemma 6, there is a Hamiltonian path Hn
1 of B

{n}
n−1 − X1

n−1 joining (vn−1
1 )n to

vn
1 . By Theorem 1, there is a hamiltonian path H 1

1 of B
{1}
n−1 joining (vn

1)
n to z1

n−2. We set C1 =
〈e, z2

0, . . . , z2
n−3, H

2
1 , v2

1, (v
2
1)

n, H 4
1 , v4

1, (v
4
1)

n, H 3
1 , v3

1, (v
3
1)

n, H 5
1 , v5

1, (v
5
1)

n, H 6
1 , v6

1, . . . , (v
n−2
1 )n,

Hn−1
1 , vn−1

1 , (vn−1
1 )n, Hn

1 , vn
1, (v

n
1)

n, H 1
1 , z1

n−2, z1
n−3, . . . , z1

0, e〉 being a Hamiltonian cycle of Bn

form e.
Let v1

2, v2
2, . . ., vn

2 be the vertices of B
{1}
n−1, B

{2}
n−1, . . . , B

{n}
n−1 with (v2

2)n−1 = 4, (v3
2)n−1 = 5,

(v4
2)n−1 = 3, (vn

2)n−1 = 1, and (vj

2)n−1 = j + 1 for 5 ≤ j ≤ n − 1, respectively. By Theorem 1,
there are Hamiltonian paths H 4

2 of B
{4}
n−1 joining z4

n−5 to v4
2; H 3

2 of B
{3}
n−1 joining (v4

2)
n to

v3
2; and H 5

2 of B
{5}
n−1 joining (v3

2)
n to v5

2. By Theorem 1, there is a Hamiltonian path Hi
2

of B
{i}
n−1 joining (vi−1

2 )n to vi
2 for 6 ≤ i ≤ n − 1. By Lemma 8, there is a Hamiltonian path

Hn
2 of B

{n}
n−1 − X2

n−1 joining (vn−1
2 )n to vn

2 . By Theorem 1, there are Hamiltonian paths:

H 1
2 of B

{1}
n−1 joining (vn

2)
n to v1

2 and H 2
2 of B

{2}
n−1 joining (v1

2)
n to z2

n−3. We set C2 = 〈e,
z4

0, . . . , z4
n−5, H 4

2 , v4
2, (v4

2)
n, H 3

2 , v3
2, (v3

2)
n, H 5

2 , v5
2, (v5

2)
n, H 6

2 , v6
2, . . . , (v

n−2
2 )n, Hn−1

2 , vn−1
2 ,

(vn−1
2 )n, Hn

2 , vn
2, (v

n
2)

n, H 1
2 , v1

2, (v
1
2)

n, H 2
2 , z2

n−3, z2
n−4, . . . , z2

0, e〉 being a Hamiltonian cycle of Bn

form e. Let l = (n − 1)(n − 1)! − (n − 2) + 1. The lth vertex of C1 is (vn
1)

n, which is in B
{1}
n−1,

and the lth vertex of C2 is v1
2, also in B

{1}
n−1. Obviously, ((vn

1)
n)n−1 = n and (v1

2)n−1 = 2, then
(vn

1)
n �= v1

2.
Let v1

3, v2
3, . . . , vn

3 be the vertices of B
{1}
n−1, B

{2}
n−1, . . . , B

{n}
n−1 with (v2

3)n−1 = 4, (v3
3)n−1 = 5,

(v4
3)n−1 = 3, (vn

3)n−1 = 1, and (vj

3)n−1 = j + 1 for 5 ≤ j ≤ n − 1, respectively. By Theorem 1,
there is a Hamiltonian path H 3

3 of B
{3}
n−1 joining z3

n−4 to v3
3 and a Hamiltonian path H 5

3 of B
{5}
n−1

joining (v3
3)

n to v5
3. By Theorem 1, there is a Hamiltonian path Hi

3 of B
{i}
n−1 joining (vi−1

3 )n

to vi
3 for 6 ≤ i ≤ n − 1. By Lemma 10, there is a Hamiltonian path Hn

3 of B
{n}
n−1 − X3

n−1

joining (vn−1
3 )n to vn

3 . Let v1
3 be a vertex in B

{1}
n−1 with (v1

3)n−1 = 2 such that the vertex
v1

3 /∈ N((vn
2)

n) and there exists a vertex s ∈ N(v1
3) with s �= (vn

2)
n. By Theorem 2, there is

a Hamiltonian path H 1
3 of B

{1}
n−1 − v1

3 joining the vertex (vn
3)

n to s. Let v2
3 be a vertex in

B
{2}
n−1 with (v2

3)n−1 = 4 such that the vertex v2
3 /∈ N((v1

2)
n) and there exists a vertex t ∈ N(v2

3)

with t �= (v1
2)

n. By Theorem 2, there is a Hamiltonian path H 2
3 of B

{2}
n−1 joining the vertex

(v1
3)

n to t. By Theorem 1, there are Hamiltonian paths: H 1
3 of B

{1}
n−1 joining (vn

3)
n to v1

3;

H 2
3 of B

{2}
n−1 joining (v1

3)
n to v2

3; and H 4
3 of B

{4}
n−1 joining (v2

3)
n to z4

n−5. We set C3 = 〈e,
z3

0, . . . , z3
n−4, H 3

3 , v3
3, (v3

3)
n, H 5

3 , v5
3, (v5

3)
n, H 6

3 , v6
3, . . . , (v

n−2
3 )n, Hn−1

3 , vn−1
3 , (vn−1

3 )n, Hn
3 ,

vn
3, (v

n
3)

n, H 1
3 , s, v1

3, (v
1
3)

n, H 2
3 , t, v2

3, (v
2
3)

n, H 4
3 , z4

n−5, z4
n−6, . . . , z4

0, e〉 being a Hamiltonian cycle
of Bn form e. Let l = m(n − 1)! + (n − 4) + 1 for 1 ≤ m ≤ n − 4. The lth vertices are coincided
in the same subgraph between C2 and C3. Obviously, the (n − 1)-th position of the l-th vertices
in C2 and C3 are different.

Let v1
4, v2

4, . . ., vn
4 be the vertices of B

{1}
n−1, B

{2}
n−1, . . . , B

{n}
n−1 with (v2

4)n−1 = 4, (v3
4)n−1 = 5,

(v4
4)n−1 = 3, (vn

4)n−1 = 1, and (vj

4)n−1 = j + 1 for 5 ≤ j ≤ n − 1, respectively. By Theorem 1,
there is a Hamiltonian path H 5

4 of B
{5}
n−1 joining z5

n−6 to v5
4. By Theorem 1, there is a

Hamiltonian path Hi
4 of B

{i}
n−1 joining (vi−1

4 )n to vi
4 for 6 ≤ i ≤ n − 1. By Lemma 12,

there is a Hamiltonian path Hn
4 of B

{n}
n−1 − X4

n−1 joining (vn−1
4 )n to vn

4 . By Theorem 1,

there are Hamiltonian paths: H 1
4 of B

{1}
n−1 joining (vn

4)
n to v1

4; H 2
4 of B

{2}
n−1 joining (v1

4)
n

to v2
4; H 4

4 of B
{4}
n−1 joining (v2

4)
n to v4

4; H 3
4 of B

{3}
n−1 joining (v4

4)
n to z3

n−4. We set
C4 = 〈e, z5

0, . . . , z5
n−6, H 5

4 , v5
4, (v5

4)
n, H 6

4 , v6
4, . . . , (v

n−2
4 )n, Hn−1

4 , vn−1
4 , (vn−1

4 )n, Hn
4 , vn

4, (vn
4)

n,
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H 1
4 , v1

4, (v
1
4)

n, H 2
4 , (v2

4)
n, H 4

4 , v4
4, (v

4
4)

n, H 3
4 , z3

n−4, z3
n−5, . . . , z3

0, e〉 being a Hamiltonian cycle of
Bn form e.

Case 3.1 Suppose that n = 6. Let v1
5, v2

5, v3
5, v4

5 and v6
5 be the vertices of B

{1}
5 , B{2}

5 , B{3}
5 , B{4}

5 , and
B

{6}
5 with (v1

5)5 = 2, (v2
5)5 = 4, (v4

5)5 = 3, (v3
5)5 = 5, and (v6

5)5 = 1, respectively. By Theorem 1,
there is a Hamiltonian path H 6

5 of B
{6}
5 joining e to v6

5. Let v1
5, v2

5, v4
5, and v3

5 be the vertices in B
{1}
n−1,

B
{2}
n−1, B

{4}
n−1, and B

{3}
n−1, with (v1

5)
n−1 = 2, (v2

5)
n−1 = 4, (v4

5)
n−1 = 3, and (v3

5)
n−1 = 5, such that

v1
5 /∈ N((v6

4)
n), v2

5 /∈ N((v1
4)

n), v4
5 /∈ N((v2

4)
n), and v3

5 /∈ N((v4
4)

n), respectively. And there exist
s1

5) ∈ N(v1
5), s2

5 ∈ N(v2
5), s4

5 ∈ N(v4
5), and s3

5 ∈ N(v3
5). By Theorem 2, there are Hamiltonian

paths: H 1
5 of B

{1}
5 − v1

5 joining (vn
5)

n to s1
5; H 2

5 of B
{2}
5 − v2

5 joining (v1
5)

n to s2
5; H 4

5 of B
{4}
5 − v4

5

joining (v2
5)

n to s4
5; and H 3

5 of B
{3}
5 − v3

5 joining (v4
5)

n to s3
5. By Theorem 1, there is a Hamiltonian

path H 5
5 of B

{5}
n−1 joining (v3

5)
n to z5

0. We set C5 = 〈e, H 6
5 , v6

5, (v6
5)

6, H 1
5 , s1

5, v1
5, (v1

5)
6, H 2

5 , s2
5, v2

5,
(v2

5)
6, H 4

5 , s4
5, v4

5, (v4
5)

6, H 3
5 , s3

5, v3
5, (v3

5)
6, H 5

5 , z5
0, e〉 being a Hamiltonian cycle of Bn form e.

Then {C1, C2, . . . , C5} forms a set of five-mutually independent Hamiltonian cycles.

Case 3.2 Suppose that n > 6. Let v1
5, v2

5, . . . , vn
5 be the vertices of B

{1}
n−1, B

{2}
n−1, . . . , B

{n}
n−1 with

(v2
5)n−1 = 4, (v3

5)n−1 = 5, (v4
5)n−1 = 3, (vn

5)n−1 = 1, and (vj

5)n−1 = j + 1 for 5 ≤ j ≤ n − 1,
respectively. By Theorem 1, there is a Hamiltonian path H 6

5 of B
{6}
n−1 joining z6

n−7 to v6
5. By

Theorem 1, there is a Hamiltonian path Hi
5 of B

{i}
n−1 joining (vi−1

5 )n to vi
5 for 6 ≤ i ≤ n − 1. By

Lemma 14, there is a Hamiltonian path Hn
5 of B

{n}
n−1 − Y 5

n−1 joining (vn−1
5 )n to vn

5 . Let v1
5, v2

5, v4
5, and

v3
5 be the vertices in B

{1}
n−1, B

{2}
n−1, B

{4}
n−1, and B

{3}
n−1, with (v1

5)
n−1 = 2, (v2

5)
n−1 = 4, (v4

5)
n−1 = 3,

and (v3
5)

n−1 = 5, such that v1
5 /∈ N((v6

4)
n), v2

5 /∈ N((v1
4)

n), v4
5 /∈ N((v2

4)
n), and v3

5 /∈ N((v4
4)

n),
respectively.And there exist s1

5 ∈ N(v1
5), s2

5 ∈ N(v2
5), s4

5 ∈ N(v4
5), and s3

5 ∈ N(v3
5). By Theorem 2,

there are Hamiltonian paths: H 1
5 of B

{1}
n−1 − v1

5 joining (vn
5)

n to s1
5; H 2

5 of B
{2}
n−1 − v2

5 joining

(v1
5)

n to s2
5; H 4

5 of B
{4}
n−1 − v4

5 joining (v2
5)

n to s4
5; and H 3

5 of B
{3}
n−1 − v3

5 joining (v4
5)

n to s3
5. By

Theorem 1, there is a Hamiltonian path H 5
5 of B

{5}
n−1 joining (v3

5)
n to z5

n−6. We set C5 = 〈e,
z6

0, z6
1, . . . , zn−76 , H 6

5 , v6
5, (v6

5)
n, H 7

5 , v7
5, . . . , (v

n−1
5 )n, Hn

5 , vn
5 , (vn

5)
n, H 1

5 , s1
5, v1

5, (v1
5)

n, H 2
5 , s2

5,
v2

5, (v
2
5)

n, H 4
5 , s4

5, v4
5, (v

4
5)

n, H 3
5 , s3

5, v3
5, (v

3
5)

n, H 5
5 , z5

n−6, z5
n−7, . . . , z5

0, e〉 is a Hamiltonian cycle of
Bn form e.

Assume that 6 ≤ i ≤ n − 2. Let v1
i , v2

i , . . ., vn
i be the vertices of B

{1}
n−1, B

{2}
n−1, . . . , B

{n}
n−1 with

(v2
1)n−1 = 4, (v3

i )n−1 = 5, (v4
i )n−1 = 3, (vn

i )n−1 = 1, and (vj

i )n−1 = j + 1 for 5 ≤ j ≤ n − 1,
respectively. By Theorem 1, there is a Hamiltonian path Hi+1

i of B
{i+1}
n−1 joining zi+1

n−i−2 to

vi+1
i . By Theorem 1, there is a Hamiltonian path Hi

i of B
{i}
n−1 joining (vi−1

i )n to zi
n−i−1. By

Theorem 1, there is a Hamiltonian path H
j

i of B
{j}
n−1 joining (vj−1

i )n to vj

i for 6 ≤ j ≤ n − 1 and

j /∈ {i, i + 1}. By Lemma 14, there is a Hamiltonian path Hn
i of B

{n}
n−1 − Y i

n−1 joining (vn−1
i )n

to vn
i . By Theorem 1, there are Hamiltonian paths: H 1

i of B
{1}
n−1 joining (vn

i )
n to v1

5; H 2
i of

B
{2}
n−1 joining (v1

i )
n to v2

5; H 4
i of B

{4}
n−1 joining (v2

i )
n to v4

5; and H 3
i of B

{3}
n−1 joining (v4

i )
n to

v3
5. We set Ci = 〈e, zi+1

0 , zi+1
1 , . . . , zi+1

n−i−2, H
i+1
i , vi+1

i , (vi+1
i )n, H i+2

i , vi+2
i , . . . , (vn−1

i )n, Hn
i , vn

i ,

(vn
i )

n, H 1
i , v1

i ,(v
1
i )

n, H 2
i , v2

i ,(v
2
i )

n, H 4
i , v4

i ,(v
4
i )

n, H 3
i ,v3

i , (v
3
i )

n, H 5
i , v5

i , . . . , (v
i−1
i )n, H i

i , zi
n−i−1,

zi
n−i−2, . . . , zi

0, e〉 being a Hamiltonian cycle of Bn form e.

Let v1
n−1, v2

n−1, . . . , vn
n−1 be the vertices of B

{1}
n−1, B

{2}
n−1, . . . , B

{n}
n−1 with (v2

n−1)n−1 = 4,

(v3
n−1)n−1 = 5, (v4

n−1)n−1 = 3, (vn
n−1)n−1 = 1, and (vj

n−1)n−1 = j + 1 for 5 ≤ j ≤ n − 1, respec-

tively. By Theorem 1, there is a Hamiltonian path Hn
n−1 of B

{n}
n−1 joining e to vn

n−1. Again, there

is a Hamiltonian path Hi
n−1 of B

{i}
n−1 joining vi−1

n−1 to vi
n−1 for 6 ≥ i ≥ n − 2. Moreover, there is
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a Hamiltonian path Hn−1
n−1 of B

{n−1}
n−1 joining (vn−2

n−1)
n to zn−1

0 . By Theorem 1, there are Hamilto-

nian paths: H 1
n−1 of B

{1}
n−1 joining (vn

n−1)
n to v1

n−1; H 2
n−1 of B

{2}
n−1 joining (v1

n−1)
n to v2

n−1; H 4
n−1

of B
{4}
n−1 joining (v2

n−1)
n to v4

n−1; H 3
n−1 of B

{3}
n−1 joining (v4

n−1)
n to v3

n−1. We set Cn−1 = 〈e,
Hn

n−1, vn
n−1, (vn

n−1)
n, H 1

n−1, v1
n−1, (v1

n−1)
n, H 2

n−1, v2
n−1, (v2

n−1)
n, H 4

n−1, v4
n−1, (v4

n−1)
n, H 3

n−1,
v3

n−1, (v
3
n−1)

n, H 5
n−1, v5

n−1, . . . , (v
n−2
n−1)

n, Hn−1
n−1 , zn−1

0 , e〉 being a Hamiltonian cycle of Bn form e.
Then {C1, C2, . . . , Cn−1} is a set of (n − 1)-mutually independent Hamiltonian cycles for Bn

from e. �

Corollary 1 For n ≥ 4, we have h(Bn) = n − 1. Moreover, h(B3) = 1.

Proof Since δ(Bn) = n − 1, h(Bn) ≤ n − 1. Since B3 is a cycle with six vertices, it is easy to
check that h(B3) = 1. To show h(Bn) = n − 1 for n ≥ 4, we need to construct (n − 1)-mutually
independent Hamiltonian cycles of Bn from every vertex u. Since Bn is vertex transitive, we show
that there are (n − 1)-mutually independent Hamiltonian cycles of Bn from e.

Case 1 Suppose that n = 4. We set

C1 = 〈1234, 2134, 2143, 2413, 2431, 2341, 2314, 3214, 3241, 3421, 4321, 4231,

4213, 4123, 4132, 4312, 3412, 3142, 3124, 1324, 1342, 1432, 1423, 1243, 1234〉,
C2 = 〈1234, 1243, 1423, 1432, 4132, 4123, 4213, 4231, 4321, 4312, 3412, 3421,

3241, 2341, 2431, 2413, 2143, 2134, 2314, 3214, 3124, 3142, 1342, 1323, 1234〉, and

C3 = 〈1234, 1324, 3124, 3142, 1342, 1432, 1423, 1243, 2143, 2413, 4213, 4123,

4132, 4312, 3412, 3421, 4321, 4231, 2431, 2341, 3241, 3214, 2314, 2134, 1234〉.
Then {C1, C2, C3} is a set of three-mutually independent Hamiltonian cycles for B4 from e.

Case 2 Suppose that n ≥ 5. By Theorems 3 and 4, there is a set of (n − 1)-mutually independent
Hamiltonian cycles on Bn from e.

Summarily, Case 1 and Case 2, we have h(Bn) = n − 1 for n ≥ 4. �
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Appendix 1. The proof of Theorem 3

Proof of Theorem 3 Since B5 is vertex transitive, we show that there are four-mutually independent Hamiltonian cycles
of B5 from e.

Obviously, (z2
1)

5 = 13452 is a black vertex in B
{2}
4 . Let v2

1 be a white vertex in B
{2}
4 with (v2

1)4 = 4. By Theorem 1, there

is a Hamiltonian path H 2
1 of B

{2}
4 joining (z2

1)
5 to v2

1. Let v4
1 be a white vertex in B

{4}
4 with (v4

1)4 = 3. By Theorem 1, there is

a Hamiltonian path H 4
1 of B

{4}
4 joining the black vertex (v2

1)
5 to v4

1. Let v3
1 = 12453 be a white vertex in B

{3}
4 , then we have

(v3
1)

5 = 12435 is a black vertex in B
{5}
4 . By Theorem 1, there is a Hamiltonian path H 3

1 of B
{3}
4 joining the black vertex (v4

1)
5

to v3
1. Let H 5

1 be the Hamiltonian path Q1 of Lemma 5 joining (v3
1)

5 to the white vertex 43215 = v5
1. Let v1

1 be a white vertex

in B
{1}
4 with v1

1 = (z1
2)

5 = 23451. By Theorem 1, there is a Hamiltonian path H 1
1 of B

{1}
4 joining the black vertex (v5

1)
5 to v1

1.
Then C1 = 〈e, z2

0 = 13245, z2
1 = 13425, (z2

1)
5, H 2

1 , v2
1, (v

2
1)

5, H 4
1 , v4

1, (v
4
1)

5, H 3
1 , v3

1, (v
3
1)

5, H 5
1 , v5

1, (v
5
1)

5, H 1
1 , v1

1, z1
2 =

23415, z1
1 = 23145, z1

0 = 21345, e〉 is the desired cycle.

Obviously, (e)5 is a black vertex in B
{4}
4 . Let v4

2 be a white vertex in B
{4}
4 with (v4

2)4 = 3. By Theorem 1, there is a

Hamiltonian path H 4
2 of B

{4}
4 joining (e)5 to v4

2. Let v3
2 = 24153 that is a white vertex in B

{3}
4 . Then we have (v3

2)
5 = 24135

is a black vertex in B
{5}
4 . By Theorem 1, there is a Hamiltonian path H 3

2 of B
{3}
4 joining the black vertex (v4

2)
5 to v3

2. Let
H 5

2 be the Hamiltonian path Q1 of Lemma 7 joining (v3
2)

5 to the black vertex 34215 = v5
2. Let v1

2 be a black vertex in

B
{1}
4 with (v1

2)4 = 2. By Theorem 1, there is a Hamiltonian path H 1
2 of B

{1}
4 joining the white vertex (v5

2)
5 to v1

2. Let v2
2

be a black vertex in B
{2}
4 with v2

2 = (z2
1)

5 = 13452. By Theorem 1, there is a Hamiltonian path H 2
2 of B

{2}
4 joining the

white vertex (v1
2)

5 to v2
2. We set C2 = 〈e, (e)5, H 4

2 , v4
2, (v

4
2)

5, H 3
2 , v3

2, (v
3
2)

5, H 5
2 , v5

2, (v
5
2)

5, H 1
2 , v1

2, (v
1
2)

5, H 2
2 , v2

2, z2
1 =

13425, z2
0 = 13245, e〉. The 94th vertex of C1 is (v5

1)
5 in B

{1}
4 , and the 94th vertex of C2 is v1

2 also in B
{1}
4 . Obviously,

((v5
1)

5)4 = 5 and (v1
2)4 = 2, then (v5

1)
5 �= v1

2 . Therefore, C2 is the desired cycle.

Obviously, z3
0 = 12435 is a black vertex, and (z3

0)
5 is a white vertex in B

{3}
4 . Let v3

3 = 21453 that is a black vertex in

B
{3}
4 , and (v3

3)
5 is the white vertex in B

{5}
4 . By Theorem 1, there is a Hamiltonian path H 3

3 of B
{3}
4 joining (z3

0)
5 to v3

3.
Let H 5

3 be the Hamiltonian path Q1 of Lemma 9 joining (v3
3)

5 to the black vertex 34215 = v5
3. Let v1

3 be a black vertex

in B
{1}
4 with (v1

3)4 = 2 such that the vertex v1
3 /∈ N((v5

2)
5) and there exists a white vertex s ∈ N(v1

3) and s �= (v5
2)

5. By

Theorem 2, there is a Hamiltonian path H 1
3 of B

{1}
4 − v1

3 joining the white vertex (v5
3)

5 to s. Let v2
3 be a black vertex

in B
{2}
4 with (v2

3)4 = 4 such that the vertex v2
3 /∈ N((v1

2)
5) and there exists a white vertex t ∈ N(v2

3) and t �= (v1
2)

5. By

Theorem 1, there is a Hamiltonian path H 2
3 of B

{2}
4 − {v2

3} joining the white vertex (v1
3)

5 to t. Obviously, (e)5 is a black

vertex in B
{4}
4 . By Theorem 1, there is a Hamiltonian path H 4

3 of B
{4}
4 joining the white vertex (v2

3)
5 to (e)5. We set

C3 = 〈e, z3
0, (z

3
0)

5, H 3
3 , v3

3, (v
3
3)

5, H 5
3 , v5

3, (v
5
3)

5, H 1
3 , s, v1

3, (v
1
3)

5, H 2
3 , t, v2

3, (v
2
3)

5, H 4
3 , (e)5, e〉. The 26th vertex of C2 is

(v4
2)

5 in B
{3}
4 , and the 26th vertex of C3 is v3

3 also in B
{3}
4 . Obviously, ((v4

2)
5)4 = 4 and (v3

3)4 = 5, then (v4
2)

5 �= v3
3.

Therefore, C3 is the desired cycle.
We set H 5

4 = 〈21435, 24135, 24315, 23415, 23145, 32145, 31245, 13245, 13425, 31425, 34125, 43125, 41325,

14325, 14235, 41235, 42135, 42315, 43215, 34215, 32415 = v5
4〉. Obviously, v5

4 is the white vertex in B
{5}
4 , and (v5

4)
5

is a black vertex in B
{1}
4 . Let v1

4, v2
4, and v4

4 be the white vertices in B
{1}
4 , B

{2}
4 , and B

{4}
4 , with (v1

4)4 = 2, (v2
4)4 = 4,

and (v4
4)4 = 3, respectively. It is easy to know that (v1

4)
5, (v2

4)
5, and (v4

4)
5 are the black vertices in B

{2}
4 , B

{4}
4 , and

B
{3}
4 , respectively. By Theorem 1, there are the Hamiltonian paths: H 1

4 of B
{1}
4 , H 2

4 of B
{2}
4 , and H 4

4 of B
{4}
4 join-

ing (v5
4)

5 to v1
4, (v1

4)
5 to v2

4 and (v2
4)

5 to v4
4, respectively. We know that z3

0 = 12435 is a black vertex and (z3
0)

5

is a white vertex in B
{3}
4 . By Theorem 1, there is a Hamiltonian path H 3

4 of B
{3}
4 joining (v4

4)
5 to (z3

0)
5. We set

C4 = 〈e, z1
0, (z

1
0)

4, H 5
4 , v5

4, (v
5
4)

5, H 1
4 , v1

4, (v
1
4)

5, H 2
4 , v2

4, (v
2
4)

5, H 4
4 , v4

4, (v
4
4)

5, H 3
4 , (z3

0)
5, z3

0, e〉 is the desired cycle (see
Figure A1). �
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Figure A1. The mutually independent Hamiltonian cycles of B5.
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