
 1

Chapter 1
Introduction

1.1 Problem Statement and Motivation

Packet switching is the core technology of the Internet. Internet link speeds are

increasing to beyond tens of gigabits per second to satisfy a continuing growth in

traffic. This increase in link speed and the need for quality of service (QoS) for

diverse applications such as voice, audio, and video drive research into new switch

architectures. Figure 1.1 abstracts the architecture of a generic switch. In general,

a switch consists of four main components: 1) input ports, 2) output ports, 3) a

switching fabric, and 4) an efficient scheduling algorithm and/or a service discipline

for QoS requirements. The switching fabric interconnects input ports and output

ports. The crossbar is a common switching fabric for high-speed switches used in

the Internet because of its non-blocking capacity, simplicity, and market availability.

The input port is the entry of input link. It receives incoming packets from the input

link, classifies them according to their destination port. A scheduling policy decides

the order in which packets at input ports are transferred across the switching fabric to

the output ports. The goal of the scheduling policy is to maximize the throughput of

the switch and provide QoS guarantees. At the output ports, the packets are received

from switching fabric and buffered (if required) while they await to be transmitted to

the outgoing link based on the service discipline.

Because two or more packets may compete simultaneously for the same output

port, buffering within a switch is used for queuing of packets. Switch buffering can

be in the input ports for input queued (IQ), in the output ports for output queued (OQ),

and/or within the switching fabric. Combinations such as combined input and output

queued (CIOQ) switches are possible.

For providing QoS guarantees in an integrated service network, the most

important clause in QoS service contract made by clients and the network is the

 2

specifications of performance requirements and it includes: 1)the end-to-end delay

bound, 2)the end-to-end delay jitter, 3)throughput, 4)and the loss probability. The

end-to-end delay bound is essential for many applications that have stringent real-time

requirements. The delay jitter is defined to be the maximum differences between

delays experienced by any two packets. Having a bounded delay-jitter service from

the network makes it possible for the destination to calculate the amount of buffer

space needed to eliminate the jitter. The smaller the jitter bound, the less amount of

buffer space is needed. Throughput guarantee is provided with the amount specified

by the traffic characterization which negotiated by clients and the network. Packet

loss can occur due to buffer overflown or delay bound violation. A statistic service

[1], [2],[3] allows a non-zero loss probability while a deterministic service guarantees

zero loss. A large number of service disciplines have been proposed to provide the

QoS requirements, for examples: Delay Earliest-Due_Date (Delay-EDD) [4], [5],

Virtual Clock [6], Fair Queuing (FQ) [7], and its weighted version (WFQ) also called

Packetized Generalized Processor Sharing (PGPS) [8], Self-Clocked Fair Queuing

(SCFQ) [9], Worst-case Fair Weighted Fair Queuing (WF2Q) [10], Jitter

Earliest-Due-Date (Jitter-EDD) [11], Stop-and-Go [12], Hierarchical Round Robin

(HRR) [13], Rate-Controlled Static Priority (RCSP) [14], and a survey in [15]. Most

of these algorithms were designed to be used at the output ports of an OQ switch and

can be classified as either work-conserving or non-work-conserving. The service

discipline is classified as a work-conserving scheme if an output never idles so long as

there is a packet destined for it in the system. In an OQ switch, all packets coming

to an input are immediately forwarded to the destination outputs as they arrive. Thus,

it is ensures that the switch can achieve 100% throughput and it allows the departure

of packets to be delivered to meet latency constraints by the service discipline and

thus QoS is guaranteed. But the main problem of OQ switches is that the switching

fabric of an N×N switch must run N times as fast as its line rate in the worst case if

packet loss is to be prevented, where N denotes the number of input/output ports.

The worst case occurs when N input ports all simultaneously transfer a packet

destined to the same output port. Since the recent developments in networking

technology produced a dramatic growth of the line rates and thus made the speed

requirements of switching fabric and memory accessing difficult to meet. As a result,

OQ switches have serious scaling problem. A parallel packet switch (PPS)

 3

architecture, which is a variation of the switched connection inverse multiplex

(SCIMUX) [16] architecture, is constructed with multiple identical lower speed OQ

switches operating independently and in parallel was proposed to make a

large-capacity switch with extremely high line-rates feasible [17]-[19]. It is possible

that the lower speed OQ switch used in PPS can operate at a fraction of the line rate.

However, it requires a centralized scheduling algorithm with unreasonable processing

and communication complexity. Besides, the lower speed OQ switch is still a factor

to set a limit on system capacity.

To alleviate memory bandwidth and the speedup requirement of the switching

fabric, input queuing is widely considered in building a large capacity switch. In an

IQ switch, packets arriving at input lines are all queued at input ports. Then the

packets are extracted based on the scheduling algorithm from input queues to across

the switching fabric and then be forwarded to the destined output ports. The

switching fabric and the memory of an IQ switch needs only to run as fast as the line

rate. However, IQ switches with a single first in first out (FIFO) buffer per input

port have long been studied to have a limiting throughput of 58.6 percent for

Bernoulli packet arrivals with uniformly randomly selected output port [20].

Moreover, it has been shown that the maximum throughput of the switch decreases

monotonically with increasing burst size under bursty traffic arrivals [21]. This

limited throughput is due to head-of-line (HOL) blocking in the input queues. In the

single FIFO queue maintained at each input, a packet destined to an output that is free

may be held up in line behind a packet that is waiting for an output that is busy.

Many techniques have been suggested for reducing HOL blocking, for example by

considering the first K packets in the FIFO queue, where K > 1 [22]-[24]. Although

these schemes can improve throughput, they are sensitive to traffic arrival patterns

and may perform no better than regular FIFO queuing when the traffic is bursty.

Another way of eliminating the HOL blocking is by changing the queuing structure at

the input. Instead of maintaining a single FIFO queue at the input, a separate queue

per each output can be maintained at each input. This scheme is called virtual output

queuing (VOQ) and was first introduced in [25]. Each arriving packet is classified

and then queued in the appropriate VOQ according to its determined destination

output port. HOL blocking is eliminated because packets only queue behind packets

 4

that are destined to the same output; no packet can be held up by a packet ahead of it

that is destined to a different output.

IQ switches that use VOQ’s have been employed in a number of studies [26]-[30].

The key component for achieving high performance of these IQ switches is a

scheduling algorithm that configures the switching fabric and decides which inputs

will be connected to which outputs. The throughput can be improved to approach

100% if packets are delivered from input ports to output ports based on maximum

matching algorithm for a bipartite graph problem [31]. There exist many algorithms

for solving these problems, the most efficient currently known converges in

computation complexity of O(N5/2) for uniform traffic [32] and O(N3logN) for

non-uniform traffic [33]. In addition to the high computation complexity, the

maximum matching can lead to instability and unfairness when the traffic is

admissible (particularly for non-uniform traffic patterns) and lead to starvation when

the traffic is inadmissible [31]. The traffic is admissible if the aggregate arrival rate

to an input or output port is less than 1. These disadvantages prohibit maximum

matching from being used in a high-speed switch. To reduce the complexity, a large

number of iterative maximal matching algorithms (e.g., PIM [27], WPIM[34], LPF

[35], iSLIP [36], and FIRM [37], to name a few) have been proposed to achieve 100%

throughput for IQ switches that use VOQ’s when the traffic is addmissible. These

algorithms need to be performed iteratively about log2N times to achieving high

throughput and thus it is time consuming. In addition, none of these algorithms can

match the performance of an OQ switch.

Another approach to improve the performance of an IQ switch closer to that of an

OQ switch is to increase the speedup of the switching fabric. A switch is said to

have a speedup S, if the switching fabric runs S times faster than each of the input or

output line rates. Hence, an OQ switch has a speedup of N, while an IQ switch has a

speedup of one. Because of speedup, an output port may receive packets faster than

it can transmit. As a result, buffering at output ports is necessary and the switch

becomes a combined input and output queued (CIOQ) switch while 1<S<N.

The architecture of CIOQ switches has received considerable attention in the

 5

literature [38]-[41]. The goal is to find an efficient matching algorithm such that a

CIOQ switch with a moderate speedup can exactly emulate an OQ switch. A CIOQ

switch is said to exactly emulate an OQ switch if, under identical input traffics, the

departure time of every packet from both switches is identical. Both analytical and

simulation studies of a CIOQ switch which maintains a single FIFO queue at each

input have been conducted for various values of the speedup [42]-[45]. A common

conclusion of these studies is that with S = 4 or 5 one can achieve about 99%

throughput when arrivals are independent and identically distributed at each input,

and the distribution of packet destinations is uniform across the outputs. In [46], the

authors show that speedup of 4 is sufficient to ensure 100% asymptotic throughput

with any maximal matching algorithm. Furthermore, an algorithm named the least

output occupancy first algorithm (LOOFA) [47] was proposed for a CIOQ switch with

a speedup factor of 2 to achieve 100% throughput. These algorithms basically

perform maximal matching and thus are possible to realize in a high-speed switch.

However, achieving 100% throughput is not sufficient for QoS guarantee. In [48],

[49], it is proved that a CIOQ switch with a speedup factor of 2 can exactly emulate

an OQ switch which employs a wide variety of service disciplines (e.g. WFQ and

strict priority) if stable matching is adopted. Unfortunately, the complexity of stable

matching is O(N2), and thus is impractical for a large system. In [50], the authors

proposed a parallel maximal matching algorithm (of complexity O(N)), called the

least cushion first/most urgent first (LCF/MUF) algorithm, and proved exact

emulation of an OQ switch which can be achieved with a speedup factor of 2. There

is no constraint on the service discipline used by the emulated OQ switch. The

LCF/MUF algorithm simplifies the matching procedures and provides a variety of

QoS guarantees. However, to implement the LCF/MUF algorithm, a switch has to

know the cushion of all packets and their relative departure order in the emulated OQ

switch. Besides, the complexity of cushion calculation and packet re-ordering

required at the output ports make the algorithm very difficult to be realized in a

high-speed network. In the first part of this thesis, we propose an approximate

LCF/MUF algorithm and evaluate its performance via computer simulations for the

weighted round robin (WRR) service discipline. The proposal simplifies cushion

calculation and does not perform packet re-ordering at output ports. The tradeoff is

that it loses the property of exact emulation. However, we found that the

 6

performance of a CIOQ switch using the proposed single-iteration approximate

LCF/MUF algorithm is close to that of an OQ switch under uniform, non-uniform,

and correlated input traffic models with fixed-length packets. Besides, the packet

departure order is maintained for the WRR service discipline. Consequently, the

re-ordering mechanism is not needed at output ports.

Furthermore, to exactly emulate OQ switches, the CIOQ switch is assume that

there is always enough buffer space to store the packets when and where needed.

Thus, packet drop due to insufficient buffer space never occurs, and all packet

arriving to the switch eventually cross the switch. However, contrary to this setting

it is observed empirically in the Internet that packets are routinely dropped in switches.

Therefore, the performance of a CIOQ switch with limited input and output buffers is

also presented.

As mentioned above, the selection of packets to be transmitted in each time slot

from the input ports to output ports is accomplished using a scheduling algorithm,

which is the key component in achieving high performance using a switch. Most of

previous scheduling algorithms found in open literature were designed for

fixed-length packets (or cells) scheduling. These proposed algorithms configure a

set of non-conflict connections of the switching fabric between input ports and output

ports in each time slot and re-configure all connections in the next slot. Hence, in

current Internet environment, segmenting packets of variable-lengths into cells and

re-assembling the cells into original packets are needed before and after packets

transmissions across the switching fabric because cells belonging to various packets

may interleave with one another. As a result, such a process can be time consuming

and may be not be easily implemented at very high speed. Therefore, a scheduling

algorithm designed for fixed-length packets has to be modified to make it useful for

switching Internet packets. There are some algorithms [51]-[54] based on

variable-length packet scheduling have been proposed for IQ switches. A

variable-length packet will be scheduled as a whole and transmitted continuously in

the switch rather than schedule them on a cell-by-cell basis. These algorithms were

developed for IQ switches in achieving high throughput. But they are difficult to

provide QoS guarantees. In the second part of this thesis, we present a variation of

 7

the approximate LCF/MUF algorithm for variable-length packet traffics and evaluate

its performance via computer simulations again. We name it as packet-based

LCF/MUF (PB-LCF/MUF) algorithm. Numerical results show that the performance

of a CIOQ switch with a speedup factor of 5 which adopts the single iteration

PB-LCF/MUF algorithm is close to that of an OQ switch under the WRR service

discipline. The single iteration version not only can handle variable-length packets

quite well but also avoid out-of-order packet delivery from input ports to output ports.

In order to provide QoS guarantee, a switch may have to maintain a large number

of queues. However, when considering the cost of hardware implementation, the

number of queues is a decisive factor. It is well known that IQ switches suffer from

HOL blocking which limits the maximum throughput to 0.586 under uniform traffic

and OQ switches have serious scalability problem. One possible approach to

improve the performance of an IQ switch is to use virtual output queuing (VOQ)

combined with a parallel matching algorithm such as iSLIP [36]. As a result, based

on the VOQ structure, the number of queues maintained at each input port is N×K for

an N×N switch with K traffic classes which means high complexity when N and K are

large. To reduce the complexity and make a system feasible, it is important to

reduce the number of queues maintained by the switch. In the last part of this thesis,

we propose a novel output initiated parallel matching (OIPM) algorithm for

large-scale input buffered switches. In our proposed architecture, packets are

buffered at input ports while queues are maintained at output ports. The number of

queues maintained at each output port is equal to the number of traffic classes. It

means that only K queues maintained at each output port is needed under the traffics

with K priority classes which is much smaller than N×K virtual output queues

maintained in an IQ switch. In addition to reducing the number of queues, our

proposal guarantees starvation free, in-order packet delivery, and achieves weighted

fairness among traffic classes.

1.2 Outline of Thesis

We will, in the next three chapters, present several scheduling algorithms that we have

 8

devised. It is the objective of each algorithm to match the set of inputs of a switch to

the set of outputs more efficiently, fairly and feasibly in implementation. The rest of

this thesis is organized as follows. In chapter 2, we propose the approximate

LCF/MUF algorithm for a CIOQ switch and evaluate its performance under uniform,

non-uniform, and correlated input traffic models with fixed-length packet. The

performance of a CIOQ switch with finite input and output buffers is also presented.

In chapter 3, a packet-based LCF/MUF matching algorithm was proposed for dealing

with variable-length packets in the current Internet environment. Extensive

simulations are performed for evaluating the performance of a CIOQ switch adopts

the proposed PB-LCF/MUF algorithm. In chapter 4, a novel output initiated parallel

matching algorithm was proposed for large-scale input buffered switches. The

switch needs less number of queues and guarantees starvation free, in-order packet

delivery, and achieves weighted fairness among traffic classes. Finally, we draw

conclusions in chapter 5.

 9

Fig. 1.1 The architecture of a generic switch

 10

Chapter 2
The Approximate LCF/MUF Maximal Matching
Algorithm

2.1 Introduction

It has recently been shown that a combined input and output queued (CIOQ) switch

with a moderate speedup factor can exactly emulate an output queued (OQ) switch

[47]-[50]. A CIOQ switch is said to exactly emulate an OQ switch if, under identical

input traffics, the departure time of every packet from both switches is identical.

The key component for exact emulation is a matching algorithm for bipartite graphs.

In [46], the authors show that speedup of 4 is sufficient to ensure 100% asymptotic

throughput with any maximal matching algorithm. Furthermore, an algorithm

named the least output occupancy first algorithm (LOOFA) [47] was proposed for a

CIOQ switch with a speedup factor of 2 to achieve 100% throughput. These

algorithms basically perform maximal matching and thus are possible to realize in a

high-speed switch. However, achieving 100% throughput is not sufficient for QoS

guarantee. In [48], [49], it is proved that a CIOQ switch with a speedup factor of 2

can exactly emulate an OQ switch which employs a wide variety of service disciplines

(e.g. WFQ and strict priority) if stable matching is adopted. Unfortunately, the

complexity of stable matching is O(N2), and thus is impractical for a large system.

In [50], the authors proposed a parallel maximal matching algorithm (of complexity

O(N)), called the least cushion first / most urgent first (LCF/MUF) algorithm, and

proved that a CIOQ switch with a speedup factor of 2 can exactly emulate an OQ

switch with any arbitrary service discipline. The LCF/MUF algorithm simplifies the

matching procedures and provides a variety of QoS guarantees. However, to

implement the LCF/MUF algorithm, a switch has to know the cushion of all packets

and their relative departure order in the emulated OQ switch. Besides, the

complexities of cushion calculation and packet re-ordering required at the output ports

make the algorithm very difficult to be realized in a high-speed switch. In this

 11

chapter, we propose an approximate LCF/MUF algorithm and evaluate its

performance for the weighted round robin (WRR) service discipline adopted at output

ports. For ease of implementation, the proposed algorithm calculates approximate

cushions and does not perform re-ordering at the output ports. The tradeoff is that it

loses the property of exact emulation. We found, via computer simulations, that the

performance of a CIOQ switch with the proposed single-iteration matching algorithm

is close to that of an OQ switch under uniform, non-uniform, and correlated input

traffic models for offered load up to 0.9. Besides, the packet departure order can be

maintained under the single-iteration algorithm.

 Furthermore, to exactly emulate an OQ switch, the buffer size at each input and

output port is assumed to be of infinite size. This assumption is obviously

unrealistic in practice. Therefore, the performance of a CIOQ switch with finite

input and output buffers is also presented in this chapter.

In the operation of the CIOQ switch, we assume that the switch handles

fixed-length packets (or cells). Time is divided into slots such that the duration of a

slot equals the time between cell arrivals at input ports. For simplicity, we assume

that the link capacities of all input ports and output ports are equal. A CIOQ switch

with a speedup factor of S is able to make S cell transfers from each input to outputs

during each time slot. In other words, a slot is further divided into S equal sub-slots

for the switching fabric and scheduling is performed at the beginning of each sub-slot.

2.2 The Least Cushion First / Most Urgent First

(LCF/MUF) Algorithm

In this section, we briefly review the LCF/MUF algorithm proposed in [50]. Before

describing the algorithm, we need the following definitions. Let xi,j denote a cell

buffered at input port i destined to output port j.

Definition 1： The cushion of cell xi,j buffered at input port i, denoted by C(xi,j),

equals the number of cells currently residing in output port j which will depart the

 12

emulated OQ switch earlier than cell xi,j.

Definition 2： The cushion between input port i and output port j, denoted by C(i,j),

is the minimum of C(xi,j) of all cells buffered at input port i destined to same output

port j. If there is no cell destined to output port j, then C(i,j) is set to ∞.

Definition 3： The scheduling matrix of a N×N switch is a N×N square matrix

whose (i,j)th entry equals C(i,j).

The matching procedures made by the LCF/MUF algorithm are described below:

Step 1. Select the (i,j)th entry of the scheduling matrix which satisfies C(i,j) =

mink,l{C(k,l)} (Least Cushion First). If the selected entry is ∞, then stop. If there

are more than one entry with the least cushion residing in different columns, then

choose the most urgent cell xi,j among those input ports which correspond to the

selected entries (Most Urgent First). (The most urgent cell xi,j means the cell which

will depart output port j in the emulated OQ switch earlier than any other cell

currently residing in some input port. It is clear that urgency of a cell depends on the

service discipline adopted at output ports.)

Step 2. Eliminate the ith row and the jth column (i.e., match output port j to input port

i) of the scheduling matrix. If the reduced matrix becomes null, then stop. Otherwise,

use the reduced matrix and go to Step 1.

It was proved in [50] that a CIOQ switch with a speedup factor of 2 that adopts

the LCF/MUF matching algorithm can exactly emulate an OQ switch with any

arbitrary service discipline. For convenience, the emulated OQ switch is referred to

as the shadow OQ switch. As was pointed out before, it is very difficult to obtain the

cushions of cells at all input ports for a complicated service discipline such as

WFQ[7], PGPS[8] or WF2Q[10]. As such, for high-speed switches, it is better to

select a service scheduling algorithm which can provide QoS guarantee and is simple

for cushion calculation. The WRR scheme satisfies the requirements and thus is

studied in this chapter. We assume that output port j (1≤ j ≤ N) maintains K queues,

 13

denoted by OQj,k for 1 ≤ k ≤ K, with integral weights w1, w2, …, and wK. The WRR

service algorithm adopted at output ports for the shadow OQ switch is described

below.

Step 1. Let k = 1.

Step 2. If wk > 0, then

 wk = wk – 1;

 The HOL cell of output queue OQj,k is served if queue OQj,k

is non-empty.

If wk = 0 for all k, 1 ≤ k ≤ K, then reset all the weights and go to

Step 1.

Step 3. k = k + 1 modulo K. Go to Step 2.

Fig. 2.1 shows an example of the WRR service discipline with K = 3, w1 = 4, w2

= 3, and w3 = 1. Both Figs. 2.1(a) and 2.1(b) show one cycle of the WRR scheme.

In Fig. 2.1(a), every queue is non-empty when visited. In Fig. 2.1(b) queue 2 is

empty in its second and third visits and thus the cycle is shorter than a regular one.

Note that the complexity of cushion calculation strongly depends on the service

discipline. Several service disciplines have been proposed for QoS requirements.

In [8], the authors demonstrated that, by employing generalized processor sharing

(GPS) server at switches and leaky bucket admission control at the source, throughput

and delay bound can be guaranteed to a connection. GPS has received much

attention but it is impractical as it assumes that the server can serve all connections

with non-empty queues simultaneously and that the traffic is infinitely divisible. In a

more realistic packet system, only one connection can receive service at a time and an

entire packet must be served before another packet is picked up for service.

Consequently, there are many disciplines try to approximate GPS. The most

well-known one is the weighted fair queuing (WFQ) discipline, also known as packet

GPS (PGPS). Furthermore, the worst-case fair weighted fair queuing (WF2Q) is

proposed and shown that it provides almost identical service to GPS differing by no

more than one maximum size packet when the packet departs the output port. Since

both WFQ and WF2Q are defined with respect to the corresponding GPS system, a

 14

hypothetical fluid-flow reference GPS server is needed for specifying the order of

services in the WFQ and WF2Q scheme. However, it leads to considerable

computational complexity, especially at high transmission speeds, due to the need for

simulating events in the hypothetical GPS system. One simpler packet

approximation algorithm of GPS is self-clocked fair queuing (SCFQ) discipline.

The SCFQ scheme is based on the adoption of an internally generated virtual time as

the index of work process instead of the hypothetical queuing system. The virtual

time is simply extracted from the packet situated at the head of the queue. While

simpler than WFQ and WF2Q, SCFQ provides a much large delay bounded than that

by WFQ and WF2Q. Another related discipline is the virtual clock discipline [6].

Each arrival packet is allocated a virtual transmission time, which is the time at which

the packet would have been transmitted in the switch. Packets are transmitted in the

increasing order of virtual transmission times in the switch. The virtual transmission

time of a packet is assigned based on the arrival pattern and the reservation rate of the

connection which the packet belongs. Virtual clock discipline can provide the

identical delay bound to a connection whose source is constrained by a leaky bucket.

But the virtual transmission time of each packet in the switch is difficult to maintain

and thus it is impractical in implementation.

Although these advanced service disciplines can provide diverse QoS

applications, but these disciplines are difficult to implement. Besides, it is very

difficult to obtain the cushions of packets at all input ports when a CIOQ switch uses

out proposed matching algorithm and one of these complicated service disciplines.

2.3 The Approximate LCF/MUF Algorithm

The conceptual model of the considered CIOQ switch is illustrated in Fig. 2.2.

Every input port maintains per output port, per priority queues. In other words, input

port i (1 ≤ i ≤ N) maintains a separate set of FIFO queues for output port j (1 ≤ j ≤ N).

As a consequence, there are N sets of queues at each input port and each set consists

of K priority FIFO queues. The set of queues maintained at input port i for output

port j are named as VOQi,j,k for 1 ≤ k ≤ K. A new arrival cell at input port is placed at

 15

the tail of the appropriate queue depending on its destination and priority. At output

port j, there are K queues, denoted by OQj,k, which are served based on the WRR

service scheme.

2.3.1 Single-iteration Matching

The proposed approximate LCF/MUF matching algorithm in the CIOQ switch is

similar to the PIM algorithm [27] and has three phases in each iteration. In phase 1,

input ports send requests to output ports. These requests contain the arrival times of

the HOL cells. In phase 2, every output port computes the cushions for all cells

contained in the requests, selects the least cushion cell, and then sends a grant

message back to the corresponding input port. Finally, in phase 3, every input port

which receives grant messages picks one based on the cushion and sends an accept

message to the selected output port. To simplify calculation of cushions in phase 2,

cells belonging to the same queue at an output port are not re-ordered, i.e., the queue

is the same as a FIFO queue and cells are served in the order they arrive at the output

port. Notice that the calculated cushion is just an approximation because, for exact

cushion calculation, one has to know the departure times of the cells for the shadow

OQ switch. Details of the matching algorithm are described below.

Phase 1. Input ports send requests to output ports.

In Phase 1, every input port i sends a request to each output port j. The request

contains the arrival times of the HOL cells of all the K queues VOQi,j,k. The arrival

time is set to infinity if a queue is empty.

Phase 2. Output ports send grants to input ports.

In Phase 2, every output port calculates the approximate cushions for the cells of each

received request which was sent in Phase 1. The cushion of a cell is the number of

time slots it has to wait before its service at the output port, assuming that it is

delivered to the output port in the current time slot and there is no other arrival in the

future. After the cushions of all cells are calculated, the output port selects the

request with the least cushion and sends a grant message to the input port which sent

 16

the request. If there are ties, then the cell with the earliest arrival time wins the

contention. The grant message contains the calculated cushion of the request and the

identification of the selected queue.

Phase 3. Input ports send accepts to output ports.

If an input port receives exactly one grant message from some output port, then it

sends an accept message to the output port in Phase 3. In case an input port receives

multiple grants, then it selects the grant with the least cushion. If there are ties, then

the cell with the earliest arrival time is selected.

Fig. 2.3 shows an example of cushion calculation when the WRR service scheme

is adopted at output ports. In this example, there are 3 queues at an output port with

weights 4, 3, and 1. Note that the cushion of a cell depends on the state (i.e., the

position in a service cycle) of the output port. In Fig. 2.3(a), the cushion of a request

belonging to the second priority queue, denoted as C(w2), is equal to 4 as the current

service token is at the first position of the service cycle. In Fig. 2.3(b), C(w2) = 2 as

the current service token is at the fifth position.

Based on the outcome of the above matching procedure, cells are delivered from

input ports to output ports. Remember that the switching fabric is speeded up by a

factor of 2 and thus every input port can send at most 2 cells to output ports in a slot.

For ease of implementation, our scheme does not allow cell re-ordering at output

ports. In fact, for the single-iteration scheme, it is not necessary to re-order cells at

output ports. The reason is explained as follows. Consider two cells x and y of the

same priority at different input ports. Assume that both x and y are HOL cells and

destined to the same output port. If cell x arrived earlier than cell y, then the output

port will select cell x in phase 2. Therefore, cell out-of-order will not happen at any

output port.

2.3.2 Multiple-iteration Matching

 17

To improve throughput performance of the switching fabric, the above matching

procedure can be repeated for multiple iterations. After each iteration, an input port

stops to send requests once it sends accept message to certain output port. Similarly,

an output port stops to calculate cushions and send grant message once it receives an

accept message. The subsequent iterations will try to match the rest input and output

ports that remain unmatched in previous iterations. Obviously, the throughput

increases as the number of iteration increases. However, multiple iterations may

result in out-of-order delivery of cells and hurt the goal to emulate an OQ switch if

cell re-ordering is not allowed at output ports. Our simulation results show that

multiple-iteration matching does not yield a better performance than single-iteration

matching.

2.4 Input Traffic Models

To quantitatively evaluate the performance of our considered CIOQ switch, we

describe practical input traffic models that will be sent simultaneously to both the

shadow OQ switch and the CIOQ switch in each simulation experiment. The

following introduces three input traffic models ─ uniform, non-uniform and

correlated models.

2.4.1 Uniform and Non-uniform Input Traffic

The uniform input traffic model is used to characterize the interactive behavior of data

arrivals in computer networks [20]; there is no time correlation between arrivals.

Cells arrival on the N input links are governed by i.i.d. Bernoulli processes.

For non-uniform traffic, we use the same model as in [55]. We define

non-uniform traffic by using an unbalance weight probability Tw. Let us consider

input port i and output port j. Given ρi, the offered input load for input port i, the

traffic load from input port i to output port j, denoted by ρi,j, is given by

 18

 (1)
otherwise

1

 if)
1

(
,

⎪
⎪
⎩

⎪⎪
⎨

⎧

−

=
−

+
=

N
T

ji
N
T

T

w
i

w
wi

ji

ρ

ρ
ρ

When Tw=0, the offered traffic is uniform. On the other hand, when Tw =1, the

traffic is completely unbalanced in the sense that all the traffic of input port i is

destined for output port i.

2.4.2 Correlated Input Traffic

The correlated traffic model we studied is characterized by a 2-states Markov process

alternating between active and idle states with probabilities p and q, respectively

[21][56] (see Fig. 2.4). This model is often used to describe IP packets fragmented

into ATM cells. Based on this model, the traffic source will generate a cell every slot

when it is in the active state. Note that there is at least one cell in a burst. Define

random variable B as the number of time slots that the active period (burst) lasts.

The probability which the active period lasts for a duration of m time slots (consists of

m cells in a burst) is

)2(1,)1(]Pr[1 ≥−== − mppmB m

The mean burst length is given by

)3(/1]Pr[][
1

pmBmBE
m

==⋅= ∑
∞

=

Similarly, define random variable I as the number of time slots the idle period lasts.

The probability that an idle period lasts for n time slots is

)4(0,)1(]Pr[≥−== nqqnI n

and the mean idle period duration is given by

 19

)5(/)1(]Pr[][
1
∑
∞

=

−==⋅=
n

qqnInIE

Given p and q, the offered traffic load ρ can be found by

)6(
][][

][
pqqp

q
IEBE

BE
−+

=
+

=ρ

We assume there is no correlation between different bursts and the destination of each

burst is uniformly distributed among the output ports.

2.5 Numerical Results

To evaluate the performance of the CIOQ switch using the proposed matching

algorithm, we measure the latency of cells which are simultaneously fed to both the

shadow OQ switch and the CIOQ switch under uniform, non-uniform, and correlated

traffic models. We define d(x) = 〡dOQ(x)- dCIOQ(x)〡as the deviation index of cell

x. Here dOQ(x) and dCIOQ(x) denote, respectively, the departure times of cell x for the

shadow OQ switch and the CIOQ switch. Given a fixed d, we measure the

percentage of cells that has a deviation index smaller than or equal to d. This

percentage is denoted by Pd . For example, Pd=0 equals 100% means that the CIOQ

switch exactly emulates the shadow OQ switch.

Our simulation experiments are divided into five parts. In the first three parts,

we measure the values of Pd under uniform, non-uniform, and correlated traffic

models, respectively. We found that the performance of a CIOQ switch using the

proposed matching algorithm is close to that of an OQ switch. In the fourth part, we

study the effect of multiple-iteration matching. Results show that single-iteration

matching is good enough and thus cell re-ordering is not needed. In the last part, we

change the speedup factor and show that a CIOQ switch with a speedup factor of 2

yields much better performance than one without speedup. Besides, a speedup factor

larger than 2 is not necessary. Our simulation results also show the performance of

the CIOQ switch, with a speedup of 2, using the FIRM algorithm for comparison. It

will be seen that the LCF/MUF algorithm has better performance under these three

 20

traffic models. We performed simulations for the CIOQ switch using the iSLIP

algorithm. The performance of iSLIP is worse than that of FIRM and is not shown

in this thesis.

Simulations are performed for N = 8, 16, and 32 for 3 priority levels with

weights w1 = 4, w2 = 3, and w3 = 1, under uniform, non-uniform, and correlated traffic

models. For correlated traffic, the mean burst length ℓ = 8, 16, 32, and 64 are

considered. In each experiment, the statistics of about one million cells over all

queues at input ports are collected

2.5.1 Performance under Uniform Traffic

For uniform input traffic, simulation results are shown in Fig. 2.5 and Fig. 2.6. For

switch size N = 16 and the switch adopts the proposed LCF/MUF algorithm, Fig. 2.5

shows that the values of Pd=0 are larger than 0.866 for all the three priority traffics

under an offered load up to 0.9 and the values of Pd≤2 are close to 100%. The

curves also show that the performances of all the three priority traffics are similar.

In Fig. 2.6, the curves show the performances of the CIOQ switch for various switch

sizes. It can be seen that the performance degrades as the number of ports increases.

But it degrades slowly when N is larger than 16. Based on these results, we

conclude that the performance of a CIOQ switch with the proposed matching

algorithm is close to that of an OQ switch under uniform traffic.

Fig. 2.5 and Fig. 2.6 also show that the performances of the FIRM algorithm are

worse than those of the LCF/MUF algorithm. The difference is significant under

heavy load conditions. To avoid drawing too many lines to make these figures less

comprehensible, the curves of Pd≤2 for the FIRM algorithm are not shown. And the

curves for the 2nd and 3rd priority traffic cells are not shown in Fig. 2.6. Our results

show that Pd≤2 for the FIRM algorithm is smaller than that for the LCF/MUF

algorithm. And the performances of the 2nd and 3rd priority traffic cells are similar to

those of the 1st priority traffic cells in Fig. 2.6. Notice that cushion calculation helps

the LCF/MUF algorithm to achieve a better performance than the FIRM algorithm.

 21

Moreover, the FIRM algorithm may result in out-of-sequence delivery that also hurts

its performance if re-ordering is not allowed at the output ports.

2.5.2 Performance under Non-uniform Traffic

For non-uniform input traffic, simulation results are shown in Fig. 2.7 and Fig. 2.8 for

switch size N = 16 which adopts the proposed LCF/MUF algorithm and the FIRM

algorithm respectively. When Tw = 0, the offered traffic is uniform and thus the

values of Pd=0 are the same as those shown in Fig. 2.5. The value of Pd=0 increases

and is equal to 100% as Tw increases to one. The reason is that, when Tw = 1, output

port j is always matched to input port j for all j.

2.5.3 Performance under Correlated Traffic

For the correlated traffic model, results depend on the mean burst length ℓ. In Fig.

2.9, we show the results for ℓ = 16 cells and N = 16. When the switch adopts the

proposed algorithm, the values of Pd=0 are larger than 0.875 for all the three priority

traffic under an offered load up to 0.9 and the values of Pd≤2 are close to 100%. The

performances of all the three priority traffics are similar under both uniform and

correlated traffic models. In Fig. 2.10, the curves show the performances of the

CIOQ switch for various switch sizes. It can be seen that the performance degrades

as the number of ports increases. Again, it degrades slowly when N is larger than 16.

In Fig. 2.11 we performed similar simulations for others values of ℓ. It can be seen

that the performance degrades as ℓ increases. But the degradation becomes slow

once ℓ is larger than 16. Again, to avoid drawing too many lines to make these

figures less comprehensible, the curves of Pd≤2 for the FIRM algorithm are not shown.

And the curves for the 2nd and 3rd priority traffic cells are not shown in Fig. 2.10 and

Fig. 2.11. Based on these results, we conclude that the performance of a CIOQ

switch with the proposed matching algorithm is close to that of an OQ switch under

correlated traffic.

 22

2.5.4 Effects of Multiple-iteration Matching

In this sub-section, we study the effects of multiple-iteration matching. In our

experiments, the algorithm is performed with three and five iterations. The results

are shown in Fig. 2.12. As mentioned before, multiple-iteration matching does not

improve the performance in terms of emulation of a shadow OQ switch. Therefore,

we conclude that single-iteration matching is enough for the proposed approximate

LCF/MUF algorithm.

2.5.5 Effects of Speedup Factors

In this sub-section, we study the effects of speedup factors. In Fig. 2.13, we show

the results for ℓ = 16 cells and N = 16 for speedup factor S = 1, 2, and 3. It can be

seen that, for S = 1 which means no speedup, system performance degrades seriously

as traffic load increases. The reason is that the approximate LCF/MUF is not a

maximum matching algorithm. The performance can be improved if the matching is

performed for multiple iterations. However, the improvement is not obvious. As

illustrated in the figure, the results for S = 3 are almost the same as those for S = 2.

We also performed simulations for S = 4 and 5 and the results are similar. So, a

speedup factor of 2 is important to achieve satisfactory performance and a speedup

factor greater than 2 is not necessary.

2.6 CIOQ switches with finite input and output buffers

In [50], the authors prove that a CIOQ switch with a speedup factor of 2 can exactly

emulate an OQ switch adopts any arbitrary service discipline. The key component is

an efficient matching algorithm named as the LCF/MUF algorithm. Besides, the

CIOQ switch is assume that there is always enough buffer space to store the packets

when and where needed. Thus, packet drop due to insufficient buffer space never

occurs, and all packets arriving to the switch eventually cross the switch. However,

 23

contrary to this setting it is observed empirically in the Internet that packets are

routinely dropped in switches. In this section, we investigate via computer

simulations the performance of a CIOQ switch with limited input and output buffers.

To implement the LCF/MUF algorithm, a switch has to know the cushion of all cells

and the relative departure order of cells destined to the same output port. The

complexity of cushion calculation strongly depends on service discipline. For ease

of simulation and feasibility in implementation, we select the strict priority scheme as

the service discipline of the shadow OQ switch. We assume that every output port j

maintains K FIFO queues named as Qj,k with priority 1 to priority K respectively

(priority 1 has the highest priority). At each output port j, the strict priority service

discipline is described below.

for k=1 to K {

if queue Qj,k is non-empty then

the head-of-line cell of Qj,k is served and break for-loop.

}

In our study, the input traffic is characterized by uniform or correlated model as

mentioned before. With finite input and output buffers, the property of exact

emulation is lost. However, simulation results show that, under uniform traffic, a

CIOQ switch behaves almost like an OQ switch if the buffer size at every input port

and every output port are 3 and 9 cells respectively. For correlated traffic, to achieve

similar results, both input and output buffer sizes have to be increased to about 7 and

11 times of the mean burst size, respectively.

 Our simulation experiments are divided into three parts. In the first two parts,

we measure the latency of cells which are simultaneously fed to both the shadow OQ

switch and the CIOQ switch with infinite input buffer and finite output buffer under

uniform and correlated traffic models, respectively. We use Pd mentioned before as

the criteria of the performance. For example, Pd=0 equals 100% means that the

CIOQ switch exactly emulates the shadow OQ switch. In the third part, we study the

effect of finite input buffer. We measure the cell-loss probability (denoted by Ploss)

of a CIOQ switch with finite input buffer and finite output buffer.

 24

Simulations are performed for N = 4, 8, 16, and 32, with 4 priority levels under

both uniform and correlated traffic models. For correlated traffic, the mean burst

length ℓ= 4, 8, 16, 32, and 64 are considered at the same time. The statistics of

about one million cells are collected (over all queues in the switch) and thus loss

probabilities smaller than 10-6 are not measurable.

2.6.1 Results of Uniform Input Traffic

For uniform input traffic load, simulation results are shown in Fig. 2.14 to Fig. 2.16.

Fig. 2.14 shows that the CIOQ switch almost behaves like an OQ switch under

moderate loads if sufficiently many output buffers are installed. For N =16 with

infinite input buffer (Bi = ∞) and finite output buffer Bo = 9 cells, the value of Pd=0 is

larger than 90% for the 1st priority traffic cells under an offered load up to 0.8. Fig.

2.15 shows the values of Pd=0 and Pd<=2 for all the four priority cells. We observe

that the performance behaves similarly for all the four priority cells and the values of

Pd<=2 are close to 100% even under an offered load up to 0.8. As is shown in Fig.

2.16, the performance degrades as the number of ports increases. But it degrades

slowly when N is larger than 8. Based on these results, we conclude that a CIOQ

switch performs like an OQ switch if output buffer size is at least 9 cells.

Note that, the maximum queue length at all input ports is also estimated in these

simulations. The input buffer size of 60 cells is sufficient under the uniform traffic

model.

2.6.2 Results of Correlated Input Traffic

For the correlated traffic model, results depend on the mean burst size ℓ. In Fig.

2.17, we show the results for ℓ = 16 cells for N = 16 with Bo = 5ℓ, 7ℓ, 9ℓ, 11ℓ

and 13ℓ cells. The value of Pd=0 is larger than 90% for the 1st priority traffic under

an offered load up to 0.8 when Bo = 11ℓ cells are installed. From Fig. 2.18, one

 25

can see that the performances are roughly the same for various switch sizes. In Fig.

2.19 we performed similar simulations for other values of ℓ. Our observation is

that the performance degrades as a function of the value of ℓ. But the degradation is

became slow once ℓ is larger than 16. Based on these results, we suggest to

allocate Bo = 11ℓ cells at each output port for correlated traffic.

Note that the maximum queue length at all input ports is smaller than 237 cells

(about 15ℓ cells) which is also estimated in simulations.

2.6.3 Effect of Finite Input Buffer

In this sub-section, we study the effect of finite input buffer. The output buffer size

is chosen to be 9 cells for uniform traffic and 11ℓ cells for correlated traffic. The

switch size and the mean burst length investigated in our simulations are N = 16 and

ℓ= 16. We measure cell loss probability (Ploss) due to finite input buffer. Fig. 2.20

shows the curves of Ploss versus ρ for input buffer size Bi = 2, 3, 5, 7 and 9 cells under

uniform traffic. Fig. 2.21 shows the curve of Ploss versus ρ for input buffer size Bi =

3ℓ, 5ℓ, 7ℓ, 9ℓ and 11ℓ cells under correlated traffic. It can be seen that Ploss

of the CIOQ switch with Bi = 3 and Bo = 9 is smaller than 10-5 under the uniform

traffic model for an offered load up to 0.8. For correlated input traffic, one can

achieve similar performance with Bi = 7ℓ and Bo = 11ℓ.

Note that, based on our simulation results, the CIOQ switch needs to maintain a

buffer of 60 cells at each input port to achieve zero cell loss probability under uniform

traffic (or 15ℓ cells under correlated traffic) for an offered load up to 0.9.

2.7 Summary

We have proposed in this chapter an approximate LCF/MUF matching algorithm.

Our proposal makes the LCF/MUF algorithm much more feasible for implementation

because it needs only single-iteration matching and calculation of cushions of cells is

 26

largely simplified. Numerical results show that the performance of the proposed

approximate matching is very close to that of the LCF/MUF algorithm under uniform,

non-uniform, and correlated traffic models for offered load up to 0.9. Our simulation

results show that the performance of the proposed approximate LCF/MUF algorithm

is significantly better than that of a simple matching algorithm such as FIRM or iSLIP.

The price paid for the LCF/MUF algorithm is higher hardware cost because it requires

cushion calculation.

We have also investigated the performance of a CIOQ switch with finite input

and output buffers. In this study, we choose strict priority service discipline because

it allows cushions to be easily calculated. Based on simulation results, we found that

a CIOQ switch with sufficient input and output buffers can mimic an OQ switch quite

well for both uniform and correlated traffics.

Since memory bandwidth sets a limit on switch capacity, CIOQ switch is likely

to be a more suitable choice than OQ switch in building a large-capacity switch. Our

proposal presented in this chapter reduces the implementation complexity of a CIOQ

switch and thus hopefully is useful for building large-capacity switches with QoS

guarantee.

 27

Fig. 2.1 Examples of the WRR service algorithm with K = 3, w1 = 4, w2 = 3, and
w3 = 1.

A regular cycle of the example
WRR scheme

Queue 1

Queue 2

Queue 3

A shortened cycle of the example
WRR scheme

Queue 1

Queue 2

Queue 3

(a) A regular cycle example

(b) A shortened cycle example

3 111

1111

1 1 1 1

1 1 1 1

2

2

1

2

2 2 2 2 2

3

3

3

 28

Fig. 2.2 The CIOQ switch using the proposed approximate LCF/MUF matching
algorithm and serving cells at output ports with the WRR scheme.

VOQ1,1,1

VOQ1,1,2

VOQ1,1,K

…

…

I/P 1

I/P 2

I/P N

…

Crossbar
Switching

Fabric

input
link 2

input
link N

input
link 1

O/P 2

O/P N

…
..

Scheduler
LCF/MUF algorithm

output
link 1

output
link 2

output
link N

N sets of FIFO queue

VOQ1,1

VOQ1,2

VOQ1,N

WRR scheme
OQ1,1

OQ1,2

OQ1,K

…

O/P 1

 29

Fig. 2.3 Examples of cushion calculation for the WRR scheme.

1 1 1
Queue 1

Queue 2

Queue 3

3 2 1

The regular service cycle of the WRR scheme

current service position
122 11

C(w1) = 5
C(w2) = 4
C(w3) = 5

(a) The current token is at the first position of the service cycle.

2

3

1 1 1
Queue 1

Queue 2

Queue 3

2 1

The regular service cycle of the WRR scheme

current service position

12 11

C(w1) = 5
C(w2) = 2
C(w3) = 5

(b) The current token is at the fifth position of the service cycle.

3

3

2

2

 30

Fig. 2.4 The 2-states Markov chain process.

active idle

pp
11--pp

qq

11--qq

 31

Fig. 2.5 Performances of a 16×16 CIOQ switch under uniform traffic. The curves
show the values of Pd=0 and Pd<=2 for all the three priority traffic (w1 = 4, w2 = 3, and
w3 = 1).

FIRM
(Pd=0)

LCF/MUF
(Pd=0)

LCF/MUF
(Pd<=2)

 32

Fig. 2.6 Performances of the first priority traffic as a function of offered load for
various switch sizes.

FIRM
(Pd=0)

LCF/MUF
(Pd=0)

LCF/MUF
(Pd<=2)

 33

Fig. 2.7 Performances of a 16×16 CIOQ switch adopted the proposed LCF/MUF
algorithm. The curves show the values of Pd=0 of the first priority traffic for
different Tw values non-uniform traffic for various traffic loads.

 34

Fig. 2.8 Performances of a 16×16 CIOQ switch adopted the FIRM algorithm.
The curves show the values of Pd=0 of the first priority traffic for different Tw values
non-uniform traffic for various traffic loads.

 35

Fig. 2.9 Performances of a 16×16 CIOQ switch with ℓ = 16. The curves are
shown for all the three priority traffic (w1 = 4, w2 = 3, and w3 = 1).

FIRM
(Pd=0)

FIRM
(Pd<=2)

LCF/MUF
(Pd=0)

LCF/MUF
(Pd<=2)

 36

Fig. 2.10 Performances of the first priority traffic for various switch sizes with ℓ
= 16 cells.

FIRM
(Pd=0)

LCF/MUF
(Pd=0)

LCF/MUF
(Pd<=2)

 37

Fig. 2.11 Performance of a 16×16 CIOQ switch under correlated traffic. The
curves show the performances of the first priority traffic as a function of offered load
for various mean burst length ℓ = 8, 16, 32, and 64 cells.

FIRM
(Pd=0)

LCF/MUF
(Pd<=2)

LCF/MUF
(Pd=0)

 38

Fig. 2.12 Performance of a 16×16 CIOQ switch under correlated traffic with mean
burst length ℓ = 16. The curves show the performances of the first priority traffic
under single-iteration, 3-iteration, and 5-iteration matching.

FIRM
(Pd=0)

LCF/MUF
(Pd=0)

LCF/MUF
(Pd<=2)

FIRM
(Pd<=2)

 39

Fig. 2.13 Performance of a 16×16 CIOQ switch under correlated traffic with mean
burst length ℓ = 16. The curves show the performances of the first priority traffic
under single-iteration, 3-iteration, and 5-iteration matching for various speedup
factors (S = 1, 2, and 3).

S = 1

S = 2 and 3

 40

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

N = 16, Bi = infinite, Bo = 3, 5, 7, 9, and 11 cells

Uniform traffic load , ρ , for the highest (1st) priority cells

pe
rc

en
ta

ge
 o

f
tra

ffi
c

,
P

d=
0

Bo = 3
Bo = 5
Bo = 7
Bo = 9
Bo = 11

Fig. 2.14 Performance of the 16×16 CIOQ switch with Bi = ∞ and Bo = 3, 5, 7,

9, and 11 cells. The curve is shown for the highest priority cells only.

 41

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

N = 16, Bi = infinite, Bo = 9 cells

Uniform traffic load , ρ

pe
rc

en
ta

ge
 o

f
tra

ffi
c

,
P

d=
0 &

 P
d<

=2

Pd=0 (for 1st priority)
Pd=0 (for 2nd priority)
Pd=0 (for 3rd priority)
Pd=0 (for 4th priority)
Pd<=2 (for 1st priority)
Pd<=2 (for 2nd priority)
Pd<=2 (for 3rd priority)
Pd<=2 (for 4th priority)

Fig. 2.15 Performance of the 16×16 CIOQ switch with Bi = ∞ and Bo = 9 cells.

The curves show the performance of values of the Pd=0 and Pd<=2 for all the four

priority cells.

 42

Fig. 2.16 Performance of the CIOQ switch with Bi = ∞ and Bo = 9 cells. The

curve shows the performance of the highest priority cells as a function of the switch

size N = 4, 8, 16, and 32.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

N = 4, 8, 16, and 32, Bi = infinite, Bo = 9 cells

Uniform traffic load , ρ , for the highest (1st) priority cells

pe
rc

en
ta

ge
 o

f
tra

ffi
c

,
P

d=
0

N = 4
N = 8
N = 16
N = 32

 43

Fig. 2.17 Performance of the 16×16 CIOQ switch with Bi = ∞ and Bo = 5ℓ, 7

ℓ, 9ℓ, 11ℓ and 13ℓ cells (ℓ=16). The curve is shown for the highest priority

cells only.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

N = 16, l = 16 cells, Bi = infinite, Bo = 5l, 7l, 9l, 11l, and 13l cells

Correlated traffic load , ρ , for the highest (1st) priority cells

pe
rc

en
ta

ge
 o

f
tra

ffi
c

,
P

d=
0

Bo = 5l
Bo = 7l
Bo = 9l
Bo = 11l
Bo = 13l

 44

Fig. 2.18 Performance of the CIOQ switch with Bi = ∞ and Bo = 11ℓ cells (ℓ

=16). The curve shows the performance of the highest priority cells as a function of

the switch size N = 4, 8, 16, and 32.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

N = 4, 8, 16, and 32, l = 16, Bi = infinite, Bo = 176 (11l) cells

Correlated traffic load , ρ , for the highest (1st) priority cells

pe
rc

en
ta

ge
 o

f
tra

ffi
c

,
P

d=
0

N = 4
N = 8
N = 16
N = 32

 45

Fig. 2.19 Performance of the 16×16 CIOQ switch with Bi = ∞ and Bo = 11ℓ

cells. The curve shows the performance of the highest priority cells as a function of

the mean burst length ℓ = 4, 8, 16, 32 and 64 cells.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

N = 16, l = 4, 8, 16, 32, and 64 cells, Bi = infinite, Bo = 44, 88, 176, 352, and 704 (11l)

Correlated traffic load , ρ , for the highest (1st) priority cells

pe
rc

en
ta

ge
 o

f
tra

ffi
c

,
P

d=
0

l = 4
l = 8
l = 16
l = 32
l = 64

 46

Fig. 2.20 Ploss of a 16×16 CIOQ switch with Bi = 2, 3, 5, 7, and 9 cells, and Bo =

9 cells under uniform input traffic.

0 0.2 0.4 0.6 0.8 1
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0 N = 16, Bi = 2, 3, 5, 7, and 9 cells, Bo = 9 cells

Uniform traffic load , ρ

ce
ll

 lo
ss

 p
ro

ba
bi

lit
y

, P
lo

ss

Bi = 2
Bi = 3
Bi = 5
Bi = 7
Bi = 9

 47

Fig. 2.21 Ploss of a 16×16 CIOQ switch with Bi = 3ℓ, 5ℓ, 7ℓ, 9ℓ, and 11ℓ,

and Bo = 11ℓ cells (ℓ=16 cells) under correlated input traffic.

0 0.2 0.4 0.6 0.8 1
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0 N = 16, l = 16 cells, Bi = 3l, 5l, 7l, 9l, and 11l, Bo = 176 (11L)

Correlated traffic load , ρ

ce
ll

 lo
ss

 p
ro

ba
bi

lit
y

, P
lo

ss

Bi = 3l
Bi = 5l
Bi = 7l
Bi = 9l
Bi = 11l

 48

Chapter 3
Packet-Based LCF/MUF Matching Algorithm

3.1 Introduction

The selection of packets to be transmitted in each time slot from input ports to output

ports is accomplished using a scheduling algorithm, which is the key component in

achieving high performance using a switch. Most of previous scheduling algorithms

found in open literature were designed for fixed-length packets (or cells). These

proposed algorithms configure a set of non-conflict connections of the switching

fabric between input ports and output ports in each time slot and re-configure all

connections in the next slot. Hence, in the current Internet environment, segmenting

packets of variable-lengths into cells and re-assembling the cells into the original

packets are needed before and after packets transmissions across the switching fabric

because cells belonging to various packets may interleave with one another. As a

result, such a process can be time consuming and may not be easily implemented at

very high speed. Therefore, a scheduling algorithm designed for fixed-length

packets has to be modified to make it useful for switching Internet packets. There

are some algorithms [52], [53] derived from parallel iterative matching (PIM)

algorithm [27] that can handle variable-length packets. A variable-length packet will

be scheduled as a whole and transmitted continuously in the switch rather than

schedule them on a cell-by-cell basis. In [52], the authors showed that an algorithm

using a rotating priority (round-robin) arbitration and a masking operation can achieve

100% throughput with a single iteration for uniform IP traffic and perform better

packet latency and similar cell latency, compared with the well-known iSLIP

cell-based scheduling algorithm. In [53], the authors proposed a burst-based PIM

(BPIM) algorithm for an input queued (IQ) switch with multiple input queues. The

maximum throughput using single-iteration BPIM scheduling exceeds 0.9. However,

these algorithms were developed for IQ switches in achieving high throughput but

they are difficult to provide quality of service (QoS). In [57], a distributed packet

fair queuing (D-PFQ) architecture was proposed to handle variable-length packets

 49

with advanced QoS requirements. Buffers are placed at input ports, output ports,

and the crossbar switching fabric. An important advantage of the D-PFQ

architecture is that no global synchronization is necessary. Numerical results

showed that the D-PFQ architecture provides service that closely approximates an

output queued (OQ) switch employing fair queuing with modest speedup. However,

the total number of schedulers is equal to N2+3N for an N×N switch, meaning that a

large number of states have to be maintained which may become the performance

bottleneck for a large-capacity switch.

In this chapter, we present the packet-based least cushion first/most urgent first

(PB-LCF/MUF) algorithm for combined input and output queued (CIOQ) switches

and evaluate its performance via computer simulations. Since cushion calculation is

complicated, to simplify the implementation of the PB-LCF/MUF algorithm, an

approximate cushion is adopted again. In order to provide QoS guarantee to

different applications, our design is applicable to a network environment where

packets are classified into multiple priority classes. Results show that the

performance of a CIOQ switch with a speedup factor of 5 which adopts the

single-iteration PB-LCF/MUF algorithm is close to that of an OQ switch under the

weighted round robin (WRR) service discipline. The single-iteration version not

only simplifies the matching procedure but also avoids out-of-order packet delivery

from input ports to output ports.

3.2 The Packet-based LCF/MUF Matching Algorithm

The architecture of the considered CIOQ switch is the same as mentioned in Section

2.3. Because of that our design is applicable to a network environment where

packets are classified into K priority classes. At input port i, there are K queues

denoted by VOQi,j,k, 1 <= k <= K, for storing packets destined to output port j (1 <= j

<= N). As a result, there are N × K queues maintained at each input port. A new

arrival packet is placed at the tail of the appropriate queue depending on its

destination and class and then becomes eligible to be scheduled for delivery only after

the whole packet arrives completely. Although packets are of variable lengths, we

 50

assume that every packet can be fragmented into an integral number of smaller

fixed-length cells. A CIOQ switch with a speedup factor of S is able to make S cell

transfers from each input to outputs during each time slot. In other words, a slot is

further divided into S equal sub-slots for the switching fabric and scheduling is

performed at the beginning of each sub-slot. To eliminate the possibility of

interleaving the cells of multiple packets to save the reassembling effort, a packet will

be delivered in consecutive sub-slots as a whole until it is completely delivered. At

each output port j, there are K queues, denoted by OQj,k, 1 <= k <= K, for storing

packets. At the same time, the service discipline studied in this chapter is WRR

because it is a scheme that can be easily implemented and is able to provide QoS

guarantee.

In the LCF/MUF algorithm (described in section 2.2) which handles fixed-length

packets (or cells), the cushion C(xi,j) of a packet xi,j holding by some input port i that is

destined to output port j is defined to be the number of packets currently residing in

output port j that will leave the shadow OQ switch earlier than the packet xi,j. For

the PB-LCF/MUF algorithm, the cushion of a packet of variable-length destined to

output port j can be defined as the total transmission time of all packets currently at

output port j that will leave the shadow OQ switch earlier than the packet. As

mentioned before, to implement the LCF/MUF algorithm, a switch has to know the

cushion of all packets and their relative departure order in the emulated OQ switch.

An approximate cushion is used to simplify implementation of the PB-LCF/MUF

algorithm since the calculation of real cushion is complicated. Our choice of the

approximate cushion is simply the number of packets currently queued at the

destination output port in the CIOQ switch. For example, the approximate cushion

of a packet with class k waiting for scheduling to output port j is equal to the number

of packets queued at OQj,k.

3.2.1 Single-iteration Matching

The single-iteration PB-LCF/MUF scheduling algorithm is described below. It

consists of three phases.

 51

Phase 1. Input port i sends a request to output port j for all i and j (1 <= i, j <= N).

The request contains the arrival times of the HOL packets of all the K queues. The

arrival time is set to infinity if a queue is empty. Note that if input port i is matched

to output port j in the previous sub-slot and there are more cells for the same packet,

then the request sent by input port i to output port j will be the same as that sent in the

previous sub-slot.

Phase 2. Output port j sends a grant message back to input port i if it was matched

to input port i in the previous sub-slot and there are more cells of the same packet

waiting to be delivered to output port j. Otherwise, it calculates the cushions for the

HOL packets contained in the requests and selects the request with the least cushion.

If there is a tie, then the packet with the earliest arrival time wins the contention. It

then sends a grant message back to the input port which sent the selected request in

Phase 1. The cushion is contained in the grant message.

Phase 3. Input port i selects the grant sent by output port j if it was matched to output

port j in the previous sub-slot and there are more cells of the same packet waiting to

be delivered to output port j. Otherwise, it selects the grant with the least cushion.

If there is a tie, then the packet with the earliest arrival time is selected. Assume that

the grant message sent by output port k is selected. Input port i sends a cell of the

HOL packet to output port k.

It is worth noting that the proposed algorithm causes no cell interleaving of

packets and therefore no re-assembly buffer at output ports is needed. Moreover, the

departure order of packets can also be maintained at output ports with the

single-iteration version. The reason is explained as follows. Consider, for example,

the 2×2 CIOQ switch shown in Fig. 3.1. Assume that input port 1 is matched to

output port 1 in the previous sub-slot and there are more cells of packet z waiting to be

delivered. Let packets x and y be of the same class (different from the class of

packet z) at different input ports. Assume that both x and y are HOL packets and

destined for the same output port 2 and x arrived earlier than y. Then, in current

matching sub-slot, output port 1 will grant input port 1 for packet z and output port 2

 52

will grant input port 1 for packet x in phase 2. Consequently, packet y will be

blocked until packet x has been scheduled. Therefore, packet out-of-order will not

happen at any output port.

3.2.2 Multiple-iteration Matching

To improve the throughput performance of the switching fabric, the above matching

procedure can be repeated for multiple iterations. After each iteration, an input port

stops sending requests once it has sent an accept message to a certain output port.

Similarly, an output port stops calculating the cushions and sending a grant message

once it has received an accept message. The subsequent iterations will try to match

the rest of the input and output ports that remain unmatched in previous iterations.

Obviously, the throughput increases as the number of iteration increases. However,

multiple iterations may result in out-of-order delivery of packets from input ports to

output ports. Moreover, our simulation results show that multiple-iteration matching

only yields negligible performance improvement over single-iteration matching if the

switching fabric is speeded up by a factor of 2.

3.3 Input Traffic Model

To evaluate the performance of the CIOQ switch using the proposed matching

algorithm, we measure the latency of the packets which are simultaneously fed to both

the shadow OQ switch and the CIOQ switch under a practical input traffic model.

The traffic model is characterized by a 2-state Markov Modulated Bernoulli Process

(2-MMBP) [21],[56] alternating between active and idle states. The traffic source

will generate a cell every time slot when it is in the active state. A packet consists of

the cells generated by consecutive active states. We assume there is no correlation

between different packets and that the destination of each packet is uniformly

distributed among the output ports and every packet is equally likely to be any traffic

class. According to the real IP networks traffic data collected in [58] from the wide

area network, the distribution of packet size has two masses traffic at 40 bytes (about

 53

a third) due to TCP acknowledgment packets and 552 bytes (about 22%) due to

maximum transmission unit (MTU) limitations at many routers. Other prominent

packet sizes include 44 bytes (about 3%), 72 bytes (about 4.1%), 185 bytes (about

2.7%), 576 bytes (about 3.6%), and 1500 bytes (about 1.5%), due to Ethernet MTU.

So, we approximately model the period of active state with distributions of 33% at 40

bytes, 22% at 552 bytes, 30% between 40 bytes and 552bytes, and 15% between 552

bytes and 1500 bytes. The cumulative distribution function of this traffic model is

shown in Fig. 3.2. Additionally, we convert the IP packet in bytes to the

corresponding number of ATM cells using AAL5 null encapsulation technique [59].

As a result, the average packet size is about 8.295 ATM cells.

3.4 Numerical Results

For performance evaluations, we use d(x)=⎪doq(x)-dcioq(x)⎪ defined in Section 2.5 as

the deviation index of packet x with variable-length as a criterion again. Here doq(x)

and dcioq(x) denote, respectively, the departure times of packet x for the shadow OQ

switch and the CIOQ switch. Given a fixed d, we measure the percentage of packets

that has a deviation index smaller than or equal to d. This percentage is denoted by

Pd . For example, Pd=0 equals 100% means that the CIOQ switch exactly emulates

the shadow OQ switch.

We perform simulations for a CIOQ switch with different switch sizes and

speedup factors. Simulations are performed for N = 16, 32, and 64 with K = 3 or 8.

First of all, we show the performance curves for N = 32 and K = 3. The weights for

the three traffic classes are chosen to be w1 = 4, w2 = 3, and w3 = 1. Figure 3.3

shows the results for a 32×32 CIOQ switch with a speedup factor of 2 and adopts the

proposed single-iteration PB-LCF/MUF algorithm. It can be seen that the

performance degrades dramatically as the offered load increases for the class 1 traffic.

The value of Pd=0 is about 42.77% under an offered load of 0.9 which obviously is not

acceptable. To avoid drawing too many curves, which would make the figure less

comprehensible, the performances of class 2 and class 3 traffics (which are similar to

that for class 1 traffic) are not shown in Fig. 3.3. Instead, we include the

 54

performance curves of the CIOQ switch, with a speedup factor of 2, using the

packet-based FIRM (PB-FIRM) algorithm with packet re-ordering buffers at output

ports for comparison. The PB-FIRM is modified from the FIRM algorithm [37]

which was proposed for cell-based scheduling. The matching procedures of PB-FIRM

algorithm are described below：

(1) Keep all the matches in the last time slot which are still valid at the

current time slot.

(2) Each unmatched input sends a request to every output for which it has a

buffered packet.

(3) Every output sends a grant to the input port which sent the request that

appears next in a fixed, round-robin schedule. If the grant is accepted

in step 4, the round-robin pointer is incremented (mod N) to one location

beyond the granted input. If the grant is not accepted, pointer is placed

to the granted input.

(4) Every input accepts the grant that appears next in a fixed, round-robin

schedule. The accept pointer is incremented (mod N) to one location

beyond the accepted output.

In Fig. 3.3, it can be seen that the PB-LCF/MUF algorithm performs better than

the PB-FIRM algorithm. We also performed simulations for the CIOQ switch using

the packet-based iSLIP (PB-iSLIP) algorithm which is modified from the cell-based

iSLIP algorithm [36]. The performances of PB-iSLIP algorithm is worse than that of

the PB-FIRM algorithm and is not shown in this thesis.

As mentioned before, to increase the throughput of the switching fabric, one can

perform the matching procedure iteratively to approach a maximal matching. But

multiple-iteration will cause out-of-order packet delivery and increase the complexity

of the matching procedure. In our experiments, the matching algorithm was

performed with one, two, or three iterations and, if needed, packet re-ordering buffers

are provided at output ports. The results are shown in Fig. 3.4 (again, for a speedup

factor of 2). As can be seen in Fig. 3.4, multiple-iteration matching does not result

in noticeable performance improvement, which indicates that one iteration is enough

 55

for the PB-LCF/MUF algorithm to find a maximal matching under any traffic load.

One method to both increase throughput and maintain packet order is to speed up

the switch fabric. This method is feasible for moderate speedup factors. We plot in

Fig. 3.5 the performance curves for class 1 traffic with speedup factor S = 1, 2, 3, 4, 5,

and 6. It can be seen that, for S = 1 which means no speedup, the system

performance degrades seriously as the traffic load increases. The reason is that the

single-iteration PB-LCF/MUF algorithm is not a maximum matching. In fact, it is

not even a maximal matching. However, the total number of matches achieved in a

time slot increases (and hence system performance improves) dramatically with

speedup. The value of Pd=0 is larger than 90% under traffic load up to 0.9 when the

speedup factor is increased to 5. As mentioned before, we also performed

simulations for N = 16 and 64 and the results show that a speedup factor of 5 still

yields satisfactory performance. Fig. 3.6 shows the results of N = 64 for various

speedup factors. Similar results were obtained for eight traffic classes with various

weights. Therefore, we conclude that the CIOQ switch with a speedup factor of 5

which adopts the proposed single-iteration approximate PB-LCF/MUF algorithm can

closely emulate an OQ switch.

3.5 Summary

In this chapter, we have proposed a packet-based least cushion first/most urgent first

scheduling algorithm for CIOQ switches that handle variable-length packets in current

Internet environment. Since the proposed algorithm requires only one iteration, the

packet re-ordering problem is eliminated. The PB-LCF/MUF algorithm delivers

each packet as a whole and thus no cell interleaving of packets happened at output

ports. Therefore, no re-assembly buffer is needed. Numerical results obtained

from computer simulations show that our proposed algorithm yields satisfactory

performance when the speedup factor is 5 for various switch sizes and traffic classes.

We believe that, with a modest speedup, a CIOQ switch can exactly emulate an OQ

switch even for variable-length packets.

 56

Fig. 3.1. Example of maintaining packet order in a 2×2 CIOQ switch.

 57

Fig. 3.2. Cumulative distribution function for active-period traffic of a 2-MMBP

input traffic model.

 58

Fig. 3.3. Performance comparison of the proposed PB-LCF/MUF algorithm and the

FIRM algorithm for a 32×32 CIOQ switch.

 59

Fig. 3.4. Performance of the class 1 traffic under multiple-iteration matching

procedure with packet re-ordering at output ports.

 60

Fig. 3.5. Performance of the class 1 traffic as a function of offered load for various

speedup factors.

 61

Fig. 3.6 Performance of a 64×64 CIOQ switch for various speedup factors.

 62

Chapter 4
Output Initiated Fair Scheduling Algorithm

4.1 Introduction

In order to provide QoS guarantee, a switch may have to maintain a large number of

queues. However, when considering the cost of hardware implementation, the

number of queues is a decisive factor. It is well known that input queued (IQ)

switches suffer from head-of-line (HOL) blocking which limits the maximum

throughput to 0.586 under uniform traffic [20] and output queued (OQ) switches have

serious scalability problem. One possible approach to improve the performance of

an IQ switch is to use virtual output queuing (VOQ) combined with a parallel

matching algorithm (e.g., PIM[27], WPIM[34], LPF[35], iSLIP[36], and FIRM[37]).

Moreover, in order to provide QoS guarantee to different applications, our study is

applicable to a network environment where packets are classified into multiple

priority classes. Accordingly, the number of queues maintained at each input port is

N×K for an N×N switch applied VOQ queuing structure with K traffic classes which

means high complexity when N and K are large. To reduce the complexity and make

a system feasible, it is important to reduce the number of queues maintained by the

switch. In this chapter, we propose an architecture that requires K queues, one for

each traffic class, per port. Furthermore, we assume that the switch handles

variable-length packets and, for convenience, every packet can be segmented into an

integral number of fixed-length cells. Time is divides into slots so that the duration

of a slot is equal to the transmission time of a cell. A packet is not eligible to be

delivered to its destined output port before it completely arrives at an input port.

There are two choices to place the queues: at input ports or output ports.

Consider the situation where queues are placed at input ports. In this case,

several algorithms [52][53][54][60] derived from the PIM algorithm are used to make

a set of non-conflict connections of the switching fabric between input ports and

output ports for packet delivery. Based on these algorithms, starvation may happen

 63

if multiple connection requests are sent from input ports to output ports. Fig. 4.1

illustrates an example for a 2×2 switch under the traffics with the same class (K = 1).

In this example, the first packet (marked as packet x) which arrived at input port 2 is

of length 3 (cells) and all the other packets are of length 2. All packets, except the

one marked as packet y, that arrive at input port 1 are destined to output port 1 and all

packets that arrive at input port 2 are destined to output port 2. There is no idle slot

for input port 2 and only one idle slot (i.e., the first slot) for input port 1. Assume

that each unmatched input port sends a connection request to every output port if there

is a packet waiting to be delivered to that output port. An output port selects (say,

randomly) a request and sends a grant message back to the input port. Upon

receiving grant messages, an input port picks one and sends the packet to the

corresponding output port. A matched input-output pair remains connected until a

packet is completely delivered. It is not hard to see that, with such a matching

procedure, packet y will never be serviced if output port 2 selects the request sent by

input port 2 at the beginning of slot 4.

 As mentioned above, our study is applicable to a network environment where

packets are classified into multiple priority classes. In addition to the potential

starvation problem, a switch may not be able to achieve weighted fairness among

traffic classes if queues are placed at input ports. Fairness in resource allocation is

very important to support the need for diverse applications and QoS requirements and

thus is studied in this chapter. Many fair queuing algorithms

[6]-[10],[27],[34],[54],[60]-[62] have been developed to schedule packets on shared

resource. When all output ports have identical weights, one can easily modify the

dual round robin matching (DRRM) [62] algorithm to become weighted DRRM

(WDRRM, will be described later) to achieve fairness. Furthermore, one can use

WFQ, PGPS, and WF2Q algorithms etc. to achieve this goal, but they are proposed

adopted at output ports and they are difficult to implement. More recently, an

iterative fair scheduling (iFS) scheme [60] was proposed for IQ switches to support

fair bandwidth distribution among traffic and achieve asymptotically 100%

throughput. It maintains VOQs at input ports and thus it is not cost-effective in

hardware implementation. Since iFS algorithm is based on virtual time [6][8], it is

difficult to maintain the virtual transmission time of each packet. In [54], the authors

 64

propose fair scheduling based on deficit round robin algorithm [61] for IQ switches to

make it feasible in implementation. However, it is not possible to achieve weighted

fairness among traffic classes if different output ports have different weights.

Although one can use weighted round robin service discipline with different weights

at each output port in an OQ switch. But the OQ switch has to run N times faster

than the line rate. In our proposal, we place queues at output ports and design a

parallel matching algorithm initiated by output ports. Details of the proposed output

initiated parallel matching (OIPM) algorithm are described in the following section.

The proposed OIPM algorithm guarantees starvation free, in-order packet delivery,

and achieves weighted fairness among traffic classes required by output ports. At

the same time, the switching fabric only runs as fast as the line rate. We also

evaluate the performance of our proposed OIPM algorithm via computer simulations.

Results show that its throughput performance is close to that of an input buffered

switch where queues are placed at input ports. The maximum throughput is 0.520

under uniform traffic which is only slightly smaller than 0.586. To increase the

throughput of the switch, one can speed up the switching fabric and add a FIFO queue

at each output port. Simulation results show that a speedup factor of 2 is enough to

achieve satisfactory performance.

Consider an N×N input buffered switch with K classes of packets. Our

proposed switch architecture is shown in Fig. 4.2. Every input port i has a shared

memory SM(i) to store packets arrived at input link. Every output port j maintains K

queues, one for each traffic class. Assume that a class k packet, destined to output

port j, completely arrives at input port i in slot n and then is stored in the shared

memory SM(i). At the beginning of slot n+1, input port i sends a notification,

denoted by record(i, k, addr, len), to output port j, where i is the input port the packet

arrives at, k denotes the traffic class of the packet, addr represents the starting address

of SM(i) that stores the packet, and len indicates the length (in cells) of the packet.

Upon receiving the notification, output port j places it to the end of queue k. Notice

that output port j may receive multiple notifications and, if so, will place all the

notifications to their appropriate queues.

 65

4.2 Output Initiated Parallel Matching (OIPM) Algorithm

The matching procedure, described below, begins after all the notifications are

processed in each time slot.

Step 1: Each unmatched output port j selects one HOL notification from the K queues

based on the service discipline and sends the notification back to the corresponding

input port. For convenience, a notification sent by an output port is called a request.

Step 2: An unmatched input port selects a request, if any, based on the round robin

scheme. If the request sent by output port j is selected by input port i, then set input

port i and output port j as matched. The two values addr and len are extracted from

the request and used to read out the packet for delivery.

In current Internet environment, a matching algorithm can efficiently handle

variable-length packet for the QoS requirement is a must. In our proposed algorithm,

when an input port and an output port are matched, the connection is kept until a

complete packet is delivered. Once the packet is completely delivered, the

input-output connection pair is reset as unmatched. Consequently, the OIPM

algorithm causes no cell interleaving of packets under variable-length packet traffics.

Moreover, our proposed OIPM algorithm needs only request-grant matching phases, it

is comparable less than request-grant-accept phases required in PIM-similar matching

algorithms. That means the OIPM algorithm takes less arbitration time and is much

feasible in implementation.

Notice that, although packets are buffered at input ports, queues are maintained

at output ports. Each output port can send a request based on the separate fairness

service discipline. As such, it is able to achieve weighted fairness among traffic

classes even different output ports have different weights. Moreover, packets will be

delivered in order because notifications are processed with the First-Come-First-Serve

(FCFS) scheme. Finally, no starvation will happen because the same request will be

repeatedly sent by an output port before it is selected.

 66

 Since each output sends just one request at each time and the request may be

denied because of competition, the maximum throughput of our proposed OIPM

algorithm is only 0.520 which is slightly smaller than 0.586. To increase the

throughput of the switch, one can speed up the switching fabric. In this situation, the

switch needs to add a FIFO queue at each output port. Packets transported to output

ports are all buffered at the FIFO queues while they are waiting to be transmitted to

the outgoing links. Our simulation results show that a speedup factor of 2 is enough

to achieve satisfactory performance.

4.3 Numerical Results

In this section, we evaluate the performance, via computer simulations, of the

proposed OIPM algorithm for the weighted round robin (WRR) service discipline.

In our experiments, the traffic model is characterized by a 2-state Markov Modulated

Bernoulli Process (2-MMBP) alternating between active and idle states. The traffic

source will generate a cell every time slot when it is in the active state. A packet

consists of the cells generated by consecutive active states. We assume that there is

no correlation between different packets. Moreover, the destination of each packet is

uniformly distributed among the output ports and every packet is equally likely to be

any traffic class.

As mentioned above, the WDRRM algorithm can achieve fairness when all

output ports have identical weights. Before describing the WDRRM algorithm, we

briefly review the dual round robin matching (DRRM) algorithm proposed in [62].

In the DRRM algorithm, each input maintains N VOQs for N output ports. An input

arbiter at each input selects a nonempty VOQ according to the round-robin service

discipline. After the selection, each input port sends one request, if any, to an output

arbiter. An output arbiter at each output receives up to N requests and chooses one

of them based on the round-robin service discipline and sends a grant to the chosen

input port. For the WDRRM algorithm modified in this study, each input port

maintains K queues for the K traffic classes. For starvation free, we assume that only

one request is selected from K queues based on the WRR scheme and sent from an

 67

input port to an output port. An output port will select a request, if there are multiple,

based on the round robin scheme and sent a grant message back to the corresponding

input port.

Simulations are performed for N = 32, assuming that the mean packet length is 8

cells. Figs. 4.3 illustrates the throughput performance of the WDRRM algorithm and

our proposed OIPM algorithm for K = 3. The service discipline is weighted round

robin with w1 = 5, w2 = 3, and w3 = 2.

It can be seen that both OIPM and WDRRM algorithms achieve weighted

fairness among traffic classes. As mentioned above, the WDRRM algorithm is not

able to achieve weighted fairness if different output ports have different weights.

The curves shown in Fig. 4.4 are for the case where output ports 1 to 16 have weights

w11 = 5, w12 = 3, and w13 = 2 and output ports 17 to 32 have weights w21 = 4, w22 = 4,

and w23 = 2. As can be seen in this figure, our proposed OIPM algorithm still

achieves weighted fairness.

When the switching fabric runs as fast as the input/output line rate, the maximum

throughput of our proposed OIPM algorithm is only 0.520. Next, we study the

effects of speedup factors and results are shown in Fig. 4.5. The packets of different

classes arrived at each input port have the same arrival rate and the destination of each

packet is uniformly distributed among the output ports. The incoming traffic arrived

at input ports may be overloaded up to twice the output departure rate for testing the

fairness. Output ports 1 to 16 have weights w11 = 5, w12 = 3, and w13 = 2 and output

ports 17 to 32 have weights w21 = 4, w22 = 4, and w23 = 2. We found that our proposal

achieves approximate 100% throughput and guarantees fairness when the switching

fabric runs with a speedup factor of 2.

4.4 Summary

We have presented a novel output initiated parallel matching algorithm for large-scale

input buffered switched. In our proposed architecture, packets are buffered at input

 68

ports and queues are maintained at output ports. The advantages of maintaining

queues at output ports include much fewer queues compared with VOQ switch,

weighted fairness among traffic classes, in-order packet delivery, and starvation free.

Through computer simulations, we found that the maximum throughput of our

proposed OIPM algorithm is around 0.520. The throughput can be improved to

approximate 100% when the switch runs with a speedup factor of 2.

 69

Fig. 4.1 Example of starvation when queues are placed at input ports.

 70

Fig. 4.2 The architecture of a 2x2 input buffered switch using OIPM algorithm with

three traffic classes (K = 3).

 71

Fig. 4.3 Weighted fairness of the proposed OIPM and the WDRRM algorithm when

all output ports have identical weights.

 72

Fig. 4.4 Weighted fairness of the proposed OIPM algorithm when different output

ports have different weights.

 73

Fig. 4.5. Weighted fairness of the proposed OIPM algorithm when the switching

fabric runs with a speedup factor of 2.

 74

Chapter 5
Conclusions

In the first two part of this thesis, we have proposed two approximate LCF/MUF

matching algorithms for the CIOQ switch with a speedup factor of 2 under

fixed-length packet traffics and with a speedup factor of 5 under variable-length

packet traffics, respectively. Our proposal makes the LCF/MUF algorithm much

more feasible for implementation because it needs only single-iteration matching and

the calculation of cushions of packets is largely simplified. Numerical results show

that the performance of the proposed approximate matching is very close to that of the

LCF/MUF algorithm under uniform, non-uniform, and correlated traffic models for

offered load up to 0.9. Moreover, our simulation results show that the performance

of the proposed approximate LCF/MUF algorithm is significantly better than that of a

simple matching algorithm such as FIRM or iSLIP. The price paid for the

LCF/MUF algorithm is higher hardware cost because it requires cushion calculations.

We have also investigated the performance of a CIOQ switch with finite input

and output buffers since the buffer size at each input and output port of the exact

emulated CIOQ switch is assumed to be of infinite size. We found, via computer

simulations, that a CIOQ switch with sufficient input and output buffers can mimic an

OQ switch quite well under both uniform and correlated traffics.

Based on the extensive simulation results, we believe that, with a moderate

speedup, a CIOQ switch can exactly emulate an OQ switch even for variable-length

packets. However, we are not able to determine a necessary and sufficient speedup

number for exact emulation when using our proposal. Rigorous mathematical proof

of exact emulation obviously is an interesting further research topic. Possible

realization of the proposed PB-LCF/MUF algorithm is another one that can be further

studied.

 In the last part of this thesis, we presented a novel output initiated parallel

 75

matching algorithm for large-scale input buffered switches. In our proposed

architecture, packets are buffered at input ports and queues are maintained at output

ports. The advantages of maintaining queues at output ports include much fewer

queues compared with VOQ switch, weighted fairness among traffic classes, in-order

packet delivery, and starvation free. Through computer simulations, we found that

the maximum throughput of our proposed OIPM algorithm is around 0.520 which is

slightly smaller than 0.586. One can speedup the switching fabric to improve system

performance. The throughput can be improved to approximately 100% when the

switching fabric runs with a speedup factor of 2.

 76

Bibliography

1 D. Ferrari, “Client requirements for real-time communication services,” IEEE

communications magazine, 28(11), pp. 65-72, Nov. 1990.

2 J. Kurose, “On computing per-session performance bounds in high-speed

multi-hop computer networks,” Proc. ACM Sigmetrics ’92, 1992.

3 H. Zhang and E. Knightly, “Providing end-to-end statistical performance

guarantees with interval dependent stochastic models,” Proc. ACM

Sigmetrics ’94, pp. 211-220, Nashville, TN, May 1994.
4 D. Ferrari and D. Verma, “A scheme for real-time channel establishment in

wide-area networks,” IEEE J. Select. Areas Commun., vol. 8, no. 3, pp. 368-379,
Apr. 1990.

5 Q. Zheng and K. Shin, “On the ability of establishing real-time channels in
point-to-point packet-switcing networks,” IEEE Trans. Commun., pp. 1096-1105,
Mar. 1994.

6 L. Zhang, “Virtual clock: A new traffic control algorithm for packet switching
networks,” Proc. ACM SIGCOMM ’90, pp. 19-29, Philadelphia, PA, Sep. 1990.

7 A. Demers, S. Keshav, and S. Shenker, “Analysis and simulation of a fair
queueing algorithm,” Proc. ACM SIGCOMM ’89, pp. 3-12.

8 A. Parekh, and R. Gallager, “A generalized processor sharing approach to flow
control – the single node case,” Proc. IEEE INFOCOM ’92.

9 S. Golestani, “A self-clocked fair queueing scheme for broadband applications,”
Proc. IEEE INFOCOM ’94, pp. 636-646.

10 J. C. R. Bennett and H. Zhang, “WF2Q: Worst-case fair weighted fair queueing,”
Proc. IEEE INFOCOM ’96, pp. 120-128. San Francisco, CA, Mar. 1996.

11 D. Verma, H. Zhang, and D. Ferrari, “Guaranteeing delay jitter bounds in packet
switching networks,” Proc. Tricomm ’ 91, pp. 35-46, Chapel Hill, North Carolina,
Apr. 1991.

12 S. Goleatani, “A stop-and-go queuing framework for congestion management,”
Proc. ACM SIGCOMM ’94, pp8-18, Philadelphia, PA, Sep. 1990.

13 C. Kalmanek, H. Kanakia, and S. Keshav, “Rate controlled servers for very
hogh-speed networks,” Proc. IEEE GLOBCOM ’90, pp. 300.3.1-300.3.9, San
Diego, California, Dec. 1990.

14 H. Zhang and D. Ferrari, “Rate-controlled static priority queuing,” Proc. IEEE
INFOCOM ’93, pp. 227-236, San Francisco, California, Apr. 1993.

 77

15 H. Zhang, “Service disciplines for guaranteed performance service in
packet-switching networks,” Proceedings of the IEEE, vol. 83, no. 10, pp.
1374-1396, Oct. 1995

16 F. M. Chiussi, D. A. Khotimsky, and S. Krishnan, “Generalized inverse
multiplexing of switched ATM connections,” Proc. IEEE GLOBECOM ’98, The
Bridge to Global Integration, Sydney, Australia, Nov. 1998.

17 S. Iyer, A. Awadallah, and N. McKeown, “Analysis of a packet switch with
memories running slower than the line-rate,” Proc. IEEE INFOCOM 2000, pp.
529-537.

18 S. Iyer and N. McKeown, “Making parallel switches practical,” Proc. IEEE
INFOCOM 2001, pp. 1680-1687.

19 D. Khotimsky and S. Krishnan, “Stability analysis of a parallel packet switch
with bufferless input demultiplexors,” Proc. IEEE ICC 2001, pp. 100-111.

20 M. Karol, M. Hluchyj, and S. Morgan, “Input verse output queuing on a space
division switch,” IEEE Trans. Commun., vol. 35, pp. 1347-1763, Dec. 1987.

21 S. Q. Li, “Performance of a nonblocking space-division packet switch with
correlated input traffic,” Proc. IEEE GLOBECOM ’89, pp. 1754-1763.

22 M. Chen and N. D. Georganas, “A fast alforithm for multi-channel/port traffic
scheduling,” Proc. IEEE Supercom/ICC ’94, pp. 96-100.

23 A. Huang and S. Knauer, “Starlite: A wideband digital switch,” Proc. IEEE
GLOBECOM ’84, pp. 121-125.

24 M. Karol and M. Hluchyi, “Queueing in high-performance packet switching,”
IEEE J. Select. Areas Commun., vol. 6, pp. 1587-1597, Dec. 1988.

25 Y. Tamir and G. Franier, “High performance multi-queue buffers for VLSI
communication switches,” Proc. 15th Annu. Symp. Comput. Arch., June 1988, pp.
343-354.

26 M. Ali and H. Nguyen, “ A neural network implementation of an input access
scheme in a high-speed packet switch,” Proc. IEEE GLOBECOM ’89, pp.
1192-1196.

27 T. E. Anderson, S. S. Owicki, J. B. Saxe, and C. P. Thacker, “High speed switch
scheduling for local area networks,” IEEE/ACM Trans. Comput. Syst., vol. 11,
no.4, pp. 319-352, Nov. 1993.

28 R. O. LaMaire and D. N. Serpanos, “Two-dimensional round-robin schedulers
for packet switches with multiple input queues,” IEEE/ACM Trans. Networking,
vol. 1, pp. 471-482, Oct. 1993.

29 N. McKeown, M. Izzard, A. Mekkittikul, B. Ellersick, and M. Horowitz, “The
Tiny tera: A small high-bandwidth packet switch core,” IEEE Micro., Vol. 17, pp.

 78

26-33, Jan.-Feb. 1997.
30 Y. Tamir and H.-C. Chi, “Symmetric crossbar arbiters for VLSI communication

switches,” IEEE Trans. Parallel Dist. Syst., vol. 4, pp. 13-27, 1993.
31 N. McKeown, V. Anantharam, and J. Walrand, “Achieving 100% throughput in

an input-queued switch,” Proc. IEEE INFOCOM ‘96, pp. 296-302.
32 J. E. Hopcroft and R. M. Karp, “An n5/2 algorithm for maximum matching in

bipartite graphs,” Society for Industrial and Applied Mathematics J. Comput., vol.
2, pp.225-231, 1973.

33 R. E. Tarjan, “Data structures and network algorithms,” Bell Labs, 1983.
34 D. Stiliadis and A. Verma, “Providing bandwidth guarantees in an input-buffered

crossbar switch,” Proc. IEEE INFOCOM ‘95, pp. 960-968, 1995.
35 A. Mekkittikul and N. McKeown, “A practical scheduling algorithm to achieve

100% throughput in input-queued switches,” Proc. IEEE INFOCOM ‘98, pp.
792-799, 1998.

36 N. McKeown, “The iSLIP scheduling algorithms for input-queued switches,”
IEEE/ACM Trans. Networking, vol. 7, no. 2, pp. 188-201, Apr. 1999.

37 D. N. Serpanos and P. I. Antoniadis, “FIRM: a class of distributed scheduling
algorithms for high-speed ATM switches with multiple input queues,” Proc.
IEEE INFOCOM 2000, pp. 548-555.

38 A. Charny, “Providing QoS guarantees in input-queued crossbar switches with
speedup,” Ph.D. dissertation, Aug. 1998, MIT.

39 J. G. Dai and B. Prabhakar, “The throughput of data switches with and without
speedup,” Proc. IEEE INFOCOM 2000.

40 P. Giaccone, E. Leonardi, B. Prabhakar, and D. Shah, “Delay performance of
high-speed packet switches with low speedup,” Proc. IEEE GLOBECOM 2002,
Taipei, Taiwan, Nov. 2002.

41 M. Yang and S. Q. Zheng, “Efficient scheduling for CIOQ switches with space
division multiplexing speedup,” Proc. IEEE INFOCOM 2003.

42 C. Y. Chang, A. J. Paulraj, and T. Kailath, “A broadband packet switch
architecture with input and output queuing,” Proc. IEEE GLOBECOM ’94,
pp.448-452.

43 I. Iliadis and W. E. Denzel, “Performance of packet switches with input and
output queuing,” Proc. IEEE ICC ’90, Atlanta, GA, Apr. 1990, pp.747-53.

44 A. L. Gupta and N. D. Georganas, “Analysis of a packet switch with input and
output buffers and speed constraints,” Proc. IEEE INFOCOM ’91, Bal Harbour,
FL, Apr. 1991, pp.694-700.

45 Y. Oie, M. Murata, K. Kubota, and H. Miyahara, “Effect of speedup in

 79

nonblocking packet switch,” Proc. IEEE ICC ’89, Boston, MA, Jun. 1989,
pp.410-14.

46 A. Charny, P. Krishna, N. Patel, and R. Simcoe, “Algorithms for providing
bandwidth and delay guarantees in input-queued crossbars with speedup,” Proc.
IEEE IWQoS ’98, pp. 235-244.

47 P. Krishan, N. S. Patel, A. Charny, and R. Simcoe, “On the speedup required for
work-conserving crossbar switches,” Proc. IEEE IWQoS ‘98, Napa, California,
USA, pp. 225-234, May 1998.

48 I. Stoica and H. Zhang, “Exact emulation of an output queueing switch by a
combined input output queueing switch,” Proc. IEEE IWQoS ‘98, Napa,
California, USA, pp. 218-224, May 1998.

49 S. T. Chuang, A. Goel, N. McKeown, and B. Prabhakar, “Matching output
qeueueing with a combined input/output-queued switch,” IEEE J. Select. Areas
Commun., vol. 17, no. 6, pp. 1030-1039, Jun. 1999.

50 T. H. Lee, Y. W. Kuo, and J. C. Huang, “Quality of service guarantee in a
combined input output queued switch,” IEICE Trans. Commun., vol. E83-B, no.
2, pp. 190-195, Feb. 2000.

51 M. A. Marsan, A. Bianco, P. Giaccone, E. Leonardi, and F. Neri, “Packet
scheduling in input-queued cell-based switches,” Proc. IEEE INFOCOM 2001,
pp. 1085-1094.

52 S. H. Moon and D. K. Sung, “High-performance variable-length packet
scheduling algorithm for IP traffic,” Proc. IEEE GLOBECOM 2001, pp.
2666-2670.

53 G. Nong and M. Hamdi, “Burst-based scheduling algorithms for non-blocking
ATM switches with multiple input queues,” IEEE Communications Lett., vol. 4,
no. 6, Jun. 2002.

54 X. Zhang and L. N. Bhuyan, “Deficit round-robin scheduling for input-queued
switches,” IEEE J. Select. Areas Commun., vol. 21, no. 4, May. 2003.

55 R. Rojas-Cessa, E. Oki, and H. J. Chao, “CIXOB-k:Combined
input-crosspoint-output buffered packet switch,” Proc. IEEE GLOBECOM 2001,
pp. 2654-2660.

56 S. C. Liew, “Performance of various input-buffered and output-buffered ATM
switch design principles under bursty traffic : simulation study,” IEEE Trans.
Commun., vol. 42, pp. 1371-1379, Feb/Mar/Apr 1994.

57 C. S. Donpaul, H. Zhang, “Implementing distributed packet fair queuing in a
scalable switch architecture,” Proc. IEEE INFOCOM ‘98, pp. 282-290.

58 http://www.nlnar.net/NA/Learn/packetsizes.html.

 80

59 J. Heinanen, “Multiprotocol encapsulation over ATM adaptation layer 5,” RFC
1483, Jul. 1993.

60 N. Ni and L. N. Bhuyan, “Fair scheduling and buffer management in internet
routers,” Proc. IEEE INFOCOM, New York, pp. 1141-1150, Jun. 2002.

61 M. Shreedhar and G. Varghese, “Efficient fair queuing using deficit round robin,”
Proc. IEEE SIGCOMM, Boston, MA, Aug. 1995.

62 H. J. Chao and J. S. Park, “Centralized contention resolution schemes for a
large-capacity optical ATM switch,” Proc. IEEE ATM Workshop, pp. 11-16,
1998.

 81

Vita

Ying-Che Kuo received the B.S. and M.S. degrees in Automatic Control

Engineering from Feng Chia University, Taichung, Taiwan, ROC, in 1986 and 1988,

respectively. He is currently pursing the P.h.D. degree in Communication

Engineering at National Chiao Tung University, Hsinchu, Taiwan, ROC.

 His principal areas of interest include scheduling and switch architecture.

 82

Publication List

A. International Journal papers

[1] T. H. Lee and Y. C. Kuo, “Performance Evaluation of Combined Input Output

Queued Switch with Finite Input and Output Buffers,” in LNCS (Lecture Note in

Computer Science) book of Springer Verlag, Part 1, pp. 203-214, 2002.

[2] T. H. Lee and Y. C. Kuo, “A Parallel Matching Algorithm for CIOQ Switches with

Multiple Traffic Classes,” IEE Proceedings on Communications, vol. 150, no. 5,

pp. 354-360, 2003.

[3] T. H. Lee and Y. C. Kuo, “Packet-Based Scheduling Algorithm for CIOQ Switches

with Multiple Traffic Classes,” accepted for publication in Elsevier Journal on

Computer Communications.

B. International Conference papers

[1] T. H. Lee and Y. C. Kuo, “Performance Evaluation of Combined Input Output

Queued Switch with Finite Input and Output Buffers,” The 16th International

Conference on Information Networking (ICOIN-16), Cheju Island, Korea, 2002.

[2] T. H. Lee and Y. C. Kuo, “A Matching Algorithm for CIOQ Switches with

Multiple Levels of Service,” The 2003 International Symposium on Performance

Evaluation of Computer and Telecommunication Systems (SPECTS), Montreal,

Canada, 2003.

