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Summary. Spatial linear models are popular for the analysis of data on a spatial lattice, but sta-
tistical techniques for selection of covariates and a neighbourhood structure are limited. Here
we develop new methodology for simultaneous model selection and parameter estimation via
penalized maximum likelihood under a spatial adaptive lasso. A computationally efficient algo-
rithm is devised for obtaining approximate penalized maximum likelihood estimates. Asymptotic
properties of penalized maximum likelihood estimates and their approximations are established.
A simulation study shows that the method proposed has sound finite sample properties and, for
illustration, we analyse an ecological data set in western Canada.

Keywords: Conditional auto-regressive model; Model selection; Penalized likelihood;
Simultaneous auto-regressive model; Spatial statistics; Variable selection

1. Introduction

In many fields of the biological and physical sciences, rapid advances in technical capabilities
have dramatically increased the amount of data that are collected across space. Here we restrict
our attention to spatial data observed on a lattice. In particular, many remotely sensed data in
ecological and environmental studies are aggregated at a certain resolution on a regular grid.
Spatial linear models are important tools for the analysis of such data and have been applied
in a wide range of disciplines (see, for example, Cressie (1993) and Schabenberger and Gotway
(2005)). In these models, linear regression is specified to associate a response variable with cova-
riates. Because data are arranged on a spatial lattice, auto-regressive models are used to account
for spatial dependence by associating the response variable at a given site with those response
variables at neighbouring sites according to a neighbourhood structure. Statistical inference
for the regression coefficients and the auto-regressive coefficients can be carried out via likeli-
hood-based approaches or Bayesian hierarchical modelling. However, statistical methodology
for principled selection of covariates and neighbourhood structure is limited and will be the
focus of this paper.

Much research has been accomplished on variable selection in standard linear regression.
Most recently, penalized methods are becoming increasingly popular. For example, Tibshirani
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(1996) proposed a least absolute shrinkage and selection operator (the lasso), which performs
simultaneous variable selection and parameter estimation. Zou (2006) improved the original
lasso by developing an adaptive lasso, which utilizes smaller penalties for larger coefficients to
remove the estimation bias, and hence it enjoys the oracle properties that can only be achieved
by the original lasso under certain conditions. Efron et al. (2004) devised the least angle regres-
sion algorithm LARS which allows computing all lasso estimates along a path of its tuning
parameter with the same computation order as the single ordinary least squares estimate based
on the full model. See also Hesterberg et al. (2008) and the references therein for an up-to-date
comprehensive review of variable selection.

Although most of these penalized methods deal with independent data, there are some results
for dependent data. It is challenging to extend the penalized methods to data that are dependent
either over time or across space, as variable selection involves not only regression coefficients but
also auto-correlation coefficients. For example, Wang et al. (2007a) considered auto-regressive
time series models and developed a lasso for selecting both regression coefficients and auto-
regressive coefficients. For lattice data, Huang et al. (2010) proposed a spatial lasso, although
the types of model were somewhat restricted and no theoretical properties were established.
Most recently, Zhu and Liu (2009) developed estimation of spatial covariance matrices by using
a penalized likelihood approach with weighted L1-regularization. Although the form of spatial
covariance matrix is non-parametric and thus flexible, the method in its current form does not
address regression and the estimation procedure requires ordering of the sampling sites as well
as replications of samples over time.

In general, model selection for spatial data is underdeveloped and demands further research.
Owing to a lack of systematic approaches, selection of spatial linear models in practice, particu-
larly that of a neighbourhood structure, is often not addressed or based on ad hoc methods with
little understanding of the statistical properties. For example, a practitioner may prespecify
the order of neighbourhood with or without considering covariates. Then, given the neigh-
bourhood structure, covariates are selected. It is rare that covariates and neighbourhood struc-
tures are selected simultaneously. Furthermore, it is often computationally intensive and thus
infeasible to compare and select among all possible combinations of models. Computational
cost is a critical issue for spatial data analysis, as the sample size tends to be large and the depen-
dence structure tends to be complex. Thus we believe that penalized methods accompanied by
efficient computational algorithms would be especially suitable for selection of spatial linear
models.

Our work here concerns, in essence, an important extension from those in Wang et al. (2007a)
for time series data in one dimension to spatial data in multi-dimensional space. We consider spa-
tial linear models in general, as well as conditionally and simultaneously specified auto-regressive
models as two special cases. In Section 2, we propose a flexible form of parameterization of spa-
tial dependence, which eases both practical interpretation and model selection. In Section 3, we
develop a spatial adaptive lasso for selection of not only covariates but also a neighbourhood
structure. An efficient algorithm is developed for computing penalized maximum likelihood esti-
mates (MLEs). In particular, we devise a LARS-type algorithm that approximates the penalized
maximum likelihood estimates of regression and auto-regressive coefficients. We establish theo-
retical properties of penalized maximum likelihood estimates and their approximations in terms
of consistency, sparsity and asymptotic normality in Section 4. We address estimation of stan-
dard errors and regularization parameters in Section 5. Finally, in Section 6, we demonstrate,
via simulation and a real data example, that our proposed methodology has sound finite sample
properties and can be useful in practical applications. Technical proofs are given as appendices
in supplementary material at www.stat.sinica.edu.tw/∼hchuang/paper.html.
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2. Spatial linear model

2.1. Model specification
On a spatial lattice Dn = {s1, . . . , sn}⊂ Rd.d ∈ N/, we consider response variables {yi ≡ y.si/ :
si ∈Dn, i=1, . . . , n} with

yi =x′
iβ+ "i, .1/

where xi = .x1i, . . . , xpi/
′ is a p-dimensional vector of covariates at site si and β = .β1, . . . , βp/′

is a p-dimensional vector of regression coefficients. Without loss of generality we standardize
the individual covariates to have mean 0 and variance 1 (Wang et al., 2007a).

The errors {"i : i=1, . . . , n} are assumed to be a zero-mean Gaussian process and

ε∼N.0,Γ/, .2/

where ε= ."1, . . . , "n/′ denotes an n-dimensional vector of errors and Γ= [cov."i, "j/]ni,j=1 is an
n×n matrix consisting of the covariance of errors.

A special case of model (2) is a conditionally specified Gaussian model with

Γ= .In −C/−1V, .3/

where In is an identity matrix, C = [cij]ni,j=1, In − C is non-singular, V = diag.{σ2
i }n

i=1/ and
.In −C/−1V is symmetric and positive definite, all of dimension n×n. The model is also known
as the conditional auto-regressive (CAR) model, as it can be formulated by the conditional
distribution of the error as

E."i|"j : j �= i/=
n∑

j=1
cij"j,

var."i|"j : j �= i/=σ2
i :

To ensure a valid joint distribution of ε, it is necessary that cii = 0, cijσ
2
j = cjiσ

2
i and cij = 0 if

site j �∈N .i/, where N .i/ denotes the neighbourhood of site i consisting of indices of sites that
are neighbours of site i according to a neighbourhood structure (Besag, 1974; Cressie, 1993).

Another special case of model (2) is a simultaneously specified Gaussian model with

Γ= .In −C/−1V.In −C′/−1, .4/

where C= [cij]ni,j=1, In −C is non-singular and V =diag.{σ2
i }n

i=1/. The model is also known as
the simultaneous auto-regressive (SAR) model, as it can be formulated by

ε=Cε+ν,

where ν ∼N.0, V/ denotes an n-dimensional vector of independent noise (Cressie, 1993).

2.2. Neighbourhood structure parameterization
For a given site i, let N .i/ =∪q

k=1 Nk.i/, where {Nk.i/ : k = 1, . . . , q} are neighbourhoods that
partition N .i/, i=1, . . . , n. We propose a general class of C in the form of

C=
q∑

k=1
θkWk, .5/

where θk is an auto-regressive coefficient and Wk = [wk
ij]ni,j=1 is an n × n matrix consisting of

spatial weights. The partition of N .i/ is flexible. Here we focus on a regular grid. We define the
kth-order neighbours in Nk.i/ of a given site i as the kth-nearest neighbours in terms of distance
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between two sites, for k = 1, . . . , q. Thus, N1.i/ consists of the four nearest neighbours in the
north, south, west and east, N2.i/ consists of the four second-nearest neighbours in the north-
west, north-east, south-west and south-east, etc. The number of neighbours is not necessarily
4 at higher orders. To accommodate anisotropy, we could further partition Nk.i/ according to
direction. For instance, we may let N1,	.i/ consist of the two nearest neighbours in the north
and south direction whereas N1,↔.i/ consist of the two nearest neighbours in the west and east
direction. In general, the magnitude of {θk} reflects not only the extent but also the direction of
spatial auto-correlation across space.

For a CAR model, sufficient conditions to ensure a valid joint distribution of the errors are
wk

ii = 0, wk
ijσ

2
j = wk

jiσ
2
i and wk

ij = 0 if site j �∈ Nk.i/. We further assume that wk
ij = wk

ji, for all
i, j =1, . . . , n and k =1, . . . , q. Thus, C is symmetric and σ2

i ≡σ2 with

V =σ2In: .6/

For an SAR model, although not necessary, we assume that wk
ij = wk

ji, for all i, j = 1, . . . , n,
k =1, . . . , q and σ2

i ≡σ2.

3. Model selection

3.1. Spatial adaptive lasso
Let θ = .θ1, . . . , θq/′ denote a q-dimensional vector of auto-regressive coefficients and γ =
.θ′, σ2/′. We sometimes use Γγ and Cθ to emphasize the parameterization of Γ and C by γ
and θ. Let y = .y1, . . . , yn/′ denote an n-dimensional vector of response variables and let X =
.x1, . . . , xp/ denote an n×p design matrix, where xj = .xj1, . . . , xjn/′ denotes an n-dimensional
vector of the jth covariate with j =1, . . . , p. Thus, by expressions (1) and (2),

y ∼N.Xβ,Γγ/: .7/

We consider selection of covariates and neighbourhood orders by determining which regres-
sion coefficients and which auto-regressive coefficients are non-zero and then estimate the non-
zero coefficients. Our proposed method enables simultaneous model selection and parameter
estimation.

Let η = .β′, γ′/′ denote a .p+ q + 1/-dimensional vector of model parameters consisting of
both regression coefficients and auto-regressive coefficients. Under model (7), the log-likelihood
function is

log{L.η; y, X/}= constant− 1
2 log |Γγ |− 1

2 .y −Xβ/′Γ−1
γ .y −Xβ/

≡ constant+ l.η/: .8/

We let

η̂MLE =arg max
η

{l.η/}

denote the MLEs of η.
We consider the penalized log-likelihood function

Q.η/= l.η/−n
p∑

j=1
λj|βj|−n

q∑
k=1

τk|θk|

=− 1
2 log |Γγ |− 1

2 .y −Xβ/′Γ−1
γ .y −Xβ/−n

p∑
j=1

λj|βj|−n
q∑

k=1
τk|θk|, .9/

where the last two terms are the adaptive lasso penalty on the coefficients, {λj}p
j=1 are regular-

ization parameters for the regression coefficients β and {τk}q
k=1 are regularization parameters
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for the auto-regressive coefficients θ. We let

η̂PMLE =arg max
η

{Q.η/}

denote the penalized maximum likelihood estimates (PMLEs) of η.
For a CAR model with expressions (3), (5) and (6), the penalized log-likelihood function (9)

becomes

Q.η/=−n

2
log.σ2/+ 1

2
log |In −Cθ|− 1

2σ2 .y −Xβ/′.In −Cθ/.y −Xβ/

−n
p∑

j=1
λj|βj|−n

q∑
k=1

τk|θk|:

For an SAR model with expressions (4), (5) and (6), the penalized log-likelihood function (9)
becomes

Q.η/=−n

2
log.σ2/+ 1

2
log |.In −C′

θ/.In −Cθ/|− 1
2σ2 .y −Xβ/′.In −C′

θ/.In −Cθ/.y −Xβ/

−n
p∑

j=1
λj|βj|−n

q∑
k=1

τk|θk|:

3.2. Penalized maximum likelihood via LARSm
Let η̂.0/ = .β̂.0/′ , γ̂.0/′/

′
denote an initial value of η, which is set to the MLE η̂MLE at the begin-

ning of the iterations. At iteration m=1, 2, . . . , when η≈ η̂.m−1/, we approximate the penalized
log-likelihood function (9) up to a constant by

QÅ.η/= .η− η̂.m−1//′
@l.η̂.m−1//

@η
− 1

2
.η− η̂.m−1//′ I.η̂.m−1//.η− η̂.m−1//

−n
p∑

j=1
λj|βj|−n

q∑
k=1

τk|θk|, .10/

where

I.η/=Eη

{
− @2l.η/

@η@η′

}

is an information matrix and the regularization parameters are separate for each iteration. We
propose to update η̂.m−1/ to

η̂.m/ =arg max
η

{QÅ.η/}, .11/

and to iterate equation (11) until convergence.
Since the information matrix is a block diagonal matrix I.η/=diag{I.β/, I.γ/} (see Section

5), we update β̂.m−1/ and γ̂.m−1/ separately, i.e. we update β̂.m−1/ to

β̂.m/ =arg min
β

{
− .β− β̂.m−1//

′ @l.η̂.m−1//

@β
+ 1

2
.β− β̂

.m−1/
/′ I.β̂

.m−1/
/.β− β̂

.m−1/
/

+n
p∑

j=1
λj|βj|

}
: .12/



394 J. Zhu, H.-C. Huang and P. E. Reyes

It can be shown that the solution of equation (12) can be attained equivalently by

β̂
Å.m/ =arg min

βÅ

{
1
2 .yÅ −XÅβÅ/′.yÅ −XÅβÅ/+n

p∑
j=1

|βÅ
j |

}
, .13/

where

yÅ = .A−1/′
{

@l.η̂.m−1//

@β
+I.β̂

.m−1/
/β̂

.m−1/
}

,

XÅ = A diag.{λ−1
j }j=1

p
/, βÅ = diag.{λj}p

j=1/β and I.β̂
.m−1/

/ = A′A. Hence, β̂.m/ =
diag.{λj

−1}p
j=1/β̂Å.m/.

Similarly, we update γ̂.m−1/ to

γ̂.m/ =arg min
γ

{
−.γ − γ̂.m−1//′

@l.η̂.m−1//

@γ
+ 1

2
.γ − γ̂.m−1//′ I.γ̂.m−1//.γ − γ̂.m−1//

+n
q∑

k=1
τk|θk|

}
: .14/

Since σ2 is not subject to any penalty, we update the terms differently. We let

XÅÅ
k = τ−1

k .Bk − ckBq+1/, k =1, . . . , q,

XÅÅ
q+1 =Bq+1,

where ck =B′
q+1Bk=B′

q+1Bq+1, for k=1, . . . , q, andI.γ̂.m−1//=B′B. It is obvious that XÅÅ′
q+1XÅÅ

k =
0 for k =1, . . . , q. Let

yÅÅ = .B−1/′
{

@l.η̂.m−1//

@γ
+I.γ̂.m−1//γ̂.m−1/

}
:

It can be shown that the solution of σ2 in equation (14) can be attained in closed form as

.σ̂Å2/.m/ =XÅÅ′
q+1yÅÅ=XÅÅ′

q+1XÅÅ
q+1,

where σÅ2 =Σq
k=1ckθk +σ2. Further,

θ̂
Å.m/ =arg min

θÅ

{
1
2 .yÅÅ −XÅÅθÅ/′.yÅÅ −XÅÅθÅ/+n

q∑
k=1

|θÅ
k |

}
, .15/

where XÅÅ = .XÅÅ
1 , . . . , XÅÅ

q / and θÅ =diag.{τk}q
k=1/θ. Hence, θ̂

.m/ =diag.{τ−1
k }q

k=1/θ̂
Å.m/

and

.σ̂2/.m/ = .σ̂Å2/.m/ −
q∑

k=1
ck θ̂

.m/

k :

At convergence, we let η̂APMLE denote the approximate penalized maximum likelihood esti-
mates (APMLEs) of η. Within each iteration, equations (13) and (15) can be solved by a LARS
algorithm and, thus, the computation is highly efficient. Our proposed algorithm henceforth
will be referred to as a multiple-step LARS algorithm LARSm.



Spatial Linear Models for Lattice Data 395

4. Asymptotic properties

4.1. Notation
Letγ0 =.θ0

1, . . . , θ0
q, .σ2/0/′ =.θ0′

1 , θ0′
2 , .σ2/0/′ denote a .q+1/-dimensional vector of true param-

eter values, where without loss of generality we assume that θ0
1 is a t-dimensional vector of

non-zero auto-regressive coefficients and θ0
2 = 0 is a .q − t/-dimensional vector of zero-

valued auto-regressive coefficients. In general, we shall write γ = .θ′
1, θ′

2, σ2/′ and its estimate
as γ̂ = .θ̂

′
1, θ̂

′
2, σ̂2/′. We denote β, β1 and β2, and the corresponding true values and esti-

mates in a similar manner but replacing q with p, and t with s, and leaving out σ2. Let
η0 = .β0′

1 , β0′
2 , θ1

0′
, θ2

0′
, .σ2/0/′ denote a .p + q + 1/-dimensional vector of true parameter val-

ues. Let η0
1 = .β1

0′, θ0′
1 , .σ2/0/′ denote an .s+ t +1/-dimensional vector of non-zero parameters

and η0
2 = .β0′

2 , θ0′
2 /′ a .p+q− s− t/-dimensional vector of zero-valued parameters. Also, let γ0

1 =
.θ0′

1 , .σ2/0/′. Then η, η1, η2 and γ1 and the corresponding estimates are defined similarly. Let
an =max{λj :j =1, . . . , s, τk :k =1, . . . , t} and bn =min{λj :j = s+1, . . . , p, τk :k = t +1, . . . , q}.
Note that an and bn are associated with the regularization parameters in the penalty.

4.2. Asymptotic properties
Under suitable regularity conditions (A.1)–(A.4) (see Appendix A of the web-based supplemen-
tary materials), we establish the oracle properties of the PMLE η̂PMLE.

Theorem 1. Suppose that conditions (A.1)–(A.4) hold and an =O.n−1=2/ as n→∞.

(a) With probability tending to 1, there is a local maximizer η̂ of Q.η/ defined in equation
(9) such that ‖η̂−η0‖=Op.n−1=2 +an/.

(b) If, in addition, n1=2bn → ∞ as n → ∞, then, with probability tending to 1, η̂2 = 0, i.e.
β̂2 =0 and θ̂2 =0.

(c) If, in addition, an =o.n−1=2/, then

n1=2.η̂1 −η0
1/

D→N{0, J.η0
1/−1},

where

J.η0
1/=

(
J.β0

1/ 0
0 J.γ0

1/

)
,

J.β0
1/ consists of the first s × s upper left submatrix of J.β0/, J.γ0

1/ consists of the subma-
trix of J.γ0/ corresponding to rows 1, . . . , t and q + 1, and J.β0/ and J.γ0/ are defined in
condition (A.4).

Theorem 1, part (a), establishes the existence of the PMLE as well as consistency at the rate
of n1=2. Theorem 1, part (b), ensures sparsity of the PMLE, i.e., as n →∞, the PMLEs of zero-
valued regression coefficients and zero-valued auto-regressive coefficients are 0, with probability
tending to 1. Theorem 1, part (c), is a central limit theorem for the PMLE of the non-zero-valued
regression and auto-regressive coefficients. On the basis of the asymptotic variance in the limiting
normaldistribution,wecanapproximate thevarianceof β̂1 byI.β0

1/−1 andthatof γ̂1 byI.γ0
1/−1.

We then establish the oracle properties of η̂APMLE = .η̂′
APMLE,1, η̂′

APMLE,2/′, which is an
approximation obtained by the LARSm algorithm that was devised in Section 3.2.

Theorem 2. Suppose that conditions (A.1)–(A.4) hold, n1=2bn → ∞ as n → ∞ and an =
o.n−1=2/. Then, with probability tending to 1, η̂

.m/
2 =0, and

n1=2.η̂
.m/
1 −η0

1/
D→N{0, J.η0

1/−1},
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for all m∈N≡{1, 2, . . .}, where η̂.m/ = .η̂.m/′
1 , η̂.m/′

2 /′. In particular, with probability tending
to 1, η̂APMLE,2 =0, and

n1=2.η̂APMLE,1 −η0
1/

D→N{0, J.η0
1/−1}:

The proofs of theorems 1 and 2 are shown in appendix B and appendix C in the Web-based
supplementary materials. Although η̂APMLE obtained from our iterative computational algo-
rithm is a local optimum and is not necessarily a global optimum, theorem 2 shows that it
has desirable asymptotic properties including sparsity and the oracle property. Moreover, these
asymptotic properties hold for each step of the iteration and, thus, convergence is of less concern
than those algorithms such that the asymptotic properties of only the solution at convergence
are known.

5. Further computational aspects

The standard errors of the APMLE can be estimated according to theorem 2. LetΓk =@Γ−1=@γk,
Γk = @Γ=@γk =−ΓΓkΓ, Γkk′ = @2Γ−1=@γk@γk′ and

Γkk′ = @2Γ
@γk@γk′

=Γ.ΓkΓΓk′ +Γk′
ΓΓk −Γkk′

/Γ,

for k, k′ =1, . . . , q+1 where, for ease of presentation, γq+1 =σ2. From equation (8), we have

@l.η/

@β
=X′Γ−1.y −Xβ/,

@l.η/

@γk
=−1

2
tr.Γ−1Γk/− 1

2
.y −Xβ/′Γk.y −Xβ/

= 1
2

tr.ΓkΓ/− 1
2

.y −Xβ/′Γk.y −Xβ/:

Moreover, we have

@2l.η/

@β@β′ =−X′Γ−1X,

@2l.η/

@β@γk
=X′Γk.y −Xβ/,

@2l.η/

@γk@γk′
=−1

2
tr.Γ−1Γkk′ +Γk′

Γk/− 1
2

.y −Xβ/′Γkk′
.y −Xβ/

=−1
2

tr.ΓkΓΓk′
Γ−Γkk′

Γ/− 1
2

.y −Xβ/′Γkk′
.y −Xβ/:

Since Eη{−@2l.η/=@β @γ′}=0, the information matrix of y is

I.η/=diag{I.β/, I.γ/}, .16/

where

I.β/=Eη

{
− @2l.η/

@β @β′

}
=X′Γ−1X,

and the .k, k′/th entry of
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I.γ/=Eη

{
− @2l.η/

@γ @γ′

}

is 1
2 tr.ΓkΓΓk′

Γ/.
In particular, we note that,

var.β̂1/≈I.β1/−1,

var.θ̂1/≈I.γ1/−1,
.17/

where I.β1/ is the first s× s upper left submatrix of I.β/=X′Γ−1X, and I.γ1/ is the submatrix
of I.γ/ corresponding to rows 1, . . . , t, and q + 1. Evaluating expression (17) at the APMLE,
we obtain estimates of the corresponding variance–covariance matrices.

Finally, to estimate the regularization parameters {λj}p
j=1 and {τk}q

k=1, we let

λj =λ log.n/.n|β̂j|/−1,

τk = τ log.n/.n|θ̂k|/−1:
.18/

The dimension reduction in expression (18) is useful, as now only two regularization parameters
instead of p+q need to be estimated (Wang et al., 2007a). To determine λ and τ , we compute
the Bayesian information criterion BIC,

BIC.λ, τ /=−2 l.η̂;λ, τ /+ e.λ, τ / log.n/, .19/

where

e.λ, τ /=
p∑

j=1
I{β̂j �=0}+

q∑
k=1

I{θ̂k �=0},

for all combinations of λ and τ (Wang et al., 2007b). In each iteration, we select the combina-
tion that has the smallest BIC-values. Since we utilize a LARS-type algorithm which is a path
algorithm, we may obtain the best λ and τ in a computationally efficient manner. To reduce the
dimension of the regularization parameters further, we consider one regularization parameter,
as suggested by a referee. The computational procedure is similar to that for two regulariza-
tion parameters, but there may be a computational advantage due to the additional dimension
reduction.

6. Numerical examples

6.1. Simulation study
For simulation, we consider m×m square lattices, where m=5, 10, 15. The corresponding sam-
ple sizes are n=25, 100, 225. For regression, there are seven covariates following a standard nor-
mal distribution. The cross-covariate correlation is assumed to be corr.xj, xj′/=ρ|j−j′|, where
ρ=0:5 and j, j′ =1, . . . , 7, whereas each individual covariate is assumed to be dependent across
space and to have an exponential covariance function with no nugget and range parameter 1.
The regression coefficients are set to β = .4, 3, 2, 1, 0, 0, 0/′. We let the error term have mean 0,
following either an SAR model or a CAR model. The neighbourhood structure is from the first
to the fifth order, where the first-order neighbourhood consists of the nearest neighbours, the
second-order neighbourhood consists of the second-nearest neighbours, and so on, of a given
site. The auto-regressive coefficients are set to θ= .0:2, 0, 0, 0, 0/′. For each m, a total of 100 data
sets are simulated according to the spatial linear model (1)–(2).
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For comparison, we consider three alternatives. The first alternative is a simplification of
our LARSm algorithm. Rather than iterating until convergence, the one-step LARS algorithm
LARS1 stops after just one iteration. LARS1 is, in spirit, similar to the one-step-ahead local lin-
ear approximation that was developed by Zou and Li (2008) for regression models with indepen-
dent errors. For both LARSm and LARS1, we consider one and two regularization parameters.

The second alternative is a local quadratic approximation (LQA) algorithm that was
proposed by Fan and Li (2001). Although developed originally for regression with independent
errors, Wang et al. (2007b) further developed the LQA for time series. For the spatial setting
under consideration here, we need first to extend this algorithm. The extended LQA algorithm
is based on the approximation

Q.η/≈ constant+ .η− η̃.0//′
@l.η̃.0//

@η
− 1

2
.η− η̃.0//′ I.η̃.0//.η− η̃.0//

− 1
2

nβ′ Σ.β̃
.0/

/β− 1
2

nγ′ Σ.γ̃.0//γ,

where Σ.β̃.0//=diag.λ1=|β̃.0/
1 |, . . . , λp=|β̃.0/

p |/ and Σ.γ̃.0//=diag.τ1=|θ̃.0/
1 |, . . . , τq=|θ̃.0/

q |, 0/.
By a Newton–Raphson step, we update β̃.0/ by

β̃.1/ = β̃.0/ +{I.β̃.0//+n Σ.β̃.0//}−1
{

@l.η̃.0//

@β
−n Σ.β̃.0//β̃.0/

}

={X′Γ−1
γ̃.0/X +n Σ.β̃

.0/
/}−1X′Γ−1

γ̃.0/y,

and update γ̃.0/ by

γ̃.1/ = γ̃.0/ +{I.γ̃.0//+n Σ.γ̃.0//}−1
{

@l.η̃.0//

@γ
−n Σ.γ̃.0//γ̃.0/

}
:

Then, for a small threshold value δ > 0, let β̃
.1/

j = 0 if |β̃.1/

j | < δ and θ̃
.1/

k = 0 if |θ̃.1/

k | < δ. The
initial parameter values are set to the MLEs and the iterations continue until convergence. The
selection of regularization parameters is based on BIC. Although LQA is relatively slow and
once a coefficient has been shrunk to 0 it remains 0 throughout the remainder of the iterations,
it has been used and shown to produce reliable results in practice.

The third alternative, which was suggested by another referee, is to use the adaptive lasso
to select only the covariates, for any given possible neighbourhood structure. There are a total
of 2q possibilities, as both the size and the composition of a neighbourhood structure are of
interest. Then to determine the best neighbourhood structure, we use BIC. We shall refer to this
alternative as the regression-only case.

For each simulated data set, the spatial adaptive lasso was implemented using our LARSm
algorithm, as well as the three alternatives. Tables 1 and 2 provide the results of variable selec-
tion for CAR and SAR models respectively, in terms of the average numbers of correctly iden-
tified zero-valued and non-zero βj, as well as zero-valued and non-zero θk. As the sample size
increases, the number of correctly identified zero-valued (or non-zero-valued) coefficients tends
to the true number. The number of correctly identified non-zero values is closer to the truth
than the number of correctly identified zero values.

With few exceptions, the results of LARSm are better than the first alternative LARS1, in
terms of accuracy in variable selection. The numbers of correctly selecting non-zero-valued
coefficients are comparable under one and two regularization parameters, for both LARSm
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Table 1. Average number of correctly identified zero and non-zero regression
coefficients {βj } and auto-regressive coefficients {θk} by using the proposed
LARSm method with either one or two regularization parameters and compared
with three alternatives: LARS1 with either one or two regularization parameters, the
LQA and selection of regression coefficients only†

Method n Number of Number of Number of Number of
non-zero βj zero βj non-zero θk zero θk

LARSm, 25 4.00 1.62 0.56 1.65
2-regular 100 4.00 2.48 0.97 3.66

225 4.00 2.62 1.00 3.90
LARSm, 25 4.00 1.77 1.00 0.83

1-regular 100 4.00 2.36 0.98 1.56
225 4.00 2.49 1.00 1.34

LARS1, 25 4.00 1.16 0.58 1.54
2-regular 100 4.00 1.63 0.76 3.37

225 4.00 1.76 0.98 3.30
LARS1, 25 4.00 1.04 0.89 0.48

1-regular 100 4.00 1.70 1.00 0.89
225 4.00 1.77 1.00 0.83

LQA 25 3.99 1.74 0.60 2.31
100 4.00 2.60 0.92 3.22
225 4.00 2.59 1.00 3.50

LARSm, 25 3.99 2.21 0.52 2.92
regression only 100 4.00 2.60 0.91 3.77

225 4.00 2.62 0.99 3.76
LARS1, 25 3.99 1.54 0.50 2.59

regression only 100 4.00 1.78 0.88 3.73
225 4.00 1.85 1.00 3.90

Truth 4 3 1 4

†The sample sizes are n=25, 100, 225 and the model is CAR.

and LARS1. However, there is a tendency to miss zero-valued coefficients, especially zero-
valued θks when using only one regularization parameter. When compared against the second
alternative LQA and the third alternative with regression coefficients only, LARSm tends to
outperform in variable selection for larger sample sizes. As for computational speed, LARSm is
slower than LARS1, but much faster than both LQA and the regression-only case (of the order
of 15–20-fold).

Additional tables are given in the Web-based supplementary materials that feature the means
and standard deviations of the PMLEs of the model parameters. As the sample size increases,
estimation of all the coefficients improves in terms of both accuracy and precision. The results
are similar among the various methods and algorithms, under both SAR and CAR models.

6.2. Data example
A motivating example is the study of outbreaks of mountain pine beetle (MPB) Dendroctonus
ponderosae Hopkins in western Canada. The MPB is an eruptive insect that colonizes mature
pine trees via pheromone-mediated mass attacks which, in concert with its vectored fungi, may
kill trees over large areas (Aukema et al., 2008). On-going research is aimed at elucidating the
roles that various factors play in MPB outbreaks, such as predators, pathogens, heterogeneity
of habitat, climate, reproduction and dispersal. Identifying and understanding the key factors
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Table 2. Average number of correctly identified zero and non-zero regression
coefficients {βj } and auto-regressive coefficients {θk} by using the proposed
LARSm method with either one or two regularization parameters and compared
with three alternatives: LARS1 with either one or two regularization parameters, the
LQA and selection of regression coefficients only†

Method n Number of Number of Number of Number of
non-zero βj zero βj non-zero θk zero θk

LARSm, 25 3.98 1.26 0.82 1.42
2-regular 100 4.00 2.52 1.00 3.51

225 4.00 2.65 1.00 3.65
LARSm, 25 3.99 1.11 0.98 0.48

1-regular 100 4.00 2.48 1.00 1.21
225 4.00 2.53 1.00 1.30

LARS1, 25 3.98 1.04 0.83 1.31
2-regular 100 4.00 1.78 1.00 2.80

225 4.00 1.83 1.00 3.25
LARS1, 25 3.99 0.92 0.98 0.37

1-regular 100 4.00 1.80 1.00 0.73
225 4.00 1.69 1.00 0.78

LQA 25 3.98 1.41 0.80 1.75
100 4.00 2.55 1.00 3.10
225 4.00 2.57 1.00 3.51

LARSm, 25 3.96 1.84 0.81 2.50
regression only 100 4.00 2.64 1.00 3.84

225 4.00 2.60 1.00 3.85
LARS1, 25 3.98 1.32 0.80 2.49

regression only 100 4.00 1.78 1.00 3.81
225 4.00 1.81 1.00 3.86

Truth 4 3 1 4

†The sample sizes are n=25, 100, 225 and the model is SAR.

could ultimately result in reliable predictive models that would greatly facilitate management
and planning of pine forests.

The data example that is used for illustration here is a subset of the MPB data on a 10 × 10
grid of cells averaging 12 km × 12 km in size overlaying the Chilcotin plateau (Aukema et al.,
2008). The response variable is the intensity of MPB infestation within a cell. The covariates
comprise topographical and climatic variables. In particular, the topography is based on a dig-
ital elevation map. It is plausible that higher elevations are associated with fewer outbreaks of
MPB since these regions are associated with a cooler climate and less pine. The climatic variables
are temperature in the previous calendar year (minimum, maximum and mean), mean August
temperature, accumulated degree days above 5.5 ◦C from the previous August to the current
July (DD) or from the previous August to the end of the growing season (DDEG) and the
amount of precipitation, all of which are defined according to known biology and phenology
of the insect. For example, warmer temperatures are associated with more outbreaks of MPB,
since adult insects complete their development and fly in search of new trees in response to
summer temperature thresholds.

Furthermore, it is important to account for any remaining spatial dependence in the regres-
sion. This would not only ensure that statistical inference of the regression coefficients is valid
but would also be of scientific interest to quantify such spatial dependence. A highly plausi-
ble explanation for spatial dependence is dispersal of the MPB populations across space as,
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Table 3. Non-zero APMLE and standard deviation (SD) of model parameters in SAR models
A or B for the MPB data example

Variable Results for model A Results for model B

Parameter APMLE SD Parameter APMLE SD

Covariates
Elevation β1 — — β1 — —
Temperature minimum β2 — — β2 — —
Temperature maximum β3 −6.40 14.45 β3 −6.30 13.50
Temperature mean β4 6.64 11.34 β4 6.44 10.65
August temperature mean β5 — — β5 — —
DD β6 — — β6 — —
DDEG β7 — — β7 — —
Precipitation β8 1.63 0.78 β8 2.68 0.85

Order of neighbourhoods
1st θ1 0.15 0.03 θ1,	 0.18 0.04

θ1,↔ 0.12 0.05
2nd θ2 — — θ2 — —
3rd θ3 0.08 0.04 θ3,	 0.13 0.05

θ3,↔ — —
4th θ4 — — θ4 — —
5th θ5 — — θ5 — —

Variance σ2 8.62 1.28 σ2 8.24 1.22

BIC 352.45 354.44

during outbreaks of MPB, beetle populations are capable of dispersal at large scale. For these
purposes, we consider neighbourhood structures from the first to the fifth order. Both SAR
and CAR models are fitted as the covariance for the error term. On the basis of BIC-values,
however, it appears that the SAR model performs consistently better than the CAR model.
Thus the discussion henceforth will be focused on the SAR model.

A spatial adaptive lasso using the LARSm algorithm is applied to select both the covariates
and the neighbourhood orders. The results are shown as model A in Table 3. Three covariates
are selected, namely maximum temperature, mean temperature and precipitation. There is a
positive relationship between intensity of infestation and precipitation and no significant
relationship with the other covariates including elevation. For spatial auto-correlation, the
first- and third-order neighbourhoods are selected, but not the second-, fourth- and fifth-order
neighbourhoods.

We further evaluate anisotropy by partitioning the first- and third-order neighbourhood into
Nk.i/ =Nk,	.i/ ∪Nk,↔.i/ for k = 1, 3, i.e. we consider different auto-regressive coefficients for
the north–south direction versus the west–east direction. The results are shown as model B in
Table 3. The same three covariates are selected whereas the second-, fourth- and fifth-order
neighbourhoods are not selected, as before. Neighbourhoods in both directions are selected on
the first order, but only the north–south direction on the third order. Since the BIC-value for
this model is slightly higher, model A seems to be more adequate than model B. We present
the results here nonetheless, in part to illustrate the flexibility in specifying the neighbourhood
structures.
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An additional table is given in the Web-based supplementary materials that shows parameter
estimation using LARS1 and LQA. The results are generally similar, although the BIC-values
become larger, indicating somewhat worse performance.

7. Discussion

In this paper, we have considered spatial linear models for lattice data, which have two additive
components of a linear regression and an error term. For the covariance of the error term, we
have focused on CAR and SAR models. For geostatistical data, the approach that we have pro-
posed may still be applicable, via discretization of the continuous spatial domain. For example,
Zhu and Liu (2009) used an SAR-type lattice model to analyse a geostatistical rainfall data
set. Moreover, our methodology may be extended to deal with other types of dependence. For
example, it would be interesting to consider further the non-stationary covariance of the error
term. Zhu and Liu (2009) allowed non-stationarity via a non-parametric approach but required
replications of the spatial data for estimation. It would be interesting to develop general classes
of non-stationary models that would not require such replications. Finally, it would also be
interesting to investigate dependence structure that is not necessarily spatial. We leave these for
future investigation.
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