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Abstract

In this dissertation, we propose two regionsbased segmentation algorithms and two edge-
based segmentation algorithms for echocardiographic images. The first proposed algorithm
of region-based segmentation scheme is fuzzy Hopfield neural network with fixed weight ap-
proach. This approach incorporated the global gray-level information and local gray-level
information to construct a fuzzy Hopfield neural network. When the network converges to a
stable state, the segmentation result will be obtained. A new approach using a-shape points
is another proposed algorithm of region-based category. The region of interest corresponds
to one of the clusters under a properly selected a. We identify the heart chamber in the
ultrasound image by comparing the similarity between the a-connected components against
the heart chamber obtained from the AQ image. The first proposed algorithm of edge-based
segmentation scheme is finding the shortest path in directed graph. We circularly spread
the image first and then map it to a directed graph. To avoid the local minimum trapping,
dynamic programming approach is used for finding the shortest path. The other proposed
approach for edge-based segmentation algorithm is suitable for non-circular like boundary.

We incorporated an a-contour approach based on a-shape technique to construct the search
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space and then map it to a directed graph. The dynamic programming technique also used
for finding the shortest path.

In additional, we also propose a new approach for extracting mitral annular lines for
echocardiographic images. A nearly automatic method for calculating the mitral annular lines
from a 2D+1D precordial echocardiogram four-chamber view was presented. The proposed
method needs only a physician to provide a point in the left ventricular chamber. The average
error was 3% which is clinically acceptable. The proposed method saves much clinician time,

allowing a shift from machine to patient care.
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Chapter 1

Introduction

1.1 Research Motivation

According to American Heart Association statistics[3], cardiovascular disease has been
the number one killer in the United States every year since 1900 but 1918. More than 2,600
Americans die of cardiovascular disease each day, an average of one death every 33 seconds.
Cardiovascular disease claims almost ag'many.lives-each year as the next seven leading causes
of death combined. Even the statistics of disease‘categoty is different between the U.S. and
Taiwan, disease of heart is the third leading-eause of death in the past years in Taiwan.
According to the most recent computations.of the Genters for Disease Control and Prevention
of the National Center for Health Statistics (CDC/NCHS), if all forms of major cardiovascular
disease were eliminated, life expectancy would rise by almost seven years. If all forms of cancer
were eliminated, the gain would be three years. According to the same study, the probability
at birth of eventually dying from major Cardiovascular diseases (ICD/9 390-448) is 47 percent,
and the chance of dying from cancer is 22 percent. Additional probabilities are 3 percent for
accidents, 2 percent for dia-betes and 0.7 percent for HIV.
Cardiac imaging is an established approach to diagnosis cardiovascular disease and play
an important role in estimating the severity of various cardiac diseases. The possible methods
of cardiac imaging are now published with X-ray computed tomography, magnetic resonance

(MR), positron emission tomography, single photon emission computed tomography (SPECT),



and ultrasound. A detailed review of existing 3-D cardiac modeling approaches is provided
in [28]. Cardiac ultrasound imaging (Echocardiography) is done in real time, making it more
suitable for cardiology than other imaging modalities. It is preferable also because the equip-
ment is portable, safe, and noninvasive.

Cardiac boundary extraction on echocardiographic images is essential for quantification of
cardiac function. Among the various echocardiograms, the apical four-chamber view collected
using a transthoracic transducer is important in evaluating the left ventricle function[2]. For
example, the volume of the left ventricle can be estimated from the four-chamber image
views. The left ventricle forces oxygen-rich blood into the arteries, which carry the blood
throughout the body. The endocardial and epicardial boundaries of the Left Ventricle (LV)
are useful quantitative measure for various cardiac functions such as left ventricle volume and
ejection fraction. The basic quantitative measures of cardiac function will be introduced in
Secion 1.3. In this task, left ventricle segmentationis‘the most important work. To segment
the left ventricle, a physician can manually trace the boundary of the left ventricle in the
images. This is a cumbersome and;time-consuming job, especially when many images are
involved. An automatic or semi-automatic method to'segment the left ventricle would be a
valuable diagnostic tool. Many reseachers have proposed some methods for echocardiographic
image segmentation in the past years, such as [5, 7, 11, 33, 48, 60, 71, 81, 82]. This task
is important but difficult. Echocardiographic image segmentation presents some challenging
difficulty because of the inherent characteristics of the echocardiographic images, including
blur, low contrast, speckle noise, and signal dropouts.

Image segmentation, a process to divide a given image into meaningful regions with ho-
mogeneous properties, is an essential step in image analysis and recognition. In general,
image segmentation is based on gray level values. A great number of algorithms, for exam-
ples [1, 13, 14, 15, 29, 30, 32, 34, 43, 58, 64, 74, 83], have been proposed in the past. Those

conventional image segmentation algorithms can be categorized generally into two classes:



1. Region-based schemes, by which homogeneous properties around a given pixel is en-

larged.

2. Edge-based schemes, which detect the pixels with abrupt changes in gray levels, and

then connect selected pixels to form completely enclosed boundaries.

In general, echocardiograpic image segmentation emphasizes the discrimination of regions
associated with tissue and blood (cardiac cavities), making such structures easier to analyze.
Besides the difficulties of the echocardiographic images segmentation, another problem occurs
when the left ventricle is extracted from the segmented echocardiographic image. Mitral
valve is one of the valves of the heart, whose function is to keep the blood flowing in one
direction through the left atrium to the left ventricle, and to prevent backflow of blood when
the heart contracts. Normally, the mitral valve opens when the heart relaxes, allowing blood
to flow from the left upper chamber into the left lower chamber of the heart. However, in
diastole the left ventricle and left atrium become ‘one chamber when the mitral valve opens
fully. This is the problem when we extract the left ventricles from the segmented results on
echocardiographic images.

In this dissertation, we concertrate on a particular technique for ultrasound heart imaging,
named as the four-chamber view. We focused our attention on the echocardiographic images
segmentation. Two region-based algorithms and two edge-based algorithms are proposed
for echocardiographic images segmentation. We also propose an approach for finding mitral
annular lines from a sequence of echocardiographic images in order to separate the left ventricle

and the left atrium of heart.

1.2 Nomenclature

n-D n-dimensional.

AQ Acoustic Quantitative.



CHNN Competitive Hopfield neural network.

CI Cardiac index.

CO Cardiac output.

CcT Computed tomography.
CVD Cardiovascular disease.
ECG Echocardiography.

EDV End diastolic volume.

EF Ejection fraction.

ESV End systolic volume.
FCM Fuzzy c-means algorithm.

FHNN Fuzzy Hopfield neural network.

HCM Hard c-means algorithm.
HR Heart Rate.

LoG Laplacian of Gaussian

LV Left ventricle.

LVV Left ventricle volume.

MRI Magnetic resonance imaging.
NN Neural network.

ROI Region of interest.

SPECT  Single photon emission computed tomography.

SV Stroke volume.
SVI Stroke volume index.
US Ultrasound (imaging).



1.3 Basic parameters of cardiac function

In practice, the indices of the cardiac function are linked to the volumetric measures such
as Left Ventricle Volume (LVV), Stroke Volume (SV), Ejection Fraction (EF), and Cardiac
Output (CO) [12]. These basic parameters for the medical diagnosis are briefly described as
follows.

LVV - Left Ventricle Volume is defined as the quantity of blood (ml) in the left ventricle.
Angiocardiography and echocardiography have been traditionally used to assess this quantity.
The achieved accuracy in the assessment of LVV with echocardiography varies largely with the
model used to represent the LV. It has been shown that echocardiography consistently under-
estimates vertricular cavity, while angiocardiography consistently overestimates true volumes
[77]. In summary the volume of the LV is a basic parameter required to obtain other LV
indices, for example: EF.

SV - Stroke Volume is defined as,thevolume ejected between the end of diastole and the

end of systole.
SV=EDV — ESV (1.1)

EF - FEjection Fraction is a global index of LV fibers reduction, and is generally considered
as one of the most meaningful measures of the LV pump function. It is defined as the ratio
between the SV volume and the volume of the end of the diastole

EDV — F
SV 100% = EPV = ESV. 009, (1.2)

EF =557 EDV

CO - Cardiac Output is defined as the product of the activity of pumping SV by the Heart
Rate, HR.

CO =SV x HR (1.3)

The role of the heart is to deliver an adequate quantity of oxygenerated to the body. This

blood flow is known as the cardiac output and is expressed in liters per minute. Since the
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magnitude of CO is proportional to body surface, one person may be compared to another by

means of the cardiac index, that is, the CO adjusted for body surface area.

1.4 Surveys of the Related Topics

In this section, we will introduce the surveys of the related topics of region-based and

edge-based segmentation algorithms.

1.4.1 Region-based Image Segmentation

The principal approaches in region-based segmentation algorithms are based on threshold-
ing, clustering, region growing, and region splitting and merging [30]. Region-based methods
rely on the postulate that neighboring pixels within the one region have similar value. This
leads to the class of algorithms known as region growing of which the ”split and merge”
technique [37] is probably the best known. The general procedure is to compare one pixel
to its neighbors. If a criterion of homogeneity is satisfied, the pixel is said to belong to the
same class as one or more of its neighbors., Adams and Bischof [1] proposed a method known
as ”Seeded Region Growing” which is*based on the région growing postulate of similarity of
pixels within regions. It is controlled by choosing a (usually small) number of pixels, known
as seeds. Tkonomakis et al. [39] proposed a method known as ”Region Growing and Region
Merging” which start with a set of seed pixels and from these grows regions by appending the
neighboring pixels that have similar properties. This process would be repeated until every
pixel in the image would belong to a region. The merging procedure involves merging regions
that are neighbors and which satisfy the homogeneity function with a new merging threshold
M. A dynamic thresholding process was used in processing computerized tomography (CT)
images for organ identification in [42]. The location, size, adjacency, and shape constraints of
the organs were used as anatomical knowledge.

Recently, neural network based architectures [16, 17, 21, 23, 26, 47, 44, 45, 84] have been



applied for image segmentation. Dhawan and Arata [26] proposed a two-dimensional self-
organizing feature map based approach, that incorporates both local and global information
about the gray-level distribution of the image and explores the useful features of the image to
determine and extract meaningful regions of interest. They used the concept of competitive
learning to find the overall gray-level distribution of the image as the global information. A
contrast measure defining the homogeneity of the region was also used as the local information.
In [47][16] the image segmentation process was formulated as a constraint satisfaction prob-
lem (CSP) by interpreting it as a process of assigning labels to pixels. A three-dimensional
constraint satisfaction neural network was developed to form the constraints in the CSP. A
method using a competitive Hopfield neural network (CHNN), based upon the global gray-level
values distribution, was proposed by Cheng et al. [17]. The problem of image segmentation is
regarded there as minimization of a cost function, which, in turn, is defined as the mean value
of distance measures between the gray-level values and-the members of classes. Lin et al. [44]
proposed a fuzzy Hopfield neural network (FHNN), based upon the pixel classification, for
image segmentation. This approach‘added a*fuzzy reasoning strategy into a neural network.
In FHNN, the process of image segmentation is also regarded as a minimization problem in
which the cost function is defined as the Euclidean distance between the gray levels in a his-
togram and the cluster centers represented in the gray levels. In general, those methods above
for medical image segmentation make use of the local information, i.e. the gray-level values
of the neighborhood pixels, and the global information, i.e. the overall gray-level distribution

in the image.
1.4.2 Edge-based Image Segmentation

An edge is the boundary between two regions with relatively distinct gray-level proper-
ties. A typical boundary detection procedure in echocardiography studies has three steps [70],

preprocessing by smoothing, enhancing, and identifying. Chu et al. [19] proposed an algo-



rithm based on the nonpurposive segmentation approach which consists of three steps, edge
detecting, edge estimation, and nonlinearly edge processing. Coppini et al. [23] proposed an
approach to extract left ventricle border including three step, edge detecting, edge grouping,
and edge classification.

The most common method of edge detection in image segmentation application is the
gradient. Some of earlier methods, such as the Roberts, Prewitt and Sobel operators [30],
compute the gradient of an image based on obtaining the partial derivatives at every pixel
location. These operators use local gradient operators to approximate the magnitude of the
gradient for detecting the presence of an edge in an image. However, the Sobel operators have
the advantage of providing both a differencing and a smoothing effect. Because derivatives
enhance noise, the smoothing effect is a particularly attractive feature of the Sobel operators.

The famous Laplacian of Gaussian edge detection operator (LoG operator) proposed by
D. Marr and E. Hildreth [51] smooths the image by using Gaussian distribution filter before
convolving the image with Laplacian operater, and it extracts edges efficiently. The LoG
operator is commonly employed as a second order edge detector in image processing, and is
popular because of its attractive scaling properties: In the edge detection scheme the LoG
operator is convolved with an image and the resulting zero crossings are classified as edges.
Shen and Castan [68] used a symmetrical exponential filter in edge detection. However, since
it was originally proposed by Marr and Hildreth, the Gaussian filter is by far the most widely
used smoothing filter in edge detection [25, 63, 80]. A survey of Gaussian-based edge detection
techniques may be found in [4].

Kass et al. [40] proposed the active contour model, known as Snake, to build a deformable
contour which consists of connected spline segments and approximates to a desired form by
minimizing an energy function which consist of internal, image, and constraint energy. The
Snake model has been applied to medical image segmentation in variety of modalities. The

Snake model needs an initial contour of border which is generally obtained by manual in-



put. Staib and Duncan [72] proposed an algorithm for boundary finding with probabilistic
deformable models in order to increase the flexibility of enforcing the constraints in parameter
space. In the case of boundary finding through the optimization in image space, the measure
of fit is represented by certain image-related quantities. Suri et al. [75] proposed a method-
ology by which more accurate end-diastole and end-systole left ventricle boundaries can be
automatically computed from the initial boundaries generated by a left ventricle pixel-based
classifier. A formulation of the two-dimensional (2-D) deformable template matching prob-
lem is proposed in [76]. It uses a lower-dimensional search space than convertional methods
by precomputing extensions of the deformable template along orthogonal curves. Ono and
Ogawa [57] use the circularly spread image and a neural network to do segmentation in an
MR image. They transformed the original image to a spread image. The segmentation task
was converted to finding a polygonal line which divided the spread images to upper and lower

halves. The polygonal line was determined by a neural network.

1.5 Organization of the Dissertation

This dissertation is composed of 6/chapters. The organization of the disertation is de-
scribed as follows:

In Chapter 1, the motivation, nomenclature, basic parameters of cardiac function, surveys
for the related topics, and organization of the dissertation are mentioned.

In Chapter 2, some traditional approaches of image segmentation are reviewed. In region-
based schemes, we will introduce the hard c-means algorithm, fuzzy c-means algorithm, and
competitive Hopfield neural network algorithm. In edge-based schemes, we will introduce the
Sobel operator and the active contour model (Snake).

In Chapter 3, we will present the proposed fuzzy Hopfield neural network with fixed weight
algorithm and the clustering algorithm using a-shape technique. These two algorithms are

region-based.



In Chapter 4, we will propose two edge-based approaches using the shortest path finding
algorithm for extracting the cadiac boundaries.

In Chapter 5, we will propose a new approach to find the mitral annular line from pre-
cordial echocardiogram using shortest path searching technique. The shortest path searching
technique is also based on the proposed algorithm in chapter 4.

In Chapter 6, the dissertation is concluded and future works are stated.

10



Chapter 2

Reviews of the Methods for Image
Segmentation

2.1 Introduction

As we stated in Section 1.1, segmentation algorithms are generally based on one of two
basic properties of gray-level values: similarity-and discontinuity. In the first category, the
approach is to partition an image based on thresholding, region growing, and region splitting
and merging. The principal approaches in the second category are based on abrupt changes
in gray level.

In this chapter, we will review some region-based ‘and edge-based segmentation algorithms.
In region-based schemes, we will introduce hard c-means and fuzzy c-means, and Hopfield
neural network schemes in Section 2.2 and 2.3, respectively. In edge-based schemes, we will

introduce Sobel operator and active contour model in Section 2.4 and 2.5, respectively.

2.2 The Hard c-means and Fuzzy c-means Algorithms

The hard c-means and the fuzzy c-means algorithms are well known for classification of
points in space into clusters. When these algorithms are applied for image segmentation,
the pixels with similar intensity are gathered into clusters in order to identify the region of
interest. In this section, these algorithms are briefly described for completeness. The details

can be found in [6].
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2.2.1 The Hard c-means Algorithm (HCM)

Given a set of n points denoted X = {z1,z,,...,z,} in space. Suppose we divide the set
of points into ¢ clusters. It is said that the matrix U = [u;;] € M, is a hard c-partition of X

if it satisfies the following conditions:

(&
D ug =1,
k=1
n
Z ujr < n, and
i=1
n c
Z Zuik =n,
i=1 k=1
where u;, € {0,1}.
The procedure of the hard c-means algorithm is summarized in the following steps.
1) Choose a primary set of ¢ points, {vg|k = 1,2,...,c}, as the cluster centers.
2) Calculate the membership matrix U based upon the minimum Euclidean distance as follows:

- el detiny o1 )2
(= T N
0, otherwise

3) Update the new cluster centers ¥y,

n

;(Uik)(%)
éuik

4) If U = U then stop; otherwise goto step 2).

The hard c-means algorithm is easy to implement. But it is sensitive to the noise in the

image.
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2.2.2 The fuzzy c-means algorithm (FCM)

The hard c-means algorithm allows a point to belong to only one cluster. But in the
fuzzy c-means algorithm, every point belongs to all clusters with different degrees of the
membership functions. The conditions of the membership matrix U of fuzzy c-means are

modified as follows:
[+
dux=1, 1<i<n,
k=1

n
Zuik<n, 1<k<e¢ and
i—1

n c
Z Zuzk =n,
i=1 k=1
where 0 < u;, < 1.
The procedure of the fuzzy c-means algorithm is summarized in the following steps.

1) Choose a set of points, {vg|k = 1,2,. aj€}; as the,initial cluster centers.

2) Calculate membership matrix U for all péints to'all clusters using the following equation.
_ B
e =il ™) 2
= C 2 L .
> [z =z
7j=1

3) Update the new cluster centers ¥y,

Uik

M=

(Uik)qxi

V =

(uir)?

=1

4) If max;y, |, — uk| < €, where € is a stop criterion, then we stop the iteration. Otherwise

the iteration restarts at step 2).

The fuzzification factor, ¢, a given real number which is greater than 1, decides the con-
vergence speed and the sensitivity to noise. If ¢ is set to 17, then it converges quickly and is
less sensitive to the noise. On the other hand, if ¢ is set to a large number, it will converge

slowly and will be more sensitive to the noise.
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2.3 Competitive Hopfield Neural Network

The Hopfield neural network, constructed with a feedback network, which needs many

iterations before retriving a final pattern. It has the following characteristics:
1. Synaptic weights (predetermined by an energy function) are prestored.
2. Nonlinear thresholding operations are used in each stage to produce binary-valued states.
3. State feedbacks are used so that the states can be iteratively updated.

4. Tterations will converge to a solution that minimizes an energy function pertaining to

the network.

In the following, a Hopfield network model will be introduced.
Given M binary-valued (0/1) patterns (i.es; {agm)} have binary values 0 or 1), the weights

of the Hopfield network are derived ag

wij:{ m_l( a; 5 )( a] )a zi“;’ (21)

The thresholds of the network are given as

1 N
j=1

Let a; denote the binary state of the sth neuron and w;; be the interconnection weight
determined in Equation (2.1) and (2.2) between the ith neuron and the jth neuron. A neuron
¢ in this network would receive the inputs weighted by w;; from every other neuron j may be
calculated as

N@ti = z Wi a; + Iz (23)
J#i

The energy function (or Liapunov function) of the Hopfield network is given as follows:

E= —% Z Z Wi;aiG; — Z Iza'z (24)
i g i
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The iterative Hopfield network model is summarized as follows:

Step 1) Compute the net value
J

Step 2) Update the state

1, Net,(k—i—l) > 0,

Repeat the same process for the next iteration until convergence, which occurs when none of

the elements changes state during any iteration.

2.4 Sobel Operator

The gradient is the most common method,ef differentiation in image processing applica-
tions. Dericatives may be implemented in digital form’in serveral ways. However, the Sobel
opertors have the advantage of providing both a‘differencing and a smoothing effect. For a

function f(z,y), the gradient of f at.coordinates=(z; y)'is defined as the vector

of
Ax

Vf = . (2.7)
of
oy

The magnitude of this vector is defined as

wr=man = () (2)] o

The magnitude can be approximated by some of ways. The Sobel operator is one of the
common used methods. Figure 2.1 shows a 3 x 3 region of an image, where the 2’s denote
the values of intensity. The magnitude of gradient at point z5 can be approximated by Sobel

operator, written as
V= |(z7 4228 + 29) — (21 + 220 + 23)| + |(23 + 226 + 20) — (21 + 224 + 27)| - (2.9)
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Figure 2.1: A 3 x 3 region of an image, where the z’s denote the values of intensity.

Computation of the gradient at the location of the center of the masks which gives one
value of the gradient. To get the next value, the masks are moved to the next pixel location
and the procedure is repeated. Thus, after the procedure has been completed for all possible
locations, the result is a gradient image of the same size as the original image. As usual,
mask operations on the border of an image are implemented by using the approapriate partial

neighborhoods.

2.5 Active Contour Model

Active contour models were first .proposed by Kass et al.[40]. This semiautomated image
segmentation technique takes a rough user input on the location of an object and refines the
object outline based on the computer-generated-edge map. The active contour (snake) v is

defined as a continuous deformable curve

where s denotes the normalized contour length. An energy that is a function of the contour’s
shape and position is associated with the snake. The optimal contour configuration is defined
as one having the minimum energy. In general, the energy function consists of the internal

and the external energy
Esnake = (Eznt(v(s)) + Eimg(v(s))ds'

E;,; represents the internal energy that makes the contour resistant to bending and stretching,
and Fj,,, is the energy associated with the image that focus the contour to lock onto the edges.

Since the position and shape of the snake are modified by the energy minimization process,
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the lowest values of E;,, should be at the locations where the image gradient is large, i.e.,

edge locations. Image energe is, therefore, often defined as
Eimg = —||AI],

where [ is the image intensity. The continuity and smoothness of the model help overcome the
problems of gaps and noise in the object boundaries. Various approachs have been proposed

for finding the optimal contour.

17



Chapter 3

Region Based Approach

3.1 Introduction

In this chapter, we will propose two region-based algorithms. As we mentioned, image
segmentation refers to partitioning an image into different regions that are homogeneous or
similar in some image characteristics. Region-based approaches which grow a region around
a given pixel with homogeneous properties. Some. related approaches are introduced in the
previous two chapters. Generally speaking, these approaches make use of the local information,
i.e. the gray-level values of the neighborhooed pixelss-and/the global information, i.e. the overall
gray-level distribution in the image, for.image segmentation. The grobal information based
methods are depended on the postulate that all pixels whose value (gray level, color value,
or other) lie within a certain range belong to one class. This leads to the class of algorithms
known as thresholding which is probably the best known. Such approaches neglect all of the
spatial information of the image and do not cope well with noise or blurring at boundaries.
The local information based methods rely on the postulate that neighboring pixels within the
one region have similar value. The general procedure is to compare one pixel to its neighbors.
If a criterion of homogeneity is satisfied, the pixel is said to belong to the same class as one
or more of its neighbors. The choice of the homogeneity criterion is critical and the results
are upset by noise.

The remainder of this chapter is organized as follows. In Section 3.2, the proposed fuzzy
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Hopfield neural network with fixed-weight algorithm is presented. The proposed clustering
algorithm using a-shape technique is presented in Section 3.3. In the last section, concluding

remarks are included.

3.2 Fuzzy Hopfield Neural Network with Fixed Weight

In this proposed algorithm, we focus on noisy image segmentation. Due to the presence
of noise, during region growing process the region of interest doesn’t include the noisy pixels.
Therefore, we propose a segmentation algorithm which incorporates both local and global
information for medical image segmentation. The global gray-level information is used to
segment the image for the initial partition. We then use local information to construct a
Hopfield neural network. The Hopfield neural network simulates the membership function.
The fuzzy set approach is applied to determine the outputs of the neurons. Each neuron
corresponds to a pixel in the image. A pair _of neurons are connected if they are neighbors
in the image and the synaptic connection weights are predetermined and fixed to improve
the efficiency. When the network converges into a stable state, a defuzzification process will

decide to which cluster a pixel belongs and obtain the segmentation result.

3.2.1 Proposed Method

In this section, we present the proposed fuzzy Hopfield neural network with fixed weight
model to simulate the membership matrix for image segmentation. Each pixel in the image
is a point in the plane. If there are n pixels, to be divided into ¢ clusters, then each pixel
has ¢ neurons associated with it. There are n x ¢ neurons in this network. Similar to that in
FCM, the outputs of the neurons, denoted O = 0;,,0 < i <n,1 < k < ¢, form a membership

matrix. A membership corresponds to a partition if it satisfies the following conditions:

c
Zoik =1, for all s,
k=1
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> oy, <n forall k, and

=1

i ioik =n, (31)

i=1 k=1

where 0 < 0; < 1. Two neurons are neighbors to each other if their corresponding pixels
in the image are neighbors to each other. As shown in Figure 3.1, each neuron receives
contributions from the neighboring neurons and itself as its input. These contributions are
weighted by the synaptic weights, W. In our approach the synaptic weights are fixed and
should be determined first. The synaptic weight between two neurons ¢ and j is determined
by the Euclidean distance and the similarity of their intensities in the image as shown in the

following equation.

1
wij = { a1 (AI(i,1) ez (D)) 177, (3.2)
1, 1 =7,

where AI(i, j) is the difference in intensity between pixel- and j, and D(i, 7) is the Euclidean
distance between pixel ¢ and j. oy and oy are the weights to balance these two factors.

The proposed method requires a sét of initial cluster centers. The initial cluster centers
can be obtained by analyzing the histogram of gray scales or our understanding of the images.
In most of the cases in medical image segmentation, we know the intensities of the area of

interest. When we acquire the ¢ initial class centers, we can perform the initial partition as:

L 1<i<nl1<k<q

i=1 (=) "

where I(7) and vy, are respectively the intensity values of pixel i and the kth class center.
Recall that, a neuron receives outputs from neighboring neurons and itself. The net value

of the neuron i is described as

et = Y wyyol (3.3)

JEN;
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Figure 3.1: The structure of a neuron.

where NetEZH) is the net value of neuron ¢ associated with class £ in iteration ¢ 41, 0;2 is the

output state of neuron j associated with class & in iteration ¢, and 6; is the offset bias fed to

the neuron i. In our approach, the € of all neurons are set to zero. So Equation (3.3) becomes
Netlt) = 3~ w69, (3.4)
J

Each pixel has ¢ neurons associated with e clusters to-represent the membership degree of
each cluster. When the net values of the neurons-haye been updated in Equation (3.4), the
outputs of all neurons will be updated depending on the new net values. Following the fuzzy

c-means algorithm, the new output values can be obtained using the following equation:

(t+1) _ (Net{p")a=

0,1 .
: ¢ (Net!tyz=

(3.5)

The proposed segmentation algorithm is summarized as follows:
Step 1) Determine the neighborhood window, N, and Calculate the weights,
w;j, 1 <1 <mn, foraneuron je€ N;
using Equation (3.2).
Step 2) Initial clustering.
Step 3) Calculate the Net value using Equation (3.4).

Step 4) Update the output states using Equation (3.5).
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og,t:rl) - 01(,? < € then goto Step 6);

Step 5) If max
(3
otherwise ¢t = ¢ + 1 and goto Step 3).
Step 6) Output the final result using the defuzzification process as
Si = k, if O, = lngl_?%(c{oij};

where S; is the segmentation label of pixel 3.
3.2.2 Simulation and Experimental Results

In this section, we present the experimental results. In our experiments, we used a set
of phantom data and medical images to evaluate the performance of the proposed algorithm.
The experiment used a phantom data set which was based on CHNN [17]. The phantom
data is as shown in Figure 3.2(a), which was produced by four overlapping disks and the

background. Each region had an average gray scale, as in the following

e the average gray value of the background was 30,

e from the outer most circle to the center, the average gray values of four disks were 75,

120, 165, and 210, respectively.

The gray scale in each region was not a constant. Suppose that yu is the average gray scale in a
region. The gray scales in the region were uniformly distributed over the range [ — K, u+ K]
where K is a constant. Figure 3.2(b)—(d) are the phantom data sets containing noise with
K= 20, 23, 25, respectively. We applied the hard c-means (HCM), fuzzy c-means (FCM),
competitive Hopfield neural network (CHNN), and the proposed approach to process the
phantom data sets. Figures 3.3-3.5 are the segmentation results with noise levels K= 20, 23,
and 25, respectively. In these figures, (a)—(d) are the results segmented by applying HCM,
FCM, CHNN, and proposed approach, respectively. We compared the number of misclassified
pixels and the error rates to evaluate the performance. Tables 1-3 show the comparison results
from these phantom data sets using these four methods. All of the four methods perfectly

segmented the objects when the noise level was K=20. If the noise levels were higher, when
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Figure 3.2: (a) The simulated image‘;y'vithré;(rfomtam graj; level in background and each disk.
(b), (c¢), and (d) are the simulated images with added neise levels K = 20, 23, 25, respectively.
K=23 and 25, the performance of the proposed approach was better than other three methods,
both in perception quality and quantitative comparisons (see Figure 3.4, 3.5 and Table 2, 3).
We applied the proposed algorithm to segment the area of interest in medical images. The
first was a set of CT images of head scan. The region of interest in the CT images is a blood
clot. The blood clot has higher intensity than the soft tissue. Two experiments were done
on this set of images. The first experiment was to compare the proposed method against
an intensity thresholding method. When we are partitioning the pixels into two classes,
the effect of the proposed method is the same as the intensity thresholding method. The
proposed method needs two initial cluster centers while the thresholding method needs an

exact threshold value. When the thresholding method was applied, we first applied a mean
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Figure 3.3: (a), (b), (c), and (d) are the se‘gmeﬁt:‘c’ition‘Kresults with added noise level K = 20
using HCM, FCM, CHNN, and proposed approach; respectively.

Table 3.1: The number of misclassified pixels and error rate with noise level K=20
HCM | FCM | CHNN | proposed approach
Number of misclassified pixels 0 0 0 0

Error rate 0.00 | 0.00 0.00 0.00

Table 3.2: The number of misclassified pixels and error rate with noise level K=23
HCM | FCM | CHNN | proposed approach

Number of misclassified pixels | 31614 | 5090 9434 59
Error rate 0.4823 | 0.0776 | 0.1439 0.0009
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(c)

Figure 3.4: (a), (b), (c), and (d) are the segmentation results with added noise level K = 23
using HCM, FCM, CHNN, and proposed approach, respectively.

Table 3.3: The number of misclassified pixels and error rate with noise level K=25
HCM | FCM | CHNN | proposed approach
Number of misclassified pixels | 31644 | 8898 | 14022 361

Error rate 0.4828 | 0.1357 | 0.2139 0.0055
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Figure 3.5: (a), (b), (c), and (d) are the segmentation results with added noise level K = 25
using HCM, FCM, CHNN, and proposed approach, respectively.
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filtering to the image. We then carefully choosed the best possible threshold to segment the
blood clot. The results are shown in Figure 3.6. In Figure 3.6, the first column shows the
original image. The boundary points obtained by using the thresholding method are shown in
the second column. The boundary points obtained by using the proposed method are shown
in the third column. The proposed method can obtain relatively clean images.

The second experiment was to compare the proposed method with the HCM and FCM.
Figure 3.7(a) is an original CT image of a human head scan. Figure 3.7(b) shows the blood
clot segmented using the proposed approach. We also segmented the blood clot by using HCM
and FCM algorithms and show the results in Figure 3.7 (c) and (d). The result obtained by
the proposed approach was much better than the other two methods.

We applied the proposed method to classify the pixels in the echocardiographic images.
In our experiment, precordial echocardiographic images were used. The region of interest in
the echocardiographic images is generally the heart.chamber. Heart chamber in the image
generally has low intensity. The segmentation of a heart'chamber is difficult due to the speckle
noise. The boundaries of the segmented resultsfrom-the proposed approach are shown together
with the original images in Figure 3.8. “These results show that the proposed approach works
well for cardiac ultrasound images.

The next experiment was to classify the pixels in MR images of human head scan. We
classified the pixels into four sets. Figure 3.9 shows the original images in the first row and
the processed images in the second rows. The results show that the proposed method also
works well to classify the pixels in MR images.

The proposed approach requires a set of initial cluster centers of gray scales. In the above
experiments, the cluster centers were obtained by our scanning of the gray scales of the regions
of interesting. It is not convenient for clinical applications. In this experiment, we provide an
automatical technique to obtain the initial cluster centers by using the histogram of the image

with global gray level information. The histogram of a digital image is a discrete function

27



Figure 3.6: We partitioned the pixels in the C'T images into 2 sets. We then calculated the
boundaries for the pixels in the same set. The images in the first column are the original
images. Images in the second column were gbtained by first applying mean filter to the
original images then applying intensity thres%olding. The images in the third column were
obtained by the proposed method.



Figure 3.7: (a) The original CT image of human head. (b), (c), and (d) are the segmentation
results using proposed approach, HKM, and FKM, respectively.
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(b)

Figure 3.8: (a) and (b) are two echocardiographic images with the boundaries obtained by
the proposed approach.

p(rk) = ng/n, where 7y, is the kth gray level, n; is the number of pixels in the image with that
gray level, and n is the total number of pixels in t‘he' image. We applied the hard c-means
algorithm to divede the gray levels of histogram into clusters. These cluster centers are used
for initial cluster centers of the proposed apptoach. Figure 3.10(a), (d) and (g) are the original
images of CT, MR and echocardiography. Frigure 3.10(b), (e) and (h) are the histograms with
gray scales of Figure 3.10(a), (d) and (g), respectively. Figure 3.10(c), (f) and (i) are the
segmentation results. When we applied the hard c-means algorithm to Figure 3.10(b), (e) and

(h) for obtaining the initial cluster centers, the cluster number are 5, 4 and 4, respectively.

3.2.3 Discussions

The proposed approach requires initial values of gray scales for the cluster centers. The
cluster centers could be obtained by understanding the images or analysis the histogram of
the images with gray scales. In the most experiments, we gave the initial cluster centers
with gray scales by our understanding of the images. We presented the good results in the

experiments. In most of the cases of medical images segmentation, we know the average
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Figure 3.9: The pixels in the MR images are partitioned into 4 sets. From left to right, each
column shows the original image (above) and the processed image (below).
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Figure 3.10: (a), (d) and (g) are the original images of CT, MR and echocardiography. (b),
(e) and (h) are the histogram of (a), (d) and (g). (c), (f) and (i) are the segmentation results
by first applying hard c-means algorithm for initial clustering then applying the proposed



intensity of the region of the interest. But it is not convenient for the clinical applications.
We also provided an automatical technique to obtain the initial cluster centers in the last
experiment. The cluster centers obtained by hard c-means algorithm with histogram which
maybe not good enough espicially noisy image. If the segmented image is noisy or the region
of interesting is very smaller than other regions, the number of cluster must be incremented.
It is why the cluster number of Figure 3.10(a) and (g) are 5 and 4, respectively. Practically,
the proposed approach can’t accept the random initial cluster centers, but allows that the
initial cluster centers aren’t too far away from the actual cluster centers. It is difficulty to
develop an automatical method for deciding very good initial cluster centers. Furthermore,
comparing with the intensity thresholding method, the intensity threshold method is much

more sensitive to the threshold value than the proposed method to the cluster centers.

3.3 Clustering Using a-shape:Technique

Ultrasound instruments provide-ultrasound images as well as the Acoustic Quantitative
(AQ) images. AQ images display fluid and soft tissue invery different intensities. In general,
fluid in an AQ image is displayed in a much lower intensities comparing to the soft tissue. Since
the difference between the intensities of fluid and soft tissue is very significant, segmentation
in AQ image is a much easier task. Lin reconstructed the LV endocardial surfaces from AQ
images based on the physical based modeling[46]. However, the size of the heart chamber in
an AQQ image is generally smaller than the actual size. In order to get a more accurate volume,
we still need to segment the heart chamber from the ultrasound images.

In this section, we present a clustering technique to segment the heart chamber from
echocardiogram. The proposed algorithm, which is based on the a-shape of a set of points [22,
27], collects similar pixels into a set. The region of interest corresponds to one of the clusters
under a properly selected . Since there are generally hundreds images involved in calculating

the volumes of heart chambers, it is not feasible to manually identifying the heart chambers
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Figure 3.11: An example.of echo image-and its associated AQ) image.

from all the images. We should develop an‘autematic method to segment the heart chambers.

The data set studied is a set of 4D echocardiogram acquired from a rabbit heart. A
transthoracic transducer was used to acquired sequence of heart images using pull-back tech-
nique to obtain a set of 9 parallel cross sections. There are 24 sets of volume data to cover
a systolic cycle. Volume of the heart chamber was controlled in the laboratory. The volumes
of the heart chamber at the time the images acquired are known. The AQ images are also
available. The upper image of Figure 3.11 is an example of the ultrasound images and the

lower one is its associated AQ image.
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3.3.1 a-shape and a-connectivity

In this subsection, we briefly describe the a-shape of a set of points in 3D space and
its a-connectivity. We describe the a-shape without a formal definition. The details of the
a-shape can be found in [27].

The a-shape mathematically defines the shape of a set of points in 3D space. An a-ball
is a ball with radius a. The shape of a set of points is its convex hull when all the points can
be enclosed by an a-ball. If an a-ball cannot enclose all the points, the shape is the union of
all the convex hulls of all the subsets of the points which can be enclosed by an a-ball.

Given a set of n points, the shape of the point set is its convex hull when a = co. As «
decreasing, the shape becomes concave and then disconnected. If « is very small, the shape
is n disconnected points. The a-shape might not be a 3D solid according to its definition.
There are cases that some parts of the a-shape are line segments or triangles. The definition
for the a-shape also defines the a-comnectivityrofpoints. Given a set of points S and an «,
two points are a-connected if they are in the same cluster in its a-shape.

The a-shape and the a-connected-components ofa set of n points can be obtained from the
Delaunay Triangulation of the point set. Tocomputethe o connected components, we examine
each Delaunay triangle whether it can be enclosed by an a-ball. If the Delaunay triangle can
be enclosed in an a-ball, the four vertices of the Delaunay triangle are in the same connected
component. For a given «a, the a-connected components can be found efficiently using the

Union-Find operation[38].
3.3.2 Proposed Method

In the proposed algorithm, we present an automatic method to extract the heart chamber
from a set of 4D echocardiographic images. The need of an automatic method is due the huge
number of images been processed. There are more than 200 images in a set of 4D volume

data. It is not feasible to use an user interface approach to process the whole set of images

35



one by one. The proposed automatic method needs the AQQ images. Extracting the heart
chamber from an AQ image is a much easier job since an AQ image can be considered as a
binary image. The heart chamber obtained from an AQ image is generally smaller than the
actual heart chamber but it can be used as an reference for selecting o.

we identify the heart chamber in the ultrasound image by comparing the similarity between
the a-connected components against the heart chamber obtained from the AQ image. Let A
and B be two sets of pixels in an image and C' = A N B. The number of pixels in A, B, and
C are respectively |A[,|B|, and |C|. The similarity between A and B, denoted SM4 g5y, is
defined to be

(1cP)

SMowe =15

The procedures to process each image are as the following.
1. Find the connected components of.the low intensity pixels in the AQ image.

2. Determine the connected compenent that represents the heart chamber. Since the heart
chamber is almost in the centet of an-image. The way to determine the heart chamber
in the AQ image is to find a set of low intensity pixels that are the closest to the center
of the image. The cluster having the largest number of pixels in the 25 by 25 square
in the center of an image is the cluster representing the heart chamber. Let the set of

pixels be denoted H.

3. Calculate all the a-connected components that are sufficiently large. We calculate the

30 largest connected components for each «.

4. Compute the similarity between all the a-connected components obtained in the previous
step against H. The cluster that the most similar to H is the heart chamber in the

ultrasound image.
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3.3.3 Experimental Results

The proposed approach has been tested by a data set of echocardiographic images in our
experiments. Figure 3.12 shows a set of experimental results of the extracted boundaries of
heart chambers by proposed algorithm. The boundaries of AQ images are drawn in original
images which are shown in Figure 3.13. In Figure 3.14, we also drawn both boundaries of the
heart chamber of the proposed algorithm and AQ for easily comparison. The heart chambers
obtained by our approach is closer to the actual heart chambers than the heart chambers
obtained from AQ) images.

We then applied the automatic method to process the 4D volume data set. The automatic
method extracted the heart chambers from all the images without an user interface. We then
compute the volumes of the heart chambers at each time in a systolic cycle. Since we know
the true volumes, we compare the computed results against the true volumes. The final result
is shown in Figure 3.15. Our result is more aceurate than that obtained from the AQ images.

To calculate the ejection rate is one'of the most important tasks. The actual ejection rate
is 2.184. The ejection rates obtained from the proposed automatic method and the AQ image

are respectively 2.38 and 2.76.

3.3.4 Discussions

We applied the automatic method to process the whole set of the 4D volume data. The
automatic method extracted the heart chambers from all the images without an user interface.
We compared the computed results against the true volumes. The final result is shown in
Figure 3.12. The proposed method can get better results than that obtained from the AQ
images.

To calculate the ejection rate is one of the most important tasks. The actual ejection rate
is 2.184. The ejection rates obtained from the proposed automatic method and the AQ image

are respectively 2.38 and 2.76.
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Figure 3.12: A set of experimental results of the extracted boundaries of heart chambers by
proposed algorithm.




Figure 3.13: A set of boundaries of AQ images drawn in original images.




Figure 3.14: A set of both boundaries of the heart chamber of the proposed algorithm and
AQ for easily comparison.
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Figure 3.15: There are 24 image frames to cover a systolic cycle. The z-axis is the image
frames and y-axis is the volume. The three curves are respectively the curves for the True
Volumes, the volumes obtained by a-shape approach and the volumes obtained from AQ
images.
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The proposed segmentation algorithm worked well when the region of interests were suffi-
ciently large. In our experiments, there were more than one thousand a-connected components
for an a. Most of them contained only a very small number of points. If the region of interest
is small, it is hard to identify the region of interest among the small clusters.

As shown in Figure 3.15, the heart chambers calculated by our algorithm tends to be
smaller than the true volumes. This is because we used the heart chambers in AQ) images
as references to determine the a-connected components. To find the connected component of

the heart chamber without help of AQ images is proposed as a future work.

3.4 Summary

In this study, we have proposed two region-based algorithms for echocardiographic image
segmentation. The first one is the fuzzy Hopfield neural network with fixed weight method. In
the proposed approach, we incorporatethe global gray-level information to perform the initial
clustering, then used the local gray-level information to-construct the fuzzy Hopfiled neural
network. We used a fuzzy set to represent the output states. A fixed weights approach was
applied to improve the performance. Aceording to our experiments, the performance of the
proposed approach is much better than the hard c-means, fuzzy c-means and CHNN methods.
We applied the proposed method to real medical images. The proposed method can worked
well overcome the half volume problem in CT images and noise in cardiac ultrasound images.

The other proposed algorithm is the clustering method using a-shape technique. The
proposed algorithm is based on the a-shape of a set of points to collect the similar pixels
into a set. When we select a proper «, the region of interest is corresponding to one of
the clusters. The heart chamber is determined by comparing the similarity between the -
connected components against the heart chamber obtained from the AQ image. The proposed
algorithm is tested by a data set of ultrasonic images of rabbit heart. Experimental results

show that the proposed algorithm could find a more accurate heart chamber than the heart
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chamber obtained from AQ images. We also noticed that we could always find an « so that
there is a cluster which could well approximate the heart chamber. But it is hard to determine

the best « and the cluster if AQ images are not available.
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Chapter 4

Edge Based Approach Using Shortest
Path Algorithm

4.1 Introduction

Edge-based segmentation approaches use the postulate that the pixel values change rapidly
at the boundary between two regions. The basie method is to apply a gradient operator such as
the Sobel or Prewitt filter. High values of thisfilter provide candidates for region boundaries,
which must then be modified to produce closed curves répresenting the boundaries between
regions. Converting the edge pixel candidatésto boundaries of the regions of insterest is a
difficult task.

Due to the presence of noise of the original image, during edge detection it is possible
to locate intensity changes where edges do not exist. For similar reasons, it is also possible
to completely miss existing edges. Edge localization is another problem encountered in edge
detection. The addition of noise to an image can cause the position of the detected edge to
be shifted from its true location. The ability of an edge-detector to locate in noisy data an
edge that is as close as possible to its true position in the image is an important factor in
determining its performance.

In this study, we propose two edge-based segmentation approaches for extracting heart
chamber. If the heart chamber is star-shaped, such as the rabbit heart, we ciraularly spread

the image and then construct a directed graph to find the shortest path for extracting the
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boundary of heart chamber. The definition of star-shaped can be found in [62]. An object O
is star-shaped if there exists a point z not external to O such that for all points o of O the
line segmentation Zo lies entirely within O. Thus, each convex is also star-shaped. The locus
of the points z having the above property is the kernel of O. Thus, a convex coincides with
its own kernel. There is a hierarchy that is strictly ordered by the subset relation
Convex C Star-Shape C General.

We also extended the shortest path finding algorithm to a general case, such as the left
ventricle of human heart.

The remainder of this chapter is organized as follows. In Section 4.2, we present the
proposed algorithm using a directed graph for detecting boundary of heart chamber which is
star-shaped. We extend this approach to a general case in Chapter 4.3. In the last section,

concluding remark is include.

4.2 Heart Chamber is Star-Shaped

In this section, we focus on the-star=shaped heart chamber, such as a rabbit heart. It
is supposed that the image center locates the kernel of the star-shaped heart chamber. Due
to the property of star-shaped described in the definition of above introduction, the original
image is transfer to a circularly spread image. We use both first and second derivative edge
detectors for edge detection and then map the image into a directed graph. In the directed
graph, we find the shortest path by dynamic programming algorithm. The cardiac boundary

is obtained by backmapping the shortest path into the original image.

4.2.1 Proposed Method

In the proposed algorithm, we present a new approach to extract the cardiac border. The
shortest path of directed graph is applied in the proposed approach. The result border should

be a smooth curve and go through the high gradient points. Depending on this rule, we give
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Figure 4.1: (a) original cardiac image (b) spread image from (a).

the weight of edges and vertices on the directed graph.

In the first step, we spread the echocardiographic image in the circular direction. The
location on a radial line from the center is assigned as the vertical axis and the angle of the
line is assigned as the horizontal axis in the spread image, as shown Figure 1. From bottom to
up, the spread image has three layers: fluid, soft tissue, and background. The spread image
is produced from original image. The edordinate transformation of circularly spread can be

presented as follow:
T(z,y) = O(y - cos(x),y “sinfw))b< 2 < m,1 <y <mn, (4.1)

where T'(z,y) and O(z,y) is the intensity ‘of ¢oordinate (x,y) in spread and original images,
respectively, and m and n are the image size of column and row of spread image, respectively.
If O(z,y) doesn’t locate at grid point, bi-linear interpolation will be used to determine it.

In the spread image, the cardiac boundary on the spread image is a horizontal line from
left to right. The border line can be traced from the leftest column to the rightest column.

In the second step, we construct a weighted, directed graph for edge detection applications.
A graph consists of a set of vertices and a set of edges that determine how the vertices can be
connected. In edge detection applications, the vertices generally correspond to pixels of the
image and the edges determine the connection of pixels to form borders. So the size of vertex
in the graph equals to the size of spread image. In the other word, if the spread image is a

n X m image, the size of vertex in the graph is m columns and n rows. Each vertex in column
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1 is linked to each vertex in the succeeding column, column 7 4+ 1, on the graph. Each path
from column 1 to column m is a possible solution to the edge detection problem. The optimal
or shortest path represents the best border in the case of edge detection.

There are weights associated with all the vertices and all the edges. The weights are
designed so that the shortest directed path from vy, to vy, , for all j, corresponds to endocardial
wall in the image.

The weights on the vertex v;; and edge e; ;x), denoted w(v;;) and w(e;; ,,) are determined

as the following equations,
w(v;;) = (—MH (vy;) — Sobel(vy;)) - sin(GD(v;;), (4.2)
w(e,;,) = (J — k)?, (4.3)

where M H (v;;) and Sobel(v;;) are the magnitude of Marr-Hildreth and Sobel filters on v;,,
respectively, and G D(vy;) is the gradient!direction on.v;;.

Marr and Hildreth’s theory [51] s filtered lan image by a Laplacian-of-Gaussian (LoG)

kernel
1 T2 7,2
— 2 o
LoG(r) = v°G(r) = S [2 - P] exp (—@) (4.4)
where 7 = /zZ +¢? is the distance from the mask center, G(r) = s——exp (—%) is an

isotropic 2-D Gaussian, and o is its standard deviation. The Laplacian 57?2 is a second-order
differential operator, edge points are individuated by the zero-crossing of the filtered image.
The combination of \7? with a Gaussian mask permits the smoothing out the noise, which is
controlled by the o pamameter; the larger o, the stronger the blurring. The weight of a vertex
is inversely related to the likelihood that an edge is presented at that point. The likelihood
value is then converted to a weight that the greater the edge strength, the lower the weight
of the vertex. The Sobel’s and Marr-Hildreth’s filters are used for edge points detection. The
term of gradient direction is the consideration of a priori knowledgement that classify which

border we want. In the case of cardiac border extraction, Figure 4.1 shows two borders in
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the spread image. The different border has different gradient direction. The correct gradient
direction is needed to improve performance. In the echocardiographic image, the intensity
of fluid region is lower than soft tissue. The gradient direction of endocardial border is 90
degree, so cos(GD) can be used for endocardial border classification.

The third step is finding the shortest path from column 1 to column m. The path
p(v1, Ve, ..., ) from vy to v, is a sequence of vertices which go through vy, vs, ..., vy, where
v; is one of the vertices in column 7. We use a dynamic programming algorithm to find the

shortest path. The desired border is a closed contour. So we determine the weight of a path

p(v1, Vg, .., V) AS
w(p(vy, Vo, .oy Uy)) = w(vy) + w(e(vy, ve)) + w(ve) + oo + w(vy) + WV (VM v1)).  (4.5)

The shortest path from vy, v19,..., and vy, are found, respectively. The shortest path algorithm
from vy, by dynamic programming is as follow:

1) For every vs, tabulate the v, that determines the shortest path from vy, to every vs:

S(v11, v35) = min{w(vi1) + w(eng) + wlve)+w(es;;) + w(vs;)}, 1 <i,5 <n, (4.6)

(4.7)
2) For every vy, tabulate the vz that determines the shortest path from v1; to every vy:

S(v11,v45) = min{S(vi1,vs;) + w(esi;) + w(va) }, 1 < 4,5 < n, (4.8)

(4.9)

3) Repeat the similar procedures to last column. For every wv,,, tabulate the v,,_; that

determines the shortest path from vi; to every v,,:
S(v11, Vpy) = min{S(v11, Vm-1)i) + W(€m-1)ij) + W(Vm;) + w(e(vm;,v11)),1 < i, j < n.(4.10)

4) Find the shortest path form v is the minimal weight of S(vi1, Vi), 1 < i < n.
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The same algorithm are also used to find the shortest path from vy, vi3,..., v1,. The
minimal weight of these n shortest path is the desired border.

The final step is backmapping the shortest path to original image for cardiac boundary
extraction. The transformation of cardiac border from spread image to original image is

presented by follow:

Ok (z) = Tk (y) - cos(Tk(z)), (4.11)

Ox(y) = Tely) - sin(Ti (x), (4.12)

where O (z) and Oy(y) are the z and y coordinate of k-th vertex in original image, and T (x)

and T} (y) are the z and y coordinate of k-th vertex in spread images.

4.2.2 Experimental Results

The proposed method has been tested by using a. data set acquired from a rabbit heart.
The volume of the heart chamber at the time that the images were acquired is known. A
transthoracic transducer was used t@ acquired sequence of heart images with pull-back tech-
nique to obtain a set of 9 parallel cross sections. There are 24 sets of data to cover a cardiac
cycle.

In this experiment, the size of original images is 200 x 170. We transfer the original image
into a spread image which size is 360 x 170. The weighted, directed graph is constructed
with 61200 vertices and 10115000 edges. The spread image was smoothed by a Gaussian
filter (standard deviation o = 1.8). The optimal parameter value o was selected after several
trials. Figure 4.2 (a) is one of the original images. The circularly spread image of Figure 4.2
(a) is shown in Figure 4.2 (b). Figure 4.3 shows four of the results of the cardiac boundary
extraction on the data set by proposed algorithm. The results demonstrate that we provide

pretty good approximation for the cardiac boundary by proposed approach.
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Figure 4.2: Original image (a) and the spread image (b).

4.2.3 Discussions

In this chapter, we proposed a new approachsfor cardiac boundary extraction on echocar-
diographic images by directed graph..In,thisappreach; we spread the cardiac image in the
circular direction. The spread image is mapping to a directed graph. The shortest path is
found by the dynamic programming algorithm.! From the implemented results, we can obtain
pretty good approximation for cardiac boundary extraction.

The echocardiographic images are normally noisy. It is difficult that a point with big
magnitude of gradient is not selected for constructing a boundary, but a point with small
magnitude of gradient is. Because that the shortest path has the minimal weight between all
the possible paths, it may not go through the largest highest frequence point. For the same
reason, the shortest path may go through the points that their gradient magnitude is small.
Due to the shortset path is searched exactly one point in each column, the extracted cardiac
boundary is ensured that it is closed. Experimental results demonstrated that the contour
of the circular like object is easily detected by using the spread image and the boundary
extraction algorithm. The proposed algorithm is only proper for the circular like objects. The

problem of the complex contour extraction is resolvable in the next chapter.
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Figure 4.3: The results of cardiac border extraction
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4.3 General Case

According to searching the shortest path of the directed graph described for extracting the
star-shaped heart chamber in the last section, we propose an adaptive approach for boundary
extraction in a general case, such as the boundary of left ventricle, also based on searching
the shortest path algorithm. We first detect the edge points for the given images using the
Sobel operator, and then construct the search space from the edge images using a-contour
technique. The directed graph is mapped from the constructed search space and the shortest
path is searched as we mentioned in the last section.

The remainder of this chapter is organized as follows. An adaptive approach for extracting
the left ventricle is described in Section 4.3.1. In Section 4.3.2 we present the results obtained

by the proposed algorithn. Discussions are given in Section 4.3.3

4.3.1 Proposed Method

The echocardiographic image is processed by high-pass filter to enhance the high-frequency
points and then threshold the filtered imlage-by-a-threshold value to obtain the edge image.
The edge image is applied the alpha-conteur approach to obtain the contour image. The
points of inner and outer contours are triangulated to construct the search space. The search
space is constructed by a weighted directed graph which using the edges of triangles. The
active contour model, so called snake model, is applied to an energy function for contour
extraction. We use the dynamic programming approach for finding the shortest path in the
directed graph. The final step is back-mapping the shortest path to original image for cardiac

contour extraction.
Initial contour selection with High-pass Filtering and a-contour

The first stage in deformable contour model is the initial contour selection. It is selected

by manual input or interactive template matching in the conventional approaches. We will
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develop a near automatic procedure for initial contour selection. The first step is filtered the
echocardiographic images by high-pass filter. We incorporate the Sobel operator introduced
in Section 2.4 for high-pass filter to produce the candidates for initial contour.

The next step is separating the candidates of high-frequency points into some clusters by
a-connected component. The a-shape and the a-connectivity of a set of points in 3D space is
briefly decribed in Section 3.3.1. The a-contour is defined as the boundary of the a-connected
component. We select the maximal cluster of a-contour as initial contour for deformable

contour model.

Dilation

Dilation is one of the bases for most of the morphological operations. The other mor-
phological operations are presented in [35]. The language of mathematical morphology is set
theory. Sets in mathematical morphology:répresént. the shapes of objects in an image. For
example, the set of all the black pixels in a binary image is a complete description of the
binary image. In binary images, the sets in Fuclidean 2-space denote foreground regions.
Many of the operations can be formulated:in‘terms.of n-dimensional Euclidean space, E™.
However, we focus on binary images whose (components are elements of Z2. The details of
higher dimensional spaces of mathematical morphology are introduced in [30].

Let A and B be sets in Z?, with components a = (a;,a) and b = (b1, by), respectively.

The translation of A by z = (1, x2), denoted (A), is defined as
(A)y ={clc=a+z, for a € A}. (4.13)
The reflection of B, denoted B , is defined as
B = {z|z = —b, for b € B}. (4.14)

With A and B as sets in Z2? and () denoting the empty set, the dilation of A by B, denoted

A @ B, is defined as
A® B ={z|(B), C A#0}. (4.15)
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Thus the dilation process consists of obtaining the reflection of B about its origin and then
shifting this reflection by z. The dilation of A by B then is the set of all z displacements such
that B and A overlap by at least one nonzero element. Set B is commonly referred to as the

structuring element in dilation, as well as in other morphological operations.

Search the Shortest Path from Constructed Directed Graph

The weighted directed graph, G(V, E), is constructed by using the edges which cross the
inner and outer contours. The vertex V' is the union of the vertex sets V;, 7 = 0,..., m, where
each vertex in V; corresponds to a pixel in the ith column. V,, corresponds to the firts column.
Each vertex in V; has n directed edge connecting to all of the vertices in V;,;. The jth vertex
in V; is denoted v;;. Since the vertex v;; can only connect to a vertex in V;,, the directed edge
connecting v;; and the kth vertex in Vi, is denoted Cig; 1y The number of vertices and the
number of edges are respectively m -n and#h+n?."Each path from column 1 to column m is a
possible solution to the edge detection problem.- The optimal or shortest path represents the
best border in the case of edge detection.” The weights of vertices and edges are determined
and the shortest path is searched in the directed graph by the same method presented in the
last section. The shortest path is backmapped into the original image for cardiac boundary

extraction.

Summary of the proposed algorithm

The proposed segmentation algorithm is summarized as follows:
Step 1) The original image is processed by Sobel filter for high-pass filtering. The high
frequence points are the candidates of the boundary.
Step 2) The candidates are clustered into some a-contours. The maximal one of the a-contours
is the initial contour.
Step 3) The initial contour is increased the thickness by dilation operation. The boundary of

the thicked contour construct the inner and outer contours.
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Step 4) The points located on the inner and outer contour are triangulated. The edges across
the inner and outer contour are used to constrct a directed graph.

Step 5) The shortest path is calculated by searching technique proposed in Section 4.2.

The final step is backmapping the shortest path into the original image for cardiac boundary

extraction.

4.3.2 Experimental Results

The proposed method has been tested by a data set of echocardiographic images. Figure
4.4 (a) is one of the original echocardiographic images. We processed the original image
by Sobel operator to enhance the high-frequency points and then threshold it to obtain the
edge image. As shown in Figure 4.4 (b), the filtered points are difficult to classify them for
extracting the boundary of left ventricle. The a-contours are determined by the boundaries
of a-connected components of the edge peints as shown in Figure 4.4 (c). There are a number
of connected components in the a-contours. |The maximal one is the initial contour for left
ventricle extraction in the following steps.

The initial contour is increased the thickness by d#lation operation, as shown in Figure
4.5 (a). The boundary of the thicked contour construct the inner and outer contours for
search space. Figure 4.5 (c¢) is the triangulation of the points located on inner and outer
contours. We chech each edge of all triangles. If the two end-points of the edges across the
inner and outer contours, they are remained to construct the search space within a directed
graph, as shown in Figure 4.5 (d). We Calculated the shortest path in the directed graph, and
then back-mapping the shortest path to original image for left ventricle extraction. Figure
4.6 shows the extracting result of left ventricle on echocardiographic image. We also showed

another two results of left ventricle extraction in Figure 4.7.
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Figure 4.4: (a) One of the original echocardiographic image; (b) Highpass filtered image of (a)
by Sobel operator; (c¢) a-contour of the points in (b); (d) The maximal connected component
in (c).
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Figure 4.5: (a) The thick contour of initial contour processed by dilation operation; (b) The
inner and outer contours of search space; (¢) The triangulation of the points located on the
inner and outer contours; (d) The edges which across inner and outer contours on (c).
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Figure 4.6: The extraction result of left ventricle on the echocardiographic image.

Figure 4.7: The other extraction result of left ventricle.

o8



4.3.3 Discussions

In this section, we proposed a new approach for cardiac boundary extraction on echocar-
diographic images. An a-contour approach based on a-shape technique is proposed to process
the edge image for grouping the edge points into contours. The triangulation of the vertices
located on inner and outer contours construct the search space for performing the snake model.
To avoid the local minimum trapping, dynamic programming approach is used for finding the
shortest path. From the implemented results, we can obtain pretty good approximation for
cardiac boundary extraction.

The proposed method has been tested by a data set of echocardiographic images. When
we extract the cardiac boundary of whole set of cardiac graphic images, we can calculate the
cardiac volumes in whole cardiac cycle. If we compare the cardiac volume in the end-diastolic

and end-systolic images, the ejection rate canybe.calculated.

4.4 Summary

In this study, we have proposed two edge-based algorithms for echocardiographic image
segmentation. These two approaches both find the shortest path in a directed graph for
boundary extraction of the heart chamber. If the heart chamber is star-shaped, such as
the rabbit heart, we propose the shortest path finding algorithm to extract the boundary of
heart chamber. In this approach, we spread the cardiac image in the circular direction. The
spread image is mapping to a directed graph. The shortest path is found by the dynamic
programming algorithm.

We extend the shortest path finding algorithm to a general case. An alpha-contour ap-
proach based on alpha-shape technique is proposed to process the edge image for grouping the
edge points into contours. The triangulation of the vertices located on inner and outer con-
tours construct the search space for performing the snake model. To avoid the local minimum

trapping, dynamic programming approach is used for finding the shortest path. Experimental
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results show that we can obtain pretty good approximation for the heart chambers which are

star-shaped and general cases by the proposed approaches.
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Chapter 5

Finding the Mitral Annular Line

5.1 Introduction

Hitherto, we have focussed on region-based segmentation algorithms, proposed in chap-
ter 3, and edge-based segmentatin algorithms, proposed in chapter 4, for echocardiographic
image segmentation. We presented the good preforance of these four proposed algorithms for
extracting the heart chambers from echocardiegraphiciimages within noisy. However, besides
wall detection problem, another problem occurs.when the left ventricle is segmented in the
apical four-chamber echocardiogram-view. In-diastele, the left ventricle and left atrium be-
come one chamber when the mitral valve epens fully. However, in systole the left ventricle
and left atrium are separated by a mitral annular line. This line can be used as a reference
to separate the two chambers in diastole. Thus, a convenient method to establish the mitral
annular lines is needed toward designing an automatic method to calculate the left ventricle
volume.

In this chapter, we present a nearly automatic method to establish the mitral annular lines
from a 2D+1D precordial echocardiogram sequence. These images are preprocessed by the
signal-adaptive maximun likelihood (SML) filter to remove speckle noise. We use the optical
flow technique and 3-means algoritm to detect a set of points that could be on the mitral
annulus. The mitral annular line connects a pair of such points. The problem to determine a

sequence of mitral annular lines is modeled as a proclem that finding the shortest path in a

61



graph.
The remainder of this chapter is organized as follows. The proposed algorithm for finding
mitral annular lines is described in Section 5.2. In Section 5.3 we present the experimental

result obtained by the proposed algorithm. Discussions are given in Section 5.4.

5.2 Method

The proposed method uses the signal-adaptive maximum likelihood filter[50, 73], the opti-
cal flow computation[8, 36, 49, 52, 69], k-means algorithm|[67] and shortest path algorithm[24].
The signal-adaptive maximum likelihood filter is for image preprocessing. To determine the
mitral annular line sequence, the k-means algorithm is employed to determine a set of possible
mitral annular points. Optical flow computation is then applied to estimate the velocities of
the points. Finally, a weighted directed graph is established from these points and estimated
velocities. The mitral annular line sequence is calculated by finding the shortest path in the

graph.
5.2.1 Preprocess

The preprocessing step employs the signal-adaptive maximum likelihood (SML) filter[50,
73] to remove the speckle noises. The SML filter abates noise and strengthens the signals from
areas with similar intensities. The SML filter is now briefly described.

An image consists of low frequency and high frequency components. The low frequency
component can be estimated using a local estimator. Given a W x W window around the pixel
(k,1) in an image, the original (k,[) signal can be estimated using the maximum likelihood
estimator $yr(k,l) based on the observations in a W x W window. The original signal

estimation at (k,!), denoted $(k,1), is obtained using
§(k,1) = smu(k, 1) + B(k, D[z (k, 1) — Smw(k,1)]- (5.1)

In Eq. (5.1), z(k,1) is the intensity of the pixel (k,l). $pp(k, 1) is the maximum likelihood
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estimation for the original signal at (k,1). B(k,!) is a weighting factor that approximates the
local SNR, over the window. Using the multiplicative noise model, 57, (k,1) and S(k,[) are

formulated as the following equations,

Smu(k, 1) = g\l%%aﬂ(k—i,l—j), (5.2)

and
4 — 7r> Ew[z?]
4 E’UJ[(Z‘ — §ML)2]’

where Ew[z?] = & Y 2%(4, 7). The value of 8(k, 1) ranges over [0,1]. If S(k, 1) is small, (k, 1)

Bk, 1) =1 - ( (5.3)

is considered a noise point and its intensity is altered by the maximum likelihood estimation.

5.2.2 Computing the Mitral Annular Lines

In this step, a point that exists in the left ventricular chamber interior and separates
the left and right attachments of mitral annular lines at all times in a cardiac cycle must
be provided. There are four tasks in this step, namely, identifying the set of possible mitral
annular points, estimating the velocities of the'mitral annular points, establishing a weighted
directed graph and finally computing the mitral annular lines.

Identify the Mitral Annular Points

The mitral annular points on fat and muscle demarcation have higher echogenecity. Thus,
these mitral annular points will be in the brighter areas in the image. A 3-means algorithm
is applied to divide the intensity into three clusters. The cluster, S, consisting of the highest
intensity pixels contains the mitral annular points. Since a mitral annular line is formed by
a pair of boundary points in S, only the boundary points are considered the possible mitral
annular points in the later computation.
Estimate the Velocities

The velocities of these points are needed to determine the weights associated with edges in

the graph. Because the true velocities are not available, the estimated velocities are calculated
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using the optical flow technique. This method is briefly stated next. For details, please refer
to [69].

Optical flow is a technique used to estimate the velocities of points from a pair of con-
secutive images. The velocities are estimated using the conservation and neighborhood in-
formation. The estimated velocities U, = (t¢e, Vee) are computed using the conservation
information. Errors exist between the estimated and true velocities. Assume that these errors
have zero mean and are independent. A covariance matrix, S,.., is used for the estimated
velocity U,. The estimated velocities U = (%,v) are obtained from the neighborhood infor-
mation. The covariance matrix with the estimate is S,,. When we compute the mitral annular
lines, we need the velocities of some image points to establish the weights of the edges in the
graph G. We do not have the true velocities. The velocities are estimated using the optic flow
technique from pair of consecutive images.

Optic flow is a technique to match the points between pairs of consecutive images. If we
take the time between two images as-a unit, then .optic flow is used to estimate the velocity.

The optic flow estimation recovers the'conservation information and propagates it using
neighborhood information. The conservation information can be obtained using a correlation-
based approach. Let I; and I be two consecutive images. Assume that the image brightness
is stationary with respect to time. For a point p = (z,y) in I;, the optic flow technique is
used to determined the corresponding point p' in the next image as the follows. We first set
up a (2n+1) by (2n+ 1) window W, around the point p = (z,y) and a (2N +1) by (2N +1)
window W around (z,y) in I as the search area. W must cover the location of p’. The error
function is estimated using the sum of square differences (SSD), denoted E.(u,v), for every
point in W as

n o n

E(u,v) =Y Y [h@+iy+4,t) — bz +u+iy+v+j,t+1)°, N <uo, <N

I=—nj=—n
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The response distribution in velocity space is
Re(u v) = e FPe00),

where k is a constant close to zero (0.001). Having the response distribution function, the
expected velocity Uee = (Uee, Vee) 18 estimated using a weighted least squares approach. The

estimate is given by
wen Loy Re(u,v)u
uN:—N Eivz—N Re(u,v)’

Uee =

and

ZUN:_N 21],\[:_]\] RC(U, ’U)’U
N N .
u=—N Ev:—N RC(U,, U)

There are errors between the estimated velocities and the true velocities. Assume that the

Vee =

errors have zero mean and are independent. The covariance matrix with the estimate given

above is
Zu Z RC(U"'U)(U u00)2 Zu Zv R (uav)(ufucc)(vf'ucc)
- D 2oy Be(usv) S, Re(u)
e Zu Z RC(” ) (U tleq) (V5 Ved) Eu EU Re(u,w)(v—vee)?
Zu EU Rc(u’v) Zu Zv Rc(u,v)

Since the conservation information is not complete, we need the neighborhood information
to estimate the velocities of all the image points:=“For'a given point p = (z,y), assume that
the velocities of the pixels in a (2w + 1) x (2w +1) window, W), around (z,y) are known. We
can treat these velocities as a measurement of the velocity of p. The estimated velocity of p,

U = (@, ) can be obtained based on the weighted least square as follows:

>u 2w Ru(u,v)u
Eu Ev Rn (U’7 U) ’

u

and
Eu Ev Rﬂ(ua U)’U

The weight R,,(u,v) is determined using a Gaussian mask centered at (u,v). The covariance

v

matrix with the estimate is

Z ZU Rn(u 11) u— u)2 Eu EU Ry (u,v)(u— u)(v v)
R B v o 35 Raliy)
n Zu iv Ry (u, 'u) u— u)('u v) Zu Zv n(u,v v— 1))2
22, Bn DI
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The conservation and neighborhood errors are respectively
(U = U)'SHU - U (5.4)

and

U -T)TS- YU - D). (5.5)

By minimizing the sum of the conservation and neighborhood errors
[ 10 = US U = Vo) + (U = T)'S, (U = D), (5.6)

the true velocity can be estimated. Minimizing Eq. (5.6) is carried out by applying an iteration

method. The velocity of the (n + 1)st iteration is calculated using
U™ =[S+ S S5 Uee + ST (5.7)

The boundary condition is U° = U,. Thelitération stops when the difference between the
velocities of two successive iterations.is smaller than a given threshold value.
Finding the Mitral Annular Lines

Let the image sequence be denoted F;»# ==1y.. . Jr. Each [; is preprocessed using the
3-means algorithm to identify those points‘that could be the mitral annular points. Let the
user input a selected point denoted O so that a vertical line passing through O divides the
point set into two subsets L; and R;. A mitral annular line is formed by a pair of points (p, q)
that p € L; and ¢ € R;. Each line segment, p;,qs, p; € Li, qx € R; is a candidate for the

mitral annular line.

Let vy, and vg, be the average velocities of the points in L; and R;. If p;, ¢ and pir1, Gina
are the mitral annular lines in I; and Iy, |(§i, Pirt — vi.)| + (@, Girt — vr,)| should be small.
Based on this observation, a method to identify the mitral annular line sequence from I; to
I was designed using the graph-search approach.

A weighted directed graph G = (V, E) is constructed. V is the set of vertices that V =

UVi,i = 1,...,r. Vi = {vi;li = 1,...,m;} where v ;y is the jth candidate for the mitral
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annular line in I; and m; is the number of candidates in I;. FE is the set of directed edges
{< vijy,vape > i =1,...,r=1,5 =1,...,mjk = 1,...,mi;1}. There is a weight,
Wi k), associated with an edge < v ), ver1,k) >. Let v ;) represent a candidate p;, ¢; and
V(i+1,k) Tepresent a candidate D1y, gur1)- Given the velocities vy, and vg,, the weight w ;)

is defined using Eq. (5.8).

W) = (D5 Pirt — vn,)| + (@@ Gord — vr,)|. (5.8)
Suppose that p;, q;, © = 1,...,r, are the sequence of mitral annular lines in ;. The sum of

the weights w;, © = 1,...,r — 1 should be the minimum. Thus, given the weighted graph G,
the shortest path from a vertex in V; to a vertex in V, corresponds to the mitral annular line
sequence.

To implement the shortest path algorithm, there are two fields, c; ;) and f( ), associated
with each vertex v(; ;). c(;;) maintains.the least path*cost from a vertex in Vi to v ;). fuj)
records the vertex in V; ; on that path. The algorithm is presented in the following pseudo

code.

set v1,5) = 0,7 =1,...,myq;
set v(; ;) = a large number for all ¢ # 1, for all j;
for (i=2tor) {
for (j=1 to m;) {
for (k=1 tom;_1) {
if (c(ij) > Wi-1,k,5) + Cli-1,6)) {
Ci,j) = W(i—1,k,5) T Ci—1,k);

f6g) = V615
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Figure 5.1: The images before (upper left) and after (upper middle) the SM filter application.
The image after applying the 3-means clustering method is shown in the upper right most
image. The lower left image shows the selected point O and the points in the highest intensity
cluster. Only the boundary points are the possible mitral annular points. The lower right
image shows the superimposed mitral annular line.

Table 5.1: Computation time required in each step. The time was obtained using an AMD
Athlon (TM) XP 1500+ CPU.

SML Filtering 25 sec.
Optical flow computing 67 sec.
Shortest PathiComputation | 123 sec.

5.3 Experimental Results

The experimental results are presented in this section. The image resulting from the SM
filter application is presented in Figure 5.1. The image after 3-means clustering is also shown
in Figure5.1. The cluster that has the largest intensity contains the possible mitral annular
points. Only the points below the selected point O are considered to be the possible mitral
annular points.

Figure 5.2 shows a sequence of identified mitral annular lines obtained using the proposed
method. The computing time for processing a sequence of 20 images is shown in Table 5.1. The

computation time was recorded using an AMD Athlon (TM) XP 1500+ personal computer.
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Figure 5.2: Sequential precordial echocardiographic images in long axis view of an adult
healthy volunteer within a cardiac cycle. The white line separating the left ventricle and left
atrium is the mitral annular line created by the proposed method.
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Figure 5.3: A result obtained using the proposed method, case 2.



Figure 5.4: A result obtained using the proposed method, case 3.




Figure 5.5: A result obtained using the proposed method, case 4.



Figure 5.6: A result obtained using the proposed method, case 5.
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Figure 5.7: A result obtained using the proposed method, case 6.



Table 5.2: The error distribution for the 148 images.

Error | Number of Images
0.01 33
0.02 24
0.03 25
0.04 18
0.05 16
0.06 16
0.07 7
0.08 3
0.09 4
0.1 2

The computation time required by the first and the second step depends on the image size.
The image size was 140 by 210 in our experiment. The computation time required for Step 3
depends on the number of mitral annular line candidates. This was the most time consuming
step. The time complexity for the algorithm,in Step 3 is O(r - m?) where m is the number of
candidates in each image and r is thesnumberjof images in the sequence. The run time was
recorded when the number of candidates was 4225, i.e.,” we restricted the number of candidates
for mitral annular points to 65 points on eachrsider These 65 points are below the point O
and they are the 65 closest points to O horizontally.

To test the accuracy of the proposed method, the method was applied to 7 mitral annular
lines sequence cases. These 7 cases were chosen because the junctions between the left atrium
and left ventricle were anatomically obvious. The endocardial wall of the left ventricle was
traced and the volume of the heart chamber was calculated based on the mitral annular lines
obtained using the computer and by a physician. There were 7 cases consisting of 148 images.
The volume was obtained using the proposed method, V¢, and a physician tracing V,. We
computed the difference d = V. — V. The error was evaluated using |d|/V}. Our results show

that the averaged error was 0.03. Table 1 shows the error distribution for the 148 images.
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5.4 Discussions

In this chapter, a nearly automatic method for calculating the mitral annular lines from a
2D-+1D precordial echocardiogram four-chamber view was presented. We applied the proposed
method to 7 mitral annular line sequence cases. The proposed method needs only a physician
to provide a point in the left ventricular chamber. The average error was 3% which is clinically
acceptable. The proposed method saves much clinician time, allowing a shift from machine

to patient care.
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Chapter 6

Conclusions

In this dissertation, we have proposed two region-based segmentation algorithms and two
edge-based segmentation algorithms for echocardiographic images analysis. The first proposed
algorithm for region-based segmentation scheme is fuzzy Hopfield neural network with fixed
weight approach. This approach incorporates the global gray-level information to construct
the fuzzy Hopfield neural network. Acgording to our experiments, the performance of the
proposed approach is much better than the hard ¢means, fuzzy c-means, and competitive
Hopfield neural network methods. Alnew approach using a-shape points is another proposed
algorithm based on edge-detection category. In our'experimental results, there were more
than one thousand a-connected components for an «. Most of them contained only a very
small number of points. The proposed algorithm worked well when the region of interests
were sufficiently large. The first proposed algorithm for edge-based segmentation scheme is
finding the shortest path in directed graph. We circularly spread the image first and then
map it to a directed graph. To avoid the local minimum trapping, dynamic programming
approach is used for finding the shortest path. The other proposed approach for edge-based
segmentation algorithm is suitable for non circular like boundary. Instead of spreading the
image, we incorporated an a-contour approach based on a-shape technique to construct the
search space. From the implemented results of these two algorithms, we can obtain pretty

good approaximation for cardiac boundary extraction.
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In additional, we also propose a new approach for extracting mitral annular lines for
echocardiographic images. A nearly automatic method for calculating the mitral annular lines
from a 2D+1D precordial echocardiogram four-chamber view was presented. The proposed
method needs only a physician to provide a point in the left ventricular chamber. The average
error was 3% which is clinically acceptable. The proposed method saves much clinician time,
allowing a shift from machine to patient care.

One important fact in the development of segmentation techniques is that no general theory
exists, and ad hoc solutions are traditionally proposed. Although some initial attempts in the
direction of a unified theory were reported, this problem is far from being solved, and none of
the developed techniques is generally applicable. Given a particular application, finding the
appropriate segmentation algorithm is still a problem.

In this disertation, we presented methods dealing different cases. Each method needs very
few user interfaces and is almost automatic. The future work will be in two directions. The
first is that since 3D echocardiogram is' available, it is-a challenge task to design reliable
algorithms to deal with 3D case. The secondis to-develop GUI systems that help physicain

to easily use the developed methods.
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