Contents

Ch	ines	Abstract	i	i
En	glish	Abstract	:	iii
Ac	knov	ledgements		v
Co	nten	ts		vi
Lis	st of]	Figures	vi	ii
1.	Int	oduction		1
	1.1	Problem Statement and	Motivation	1
	1.2	Outline of Thesis	ESAN	7
2.	The	Approximate LCF/I	MUF Maximal Matching Algorithm	10
	2.1	Introduction	1896	10
	2.2	The Least Cushion First	/ Most Urgent First (LCF/MUF) Algorithm	11
	2.3	The Approximate LCF/M	/IUF Algorithm	14
		2.3.1 Single-iteration N	1atching	15
		2.3.2 Multiple-iteration	Matching	16
	2.4	Input Traffic Models		17
		2.4.1 Uniform and Nor	-uniform Input Traffic	17
		2.4.2 Correlated Input	Fraffic	18
	2.5	Numerical Results		19
		2.5.1 Performance und	er Uniform Traffic	20
		2.5.2 Performance und	er Non-uniform Traffic	21
		2.5.3 Performance und	er Correlated Traffic	21
		2.5.4 Effects of Multip	e-iteration Matching	22
		2.5.5 Effects of Speed-	up Factors	22
	2.6	CIOQ switches with finit	e input and output buffers	22
		2.6.1 Results of Unit	form Input Traffic	24

		2.6.2 Results of Correlated Input Traffic	24
		2.6.3 Effect of Finite Input Buffer	25
	2.7	Summary	25
3.	Pac	cket-Based LCF/MUF Matching Algorithm	48
	3.1	Introduction	48
	3.2	The Packet-based LCF/MUF Matching Algorithm	49
		3.2.1 Single-iteration Matching	50
		3.3.2 Multiple-iteration Matching	52
	3.3	Input Traffic Model	52
	3.4	Numerical Results	53
	3.5	Summary	55
4	0		\sim
4.	Ou	tput Initiated Fair Scheduling Algorithm	62
4.	Ou 4.1	tput Initiated Fair Scheduling Algorithm Introduction	62 62
4.	Ou 4.1 4.2	tput Initiated Fair Scheduling Algorithm Introduction. Output Initiated Parallel Matching (OIPM) Algorithm.	62 62 64
4.	Ou 4.1 4.2 4.3	tput Initiated Fair Scheduling Algorithm Introduction. Output Initiated Parallel Matching (OIPM) Algorithm. Numerical Results.	62 62 64 65
4.	Ou 4.1 4.2 4.3 4.4	tput Initiated Fair Scheduling Algorithm Introduction. Output Initiated Parallel Matching (OIPM) Algorithm. Numerical Results. Summary.	 62 64 65 67
4 . 5 .	Ou 4.1 4.2 4.3 4.4 Con	tput Initiated Fair Scheduling Algorithm Introduction. Output Initiated Parallel Matching (OIPM) Algorithm. Numerical Results. Summary.	 62 64 65 67 74
4. 5.	Ou 4.1 4.2 4.3 4.4 Con	tput Initiated Fair Scheduling Algorithm Introduction. Output Initiated Parallel Matching (OIPM) Algorithm. Numerical Results. Summary.	 62 64 65 67 74 76
4. 5. Bił	Ou 4.1 4.2 4.3 4.4 Con	tput Initiated Fair Scheduling Algorithm Introduction. Output Initiated Parallel Matching (OIPM) Algorithm. Numerical Results. Summary.	 62 64 65 67 74 76
4. 5. Bit	Ou 4.1 4.2 4.3 4.4 Cor oliog	tput Initiated Fair Scheduling Algorithm Introduction Output Initiated Parallel Matching (OIPM) Algorithm Numerical Results Summary	 62 64 65 67 74 76 81

List of Figures

1.1	The architecture of a generic switch	9
-----	--------------------------------------	---

2.1	Examples of the WRR service algorithm with $K = 3$, $w_1 = 4$, $w_2 = 3$, and $w_2 = 1$	27
2.2	The CIOO switch using the proposed approximate LCF/MUF matching	21
	algorithm and serving cells at output ports with the WRR scheme	28
2.3	Examples of cushion calculation for the WRR scheme	29
2.4	The 2-states Markov chain process	30
2.5	Performances of a 16×16 CIOO switch under uniform traffic. The curves	
	show the values of $P_{d=0}$ and $P_{d\leq 2}$ for all the three priority traffic ($w_1 = 4$,	
	$w_2 = 3$, and $w_3 = 1$)	31
2.6	Performances of the first priority traffic as a function of offered load for	
	various switch sizes	32
2.7	Performances of a 16×16 CIOQ switch adopted the proposed LCF/MUF	
	algorithm. The curves show the values of $P_{d=0}$ of the first priority traffic	
	for different T_w values non-uniform traffic for various traffic	33
2.8	Performances of a 16×16 CIOQ switch adopted the FIRM algorithm. The	
	curves show the values of $P_{d=0}$ of the first priority traffic for different T_w	
	values non-uniform traffic for various traffic loads	34
2.9	Performances of a 16×16 CIOQ switch with = 16. The curves are	
	shown for all the three priority traffic ($w_1 = 4$, $w_2 = 3$, and $w_3 = 1$)	35
2.10	Performances of the first priority traffic for various switch sizes with	
	= 16 cells	36
2.11	Performance of a 16×16 CIOQ switch under correlated traffic. The curves	
	show the performances of the first priority traffic as a function of offered	
	load for various mean burst length $= 8, 16, 32, and 64 cells$	37
2.12	Performance of a 16×16 CIOQ switch under correlated traffic with mean	
	burst length $= 16$. The curves show the performances of the first	
	priority traffic under single-iteration, 3-iteration, and 5-iteration matching	38
2.13	Performance of a 16×16 CIOQ switch under correlated traffic with mean	
	burst length $= 16$. The curves show the performances of the first	
	priority traffic under single-iteration, 3-iteration, and 5-iteration matching	
	for various speedup factors ($S = 1, 2, 3$)	39
2.14	Performance of the 16×16 CIOQ switch with $B^i = \infty$ and $B^o = 3, 5, 7, 9$,	

	and 11 cells. The curve is shown for the highest priority cells only	40
2.15	Performance of the 16×16 CIOQ switch with $B^i = \infty$ and $B^o = 9$ cells. The	
	curves show the performance of values of the $P_{d=0}$ and $P_{d=2}$ for all the four	
	priority cells	41
2.16	Performance of the CIOQ switch with $B^i = \infty$ and $B^o = 9$ cells. The curve	
	shows the performance of the highest priority cells as a function of the	
	switch size <i>N</i> =4, 8, 16, and 32	42
2.17	Performance of the 16×16 CIOQ switch with $B^i = \infty$ and $B^o = 5$, 7,	
	9, 11 and 13 cells (=16). The curve is shown for the highest	
	priority cells only	43
2.18	Performance of the CIOQ switch with $B^i = \infty$ and $B^o = 11$ cells (=16).	
	The curve shows the performance of the highest priority cells as a function	
	of the switch size <i>N</i> =4, 8, 16, and 32	44
2.19	Performance of the 16×16 CIOQ switch with $B^i = \infty$ and $B^o = 11$ cells.	
	The curve shows the performance of the highest priority cells as a function	
	of the mean burst length $= 4, 8, 16, 32$ and 64 cells	45
2.20	P_{loss} of a 16×16 CIOQ switch with $B^i=2, 3, 5, 7$, and 9 cells, and $B^o=9$ cells	
	under uniform input traffic	46
2.21	P_{loss} of a 16×16 CIOQ switch with $B^i=3^\circ$, 5, 7, 9, and 11, and	
	$B^{o}=11$ cells (=16 cells) under correlated input traffic	47

3.1	Example of maintaining packet order in a 2x2 CIOQ switch	56
3.2	Cumulative distribution function for active-period traffic of a 2-MMBP	
	input traffic model	57
3.3	Performance comparison of the proposed PB-LCF/MUF algorithm and the	
	FIRM algorithm for a <i>32x32</i> CIOQ switch	58
3.4	Performance of the class 1 traffic under multiple-iteration matching	
	procedure with packet re-ordering at output ports	59
3.5	Performance of the class 1 traffic as a function of offered load for various	
	speed-up factors	60
3.6	Performance of a 64x64 CIOQ switch for various speedup factors	61

4.1	Example of starvation when queues are placed at input ports	69
4.2	The architecture of a 2x2 input buffered switch using OIPM algorithm	70
4.3	Weighted fairness of the proposed OIPM and the DRRM algorithm when all	
	output ports have identical weights	71
4.4	Weighted fairness of the proposed OIPM algorithm when different output	
	ports have different weights	72
4.5	Weighted fairness of the proposed OIPM algorithm when the switch runs	
	with a speedup factor of 2	73

