
252 Int. J. Ad Hoc and Ubiquitous Computing, Vol. 6, No. 4, 2010

Copyright © 2010 Inderscience Enterprises Ltd.

CloudEdge: a content delivery system for storage
service in cloud environment

Chi-Huang Chiu*
Department of Computer Science,
National Chiao Tung University,
Hsinchu, 300, Taiwan
E-mail: chchiu@cis.nctu.edu.tw
*Corresponding author

Hsien-Tang Lin
Department of Computer Science
and Information Engineering,
Tahwa Institute of Technology,
Chulin, 307, Taiwan
E-mail: rogerlin@thit.edu.tw

Shyan-Ming Yuan
Department of Computer Science,
National Chiao Tung University,
Hsinchu, 300, Taiwan
E-mail: smyuan@cis.nctu.edu.tw

Abstract: With the trend of cloud computing, more and more web applications move their
content to external storage services to reduce the cost of hardware and maintenance. In this paper,
a novel architecture called CloudEdge for Content Delivery Network (CDN) with the storage
service in cloud computing is introduced. This architecture could not only keep the loosely
coupled integration between storage service and web applications but also provide better content
manipulation features such as edge network content delivery, caching, secured access control,
the variations of content objects generated on demand, and post-process on content objects.

Keywords: cloud computing; CDN; content delivery network; storage service; distributed file
system; distributed system; Amazon Web Service; simple storage service; edge network;
web applications; access control; storage service; web information system; ubiquitous computing.

Reference to this paper should be made as follows: Chiu, C-H., Lin, H-T. and Yuan, S-M. (2010)
‘CloudEdge: a content delivery system for storage service in cloud environment’, Int. J. Ad Hoc
and Ubiquitous Computing, Vol. 6, No. 4, pp.252–262.

Biographical notes: Chi-Huang Chiu received his BS Degree in Computer and Information
Science from National Chiao Tung University in 1998, his MS Degree in Computer Information
Science from National Chiao Tung University in 2000. Currently, he is pursuing PhD in the
Department of Computer Science, National Chiao Tung University. His current research interests
include web services, distributed systems, internet technologies, and e-learning.

Hsien-Tang Lin received his Diploma from National Kaohsiung Institute of Technology in 1983,
his MS Degree in Electrical Engineering from National Taiwan University in 1991, and his PhD
Degree in the Department of Computer Science from National Chiao Tung University in 2007.
Currently, he is an Associate Professor at the Department of Computer and Information Science,
Tahwa Institute of Technology, Hsinchu, Taiwan. His current research interests include
web services, intelligent systems, internet technologies, and e-learning.

Shyan-Ming Yuan received his BSEE Degree from National Taiwan University in 1981, his MS
Degree in Computer Science from the University of Maryland, Baltimore County, in 1985, and
his PhD Degree in Computer Science from the University of Maryland College Park in 1989.
He joined the Electronics Research and Service Organisation, Industrial Technology Research
Institute as a Research Member in October 1989. Since September 1990, he has been an

 CloudEdge: a content delivery system for storage service in cloud environment 253

Associate Professor at the Department of Computer and Information Science, National Chiao
Tung University, Hsinchu, Taiwan. He has been a Professor since June 1995. His current
research interests include distributed objects, internet technologies, and software system
integration. He is a member of ACM and IEEE.

1 Introduction

1.1 Background

Traditional web applications use a file system for both
application scripts and resource files and some critical data
may be stored in database servers separately. With the
growth of web applications on the internet, managing web
content objects like images, photos, and audio and video
files is becoming more complicated. In order to handle the
issues of performance, availability, management and
capacity, more and more web applications replace ordinary
local file system with external storage services. The
architecture of a typical web system is shown in Figure 1.

Figure 1 The architecture of a typical web system with external
storage service (see online version for colours)

A web application may use a network file system as the
storage service like Network Attached Storage (NAS),
Storage Area Network (SAN), and Direct Attached storage
(DAS). In these cases, web application servers may be the
bottleneck of the performance because all published content
would be accessed through web application servers.
Moreover, these commercial solutions are expensive when
the volume of the storage servers is huge.

Therefore some tailor-made file systems designed
for web application are introduced for large-scale web
applications. For example, flickr.com is a photo sharing
website operated by Yahoo. It has over billions of photos
and all of them are available online. To manage these huge
photos, flickrFS (Jain, 2005), a proprietary file storage
service, is applied to handle photo files. Similarly, Amazon
S3 (Simple Storage Service), the first commercial online
cloud services, is an online storage web service offered by
Amazon Web Services. Amazon S3 has been providing
unlimited storage through a simple web services interface
since March 2006.

Figure 2 shows the architecture for these storage
services for web applications. These storage services could
not only handle the storage accesses from application
servers but also serve the requests from web client directly
through the HTTP protocol (1999) which is the most
common protocol on the internet. Such design could reduce
the overhead of application server and decrease the
latency of the web request. Figure 2(a) shows a common
architecture from flick that the storage server and web

application server are deployed in the same local area
network.

Figure 2 The architecture of web systems with storage service
connected to the internet directly (see online version
for colours)

In Figure 2(b), Amazon S3, the storage service is not
deployed near by the web application server. The storage
service is located in the internet and all operations on
storage services are done in cloud. Such design could reduce
the cost of maintenance for local storage service and the
bandwidth and availability could be guaranteed by their
huge investment.

1.2 The problems of storage service in cloud

Since the storage service in cloud is located in the internet,
the network latency and bandwidth between storage service
and application server may increase the difficulty for
developers to deploy such services in their system.
Therefore, some loosely coupled integration designs are
applied to solve some issues like access control which
may be very simple in the traditional architecture without
storage service in cloud.

With regard to access control, the architecture with
external storage service shown in Figure 1 could manage
the rights of access in the web application server because
all content accesses are processed in web applications.
Unfortunately, such a design could not be applied to storage
service in cloud because transferring the content to web
applications is not economical and the bandwidth bottleneck

254 C-H. Chiu et al.

of the local network will increase the response time for
content access.

The Amazon S3 storage service uses a simple signature
method in URL to solve above issue. All URLs for private
content require a signature signed by a shared key to make
sure the access is granted from web applications. A sample
URL to access private content object in Amazon S3 is
shown in Figure 3.

Figure 3 A sample signed URL to access private content
in Amazon S3 Service

In the above sample, a signature is included and the edge
server can verify it to grant the access right. In order to
avoid the illegal access by sharing the URL, an expired time
is assigned. This sample demonstrates a way to do the
access control but it is not good enough to fit all kinds of
applications to handle private content. For example, a photo
sharing website may intend to block any request without a
correct Referral HTTP header which means that the photos
are embedded in other website. In such cases, the current
version of Amazon S3 service does not have any solutions
to do such access control.

On the other head, if a client wants to access a rotated
version of a photo in storage service, the web application
server needs to download the whole photo, rotate it and then
return to web clients. This scenario shows that the capability
of content delivery in current storage service in cloud is not
good enough and some operations should be done in storage
service to reduce the cost of transmission between the
service and application server.

1.3 Related works

The Amazon Web Services (2002) is a collection of web
services offered over the internet by Amazon.com; and it is
the most popular commercial cloud computing services.
From the point view of storage service, Amazon S3
(Simple Storage Service) (2006) is an online storage for web
applications and it has the definition of bucket and content
object. An application could create several buckets to handle
different kinds of content; and each content object in a
bucket has a unique ID for reference. Palankar et al. (2008)
even tried to apply the storage in a science grid.

On the other hand, Amazon Elastic Compute Cloud
(EC2) (2006) provides computing power to host the images
of virtual server in cloud. With the combination of Amazon
S3 and EC2, web applications could be deployed in Amazon
Web Service to reduce the cost of deployment and prepare
for uncertain capacity in the future. Besides, Amazon
SimpleDB (2007) and Simple Queue Service (SQS) (2006)
are also the related services for cloud environment.
For the whole architecture of its development, Amazon Web
Service would host whole web applications in its cloud
environment. In CloudEdge, the design focuses on the

integration between the existing web applications and
external storage services in cloud environment.

1.4 Objectives

In order to deliver content from storage services, the
CloudEdge is proposed as a system to provide content
delivery features in cloud environment. The major goals of
CloudEdge are:

• to reduce the communication cost between web
application and storage service

• to provide a secured access control mechanism
and make sure private content could be available
only for predefined condition

• to process the content and generate various kinds
of variations based on the requests of applications.

The rest of this paper is organised as follows. The next
section, system design, introduces concepts and overall
architecture of our system. The section entitled component
design gives design details of all major components.
Section 4 discusses the implementation of our experimental
service. Some discussions and comparisons on system
design are presented in Section 5. Conclusions and some
future directions are in the last section.

2 System design

2.1 Architecture overview

CloudEdge is a content delivery system for existing storage
services. Its whole architecture and major components are
shown in Figure 4. A brief description of these components
is as follows.

Figure 4 The architecture of CloudEdge System (see online
version for colours)

Three major components of the CloudEdge system are
CloudEdge Server, CloudEdge Gateway and CloudEdge
Meta Server which help the system to deliver content to web
clients.

The Edge Network, a term in Content Delivery Network
(CDN) (Dilley et al., 2002), is a network which has
high-quality connections to both cloud network and clients
in some areas. On the architecture shown in Figure 4, the
CloudEdge Server is deployed in Edge Network to provide
content from backend services to web clients. In practice,

 CloudEdge: a content delivery system for storage service in cloud environment 255

several instances of CloudEdge Server may be deployed
in several locations according to geographical location and
network topology. Theoretically, for web clients, the closer
the content the faster the delivery. End users will likely
experience less jitter, fewer network peaks and surges, and
stream quality improvement- especially at remote areas.

On a web system using the CloudEdge architecture,
all content requests from the web client would be handled
by CloudEdge server which accomplishes the following
tasks for each request:

• retrieving requested content from storage services
through the CloudEdge Gateway and caching it in local
storage to reduce the bandwidth cost

• performing access control to check whether the access
is allowed based upon the guidance from the web
application server

• transforming the content into the requested format like
different size, quality or encoding format

• processing the content to add one-time signatures like
water mark, logo, or texts.

CloudEdge Gateway, located within the cloud network, is
an interface to manipulate content in the storage service.
Web applications import their content to storage service
with the help of CloudEdge Gateway instead of accessing
the storage services directly. It means that the Gateway
makes the storage service transparent and different storage
services could be chosen according to the requirement of the
application. The CloudEdge Gateway has the following
services for the system:

• to verify and import the content to bound storage
service

• to handle the request from edge servers and access the
storage service according to defined mapping

• to provide the Meta information for each content
bucket, a collection of content files.

Finally, the CloudEdge Meta Server stores the Meta
information for Content Bucket, and it also has the program
library to process the content in the CloudEdge Server.
The Meta Server works as a central database of the system
because all CloudEdge nodes will share the information
from same CloudEdge Meta Server.

The architecture for multiple server instances is shown
in Figure 5. In this system, only one storage service and
one CloudEdge Meta Server are available in the centre of
the system. Several CloudEdge Gateways could be deployed
to increase the throughput and availability of the system.
In addition, Several CloudEdge Servers are deployed
in several places of Edge Network to provide better
connection between the CloudEdge System and local
clients. To sum up, Table 1 shows the main functions
of major components in CloudEdge system.

Figure 5 The architecture of multiple server instances
in CloudEdge system (see online version for colours)

Table 1 Main functions of major components in CloudEdge

Component Function description

CloudEdge
Meta Server

The CloudEdge Meta Server has the
configuration of all CloudEdge system and
make sure that all nodes of the system are all
consistent if the configuration is changed

CloudEdge
Server

CloudEdge Server, located within edge
network, is the access point for clients and
applications

CloudEdge
Gateway

CloudEdge Gateway, located within cloud
network, is an interface to manipulate content
in storage service

2.2 Object, content bucket and version control

In the CloudEdge system, the object is a minimal unit
for the content which could be a photo, video, audio or other
media file. Besides, in the storage service, an object would
be mapped to a file or an item according to its design. In the
system, each object could be accessed from a web client
through the CloudEdge Server directly using the HTTP
protocol.

All content objects belong to a content bucket which
is a collection of content objects with the same type.
Each content bucket has a unique name for reference and
each object in the content bucket has a unique Object ID
too. A pair of bucket name and content id could be as a
reference for a content object. In addition, a content bucket
could be set either public or private. All requests to content
objects in a private bucket should be associated with a
singed signature, otherwise, the requests would be denied.

All content objects in CloudEdge are not controlled
by version but the cached objects in the CloudEdge Server
and would be invalidated immediately if the update is
received in the Cloud Edge Gateway. Although the cache
could be invalidated, the content object could still be cached
in clients or proxy servers. To avoid accessing expired

256 C-H. Chiu et al.

content, the cache in client side could be disabled for
specified bucket using the response headers in HTTP
protocol. Moreover, the web application could send a
version number for each content object with the bucket
name and object ID to generate different URL and avoid the
access of cached objects. In that case, web applications
manage the cache of client side by themselves.

As shown in Figure 6, the application stores a content
object into the storage service through the help of
CloudEdge Gateway with a bucket name and the object ID
as the identifier. After storing the content in the storage
service, the related cached content in the CloudEdge Server
will be invalidated immediately.

Figure 6 The process to store and access a content object
(see online version for colours)

For content access, a client could use a bucket name and
content ID to access a public content object and a signature
is required if the bucket is private. Sometimes, requests
are accomplished with version number to control the cache
in clients from applications. Because the cache in the
CloudEdge Server could be invalidated after modification,
all request to the CloudEdge Server will check the cache
first and store the result in the cache according to the
configuration of the bucket.

2.3 Content type, variations, and post processing

A content bucket could have a content type to enable the
features of variations and post processing on content in this
bucket. A variation for a content object means a new format
of this object such as different size, quality, or encoding
format. For example, a video may have different encoding
format for different devices like desktop, mobile phone, and
portable media player; a photo may have different size
for application like full size for printing, large size for slide
show, and thumbnail size for previewing. In the flickr.com,
an uploaded photo will be resized to different variations
in the following dimensions: 75 × 75, 100 × 100, 240 × 240,
500 × 500, and 1024 × 1024.

For a bucket with a defined content type, all content
objects imported to CloudEdge Gateways require a
verification process to make sure these objects could be
manipulated correctly at CloudEdge Servers. Besides, each
variation of a content type has to set a generation mode
which may be “pre-generated mode”, “generate on-demand
mode”, or “generate and store back mode”. The difference
processes for these variation generation modes is shown
in Figure 7.

Figure 7 The processes of different variation generation mode
(see online version for colours)

In “Pre-Generate Mode”, a variation is pre-generated right
after verifying the content object; the storage service has
one item for original format and the other item for the
variation. This mode is suitable for situation which the
variation is accessed frequently. The “Generate on demand
mode” generates a variation when a request is sent to the
CloudEdge Server. This mode is designed for the variations
which require few computing efforts. The third mode
is “Generate and store back mode” and it is similar to
the combination of previous two modes which store the
generated variation in the storage service. An environment
which has several cloud edge gateways could use this mode
to share the generated variation to reduce the efforts for
generating the same variation again. If a variation type is
rarely accessed and the generation cost is high, then
“Generate and Store back mode” is a better choice.

Post-Processing is a way to modify the content at the
CloudEdge Server before returning the result to web clients.
Applications could use this design to add some signatures,
such as water marks, logos and texts, on content objects.
In addition, some operations like get a range of the video
or rotate the photo could be done by the post-processing
mechanism. The difference between post-processing
and variation is caching. In addition, the result of
post-processing could not be shared with other request.

2.4 Access control and access limiter

Content objects stored in CloudEdge could be public or
private, and illegal accesses will be blocked at CloudEdge
Server. In web applications, a web page consists of a HTML
file and related content objects in which each item is
processed on different requests. The relationships are the
URL of each content object. To secure private content
objects, a signature using a private key is applied
and all URLs for secured content are signed in web
applications and verified in CloudEdge Server. With the
signature, any malicious change of URL would be blocked

 CloudEdge: a content delivery system for storage service in cloud environment 257

and only assigned content objects are accessible. Since the
signature is signed in the web application server without
any interaction with CloudEdge Gateway, it does not
increase the processing time except for calculating the
signatures.

In the CloudEdge system, a design of ‘access limiter’ is
applied to secure the access of content objects. Access
limiter is an extensible module in CloudEdge Servers.
Once the parameters of access limiter are included in the
content object URL, the access will be limited according
to its parameters. An access limiter is similar to the ‘expired
time’ in Amazon S3 mentioned in Section 1.2 but has more
options according to the implementations like limiting the
client IP, verifying the existence of HTTP cookies and even
the bandwidth control. In the next section, the detailed
design of the access limiter is explained.

3 Component design

3.1 Content access URL

A content access URL is a reference to access the content
in CloudEdge. A URL consists of bucket name, object ID,
access modifier and signature. The syntax of the content
object URL is shown in Figure 8.

Figure 8 The syntax and samples of content access URL

In a Content Access URL, the CloudEdge Hostname
is the server FQDN (Fully Qualified Domain Name)
for CloudEdge Server. With regard to samples shown in
Figure 8, the #1 is the access URL for a public content in
bucket ‘publicVideo’ and object ID ‘12765’. Sample #2
is assigned for private content object in bucket
‘privateVideo’. A BASE64 encoded string after the double
slashes is the signature for the whole URL.

There are four kinds of access modifiers for content
access URL: version, variation, post-processing, and access
limiter. The syntax of each modifier is shown in Table 2.
A version modifier adds version information of the content
in the Access URL. The version numbers in CloudEdge
are ignored. Sample #3 shows that its signature is
same as #2 because the ignored version number is not
included. The change of version number in URL avoids
the access of cached content in proxy servers or clients.
A variation modifier is a selector for different variation
of content. In the #4 sample, it asks the CloudEdge server
to provide the ‘mp4’ encoding format for the assigned
video content.

Table 2 Syntax of all available access modifiers in CloudEdge

Access modifier Syntax Sample

Version /v{versionString} #3
Variation /V{variationString} #4
Post-processing /P{module}{:{parameter}}? #5
Access limiter /L{module}{:{parameter}}? #6, #7

A post-processing modifier provides detailed information to
perform post-processing. The module ‘range’ in sample #5
is applied to get the first 10 s of the video. Finally,
the access limiter modifier, similar to the post-processing
modifier, is the notation to limit content access. In
sample #6, an IP Address limiter is applied to control the
access only from the IP parameter. The last sample #7
shows the ‘once’ access limiter without parameter.
A module limits the access only once per session.

The available modules or variations are defined in each
bucket according to the content type defined in the
CloudEdge Meta Server. Besides, a content access URL
could have several post-processing or access limiter
modifiers and the order of the access limiter modifiers could
be ignored.

3.2 CloudGate Meta Server

The CloudEdge Meta Server is the central database of the
CloudEdge System; it has the runtime information and
program module repository. The information stored in the
Meta Server is shown in Figure 9. First, the system
topologies about the access information of other CloudEdge
Servers are stored. A CloudEdge system could have
multiple CloudEdeg Servers or Gateways which are
operated independently but all these servers need to register
themselves in the CloudEdge Server to guarantee the
changes of the system could be notified.

Figure 9 Information stored in CloudEdge Meta Server

Next, the content type configuration includes all available
content type and the base setting of verification, variation,
and post-processing for these types. Since some default
configurations are defined, web application developers
could also derive new configurations for their needs from
them. Furthermore, the bucket configuration includes all

258 C-H. Chiu et al.

registered bucket and its arrangements including content
type, access control setting, available post-processing
modules, and variation setting.

The Meta Server provides not only the runtime
information and configuration but also a module repository
providing the library of extensible modules. There are four
kinds of extensible modules which could be executed
in CloudEdge Servers and Gateways. All kind of these
modules and their execution environment are explained
in Table 3.

Table 3 The available type of extensible modules in CloudEdge

Extensible
module type

Execution
environment Description

Verification
module

CloudEdge
Gateway

These modules verify the
content when the web
application import new
content into the CloudEdge
Gateway

Variation
generation
module

CloudEdge
Gateway,
CloudEdge
Server

These modules generate
required variations of content
object according to the
variation generation mode of
the bucket

Post-processing
module

CloudEdge
Server

These modules modify the
content object in relation to
the assigned parameters

Access limiter
module

CloudEdge
Server

These modules control the
access rights for each request
to CloudEdge Server

The registration process for a CloudEdge Server or Gateway
node is as follows:

1 add the information of the new node into the network
topology table

2 synchronise all content type configuration and bucket
configuration between node and meta server

3 synchronise the extensible modules which may be
executed in this node.

All information exchanged in the above process has a
version number. The Meta Server will notify all nodes
according to the network topology to resynchronise
information to the latest version if any update is made.

3.3 CloudEdge Gateway

The CloudEdge Gateway is the main interface for web
applications to manage the whole CloudEdge System.
It provides interfaces based on the web service for the
following operations which are shown in Figure 10.

• Data Manipulate Interface. Like the interfaces
for most storage services, the data manipulate
interface could get, put and delete objects directly.
It also supports the ‘range’ options to get content
in the specified range.

• Bucket Management Interface. This interface provides
operations to create or remove a bucket, get the
information and configuration of all buckets, or change
the setting of a specified bucket. Besides, the access
control of a specified bucket, including ACL and keys
could be managed by the CloudEdge Gateway via this
interface.

• Content Type Management Interface. This interface
manages the content type configuration in CloudEdge
Meta Server, including the relationships between
content types, modules, variations, and post-processing.

• System Management Interface. This interface not only
provides the network topology of the online system but
also has the operations to get the statistics information
of all nodes, buckets, and objects. It could help the web
applications to monitor the performance and availability
of the systems and get notification if any node
is corrupted.

Figure 10 The interfaces in CloudEdge Gateway (see online
version for colours)

Any update operation in CloudEdge Gateway may trigger
the Meta Server to invalidate the cache in CloudEdge Server
or issue a request to synchronise the configuration in all
CloudEdge Servers and Gateways. In order to avoid the
race condition of the cache data or configuration, a Server
Notification Queue is implemented in the CloudEdge Meta
Server. Any update of content or configuration creates an
item in the queue to trigger the update on all servers.

A queue is processed by a signal-thread worker and the
Meta Server would ensure that acknowledgments of all
servers are received before processing the next item in the
queue. Besides, a serious object changes may generate a lot
of items in queue to invalidate cache and the worker will
send the all consequent update items in the queue together
to reduce the cost of cache invalidation.

3.4 CloudEdge Server

A CloudEdge Server serves the request from the web client
and works like an edge server in a CDN. The CloudEdge
Server not only caches the data but also has a secured access
control mechanism and post-processing features. The flow
chart in Figure 11 shows the process of handling a request
in CloudEdge Server.

 CloudEdge: a content delivery system for storage service in cloud environment 259

Figure 11 The flow chart for CloudEdge Server to process
a content access URL

In the architecture of CloudEdge, there are multiple
CloudEdge Server and Gateway instances. For web clients,
the nearest CloudEdge Server is chosen by the result from
Domain Name System according to the geographical
information. For example, the DNS server will return
a CloudEdge Server instance if the request is sent from a
network which has the cheapest cost to connect the server.
On the other head, CloudEdge Gateways have multiple
instances designed for load balancing and better system
availability. A CloudEdge Server or Web Application
Server could choose any online gateway to reach the
system.

4 Implementation

4.1 Environment of implementation

The implementation of the CloudEdge system is based on
Java platform (Java Virtual Machine 1999). The reason is
portability since a Java program (Java Language
Specification 2005) can be executed in all kind of operating
systems with a Java Runtime Environment. In some cloud
computing environments, the available operating systems
are limited, so the portability of the CloudEdge System is
increased with such implementation. Besides, the extensible
modules are dynamic linked libraries and could be loaded
and unloaded online. In this system, each module is
implemented as a JAR file and the ClassLoader in Java
Platform could manage these modules as dynamic libraries.
The storage services in CloudEdge are also flexible and the
system implementation has several configurations for
different applications, including Amazon S3, MogileFS,
and the ordinary POSIX file system.

First of all, the Amazon S3 is the first commercial
storage service in cloud computing and the CloudEdge
implementation could be installed in the Amazon EC2
platform to accommodate the whole system in a cloud
environment. Second, the MogileFS from Danga Interactive
is a popular distributed file system for LiveJournal
developed by Fitzpatrick (2004). The implementation could
be leveraged if a large-scale local storage is needed. Finally,
the ordinary POSIX file system could also be the backend
storage service of a CloudEdge system. It is the basic
configuration of a small web application and it could still
take the advantage of the CloudEdge like variations
conversion, post-processing and access control.

4.2 funPhoto: the experimental system

The experimental system of CloudEdge is ‘funPhoto’
a web-based photo sharing system with large volume of
photos. The system shows the benefits of the CloudEdge
design with verification, variation, post-processing, and
access control.

The architecture of the funPhoto System is shown in
Figure 12. First, the funPhoto uses the Amazon S3 Services
for photo storage; and CloudEdge Systems are also
deployed in Amazon EC2, the first commercial cloud
computing Platform. The funPhoto web application system
is deployed in our hosting service in Taiwan because the
major users of the service come from Taiwan. The novel
design of the funPhoto is that it does not store the photo in
its machine. The funPhoto system uses a storage service
in cloud. Besides, an instance of CloudEdge Server is also
deployed in Taiwan to serve photo content objects and
reduce the cost of bandwidth and access latency.

Figure 12 The architecture of funPhoto system (see online version
for colours)

In funPhoto, only a content type ‘Photo’ is applied and it
has several variations including thumbnail size, small size,
normal size, large size, and original size (the default content
object). The implemented modules in the latest CloudEdge
System comes with the funPhoto Service are shown in
Table 4.

260 C-H. Chiu et al.

Table 4 The implemented extensible modules in funPhoto
service

Module Description

Verification module

Verification for photo A Photo Verification Module can
recognise supported photo format
and convert all photo to PNG format

Post-Processing

Rotate Rotate the photo in 90°CW, 180°CW,
or 270°CW

Rectangle Return the assigned portion of the
photo

Resize Resize the photo to assigned size
Watermark Add invisible watermark in the photo
Text Add a visible text in assigned position

of the photo

Access limiter

Once Let the client could access the content
only in according to the session id in
cookie

Expired time Block the access after the expired
time

IP Only allowing the assigned IP
to access the photo

HTTP Cookie Allow the access when a valid HTTP
cookie is found

Bandwidth Limit the daily bandwidth usage
for same IP

Referral Check the referral header of HTTP
request to avoid external usage of the
photo

5 Experiments and discussions

5.1 The experiment

To measure network latency in different configurations,
several experiments were conducted. The scenario for
these experiments is ‘post-processing’ and in that case,
watermarks were embedded into photos by web application
before returning to clients. The test case was executed in
three configurations: ‘Traditional Cloud’, a web application
with an external storage service in cloud; “CloudEdge in
Cloud”, a CloudEdge Server is deployed near the storage
service in Cloud but the web application is deployed in the
other network; and “CloudEdge in Local”, a configuration
has all servers in the same network.

The environments for these three configurations are
shown in Figure 13. The Amazon S3 storage services are
leveraged to store the content objects. The difference is that
the two ‘CloudEdge’ configurations have CloudEdge
servers deployed in Amazon Elastic Compute Cloud (EC2)
servers.

Figure 13 The deployment environment of these three
configurations: (a) Configuration (a): Traditional
Cloud; (b) Configuration (b): CloudEdge in Cloud
and (c) Configuration (c): CloudEdge in Local
(see online version for colours)

 (a)

 (b)

 (c)

In the experiment environments, all local servers located in
Taiwan are Dell R300 Servers with Xeon 2.4 GHz CPU &

 CloudEdge: a content delivery system for storage service in cloud environment 261

8 GB Memory. All Amazon EC2 nodes are the Standard
Reserved Instances in default (Small) configuration: 1.7 GB
of memory, 1 EC2 Compute Unit (1 virtual core with 1 EC2
Compute Unit).

In the experiment, a photo in storage service was
retrieved and processed and an invisible watermark was
added to trace the illegal distribution of the photo. In the
configuration (a), the web application server manipulated
the photo by itself. In the rest configurations, the photos
were manipulated by edge server and the details of the
requested photo operations are sent by the web applications
via the Content Access URL.

To measure the processing time in each step, a 650 KB
sample photo was accessed ten times in these three
configurations. The result is shown in Table 5.

Table 5 The result of the experiment

Retrieving the photo from
storage service

Accessing
CloudEdge

gateway

Storage
service

(ms)

Adding
water mark

(ms)

Total
time
(ms)

(a) – 4587 601 5189
(b) <1 ms 812 457 1269
(c) <1 ms 906 460 1366

By comparing the result of Configuration (a) and (b),
it shows that the CloudEdge System can reduce the cost of
communication when the web applications and the storage
services are not in the same network. In configuration (a),
the cost of retrieving content objects from storage service
in cloud is expensive, but the CloudEdge could reduce it
significantly since the CloudEdge Server is near the storage
service.

For the configuration (c), it shows that the total time
to process the request is similar to configuration (b).
In fact, accessing the Content objects according to the
Content Access URL does not require the access of web
applications. It means that the CloudEdge solution could
help web applications to handle the content object
regardless of the communication quality between the storage
service and web application servers.

5.2 CloudEdge: a combination of content delivery
network and storage service in cloud

Cloud Computing provides a new way to develop the
system and it will change the logic of resource management.
For a storage service in cloud computing, the professional
services could reduce the cost of uncertainly and
maintenance. Taking Amazon S3 as an example, the cost
of the storage is according to your storage space, but it costs
much more in a traditional approach. With respect to huge
storage, traditional approach requires high-end machines
and more maintenance efforts as the chart shows in
Figure 14. Therefore, the use of the storage in cloud is the
trend for new system development.

Figure 14 The relationship between storage space and cost
in different type of storage

Not all systems could use both the Amazon S3 storage
service and computing clustering service like Amazon
EC2 because some data may be sensitive and the system
infrastructure may be difficult to be deployed in a
general environment. Of late, more and more large-scale
web applications have been moving their content objects
into the storage service in cloud and the CloudEdge could
be a better content delivery method than existing solutions.
A comparison between CloudEdge and the Amazon Web
Services, the most popular commercial cloud service,
is shown in Table 6.

Table 6 Comparison between CloudEdge and Amazon Web
Service

Item CloudEdge
Amazon Web
Services

Access control Access limiter could
limit the access
according not only to
signatures and expired
time but also the client
IP, HTTP cookies, HTTP
referral header, and used
bandwidth

Only signatures
and expired time

Edge network
support

CloudEdge Server could
be deployed in any
locations as the edge
server in CDN

Amazon
CloudFront service
has several edge
services deployed
worldwide

Post-processing Provide post-processing
operations on content
objects

No

Variations
control

Any content object could
have several variations
and be generated
on demand

No

Loosely coupled
integration

Yes Yes

In summary, CloudEdge is a perfect combination of content
delivery and cloud computing. It could keep the loosely
coupled integration between web application and storage

262 C-H. Chiu et al.

service but provide more features required in content
protection and manipulation.

5.3 Deploy CloudEdge in local environment

The CloudEdge system is designed to be deployed with
a storage service in Cloud environment, but most small
or middle-scale websites do not have such deployment
architecture before their growth. CloudEdge has a kind of
configuration to use an ordinary POSIX file system
as its storage service and the system could still have the
benefits of content management, access control, variation on
demand, and post-processing on content objects.

With the growth of the web applications, the system
using the ordinary file system could be migrated to storage
service in cloud environment or local distributed file
systems. Moreover, the CloudEdge Server could also have
multiple instances deployed in the local area network to
increase the throughput of the system. Once the service
has heavy loading from different places around the world,
the deployment of CloudEdge Server in edge network
could be considered to reduce the latency of content access
and bandwidth cost.

6 Conclusions and future works

The CloudEdge is a content delivery system for Storage
Service in Cloud Environment. It is loosely coupled
integration through the query string of URL could reduce
the communication cost between web application server
and storage services. For private content, CloudEdge
has an extensible access control mechanism to meet the
requirement for all kinds of applications. Besides,
CloudEdge leverages the computing power in edge network
to manipulating the content according to the request from
the server. Content objects could have variations or be
processed according to the assignment from web
applications. It could totally reduce the communication cost
between web applications and storage services. To sum up,
the CloudEdge system provides a perfect combination
between CDN and storage service in cloud environment. It
could help the web application developers use an external
storage in cloud with ease, and let the applications
manipulate these content objects like local disk access.

The manipulations on content objects are always for
handling requests; but currently, the web application server
could not send a command to do such operations on content
objects. For example, if a web application wants to add a
photo frame on a photo stored in the storage service, the
web application needs to download the photo, add the
frame, and upload it back. In the next step, the content type
framework of CloudEdge will be extended to various kinds
of Class Library to provide content operations in storage

service from web application through SOAP (2007) or
REST APIs. With such improvement, managing content the
storage service could be enhanced to a content management
system in cloud environment.

References
Dilley, J., Maggs, B., Parikh, J., Prokop, H., Sitaraman, R. and

Weihl, B. (2002) ‘Globally distributed content delivery’,
Internet Computing, IEEE, September–October, pp.50–58.

Fitzpatrick, B. (2004) Inside LiveJournal’s Backend, Open Source
Convention 2004, Portland, OR, USA.

Jain, M.R. (2005) Flickr File System, URL: http://manishrjain.
googlepages.com/flickrfs

Palankar, M.R., Iamnitchi, A., Ripeanu, M. and Garfinkel, S.
(2008) ‘Amazon S3 for science grids: a viable solution?’,
Proceedings of the 2008 International Workshop on
Data-Aware Distributed Computing, Boston, MA, USA,
pp.55–64.

Bibliography
Amazon.com (2002) Amazon Web Services, URL:

http://aws.amazon.com/
Amazon.com (2006c) Amazon Elastic Compute Cloud, URL:

http://aws.amazon.com/ec2/
Amazon.com (2006b) Amazon Simple Queue Service, URL:

http://aws.amazon.com/sqs/
Amazon.com (2006a) Amazon Simple Storage Service, URL:

http://aws.amazon.com/s3/
Amazon.com (2007) Amazon Simple DB, URL: http://aws.

amazon.com/simpledb/
Fielding R., Mogul, J., Frystyk, H., Masinter L., Leach P. and

Berners-Lee, T. (1999) Hypertext Transfer Protocol –
HTTP/1.1, World Wide Web Consortium.

Gosling, J., Joy, B., Steele, G. and Bracha, G. (2005) The Java
Language Specification, 3rd ed., Addison-Wesley, Boston,
USA.

Gudgin, M., Hadley, M., Mendelsohn, N., Moreau J-J., Nielsen H.,
Karmarkar, A. and Lafon, Y. (2007) SOAP Version 1.2,
W3C Recommendations, URL: http://www.w3.org/TR/soap/

Hayes, B., (2008) ‘Cloud computing’, Communications of the
ACM, Vol. 51, No. 7, July, pp.9–11.

Lindholm, T. and Yellin, F. (1999) Java Virtual Machine
Specification, Addison-Wesley, Boston, MA, USA.

Murty, J. (2008) Programming Amazon Web Services: S3, EC2,
SQS, FPS, and SimpleDB, O’Reilly Media, 25 March.

Sacks, D. (2001) Demystifying DAS, SAN, NAS, NAS Gateways,
Fibre Channel, and iSCSI, IBM Storage Networking.

Saroiu, S., Gummadi, K.P., Dunn, R.J., Gribble, S.D. and
Levy, H.M. (2002) ‘An analysis of internet content delivery
systems’, Proceedings of the 5th Symposium on Operating
Systems Design and Implementation (OSDI), Boston, MA,
USA, pp.315–328.

