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The honeycomb torus HT(m) is an attractive architecture for distributed processing applications. For
analysing its performance, a symmetric generalized honeycomb torus, GHT(m, n, n/2), with m ≥ 2 and
even n ≥ 4, where m + n/2 is even, which is a 3-regular, Hamiltonian bipartite graph, is operated as
a platform for combinatorial studies. More specifically, GHT(m, n, n/2) includes GHT(m, 6m, 3m), the
isomorphism of the honeycomb torus HT(m). It has been proven that any GHT(m, n, n/2) − e is Hamil-
tonian for any edge e ∈ E(GHT(m, n, n/2)). Moreover, any GHT(m, n, n/2) − F is Hamiltonian for any
F = {u, v} with u ∈ B and v ∈ W , where B and W are the bipartition of V (GHT(m, n, n/2)) if and only
if n ≥ 6 or m = 2, n ≥ 4.

Keywords: fault-tolerance; generalized honeycomb torus; graph embedding; Hamiltonian cycle; inter-
connection networks

2000 AMS Subject Classifications: 05C60; 68M10; 68R10; 68M15; 94C15

1. Introduction

Network topology is a crucial factor in interconnection networks, because it determines the per-
formance of the network [8]. For example, the number of links connected to network nodes can
be as small as possible [11], and the network configuration can still fit the geometry of potential
applications [9]. In addition, fault-tolerance is desired for offering more systematic reliability.

Honeycomb torus, denoted by HT(m) for any integer m ≥ 1, is recognized as an attractive,
symmetric, alternative architecture to existing torus interconnection networks in parallel and
distributed applications [2,6,7,11]. In 1997, Stojmenovic [11] proposed several variations of hon-
eycomb tori. Cho and Hsu [4] then proved that all honeycomb torus networks can be characterized
in a unified way, the generalized honeycomb torus, denoted by GHT(m, n, s), where m ≥ 2 is
an integer, n ≥ 4 is an even integer, s is an integer with 0 ≤ s < n, and m + s is even. HT(m),
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International Journal of Computer Mathematics 3345

Figure 1. Developing configurations of generalized honeycomb tori. (a) Honeycomb torus HT(3) and its brick
presentation [10], (b) presenting HT(3) as GHT(3, 18, 9) [4], (c) GHT(6, 8, 2), and (d) GHT(6, 8, 4).

m ≥ 2, is isomorphic to GHT(m, 6m, 3m) (Figures 1(a) and (b)). Two examples of GHT(m, n, s)
are shown in Figures 1(c) and (d). Ring embedding is one of the most important subjects in inter-
connection networks [3,6,7,11,12]. Megson et al. studied fault-tolerant ring embedding in HT(m)
with two adjacent faulty nodes [7]. In this paper, finding a fault-free ring in GHT(m, n, n/2) is
intended on the failure of any pair of bipartite nodes and the failure of any one edge. Obviously,
GHT(m, n, n/2) serves as a larger platform that contains HT(m) as a subset, and this paper deals
with more arbitrary faulty conditions than [7]. Moreover, GHT(m, n, n/2) can offer the property
of symmetry, which can help GHT(m, n, n/2) be prototyped for applications. Many studies have
been conducted recently on generalized honeycomb tori [9,10,13,14].

This paper is organized in the following way. In Section 2, we define some graphing terms that
are used in the paper and give a formal definition of the generalized honeycomb torus. In Section
3, we present a recursive property of ring embedding in GHT(m, n, 2/n). In Section 4, we discuss
the ring-embedding properties of GHT(m, n, n/2) − F , where F consists of a pair of nodes from
opposite sets of the partition of V (GHT(m, n, n/2)). In Section 5, we prove the ring-embedding
property of HT(m, n, n/2) − e for any e ∈ E(GHT(m, n, n/2)).

2. Preliminaries

Computer and communication networks are usually represented by graphs, where nodes represent
processors and edges represent links between processors. In this paper, a network is represented
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3346 L.-Y. Hsu et al.

as an undirected graph. For graph definition and notation, we follow [1]. G = (V , E) is a graph,
with V being a finite set and E being a subset of {(u, v)|(u, v) is an unordered pair of V }. We say
that V is the node set, and E is the edge set of G. Two nodes, u and v, are adjacent if (u, v) ∈ E.
A path is a sequence of nodes such that two consecutive nodes are adjacent. A path is delimited
by <x0, x1, x2, . . . , xn−1>. We use P −1 to denote the reverse path <xn−1, . . . , x2, x1, x0> if P is
the path <x0, x1, x2, . . . , xn−1>. A path is called a Hamiltonian path if its nodes are distinct and
span V . A cycle is a path of at least three nodes, such that the first node is the same as the last node.
A cycle is called a Hamiltonian cycle if its nodes are distinct, except for the first node and the last
node, and if they span V . A graph is called Hamiltonian if it has a Hamiltonian cycle. A graph
G = (V , E) is 1-edge Hamiltonian if G − e is Hamiltonian for any e ∈ E.A Hamiltonian bipartite
graph G is 1p-Hamiltonian if G − F remains Hamiltonian for any F = {u, v} with u ∈ B and
v ∈ W , where B and W are the bipartition of G [3,5,7]. The following definition and notions can
be found in [4]. For any two positive integers r and d, we use [r]d to denote r (mod d). Let m, n,
and s be positive integers with m ≥ 2, n ≥ 4, and both n and m + s are even. The generalized
honeycomb torus GHT(m, n, s) is the graph with the node set {(i, j)|0 ≤ i < m, 0 ≤ j < n}, such
that (i, j ) and (k, l) with i ≤ k are adjacent if they satisfy one of the following conditions:

(k, l) = (i, [j ± 1]n), (1)

0 ≤ i ≤ m − 2, i + j is odd, and (k, l) = (i + 1, j), (2)

i = 0, j is even, and (k, l) = (m − 1, [j + s]n). (3)

From condition (1) above, m rings of n nodes can be inherently formed in GHT(m, n, s). The
requirement that n be even is essential for establishing bipartite rings, and then the configuration
regularly composed of rings can give ideas for applying ring embedding to the study of network
performance related to scalability. Moreover, such a performance makes GHT(m, n, s) node-
transitive. We can set a node partition W as {(i, j)|(i, j) ∈ V (GHT(m, n, s)), and i + j is even}
and another partition set B as {(i, j)|(i, j) ∈ V (GHT(m, n, s)), and i + j is odd}. From condition
(2), and on the ring at column i, there are edges extending towards the right (to column i + 1),
where j is odd with i being even, or where j is even with i being odd. Based on condition (3),
there are wrap-around edges connecting the first column (column 0) and the last column (column
m − 1; yet, such wrap-around edges can be transitively assigned to connect any two adjacent
columns); however, on establishing bipartite networks, (m − 1) + (j + s) has to be odd, because
0+j is even. In other words, we can find that m + s being even is a reasonable prerequirement.

All GHT(m, n, s) nodes can have exactly three adjacent nodes, which belong to another par-
tition. Consequently, any generalized honeycomb torus is a 3-regular bipartite graph. We are
interested in a special type of generalized honeycomb torus, GHT(m, n, n/2). We will prove
that any GHT(m, n, n/2) is 1-edge Hamiltonian for n ≥ 4. Moreover, GHT(m, n, n/2) is 1p-
Hamiltonian if and only if n ≥ 6 or m = 2, n ≥ 4. To discuss the 1p-Hamiltonian property of
GHT(m, n, n/2), let F = {u, v} with u ∈ B and v ∈ W . We may assume that (0, 0) ∈ F because
GHT(m, n, n/2) is node-transitive. For this reason, we use F to denote {F |{(0, 0), (x, y)}|(x, y) ∈
B}. Hence, F ∈ F. We use (x, y) to denote the unique element in F − {(0, 0)}. By assumption,
x + y is odd. We define the vertically extensive path patterns Il(i, j) and I−1

l (i, j) for 0 ≤ l < m

and i ≤ j as follows:

Il(i, j) = (l, i), (l, i + 1), (l, i + 2), . . . , (l, j − 1), (l, j),

I−1
l (i, j) = (l, j), (l, j − 1), (l, j − 2), . . . , (l, i + 1), (l, i).

In Section 4, vertically recursive path patterns are similarly generalized as Qt
l (i, j), where Q is

the name of the path pattern; t is the recursive time equal to (j − i)/2; and i and j are row indices
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of the starting and ending nodes of this path. The Q pattern is typically repeated every two rows,
and t can be zero if i = j and omitted if t = 1: i.e., Ql(i, i + 2). Moreover, for sketching required
paths, some path patterns are specifically defined as Sk , where k is a sequentially assigned number.

3. A recursive property – extending the column dimension

In this section, assume that 0 ≤ i < m, and G = GHT(m, n, n/2). S denotes a subset of V (G) ∪
E(G). Let Ai = {((i, j), (i + 1, j))|0 ≤ j < n} for 0 ≤ i ≤ m − 2 and Am−1 = {((0, [j −
n/2]n), (m − 1, j))|0 ≤ j < n}. We define a function, fi , that maps S from G into GHT(m +
2, n, n/2) in the following way:

(1) If (k, l) ∈ S ∩ V (G), where 0 ≤ k ≤ m − 1 and 0 ≤ l ≤ n − 1, then

fi((k, l)) =
{

(k, l) if k ≤ i,

(k + 2, l) if k > i.

(2) If ((k, l), (k′, l′)) ∈ S ∩ E(G), where k ≤ k′, then

fi((k, l), (k′, l′))

=

⎧⎪⎨
⎪⎩

(fi(k, l), fi(k
′, l′)) if

{
k, k′} �= {i, [i + 1]m},

((i + 2, l), (i + 3, l)) if
{
k, k′} = {i, i + 1} for 0 ≤ i ≤ m − 2,

((0, [l′ − n/2]n), (m + 1, l′)) if
{
k, k′} = {0, m − 1} for i = m − 1.

fi(S) is a one-to-one mapping on both nodes and edges. Mapping a Hamiltonian cycle from G

into GHT(m + 2, n, n/2) requires other operations to accommodate extra nodes and edges as a
result of extension in the column dimension. Let H be a Hamiltonian cycle of G − F ′. Although
F ′ theoretically may be any subset of V (G) ∪ E(G), in this section, F ′ specifically denotes a set
that includes one faulty edge or a set of a pair of faulty bipartite nodes. For example, a Hamiltonian
cycle H of GHT(6, 8, 4) − {(0, 0), (5, 0)} is shown in Figure 2(a). If H ∩ Ai �= Ø, a Hamiltonian
cycle Ki(H) of GHT(m + 2, n, n/2) − fi(F

′) can be constructed as follows.

Step 1. Let (i, k0), (i, k1), . . . , (i, kt−1) be the nodes of H on column i. An example is given in
Figure 2(a). If i = 5, then t = 1 and k0 = 2. If i = 1, then t = 3 and k0 = 0, k1 = 2, k2 = 6.
Step 2. Let H be the image of H under fi . For example, in the left half of Figure 2(b), the
solid line shows H = f5(H); in the left half of Figure 2(c), the solid line shows H = f1(H).
Step 3. For 0 ≤ j < t , we set Zj (see the dashed line in Figures 2(b) and (c)) as the path:

(i, kj ), ([i + 1]m+2, kj ), I[i+1]m+2(kj , [k[j+1]t − 1]n), ([i + 1]m+2, [k[j+1]t − 1]n),
([i + 2]m+2, [k[j+1]t − 1]n), I−1

[i+2]m+2([k[j+1]t − 1]n, kj ), ([i + 2]m+2, kj ).

It is easy to see that fi(H) together with the edges of Zj , with 0 ≤ j < t , forms a Hamiltonian
cycle of GHT(m + 2, n, n/2) − fi(F

′) (see the right half of Figures 2(b) and (c)). We denote
this cycle as Ki(H). Then, we can have the following lemmas.

Lemma 3.1 Assume that 0 ≤ i < m. Let H be a Hamiltonian cycle of G − F ′, such that H ∩
Ai �= Ø. Then, Ki(H) is a Hamiltonian cycle of GHT(m + 2, n, n/2) − fi(F

′). Moreover, Ki(H)

contains some edges joining column t to column [t + 1]m+2 for any t in {i, [i + 1]m+2, [i + 2]m+2}.

D
ow

nl
oa

de
d 

by
 [

N
at

io
na

l C
hi

ao
 T

un
g 

U
ni

ve
rs

ity
 ]

 a
t 2

3:
03

 2
4 

A
pr

il 
20

14
 



3348 L.-Y. Hsu et al.

Figure 2. (a) A Hamiltonian cycle H in GHT(6, 8, 4) − {(0, 0), (5, 0)}; (b) K5(H), a Hamiltonian cycle in
GHT(8, 8, 4) − {(0, 0), (5, 0)}; and (c) K1(H), a Hamiltonian cycle in GHT(8, 8, 4) − {(0, 0), (7, 0)}.

Lemma 3.2 (1) Suppose that H is a Hamiltonian cycle of GHT(2, n, n/2) − F ′, such that
H contains some edges in {((0, j), (1, j))|j is odd}. Then K0(H) is a Hamiltonian cycle of
GHT(4, n, n/2) − f0(F

′). Moreover, K0(H) contains some edges joining column t to column
t + 1 for any t in {0, 1, 2}. (2) Suppose that H is a Hamiltonian cycle of GHT(2, n, n/2) − F ′,
such that H contains some edges in {((0, j), (1, [j + n/2]n))|j is even}. Then K1(H) is a Hamil-
tonian cycle of GHT(4, n, n/2) − f1(F

′). Moreover, K1(H) contains some edges joining column
t to column [t + 1]4 for any t in {1, 2, 3}.

Lemma 3.3 (1) Suppose that H is a Hamiltonian cycle of GHT(3, n, n/2) − F ′, such that
H contains some edges in {((0, j), (1, j))|j is odd}. Then K0(H) is a Hamiltonian cycle of
GHT(5, n, n/2) − f0(F

′). Moreover, K0(H) contains some edges joining column t to column
t + 1 for any t in {0, 1, 2}. (2) Suppose that H is a Hamiltonian cycle of GHT(3, n, n/2) − F ′,
such that H contains some edges in {((1, j), (2, j))|j is even}. Then K1(H) is a Hamiltonian
cycle of GHT(5, n, n/2) − f1(F

′). Moreover, K1(H) contains some edges joining column t to col-
umn t + 1 for any t in {1, 2, 3}. (3) Suppose that H is a Hamiltonian cycle of GHT(3, n, n/2) − F ′,
such that H contains some edges in {((0, j), (2, [j + n/2]n))|j is even}. Then K2(H) is a Hamil-
tonian cycle of GHT(5, n, n/2) − f2(F

′). Moreover, K2(H) contains some edges joining column
t to column [t + 1]5 for any t in {2, 3, 4}.

We say a Hamiltonian cycle H of GHT(2, n, n/2) − F ′ is regular if H contains some edges
in {((0, j), (1, j))|j is odd} and some edges in {((0, j), (1, [j + n/2]n))|j is even}. In general,
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a Hamiltonian cycle H of G − F ′ is regular if H ∩ Ai �= Ø for 0 ≤ i < m and m ≥ 2. Then the
following lemma is derived from Lemmas 3.1–3.3.

Lemma 3.4 Suppose that H is a regular Hamiltonian cycle for G − F ′. Then Ki(H) is a regular
Hamiltonian cycle of GHT(m + 2, n, n/2) − fi(F

′) for every 0 ≤ i < m.

4. The 1p-Hamiltonian property of GHT(m, n, n/2)

Throughout this section, let k = n/2. We first prove that GHT(m, n, k) is 1p-Hamiltonian for m =
2, 3, 4, and then prove the 1p-Hamiltonian property of general m using mathematical induction.

Theorem 4.1 Let n ≡ 0(mod 4). GHT(2, n, k) is 1p-Hamiltonian for n ≥ 4.

Proof Let G = GHT(2, n, k) and F ∈ F(GHT(2, n, k)). Using the symmetry of G, it suffices
to show that G − F is Hamiltonian, where F = {(0, 0), (x, y)|x ∈ {0, 1}, 0 ≤ y ≤ k; x + y is
odd}. We define some path patterns as follows.

S1 = (0, 1), (0, 2), (1, 2 + k), (1, 3 + k), (1, 4 + k), (0, 4),

S2 = (0, 4), (0, 3), (1, 3), (1, 2), (0, 2 + k), (0, 3 + k), (0, 4 + k), (1, 4),

S3 = (1, n − 3), (1, n − 2), (0, k − 2), (0, k − 1), (0, k), (0, k + 1), (1, k + 1), (1, k),

(1, k − 1), (1, k − 2), (0, n − 2), (0, n − 1), (1, n − 1), (1, 0), (1, 1), (0, 1),

S4 = (1, y − 1), (1, y), (1, y + 1), (1, y + 2), (0, y + 2), (0, y + 1),

S5 = (1, k + y + s), (1, k + y + s − 1), (0, k + y + s − 1), (0, k + y + s),

(0, k + y + s + 1), (1, k + y + s + 1), (s = 1 if y is odd, otherwise s = 0),

S6 = (1, 0), (1, 1), (0, 1), (0, 2), (1, 2 + k), (1, 1 + k), (1, k), (1, k − 1), (0, k − 1),

(0, k), (0, k + 1), (0, k + 2), (1, 2),

A1(i, i + 2) = (1, i), (1, i + 1), (0, i + 1 − k), (0, i + 2 − k), (1, i + 2 − k), (1, i + 1 − k),

(0, i + 1), (0, i + 2), (1, i + 2),

B1(i, i + 2) = (1, i), (1, i + 1), (0, i + 1), (0, i + 2), (1, i + 2 + k), (1, i + 1 + k),

(0, i + 1 + k), (0, i + 2 + k), (1, i + 2),

C1(i, i + 2) = (1, i), (1, i + 1), (0, i + 1 − k), (0, i − k), (1, i − k), (1, i − k + 1),

(0, i + 1), (0, i + 2), (1, i + 2),

D1(i, i + 2) = (1, i), (1, i + 1), (0, i + 1), (0, i + 2), (1, i + 2 + k), (1, i + 3 + k),

(0, i + 3 + k), (0, i + 2 + k), (1, i + 2),

The corresponding Hamiltonian cycles in G − F are constructed below in Cases 1–3.

Case 1 n = 4.

(x, y) the Hamiltonian cycle C in G − {(0, 0), (x, y)}
(0, 1) (0, 2), (0, 3), (1, 3), (1, 2), (1, 1), (1, 0), (0, 2) (Figure 3(z))
∗(1, 0) (0, 1), (0, 2), (0, 3), (1, 3), (1, 2), (1, 1), (0, 1) (Figure 3(f))
∗(1, 2) (0, 1), (0, 2), (0, 3), (1, 3), (1, 0), (1, 1), (0, 1) (Figure 3(1))

D
ow

nl
oa

de
d 

by
 [

N
at

io
na

l C
hi

ao
 T

un
g 

U
ni

ve
rs

ity
 ]

 a
t 2

3:
03

 2
4 

A
pr

il 
20

14
 



3350 L.-Y. Hsu et al.

1p-Hamiltonian - GHT(2, n, n /2) w. faulty (0, 0),  (0, y)

1p-Hamiltonian - GHT(4, n, n /2) w. faulty (0, 0),  (2, y)

1p-Hamiltonian - GHT(2, n, n /2) w. faulty (0, 0),  (1, y)

1p-Hamiltonian - GHT(3, n, n /2) w. faulty (0, 0),  (1, y)

1p-Hamiltonian - GHT(4, n, n /2) w. faulty (0, 0),  (2, y)

1-edge Hamiltonian - GHT(m, n, n /2) w. faulty edge from (0, 0) to (0,1)/(0, n–1)/(m–1, n /2)

1p-Hamiltonian - GHT(m, n, n /2) Special Cases

(a) n ≥ 8
 y = 1

(b) n ≥ 16
 y = 3

(c) n ≥ 20
5 ≤ y ≤ n /2–5

(d) n ≥ 12
y = n /2–3

(e) n ≥ 8
y = n /2–1

(f) n ≥ 4
y = 0* Irregular
           Pattern

(g) n ≥ 8
y = 2

(h) n ≥ 12
4 ≤ y ≤ n /2–2

(i) n ≥ 8
y = n /2

( j) n ≥ 10
 y = 1

(k) n ≥ 14
 y = 3

(l) n ≥ 18
5 ≤ y ≤ n /2–4

(m) n ≥ 10
y = n /2–2

(n) n ≥ 6
y = n /2

(o) n ≥ 6
y = 0

(p) n ≥ 10
2 ≤ y ≤ n /2–3

(q) n ≥ 10
y = n / 2–1

(4) m = 3, n ≥ 6
(0, 0)→(0, 1)

(2, 25)

(3, 23)
(3, 7)

(0, 3)

(0, 3)

(2, 25)

(0, 1)
(0, 3)

(1, 23)

(0, 5)
(0, 7)

(0, 9)

(0, 11)

(1, 23) (1, 23) (1, 23)

(1, 12)

(1, 8)

(1, 2)

(1, 23)

(2, 25) (2, 25) (2, 25)

(0, 6)

(0, 12)(0, 11)
(0, 13)

(0, 7)

(0, 1)

(0, 9)

S11

S12

S8

E0

J2

S7

S10

S9

C1

C1
S5

B1
D1D1

B1

S1

S2

S4

S5

S3S3

S4

S2

A1

A1

S1 S1 S6

S4

S3

S5

F0

G2

H2

K3

L3

(w) m = 4, n = 8

(z) m = 2, n = 4
w. (0, 0), (0, 1)

(1) m = 2,
       n = 4.
  w. (0, 0),
       (1, 2)

(y) m = 2, n = 12
w. (0, 0), (1, 0)

(v) m = 3, n = 6
(2, 5)

(0, 2)

(1, 11)

(1, 23) (3, 23)

(2, 25)
(1, 23) (1, 23)

(12) m = 2, n = 4
(0, 0) →(0, 1)

Legend

vertical extension

recursive path from j > y
(A1, C1, F0 

, G2, J2, K3)

recursive path from j > y
(B1, D1, E0 

, H2, L3)

required path
(including S1, ..., S12)

faulty link or node- (i, j)

(1, 3)

(5) m = 3, n ≥ 6
(0, 0)→(0, n–1)

(6) m = 3, n ≥ 6
(0, 0)→(2, n/2)

(7) m = 2, n ≥ 8
(0, 0)→(0, 1)

(8) m = 2, n ≥ 8
(0, 0)→(0, n–1)

(9) m = 2, n ≥ 8
(0, 0)→(1, n/2)

(10) m = 2, n = 4
(0, 0)→(1, 2)

(11) m = 2, n = 4
(0, 0)→(0, 3)

( r) n ≥ 8
 y = 1

(s) n ≥ 12
 y = 3

(t) n ≥ 12
5 ≤ y ≤ n /2–1

(u) m = 3, n = 6 (x) m = 2, n ≥ 16
w. (0, 0), (1, 0)

(2) m = 4, n ≥ 8
w. (0, 0), (1, 0)

(3) m = 4, n ≥ 12
w. (0, 0), (3, 0)

Figure 3. Basic cases for proving GHT(m, n, n/2) 1p-Hamiltonian and 1-edge Hamiltonian.
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Case 2 n ≥ 8. x = 0, y is odd.

y the Hamiltonian cycle C in G − {(0, 0), (0, y)}
y = 1 (n ≥ 8) (1, 0), I1(1, k + 1), (1, k + 1), (0, k + 1), I0(k + 1, n − 1), (0, n − 1),

(1, n − 1), I−1
1 (n − 1, k + 2), (1, k + 2), (0, 2), I0(2, k), (0, k), (1, 0)

(Figure 3(a))
y = 3 (n ≥ 16) (0, 1), S1, (0, 4), S−1

4 , (1, 2), (0, 2 + k), (0, 3 + k), (0, 4 + k), (0, 5 + k),

(1, 5 + k), A
(k−8)/2
1 (5 + k, n − 3), (1, n − 3), S3, (0, 1) (Figure 3(b))

5 ≤ y ≤ k − 5 (0, 1), S1, (0, 4), S2, (1, 4), B
(y−5)/2
1 (4, y − 1), (1, y − 1), S4, (0, y + 1),

(n ≥ 20) (1, y + 1 + k), S5, (1, y + 2 + k), A
(k−y−5)/2
1 (y + 2 + k, n − 3), (1, n − 3),

S3, (0, 1) (Figure 3(c))

y = k − 3 (1, 0), D
(k−6)/2
1 (0, k − 6), (1, k − 6), (1, k − 5), (0, k − 5), (0, k − 4),

(n ≥ 12) (1, n − 4), I1(n − 4, n − 2), (1, n − 2), (0, k − 2), I0(k − 2, k + 1),
(0, k + 1), (1, k + 1), I−1

1 (k + 1, k − 4), (1, k − 4), (0, n − 4),

I0(n − 4, n − 1), (0, n − 1), (1, n − 1), (1, 0) (Figure 3(d))

y = k − 1 (1, 0), D
(k−4)/2
1 (0, k − 4), (1, k − 4), (1, k − 3), (0, k − 3), (0, k − 2),

(n ≥ 8) (1, n − 2), (1, n − 1), (0, n − 1), (0, n − 2), (1, k − 2), I1(k − 2, k + 1),
(1, k + 1), (0, k + 1), (0, k), (1, 0)) (Figure 3(e))

Case 3 n ≥ 8, x = 1, y is even.

y the Hamiltonian cycle C in G − {(0, 0), (1, y)}
∗y = 0 (n ≥ 8) (0, 1), I0(1, n − 1), (0, n − 1), (1, n − 1), I−1

1 (n − 1, 1), (1, 1), (0, 1)

(Figure 3(f))
y = 0 (n = 12) (0, 1), (0, 2), (1, 8), I−1

1 (8, 4), (1, 4), (0, 10), (0, 11), (1, 11), I−1
1 (11, 9),

(1, 9), (0, 9), I−1
0 (9, 3), (0, 3), (1, 3), (1, 2), (1, 1), (0, 1) (Figure 3(y))

y = 0 (n ≥ 16) (0, 1), S1, (0, 4), (0, 3), (1, 3), (1, 4), (1, 5), (0, 5), I0(5, k + 1), (0, k + 1),
(1, k + 1), I−1

1 (k + 1, 6), (1, 6), (0, k + 6), I0(k + 6, n − 1), (0, n − 1),
(1, n − 1), I−1

1 (n − 1, k + 5), (1, k + 5), (0, k + 5), I−1
0 (k + 5, k + 2),

(0, k + 2), (1, 2), (1, 1), (0, 1) (Figure 3(x))
y = 2 (n ≥ 8) (1, 0), (1, 1), (0, 1), (0, 2), (1, k + 2), I−1

1 (2 + k, k − 1), (1, k − 1),

(0, k − 1), I0(k − 1, k + 3), (0, k + 3), (1, k + 3), C
(k−4)/2
1 (k + 3, n − 1),

(1, n − 1), (1, 0) (Figure 3(g))

4 ≤ y ≤ k − 2 (1, 0), S6, (1, 2), B
(y−4)/2
1 (2, y − 2), (1, y − 2), (1, y − 1), (0, y − 1),

(0, y), (1, y + k),

(n ≥ 12) S5, (1, y + k + 1), C
(k−y−2)/2
1 (y + k + 1, n − 1), (1, n − 1), (1, 0)

(Figure 3(h))
y = k(n ≥ 8) (1, 0), (1, 1), (0, 1), I0(1, k − 2), (0, k − 2), (1, n − 2), I−1

1 (n − 2, k + 1),
(1, k + 1), (0, k + 1), (0, k), (0, k − 1), (1, k − 1), I−1

1 (k − 1, 2), (1, 2),
(0, k + 2), I0(k + 2, n − 1), (0, n − 1), (1, n − 1), (1, 0) (Figure 3(i))

Obviously, these Hamiltonian cycles above in G − F are regular except in the cases marked with
an asterisk (*). More precisely, for n ≥ 4 and for any F ∈ F(GHT(2, n, k), GHT(2, n, k) − F

has a regular Hamiltonian cycle except for GHT(2,4,2)–{(0,0),(1,0)}, GHT(2,4,2)–{(0,0),(1,2)},
and GHT(2,8,4)–{(0,0),(1,0)}. �

D
ow

nl
oa

de
d 

by
 [

N
at

io
na

l C
hi

ao
 T

un
g 

U
ni

ve
rs

ity
 ]

 a
t 2

3:
03

 2
4 

A
pr

il 
20

14
 



3352 L.-Y. Hsu et al.

Theorem 4.2 Let n ≡ 2(mod 4). GHT(3, n, k) is 1p-Hamiltonian for n ≥ 6. Moreover, there is
a regular Hamiltonian cycle in GHT(3, n, k) − F for any F ∈ F(GHT(3, n, k)).

Proof Let G = GHT(3, n, k) and F ∈ F(GHT(3, n, k)). Using the symmetry of G, it suffices
to show that G − F is Hamiltonian, where F = {(0, 0), (x, y)|x ∈ {0, 1}, 0 ≤ y ≤ k; x + y is
odd}. We define some path patterns as follows.

S7 = (2, y), (2, y + 1), (1, y + 1), (1, y), (1, y − 1), (2, y − 1), (2, y − 2),

(0, y − 2 + k), (0, y − 1 + k), (1, y − 1 + k), (1, y − 2 + k),

(2, y − 2 + k), (2, y − 1 + k), (0, y − 1),

S8 = (0, 4), (0, 3), (1, 3), (1, 2), (2, 2), (2, 1), (2, 0), (1, 0), (1, 1), (0, 1), (0, 2),

(2, k + 2), I−1
2 (k + 2, k − 2), (2, k − 2), (0, n − 2), (0, n − 1), (1, n − 1),

(1, n − 2), (2, n − 2), (2, n − 1), (0, k − 1), I0(k − 1, k + 2), (0, k + 2),

(1, k + 2), I−1
1 (k + 2, k − 2), (1, k − 2), (0, k − 2), (0, k − 3), (2, n − 3),

(2, n − 4), (1, n − 4), (1, n − 3), (0, n − 3), (0, n − 4), (2, k − 4),

S9 = (2, 1), (0, k + 1), (0, k + 2), (1, k + 2), I−1
1 (k + 2, k), (1, k), (0, k), I−1

0

(k, k − 2), (0, k − 2), (1, k − 2), (1, k − 1), (2, k − 1),

I2(k − 1, k + 1), (2, k + 1),

S10 = (0, n − 2), (0, n − 1), (1, n − 1), (1, n − 2), (2, n − 2), (2, n − 1), (2, 0),

(1, 0), (1, 1), (0, 1), (0, 2), (2, k + 2), (2, k + 1), S−1
9 , (2, 1), (2, 2),

E0(i, i + 2) = (0, i), (2, k + i), (2, k + i − 1), (1, k + i − 1), (1, k + i), (0, k + i),

(0, k + i − 1), (2, i − 1), (2, i), (1, i), (1, i + 1), (0, i + 1), (0, i + 2),

F0(i, i + 2) = (0, i), (0, i + 1), (1, i + 1), (1, i), (2, i), (2, i + 1), (0, i − k + 1), (0, i − k),

(1, i − k), (1, i − k + 1), (2, i − k + 1), (2, i − k + 2), (0, i + 2),

G2(i, i + 2) = (2, i), (2, i + 1), (0, i − k + 1), (0, i − k), (1, i − k), (1, i − k + 1),

(2, i − k + 1), (2, i − k + 2), (0, i + 2), (0, i + 3), (1, i + 3),

(1, i + 2), (2, i + 2),

H2(i, i + 2) = (2, i), (1, i), (1, i + 1), (0, i + 1), (0, i + 2), (2, k + i + 2), (2, k + i + 1),

(1, k + i + 1), (1, k + i + 2), (0, k + i + 2), (0, k + i + 1),

(2, i + 1), (2, i + 2),

J2(i, i + 2) = (2, i), (0, i + k), (0, k + i + 1), (1, k + i + 1), (1, k + i), (2, k + i),

(2, k + i + 1), (0, i + 1), (0, i + 2), (1, i + 2), (1, i + 3),

(2, i + 3), (2, i + 2).
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Case 1 x = 0, y is odd.

y the Hamiltonian cycle C in G − {(0, 0), (0, y)}
y = 1(n = 6) (0, 2), I0(2, 5), (0, 5), (1, 5), I−1

1 (5, 0), (1, 0), (2, 0), I2(0, 5), (2, 5), (0, 2)

(Figure 3(v))
y = 1(n ≥ 10) (0, 2), I0(2, k − 2), (0, k − 2), (1, k − 2), I−1

1 (k − 2, 0), (1, 0), (2, 0),
(2, n − 1), (0, k − 1), (0, k), (1, k), (1, k − 1), (2, k − 1), (2, k), (2, k + 1),

(1, k + 1), I1(k + 1, n − 3), (1, n − 3), (0, n − 3), I−1
0 (n − 3, k + 1),

(0, k + 1), (2, 1), I2(1, k − 2), (2, k − 2), (0, n − 2), (0, n − 1), (1, n − 1),

(1, n − 2), (2, n − 2), I−1
2 (n − 2, k + 2), (2, k + 2), (0, 2) (Figure 3(j))

y = 3(n ≥ 14) (0, 1), (0, 2), (2, k + 2), (2, k + 3), (1, k + 3), I1(k + 3, n − 1), (1, n − 1),
(0, n − 1), I−1

0 (n − 1, k + 3), (0, k + 3), (2, 3), I2(3, k + 1), (2, k + 1),
(1, k + 1), (1, k + 2), (0, k + 2), (0, k + 1), (2, 1), (2, 2), (1, 2), I1(2, k),
(1, k), (0, k), I−1

0 (k, 4), (0, 4), (2, k + 4), I2(k + 4, n − 1), (2, n − 1),
(2, 0), (1, 0), (1, 1), (0, 1) (Figure 3(k))

5 ≤ y ≤ k − 4 (0, 4), S8, (2, k − 4), J
−1(k−y−4)/2
2 (k − 4, y), (2, y), S7, (0, y − 1), E

−1(y−5)/2
0

(n ≥ 18) (y − 1, 4), (0, 4) (Figure 3(l))
y = k − 2 (0, 1), I0(1, k − 3), (0, k − 3), (2, n − 3), I−1

2 (n − 3, 0), (2, 0), (1, 0),
(n ≥ 10) (1, n − 1), (0, n − 1), I−1

0 (n − 1, k − 1), (0, k − 1), (2, n − 1), (2, n − 2),

(1, n − 2), I−1
1 (n − 2, 1), (1, 1), (0, 1) (Figure 3(m))

y = k(n ≥ 6) (0, 1), I0(1, k − 1), (0, k − 1), (2, n − 1), I−1
2 (n − 1, 2), (2, 2), (1, 2),

I1(2, n − 1), (1, n − 1), (0, n − 1), I−1
0 (n − 1, k + 1), (0, k + 1), (2, 1),

(2, 0), (1, 0), (1, 1), (0, 1) (Figure 3(n))

Case 2 x = 1, y is even.

y the Hamiltonian cycle C in G − {(0, 0), (1, y)}
y = 0 (n ≥ 6) (2, 1), S9, (2, k + 1), G

(k−3)/2
2 (k + 1, n − 2), (2, n − 2), (2, n − 1), (2, 0),

(2,1) (Figure 3(o))
y = 2 (n = 6) (0, 1), (0, 2), (0, 3), (1, 3), (1, 4), (1, 5), (0, 5), (0, 4), (2, 1), I2(1, 5), (2, 5),

(2, 0), (1, 0), (1, 1), (0, 1) (Figure 3(u))

2 ≤ y ≤ k − 3 (2, 2), H
(y−2)/2
2 (2, y), (2, y), (2, y + 1), (0, k + y + 1),

(n ≥ 10) F
(k−y−3)/2
0 (y + k + 1, n − 2), (0, n − 2), S10, (2, 2) (Figure 3(p))

y = k − 1 (0, 1), I0(1, k − 2), (0, k − 2), (1, k − 2), I−1
1 (k − 2, 2), (1, 2), (2, 2),

(n ≥ 10) I2(2, n − 1), (2, n − 1), (0, k − 1), (0, k), (1, k), I1(k, n − 1), (1, n − 1),

(0, n − 1), I−1
0 (n − 1, k + 1), (0, k + 1), (2, 1), (2, 0), (1, 0), (1, 1), (0, 1)

(Figure 3(q))

It is easy to see that these Hamiltonian cycles above of G − F are regular. �

We would like to apply Theorem 4.1 and Lemma 3.2 to prove that GHT(4, n, k) is 1p-
Hamiltonian for n ≥ 8 and that a regular Hamiltonian cycle exists when GHT(4, n, k) contains
a pair of faulty nodes. However, with Theorem 4.1, no regular Hamiltonian cycle exists in
GHT(2, 8, 4)−{(0, 0), (1, 0)}. Thus, we need the following lemma.
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Lemma 4.3 Let n ≡ 0(mod 4) and n ≥ 8. GHT(4, n, k) − F has a regular Hamiltonian cycle
when F ∈ {{(0, 0), (1, 0)}, {(0, 0), (3, 0)}}.
Proof Let F = {(0, 0), (x, 0)}|x = 1, 3}. The corresponding regular Hamiltonian cycles are
listed in the following table.

x the Hamiltonian cycle C in G − F

x = 1 (n ≥ 8) (0, 1), I0(1, k − 1), (0, k − 1), (1, k − 1), I1(k − 1, n − 3), (1, n − 3),

(0, n − 3), I−1
0 (n − 3, k), (0, k), (3, 0), I3(0, k − 3), (3, k − 3), (2, k − 3),

I−1
2 (k − 3, 0), (2, 0), (2, n − 1), (3, n − 1), I−1

3 (n − 1, k − 2), (3, k − 2),
(0, n − 2), (0, n − 1), (1, n − 1), (1, n − 2), (2, n − 2), I−1

2 (n − 2, k − 2),

(2, k − 2), (1, k − 2), I−1
1 (k − 2, 1), (1, 1), (0, 1) (Figure 3(2))

x = 3 (n = 8) (0, 1), I0(1, 5), (0, 5), (1, 5), I−1
1 (5, 2), (1, 2), (2, 2), (2, 1), (3, 1), (3, 2),

(0, 6), (0, 7), (1, 7), (1, 6), (2, 6), I−1
2 (6, 3), (2, 3), (3, 3), I3(3, 7), (3, 7),

(2, 7), (2, 0), (1, 0), (1, 1), (0, 1)(Figure 3(w))
x = 3 (n ≥ 12) (0, 1), (1, 1), (1, 2), (1, 3), (0, 3), I0(3, k + 1), (0, k + 1), (1, k + 1),

I−1
1 (k + 1, 4), (1, 4), (2, 4), I2(4, k + 2), (2, k + 2), (1, k + 2),

I1(k + 2, n − 2), (1, n − 2), (2, n − 2), I−1
2 (n − 2, k + 3), (2, k + 3),

(3, k + 3), I3(k + 3, n − 1), (3, n − 1), (2, n − 1), (2, 0), (1, 0), (1, n − 1),

(0, n − 1), I−1
0 (n − 1, k + 2), (0, k + 2), (3, 2), (3, 1), (2, 1), (2, 2),

(2, 3), (3, 3), I3(3, k + 2), (3, k + 2), (0, 2), (0, 1) (Figure 3(3))

�

Theorem 4.4 Let n ≡ 0(mod 4). GHT(4, n, k) is 1p-Hamiltonian for n ≥ 8. Moreover, there is
a regular Hamiltonian cycle in GHT(4, n, k) − F for any F ∈ F(GHT(4, n, k)).

Proof Let G = GHT(4, n, k). With Theorem 4.1 and Lemmas 3.2 and 4.3, G − {(0, 0), (x, y)}
is Hamiltonian, and the corresponding Hamiltonian cycles are regular when x ∈ {0, 1, 3}.
Thus, using the symmetry of G, we need to show only that G − F is Hamiltonian, where
F = {(0, 0), (2, y)|0 ≤ y ≤ k; y is odd}. We will now define some path patterns.

S11 = (0, 1), (1, 1), (1, 0), (2, 0), (2, n − 1), (3, n − 1), (3, 0), (0, k), I0(k, k + 3),

(0, k + 3), (1, k + 3), I−1
1 (k + 3), (1, k), (2, k), I2(k, k + 4), (2, k + 4),

(1, k + 4), (1, k + 5), (0, k + 5), (0, k + 4), (3, 4),

S12 = (3, k), I3(k, k + 4), (3, k + 4), (0, 4), (0, 5), (1, 5), (1, 4), (2, 4), (2, 3), (3, 3),

(3, 2), (3, 1), (2, 1), (2, 2), (1, 2), (1, 3), (0, 3), (0, 2), (0, 1),

L3(i, i + 2) = (3, i), (3, i + 1), (2, i + 1), (2, i + 2), (1, i + 2), (1, i + 3), (0, i + 3),

(0, i + 2), (3, k + i + 2), (3, k + i + 1), (2, k + i + 1), (2, k + i + 2),

(1, k + i + 2), (1, k + i + 3), (0, k + i + 3), (0, k + i + 2), (3, i + 2),

K3(i, i + 2) = (3, i), (0, k + i), (0, k + i + 1), (1, k + i + 1), (1, k + i), (2, k + i),

(2, k + i − 1), (3, k + i − 1), (3, k + i), (0, i), (0, i + 1), (1, i + 1), (1, i),

(2, i), (2, i + 1), (3, i + 1), (3, i + 2).
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y the Hamiltonian cycle C in G − {(0, 0), (2, y)}
y = 1 (n ≥ 8) (0, 1), I0(1, k − 2), (0, k − 2), (3, n − 2), I−1

3 (n − 2, k − 1), (3, k − 1),

(2, k − 1), I−1
2 (k − 1, 2), (2, 2), (1, 2), I1(2, k − 1), (1, k − 1), (0, k − 1),

I0(k − 1, n − 3), (0, n − 3), (1, n − 3), I−1
1 (n − 3, k), (1, k), (2, k),

I2(k, n − 2), (2, n − 2), (1, n − 2), (1, n − 1), (0, n − 1), (0, n − 2),

(3, k − 2), I−1
3 (k − 2, 0), (3, 0), (3, n − 1), (2, n − 1), (2, 0), (1, 0),

(1, 1), (0, 1) (Figure 3(r))
y = 3 (n ≥ 8) (0, 1), (0, 2), (3, k + 2), I3(k + 2, n − 1), (3, n − 1), (3, 0), (3, 1), (2, 1),

(2, 2), (1, 2), (1, 3), (0, 3), I0(3, k + 1), (0, k + 1), (1, k + 1), I−1
1 (k + 1, 4),

(1, 4), (2, 4), I2(4, k + 1), (2, k + 1), (3, k + 1), I−1
3 (k + 1, 2), (3, 2),

(0, k + 2), I0(k + 2, n − 1), (0, n − 1), (1, n − 1), I−1
1 (n − 1, k + 2),

(1, k + 2), (2, k + 2), I2(k + 2, n − 1), (2, n − 1), (2, 0), (1, 0), (1, 1), (0, 1)

(Figure 3(s))

5 ≤ y ≤ k − 1 (0, 1), S11, (3, 4), L
(y−5)/2
3 (4, y − 1), (3, y − 1), (3, y), (3, y + 1), K

(k−y−1)/2
3

(n ≥ 12) (y + 1, k), (3, k), S12, (0, 1) (Figure 3(t))

It is obvious that the Hamiltonian cycles of G − F shown above are regular. �

In general, after establishing the start regularity pattern with 1p-Hamiltonian property, extend-
ing the 1p-Hamiltonian property for a larger m can be proven by the available condition; i.e., the
regularity (for recursively embedding a pair of rings between and before/after the pair of faulty
nodes). Theorem 4.1 has proven the related performance for m = 2, and n ≥ 4. However, some
patterns listed in this theorem are not regular and cannot be used (for n = 4) or used directly for
proving 1p-Hamiltonian when m > 2; therefore, Lemma 4.3 has to be discussed.

Theorem 4.2 proves the related performance for m = 3, n ≥ 6, and all patterns shown in this
theorem are regular. Therefore, extending the performance for m > 3 being odd can be proven
through recursive ring embedding that is started from m = 3. Moreover, an extension of such
1p-Hamiltonian proof for m > 2 being even needs to consider the regularity pattern for a pair of
faulty nodes separated by odd columns; hence, Theorem 4.4 has been proven.

Theorem 4.5 GHT(m, n, k) is 1p-Hamiltonian if and only if either n ≥ 6 or m = 2, n ≥ 4.

Proof By Theorem 4.1, GHT(2, 4, 2) is 1p-Hamiltonian; we first prove that GHT(m,4,2) is not
1p-Hamiltonian for any m �= 2. If m is odd, by definition, GHT(m,4,2) cannot exist because
m+2 cannot be even. Hence, we show only that GHT(m,4,2) is not 1p-Hamiltonian for any
m ≥ 4, m being even. Suppose that F = {(0, 0), (1, 2)}. Obviously, degGHT(m,4,2)−F (v) = 2 where
v ∈ {(0, 1), (0, 3), (1, 1), (1, 3)}. Therefore, any Hamiltonian cycle of GHT(m, 4, 2) − F must
include the following edge set: {((0, 1), (0, 2)), ((0, 2), (0, 3)), ((0, 3), (1, 3)), ((1, 3), (1, 0)),
((1, 0), (1, 1)), ((1, 1), (0, 1))}; however, this edge set induces a cycle of length 6. Thus,
GHT(m, 4, 2) is not 1p-Hamiltonian if m �= 2.

Then we prove that GHT(m, n, k), n ≥ 6, is 1p-Hamiltonian by induction with m. By Theorem
4.1, 4.2, and 4.4 and Lemma 4.3, we know that GHT(m, n, k) is 1p-Hamiltonian for n ≥ 6, m =
2, 3, 4. Using node-transitiveness, we let F ∈ F(GHT(m, n, k)) and (x, y) be the only element in
F − {(0, 0)}. Let m′ be an integer with the same parity (even or odd) of m and 3 ≤ m′ < m. Now
we consider the case where m ≥ 5. Assume that GHT(m′, n, k) is 1p-Hamiltonian and a regular
Hamiltonian cycle exists in GHT(m′, n, k) − F . Suppose that x < m − 2. By induction, a regular
Hamiltonian cycle H of GHT(m − 2, n, k) − F exists. By Lemma 3.4, Km′−1(H) is a regular
Hamiltonian cycle of GHT(m, n, k) − F . Suppose that x ≥ m − 2. By induction, there exists a
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regular Hamiltonian cycle H of GHT(m − 2, n, k) − {(0, 0), (x − 2, y)}. By Lemma 3.4, K0(H)

is a regular Hamiltonian cycle of GHT(m, n, k) − F . Hence, the theorem holds for n ≥ 6. The
theorem is proven. �

5. The 1-edge Hamiltonian property of GHT(m, n, n/2)

Throughout this section, let k = n/2. We first prove that GHT(m, n, k) is 1-edge Hamiltonian
for m ∈ {2, 3} and then prove the 1-edge Hamiltonian property of general m using mathematical
induction.

Theorem 5.1 Let n ≡ 0(mod 4). GHT(2, n, k) is 1-edge Hamiltonian for n ≥ 4. Moreover, there
is a regular Hamiltonian cycle in GHT(2, n, k) − e for any e ∈ E(GHT(2, n, k)).

Proof Let G = GHT(2, n, k). Using the symmetry of G, we need to show only that
G − e has a regular Hamiltonian cycle for e ∈ {((0, 0), (0, 1)), ((0, 0), (0, n − 1)), ((0, 1),
(1, 1)), ((0, 0), (1, k))}. There are two cases.

Case 1 n = 4. The corresponding Hamiltonian cycles are as follows:

e the Hamiltonian cycle C in G − e

((0, 0), (0, 1)) (0, 0), (0, 3), (0, 2), (0, 1), (1, 1), (1, 0), (1, 3), (1, 2), (0, 0)

(Figure 3(12))
((0, 0), (0, n − 1)) or (0, 0), I0(0, 3), (0, 3), (1, 3), (1, 0), (1, 1), (1, 2), (0, 0) (Figure 3(11))
((0, 1), (1, 1))

((0, 0), (1, k)) (0, 0), (0, 1), (0, 2), (1, 0), I1(0, 3), (1, 3), (0, 3), (0, 0) (Figure 3(10))

Case 2 n ≥ 8. The corresponding Hamiltonian cycles are as follows:

e the Hamiltonian cycle C in G − e

((0,0),(0,1)) (0, 0), (1, k), I−1
1 (k, 1), (1, 1), (0, 1), I0(1, k), (0, k), (1, 0), (1, n − 1),

I−1
1 (n − 1, k + 1), (1, k + 1), (0, k + 1), I0(k + 1, n − 1), (0, n − 1),

(0, 0) (Figure 3(7))
((0,0),(0,n − 1)) (0, 0), (1, k), I1(k, n − 1), (1, n − 1), (0, n − 1), I−1

0 (n − 1, k), (0, k),

or ((0, 1), (1, 1)) (1, 0), I1(0, k − 1), (1, k − 1), (0, k − 1), I−1
0 (k − 1, 0), (0, 0) (Figure 3(8))

((0, 0), (1, k)) (0, 0), I0(0, k − 2), (0, k − 2), (1, n − 2), I−1
1 (n − 2, k − 1), (1, k − 1),

(0, k − 1), I0(k − 1, n − 2), (0, n − 2), (1, k − 2), I−1
1 (k − 2, 0), (1, 0),

(1, n − 1), (0, n − 1), (0, 0) (Figure 3(9))

Obviously, the Hamiltonian cycles above are regular. The theorem is proven. �

Theorem 5.2 Letn ≡ 2(mod 4). GHT(3, n, k) is 1-edge Hamiltonian forn ≥ 4. Moreover, there
is a regular Hamiltonian cycle in GHT(3, n, k) − e for any e ∈ E(GHT(3, n, k)).

Proof Let G = GHT(3, n, k). Using the symmetry of G, we need to show only that G − e has
a regular Hamiltonian cycle for e∈{((0, 0), (0, 1)), ((0, 0), (0, n−1)), ((0, 1), (1, 1)), ((0, 0),
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(2, k))}. The corresponding Hamiltonian cycles are as follows:

e the Hamiltonian cycle C in G − e

((0, 0), (0, 1)) (0, 0), (0, n − 1), I−1
0 (n − 1, k), (0, k), (1, k), I−1

1 (k, 1), (1, 1), (0, 1),
I0(1, k − 1), (0, k − 1), (2, n − 1), I−1

2 (n − 1, k + 1), (2, k + 1),
(1, k + 1), I1(k + 1, n − 1), (1, n − 1), (1, 0), (2, 0), I2(0, k), (2, k),
(0, 0) (Figure 3(4))

((0, 0), (0, n − 1)) (0, 0), I0(0, k − 1), (0, k − 1), (2, n − 1), I−1
2 (n − 1, k + 1), (2, k + 1),

or ((0, 1), (1, 1)) (1, k + 1), I1(k + 1, n − 1), (1, n − 1), (0, n − 1), I−1
0 (n − 1, k), (0, k),

(1, k), I−1
1 (k, 0), (1, 0), (2, 0), I2(0, k), (2, k), (0, 0) (Figure 3(5))

((0, 0), (1, k)) (0, 0), (0, n − 1), I−1
0 (n − 1, k + 1), (0, k + 1), (2, 1), (2, 0), (2, n − 1),

I−1
2 (n − 1, k + 2), (2, k + 2), (0, 2), I0(2, k), (0, k), (1, k), I−1

1 (k, 2),

(1, 2), (2, 2), I2(2, k + 1), (2, k + 1), (1, k + 1), I1(k + 1, n − 1),
(1, n − 1), (1, 0), (1, 1), (0, 1), (0, 0) (Figure 3(6))

It is obvious that the Hamiltonian cycles of G − F shown above are regular. The theorem is
proven. �

In general, after establishing the start regularity pattern with 1-edge Hamiltonian property,
extension of the 1-edge Hamiltonian property for a larger m can be proven by the available
condition, i.e., the regularity (for recursively embedding a pair of rings before/after the faulty
edges). Theorem 5.1 has proven 1-edge Hamiltonian performance for m = 2, and n ≥ 4, and all
patterns shown in this theorem are regular. Theorem 5.2 has proven the related performance for
m = 3, n ≥ 6 (the smallest n can only be 6 with m being odd because m + k should be even),
and all patterns shown in this theorem are regular.

Theorem 5.3 GHT(m, n, k) is 1-edge Hamiltonian for all n ≥ 4.

Proof With Theorems 5.1 and 5.2, we know that GHT(m, n, k) is 1-edge Hamiltonian and that
a regular Hamiltonian cycle exists in GHT(m, n, k) − e, where e ∈ E(GHT(m, n, k), for m ∈
{2, 3}. Recursively using Lemma 3.4, GHT(m, n, k) is 1-edge Hamiltonian for any n ≥ 4. �
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