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In this paper, ultra-high vacuum chemical vapor deposition (UHV/CVD) was employed to synthesize sil-
icon–germanium (SiGe), and sequence to endure annealing treatment. Morphological characterization,
roughness, and microstructural morphology were observed by means of scanning electron microscopy
(SEM), atomic force microscopy (AFM), and transmission electron microscopy (TEM). The elements dis-
tribution, crystallographic, and nanomechanical behavior were carried out using energy-dispersive X-
ray spectroscopy (EDS) mapping technique, X-ray diffraction (XRD), and nanoindentation technique.

The annealing treated SiGe leads to the 2D germanium segregation on the surface. The phenomenon is
interpreted in terms of dislocation-induced structural changes in annealing treatment. Thus, the disloca-
tion propagation in the microstructure was observed. Subsequently hardness and elastic modulus were
increased because of a comparatively unstable microstructure after annealing treatment.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Silicon–germanium (SiGe) is one of the most attractive semi-
conductor materials because of its outstanding behaviours [1–3].
Compressively strained SiGe alloys can exhibit outstanding hole
mobility predicted through theoretical calculations, which is due
to the strain-induced heavy-hole/light-hole splitting. The holes
show a light n-plane effective mass depending on alloys composi-
tion. Hence, hole mobility in SiGe alloys is predicted to be 3–10
times higher than in Si at the room temperature [3]. Therefore,
SiGe alloys can be incorporated in either recessed S/D regions of
PMOS to enhance drive current [4–6] or PMOS channel to enhance
current gain [7–9]. Since then, SiGe have been applied to hetero-
junction bipolar transistor (HBT) as well as complementary me-
tal-oxide-semiconductor (CMOS) [10–13]. However, there are
several limiting factors for their applications including the long
growth time, high material consumption, rough surface, and partial
strain relaxation [14,15]. The high quality of the SiGe is required
for devices application, that is to say, crystal defects and non-uni-
form composition are undesirable [16,17].

Due to large lattice mismatch between Ge and Si atoms (about
4.2%), strain relaxation induced crystal defects such as misfit dislo-
cation and threading dislocation from interface [18,19], poor
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Cheng), a091316104@gmail.-
mechanical and morphological characteristic may occur in SiGe
thin films. The poor thermal stability of the SiGe/Si heterostructures
has probability of lowering the quality of SiGe. Meanwhile, this may
degrade the performance of thin films as well as be an obstacle to
the further developments. The intermixing caused by interdiffusion
alters the interfacial properties and then degrades the film perfor-
mance. Some groups have used different methods to change the
material behaviours of SiGe films such as adding a Si buffer layer
to decrease the dislocation density in the SiGe films [20], depositing
the SiGe epilayers on SiGe substrate for reducing the lattice-mis-
match by means of UHVCVD method [21], using annealing treat-
ment to observe electrical conductivity [22], interdiffusion at
SiGe/Si interface [23], density of crystal defects, and strengthening
adhesion between SiGe and Si interface [24]. Relatively, the nano-
mechanical aspects for the defects induced change on the SiGe thin
films and/or annealing treatment are yet to be reported.

In this study, we have employed the nanoindentation technique to
investigate the defects induced phenomenon on the SiGe/Si hetero-
structures. As a consequence, surface morphology, roughness, and
microstructure structures of SiGe/Si heterostructures were observed
by using SEM, AFM and TEM. The elements distribution, and crystal-
lographic were carried out using EDS mapping technique, and XRD.
2. Experimental procedure

The samples were prepared by a standard Radio Corporation of
American (RCA) clean and a HF:H2O (1:50) bath for 15 s, p-type
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Si(1 0 0) wafers were simultaneously introduced into load-lock
chamber of ultra-high vacuum chemical vapor deposition (UHV/
CVD) system. The deposition process are including three steps:
(i) A 3-nm-thick Si buffer layer was deposited on the Si substrate
at 500 �C for 30 min from pure SiH4 (in 85 sccm) gas, the rate of
deposition is 0.1 nm/min. (ii) A 500-nm-thick Si0.8Ge0.2 layer was
deposited at 500 �C for 180 min from pure SiH4 (in 85 sccm) and
GeH4 (in 15 sccm) mixing, the rate of deposition is 2.8 nm/min
and the vacuum is achieved at 10�7 mbarr. (iii) In the annealing,
the SiGe thin films are endured thermal treatments (400 �C and
500 �C), and ex situ in furnace on N2 gas for 30 min.

Morphological characterization, roughness, and microstructure
of the SiGe thin films were observed by means of scanning electron
microscopy (SEM, Hitachi S-4000), atomic force microscope (AFM,
Veeco D5000), and transmission electron microscopy (TEM, JEOL,
JEM-2100F). From 3D patterns of AFM analysis, we mainly investi-
gated two parameters: the height roughness parameters (Ra) and
the root mean square (Rms). In addition, TEM samples were pre-
pared within mechanical polishing down to 20–30 lm, followed
by Ar ion milling to electron transparency. The observations were
made at 200 kV. The elements distribution and crystallographic
were carried out using energy-dispersive X-ray spectroscopy
(EDS) mapping technique and X-ray diffraction (XRD, PANalytical
X’Pert Pro Inc. Singapore, with Cu Ka; k = 0.154 nm).

Subsequently hardness and elastic modulus of the SiGe thin
films was studied by using a Nano Indenter XP instrument (MTS
Cooperation, Nano Instruments Innovation Center, TN, USA). The
nanoindentation measurements used a diamond Berkovich inden-
ter tip (tip radius �50 nm), suggesting that plastic deformation can
be generated at very small load. In addition, Hardness data ob-
tained with Berkovich indenter can be transformed to Vickers
hardness because of the same shape of a three-sided pyramid,
which means a similar area-to-depth function [25,26]. The contin-
uous contact stiffness measurement (CSM) mode executed by
superimposing small oscillations on the force signal to record stiff-
ness data along with load and displacement data dynamically, al-
lows hardness and Young’s modulus to be calculated at every
data point acquired during the indentation experiment [27,28].
The instrument was calibrated by using a standard fused silica
sample prior to measuring the mechanical characterizations of
SiGe thin films. The drift rate preset to <0.05 nm/s before the
beginning of each indentation. Frequency of 45 Hz was used to
avoid the sensitivity to thermal drift and loading resolution was
50 nN [29]. Ten indents were made on samples to minimize the
deviation of the results. The nanoindentations were sufficiently
spaced (50 lm) to prevent from mutual interactions. In order to
obtain ‘‘film-only” properties, a commonly used rule of thumb is
to limit the indentation depth to less than 10% of the films thick-
ness [27,28]. Hardness and Young’s moduli were determined using
the Oliver and Pharr analysis [27]. Hardness (H) means the resis-
tance to local plastic deformation of materials, which has been
conventionally obtained by measuring the projected contact area,
Ac:

H ¼ P
Ac

ð1Þ

where P is the load. Elastic modulus E can be obtained from the con-
tact stiff, using the following relation:

S ¼ b
2
ffiffiffiffi
p
p Er

ffiffiffiffiffi
Ac

p
ð2Þ

1
Er
¼ 1� v2

i

Ei
þ 1� v2

E
ð3Þ

where S is the initial unloading contact stiffness measured from the
upper portion of the unloading data; b is a constant that depends on
the geometry of indenter and b = 1.034 [29]; Er stands for the re-
duced modulus; Ei and vi are Young’s modulus and Poisson’s ratio
of indenter, respectively; E and v are the same parameters for the
specimen. The load and stiffness are directly measured during an
indentation, contact area Ac and contact depth hc has relation
Ac ¼ 24:56h2

c [30]. By inserting the calculated contacted area into
Eqs. (1)and (2), the hardness and elastic modulus were evaluated.
For diamond which is the usual material of a Berkovich indenter,
Ei = 1141 GPa and vi = 0.07 [27]. As the commonly done, we assume
that v is 0.3.
3. Results and discussion

In order to investigate the role of UHV/CVD grown SiGe thin
films, annealing treatment was employed. The crystallographic
structure of the SiGe thin films was obtained from HRXRD analysis.
Fig. 1 shows the XRD spectra of the (0 0 4) reflection of the SiGe
thin films, and the peak position of 67.925 (SiGe) and 69.128 (Si)
are obtained. The composition of as-deposited SiGe thin films can
be verified by comparing the measured rocking curves (Fig. 1a)
and simulated X-ray rocking curves, which were deduced by dif-
fraction theory [31]; therefore, Ge mole fraction of 20% was con-
firmed. Besides, the oscillation behaviors in this curve exhibit a
high epitaxial of SiGe layer grown on Si substrate. Comparatively,
the fringes fade out in Fig. 1b and c, which means that the interdif-
fusion-caused destroyed and broadening interfacial layer occurred
after annealing treatment. The similar observation was also re-
vealed by Ref. [17]. Furthermore, crystal quality can be estimated
by observing the full width at half maximum (FWHM) of curve
peak. Obviously, the FWHM of SiGe peaks increased after annealing
treatment, indicating that poor crystal quality and strain relaxation
appeared in the SiGe thin films [32,33]. The SiGe/Si heterostruc-
tures have highly focused in its strain-relaxed performance from
annealing treatment. The intermixing alters the interfacial proper-
ties and then degrades the film performance. In addition, the SiGe
thin films with 500 nm in thickness exceeds the theoretical equi-
librium critical thickness and is in a metastable condition [34,35].

The height roughness parameters (Ra) and the root mean square
(Rms) can be used to show morphology condition as part of the
quantitative analysis of AFM images [36]. We employed the AFM
technique to identify the morphology of the SiGe thin films, typical
measurement on a series of annealing procedure are shown in Figs.
2, in which the surface roughness and apparent feature size can be
observed. The SiGe thin films characterized by a smooth manner
(Rms is 0.3 nm) which gradually roughens from 400 to 500 �C
(Rms are 4.1 nm and 7.3 nm), even if surface roughness increases
rapidly at the extra thermal budget, this assumed to relieve the
strain [34,37,38]. To evaluate the annealing effect, Table. 1 lists
the summary of Ra and Rms at different annealing temperatures.
It is noted that parameters of Ra and Rms increased at the annealing
process and the results were agreeable with that of Zheng et al.
[23]. Meanwhile, Tételin et al. [39] reported that Ge segregation
and strain relaxation can be investigated to the formation of is-
lands on the surface. Herein, the 2D state results in Fig. 2 at the
annealing temperatures (400–500 �C) are in good agreement with
the similar observations from Ref. [39].

In order to investigate the interdiffusion and strain alteration of
the SiGe thin films, the SEM and relative EDS mapping were em-
ployed. The surface EDS mapping for the SiGe thin films and
annealing in furnace environment using nitrogen as following gas
are shown in Fig. 3, where (a) is the image of the sample of surface
SiGe thin films grown directly on the Si(0 0 1) substrate without
annealing process, and (b–c) are the images of the SiGe thin films
after annealing. The surface SiGe thin films have high concentra-
tion of Si element than the Ge composition. Beside, Ge composition



Fig. 1. The XRD rocking curve for 500 nm of the SiGe thin films deposited on Si
substrates with various anneals: (a) no anneal, (b) 400 �C for 0.5 h, and (c) 500 �C for
0.5 h.

Fig. 2. AFM images of surface topography of samples; (a) before annealing and (b)
after annealing at 400 �C for 0.5 h, and (c) 500 �C for 0.5 h. The averaged surface
roughness values (Rms) of the SiGe thin films are 0.3, 4.1, and 7.3 nm, respectively.
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is suddenly increased upon to surface when annealing at T = 500 �C
(Fig. 3c). Furthermore, the cross-section EDS mapping are shown in
Fig. 4, where (a) is the Si and Ge element for the SiGe thin films
without annealing process, and (b,c) is the SiGe thin films within
annealing process, the heavy concentration of Ge element was
transited into the surface of sample after annealing treatment. It
is conjectured that annealing temperature plays an important role
in promoting the interdiffusion between the SiGe thin films and Si
substrate [40,41]. A serious interdiffusion in the SiGe thin films
corresponds to the supporting of the energetically thermal motion



Table 1
Variation of average surface roughness (Ra) and root-mean-square surface roughness
(Rms) at various annealing temperatures.

Sample Pretreatment
temperature (�C)

Average
roughness, Ra

(nm)

Root mean square
roughness, Rms (nm)

(a) – 0.2 0.3
(b) 400 3.3 4.1
(c) 500 5.1 7.3
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(Fig. 4c). Thus, the different roles between Si and/or Ge element in
the SiGe thin films were revealed.

Specifically, the nanoindentation technique is useful in probing
the properties of thin films. The SiGe/Si heterostructures can be
investigated from continuous penetration depth by means of con-
tinuous stiffness measurement (CSM) in nano-size. Figs. 5 and 6
show hardness and Young’s moduli of the SiGe/Si heterostructures
as functions of the indentation depth at 200 nm, following the
method proposed by Oliver and Pharr [27]. For indentation depths
up to about 15 nm, the hardness increased as the indentation
depth increased, which is usually attributed to the transition be-
tween purely elastic to elastoplastic contact whereby the hardness
is actually the contact pressure. For indentation depths greater
than about 15 nm, the hardness became constant. Young’s modu-
lus followed a trend similar to that of the hardness except that
its magnitude converged at an indentation depth smaller than that
for hardness. Hardness and Young’s moduli were therefore deter-
mined by averaging measurements at indentation depths from
100 to 200 nm, considering an adequate depth to achieve a fully
developed plastic zone and meanwhile not exceeding 40% of the
film thickness to avoid the more substrate effect [42]. For the mea-
sured results of the SiGe/Si heterostructures, hardness were
Fig. 3. The plane-view of EDS mapping analysis with the SiGe thin films
13.9 ± 0.7, 15.1 ± 0.3, and 15.2 ± 0.5 GPa, while Young’s moduli
were 190.4 ± 7.9, 205 ± 3.2, and 207 ± 5.3 GPa, respectively. Be-
sides, It is mentionable that the oscillation and discontinuous phe-
nomenon observed in hardness curve of as-deposited SiGe thin
films may be pop-ins events caused by shear-induced dislocation
slip and twinning [43,44].

After inspecting the enhancement in hardness and Young’s
moduli through annealing treatment of the SiGe/Si heterostruc-
tures, the microstructures are subsequently investigated. The rela-
tive defects induced mechanical properties change of the SiGe thin
films are examined in microstructure observation. Fig. 7 shows
that TEM profile, where (a) is the smooth interface of the SiGe thin
films/Si substrate, and (b,c) is the subsequent annealing treatment
that had significant interdiffusions from the misfit dislocations.
This tends to form a serial nucleation seed and induces high den-
sity dislocation occurring at the interface, therefore to bring a seri-
ous slip line in our investigations. This observation is consistent
with the LeGoues et al. reported [45] that the SiGe structures
grown by UHV/CVD at low temperature relax by a modified
Frank–Reed mechanism. The dislocations are formed by the repro-
duction of corner dislocations. Also, Mooney et al. reported [15]
that the threading segments of dislocations annihilate and the re-
laxed SiGe films have low threading dislocation densities. There-
fore, in the large mismatch about 4.2% between Si and Ge, the
growth of nearly dislocation-free SiGe films is a major reason. In
the 500 nm of SiGe layers in excess of the critical thickness for dis-
location nucleation considered in these studies unexpectedly show
few dislocation nucleation events. Evidently, all the samples in our
experiment were endured 500 �C thermal treatment for 180 min
during the growth process. This thermal treatment time was 6
times longer than that in post-treatment (30 min) and the temper-
ature is even higher comparing with post-treatment at 400 �C.
samples: (a) no anneal, (b) 400 �C for 0.5 h, and (c) 500 �C for 0.5 h.



Fig. 4. The cross-sectional EDS mapping analysis with the SiGe thin films samples: (a) no anneal, (b) 400 �C for 0.5 h, and (c) 500 �C for 0.5 h.

Fig. 5. The hardness of the SiGe thin films samples: (a) no anneal, (b) 400 �C for
0.5 h, and (c) 500 �C for 0.5 h.

Fig. 6. The Young’s moduli of the SiGe thin films samples: (a) no anneal, (b) 400 �C
for 0.5 h, and (c) 500 �C for 0.5 h.
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Nevertheless, Fig. 1 and particularly Fig. 7 show drastic difference
between non annealed and annealed samples. It is because that in
our study, to obtain a good quality of SiGe films with a thickness of
500 nm, the 500 �C thermal-budget for 180 min is necessary
[46,47]. Besides, the films grown with these parameters were in
a metastable condition [48], which means SiGe films can relax eas-
ily with post thermal treatment, especially while the films is under
non-ultra-high vacuum environment.
As mentioned above, while the dislocation occurred on the SiGe
thin films, this accompanied with the enhancement in its mechan-
ical resistance against elastic and elastoplastic deformations. This
phenomenon can be observed from Figs. 5 and 6 with the indenta-
tion depths below 50 nm, which can reflect ‘‘film-only” properties.
From above analysis, temperature increased after annealing treat-
ment not only leads nucleation seed but also enhances the hard-
ness and Young’s moduli of the SiGe thin films.



Fig. 7. The cross-sectional TEM image of the SiGe thin films samples: (a) no anneal,
(b) 400 �C for 0.5 h, and (c) 500 �C for 0.5 h.
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4. Conclusions

The materials analysis and nanoindentation techniques have
been used to investigate surface features and nanomechanical
properties of the SiGe thin films. The XRD analysis showed that
the SiGe thin films featured a crystalline nature. As the annealing
treatment, the SiGe thin film became predominantly oriented
along the (0 0 4) peaks of position of 67.925 (SiGe) and 69.128
(Si) and the surface roughness increased. The 2D germanium seg-
regation on the surface was observed from AFM analysis. It is also
obviously observed that the smooth manner (Rms is 0.3 nm) grad-
ually roughens from 400 �C to 500 �C (Rms are 4.1 nm and
7.3 nm). Results from Berkovich nanoindentation indicated that
the hardness of the SiGe thin films with annealing treatment ran-
ged from 13.9 ± 0.7 to 15.2 ± 0.5 GPa while the Young’s modulus
ranged from 190.4 ± 7.9 to 207 ± 5.3 GPa. The SiGe thin films were
shown to slightly enhance mechanical properties due to the misfit
dislocation propagation from thermal annealing.
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