國立交通大學

土木工程學系

博士論文

م**تثاللت**ه.

整合時間尺度之隨機降雨序列模擬機制之發展與應用 Development and Application of Stochastic Generation Model for Rainfall Series with Time Scale

研 究 生: 吴祥禎

指 導教授:楊錦釧博士 湯有光博士

中華民國九十五年五月

整合時間尺度之隨機降雨序列模擬機制之發展與應用 Development and Application of Stochastic Generation Model for Rainfall Series with Time Scale

ent : Shiang-Jen Wu	Student	吳祥禎	:	生	究	研
ors : Jinn-Chuang Yang	Advisors	楊錦釧	:	授	導教	指
Yeou-Koung Tung		湯有光				

Submitted to Institute of Civil Engineering College of Engineering National Chiao Tung University in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

in

Civil Engineering

2006 Hsinchu, Taiwan, Republic of China.

中華民國九十五年五月

誌謝

在交通大學就博士班期間,承蒙恩師楊教授錦釧及香港科技大學土木 湯教授有光在研究上悉心的指導與生活上用的的照顧,使我在研究生涯中 獲益匪淺,更使我的拙作能得以完成,在此致上最誠摯的謝枕與敬意。另 要感謝口試委員鄭教授克聲、葉教授克家、李教授天浩及黃教授文政的悉 心指正與寶貴意見,使本論文更趨完善。此外,系上老師多年來在課業上 的發與教導,亦是學生受用不盡的寶藏,在此謹致由衷的感謝

在求學的期間,我很幸運地能夠有機會前往香港科技大學,跟隨湯有 光教授作論文相關研究,在香港科大期間除了讓我有機會接觸不同於台灣 學習環境,同時也讓我了解到本身學識之不足,尤其是湯老師嚴謹的研究 觀念及態度深深地影響我往後求學作研究的態度,唯有紮實地下苦心作研 究,才會有成功的一天。另要特別感謝香港研究資助局(Hong Kong Research Grant Council, HKSAR)提供計畫研究經費(計畫名稱及編號 HKUST6016/01E: Investigating Issues in Rainfall Intensity-Duration and Time-Scale Relations in Hong Kong),使我能夠在香港科大完成論文中的相關研究成果。

在學期間所有伴我成長的朋友、交大楊老師研究團隊,及香港科技大 學土木系的 Joanne 小姐、杏元、Seba、志華、王穎、Eddy、水利實駭室其 他成員、及室友朱宇與張暉,謝謝你們在此期間,對我的幫助及鼓勵。

最後謹將本論文獻給爸爸、媽媽、老婆佳玉、大姐昭寬、大哥祥銘、 大嫂桂英、侄子哲瑋、侄女怡宣及小兒彦廷。

I

摘要

大多數水利相關工程例如洪水預報、防洪工程,應用於邊坡穩定評估之 排水及入滲分析等,降雨資料為必需已知之基本資料。然而常因發生雨量 資料不足或其時間尺度不符合要求,而使水利相關工程在分析設計上產生 了不確定性進而造成了失敗的風險。由於降雨資料主要由降雨事件年發生 次數(Annual Occurrence Number of Rainstorm Events)、降雨延時(Storm Duration)、總降雨量(Rainfall Depth),事件間隔時間(Inter-event Time)及降 雨時間分布(Time Distribution of Rainfall)(即降雨雨型, Storm Pattern),等 五種特性所組成 (Marien 及 Vandewiele, 1986),故本文將以由實測雨量資 料所得降雨特性之統計性質為基礎,發展一套隨機降雨序列模擬機制 (Stochastic rainfall series generation model, SRSG model),期使能解決固雨量 資料不足所衍生的相關水利工程問題。為了驗證此模式,本文分別比較由 模式所得之合成降雨序列與不同紀錄年限的實測雨量資料所推得年最大 降雨量-延時-頻率曲線(Rainfall depth-duration-frequency, DDF, Curve),藉 以測試模式在延伸降雨序列之成效。

另為了克服在設計水利相關工程常遇到另一問題,即因自計雨量站不足 而造成短時間尺度(t≤24hrs)雨量資料短缺,但卻有相當多的普通雨量站 可提供長時間尺度雨量(例如日雨量),故本文亦發展一套可藉由日雨量來 推估不同延時(小時)之降雨 DDF 曲線之時雨量頻率分析模式。依據所採 用雨量資料型式,模式可區分為二類型:(1)年最大值事件模式 (Annual-maximum-events, AME, Model):即不同連續日降雨事件總雨量年 最大值及其所對應的不同延時最大降雨量;及(2)所有事件模式(All-events, AE, Model):即採用所有降雨事件之模式。在發展模式過程中,降雨事件 依連續降雨天數被區分為不同連續日降雨事件類型,撷取其總雨量及其所 對應於不同延時之最大降雨量,建立其分位數之關係,並將其應用於由日 雨量機率分布函數所組成之時雨量頻率分析模式之建置。如同驗證隨機降 雨序列模擬機制,為了驗證 AME 及 AE 模式的正確性,本文亦分別由 AME

II

及 AE 模式推得的降雨 DDF 曲線與一般常用之年最大降雨序列(Annual Maximum Rainfall Series)配合頻率分析法(本文定義為 AMS 模式)之推估結果來相互比較,以評估模式可藉由日雨量資訊推估不同延時之降雨 DDF 曲線之準確性及可靠度。

本文採用香港天文台站 1884 至 1990 年之 100 年時雨量資料 (其中 1940 至 1946 因第二次世界大戰而中斷記錄),驗證所發展之隨機降雨序列模擬 機制(SRSG 模式)及採用日雨量之時雨量頻率分析模式(AME 及 AE 模式)。 由驗證結果可知,SRSG 模式確實有能力能製造保存原有統計性質之降雨 事件,且可將所有模擬事件等性成降雨序列,藉以延伸降雨資料紀錄,進 而改善降雨 DDF 曲線之準確性,特別是在推估重現期距大於實測時雨量 紀錄之年最大降雨量分位數時,其改善程度最為明顯。另對於 AME 及 AE 模式而言,在相同現有時雨量紀錄年限下, AME 及 AE 模式因採用不同 類型的連續日降雨事件之雨量資料,相對於採用年最大降雨序列之 AMS 模式而言,AME 及 AE 模式因可採用較多的雨量資訊,而可推得較具有可 靠及準確性之降雨 DDF 曲線。此外由 AME 及 AE 模式比較結果可知,AE 模式較適用於短實測時雨量資料之不同延時降雨 DDF 曲線之推估,相對 地,AME 模式則適用於當具有較長的日雨量資料紀錄年限之降雨 DDF 曲 線之推估。

最後本文將 SRSG 模式與 AME 及 AE 模式整合成一可考量不同時間尺 度之隨機降雨序列模擬機制,此整合模式不僅可藉由 SRSG 模式模擬合成 降雨序列,用以增加日雨量及時雨量資料紀錄年限,改善總雨量及其所對 應的不同延時最大降雨量分位數關係,藉以提高時雨量頻率分析模式之可 靠度,更可由將 SRSG 模式所衍生大量的降雨序列應用於 AME 及 AE 模 式所推得降雨 DDF 曲線之不確定性分析,藉以提供需要降雨 DDF 曲線之 水利相關工程例如洪水預報、防洪工程,及水資源規劃等進行風險分析。

關鍵詞: 降雨特性、雨型、年最大降雨量序列、多變量蒙地卡羅法、頻率 分析;降雨量-延時-頻率曲線;隨機模擬

Abstract

Rainfall data are often required in many water-related engineering studies, such as flood forecast, prevention and mitigation, seepage and infiltration analysis for slope stability assessment. However, engineers frequently face the problem of not having insufficient rainfall data to conduct good the quality and reliable water-related engineering. In general, the occurrence of the rainstorm events can be characterized by the annual occurrence number of events, storm duration, rainfall depth, inter-event time and temporal variation of rainfall (Marien & Vandewiele, 1986). To solve the problem associated with insufficient rainfall data, this thesis presents a stochastic rainfall series generation (SRSG) model based on the statistical properties of correlated rainstorm characteristics calculated from observed rainfall data. To verify the proposed SRSG model, comparisons are made on the derived rainfall depth-duration-frequency (DDF) relationships of the annual maximum rainfall from the simulated rainfall sequences with those solely obtained from observed annual maximum rainfall.

Furthermore, due to the fact that short-duration rainfall data (e.g., hour) are insufficiently long compared with relatively long and widely available rainfall data, this thesis also proposed hourly rainfall frequency models that incorporate daily rainfall information to estimate hourly rainfall depth-duration-frequency (DDF) relationships. According to the type of rainfall data used, the proposed hourly rainfall frequency models can be classified two models. One is annual-maximum-events (AME) model incorporated annual with the maximum series of consecutive-rainy-daily events and the other is all-event (AE) model based on all consecutive-rainy-daily events. In the process of deriving the proposed AME and AE models, the rainstorm events are classified according to the number of consecutive-rainy days and their total rainfall amount are extracted. And then, the relationship of quantiles between total rainfall and associated t-hr maximum rainfall are derived for the AME and AE models. Similar to the SRSG model, to verify the proposed the AME and AE models, comparison are made on the rainfall depth-duration-frequency relations of the annual maximum rainfall estimated by the proposed the AME and AE models with those by the conventional frequency analysis by directly using annual maximum series. The frequency analysis based on annual maximum rainfall series is denoted herein as the AMS model.

Hourly rainfall data at the Hong Kong Observatory over the period of 1884-1990 are used to demonstrate the development and application of the proposed stochastic rainstorm series generation (SRSG) model and daily-based hourly rainfall frequency model that incorporate daily rainfall information (AME and AE models). From the numerical experiments, the proposed SRSG model is found to be capable of capturing the essential statistical features of rainstorm characteristics and annual extreme rainstorm events calculated from the available data. Since the rainfall series can be synthesized by the proposed SRSG model, it is obvious that the model can be applied to extend the record length of the rainfall data for improving the reliability and accuracy of rainfall quantiles, especially for return period larger than the record length of available rainfall data. For the verification of the AME and AE models, the numerical experiments indicate that AME and AE model are found to produce more accurate and reliable frequency quantiles of annual maximum rainfall than those derived by the AMS model based on the same available hourly rainfall data. Furthermore, the AME and AE models show a promising potential to improve accuracy of rainfall DDF relationships by incorporating extended daily-based rainfall record. It is also found that the AME model is suitable for estimating rainfall DDF curves of various storm durations incorporated with the low record length of hourly rainfall data whereas AE is adequate for the estimation of rainfall DDF curves based on the long-record daily rainfall data.

Eventually, in this thesis, the SRSG model, AME and AE models are integrated to be a stochastic rainfall generation model associated with varying time-scale rainfall data. This model can add hourly rainfall data composed of rainstorm characteristics simulated by the SRSG model to modify the quantiles relationship between total daily rainfall and the associated t-hr maximum rainfall. Using the modified quantiles relationship, the AME and AE models can estimate more reliable rainfall DDF relationships of storm durations of interest. Furthermore, the simulated rainfall series by the SRSG model can be applied to risk reliability analysis for the design of hydrosystem infrastructures and water resource planning requiring rainfall DDF relationships.

Keywords: Rainstorm characteristics; rainfall pattern; annual maximum rainfall series; multivariate Monte Carlo simulation method; frequency analysis; rainfall depth-duration-frequency, DDF, curve; stochastic modeling.

謝誌	I
摘要	II
Abstract	IV
目錄	VII
表目錄	IX
圖目錄	X
符號表	XV
第一章 緒論	.1-1
1.1 研究背景	.1-1
1.2 文獻回顧	.1-1
1.3 研究內容及目的	.1-4
1.4 論文架構	.1-5
第二章 隨機降雨序列模擬機制之建置	.2-1
2.1 降雨特性之定義	.2-1
2.2 降雨事件發生次數之模擬	.2-2
2.3 降雨延時、雨量及事件間隔時間之模擬	.2-3
2.3.1 非常態多變量蒙地卡羅模擬	.2-3
2.3.2 邊際機率分布函數之檢定	.2-4
2.3.3 模擬程序	.2-5
2.4 降雨雨型之模擬	.2-5
2.4.1 雨型特性之分析與歸納	.2-6
2.4.2 雨型之分群及判識	.2-7
2.4.3 具有約制條件之非常態多變量隨機變數之模擬	.2-8
2.4.3.1 對數比率轉換	.2-9
2.4.3.2 多變量 Johnson 分布函數之模擬	2-10
2.4.4 模擬流程	2-11
2.5 隨雨序列模擬流程	2-12
第三章 採用日雨量之時雨量頻率分析之建置	.3-1
3.1 降雨事件之分類	.3-1
3.2 時雨量與日雨量分位數關係之建立	.3-2
3.2.1 降雨量分位數之推求	.3-2
3.2.2 線性動差法之簡介	.3-2
3.2.3 權重頻率曲線法之簡介	.3-5
3.2.4 分位數闔係之建立	.3-6
3.3 時雨量頻率分析模式之建置	.3-7

3.3.1 年最大降雨事件為基礎之模式	3-7
3.3.1.1 模式推導	3-7
3.3.1.2 k 日連續降雨事件具有零值雨量資料之處理	3-8
3.3.2 所有降雨事件為基礎之模式	3-9
3.3.2.1 模式推導	3-9
3.3.2.2 k 連續降雨事件發生頻率分布之推導	3-10
3.4 重現期距T年t小時降雨頻率關係推導過程	3-11
第四章 模式應用與驗證	4-1
4.1 研究區域及資料說明	4-1
4.2 隨機降雨模擬機制之建置	4-1
4.2.1 降雨特性統計分析	4-1
4.2.1.1 降雨事件發生次數	4-2
4.2.1.2 降雨延時、雨量及事件間隔時間	4-2
4.2.1.3 降雨雨型	4-3
4.2.2 模式驗證	4-6
4.2.2.1 驗證方法及步驟	4-6
4.2.2.2 降雨特性統計特性之比較	4-8
4.2.2.3 年最大降雨量統計特性之比較	4-8
4.2.2.4 不同重現期距降雨量之比較	4-9
4.3 採用日雨量之時雨量頻率分析	4-11
4.3.1 降雨事件之分類	4-11
4.3.2 k日連續降雨事件總雨量及所對應t小時最大降雨量	分位關係
式之建立	4-12
4.3.3 模式驗證	4-12
4.3.3.1 驗證方法及步驟	4-13
4.3.3.2 與時雨量為基礎之頻率分析之比較	4-14
4.3.3.3 增加日雨量紀錄年限對 AME 及 AE 模式之景	诊響評估
	4-16
4.3.3.4 AME 及 AE 模式之比較	4-17
4.4 隨機降雨模擬機制與採用日雨量礎之時雨量頻率分析之整	合運用
第五草 結論與建議	5-1
5.1 結論	5-1
 J.2 建議 A センセ 	
参考又獻	K-1
附録	A-1

表目錄

表 2.1 不同機率分布函數之轉換因子(Transformation factor)表
表 3.1 不同機率分布函數參數及各階動差之關係(乘積動差)
表 3.2 不同機率分布函數參數及各階動差之關係(L-動差)
表 4.1 香港雨量站及其相關資訊表4-19
表 4.2 香港天文自計雨量站 100 年時雨量資料中降雨事件年發生次數表4-19
表 4.3 100 年 1690 場降雨事件年發生次數之統計特性及其離散指數表 .4-20
表 4.4 100 年 1690 場降雨事件之延時、降雨量及間隔時間之統計特性 .4-20
表 4.5 100 年 1690 場降雨事件之延時、降雨量及間隔時間 K-S 檢定表.4-21
表 4.6 無因次降雨量 (P_{τ}) 之統計特性(六群雨型)4-22
表 4.7 無因次降雨量對數比率 (R_τ) 之 Johnson 分布類型及其參數值(六群雨
型)4-28
表 4.8 六群雨型之列聯表分析結果4-29
表 4.9 不同現有時雨量資料中降雨事件年發生次數離散指數表4-32
表 4.10 不同現有時雨量資料中降雨事件之延時、降雨量及間隔事件之合適
機率分布函數 K-S 檢定表
表 4.11 不同現有時雨量資料(m=20、50r 及 80 年)降雨事件之延時、降雨量
及事件間隔時間之合適機率分佈函數 K-S 檢定表4-35
表 4.12 不同現有時雨量資料與依其模擬所得合成降雨序列中降雨特性平
均值之相對誤差4-36
表 4.13 由不同現有時雨量資料與依其模擬所得合成降雨序列所得不同延
時年最大降雨量之統計特性比較4-37
表 4.14 不同連續日降雨事件之 K-S 檢定結果表
表 4.15 100 年時雨量資料中不同連續日降雨事件總雨量及其不同延時最大
降雨量分位數表4-41

圖目錄

圖 2.1 降雨特性之定義	2-14
圖 2.2 模式發展過程	2-15
圖 2.3 多變量蒙地卡羅 MMCS 方法之模擬程序	2-16
圖 2.4 降雨事件之無因次化過程	2-17
圖 2.5 降雨序列之模擬過程	2-17
圖 3.1 完整降雨事件與部份降雨事件之定義	3-15
圖 3.2 k 日連續降雨事件之定義	3-15
圖 3.3 k 日連續降雨事件總雨量及其延時t 小時最大降雨量分位數	之關係示
意圖	3-16
圖 3.4 AME 模式推導過程	3-16
圖 3.5 AE 模式推導過程	3-17
圖 4.1 香港雨量站相關位置圖	4-42
圖 4.2 平均無因次累積降雨量 F _c (五群雨型)	4-43
圖 4.3 平均無因次累積降雨量 F.(六群雨型)	4-44
圖 4.4 平均無因次累積降雨量 F _c (七群雨型)	4-45
圖 4.5 六群雨型之平均無因次降雨量 P	4-46
圖 4.6 模式驗證過程	4.47
圖 4.7(a) 由 100 年雨量資料所得 t 小時頻率曲線與 20 年現有時雨	量及依其
模擬所得合成頻率曲線統計特性之比較(t=1-hr)	4-48
圖 4.7(b) (t=2-hr)	4-48
圖 4.7(c) (t=6-hr)	4-49
圖 4.7(d) (t=12-hr)	4-49
圖 4.7(e) (t=24-hr)	4-50
圖 4.8(a) 由 100 年時雨量資料所得 t 小時頻率曲線分別與 50 年現	有時雨量
及依其模擬所得合成頻率曲線統計特性之比較(t=1-hr)	4-51
圖 4.8(b) (降雨延時 t=2-hr)	4-51
圖 4.8(c) (降雨延時 t=6-hr)	4-52
圖 4.8(h) (降雨延時 t=12-hr)	4-52

圖 4.8(e) (降雨延時 t=24-hr)	
-------------------------	--

圖 4.9(a) 由 100 年時雨量資料所得 t 小時頻率曲線分別與 80 年現有時雨量

	及依其模擬所得	合成频率曲線	統計特性之	比較(t=1-hr)	4-54
圖 4.9(b)	(降雨延時 t=2-hr)			4-54

- 圖 4.9(e) (降雨延時 t=24-hr)4-56
- 圖 4.10(a) 20-yrs 降雨 DDF 曲線(Observed)與合成降雨 DDF 曲線平均值

(Mean)及中位數(Median)之相對誤差比較(降雨延時 t=1-hr)4-57

- 圖 4.10(c) (降雨延時 t=6-hr)4-58 圖 4.10(d) (降雨延時 t=12-hr)......4-58
- 圖 4.10(e) (降雨延時 t=24-hr)4-59

圖 4.11(a) 50-yrs 降雨 DDF 曲線(Observed)與成降雨 DDF 曲線平均值(Mean)

- 圖 4.12(a) 80-yrs 降雨 DDF 曲線(Observed)與合成降雨 DDF 曲線平均值

(Mean)及中位數(Median)之相對誤差比較(降雨延時 t=1-hr)..4-63

- 圖 4.12(c) 降雨延時 t=6-hr)......4-64
- 圖 4.12(e) (降雨延時 t=24-hr)4-65
- 圖 4.13 100 年時雨量資料中 2 日連續降雨事件之 1 小時最大降雨量分位數
 - $(h_{k,p}^{t})$ 與經由(4.3)所求得之分位數 \hat{h}_{k}^{t} 之比較......4-66

圖 4.14 不同連續日降雨事件之 1 小時降雨 DDF 曲線之比	上較4-66
圖 4.15(a) AME 模式採用 10 年現有時雨量資料所得降雨	DDF 曲線平均值
與 95%信賴區間 (降雨延時 t=1-hr)	4-67
圖 4.15(b) (降雨延時 t=2 小時)	4-67
圖 4.15(c) (隆雨延時 t=6 小時)	4-68
圖 4 15(c) (降雨延時 t=12 小時)	4-68
图 1.15(c) (降雨延時 t=21 小时)	
◎ 4.1.5(E) () () () () () () () () ()	
圖 4.16(a) AE 模式採用 20 年現有時雨量資料所得降雨	頻率曲線半均值與
95%信賴區間 (降雨延時 t=1-hr)	4-70
圖 4.16(b) (降雨延時 t=2-hr)	4-70
圖 4.16(b) (降雨延時 t=6-hr)	4-71
圖 4.16(b) (降雨延時 t=12-hr)	4-71
圖 4.16(b) (降雨延時 t=24-hr)	4-72
圖 4.17(a) AME 及 AE 模式所得降雨 DDF 曲線與 AMS 档	莫式所得降雨 DDF
曲線之相對誤差平均值比率(降雨延時 t=1-hr)	4-73
圖 4.17(b) (降雨延時 t=2-hr)	4-73
圖 4.17(c) (降雨延時 t=6-hr)	4-74
圖 4.17(d) (降雨延時 t=12-hr)	4-74
圖 4.17(e) (降雨延時 t=24-hr)	4-75
圖 4.18(1a) AME 及 AE 模式採用 10 年現有時雨量資料	及不同日雨量增加
年限(<i>l</i> =10、20、30及40年)所得相對誤差平均	自值(現有雨量年限
m=10年及降雨延時t=1-hr)	4-76
圖 4.18(1b) (降雨延時 t=2-hr)	4-76
圖 4.18(1c) (降雨延時 t=6-hr)	4-77
圖 4.18(1d) (降雨延時 t=12-hr)	4-77
圖 4.18(1e) (降雨延時 t=24-hr)	4-78
圖 4.18(2a) AE 模式採用 10 年現有時雨量資料及不同	司日雨量增加年限
(l=10、20、30 及 40 年)所得降雨 DDF 曲線之相	目對誤差平均值(現
有雨量年限 m=10 年及降雨延時 t=1-hr)	4-79
圖 4.18(2b) (降雨延時 t=2-hr)	4-79
圖 4.18(2c) (降雨延時 t=6-hr)	4-80
圖 4.18(2d) (降雨延時 t=12-hr)	4-80
圖 4 18(2e) (降雨延時 t=24-hr)	4-81

圖 4.19(1a) AME 模式採用 20 年現有時雨量資料及不同日雨量增加年限 (l=10、20 及 30 年) 所得降雨 DDF 曲線之相對誤差平均值 圖 4.19(1e) (降雨延時 t=24-hr)4-84 圖 4.19(2a) AE 模式採用採用 20 年現有時雨量資料及不同日雨量增加年限 (l=10、20 及 30 年)所得降雨 DDF 曲線之相對誤差平均值(現有 圖 4.20(1a) AME 模式採用 30 年現有時雨量資料及不同日雨量增加年限 (l=10 及 20 年)所得降雨 DDF 曲線之相對誤差平均值(現有雨量 圖 4.20(1c) (降雨延時 t=6-hr)......4-89 圖 4.20(1d) (降雨延時 t=12-hr).......4-89 圖 4.20(2a) AE 模式採用 30 年現有時雨量資料及不同日雨量增加年限(l=10 及20年)所得降雨 DDF 曲線之相對誤差平均值(降雨延時 t=1-hr) 圖 4.21(a) AME 及 AE 模式採用 10 年現有時雨量資料所得降雨 DDF 曲線 之相對誤差 $\varepsilon_{m+1 \mod e}$ 小於 AMS 之 $\varepsilon_{m AMS}$ 之機率 $Pr(ε_{m+l model} ≤ ε_{m AMS})$ (重現期距 T=50-yr)......4-94 圖 4.21(b) (重現期距 T=100-yr)......4-94 圖 4.21(c) (重現期距 T=200-yr)......4-95 圖 4.21(d) (重現期距 T=1000-yr)......4-95

圖 4.22(a) AME 及 AE 模式採用 20 年現有時雨量資料所得降雨 DDF 曲線

	之	相	對	韺	差	$\epsilon_{m+l,mo}$	od el	小	於	AN	AS	之	$\epsilon_{m,AMS}$	之	機	率
	Pr($\left(\varepsilon_{m+l,i} \right)$	mod el	≤ε _n	ı,AMS)(重玥	見期	距	Г=5()-yr)	•••••		•••••	•••••	·····²	1-96
圖 4.22(b))(重理	現期	距]	Γ=10)0-y	r)	•••••				•••••				2	1-96
圖 4.22(c))(重現	涀期	距了	T=20)0-y	r)	•••••				•••••				2	1-97
圖 4.22(d))(重3	晛期	距]	Γ=10)00-	yr)	•••••				•••••				2	1-97
圖 4.23(a)) AM	IE 及	Ł Ał	Ξ模	式技	采用 30	0年	現	有時	雨量	資料	斗所	得降雨	DD	F 曲	線
	之	相	對	誤	差	ε _{m+l,m}	od el	小	於	AN	⁄IS	之	$\epsilon_{m,AMS}$	之	機	率
	Pr	$\epsilon_{m+l,n}$	nod el	≤ε _{m,} ,	_{AMS})	(重現	期距	钜 T	=50-	-yr)	••••	•••••	•••••	•••••	4	1-98
圖 4.23(b))(重理	晛期	距]	Γ=10)0-y	r)	•••••		•••••	•••••	•••••			•••••	·····²	1-98
圖 4.23(c))(重現	涀期	距]	T=20	Ю-у	r)	••••	•••••	•••••	•••••	•••••	•••••		•••••	2	1-99
圖 4.23(d))(重理	現期	距了	Γ=10)00-	yr)	•••••				•••••				2	1-99
圖 4.24 找	采用图	賃機Ⅰ	锋雨	模拨	疑機	制所行	导1(000	年樽	莨擬	合成	降司	雨序列周	斩推	得不	同
	延時	之際	下雨	DDI	F曲	線	•••••				•••••				4-	100
圖 4.25(a)	AM	E۰	AE ,	及A	MS	模式	所指	隹得	降雨) DE)F ∉	自線(降雨延	E時1	t=1-1	nr)
			•••••		•••••		•••••	•••••			•••••				4-	100
圖 4.25(b))(降南	雨延	時t	=2-h	nr)			• • • • • •			•••••		•••••		4-	101
圖 4.25(c))(降商	雨延	時 t	=6-h	ır)					<u>k</u> .,			•••••	•••••	4-	101
圖 4.25(d))(降前	雨延	時t	=12-	-hr)							<u>.</u>			4-	102
国 4 0 5 ()	(114 -		nt (~				31	1	81	٨.,	E.			4	101
圖 4.25(e))(降回	肉延	時t	=24-	-hr)	••••••				•••••	•••••	•••••		•••••	4-	101
圖 4.26(a)	AMI	E及	AE	模式	所	得降雨	う DI	DF	曲線	之相	對	誤差	(降雨	延時	t=1-	hr)
	•••••									<u>.</u>					4-	102
圖 4 26(a))(降高	雨延	時 t:	_2-h	r)	\sim		18	190	5	1	F			4-	103
回 1.20(u)	(14 "					5.	•••••	•••••	•••••	1			•••••	•••••		105
圖 4.26(c))(降雨	雨延	時t	=6-h	nr)						Ş	•••••	•••••	•••••	4-	104
圖 4.26(d))(降南	雨延	時t	=12-	-hr)	-77				-	•••••		•••••	•••••	4-	104
圖 4.26(e))(降雨	雨延	時t	=24-	hr)	•••••	•••••				•••••				4-	105

符號表

- D₁:Fisher 離散指數(Dispersion index)
- α:統計顯著水準
- ρ_{ii}:隨機變數 X_i及 X_i之相關係數
- μ_i及μ_i:隨機變數X_i及X_j之平均值
- $\sigma_i \mathcal{B} \sigma_j: 隨機變數 X_i \mathcal{B} X_j 之標準偏差$
- ρ^{*}i:標準常態變數Zi及Zi之相關係數
- T_{ii}:標準常態轉換因子(Transformation factor)
- τ: 無因次時間
- τ*: 無因次時間指標
- F.: 無因次累積雨量
- P_r:無因次降雨量
- R₁:無因次降雨量對數比率
- γ,δ,ξ,λ:Johnson 機率函數參數
- SL: Johnson 機率函數之對數常態系(Lognormal system)
- S_{U:} Johnson 機率函數之無界限系(Unbounded system)
- SB: Johnson 機率函數之有界限系(Bounded system)
- λ_r :第 r 階 L-動差(L-moments)
- τ_r:第 rL-動差比率
- l_r :第 r 階 L-動差樣本估計值
- t_r:第 r 階 L-動差比率樣本估計值
- M_{p,rs}:權重機率動差
- X_{nw}:權重分位數
- MSE:均方誤差(Mean Square error)
- wi:第i分佈權重係數

mann

DDF:降雨量-延時-頻率曲線(Depth-duration-frequency, DDF, curve)

F₁₁ (h):t小時之年最大降雨量機率分佈函數

d_{k,p}及h^t_{k,p}:分別為在某一發生機率 P 下 k 日連續降雨事件總雨量與相對應 t 小時之雨量

D_{max,k}與 H^t_{max,k}:為 k 日連續降雨事件之年最大總雨量與其對應之事件的最 大 t-小時雨量的分位數

n_k:k日連續降雨事件之場次

D_k;與H^t_k:k日連續降雨事件總雨量與所相對應之最大t小時雨量

 $\varepsilon(h)$:推求重現期距T年t小時降雨量之目標函數

- θ_{m,AMS}:在現有 m 年實測時雨量資料下,應用 AMS 模式所推得降雨 DDF 曲線
- θ_{m,model}: 在現有 m 年實測時雨量資料下,應用模式(AME 模式或 AE 模式) 所推得降雨 DDF 曲線

θ_{m+LAMS}:在現有 m 年實測時雨量及 l 年延伸日雨量資料下,應用 AME 模式

或 AE 模式所推得降雨 DDF 曲線

 $\epsilon_{m,AMS}$:在現有 m 年實測時雨量資料下,由 AMS 模式所得降雨 DDF 曲線與

由 100 年降雨資料配合 AMS 模式所得 DDF 曲線之相對誤差

ε_{m,model}:在現有 m 年實測時雨量資料下,由 AME 及 AE 模式所得降雨 DDF

曲線與由 100 年降雨資料配合 AMS 模式所得 DDF 曲線之相對誤差

ε_{m+l,model}:在現有 m 年實測時雨量及 l 年延伸日雨量資料下,由 AME 模式或 AE 模式所得降雨 DDF 曲線與由 100 年降雨資料配合 AMS 模式所 得 DDF 曲線之相對誤差

Pr(ε_{m,model} ≤ ε_{m,AMS}):在現有 m 年實測時雨量資料下,AME 模式或 AE 模式 所得降雨 DDF 曲線之相對誤差小於或等於 AMS 模式 所得結果之機率 Pr(ε_{m+l,model} ≤ ε_{m,AMS}):在現有m年實測時雨量及l年延伸日雨量資料下,AME 模式或AE模式所得降雨DDF曲線之相對誤差小於或 等於AMS模式所得結果之機率

第一章 緒論

1.1 研究背景

大多數水利相關工程例如洪水預報、防洪工程,應用於邊坡穩定評估 之排水及入滲分析等,降雨資料為必需已知之基本資料。降雨資料主要由 降雨事件發生次數(number of rainstorm events)、降雨延時(storm duraiton)、 總降雨量(rainfall depth),降雨時間分佈(time distribution of rainfall)(即降雨 雨型, storm pattern)及事件間隔時間(inter-event time)等五種特性所組成 (Marien 及 Vandewiele, 1986)。

上述各降雨特性不僅代表降雨事件之規模及在時間上分佈的性質外, 其組合而成之降雨序列(即雨量記錄)長短及其品質,更會影響水利系統相 關工程設計之可靠度。一般而言,在進行水文相關分析時,若具有足夠的 降雨特性資料,則可得到可靠之推估及設計結果,例如防洪水工結構物設 計、或乾旱預防及水資源開發規劃及分配水量等。然而,實際上水利工程 師常面臨降雨資料短缺,或雖有足夠的雨量資料但符合分析所需的資料型 態卻不足之情況,例如需時雨量進行頻率分析卻只有日雨量資料等情形。 而在台灣雖約有 1250 雨量站(大多分屬於各地水利會、中央氣象局、水利 署及台電公司),但其中部份站因缺乏管理、人為疏失或儀器故障等原因, 造成紀錄中斷或過短,或者雖具有足夠的資料,但卻係為長時間尺度之降 雨量(例如日雨量),而無法提供於需時雨量資料之不同延時(小時)雨量頻率 分析或需要降雨時間歷線也就是降雨組體圖之降雨-逕流演算等水文分析。

因此,如何由過去降雨資料來衍生符合水文水理分析所需的合適時間 尺度之降雨量,藉以有效地增加原有實測降雨資料之可用性,並提高相關 分析結果之準確性及可靠度,實為目前水文分析之重要課題之一。

1.2 文獻回顧

降雨事件之模擬

已有相當多有關於降雨模擬的模式已被發展,而這些模式基本上依其採 用的理論可區分定率模式也就是氣候模式(Meteorological model)(Mason, 1986)、統計模式(Statistical model)及序率模式(Stochastic model)。氣候模式 主要採用大尺度且複雜的方程式來描述控制降雨甚致於其他氣候因子的 物理過程(Mason, 1986);統計模式主要考量降雨在空間的非定常性 (Non-stationarity)及時間上的趨勢(Temporal Trend),例如單站或多站時間模 式(Single or Multisites Temporal Model) (Stern 及 Coe, 1984)。而序率模式可 分為將變數假設為獨立的多尺度模式(Multi-scaling Models),例如 Multifractal Cascades 模式(Lovejoy 及 Schertzer, 1990; Gupta 及 Waymire, 1994),或是依據實際雨量紀錄分析其降雨特性,並作一簡易的假設來隨機 模擬降雨在時間及空間之情形的模式(Onof 等 2000)。上述模式除了氣侯模 式外,其他模式皆採用不同統計分析方法來模擬降雨,其中序率模式依模 擬對象可分為降雨核胞模式(Rain Cell Model) (Cowpertwait, 1991, 1994, 1996, 1998, 2004,與其他合作者, 1996a, b; Glasbey 等, 1995; Verhoest 等, 1997; Oncf 等, 2000; Koutsoyiannis 及 Onof, 2001) , 例如 Waymire 及 Gupta(1981a,b,c)發表 一系列之文章來採討模擬降雨核胞之 Bartlett-Lewis (BL) 模式及 Nyman-Scott (NS)模式,在很多研究中BL及NS模式皆被應用於衍生單站 之點降雨(Point-rianfall)事件(Glasbey et al., 1995; Verhoest et al., 1997; Koutsoviannis 及 Onof. 2001); 另一模式主要模擬降雨事件之特性來衍生降 雨序列,例如 Raudkivine1Lawgun(1970)發展了一階馬可夫過程模式(The first-order Markov process model)來模擬都市中的降雨序列,此模式採用降 雨延時及降雨量之聯合機率分佈函數模擬其值,且假設事件相隔時間符合 Weibull 分佈並由此分佈衍生其值。Eagleson(1977)發現降雨延時及降雨量 及事件相隔時間皆符合 Exponential 分佈,稱之為指數模式(Exponential model)(Cameron et. al., 2000)。Acreman(1990)發展一隨機模式來製造單站之 時雨量序列。此模式有能力分別採用 Exponential、Conditional Gamma 分 佈、及 Generalized Pareto 分佈來重新製造降雨延時、降雨量及乾時期時間

(Dry-spell),此外亦採用 Beta 分佈來模擬不同延時之平均降雨事件剖面 (Average event profiles),也就是降雨在時間的分佈即雨型。Cernesson 等 (1996)發表一具有 7 個參數之模式來模擬降雨過程不連續之自然現象及及 尖峰值結構。Lambert 及 Kuczera(1996)發表了一簡單點降雨模式能夠代表 延時、平均事件降雨強度、間隔時間及雨型。此模式使用可在無因次降雨 及時間空間上之約制隨機移動(Constrained random walk)來代表每一降雨 事件在降雨量上隨機分佈特性。Harrold 等(2003)發展了一套適用於雨季的 無參數降雨量模擬模式,此模式以 Kernel density estimation 法取代需先決 定雨量之合適機率分佈函數之假設,並且以移動視窗方式(Moving window) 分析雨量在不同季節之變異程度。

上述文獻回顧可歸納出,降雨序率模式基本上採用機率分佈函數配合蒙 地卡羅方法(Monte Carlo simulation method)方式來衍生降雨特性,而其中 主要的差異在於雨型之模擬也就是將雨量拆解(Disaggregation)成較小時間 尺度的降雨量(例如時雨量)方式之不同。如 Acreman 模式採用 Beta 分佈描 述平均累積降雨剖面, Englson 模式假設降雨型態矩型(Rectangular Pattern),其他模式如 Bartlett-Lewis (BL)式及 Nyman-Scott (NS)模式則假設 每一雨胞為為矩型雨型,但各雨胞當組合成事件時,則形成非矩型的降雨 型態,亦有模式以 Johnson 機率分佈函數描述雨型以考慮其在時間上的變 異性例如 Wu 等(2005)。由於有甚多方法可模擬降雨,故 Cameron 等(2000) 應用英國的雨量站資料之統計特性來評估三種較常用的模式,分別為修正 Eaglesion 指數模式(Modified Eagleson's exponential model, MEEM)、由 Camerson 等(1999)所發展之累積機率函數及 Generalized Pareto 分佈函數 (Cumulative density function and generalized Pareto distribution model, CDFGPDM)及隨機參數 Bartlett-Lewis Gamma 模式(Random parameter Bartlett-Lewis Gamma model, RPBLGM)。其研究發現 MEEM 與 RPBLGM 模式可有效重複製造與實測資料之統計特性相近之降雨量,但在年最大降 雨量之模擬效果則較差。CDFGPDM之模擬成效在文中所列的驗證指標下

不同時間尺度降雨量之轉換

在不同時間尺度雨量間轉換方面,亦有相當多模式被發展成能由長時間 尺度雨量資料推得短時間尺度雨量。例如 Hershenhom 及 Woolhiser(1987) 發展一有效參數(Parameter-efficient)模式將日雨量拆解(disaggregate)成數 個獨立暴雨事件(Showers),並根據日雨量模擬各暴雨事件之延時與雨量。 Nguyen與其工作團隊(Nguyen及Chaleeraktrakoon, 1990; Nguyen及Pandcy, 1994; Nguyen et al., 1998)發展不同時間尺度雨量間(主要是日雨量及時雨 量)統計分位數(statistical quantiles)關係之方法。將所有日雨量及時雨量應 用於頻率分析,藉以推得與日雨量分位數具有相關性之時雨量分位數。此 一方法可提供在只具有日雨量的區域藉以推得時雨量之統計特性,因而可 提高日雨量在工程上之應用性。Glasbey 等(1995)利用 Rodriguez-Iturbe 模 式(由 Rodriguez-Iturbe 於 1987 年所發展)衍生時雨量資料,並由模擬時雨 量中計算3日雨量與實測值相互比較藉以驗證模式推估成效。Connolly 等 (1998)發展了一將日雨量分解時雨量之模式,並以澳洲四雨量站降雨資料 來驗證明模式,其結果顯示此模式同樣地可以衍生降雨特性。Koutosyiannis 及 Onof(2001)建置了一機制應用 Barlett-Lewis 模式將日雨量分解成時雨 量,且此機制更被推廣應用於降雨量在時間及空間之相關性之研究,以建 立可由日雨量站推求時雨量資料之區域化模式。Onof 等(2005)發展一套以 Log-Poisson 分佈為基礙,可將時雨量拆解成5分鐘降雨量之二參數模式。 作者採用 London 各季的時雨量資料分別來率定模式參數。由模式驗證結 果可知,模式在由時雨量推求5分鐘雨量之成效良好,應可適用需要較小 時間尺度降雨量的都市水文分析。

1.3 研究內容及目的

本文主要目的為發展一套可考量不同時間尺度之隨機降雨序列模擬機

制,來解決降雨資料短缺的問題。其研究內容為蒐集具有足夠時雨量資料 之雨量站,且根據所設定的條件選取降雨事件,並擷取各事件之降雨特性 並計算其統計量,其中除了考量各降雨特性彼此間的相關性,更特別著重 於雨型之變異性,作為建置隨機降雨序列模擬機制之基礎,期使所發展的 模式能合理地製造符合過去降雨特性之事件並將其組合成降雨序列,進而 達到增加降雨紀錄年限之目的。

另從降雨序列中推導日雨量與不同延時(小時)之降雨量分位數關係,作為推導採用日雨量資料之時雨量頻率分析模式,其模式發展之目的為可藉由具有較多的日雨量資訊來推得時雨量分位數,也就是降雨量-延時-頻率曲線(Rainfall Depth-duration-frequency, DDF, Curve)。

最後將上述之隨機降雨模式機制與日雨量為基礎之時雨量頻率分析模式,整合成為一可考量不同時間尺度之降雨模式機制,用以衍生不同時間 尺度的降雨序列而應用於水文及水理分析。

allile.

1.4 論文架構

本論文架構主要可分為三部份:第一部份為為介紹降雨特性及隨機降 雨模擬機制發展過程(如第二章所示);第二部份為詳細說明採用日雨量之 時雨量頻率分析模式之發展架構(第三章);第三部份為模式建立與驗證, 包括隨機降雨模擬機制及時雨量頻率分析模式之個別驗證與評估,並與上 述二模式整合運用範例(第四章)。最後本論文針對第四章之驗證成果提出 結論,並建議未來研究方向(如第五章)。

第二章 隨機降雨序列模擬機制之建置

降雨序列主要由不同場次之降雨事件所組合而成,而各降雨事件又由 不同之降雨延時、雨量、雨型及事件間隔時間所組成(如圖 2.1 所示),故 降雨事件發生次數(Number of Rainstorm)、降雨延時(Storm Duration)、雨量 (Rainfall Depth)、雨型(Storm Pattern)及事件間隔時間(Inter-event Time)為組 成降雨序列之基本元素,稱之為降雨特性。本文將針對各降雨事件之統計 特性來發展一套隨機降雨序列模擬機制(Stochastic Rainfall Series Generation, SRSG, Model)並依降雨特性將模式區分成三部份:(1)降雨事件 發生次數之模擬;(2)降雨延時、雨量及事件間隔時間之模擬;及(3)雨型之 模擬,本文將依據上述降雨特性發展模式,其發展過程如圖 2.2。

2.1 降雨事件之定義

在發展隨機降雨模擬機制前,首先需先將降雨序列分成數個獨立的降 雨事件,以利於分析及歸納其降雨特性之統計特性。若從氣象觀點來看, 降雨事件之形成與當時的氣候條件(例如溫度及濕度等)有關,故不同降雨 事件存在於不同的氣候環境,也就是說各事件因發生條件並不相同而使彼 此間可能不具有相關性,因此各降雨事件間可視為一獨立的事件。在水文 學上可用來定義互為獨立之不同降雨事件的統計方法有:(1)自相關法 (Autocorrelation Method) (Morris, 1978);(2)級序相關法(Rank Correlation Method (Bonta 及 Rao, 1988);及(3)指數法(Exponential Method) (Eagleson, 1977; Bonta and Rao, 1988; Restrepo and Eagleson, 1982)。

許多降雨-逕流研究(特別是在排水系統工程方面)較著重於颱洪期間所 發生的所有降雨量是否會造成洪災,並不需將降雨區分為不同的事件。相 反地,若要進行雨型分析則需將降雨區分成不同事件。故根據水文分析目 的,降雨事件可分為二種:(1)設定一段無降雨時間(Dry Time),以求得延 時內每一時刻皆有降雨量之連續降雨事件(Yen and Chow, 1980);及(2)設定 一降雨標準(例如降雨延時或降雨強度需大於某一標準)來選取事件,而此 類事件之每一時刻並非皆有降雨量,即允許短暫無降雨時刻存在。

由於降雨序列模擬機制之建置係以實測降雨資料為基礎,故降雨事件 之選取標準會直接影響模式模擬結果,需慎選降雨事件選取標準。由於本 文主要著重於會形成顯著逕流狀況之降雨事件,故降雨事件研選標準設定 為總降雨量及平均降雨強度需達某一特定標準之事件。

2.2 降雨事件發生次數之模擬

在模擬 N 年內所發生的降雨序列時,每一年的事件發生次數之機率分佈函數需先予以決定。一般而言,可應用於水文事件發生次數之機率分佈 主要有 Binomial 分佈、Negative Binomial 分佈及 Poisson 分佈。將上述三 機率分佈介紹如下,

a. Poisson 分佈函數

$$P(N = n) = \frac{e^{-n} \mu^n}{n}, n = 0, 1, 2, ...$$
(2.1)

式中 N 為事件次數;及µ為在特定之單位時段內發生次數之平均值。 b. Binomial 分佈函數

$$P(N = n) = {\binom{r}{n}} a^{n} (1 - a)^{r - n}, n = 0, 1, 2,...$$
(2.2)

式中 r 為所有降雨事件; 及 a 為降雨事件之發生機率。

c. Negative binomial 分佈函數

$$P(N = n) = {\binom{r+n-1}{n}} a^{n} (1-a)r, \quad n = 0, 1, 2,...$$
(2.3)

Cunnane(1979)提出以 Fisher 離散指數(Dispersion Index, D₁)來檢定降 雨事件發生次數之合適分佈

$$D_{I} = \sum_{i=1}^{N} \frac{(m_{i} - \overline{m})^{2}}{\overline{m}} = \frac{(N-1)Var(m)}{E(m)}$$
(2.4)

式中 m_i 為第i年降雨事件發生次數; \overline{m} 為年平均發生次數。其中 D_I 屬於 χ^2

分佈且具有(N-1)個自由度。其判斷準則如下,

a. $\div \chi^2_{\alpha'_2} \le D_1 \le \chi^2_{1-\alpha'_2}$,則事件發生次數(m)為 Poisson 分佈。 b. $\div D_1 \le \chi^2_{\alpha'_2}$,則事件發生次數(m)為 Binomial 分佈。 c. $\div D_1 \ge \chi^2_{1-\alpha'_2}$,則事件發生次數(m)為 Negative binomial 分佈

其中統計顯著水準α通常為1%或5%。

在過去文獻(Eagleson, 1977; Alexandersson, 1985; Marien and Vandewiele, 1986; Waymire and Gupta, 1981a,b,c), Poisson 分佈廣泛用於水文事件發生 次數之模擬。因此本文將沿用前人研究成果採用 Poisson 分佈於事件發生 次數之模擬。

sulling and the second

2.3 降雨延時、雨量及間隔時間之模擬

2.3.1 非常態多變量蒙地卡羅模擬(Non-normal Multivariate Monte Carlo Simulation)

在實際水文系統中,降雨量通常隨著延時增加而增加,且在雨季時降 雨事件多且密集,相對地各事件間隔時間縮短。相反地,在旱季時,降雨 事件少連帶著間隔時間增長。由這些水文現象可知,降雨延時、總雨量及 事件間隔時間彼此之間存在著某種程度上的相關性,且具有不同的統計特 性(包括機率分佈函數種類),更詳細來說降雨延時、雨量及事件間隔時間 為非常態(Non-normal)且具有相關性之變數。由於此類隨機變數不易建立 聯合機率分佈函數,使得模擬其值相當困難。Chang 等(1994)發表了一套 應用多變量的邊際機率分佈函數(Marginal Probability Distribution)及變量 之相關係數配合蒙地卡羅方法之模擬方法(Multivariate Monte Carlo Simulation, MMCS, Method)。MMCS 法除了傳統蒙地卡羅法模擬變量外, 包含以下三個步驟(如圖 2.3 所示):

(1) 標準常態轉換(Normal Transformation)

第一步驟先利用 Nataf 二變量分佈(如 2.5 式)將相關性變量由原先空間轉換至標準常態空間,也就是將非常態相關變量轉換成常態相關變量。

$$\rho_{ij} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \left(\frac{\mathbf{x}_{i} - \boldsymbol{\mu}_{i}}{\boldsymbol{\sigma}_{i}} \right) \left(\frac{\mathbf{x}_{j} - \boldsymbol{\mu}_{j}}{\boldsymbol{\sigma}_{j}} \right) \phi \left(\mathbf{z}_{i}, \mathbf{z}_{j} \middle| \boldsymbol{\rho}_{ij}^{*} \right) d\mathbf{z}_{i} d\mathbf{z}_{j}$$
(2.5)

式中 X_i 及 X_j 為具有相關係數ρ_{ij}之隨機變數;μ_i及μ_j分別為隨機變數 X_i 及 X_j之平均值;σ_i 及σ_j分別為隨機變數 X_i 及 X_j之標準偏差;Z_i 及 Z_j 為具 有相關係數ρ^{*}_{ij}標準常態變數; φ(z)為標準常態分佈。其中將已知變量 X_i 及 X_j之邊際機率分佈函數及相關係數ρ_{ij}代入解(2.5)式,可求得所對應在常 態變量空間之相關係數ρ^{*}_{ij}, 若(2.5)式無解析解則以數值方法求其解。Liu 及 Der Kiureghian (1986)將(2.5)式簡化為下式,

$$\hat{\rho_{ij}} = T_{ij} \times \rho_{ij} \tag{2.6}$$

式中T_{ij}為轉換因子(Transformation Factor),其型式隨著不同邊際機率分佈 函數種類與隨機變數特性而異(如表 2.1),。

(2) 正交轉換(Orthogonal transform)

常態多變量分析(Multivariate normal analysis)中處理具有相關性的隨機 變量時,正交轉換為一相當重要的步驟。此步驟主要係將由步驟(1)所得相 關性多變量經過常態轉換成具有相關性的標準常態變量後,再利用正交轉 換成獨立的常態變量。最後再藉由蒙地卡羅法模擬獨立常態變量,並將獨 立常態變量模擬值再經由正交轉換成具有相關性的標準常態變量。

(3) 逆轉換(Inverse Transform)

由步驟(2)模擬標準常態變數後,可藉由下式將具有相關性之常態變數 模擬值各別轉換成原空間變量。

$$x_{i} = F_{i}^{-1} [\Phi(z_{i})]$$
(2.7)

式中F_i(•)為變量X_i之邊際機率分佈函數。 上述模擬過程可參見圖2.4。

2.3.2 邊際機率分佈函數之檢定

在水文頻率分析中,一般常用 Kolmogorov-Smirnov (K-S)檢定水文量之 合適機率分佈。雖 K-S 檢定可決定合適分佈,但卻易於發生二種以上的分 佈之通過檢定,也就是其 p-value 值皆大於某一特定顯著水準,而成為最 佳分佈。為了解決這問題,本文將採用具有最大 p-value 之分佈為可被接 受之機率分佈,並將其應用在於降雨延時、雨量及事件間隔時間之 MMSC 模擬。

2.3.3 模擬程序

根據上述理論將模擬降雨延時、雨量及間隔時間之步驟整理如下:

- Step[1]: 由蒐集的降雨事件計算其延時、雨量及事件間隔時間之各階統計 動差。
- Step[2]:應用 K-S 檢定決定降雨延時、雨量及事件間隔時間之合適機率分佈函數。
- Step[3]:應用非常態多變量蒙地卡模擬法衍生各事件之降雨延時、雨量及 事件間隔時間。

2.4 降雨雨型之模擬

降雨組體圖基本上為降雨量或降雨強度在時間上的分佈,也就是降雨 雨型(Rainstorm Pattern),換言之,雨型決定了降雨在時間上的分佈情形, 進而影響了集水區之水文反應(Hydrologic Response),例如暴雨所形成的逕 流。已有許多學者進行相關研究如 Huff(1967)提出平均法設計雨型,此方 法主要針對 3 至 48 小時降雨事件,依其嚴重程度分成四組(Quartile),對 較嚴重之降雨事件組,推求各場降雨無因次累積曲線,最後計算所有無因 次累積曲線之平均值,作為該組之設計雨型; Pilgrim 及 Cordery(1975)發 展一級序平均雨型法,此方法係將每場降雨事件分為數個時段,將每一時 段之降雨量百分比給予級序,總級序最小者給予最小降雨量百分比,反之 總級序最大則給予平均降雨量百分比最大值;Yen 與 Chow(1980)提出三角 形設計雨型法,此法主要求得各場降雨之重心時間,加以無因次化並平均 之,以此計算尖峰前後之直線公式,即得三角形法設計雨型;國內則有張 守陽(1983)利用序率水文學原理,以馬可夫一階歷程(Markovian First-order Process)觀念,求取逐時雨量之轉移機率矩陣(Transitional probability matrix),依此矩陣推求序率法設計雨型;余濬(1988)應用中央氣象局台北 測站 1968 年至 1987 年之逐時降雨資料,以極端值選用法,選出 18 場降 雨延時為 22 小時至 26 小時之最大降雨量,以K-S 檢定法求得台北市最佳 一日設計雨型;顏清連等(1989)發展無因次移動平均法 (Dimensionless Moving average Method)設計雨型,以移動平均法計算每三小時平均雨量並 予以無因次化,將各場降雨累加平均之,以求取設計雨型;林國峰及張守 陽(1992)分別針對長延時降雨(18 小時~30 小時)及較短延時降雨(3 小 時~9 小時)之降雨事件,對降雨量進行統計特性分析、持續性檢定,建立 不同設計方法,並開發合適的雨型評估方法。鄭克聲等(1999)視每一場降 雨事件為一隨機歷程,考慮每個時刻之序列符合常態分佈,以一階高斯馬 可夫歷程模擬臨前水文條件的遺傳效應,以序率方法得到具最大概似度之 雨型。

由於不同的降雨事件會有不同的雨型,因此在模擬降雨事件時,除了 需衍生降雨延時、雨量及事件間隔時間外,亦需製造雨型。因此,本文將 發展一模擬降雨雨型之機制,包括(1)雨型特性之歸納(Characterization of Rainstorm Patterns);(2)雨型之分群及判識(Classification and Identification of Rainstorm Patterns);及(3)雨型之模擬(Simulation of Rainstorm Patterns)。茲 將各部份之詳細內容說明如下:

2.4.1 雨型特性之分析與歸納

由於各降雨事件之延時及雨量彼此間具有差異性,連帶造成降雨型態間亦有所不同,故宜先將各降雨事件予以無因次化,以利於雨型的分群。 降雨事件之無因次化可藉由調整累積降雨曲線之時間(橫軸)及雨量(縱軸) 之尺度(如圖 2.5)求得,如下式

$$\tau = \frac{t}{d}; \quad F_{\tau} = \frac{D_{\tau \times d}}{D_{d}}; \quad P_{\tau} = F_{\tau} - F_{\tau-1}$$
(2.8)

式中 t^* 為無因次時間,其值介於0跟1之間($\tau \in (0,1]$);d為降雨延時;F,為

無因次累積雨量($F_{\tau} \in [0,1]$); P_{τ} 無因次降雨量。其中需注意的是在無因次時 時間第一點 (τ_1)之 $F_{\tau_1} = P_{\tau_1}$ 。降雨事件在進行因次化時,須先決定無因次時 間點數目,以便將降雨延時分成數段後求取每一時間點相對應的無因次雨 量。但須注意的是若取的時間點數目太少則可能無法完整地描述降雨型 態,反之太多點將因太詳細描述雨型之細部變化,複雜了雨型並且掩蓋了 雨型主要之變化。在考量以上的原因後,在本文中降雨延時將被區分成11 段也就是無因次時間點數目 M 為 12(M=12),並求得各時間點之相對無因 次累積雨量 F_{τ} 或無因次降雨量 $P_{\tau} = F_{\tau} - F_{t-1}$, $\tau = i/M$ (i = 1, 2, ..., M)。

藉由上述無因次化方法,所有降雨事件的時間及雨量全被調整成同一 尺度,也就是每一場降雨事件之降雨延時及雨量均被調整為1。故降雨事 件之無因次化不僅可使雨型去除了降雨延時及雨量多寡的影響而僅存在 時間上的變異,更可以使原本具有不同雨量及延時之事件予以彙集、測試 並分群而得到不同之降雨型態(雨型)。

2.4.2 雨型之分群及判識

常用於水文事件之分群的方法主要有主成分(Principle Component Analysis, PCA)及群集分析(Cluster analysis, CA)(Zurich, 1971; Fang 及 Tung, 1996; Hannah et al., 2000; Lin et al., 2004)。其中群集分析的基本原理為依照 各獨立個體的相關屬性(Attribute)予以分類(Collins, 1980),也就是按自然類 別(Natural Grouping)將分佈於某一計量空間(Metric Space)的點予以分類, 使得同一群集內的個體具有相似屬性,而各群集彼此間卻具有不同屬性。 在分群過程中為了將不同變量之尺度效予以消除,故在計算之前先將不同 屬性變量標準化成為平均值為零而標準偏差為一的變量。

在進行集群分析前,需先訂定衡量變數間的相似程度尺標,最常被使用的相似度尺標係計算各屬性變量在計量空間的距離(Distance Measurement),主要有以下三種型式:

(1) 歐基里得距離(Euclidean distance, DE)

$$DE_{i,j} = \left[\sum_{l=1}^{m} (x_{i,l} - x_{j,l})^2\right]^{1/2}$$
(2.9)

(2) 皮爾生距離(Pearson distance, DP)

$$DP_{i,j} = \sum_{l=1}^{m} \left\{ \left[\left(x_{i,l} - x_{j,l} \right) / \nu_l \right]^2 \right\}^{1/2}$$
(2.10)

(3) 曼哈頓距離(Manhattan distance, DM)

$$DM = \sum_{l=1}^{m} \left| x_{i,l} - x_{j,l} \right|$$
(2.11)

式中 m 為變量數目; x_{i,l} 及 x_{j,l} 為在計量空間中第 i 點跟 j 點對第 l 點之距離 (k=1, 2, ..., m); 及 v_l 為 l 群之樣本標準偏差。將各變量間的相似程度加以 衡量後,接著應用集群方法將各樣本歸入不同集群中。在集群分析中一般 採用層次分析法(Hierarchical Method),例如平均連鎖法(Average Linkage Method) 與 華 德 法 (Ward's Method),另一方法為非層次分析法 (Nonhierarchical Method),例如 K-平均值法(K-means Method)。 根據 Fang 及 Tung(1996)與 Ramos(2001)等人研究指出不同集群方法所得最後的分群 結果並不會有明顯的差別,但以 K 平均值法具有較佳的分群效益也就是在 分群的過程耗費較少的計算時間並具有較簡單的分析步驟(Ramos, 2001)。 因此本文將採用以歐基里得距離為基礎的 K-平均法(MacQueen, 1967),並應 用統計軟體 Minitab(Minitab, 1999),進行雨型之分群。茲將 K-平均值法分群 步驟說明如下,

Step[1]: 將各變量分割成 K 個原始集群,並求出各集群之重心;

- Step[2]: 將每一樣本點分配到重心最接近的群集中;
- Step[3]: 重新計算每一個群集的重心;

Step[4]: 將群集中每一個樣本點距重心之歐基理得距離加以平均;

Step[5]: 找出新群集,每一樣本點再次被分配到重心最接近的群集中;

Step[6]: 重複進行直到群集邊界不再變動為止。

2.4.3 具有約制條件之非常態多變量隨機變數之模擬

在模擬降雨事件過程中,當模擬降雨延時、降雨量及事件間隔時間後, 接著需模擬降雨在時間的分佈(即雨型)。但在模擬雨型前,必需了解雨型 的二種重要性質:(1)無因次降雨量P_τ為非負變量且局限於 0 跟 1 之間 (0≤P_τ≤1);及(2)不同的無因次時間τ的P_τ彼此間存在著相關性,也就是P_τ 屬於具有相關性之非常態多變量。根據上述雨型的性質可知在模擬雨型需 考量以下限制式,

(1) 總合為 1:
$$\sum_{\tau=1/M}^{M/M} P_{\tau} = 1$$
 (2.12a)

式中 M 為無因次降雨時間點之數目,在本文中 M 定為 12。

由於無因次降雨量P_r屬於多變量非常態隨機變數,理論上可使用 MMCS 蒙地卡羅法模擬雨型,但因具有(2.12)限制式存在,使得 MMCS 在 模擬無因次降雨量P_r時,除了 2.4 節中所述的非常態多變量模擬步驟外, 仍需以下二種程序將具有約制條件之多變量轉變無限制式之多變量。

2.4.3.1 對數比率轉換(Log-ratio Transformation method)

目前已有相當多方法被提出以解決具有約制條件之多數量相關問題。 例如 Aitchison(1986)曾針對具有約制條件的模擬技術詳細的探討,其研究 成果建議可採用 Log-ratio 處理方法。Borgman 及 Faucette(1993)發展一實 用的方法可將具有線性限 制之多變量高斯模擬轉換成一條件多變量高斯 模擬(Conditional multivariate Gaussian simulation)。Zhao(1992)提出一方法 來模擬同樣具有總合需為1限制的單位歷線,且用在評估水工結構物因單 位歷線不確定性所承受設計失敗的風險。其中亦有文獻針對雨型提出解決 方法,例如 Lambert 及 Kuczera(1996)認為可將無因次降雨量P,轉換成一對 數常態隨機變數(Log-normal Random Variables),藉以消除(2.12)式之限 制。Fang 及 Tung(1996)採用接受-拒絕方法(Acceptance-rejection Method)、 累積機率曲線法(Cumulated Probability Curve Method)及 log-ratio 法去模擬 無因次降雨量 P_{τ} ,發現 log-ratio 法具有較佳的適用性及較穩定的計算結果 (Computational Robust),因此本文將延用 Fang 及 Tung 之研究,採用 log-ratio 法應用於無因次降雨量 P_{τ} 之模擬。

Log-ratio 轉換法應用於雨型之模擬主要採用下式,

$$\mathbf{R}_{\tau} = \log(\mathbf{P}_{\tau}/\mathbf{P}_{\tau^*}), \tau = 1/M, 2/M, \dots, M/M; \ \tau \neq \tau^*$$
(2.13)

式中為τ*為無因次時間指標。無因次降雨量P_τ介於0跟1之間,所以其對 數比率R_τ則介於-∞及∞。在模擬過程中,須注意的是P_τ及P_τ。皆不可為0 以避免在取對數之計算上的錯誤。

當無因次降雨量 P_{τ} 經由 log-ratio 法轉換成 R_{τ} ,則原本屬於具有約制條 件之非常態多變量模擬轉變成如同模擬降雨延時、雨量及間隔時間一樣的 非常態多變量,可直接用 MMCS 蒙地卡羅法模擬對數比率 R_{τ} ,當求得對 數比率模擬值 R_{τ} 後,可由(2.13)式求得 $P_{\tau} = P_{\tau} \exp(R_{\tau})$,將其代回(2.12)式 求得 P_{τ} (如下式),

$$P_{\tau^{*}} = \frac{1}{1 + \sum_{\substack{\tau = 1/M \\ \tau \neq \tau^{*}}}^{M/M} \exp(R_{\tau})}$$
(2.14)

再將(2.14)式代回(2.12)式,則可求得P,

$$P_{\tau} = \frac{\exp(R_{\tau})}{1 + \sum_{\substack{\tau=1/M\\ \tau\neq\tau^*}}^{M/M} \exp(R_{\tau})}, \quad 0 < \tau \le 1; \tau \ne \tau^*$$
(2.15)

2.4.3.2 多變量 Johnson 分布函數之模擬

由上節所述經由 log-ratio 轉換分法,可將具有約制條件之非常態多數量 模擬問題將轉變為無約制條件非常態多數量模擬,也就是說可應用 MMCS 法模擬對數比率R_t值。然而,由 2.3.1 節可知,若需使用 MMCS 法,則先 要檢定變量之合適機率分佈,由於雨型具有 M(M=12)個R_t變量需檢定其 合適分佈, 無形中增加了檢定上的因難及模擬之繁雜度, 為此具有較廣泛 適用性的 Johnson 分佈函數組群可適用於描述R_x之統計性質。

Johnson(1949)提出一個四參數之機率分佈函數

$$Z = g(X|\gamma, \delta, \xi, \lambda) = \gamma + \delta \times f\left(\frac{X - \xi}{\lambda}\right)$$
(2.16)

式中Z為標準常態變量;X為原隨機空間之非常態變量; $\gamma,\delta,\xi,\lambda$ 為機率 函數參數其中 ξ 為位置因子(Location Parameter)及 λ 為尺度因子(Scale parameter)。

Johnson 分佈主要有以下三種型式

(1) 對數常態系(Lognormal System, S_L)

$$S_{L}: Z = \gamma + \delta \ln(X - \xi), X < \xi$$
 (2.17)

(2) 無界限系(Unbounded System, S_U)

$$S_{U}: Z = \gamma + \delta \sinh^{-1} [(X - \xi)/\lambda]$$
(2.18)

(3) 有界限系(Bounded System, S_B)

$$S_{B}: Z = \gamma + \delta \ln \left(\frac{X - \xi}{\xi + \lambda - X} \right), \xi < X < \xi + \lambda$$
(2.19)

Hill 等(1976)發展了一套演算法,利用變量X的前四階動差來率定數γ,δ,ξ,λ 值並決定 Johnson 分佈之型式。

2.4.4 模擬程序

根據上述的雨型分群及模擬理論方法,其模擬過程可整理如下, Step[1]:應用(2.8)式將降雨事件無因次化,則可得無因次降雨量

P_τ=F_τ-F_{t-1},τ=i/M, i=1, 2, ..., M,其中本文將無因次時間點數目
 M 定為 12(M=12)。

Step[2]: 應用集群分析將雨型分為數群並定義各類型。

約制條件之非常態多變量數

 $R_{\tau} = log(P_{\tau}/P_{\tau^*}), \tau = 1/12, 2/12, ..., 12/12; \tau ≠ τ^*, 其中本文將無因次$ 時間指標τ^{*}定義為τ^{*} = 3。

- Step[4] 決定 M(M=12)個對數比率值 R_τ之 Johnson 分佈類型並率定其參數 值 $\gamma, \delta, \xi, \lambda$ 。
- Step[5]: 經由 Johnson 分佈函數求得對數比率值 R_{τ} 之相對標準常態值 $Z_{\tau} = g_{\tau} (R_{\tau} | \gamma, \delta, \xi, \lambda)$ 。
- Step[6]: 採用多變量蒙地卡羅模擬(MMCS)法衍生 \hat{Z}_{τ} 。
- Step[7]: 再利用 Johnson 分佈函數將對 \hat{Z}_{τ} 模擬數轉換成對數比率模擬值 $\hat{R}_{\tau} = g_{\tau}^{-1} (\hat{Z}_{\tau} | \gamma, \delta, \xi, \lambda)$

Step[8]: 最後藉由(2.14)及(2.15)式將 \hat{R}_{τ} 摸擬值轉換成無因次降雨 \hat{P}_{τ} 。

2.5 降雨序列模擬過程

綜合 2.1 至 2.5 各節所說明降雨特性之模擬理論,隨機降雨序列模擬過程整理如下:

- Step[1]: 決定降雨事件選取標準並整理各事件之降雨特性。
- Step[2]: 計算降雨特性之統計特性。
- Step[3]: 模擬降雨延時、雨量及事件間隔時間。
- Step[4]: 模擬降雨型態(雨型)。
- Step[5]:由模擬所得之降雨延時及降雨量配合雨型則可產生降雨組體圖, 並依各事件之間隔時間模擬值,將各事件之模擬組體圖串連成一 降雨序列(如圖 2.5)。
表 2.1 不同機率分布函數之轉換因子(Transformation Factor)表

(Liu and Kiureghian, 1986)

(1)CAT1

		U	E	R	T1L	T1S
Ν	$T_{ij} = constant$	1.023	1.107	1.014	1.031	1.031

(2) CAT2

		L	G	T2L	T3S
N	$T_{ij} = f(\delta_j)$	$\frac{\delta_j}{\sqrt{ln(\left(l+\delta_j^2\right))}}$	$1.001 - 1.007\delta_{+} + 0.118\delta_{j}^{2}$	$1.03 - 0.238\delta_{j_+} + 0.364\delta_j^2$	$1.031 - 0.195\delta_{j+} + 0.328\delta_{j}^{2}$

TARK EVERYWEIR CARACTER (1996)

() CAIS						
		U	Е	R	T1L	T1S
U	$\boldsymbol{T}_{ij} = \boldsymbol{f}(\boldsymbol{\rho}_{ij)}$	$1.047 - 0.04 \rho_{ij}^2$	$1.133 \pm 0.029 \rho_{ij}^2$	$1.038 - 0.008 \rho_{ij}^2$	$1.055 + 0.015 \rho_{ij}^2$	$1.055 \pm 0.015 \rho_{ij}^2$
E			$1.229 - 0.367 \rho_{ij} + 0.153 \rho_{ij}^2$	$1.123 - 0.1 \rho_{ij} + 0.02$	$1.142 - 0.154 \rho_{ij} + 0.031 \rho_{ij}$	$1.142 + 0.154 \rho_{ij} + 0.031 \rho_{ij}^2$
R				1.028-0.029p _{ij}	$1.046 - 0.0454 \rho_{ij} + 0.006 \rho_{ij}$	$1.046 + 0.0454 \rho_{ij} + 0.006 \rho_{ij}^2$
T1L					$1.064 - 0.069 \rho_{ij} + 0.005 \rho_{ij}$	$1.064 + 0.069 \rho_{ij} + 0.005 \rho_{ij}^2$
T1s						$1.064 - 0.069 \rho_{ij} + 0.005 \rho_{ij}^2$

(3) CAT3

1	(4) CAT4							
			L	G	T2L	T3S		
	U	$\boldsymbol{T}_{ij} = \boldsymbol{f}(\boldsymbol{\rho}_{ij},\boldsymbol{\delta}_j)$	$1.019{-}0.14\delta_j + 0.01{\rm lp}_{ij}^2 + 0.249\delta_j^2$	$1.023 \!-\! 0.007 \delta_j + 0.002 \rho_{ij}^2 + 0.127 \delta_j^2$	$1.033 \! + \! 0.305 \! \delta_j + \! 0.074 \! \rho_{ij}^2 \! + \! 0.405 \! \delta_j^2$	$1.061 - 0.23 \overline{D}_j + 0.00 \widehat{p}_{ij}^2 + 0.37 \widehat{D}_j^2$		
	E		$\begin{split} & 1.098 - 0.003\rho_{gll} + 0.019\delta_j + 0.025\rho_{ij}^2 \\ & + 0.303\delta_j^2 - 0.437\rho_{ij}\delta_j \end{split}$	$\begin{split} & 1.104 + 0.003\rho_{ij} - 0.008\rho_{ij}^2 + 0.014\rho_{ij}^2 \\ & + 0.173\delta_j^2 - 0.296\rho_{ij}\delta_j \end{split}$	$\begin{split} & 1.109 - 0.152\rho_{ij} + 0.36\delta_j + 0.13\rho_{ij}^2 \\ & + 0.455\delta_j^2 - 0.728\rho_{ij}\delta_j \end{split}$	$\begin{split} & 1.147 + 0.145\rho_{ij} + 0.271\delta_j + 0.01\rho_{ij}^2 \\ & + 0.459\delta_j^2 - 0.467\rho_{ij}\delta_j \end{split}$		
	R		$\begin{split} & 1.011 - 0.001 \rho_{ij} + 0.014 \delta_j + 0.004 \rho_{ij}^2 \\ & + 0.231 \delta_j^2 - 0.13 \rho_{ij} \delta_j \end{split}$	$\begin{split} & 1.014 + 0.001 \rho_{ij} - 0.007 \delta_j + 0.002 \rho_{ij}^2 \\ & + 0.126 \delta_j^2 - 0.09 \rho_{ij} \delta_j \end{split}$	$\begin{split} & 1.036 - 0.038 \rho_{ij} + 0.266 \delta_j + 0.028 \rho_{ij}^2 \\ & + 0.383 \delta_j^2 - 0.229 \rho_{ij} \delta_j \end{split}$	$\begin{split} & 1.047 + 0.042 \rho_{ij} - 0.212 \delta_j + 0.353 \delta_j^2 \\ & - 0.13 \Phi_{ij} \delta_j \end{split}$		
	T1L		$\begin{split} & 1.029 + 0.001 \rho_{ij} + 0.014 \delta_j + 0.004 \rho_{ij}^2 \\ & + 0.231 \delta_j^2 - 0.197 \rho_{ij} \delta_j \end{split}$	$\begin{split} &1.031 + 0.001 \rho_{ij} - 0.007 \delta_j + 0.003 \rho_{ij}^2 \\ &+ 0.131 \delta_j^2 - 0.132 \rho_{ij} \delta_j \end{split}$	$\begin{split} & 1.056 - 0.06\rho_{ij} + 0.263\delta_j + 0.02\rho_{ij}^2 \\ & + 0.383\delta_j^2 - 0.332\rho_{ij}\delta_j \end{split}$	$\begin{split} & 1.064 + 0.065 \rho_{ij} - 0.21\delta_j + 0.003\delta_j^2 \\ & + 356\delta_j^2 - 0.211 \rho_{ij}\delta_j \end{split}$		
	T1S		$\begin{split} \hline & 1.029 + 0.001 \rho_{ij} + 0.014 \delta_j + 0.004 \rho_{ij}^2 \\ & + 0.233 \delta_j^2 - 0.197 \rho_{ij} \delta_j \end{split}$	$\begin{split} & 1.031 - 0.001 \rho_{ij} - 0.007 \delta_j + 0.003 \rho_{ij}^2 \\ & + 0.131 \delta_j^2 - 0.132 \rho_{ij} \delta_j \end{split}$	$\begin{split} & 1.056 - 0.06 \rho_{ij} + 0.263 \delta_j + 0.028 \rho_{ij}^2 \\ & + 0.383 \delta_j^2 - 0.332 \rho_{ij} \delta_j \end{split}$	$\begin{split} & 1.064 - 0.065\rho_{ij} - 0.21\delta_j + 0.003\delta_j^2 \\ & + 356\delta_j^2 + 0.211\rho_{ij}\delta_j \end{split}$		

(5) CAT5

(0) 01110					
		L	G	T2L	T3S
L		$\frac{ln (\!\!\!\! l + \rho_{ij} \delta_i \delta_j)}{\rho_{ij} \sqrt{ln (\!\!\!\! l + \delta_i^2) ln (\!\!\!\! l + \delta_j^2)}}$	$\begin{split} &1.001+0.033\rho_{ij}+0.004\delta_i-0.01\\ &+0.223\delta_i^2+0.13\delta_j^2-0.104\rho_{ij}\delta_i+\\ &-0.119\rho_{ij}\delta_j \end{split}$	$\begin{split} &1.026 + 0.082\rho_{ij} - 0.019\delta_i - 0.222\delta_j \\ &+ 0.288\delta_i^2 + 0.379\delta_j^2 - 0.104\rho_{ij}\delta_i + 0 \\ &- 0.277\rho_{ij}\delta_j \end{split}$	$\begin{split} &1.031+0.052\rho_{ij}+0.011\delta_i-0.21\delta_j+0.0028_i\\ &+0.22\delta_i^2+0.35\delta_j^2+0.005\rho_{ij}\delta_i+0.009\delta_i\delta_j\\ &-0.174\rho_{ij}\delta_j \end{split}$
G	$T_{ij} = f(\rho_{ij}\delta_i,\delta_j)$		$\begin{split} & 1.002 + 0.022\rho_{ij} - 0.012(\delta_i + \delta_j) \\ & + 0.125(\delta_i^2 + \delta_j^2) - 0.077\rho_{ij}\delta_i - 0 \\ & + 0.014\rho_{ij}\delta_j \end{split}$	$\begin{split} & 1.029 + 0.056\rho_{ij} - 0.03\delta_i + 0.225\delta_j + \\ & + 0.174\delta_i^2 + 0.379_j^2 - 0.313\rho_{ij}\delta_i + 0. \\ & - 0.182\rho_{ij}\delta_j \end{split}$	$\begin{split} & 1.032 + 0.034 \rho_{ij} - 0.007 \delta_i - 0.202 \delta_j + 0.123 \\ & + 0.339 \delta_j^2 - 0.006 \rho_{ij} \delta_i + 0.003 \delta_i \delta_j \\ & - 0.111 \rho_{ij} \delta_j \end{split}$
T2L				$\begin{split} & 1.086 + 0.054\rho_{ij} + 0.104(\delta_i + \delta_j) + 0.055\rho_{ij}^2 \\ & + 0.662(\delta_i^2 + \delta_j^2) - 0.57\rho_{ij}(\delta_i + \delta_j) + \\ & 0.203\delta_i\delta_j - 0.02\rho_{ij}^3 - 0.218(\delta_i^3 + \delta_j^3) \\ & - 0.371\rho_{ij}(\delta_i^2 + \rho_{ij}\delta_j^2) + 0.257\rho_{ij}^2(\delta_i + \delta_j) \\ & + 0.141\delta_i\delta_j(\delta_i + \delta_j) \end{split}$	$\begin{split} & 1.065 + 0.146\rho_{ij} + 0.241\delta_i - 0.259\delta_j + 0.013\rho_{ij}^2 \\ & + 0.372\delta_j^2 - 0.435\delta_j^2 + 0.005\rho_{ij}\delta_i \\ & + 0.034\delta_i\delta_j - 0.481\rho_{ij}\delta_j \end{split}$
T3S					$\begin{split} & 1.063 - 0.004\rho_{ij} - 0.2(\delta_i + \delta_j) - 0.01\rho_{ij}^2 \\ & + 0.337(\delta_i^2 + \delta_j^2) + 0.007\rho(\delta_i + \delta_j) + \\ & + 0.007\rho_{ij}(\delta_i + \delta_j) - 0.007\delta_i\delta_j \end{split}$

圖 2.2 模式發展過程

 $D_x^{-l/2}$, V^t , A^t : Parameters of mulitvariate Monte Carlo simulation method Transformation from non-normal space to standard normal space — — Generation of non-normal multivariate random variables

圖 2.3 多變量蒙地卡羅 MMCS 方法之模擬程序(參數D_x^{-1/2}, V^t, Λ^t之推 求請參見附錄)

圖 2.4 降雨事件之無因次化

圖 2.5 降雨序列之模擬過程

第三章 採用日雨量之時雨量頻率分析模式之建置

本章主要發展一套藉由日雨量資料推估不同延時(小時)之年最大降雨 量分位數,也就是推求不同重現期距之降雨量之模式,此模式之基本概念 為建立日雨量及時雨量分位數(Quantile)之轉換機制,此機制主要包含三部 份:(1)降雨事件之分類;(2)日雨量與時雨量分位數關係式之建立;及(3) 以日雨量為基礎之時雨量機率分佈函數之推導。

3.1 降雨事件之分類

根據降雨發生時間,可將降雨事件區分成完整降雨事件(Complete Storm Event)與部份降雨事件(Partial Storm Event)二類(如圖 3.1)。所謂完整降雨事 件為降雨發生與結束時間皆在同一天;而部份降雨事件發生與結束時間並 不在同一日。一般而言,若將所有降雨事件視為完整事件,也就是只從單 日的降雨紀錄中選取短延時(2hr≤t<24hr)最大降雨量,則可能發生因忽略 跨日的部份降雨事件導,致沒選取真正的年最大降雨量,而影響了水文分 析之結果,例如低估降雨量-頻率關係。為了減少此類誤差。本研究將根據 完整事件及部份事件之定義,配合降雨發生時間及降雨延時,將降雨事件 區分為以下類型:

- (1) 單日降雨事件(Single-rainy-day Events):所有降雨事件之開始與結束時間皆在同一日,且前後二日並其他無降雨事件發生。
- (2) 二日連續降雨事件(Two-consecutive-rainy-day Event):所有降雨事件之開始與結束時間皆在連續二日內,且前後二日並無降雨事件發生。
- (3) k日連續降雨事件(k-consecutive-rainy-day Event):所有降雨事件
 皆發生在連續k日內(k≥3)。

上述各類降雨事件可參見圖 3.2。

3.2 時雨量與日雨量分位數關係之建立

3.2.1 降雨量分位數之推求

在建立日雨量與時雨量分位數相關式前,需先由合適的機率分佈函數 推求日雨量與不同延時之時雨量分位數。其中最適合的機率分佈函數一般 可由合適度準則(Goodness-of-fit Criteria)決定,但如同 2.2 中所提及不同合 適度可能得到不一致的檢定結果。為避免此一問題,本文應用楊錦釧等 (1997)所發展以八種常用的機率分佈函數(如下所示)為基礎之權重頻率曲 線(Weighted frequency curve)法。

- (1) 常態分佈(Normal distribution)
- (2) 對數常態分佈(Log-normal distribution)
- (3) 皮爾遜分佈(Pearson distribution)
- (4) 對數皮爾遜分佈(Log-Pearson distribution)
- (5) 伽瑪分佈(Gamma distribution)
- (6) 極端值第 I 型分佈(Generalized Extreme value distribution)
- (7) 帕爾多分佈(Generalized Pareto distribution)
- (8) 邏輯分佈(Generalized logistic distribution)

各分佈函數之定義及其參數與各階乘積動差之關係請參見表 3.1。雖使用 權重頻率曲線可解決因檢定合適分佈所產生的不確定性,但仍存在因推估 分佈函數參數所產生的不確定性。造成此不確定性之原因主要為過去在推 估各分佈函數之參數時大多使用乘積動差 (Product Moments),但因乘積動 差之誤差會隨階數增加而提高,為此 Hosking(1987)提出 L-動差(L-moments) 來解決此類偏差可獲得得相當不錯的結果。基於上述原因,本文將採用權 重頻率曲線法及 L-動差法推求 k 日連續降雨事件總雨量及其所對應的 t 小 時最大降雨量之分位數。現將 L-動差法及頻率曲線法之理論說明如下,

3.2.2 L-動差法(L-moments method)之簡介

L-動差是由 Hosking (1986)所提出一種順序統計量(Order Statistics)之線

性組合。相關文獻(Hosking, 1986, 1990, 1992及 1997; Vogel及 Neil, 1993; 張斐章等, 1995; 王如意等, 1999)顯示 L-動差不僅應用在估計離散資料之 分位數時比傳統乘積動差為優,且其計算結果較無偏差(Unbiased)。此外 Hosking 亦更進一步證明在樣本數少時,線性動差估計參數比最大概似 (Maximum likelihood)法較為準確。

第 r 階 L-動差 λ_r 定義如下

$$\lambda_{r} = \frac{1}{r} \sum_{k=1}^{r-1} \left[(-1) \binom{r-1}{k} E(X_{r-k:r}) \right], \quad r = 1, 2, \dots$$
(3.1)

式中E(X_{r-kr})表示每次由母體中抽出 r 個樣本,按小至大排序中第(r-k)個樣本之期望值。L-動差與乘積動差相似,不同階動差比率可定義為

L- CV :
$$\tau_2 = \frac{\lambda_2}{\lambda_1}$$
 (3.2a)
L-Skewness : $\tau_2 = \frac{\lambda_3}{\lambda_2}$ (3.2b)

L-Kurtosis :
$$\tau_2 = \frac{\lambda_4}{\lambda_2}$$
 (3.2c)

雖使用(3.1)式推估機率分佈函數參數相當複雜且困難,但可透過L-動差跟 權重機率動差(Weighted Probability Moments)之關係式,來簡化推導過程。 權重機率動差係由 Greewood 等(1979)推導,其定義為

$$M_{p,r,s} = E\{X^{p}[F(X)]^{r}[1-F(X)]^{s}\}$$
(3.3)

式中 p,r,s 為實數若令 s=0,則 $M_{p,r,0}$ 即為傳統的乘積動差。若令 p=1 則(3.3) 式可形成一線性型式,若另令 $\alpha_s = M_{1,0s}$ 及 $\beta_r = M_{1,r,0}$,則可得

$$\alpha_{s} = M_{1,0,s} = E\{X[1 - F(X)]^{s}\}, s = 0,1,2,...$$
 (3.4a)

$$\beta_{\rm r} = M_{1,{\rm r},0} = E\{X[F(X)]^{\rm r}\}, \ {\rm r} = 0,1,2,\dots$$
(3.4b)

Hosking 用 β_r 來建立 L-動差跟權重機率動差之關係式,即將n 個獨立樣本 按小至大排序,即 $X_{(n)} \leq X_{(n-1)} \leq ... \leq X_{(2)} \leq X_{(1)}$,則小於或等於第j 個順序統 計量的機率 $F[X_{(i)}]$ 可由點繪公式(如 3.5 式)求得,

$$F[X_{(j)}] = 1 - \frac{j-a}{n+b}, \ a \ge 0, \ b \ge 0$$
(3.5)

當 a=0 且 b=1 時, (3.12)式為常用的 Weibull 公式, 而 a=0.35 及 b=0 時具 有較小的誤差(Hosking, 1986)。L-動差可用權重機率動差表示,

$$\lambda_{r+1} = \sum_{k=0}^{r} P_{r,k}^{*} \beta_{k} = (-1)^{r} \sum_{k=0}^{r} P_{r,k}^{*} \alpha_{k}, \quad r = 0, 1, 2, \dots$$

$$P_{r,k}^{*} = (-1)^{r-k} {r \choose k} {r+k \choose k}$$
(3.6)

則前四階之L-動差(λ_i,i=1, 2, 3, 4)可表示為

$$\lambda_{1} = \beta_{0}$$

$$\lambda_{2} = 2\beta_{1} - \beta_{0}$$

$$\lambda_{3} = 6\beta_{2} - 6\beta_{1} + \beta_{0}$$

$$\lambda_{4} = 20\beta_{3} - 30\beta_{2} + 12\beta_{1} - \beta_{0}$$
(3.7)

因 β_r 之 樣 本 估 計 量 b_r 可 表 為 $b_{r} = \frac{1}{n} \sum X_{(i)} \{ F[X_{(j)}] \}^{r}$ (3.8) 則 前 四 階之 L-動 差 樣 本 估 計 值 (1_i, i = 1, 2, 3, 4) 為 $l_{1} = b_{0}$ $l_{2} = 2b_{1} - b_{0}$ $l_{3} = 6b_{2} - 6b_{1} + b_{3}$ (3.9)

$$l_3 = 20b_2 = 30b_1 + b_0$$

 $l_4 = 20b_3 - 30b_2 + 12b_1 - b_0$

且L-動差比率樣本估計值為

$$t_{2} = \frac{l_{2}}{l_{1}}$$

$$t_{3} = \frac{l_{3}}{l_{2}}$$

$$t_{4} = \frac{l_{4}}{l_{2}}$$
(3.10)

Hosking(1986)與 Stedinger 等(1993)已推導各機率分佈參數與各階 L-動 差之關係式(如表 3.1),因此本文將採用由(3.16)及(3.17)式所推導各階 L-

動差與 3.2.3 節所列八種機率分佈函數參數之關係式來(如表 3.2)推估雨量 分位數。

3.2.3 權重頻率曲線法(Weighted frequency curve method)之簡介

權重頻率曲線法基本理論為先假設每一分佈皆為合適分佈,應用機率 點繪法,推估各資料樣本點之相對發生機率 p,並將此機率 p 代入假設的 分佈中推得分位數,最後將此分位數與樣本代入不同合適度準則,將其所 得計算結果作為權重係數,最後加權總合各分佈之分位數,則可得權重分 位數 X_{nw},其公式如下

$$X_{p,w} = \sum_{i=1}^{M} \left(w_i \times X_{p,i} \right)$$
(3.11)

式中X_{p,i}為第i分佈所得發生機率為p之分位數;及w_i為第i分佈之權重 係數,將不同發生機率之權重分位數組合起來則可得權重頻率曲線。權重 係數之訂定取決於合適度型式。在本文中主要採用表示分位數與樣本的差 異程度之均方誤差(Mean Square error, MSE)為合適度準則(如下式),

$$MSE_{i} = \frac{1}{n} \sum_{j=1}^{n} (X_{(j)} - Y_{(i,j)})^{2} BBB$$
(3.12)

式中,n為資料樣本數;X_{(j}為資料樣本由小至大排列之第j值;及Y_{(i,j}為 假設機率分佈所對應第j值之分位數。若均方誤差愈小者代表其樣本愈接 近於由假設分佈所得理論值,故本文將採用均方誤差(Mean Square error) 倒數為權重係數 W_i,即第i分佈權重係數為

$$w_{i} = \frac{\frac{1}{MSE_{i}}}{\sum_{i=1}^{n} \left(\frac{1}{MSE_{i}}\right)}$$
(3.13)

式中MSE;為第i分佈之均方誤差及n為採用機率分佈函數數目(n=8)。

在發展日雨量為基礎之時雨量頻率分析模式前,需先建立日雨量與不 同延時之時雨量分位數的關係式,也就是推導不同重現期距下k日連續降 雨事件總雨量與其所相對應之t小時最大時雨量之關係(如圖 3.3),可用下 式表示

$$\mathbf{h}_{k,p}^{t} = \mathbf{g}_{k}^{t} \left(\mathbf{d}_{k,p} \right) \tag{3.14}$$

式中 $g_k^t(\bullet)$ 為代表函數; $d_{k,p}$ 及 $h_{k,p}^t$ 分別為在某一發生機率 P 下 k 日連續降 雨事件總雨量與其所相對應 t 小時之雨量。其中發生機率 P 可表示為

$$\Pr(D_{k} \le d_{k}) = \Pr(H_{k,p}^{t} \le h_{k,p}^{t}) = P$$

$$(3.15)$$

Nguyen(1990)曾發表日雨量與時雨量之分位數(Quantile)之關係式如下式

$$\frac{\mathbf{R}_{h,p}}{\overline{\mathbf{R}}_{d}} = \mathbf{a} \left\{ \frac{\mathbf{R}_{d,p}}{\overline{\mathbf{R}}_{d}} \right\}^{b} \qquad \mathbf{E} \mathbf{S}$$
(3.16)

式中 R_d 與 R_h 分別為日雨量與時雨量對應發生機率為 p 之分位數; \overline{R}_d 為日 雨量之平均值。在 Nguyen 的研究中,係採用全部日雨量及不同延時(小時) 時雨量來推得係數 a 及 b,並非由其年最大值所推得,因此,經由(3.16)式 所求得的 $R_{h,p}$ 僅能代表在已知日雨量對應發生機率為 p 之分位數下,所相 對應 t 小時雨量分位數,不能代表為重現期距T = 1/(1-p)之年最大降雨量。 此外,Nguyen 在推估(3.16)式參數 a 及 b 時係用所有日雨量與其所相對應 的不同延時時雨量來率定,此一作法雖可因使用較多的雨量資料而推得較 準確的相關式,但卻是將屬於同一日雨量下所對應不同的 t 小時雨量皆全 應用於參數之率定,造成所推得之(3.16)式並不為日雨量與其所對應 t 小時 雨量之一對一函數關係(即單調函數)。為了改善此缺點,本文將推導 k 日 連續降雨事件總雨量 D_k 與其相對應延時為 t 小時之最大降雨量 H_k^k 之分位 數關係式(如下式),

$$\mathbf{h}_{k}^{t} = \mathbf{g}_{k}(\mathbf{d}_{k}) \tag{3.17}$$

若D_k為k日連續降雨事件之年最大雨量,則由(3.15)式所得之H^t_k必為k日

連續降雨事件之t小時年最大雨量。本文將以(3.14)及(3.16)式為基礎,將 (3.17)式修改為,

$$h_{k,p}^{t} = a(d_{k,p})^{b}$$
 (3.18)

式中a及b為待定係數。

3.3 時雨量頻率分析模式之建置

在推得k日連續降雨事件總雨量及其所相對應t小時最大降雨量分位數 關係式後,接下的工作重點為以此降雨量分位數關係式為基礎,建立以日 雨量資料為基礎之時雨量頻率分析模式,其中依日雨量資料之選取方式, 模式可區分為二類型:(1)選取k日連續降雨之年最大總雨量即以年最大降 雨事件為基礎(Annual-maximum-event, AME, model);及(2)選取所有k日連 續降雨之總雨量即以所有事件為基礎(All-event, AE, model)。各模式推導過 程如下:

3.3.1 年最大降雨事件為基礎 (Annual-maximum-event, AME) 之模式 3.3.1.1 模式推導

假設降雨事件可劃分為 K 種連續降雨日類型,k 日連續降雨事件之年 最大總雨量與其所對應的 t-小時最大降雨量的分位數分別定義為 $D_{max,k}$ 與 $H_{max,k}^{t}$,因 t 小時之年最大降雨量 H_{max}^{t} 為所有連續日降雨事件 t 小時年最 大降雨量之最大值,即 H_{max}^{t} = max $\{H_{max,l}^{t}, H_{max,2}^{t}, ..., H_{max,K}^{t}\}$,則 t 小時之年 最大降雨量 H_{max}^{t} 機率分佈函數可定義為

$$F_{H_{max}^{t}}(h) = Pr(H_{max}^{t} \le h)$$

$$= Pr\left[\left(H_{max,1}^{t} \le h\right) \cap \left(H_{max,2}^{t} \le h\right) \cap \dots \cap \left(H_{max,K}^{t} \le h\right)\right]$$

$$= Pr\left[\bigcap_{k=1}^{K} \left(H_{max,k}^{t} \le h\right)\right]$$
(3.19)

假設不同連續 k 日降雨事件彼此間為統計獨立變數,則(3.19)式可改為

$$F_{H_{max}^{t}}(h) = \prod_{k=1}^{K} Pr(H_{max,k}^{t} \le h)$$
(3.20)

因 k 日連續降雨之年最大總雨量 $(d_{max,k})$ 與其所相對之最大 t 小時雨量 $(h_{max,k}^t)$ 存在一關係式 $h_{max,k}^t = g_k(d_{max,k})$,將其代入(3.20)式可得

$$F_{H_{max}^{t}}(h) = Pr(H_{max}^{t} \le h)$$

$$= \prod_{k=1}^{K} Pr[(H_{max,k}^{t} \le h)]$$

$$= \prod_{k=1}^{K} Pr[(D_{max,k} \le d_{k})]$$
(3.21)

式中d_k為k日連續降雨事件總雨量。則某特定t小時之年最大降雨量(H^t_{max}) 之相對重現期距T可由求解 (3.21)式求得

$$T(h) = \frac{1}{1 - F_{H_{max}^{t}}}$$
(3.22)

AME 模式推導過程可參見圖 3.4。

3.3.1.2 k日連續降雨事件具有零值資料之處理

一般而言,當要求連續降雨天數愈長也就是 k 日愈大者,則可能發生 某些年沒有 k 日降雨事件發生,使得該些年之 k 日連續降雨事件發生次數 為 0,連帶使得其總雨量及所對應 t 小時最大降雨量為零值。在進行統計 分析時,若數列中有零值資料(zero-value data)存在,往往會影響分析結果 包括分位數之推估。為解決此問題,Hosking 及 Walis(1997)發展出可應用 於具有零值資料之混合累積機率分佈函數(Mix cumulated distribution function, MCDF)如下式

$$F(x) = \begin{cases} 0, & , x \le 0\\ p + (1-p)G(x), x > 0 \end{cases}$$
(3.23)

式中F(•)分別代表為混合累積機率函數;p為降雨量為零之機率;及G(•)為 非零值降雨量之累積機率函數。因此本文將採用(3.23)式來解決k日連續降 雨事件降雨量零值問題,以提高 AME 模式推估年最大降雨量分位數之準 確性及可靠度。

3.3.2 所有降雨事件為基礎 (All-event, AE) 之模式

AE 模式不同於 AME 之處在於 AME 模式使用的是年最大值,故其在 推導過程中,可直接應用 k 日連續降雨事件總雨量及其所相對應 t 小時最 大降雨量之年最大值之機率分佈,來推得 T 年 t 小時年最大降雨量。反之, AE 模式主要採用所有降雨事件,其推導過程係以部份延時序列(Partial duration series)原理來建立模式,茲將推導過程說明如下,

3.3.2.1 模式推導

假設1年中共有 n_k 場 k 日連續降雨事件,其總雨量與所相對應之最大 t 小時雨量的分別定義為 $D_{k,i}$ 與 $H_{k,i}^t$ (i=1,2,..., n_k)。因 k 日連續降雨事件之 t 小時年最大降雨量 $H_{max,k}^t$ 為某一年所有 k 日連續降雨事件之t 小時降雨量中 最大者,即 $H_{max,k}^t$ =max $\{H_{k,1}^t, H_{k,2}^t, ..., H_{k,n_k}^t\}$,則 t 小時最大降雨量之機率分佈 函數可定義為 $F_{H_{max}^t}$ (h $|n_1, n_2, ..., n_K$)

$$= \Pr r(\operatorname{H}_{\max}^{t} \leq h | n_{1}, n_{2}, ..., n_{K})$$

$$= \Pr \left[\bigcap_{k=1}^{K} \left(\operatorname{H}_{\max, k}^{t} \leq h | n_{k} \right) \right]$$

$$= \prod_{k=1}^{K} \Pr \left[\left(\operatorname{H}_{\max, k}^{t} \leq h \right) n_{k} \right]$$
(3.24)

其中n_k場之H^t_{ki}(i=1,2,...,n_k)假設為獨立隨機變數且符合同一機率分佈函數,則k日連續降雨事件之t小時年最大降雨量機率分佈函數可定義為

$$\begin{aligned} \Pr\left[\left(H_{\max,k}^{t} \leq h\right) n_{k}\right] &= \Pr\left[\left(H_{k,1}^{t} \leq h\right) \cap \left(H_{k,2}^{t} \leq h\right) \cap \ldots \cap \left(H_{k,n_{k}}^{t}\right) n_{k}\right] \\ &= \prod_{k=1}^{K} \Pr\left(H_{k,i}^{t} \leq h | n_{k}\right) \\ &= \left[\Pr_{r}\left(H_{k}^{t} \leq h\right)\right]^{n_{k}} \end{aligned} (3.25)$$

將(3.25)代入(3.24)式則可得

$$F_{H_{max}^{t}}(h|n_{1}, n_{2}, ..., n_{k}) = \prod_{k=1}^{K} P[(H_{max, k}^{t} \le h)n_{k}] = \prod_{k=1}^{K} [P(H_{k}^{t} \le h)]^{n_{k}} = \prod_{k=1}^{K} [P(H_{k}^{t} \le h)]^{n_{k}}$$

$$= \prod_{k=1}^{K} [F_{H_{k}^{t}}(h)]^{n_{k}}$$
(3.26)

如同 AME 模式, k 日連續降雨事件之總雨量 (d_k) 與其相對之最大 t 小時雨 $=(h_k^t)$ 之分位數存在一關係式如 $h_k^t = g_k(d_k)$, 則(3.26)式可改為

$$F_{H_{max}^{t}} (h | n_{1}, n_{2,...,} n_{k})$$

$$= \prod_{k=1}^{K} \left[F_{H_{k}^{t}} (h) \right]^{n_{k}}$$

$$= \prod_{k=1}^{K} \left[F_{D_{k}} (d_{k} (h)) \right]^{n_{k}}$$
(3.27)

式中 $d_k = g_k^{-1}(h)$ 。假設 k 日連續降雨事件年發生次數之機率為 $Pr(N_k = n_k)$, 則(3.27)式可改寫為

$$F_{H_{max}^{t}}(\mathbf{h}) = \prod_{k=1}^{K} \left\{ \sum_{n_{k}=0}^{\infty} \left[\left[\Pr\left(\mathbf{D}_{k} \leq \mathbf{d}_{k}\right) \right]^{n_{k}} \times \Pr\left(\mathbf{N}_{k} = n_{k}\right) \right] \right\}$$

$$= \prod_{k=1}^{K} \left\{ \sum_{n_{k}=0}^{\infty} \left[\left[F_{\mathbf{D}_{k}}(\mathbf{d}_{k}) \right]^{n_{k}} \times \Pr\left(\mathbf{N}_{k} = n_{k}\right) \right] \right\}$$
(3.28)

同樣地,可運用(3.28)式推得相對應H^t_{max} = h之重現期距T年。AE 模式推 導過程可參見圖 3.5。

3.3.2.2 k 日連續降雨事件發生頻率分佈之推導

由(3.28)式可知若要求得 t 小時之年最大降雨量機率分佈函數,則需要 知道 k 日連續降雨事件年發生次數之機率 Pr(N_k = n_k)。基本上適合 k 日連 續降雨事件年發生次數之機率分佈函數,與第2章模擬降雨事件發生次數 時所採用的機率分佈函數相同(即採用 Poisson 分佈)。但與模擬降雨事件發 生次數不同之處,在於要求連續降雨天數愈長也就是 k 日愈長者,則可能 發生於某些年並沒有 k 日降雨事件發生,使得 k 日連續降雨事件發生次數 為 0。此項差異造成 k 日連續降雨事件年發生次數不符合 Poisson 分佈其平 均值與變異數相等之特性。為了解決此問題, Consul 及 Jain(1973)提出二 參數θ與λ之 Generalized Poisson distribution (GPD)

$$P_{r}\left(N=n\left|\theta,\lambda\right)=\frac{\theta\left(\theta+n\lambda\right)^{n-1}e^{-\theta-n\lambda}}{n!}, \ n=0, \ 1, \ 2, \dots,; \ \lambda \ge 0 \qquad (3.29)$$

式中參數θ與λ可由下式求得

$$E(N) = \frac{\theta}{1-\lambda}; \quad Var(N) = \frac{\theta}{(1-\lambda)^3}$$
(3.30)

GPD 模式之變異數大於、小於或等於平均值取決於參數λ是正值、負值或 等於零,此外,GPD 變數之平均值及變異數與參數θ成正比關係。由於原 本適於 Binomial、Negative Binomial 或 Poisson 分佈的變數,亦可適用於 GPD 模式。因此,為減少因取不適當的機率分佈函數所產生的誤差,本文 將採用 GPD 模式應用於 k 日連續降雨事件年發生次數機率之推求。

3.4 應用 AME 及 AE 模式推導重現期距 T 年 t 小時年最大降雨量

以日雨量為基礎之時雨量頻率分析 (AME 及 AE)模式發展過程中,不 管是(3.21)式及(3.28)式皆由複雜的函數關係所組成,無法直接求解得重現 期距 T 年 t 小時之降雨量,為此本文將應用黃金切割法(Golden section method),配合以下的目標函數

Minimize
$$\varepsilon(h) = \left| \frac{F_{H_{max}^{t}}(h) - \hat{F}_{H_{max}^{t}}(h)}{F_{H_{max}^{t}}(h)} \right|$$
 (3.31)

式中 $F_{H_{max}^{t}}(h)=1-\frac{1}{T}$ 為對應 $H_{max}^{t}=h$ 之特定累積機率;及 $\hat{F}_{H_{max}^{t}}$ 為AME或AE 模式所求得累積機率。當目標函數 ε 小於或等於某一特定標準時,重現期 距T年t小時之降雨量則可求得。其推求步驟如下,

Step[1]: 確定欲求得之t小時年最大降雨量的重現期距T = $\frac{1}{1-F_{H_{max}}}$

Step[2]. 假設年T年t小時之降雨量為 \hat{h}_0 ,代入AME模式即(3.21)式或AE 模式即(3.28)式求得其相對累積機率 \hat{F}_{μ} (\hat{h}_0)。 Step[3]: 計算其所對應之目標函數值 $\epsilon(\hat{h}_{o})$ 。

表 3.1 不同機率分布函數之定義及其參數與各階乘積動差之關係表

機率分布	函數型式	參數與乘積動差關係
常態分布 (Normal distribution)	$f(x) = \frac{1}{\sqrt{2\pi\sigma_x}} \exp\left\{-\frac{(x-\mu_x)^2}{2\sigma_x^2}\right\}$	
二參數對數常態分布 (Lognormal distribution)	$f(y) = \frac{1}{e^{y}\sqrt{2\pi}\sigma_{y}} \exp\left\{-\frac{(y-\mu_{y})^{2}}{2\sigma_{y}^{2}}\right\}$ $y = \ln(x)$	$\mu_{y} = \overline{y}$ $\sigma_{y} = S_{y}$
皮爾遜 III 型分布 (Pearson type III distribution)	$\begin{split} f(x) &= \frac{1}{\left \beta\right \Gamma(\alpha)} \left[\frac{x-\xi}{\beta}\right]^{\beta-1} exp\left\{-(\frac{x-\xi}{\beta})\right\} \\ x &> \theta \end{split}$	$\alpha = \frac{S_x}{\sqrt{\beta}} \times \frac{ g_x }{g_x}$ $\beta = \left[\frac{2}{g_x}\right]^2$ $\zeta = \overline{x} - S_x \sqrt{\beta} \times \frac{ g_x }{g_x}$
對數皮爾遜 III 型分布 (Log-Pearson type III distribution)	$\begin{split} f(y) &= \frac{1}{ \beta \Gamma(\alpha)} \left[\frac{y - \xi}{\beta} \right]^{\beta - 1} \exp\left\{ -(\frac{y - \xi}{\beta}) \right\} \\ y &= \ln(x), y > \theta \end{split}$	$\alpha = \frac{S_{y}}{\sqrt{\beta}} \times \frac{ g_{y} }{g_{z}}$ $\beta = \left[\frac{2}{g_{y}}\right]^{2}$ $\xi = \overline{y} - S_{y}\sqrt{\beta} \times \frac{ g_{y} }{g_{y}}$
伽瑪分布 (Gamma distribution)	$f(x) = \frac{1}{\beta \Gamma(\alpha)} (x/\beta)^{\alpha-1} \exp(-x/\beta)$	$\alpha = \frac{\overline{x}^2}{S_x^2}$ $\beta = \frac{S_x^2}{\overline{x}}$
極端值 I 型分布(甘保分布) (Extreme value type I, EV1, distribution)(Gumbel distribution)	$f(x) = \frac{1}{\alpha} \exp\left[-(\frac{x-\beta}{\alpha}) - \exp\left(-\frac{x-\beta}{\alpha}\right)\right]$	$\alpha = \frac{\sqrt{6}S_x}{\pi}$ $\beta = \overline{x} - 0.5772\alpha$
帕爾多分布 (Generalized Pareto distribution)	$f(x) = \alpha^{-1} (1 - \beta x)^{\beta^{-1} - 1}$	$\overline{\mathbf{x}} = \frac{\alpha}{1+\beta}$ $\mathbf{S}_{\mathbf{x}} = \frac{\alpha}{(1+\beta)\sqrt{1+2\beta}}$
邏輯分布 (Generalized logistic distribution)	$f(x) = \frac{\alpha^{-1}e^{y}}{(1 + e^{y})^{2}}$ $y = (x - \beta) / \alpha$	$\overline{\mathbf{x}} = \beta$ $\mathbf{S}_{\mathbf{x}} = \frac{\alpha \pi}{\sqrt{3}}$
Note:		

 $\bar{\mathbf{x}}$ =sample mean; S_x =sample standard deviation; g_x =sample skewness coefficient

表 3.2 不同機率分布函數之定義及其參數與各階 L-動差之關係表

機率分布	派數型式	參數與Ⅰ-動差關係
常能分布	$\frac{1}{\left(\left(\mathbf{x}-\mathbf{y}\right)^{2}\right)}$	$\lambda_{1} = \mu$
(Normal distribution)	$f(x) = \frac{1}{\sqrt{2\pi}} \exp\left\{-\frac{(x-\mu_x)}{2\pi^2}\right\}$	σ
(i tormar distribution)	$\sqrt{2\pi\sigma_x}$ [$2\sigma_x$]	$\lambda_2 = \frac{\sigma_x}{\sqrt{\pi}}$
一条數對數堂能公布	$\left(\left(-\frac{1}{2} + \frac{1}{2} \right)^2 \right)$	$\mu_{v} = \lambda_{1}$
一学致到数市忽力中 (Lognormal distribution)	$f(y) = \frac{1}{\sqrt{1-x}} \exp\left\{-\frac{(y-\mu_y)}{2x^2}\right\}$	$u = \ln(u_{1}) - \frac{1}{2}\sigma^{2}$
(Lognormal distribution)	$e^{y}\sqrt{2\pi\sigma_{y}}$ [$2\sigma_{y}^{z}$]	$\mu_y = m(\mu_x) = 2^y$
	$y = \ln(x)$	$\lambda_2 = \exp(\mu_y + \frac{\sigma_y}{2}) \left[2\Phi(\frac{\sigma_y}{\sqrt{2}}) - 1 \right]$
皮爾遜 III 型分布	$f(\mathbf{x}) = \frac{1}{\left[\frac{\mathbf{x} - \boldsymbol{\xi}}{2}\right]^{\beta - 1}} \exp\left\{-\left(\frac{\mathbf{x} - \boldsymbol{\xi}}{2}\right)\right\}$	$\lambda_1 = \zeta + \alpha \beta$
(Pearson type III distribution)	$ \beta \Gamma(\alpha)[\beta] \qquad \beta \qquad$	$\lambda_2 = \pi^{-\frac{1}{2}}\beta\Gamma(\alpha + \frac{1}{2})/\Gamma(\alpha)$
	x > 0	$\tau_3 = 6I_{1/3}(\alpha, 2\alpha) - 3$
		$I_v(p,q) = \frac{\Gamma(p+q)}{\Gamma(p)\Gamma(q)} \int_0^v t^{p-1} (1-t)^{q-1} dt$
對數皮爾遜 Ⅲ 型分布	$f(y) = \frac{1}{1} \left[\frac{y-\xi}{y-\xi} \right]^{\beta-1} \exp\left\{ -\left(\frac{y-\xi}{y-\xi} \right) \right\}$	$\lambda_1 = \xi + \alpha \beta$
(Log-Pearson type III distribution)	$\left[\beta\right] = \left[\beta\right] \left[\alpha\right] \left[\beta\right] = \left[\beta\right] $	$\lambda_2 = \pi^{-\frac{1}{2}}\beta\Gamma(\alpha + \frac{1}{2})/\Gamma(\alpha)$
	$y = ln(x), y > \theta$	$\tau_3 = 6I_{1/3}(\alpha, 2\alpha) - 3$
		$I_{v}(p,q) = \frac{\Gamma(p+q)}{\Gamma(p)\Gamma(q)} \int_{0}^{v} t^{p-1} (1-t)^{q-1} dt$
		λ_1 and λ_2 are calculated
		using log-value of x, $y = \ln(x)$
伽瑪分布	$f(x) = \frac{1}{\alpha - \alpha} (x/\beta)^{\alpha - 1} \exp(-x/\beta)$	$\lambda_1 = \alpha \beta$
(Gamma distribution)	$\beta I(\alpha)$	$\lambda_{\alpha} = \frac{\beta \Gamma(\alpha + 5)}{2}$
		$\sqrt[n]{\pi}$ $\sqrt{\pi}\Gamma(\alpha)$
極端值 I 型分布(甘保分布)	$(x-\beta)$ $(x-\beta)$	$\lambda_1 = \beta + 0.5772\alpha$
(Extreme value type I, EV1,	$r(x) = \frac{\alpha}{\alpha} \exp\left[-\frac{\alpha}{\alpha}\right] - \exp\left[-\frac{\alpha}{\alpha}\right]$	$\lambda_2 = \alpha \ln(2)$
distribution)(Gumbel distribution)		-
	$f(\mathbf{x}) = \alpha^{-1} e^{-(1-\beta)\mathbf{y}}$	$\beta = (1 - 3\tau_{\rm e})/(1 + \tau_{\rm e})$
(Generalized Pareto distribution)	$P_{1}^{-1} = 0$	$\alpha = (1 + \gamma)(2 + \gamma)\lambda$
``````````````````````````````````````	$y = -p \log\{1 - p(x - \zeta)/\alpha\}$	$\xi = \lambda_1 - (2 + \gamma)\lambda_2$
		5 - 101 (2 + 1) $102$
مله در داد الله	-1 -(J-R)x	
進與分布 (Generalized logistic distribution)	$f(x) = \frac{\alpha e^{(1-\beta)y}}{(1+e^{-y})^2}$	$\alpha = \frac{\lambda_2 \sin(\beta \pi)}{\beta \pi}$
	$y = -\beta^{-1} \log\{1 - \beta(x - \xi) / \alpha\}$	$\beta = -\tau_3$
		$\xi = \lambda_1 - \alpha [1/\beta - \frac{\pi}{\sin(\beta\pi)}]$







圖 3.3 k 日連續降雨事件總雨量及其延時 t 小時最大降雨量分位數之關係



圖 3.4 AME 模式推導過程



### 第四章 模式應用與驗證

### 4.1 研究區域及資料說明

由第二章及第三章所述之隨機降雨序列模擬機制及採用日雨量之時雨 量頻率分析模式皆需大量的時雨量資料以建立及驗證模式,為了避免因資 料紀錄長度不足而影響了模式推估結果之準確性及可靠度,本文將選取具 有 100 年時雨量紀錄(1884-1990,其中 1940 至 1946 因第二次世界大戰而 中斷紀錄)的香港天文台站(R1)為研究範例。在香港共有 16 個自計雨量站 (如表 4.1),各站之相關位置如圖 4.1 所示。

# 4.2 隨機降雨序列模擬機制之建置

如同第二章所言,在建置隨機降雨序列模擬機制前,必需先設定降雨 事件選取標準。由於第二章時已詳細說明本文主要著重於可能會造成高逕 流量之降雨事件,故選取標準將定為以下三點:(1)降雨間隔時間最小為1 小時(t_{inter-event}≥lhr);(2)事件總降雨量需大於 30mm(D_{event}≥30mm);及(3)每 一事件中之有一段時間,降雨強度最少為10mm/hr(I_{event}≥10mm/hr)。根擬 以上的選取標準總共從香港天文站 100 年時雨量資料中選取了 1690 場降 雨事件,本文將利用此 1690 場降雨事件之特性進行統計分析,並將其分 析結果應用於模式之建立及驗證。

### 4.2.1 降雨特性統計分析

本文除了針對1690場降雨事件之特性分析其統計特性外,亦評估季節 等不確定性對其之影響,期使所建立的模式能準確且合理地衍生降雨序 列。

### 4.2.1.1 降雨事件發生次數

表 4.2 為各月份及乾季(1 月至 3 月及 10 月至 12 月)、雨季(4 月至 9 月)

之降雨事件年發生次數。由此表可看出,夏季(4月至6月)及秋季(7月至9 月)之事件數目明顯高於其他季節,其中雨季之事件數目是乾季的8倍。

為了決定各月份及乾、雨季事件發生數目之合適分佈,本文計算事件 發生數目的統計特性及 Fisher 離散指數(Dispersion index,D₁) 如表 4.3 所 示。若將顯著水準設定為 5%,則符合 Poisson 分佈之可接受範圍為 (χ²_{99,25%} =73.35 ≤ D₁ ≤ χ²_{99,97.5%} =128.76)。而由表 4.3 可看出,12 個月份中只 有一、二、四、五、六、十一及十二月符合 Poisson 分佈,若將降雨序列 分為四季除了春季降雨事件發生數目不為 Poisson 分佈,若將降雨序列 分為四季除了春季降雨事件發生數目不為 Poisson 分佈,其他三季皆可 假設為 Poisson 分佈;但若分為乾、雨季二季,則各季之降雨事件年發生 次數皆符合 Poisson 分佈。因此,若將每年降雨序列分為乾、濕二季,則 皆可採用 Poisson 機率分佈函數配合蒙地卡羅方法分別模擬乾、雨二季之 降雨事件發生數目,並據以衍生所有降雨事件之延時、總雨量、事件間隔 時間及雨型。根據上述結果,本文將全年降雨序列區分為乾季(1月至 3月 及 10 月至 12 月)及雨季(4 月至 9 月)二季,分別選取各季之降雨事件並分 析其之統計特性,以作為隨機降雨序列模擬機制之基礎。

### 1896

### 4.2.1.2 降雨延時、雨量及事件間隔時間

由上節可知,本文將每年降雨序列分為乾季及雨季二季,並進行降雨 特性之統計分析,其結果如表 4.4。如表 4.4 所示,雖乾、雨季之降雨量平 均值相差不大(約為 70mm),但其標準偏差卻相差甚大。此外,亦可看出 降雨延時及間隔時間之平均值、標準偏差及 L-Cv 值皆大於雨季之分析結 果。由上述結果可知,乾季之降雨發生次數雖少於雨季,但其他降雨特性 卻具有較大的變異性。另由事件間隔時間統計分析結果亦可證明,因降雨 事件大多發生在雨季,造成在乾季之事件間隔時間大於雨季。另表 4.4(d) 指出,降雨延時及降雨量具有高度正相關係數(約為 0.7),此結果與水文學 中降雨延時與降雨量成正比關係之觀念相符。此外,雖降雨延時及降雨量 分別與事件間隔之相關係數僅約為 0.1,但其相關性仍不可忽略。綜合上 述統計分析結果可知,降雨延時、降雨量及事件間隔時間互為具有相關性 的多變量。

為了檢定降雨延時、雨量及事件間隔時間之合適機率分佈函數,在此 採用2.2節中提及選取K-S適合度檢定中具有最大p-value 值者為合適分佈 (如表 4.5)。其中要注意的是,雖在水文分析上有相當多的機率分佈函數可 供檢定,但目前本文只考慮四種常用之分佈例如二參數常態分佈(Normal distribution)、二參數對數常態分佈(Log-normal distribution)、二參數 Gamma 分佈及指數分佈(Exponential distribution)等。由表 4.5 可知由 100 年時雨量 資料所得降雨事件中,二參數對數常態分佈為在乾季的降雨延時及降雨量 之合適分佈,而事件間隔時間則符合二參數 Gamma 分佈,此一分析結果 與 Yen 等(1993)採用 Urbana 之時雨量資料中,發現以降雨間隔時間最小值 為1小時選取標準所得的降雨事件,其事件間隔時間之合適分佈為 Gamma 分佈之結論相同。另對於雨季之降雨特性而言,因四種分佈之 p-value 皆 為 0,代表皆不為適合分佈。造成上述現象的原因可能在於雨季之降雨事 件太多,以致於具有大量樣本之降雨特性不易通過 K-S 檢定,另一原因可 能為其合適分佈為目前所考慮的四種分佈之外。因此本文在模擬降雨事件 過程中,若遇到此一問題,將採用乾季的檢定結果,雖然此處理方法可能 會造成模擬上的誤差,但對長期降雨序列之模擬分析而言,此誤差仍在可 接受之範圍。

### 4.2.1.3 降雨雨型

在 2.5 節中所述降雨型態(雨型)分析可分為三部份:(1)雨型之分群與判 識;(2)無因次降雨量 P_x之統計分析;及(3)影響雨型因子之研究。本文將利 用由 100 年時雨量資料所得 1690 場降雨事件,進行上述分析,其結果說 明如下:

(1) 雨型之分群與判識

由 2.5.2 節所述,本文將採用 K-平均(K-means)法並配合歐基里得距離

(MacQueen, 1967)進行雨型之分群,並應用統計套裝軟體 Minitab(Minitab Inc., 1996)進行上述集群分析。由於雨型具有二種不同展現方式,一為無因 次降雨量  $P_{\tau}$ ,另一為無因次累積降雨量  $F_{\tau}$ ,因此將針對  $P_{\tau}$  及  $F_{\tau}$  分別進行分 群,其中採用  $P_{\tau}$  ( $\tau = 1, 2, ..., 10, 11$ )稱為 P-based 降雨座標,另採用  $F_{\tau}$  ( $\tau = 1, 2, ..., 11, 12$ )稱為 F-based 降雨座標。

在應用 K-means 方法進行分群時,通常需先採用試誤 (Trial-and-error) 法來決定集群數目,其作法為嘗試不同分群數目並求得各群無因次降雨量 平均值曲線E, 再藉由觀察各群雨型之無因次累積降雨量平均值曲線分佈 情形,來決定最後之分群數目。本文將分別採用 P-based 及 F-based 降雨 座標將雨型分成5至7群,並將各群雨型分別為定義為五群雨型(5-group pattern), 六群雨型(6-group pattern), 及七群雨型(7-group pattern), 其分群 結果如圖 4.2-4.4。由圖 4.2-4.4 可觀察出,在六群雨型中,類似於均勻分佈 (Uniform type,即P.值均匀地發生於無因次時間內)之雨型在五群雨型中並 未發現,而六群雨型與七群雨型最主要的差別是在於六群雨型中被定義為 中央集中型(Central type)集群(即P,最大值發生於無因次時間之中段),在七 群雨型中被拆開成前進型(Advanced type,即P,尖峰值發生於無因次時間之 前段)及延後型(Delayed type 即P.尖峰值發生於無因次時間之後段)。由於 六群雨型及七群雨型僅有少許的差異,且可將六群雨型可依其尖峰值發生 時間先後,將雨型定義為前進型(A1及A2)、中央型(C)、均勻型(U)、延後 型(D1 及 D2)等六群,基本上上述六群大致雨型已包含了所有降雨在時間 上可能的分佈類型,故本文採用六群雨型。另由圖 4.3 及圖 4.5 可知,採 用 P-based 與 F-based 座標系統所得六群雨型分群結果雖相當接近,但因使 用 F-based 降雨座標系統之各群雨型 $\overline{P}$ 之尖峰值在時間軸上具有較明顯的 差異,且各群雨型分界比較明確。因此,本文將採用由 F-based 降雨座標 所得的六群雨型應用於降雨序列之模擬。

(2) 無因次降雨量Pr之統計分析

根據上節將降雨事件分為六種降雨型態,本節主要計算各群無因次降

雨量( $P_{\tau}, \tau = 1, 2, ..., 12$ )之統計特性(如表 4.6),此外亦檢定各群在無因次降雨量 $P_{\tau}$ 之 Johnson 分佈類型並率定其參數值(如表 4.7)。

(3) 影響雨型因子之研究

由於在進行雨型分群時,係採用各降雨事件之無因次降雨P_c及其累積 雨量F_c,因此被分為同一群雨型之事件彼此可能具有不同的降雨延時及降 雨量,甚致可能是發生於不同季節,因此,雨型之發生可能受降雨延時、 降雨量及季節等因素之影響。本節將評估降雨延時、降雨量及季節(乾雨季) 等因子對雨型發生頻率之影響程度,以利於在進行降雨序列之模擬時,可 選取合適之雨型。

為了檢驗不同降雨延時、降雨量及季節間之各雨型發生頻率的相關 性,本文將採用列聯表(Contingency table)分析來決定不同雨型的發生頻率 是否會受到上述因子之影響。列聯表分析步驟(1)為先整理出各雨型在乾雨 季之不同降雨延時及降雨量程度下之發生頻率;及(2)再利用 γ² 檢定來計算 其 p-value,藉此來判定降雨延時、降雨量及季節與雨型之發生頻率三者彼 此間是否具有相關性。本文將 y² 檢定之顯著水準定為 5%,即若 p-value 小 於 5%則表示雨型之發生與所考慮的因子具有相關性,反之則為獨立。檢 定結果如表 4.7 所示,在表中每一程度區間主要有四數字,由上而下分別 代表發生頻率、總百分比、列百分比、及欄百分比,且在表下方列出γ²檢 定結果包括自由度(Degree of freedom)及 p-value,其中自由度為  $(n_{-1}) \times (n_{-1})$ ,  $n_{+}$ 為列數,  $n_{-}$ 為欄數。由表 4.7 中可看出降雨延時及季節 之 p-value 為 0, 而降雨量之 p-value 雖為 0.02, 但仍小於顯著水準 5%, 證 明雨型之發生頻率與降雨延時、降雨量及季節有關。另外在不同程度的降 雨延時及降雨量區間中,六種雨型的發生頻率並不相同,顯示除了均勻雨 型外,其餘雨型的發生頻率基本上呈現一隨降雨延時及降雨量增加而減少 的趨勢。其中在雨季中各群雨型的發生機率皆大於乾季,此一現象與4.2.1.1 及 4.2.1.2 之分析結果相同。

綜合上述結論可知,在乾、雨季中的各群雨型之發生頻率與降雨延時

及降雨量亦為一具有相關性之多變量。因此,在模擬雨型時並不能獨立衍 生雨型型態,而是應由所模擬之降雨延時及降雨量來決定雨型型態,其決 定方式為先計算不同延時與降雨量區間各雨型發生機率如下式,

$$Q_{i} = \frac{n_{i}}{\sum_{i=1}^{6} n_{j}}, i = 1, 2, ..., 6$$
(4.1)

式中Q_k及n_j分別為在某一延時及雨量區間內之第i群雨型發生機率;及其 事件數目。依據所衍生降雨延時及雨量所落於列聯表中之區間,確定各群 雨型發生機率,再應用多項式分佈(Multinomial Distribution)來決定降雨延 時及雨量模擬值所相對應的雨型型態,進而模擬此一雨型之無因次降雨量 P_r。

(3)模擬雨型之決定

藉由列聯表分析結果(如表 4.7)可知,各類雨型之發生頻率受到降雨延時、降雨量及季節之影響。因此本文將上述各類雨型之發生頻率應用於 在模擬降雨型態之決定,其步驟如下,

Step[2]:應用多項式分佈決定可能發生的雨型型態; Step[3]:進而模擬此一雨型之無因次降雨組體圖。

### 4.2.2 模式驗證

本文將應用所發展之隨機降雨序列模擬機制衍生降雨特性,並予以串 連組合而成一合成降雨序列,並且從中選取不同延時(t=1-hr、2-hr、6-hr、 12-hr及24-hr)之年最大降雨量,分別計算其統計特性,並據以推求降雨量 -延時-頻率曲線(Rainfall depth-duration-frequency, DDF, curves),以評估降 雨序列模擬機制模擬成效。

### 4.2.2.1 驗證方法及步驟

Step[1]: 就衍生的降雨延時與雨量配合列聯表來決定各類雨型發生機 率;

模式評估重點為:(1)驗證模式保存降雨特性及年最大降雨量統計特性 之能力;(2)測試模式在增加合成雨量紀錄長度下可改善降雨頻率分析準確 性及可靠度之功能。其驗證步驟如下所示:

- Step [1]:由完整n年降雨序列資料中,根據所定的降雨事件選取之標準, 蒐集所有事件之降雨特性及不同延時之年最大降雨量,計算其統 計特性,並由權重頻率曲線法求得T年t小時年最大降雨量分位 數,將上述分析結果定義為θ。。
- Step [2]:為了增加合成降雨資料年限且保存它的時間序列之結構,本文將 從完整n年降雨資料中,選取前m(m≤n)年資料(定義為現有時 雨量資料),如同 Step[1]所述,根據所定的降雨事件選取標準, 蒐集在現在所有事件之降雨特性及年最大降雨量,計算其統計 特性,並亦應用權重頻率曲線法求得T年t小時年最大降雨量分 位數,定義為θ_{m,0}。

Step [3]:根據m年現有降雨特性之統計特性,代入隨機降雨序列模擬機制 來衍生(n-m)年之降雨序列,並與原有m年現有降雨資料,重新 合成一n年降雨序列。由其所推得降雨特性與最大降雨量之統 計特性及其分位數定義為θ_{m,n-m}。

Step [4]:計算由 Step[2]及 Step[3]所求得 $\theta_{m,0}$ 及 $\theta_{m,n-m}$ 與由 n 年時雨量資料所 得結果 $\theta_n$ 之相對誤差(如 4.2 式),

$$\varepsilon_{\theta_{m,0}} = \left| \frac{\theta_n - \theta_{m,0}}{\theta_n} \right| \times 100\%$$
(4.2a)

$$\varepsilon_{\theta_{m,n-m}} = \left| \frac{\theta_n - \theta_{m,n-m}}{\theta_n} \right| \times 100\%$$
(4.2b)

Step [5]: 重覆 Step[2]至 Step[4] L 次, 求得 L 組θ_{m0} 及θ_{mn-m} 與其相對之誤

差值  $\epsilon_{\theta_{m,0}}$  與  $\epsilon_{\theta_{m,n-m}}$ 。

Step [6]: 分別計算 $\theta_{m,0}$ 及 $\theta_{m,n-m}$ 與其相對誤差 $\varepsilon_{\theta_{m,0}}$ 與 $\varepsilon_{\theta_{m,n-m}}$ 之統計特性與 95%信賴區間(Confidence interval)。 由於本文是採用香港天文台 100 年時雨量資料故 n=100,且從 100 年時 雨量資料中分別選取 20 年、50 年及 80 年當作已知現有雨量資料即 m=20, 50 及 80,並將模擬次數定為 50 (L=50)。將上述基本資料代入模式驗證步 驟,以評估模式模擬降雨序列之成效,其驗證過程請參見圖 4.6。茲將模 式驗證及評估結果說明如下。

### 4.2.2.2 降雨特性統計特性之比較

在進行模式驗證前,先進行由不同現有時雨量資料年限(m=20、50 及 80 年)所得降雨特性之統計分析,其結果如表 4.9 至 4.10 所示。由表 4.9 降雨事件年發生次數之離散指數表(Dispersion index)可知,三種現有時雨 量資料在乾、雨季的降雨事件年發生次數之 p-value 皆大於 5%,表示事件 發生次數皆符合 Poisson 分佈。另由表 4.10 K-S 檢定結果發現,不論現有 時雨量資料年限為何,Lognormal 分佈皆為降雨延時及降雨量之合適分 佈,而事件間隔時間之合適分佈為 Gamma 分佈,此一檢定結果與 4.1.2.2 採用 100 年時雨量資料所得結論相同。

表 4.11 為 100 年實測降雨特性與模擬合成降雨特性前二階乘積動差 (Product moments)與 L-動差(L-moments)之比較。由此表可知,合成模擬降 雨特性之平均值接近 100 年實測降雨特性。另外,雖但在高階動差 (Skewness 及 Kurtosis)則二者相差甚大,但合成模擬降雨特性之標準偏差 及 L-Cv 值卻相當小,顯示由模式所得合成降雨特性之變異性亦相當小, 故模式應可模擬出合理且具有高可靠度之降雨特性。另由表 4.12 亦可看出 合成降雨特性平均值相對於 100 年時雨量資料所得結果之相對誤差 ε_{θmam},隨著現有雨量紀錄長度 m 增加而減小,代表實測時雨量資料年限 愈長者,模式所得模擬結果之可靠度愈高。

另要說明的是在由不同現有時雨量資料推求六群雨型之 Johnson 分佈 類型及其四參數值時,不再針對由現有時雨量資料中之降雨事件進行雨型 分群,而是直接採用 100 年 1690 場降雨事件分群結果,也就是,直接依

據 1690 場事件所得雨型分群結果來進行雨型分類,並據以計算各群雨型 之統計特性。

### 4.2.2.3 年最大降雨量統計特性之比較

本節中不同延時(t=1-hr、2-hr、6-hr、12-hr及24-hr)之年最大降雨量統 計特性之比較重點主要分為兩部份,一為由現有時雨量資料與由模擬合成 降雨序列所得年最大雨量,分別與100年時雨量資料所得年最大降雨量比 較,另一為針對年最大降雨量之統計特性作一比較(結果如表4.13所示)。 由表4.13可知,由模擬合成降雨序列與100年時雨量資料所得年最大降雨 量之間的差異程度,雖隨採用降雨延時而有所不同,但基本上由其所得年 最大降雨量之平均值、標準偏差及L-Cv之平均值與100年資料所得之結 果相當接近,但在第三階動差(偏態係數)及第四階動差(峰度係數)則差異甚 大。上述結果顯示模式雖在年最大降雨量的高階動差之模擬成效不佳,但 仍較由現有時雨量資料所得結果更接近於100年資料之分析結果,尤其是 對於短現有雨量資料年限(m=20年)之長降雨延時而言,二者差異更加明 顯。

### 4.2.2.4 不同重現期距降雨量之比較

由上節結果可知,雖模式在模擬 1 小時年最大降雨值之準確性差,但 由水文方程式X_T = μ+σK_T(其中K_T稱為頻率因子,其算法依機率分佈函數 而有所不同,通常K_T與水文資料各階動差有關),可看出年最大降雨量分 位數推估之準確性基本上並不能僅靠平均值或標準偏差單一統計量可以 決定,而應是由不同階之統計動差所共同決定,因此本節將針對不同延時 之年最大降雨量分位數加以比較,評估模式推估年最大降雨量分位數之成 效。其評估方式為分別由 100 年、現有時雨量資料及模擬合成降雨序列三 種不同資料,應用權重頻率曲線法推估降雨 DDF 曲線(請參閱圖 4.7-4.9)。 在圖 4.7-4.9 中除了由 100 年及現有時雨量資料所得降雨 DDF 曲線(分別定 義為 100-yrs 及 m-yrs) 外,亦有由 50 組模擬合成降雨序列所得降雨 DDF

10

曲線(定義為合成降雨 DDF 曲線)之平均值,中位數及 90%信賴區間上下 限。由圖 4.7-4.9 可發現,現有時雨量年限 20 年及 50 年之 6-hr、12-hr 及 20-hr 降雨 DDF 曲線皆位於 90%信賴區間之外,顯示採用現有時雨資料所 推得之降雨 DDF 曲線具有相當大的不準確,而此不準確可能係因資料年 限不足所引起。此外,由圖亦可看出合成降雨 DDF 曲線平均值與中位數 較 m-yrs 降雨 DDF 曲線更接近於接近 100-yrs 降雨 DDF 曲線,且 100-yrs 降雨 DDF 曲線基本上皆位於合成降雨頻率曲線 90%信賴區間內,因此證 明模式有相當大的機率可模擬近似於 100-yrs 降雨 DDF 率曲線。由圖 4.7-4.9 亦可發現在高重現期距(例如 T=200yr)及短降雨延時(例如 t=1-hr 及 2-hr)合成之合成降雨 DDF 曲線平均值於中位數,顯示由合成降雨序列所 得之降雨量分位數呈現正偏(Positive-skewed)趨勢,代表模式求得高分位數 之機率相當小。

另由圖 4.10-4.12 為採用(4.2)式所求得不同延時之年最大降雨量分位數 之相對誤差,在(4.2)式中θ分別為由 100 年、三種現有時雨量資料及模擬 合成降雨序列所求得之降雨 DDF 曲線。由圖可看出,在同一重現期距及 降雨延時下,合成降雨頻率曲線平均值及中位數之相對誤差皆小於由現有 時雨量資料所得結果,證明隨機降雨序列模擬機制可以有效地藉由增加合 成降雨序列而提高降雨頻率分析結果之可靠度。然而上述分析結果雖顯示 合成降雨 DDF 曲線優於 m-yrs 曲線,但由圖 4.10-4.12 亦可看出在低重現 期距(尤其當重現期距小於現有雨量資料時),例如 m=20 年時T≤5-yr、 m=50 年時T≤10-yr及 m=80 年時T≤50-yr,合成降雨 DDF 曲線之相對 誤差反而比 m-yrs 曲線之結果為高,探究其原因在於現有時雨量紀錄年限 已大於低重現期距,故已有足夠的實測資料可供頻率分析所用,自然其分 析結果準確性高,此時若加入合成降雨序列並無法提高頻率分析結果之準 確性。

綜合而論,在大多數之模擬案例中,合成降雨 DDF 曲線中位數比平均 值曲線更接近於 100-yrs 降雨頻率曲線,因此在進行需要不同重現期距(尤

其是高重現期距)降雨量之水文分析時(例如降雨-逕流分析),可將合成降雨 DDF曲線之中位數視為具有代表性之降雨頻率曲線,並將其代入水文分析 中以提高分析結果之準確性。

### 4.3 採用日雨量之時雨量頻率分析模式

上節主要驗證隨機降雨序列模擬機制在增加合成降雨序列之成效,本 節將針對利用日雨量資料之時雨量頻率分析模式進行驗證。

### 4.3.1 降雨事件之分類

在驗證模式前,需先根據 3.1節 k 日連續降雨事件之定義,決定最長連 續降雨天數 k 日,並依此將 1690 場降雨事件之進行分類。由於本文將屬 同一連續日降雨類型的事件假設具有相同的統計特性,也就是事件的降雨 量應符合同一機率分佈函數。根據此一特性本文將採用檢驗二變數是否具 有相同機率分佈函數之二變數 K-S 檢定,來決定連續日降雨事件之最長連 續降雨天數 k 日。其檢定方式為若由 K-S 檢定所得之 p-value 值大於設定 的顯著水準α,則代表二連續日降雨事件之降雨量屬於同一分佈,也就是 可將此二種連續日降雨事件合併成一連續日降雨事件,其結果如表 4.14(1) 所示。由此表可知,除了 3 日及 4 日以上之事件組合其 p-value 為 0.02, 其他事件組合之 p-value 皆為 0。若將顯著水準α設定為 0.05,則四種降雨 事件分類結果,皆可被接受。但顯著水準α若為 0.01,則可將連續 3 日事 件跟連續 4 日以上事件合併成一降雨事件,而1 日及 2 日連續降雨事件則 維持其分類結果。

另本文在考量實測雨量資料紀錄年限對降雨事件分類之影響,將從 100 年實測降雨量資料中,隨機選取 50 組連續 10 年、20 年及 30 年現有時雨 量資料,同樣應用 K-S 檢定決定其最長降雨天數,其結果如表 4.14 所示。 在表 4.14(2)中的 Mean 值係代表 50 組隨機選取現有降雨資料中經 K-S 檢 定所得不同連續日降雨事件組合之 p-value 平均值,而  $\Pr(p_{value} \leq \alpha)$ 則為 50

組之 p-value 小於或等於顯著水準 $\alpha = 5\%$ 之機率。由表中可看出當降雨資 料年限大於 10 年,則1日、2日與3日降雨事件之 p-value 平均值遠小於 5%且 Pr( $p_{value} \le \alpha$ )大於 95%,相反地3日與4日以上之降雨事件 p-value 平 均值大於 5%而 Pr( $p_{value} \le \alpha$ )小於 20%,顯示 20 年及 30 年現有時雨量資料 之降雨事件與 100 年資料一樣,可分成1日、2日及3日以上等三種連續 日降雨事件。但由 10 年現有時雨量資料所得結果,顯示2日、3日及4日 以上之事件的 p-value 平均值均大於 5%而 Pr( $p_{value} \le \alpha$ )約為 50%,表示有 50%之 p-value 大於 5%,故2日、3日及4日以上連續降雨事件可合併成 -2日以上連續降雨事件。

因此,根據上述結果,若現有時雨量紀錄年限小於10年,則可將降雨 事件分為單日降雨事件(single-rainy-day event)及2日以上連續降雨年 (more-than-one consecutive-rainy-day events),但若紀錄年限大於10年則可 分成單日、2日(two-consecutive-rainy-day events)、及3日以上 (more-than-two consecutive-rainy-day events)等三種連續降雨事件。本文將 依上述降雨事件之分類結果,各自建立其降雨量及其不同延時t小時最大 降雨量之關係式,作為發展藉日雨量於時雨量頻率分析模式之基礎。

# 4.3.2 k 日連續降雨事件總雨量及其對應 t 小時最大降雨量分位數關係式 之建立

由 AME 模式之(3.21)式及 AE 模式之(3.28)式推導過程可知, k 日連續 降雨事件之降雨量(d_{k,p})及其對應 t 小時最大降雨量分位數(h^t_{k,p})之關係式 需前先給定,其中 p 值為某一累積機率,其關係式可表為

 $\mathbf{h}_{k,n}^{t} = \alpha \left( \mathbf{d}_{k,n} \right)^{\beta} \tag{4.3}$ 

現以100年時雨量資料中所得2日連續降雨事件之1小時最大降雨量分位 數(h^t_{k,p})與經由(4.3)式所求得之分位數ĥ^t_k為例(如圖4.13所示),參數α與β 經由迴歸分析分別為0.735及0.787。由圖4.13可發現ĥ^t_{k,p}與h^t_{k,p}有明顯的 差異,特別是在高重現期距。另比較不同連續日降雨事件之1小時最大降

雨量分位數(如圖 4.14 所示),由圖 4.14 可知不同連續日降雨事件之總雨量 ( $d_{k,p}$ )及其對應 t 小時最大降雨量分位數( $h_{k,p}^{t}$ )之間並不具一致的關係,也就 是變數( $d_{k,p}$ ,  $h_{k,p}^{t}$ )之關係式型式隨著 k 日連續降雨事件及降雨延時而有所 不同。因此,若要用單一關係式如(4.3)式來描述( $d_{k,p}$ ,  $h_{k,p}^{t}$ )之關係是不實 際。為了避免選用不適當的( $d_{k,p}$ ,  $h_{k,p}^{t}$ )相關式而影響模式之準確性,本文將 採用無參數內插法,藉由實測 k 日連續降雨事件資料所建立之( $d_{k,p}$ ,  $h_{k,p}^{t}$ )值 表(如表 4.15),來推得已知總雨量 $d_{k,p}$ 之相對 t 小時最大降雨量分位數 $\hat{h}_{k}^{t}$ 值。

### 4.3.3 模式驗證

為了驗證 AME 及 AE 模式,本文採用驗證隨機降雨序列模擬機制時所 用的方法,也就是分別比較由實測年最大雨量資料及 AME 及 AE 模式所 推得之年最大降雨量-延時-頻率曲線(Depth-duration-frequency, DDF, curve),其中本文將由不同延時年最大降雨量實測值配合權重頻率曲線法 所得降雨 DDF 曲線之方法定為年最大降雨序列(annual maximum series, AMS)模式。.

### 4.3.3.1 驗證方法及步驟

模式評估重點主要有以下三項:(1)評估 AME 及 AE 模式推估不同延時 (t 小時)之年最大降雨量分位數之能力;(2)分析 AME 及 AE 模式藉由增加 之日雨量資料提高不同延時降雨量分位數準確性之效益;(3)比較 AME 及 AE 模式間之差異性。現將驗證步驟說明如下:

- Step[1]: 確定最大連續降雨天數 K 日,即決定 k 日連續降雨事件之類型 (k=1,2,..,K)。
- Step[2]:由完整之n年雨量資料中找出k日(k=1,2,..,K)連續降雨事件總雨量 及其不同延時(t=1-hr、2-hr、6-hr、12-hr及24-hr)最大降雨量,並 求出其年最大值,經由權重頻率曲線法,也就是採用 AMS 模式推 得 DDF 曲線,定義為θ_{nAMS}。

Step[3]:從n年時雨量資料中選取m年現有時雨量資料(m≤n),並找出k 日連續降雨事件降雨量及其不同延時最大降雨量,應用所發展模 式(AME模式及AE模式)推求降雨DDF曲線,將所求得降雨DDF 曲線分別定義為θ_{m,AMS}、θ_{n,model},其中θ_{m,model}包括θ_{m,AME}及θ_{m,AE}。

- Step[4]:藉由增加 l 年之日雨量資料,即共有(m+l≤n)年日雨量紀錄,利 用 m 年時雨量資料所建立之 AME 及 AE 模式來推估降雨 DDF 曲 線,將其定義為θ_{m+l model}。
- Step[5]: 計算由 AMS、AME 及 AE 模式所得降雨 DDF 曲線之相對誤差如下式

$$\varepsilon_{m,AMS} = \left| \frac{\theta_{n,AMS} - \theta_{m,AMS}}{\theta_{n,AMS}} \right| \times 100\%$$

$$\varepsilon_{m,model} = \left| \frac{\theta_{n,AMS} - \theta_{m,model}}{\theta_{n,AMS}} \right| \times 100\%$$

$$\varepsilon_{m+1,model} = \left| \frac{\theta_{n,AMS} - \theta_{m+1,model}}{\theta_{n,AMS}} \right| \times 100\%$$

$$(4.4c)$$

Step[6]:重覆 Step[2]及 Step[5] L 次即求得 L 組 降雨 DDF 曲線  $\theta_{m,AMS} \cdot \theta_{m,model}$ 及  $\theta_{m+l,model}$  並計算其統計特性(包括平均值 Mean、中位數 Median及 95% 信賴區間),此外亦計算模式之相對誤差小於 AMS 模式所求之結果之機率 Pr( $\varepsilon_{m,model} \leq \varepsilon_{m,AMS}$ )及 Pr( $\varepsilon_{m+l,model} \leq \varepsilon_{m,AMS}$ )。

如同隨機降雨序列機制驗證方式,採用 100 年時雨量資料(即 n=100), 且從 100 年資料中隨機選取 50 組(L=50) 10、20 及 30 年時雨量資料 (m=10、20 及 30 年),進行模式驗證。另外選取 10、20、30 及 40 年日雨 量資料(*l*=10、20、30 及 40 年),測試模式在增加日雨量資料下,改善不同 延時降雨 DDF 曲線之準確性程度。茲將驗證成果就明如后:

### 4.3.3.2 與時雨量為基礎之頻率分析之比較

圖 4.15 及 4.16 為由 AME 及 AE 模式所得不同延時之降雨 DDF 曲線平 均值與 95% 信賴區間圖,並亦將由 AMS 模式所得降雨 DDF 頻率曲線點繪
於圖 4.14 及 4.15 上進行比較。由圖可知在採用 10 年現有時雨量資料下, AME 及 AE 模式所推得降雨 DDF 曲線平均值比 AMS 模式之結果更接近 於由 100 年資料所得 DDF 曲線,證明 AME 及 AE 模式可藉由採用較多的 雨量資訊來達成增進 DDF 頻率曲線之可靠度。此外亦由圖可看出 100-yrs 降雨 DDF 曲線皆位於由 AME 及 AE 模式所得降雨 DDF 曲線 95%上下限 之間,顯示本文所發展之 AME 及 AE 模式有能力,藉由具有較多雨量資 訊之日雨量資料來推得接近於 100-yrsDDF 曲線之年最大降雨量分位數。

基本上, 20 及 30 年現有時雨量資料應與 10 年資料皆有上述相同的結 論,但由不同模式所得降雨 DDF 曲線與 AMS 模式之相對誤差平均值比率  $\overline{\epsilon}_{m,model}/\overline{\epsilon}_{m,AMS}$ ,如圖 4.17 所示,可知當現有降雨資料年限愈長者,降雨 DDF 曲線之相對誤差比率有減小之趨勢,代表現有雨量紀錄長者可提供具 有可靠性之雨量資訊來增進頻率曲線之準確性,此結論與4.2節所得結果 相同。此外,除了10年現有時雨量資料外,由AMS模式配合現有雨量資 料所得相對誤差平均值皆大於由 AME 及 AE 模式所得之值(即  $\overline{\epsilon}_{m,model}/\overline{\epsilon}_{m,AMS} < 1$ ),特別是在高重現期距二者之差異更大。其中在 10 年現 有時雨量時,AME 模式之相對誤差平均值比率大於  $1(\bar{\epsilon}_{m,model}/\bar{\epsilon}_{m,AMS} > 1)$ , 也就是 AME 模式所得相對誤差大於 AMS 模式之值,造成此一結果的原因 可能為 AME 模式係採用具有最大總雨量之 k 日連續降雨事件及其所相對 應的t小時最大降雨量,然而k日事件總雨量雖是年最大值,但其相對應 的t小時最大降雨量可能小於或等於真正的年最大值,造成降雨 DDF 曲線 低估的現象而具有了誤差,但此誤差隨著雨量資料年限增加而減小。此 外,由圖亦可知,當欲推求降雨量分位數之重現期距小於現有時雨量紀錄 年限,例如T  $\leq$  5 – yr (m=10 年)、T  $\leq$  10 – yr (m=20 年)及T  $\leq$  20 – yr (m=30 年),現有時雨量資料所得相對誤差平均值小於由 AME 及 AE 模式所得之 值(即 $\overline{\epsilon}_{m,model}/\overline{\epsilon}_{m,AMS} > 1$ ),顯示在推求重現期距小於實測時雨量紀錄年限之 降雨分位數時,AME 及 AE 模式並無法改善頻率分析之計算結果。

#### 4.3.3.3 增加日雨量紀錄年限對 AME 及 AE 模式之影響評估

由於AME及AE模式另一發展目的為藉由增加日雨量資料來有效地提高時雨量分位數推估之可靠度,因此本節將測試在增加不同日雨量紅錄年限下,AME及AE模式推估DDF頻率曲線之準確性。由於增加日雨量資料可推得新的k日連續降雨事件總雨量分位數,故可將圖4.3 中左邊事件之總雨量D_k予以修正,連帶地改善 $(D_k, h_k^t)$ 關係之準確性。因此本文將應用由增加日雨量資料所重新建立新的 $(D_k, h_k^t)$ 關係表,推求不同延時之年最大降雨量分位數,並依循4.3.3 節模式驗證步驟,計算不同日雨量增加年限 $(l \neq)$ 之相對誤差 $\varepsilon_{m+l,model}$ ,及其小於或等於AMS模式所得對誤差 $\varepsilon_{m,AMS}$ 之機率 Pr $(\varepsilon_{m+l,model} \leq \varepsilon_{m,AMS})$ 。圖4.18-4.20為AME及AE模式分別採用10、20及30年現有時雨量資料配合不同日雨量增加年限 $(l=10 \times 20 \times 30 \text{ 及40 } 4)$ 所得平均相對誤差 $\overline{\varepsilon}_{m+l,model}$ ,其結果可看出在不同降雨延時下模式之相對誤差 $\varepsilon_{m+l,model}$ ,其結果可看出在不同降雨延時下模式之相對誤差 $\varepsilon_{m+l,model}$ ,並結果酮看出在不同降雨延時下模式之相對誤差 $\varepsilon_{m+l,model}$ 小於AMS之 $\varepsilon_{m,AMS}$ 。且 $\varepsilon_{m+l,model}$ 隨著日雨量紀錄年限增加而減小,例如當l=40年時重現期距100年時AME模式相對誤差約減小70%,而AE模式約為50%,此結果顯示AME及AE模式推估結果在高重現期距時之具有明顯的改善。

另圖 4.21-4.23 為在重現期距 50-yr、100-yr、200-yr 及 1000-yr AME 及 AE 模式所得相對誤差小於AMS 之 $\varepsilon_{m,AMS}$ 之機率 Pr ( $\varepsilon_{m+l,mod el} \leq \varepsilon_{m,AMS}$ )。由圖可知,模式之在不同重現期距的 Pr( $\varepsilon_{m+l,mod el} \leq \varepsilon_{m,AMS}$ )平均約為70%,尤其是在1000-yr 更可達90%,且 Pr( $\varepsilon_{m+l,mod el} \leq \varepsilon_{m,AMS}$ )隨著日雨量資料紀錄年限增加而變大,尤其在短現有時 雨量資料(即m=10年)時,Pr( $\varepsilon_{m+l,mod el} \leq \varepsilon_{m,AMS}$ )增加之現象更明顯。然而, 由圖亦可發現Pr( $\varepsilon_{m+l,mod el} \leq \varepsilon_{m,AMS}$ )隨日雨量年限而增加之趨勢,但有隨現雨 量年限增加而有減緩的趨勢。此一結果亦間接證明了上節AME 及 AE 模 式在長現有雨量資料時對年最大降雨量分位數改善程度並不明顯之結論。

綜合上述結果, AME 及 AE 模式在增加日雨量資料之情況下,可有效 地提高降雨 DDF 曲線之可靠度及準確性,尤其是高重現期距之降雨量分

4-16

位數之推求,其改善程度更為明顯。

#### 4.3.3.4 AME 及 AE 模式之比較

4.3.3.2 及 4.3.3.3 節主要針對 AME 及 AE 模式與傳統 AMS 模式進行比較,由比較結果證明除了短現有時雨量資料外(m=10 年),不論是 AME 或 AE 模式在推估不同延時年最大降雨量分位數之成效皆優於 AMS 模式,故本節將著重於比較 AME 模式及 AE 模式之差異性。基本上,由 4.3.3.2 及 4.3.3.3 節之結果亦可看出 AME 與 AE 模式之差異性。例如由圖 4.15 及 4.15 可知在 10 年現有時雨量資料下, AE 模式所得不同延時年最大降雨量分位數之標準偏差、95%信賴區間及相對誤差平均值皆小於 AME 模式所得之結果。由圖 4.17 亦可知,當現有時雨量年限由 10 增加為 20 年及 30 年,AME 模式所得降雨 DDF 曲線之相對誤差小於 AE 所得結果。

另由圖 4.18-4.20 可知當日雨量資料年限增加時,AME 模式之平均相對 誤差 $\overline{\epsilon}_{m+l,model}$ 小於 AE 模式之結果,且由圖 4.21-4.23 亦可發現在增加日雨 量資料下,AE 模式在長降雨延時(例如 12 小時及 24 小時)之  $Pr(\epsilon_{m+l,AE} \leq \epsilon_{m,AMS})$ 大於 AME 模式  $Pr(\epsilon_{m+l,AME} \leq \epsilon_{m,AMS})$ 。

由上述結論可知,在有限的降雨資料下,特別是在短現有時雨量資料(例如 m=10 年),AE 模式可藉由使用較多的雨量資訊而推得較為可靠及準確 之降雨 DDF 曲線。若增加現有雨量資料或延伸日雨量紀錄年限,則可改 善 AME 模式推估降雨量分位數之改善程度優於 AE 模式。

#### 4.4 隨機降雨模擬機制與採用日雨量之時雨量頻率分析之整合運用

由4.2及4.3節已分別驗證了隨機降雨序列模擬(SRSG)機制及以採用日 雨量資料之時雨量頻率分析(AME及AE)模式之適用性,本節將主要測試 將 SRSG 模式與 AME及 AE 模式組成一整合時間尺度之隨機降雨序列模 擬機制之可行性。理論上,此二模式可以分別執行,將所得推估結果予以 互相比較,或是由 SRSG 模式模擬合成降雨序列,並將其應用於採用日雨 量之時雨量頻率分析模式。上述二項功能將在本節分別予以測試驗證。

驗證方法為採用 100 年之時降雨資料,應用 SRSG 模式製造另一組 900 年模擬合成降雨序列,並與原來 100 年時雨量資料合成一組 1000 年合成 降雨序列,且從中選取得之不同延時(t=1-hr、2-hr、6-hr、12-hr 及 24-hr) 之年最大降雨量,並採用 AMS 法來推估不同延時之降雨 DDF 曲線 (如圖 4.24,本文將其定義為 1000-yrs DDF 曲線)。此外,亦採用 100 年時降雨資 料中之所撷取出不同延時之年最大降雨量,分別採用 AME 及 AE 模式, 推估其降雨 DDF 曲線。圖 4.25 為上述所推得之 DDF 曲線之比較結果,由 圖可知,除了 24-hr 外,由 AME 及 AE 模式所得其他延時之降雨 DDF 曲 線接近 1000-yrs DDF 曲線。另由圖 4.26 可知,同樣地,除 24-hr 外,由 AME 及 AE 模式所得 DDF 頻率曲線之相對誤差比由 AMS 模式所得之值 為小,特別是在重現期距大於 100 年之結果。此外在短降雨延時(t=1-hr 及 2-hr),AE 模式之相對誤差小於 AME 模式所得之值,但相反地在長延時 (t=12-hr 及 24-hr),AME 模式之相對誤差小於 AE 模式。如同 4.2 及 4.3 節 之結論,AME 及 AE 在推估重現期距大於現有雨量資料年限之降雨量分位 數時,可提供具有可靠度之推估結果。5.5

雖然無法由圖 4.24 及圖 4.25 得到明顯且一致結果,來證明 AME 及 AE 模式所推得之不同延時年最大降雨量分位數皆比 AMS 模式所得結果接近 於 1000-yrs 降雨 DDF 曲線,但由上述結果,可知隨機降雨序列模擬(SRSG) 機制及採用日雨量之時雨量頻率分析(AME 及 AE)模式確實可互相合作。 更詳細地來說,也就是可藉由 SRSG 模式製造合成降雨序列,即增加降雨 資料年限,並將其應用於 AME 及 AE 模式,不僅可改善不同連續日降雨 事件總雨量及其不同延時最大降雨量之分位數關係,更可以提高模式推得 降雨 DDF 曲線之可靠度及準確性。除此之外,由於 SRSG 模式具有衍生 降雨序列之功能,故可將其應用於評估降雨特性不確定 對 AME 及 AE 模 式推估降雨 DDF 曲線之影響程度,進而可針對需要降雨 DDF 曲線之相關 水文分析例如水工結構物或水資源規劃等進行風險分析。

4-18

Station no.	Location	Elevation (m)	Region	Record Period Used	No. of storm events used
R01	Hong Kong Observatory	32	Kowloon	1884-1939, 1947-96	4359
R11	Ngong Ping Tea Farm	440	Islands	1984-96	180
R12	Discorvery Bay Water Treatment Works	75	Islands	1984-96	297
R18	Sam Yuk Middle School	105	Kowloon	1985-96	284
R19	Quarry Bay Tide Gauge House	10	HK Island	1992-96	132
R21	Tap Shep Kok Power Station	25	NT West	1984-96	328
R22	Tsim Bei Tsui Meteo. Station	5	NT West	1984-96	222
R23	Wong Shiu Chi Middle School	25	NT East	1984-96	417
R24	Sha Tau Kok Police Station	35	NT East	1984-96	324
R25	Pak Tam Au Country Park	105	Kowloon	1984-96	305
R26	Shek Kong RAF Airfield	10	NT West	1985-96	332
R27	Yuen Long R.G. Filters	90	NT West	1985-96	211
R28	Au Tau Fish Farm	5	NT West	1985-96	215
R29	Lok Ma Chau Police Station	50	NT West	1985-96	241
R31	Tai Mei Tuk Pumping Station	10	NT East	1985-96	358
R42	Fire Dept. Training School, Yuen Long	10	NT West	1992-96	84

表 4.1 香港雨量站及其相關資訊表

# 表 4.2 香港天文自計雨量站 100 年時雨量資料中降雨事件年發生次數表

Month	Number of
Wohth	storm events
January	9
February	13
March	38
April	136
May	276
June	297
July	280
August	292
September	228
October	78
November	30
December	13
Spring (Jan-Mar)	60
Summer (Apr-Jun)	709
Autumn (Jul-Sep)	800
Winter (Oct-Dec)	121
Dry-period	
(Spring & Winter)	181
Wet-period	1500
(Summer & Autumn)	1509
Total	1690

Month	Mean	Stdev	Skewnes	Kurtosis	L-Cv	L-Skew	L-Kurtosis	DI	p-value
January	0.07	0.26	3.29	11.83	0.94	0.89	0.73	95.61	5.8E-01
February	0.15	0.52	4.07	19.95	0.95	0.9	0.76	178.46	1.7E-06
March	0.38	0.86	3.25	15.86	0.85	0.7	0.4	192.69	5.4E-08
April	1.64	1.33	0.55	2.38	0.46	0.16	0.05	106.78	2.8E-01
May	3.38	2.28	0.14	1.99	0.39	0.04	0.02	152.26	4.7E-04
June	3.13	1.77	0.4	2.54	0.32	0.1	0.11	99.09	4.8E-01
July	2.84	2.12	0.71	2.92	0.42	0.17	0.08	156.67	2.0E-04
August	3.31	2.23	0.26	2.01	0.39	0.07	0.03	148.74	9.1E-04
September	2.67	1.98	0.43	2.13	0.43	0.12	0.03	145.36	1.7E-03
October	0.85	1.15	1.86	6.84	0.65	0.41	0.15	154.03	3.3E-04
November	0.38	0.65	1.45	3.82	0.77	0.55	0.16	110.07	2.1E-01
December	0.15	0.4	2.82	10.6	0.9	0.81	0.56	105.60	3.1E-01
Jan-Mar	0.6	0.98	2.24	8.96	0.74	0.52	0.2	158.47	1.4E-04
Apr-Jun	8.15	3.14	0.09	2.15	0.22	0.02	0.06	119.77	7.6E-02
Jul-Sep	8.82	3.12	0	2.52	0.2	0.02	0.08	109.26	2.3E-01
Oct-Dec	1.38	1.21	0.95	3.98	0.47	0.17	0.11	105.03	3.2E-01
Dry Seasons	1.98	1.47	0.72	0	0.41	0.14	0.13	108.05	2.5E-01
Wet Seasons	16.96	3.74	-0.09	0	0.13	-0.04	0.11	81.65	9.0E-01
Year	18.95	3.8	0.04	2.44	0.12	0.01	0.09	75.44	9.6E-01

表 4.3 100 年 1690 場降雨事件年發生次數之統計特性及其離散指數表

表 4.4 100 年 1690 場降雨事件之延時、降雨量及間隔事件之統計特性

(a) Storm	duration						_
Period	Mean*	Stdev [*]	Skew	Kurt	L-Cv	L-Skew	L-Kurt
Dry	10.64	7.46	1.63	5.49	0.36	0.32	0.19
Wet	7.68	5.07	2.09	9.48	0.33	0.31	0.21
Year	8.00	5.46	2.12	9.19	0.34	0.32	0.21
Note: *=u	unit in hour	-			-	-	
(b) Rainfa	all depth						
Period	Mean*	Stdev*	Skew	Kurt	L-Cv	L-Skew	L-Kurt
Dry	71.21	64.07	3.17	14.26	0.37	0.54	0.32
Wet	69.04	53.66	3.38	19.45	0.33	0.48	0.28
Year	69.28	54.89	3.37	18.74	0.34	0.48	0.29
Note: *=u	ınit in mm						
(c) Inter-a	arrival time		_	_	_	_	_
Period	Mean*	Stdev [*]	Skew	Kurt	L-Cv	L-Skew	L-Kurt
Dry	398.08	604.48	1.66	5.05	0.73	0.50	0.15
Wet	271.8	341.33	2.19	9.82	0.61	0.40	0.16
Year	285.45	380.72	2.30	9.92	0.63	0.43	0.18
Note: *=u	unit in hour			-			-
(d). Corre	lation coefficie	nts					
Period	(Dur-Dep) (	(Dur-IaT) (	Dep-IaT)				

Dry0.685-0.048-0.159Wet0.6620.025-0.025Year0.6560.025-0.050

Note: Dur = Duration; Dep = Depth; IaT = Inter-event time.

Record	rd h Period	Storm d	uration	Rainfall	depth	Inter-event time		
length	renou	Distribution	p-value	Distribution	p-value	Distribution	p-value	
		Ν	0.00E+00	Ν	0.00E+00	Ν	2.20E-03	
	Dere	LN	1.11E-01	LN	1.00E-04	LN	6.20E-03	
	Dry	GAM	1.50E-02	GAM	0.00E+00	GAM	9.92E-02	
100		EXP	0.00E+00	EXP	0.00E+00	EXP	1.14E-02	
100 <b>-</b> yi		Ν	0.00E+00	Ν	0.00E+00	Ν	0.00E+00	
	Wet	LN	0.00E+00	LN	0.00E+00	LN	0.00E+00	
	wei	GAM	0.00E+00	GAM	0.00E+00	GAM	0.00E+00	
		EXP	0.00E+00	EXP	0.00E+00	EXP	0.00E+00	

函數 K-S 檢定表

Note: N-normal; LN-lognormal; GAM-gamma; EXP-exponential



表 4.6 六群雨型無因次降雨量 $(P_{\tau}, \tau = 1/12, 2/12, ..., 12/12)$ 之統計特性

# 1. 乾季(Dry-season)

## (a) Pattern A1

	P _{1/12}	P _{2/12}	P _{3/12}	P _{4/12}	P _{5/12}	P _{6/12}	P _{7/12}	P _{8/12}	P _{9/12}	P _{10/12}	P _{11/12}	P _{12/12}
Mean	0.151	0.177	0.179	0.145	0.113	0.075	0.035	0.031	0.029	0.023	0.023	0.020
Stdev	0.060	0.049	0.052	0.068	0.058	0.046	0.020	0.018	0.022	0.020	0.019	0.027
Skewness	-0.353	0.634	0.147	0.361	0.432	0.504	0.332	-0.047	0.565	1.406	0.763	2.350
Kurtosis	2.144	3.788	2.900	2.246	2.110	1.896	1.915	1.434	1.830	4.044	2.099	7.379
L-CV	0.241	0.157	0.172	0.286	0.312	0.373	0.360	0.344	0.454	0.478	0.475	0.582
L-Skew	-0.108	0.129	0.051	0.102	0.134	0.183	0.117	0.003	0.230	0.441	0.320	0.701
L-Kurt	0.089	0.344	0.230	0.075	0.013	-0.005	-0.001	-0.099	-0.060	0.184	-0.032	0.498
90% Lower Limit	0.064	0.122	0.116	0.060	0.045	0.024	0.012	0.010	0.006	0.007	0.006	0.006
90% Upper Limit	0.223	0.241	0.247	0.241	0.196	0.142	0.064	0.052	0.061	0.054	0.052	0.058
P _{2/12}	0.345											
P _{3/12}	-0.875	-0.309	0.450									
P _{4/12}	-0.549	-0.670	0.479									
P _{5/12}	-0.396	-0.780	0.175	0.741								
P _{6/12}	0.140	-0.138	-0.116	-0.248	0.125	de las						
P _{7/12}	0.289	0.235	-0.178	-0.409	-0.503	-0.294	Sec.					
P _{8/12}	0.203	0.647	-0.205	-0.436	-0.719	-0.405	0.711					
P _{9/12}	0.030	0.684	-0.201	-0.584	-0.574	-0.320	0.468	0.808				
P _{10/12}	-0.173	0.419	0.186	-0.491	-0.554	-0.392	0.432	0.459	0.687			
P _{11/12}	0.230	0.441	-0.263	-0.608	-0.518	-0.285	0.055	0.200	0.479	0.633		
P _{12/12}	0.424	-0.135	-0.335	-0.349	-0.189	0.073	-0.065	-0.219	-0.181	0.017	0.609	
	-		7				1.16					
(h) Dottoma A	7											
(0) Pattern A	Z					110	1000					
(0) Pattern A	2			D	D					D	D	
	Z P _{1/12}	P _{2/12}	P _{3/12}	P _{4/12}	P _{5/12}	P _{6/12}	P _{7/12}	P _{8/12}	P _{9/12}	P _{10/12}	P _{11/12}	P _{12/12}
Mean	Z P _{1/12} 0.088	P _{2/12} 0.100	P _{3/12} 0.123	P _{4/12} 0.157	P _{5/12} 0.141	P _{6/12} 0.103	P _{7/12} 0.081	P _{8/12} 0.065	P _{9/12} 0.054	P _{10/12} 0.035	P _{11/12} 0.031	P _{12/12} 0.023
Mean Stdev	Z P _{1/12} 0.088 0.070 0.740	P _{2/12} 0.100 0.055	P _{3/12} 0.123 0.061	P _{4/12} 0.157 0.105	P _{5/12} 0.141 0.083	P _{6/12} 0.103 0.049	P _{7/12} 0.081 0.043	P _{8/12} 0.065 0.032	P _{9/12} 0.054 0.036	P _{10/12} 0.035 0.019	P _{11/12} 0.031 0.021	P _{12/12} 0.023 0.014
(b) Pattern A Mean Stdev Skewness	Z P _{1/12} 0.088 0.070 0.749 2.261	P _{2/12} 0.100 0.055 0.284 2.231	P _{3/12} 0.123 0.061 0.747	P _{4/12} 0.157 0.105 1.157	P _{5/12} 0.141 0.083 0.781 2.480	P _{6/12} 0.103 0.049 0.319	P _{7/12} 0.081 0.043 0.416	P _{8/12} 0.065 0.032 0.275	P _{9/12} 0.054 0.036 1.030	P _{10/12} 0.035 0.019 0.149	P _{11/12} 0.031 0.021 1.358	P _{12/12} 0.023 0.014 1.172
(b) Fatterin A Mean Stdev Skewness Kurtosis	2 P _{1/12} 0.088 0.070 0.749 2.361 0.454	P _{2/12} 0.100 0.055 0.284 2.231 0.222	P _{3/12} 0.123 0.061 0.747 3.530	P _{4/12} 0.157 0.105 1.157 4.875 0.260	P _{5/12} 0.141 0.083 0.781 3.480 0.228	P _{6/12} 0.103 0.049 0.319 2.726 0.2726	P _{7/12} 0.081 0.043 0.416 2.543 0.207	P _{8/12} 0.065 0.032 0.275 2.131 0.290	P _{9/12} 0.054 0.036 1.030 3.636 0.260	P _{10/12} 0.035 0.019 0.149 1.763 0.221	P _{11/12} 0.031 0.021 1.358 4.962 0.250	P _{12/12} 0.023 0.014 1.172 4.515 0.222
Mean Stdev Skewness Kurtosis L-CV	2 P _{1/12} 0.088 0.070 0.749 2.361 0.454 0.240	P ₂₇₁₂ 0.100 0.055 0.284 2.231 0.323	P _{3/12} 0.123 0.061 0.747 3.530 0.282	P _{4/12} 0.157 0.105 1.157 4.875 0.369 0.180	P _{5/12} 0.141 0.083 0.781 3.480 0.338 0.151	P _{6/12} 0.103 0.049 0.319 2.726 0.276	P _{7/12} 0.081 0.043 0.416 -2.543 0.307 0.081	P _{8/12} 0.065 0.032 0.275 2.131 0.289 0.075	P _{9/12} 0.054 0.036 1.030 3.636 0.369	P _{10/12} 0.035 0.019 0.149 1.763 0.321	P _{11/12} 0.031 0.021 1.358 4.962 0.359	P _{12/12} 0.023 0.014 1.172 4.515 0.323 0.205
(b) Patterin A Mean Stdev Skewness Kurtosis L-CV L-Skew L-Skew	$\frac{P_{1/12}}{0.088}$ 0.070 0.749 2.361 0.454 0.240 0.010	P ₂₇₁₂ 0.100 0.055 0.284 2.231 0.323 0.077	P _{3/12} 0.123 0.061 0.747 3.530 0.282 0.125 0.105	P _{4/12} 0.157 0.105 1.157 4.875 0.369 0.189 0.117	P _{5/12} 0.141 0.083 0.781 3.480 0.338 0.151 0.077	P _{6/12} 0.103 0.049 0.319 2.726 0.276 0.055 0.112	P _{7/12} 0.081 0.043 0.416 2.543 0.307 0.081 0.064	P _{8/12} 0.065 0.032 0.275 2.131 0.289 0.075 0.068	P _{9/12} 0.054 0.036 1.030 3.636 0.369 0.234 0.124	P _{10/12} 0.035 0.019 0.149 1.763 0.321 0.046 0.000	P _{11/12} 0.031 0.021 1.358 4.962 0.359 0.238 0.107	P _{12/12} 0.023 0.014 1.172 4.515 0.323 0.205 0.165
Mean Stdev Skewness Kurtosis L-CV L-Skew L-Kurt 90% Lower Limit	$\begin{array}{c} \underline{P}_{1/12} \\ \hline 0.088 \\ 0.070 \\ 0.749 \\ 2.361 \\ 0.454 \\ 0.240 \\ 0.019 \\ 0.017 \end{array}$	P _{2/12} 0.100 0.055 0.284 2.231 0.323 0.077 0.091	P _{3/12} 0.123 0.061 0.747 3.530 0.282 0.125 0.195 0.048	P _{4/12} 0.157 0.105 1.157 4.875 0.369 0.189 0.117	P _{5/12} 0.141 0.083 0.781 3.480 0.338 0.151 0.077	P _{6/12} 0.103 0.049 0.319 2.726 0.276 0.055 0.113	P _{7/12} 0.081 0.043 0.416 -2.543 0.307 0.081 0.064 0.028	P _{8/12} 0.065 0.032 0.275 2.131 0.289 0.075 0.068 0.023	P _{9/12} 0.054 0.036 1.030 3.636 0.369 0.234 0.124	P _{10/12} 0.035 0.019 0.149 1.763 0.321 0.046 -0.009	P _{11/12} 0.031 0.021 1.358 4.962 0.359 0.238 0.197	$\begin{array}{c} P_{12/12} \\ 0.023 \\ 0.014 \\ 1.172 \\ 4.515 \\ 0.323 \\ 0.205 \\ 0.165 \\ 0.009 \end{array}$
(b) Fatterin A Mean Stdev Skewness Kurtosis L-CV L-Skew L-Kurt 90% Lower Limit 90% Upper Limit	$\begin{array}{c} \underline{P}_{1/12} \\ 0.088 \\ 0.070 \\ 0.749 \\ 2.361 \\ 0.454 \\ 0.240 \\ 0.019 \\ 0.017 \\ 0.189 \end{array}$	P _{2/12} 0.100 0.055 0.284 2.231 0.323 0.077 0.091 0.027 0.181	$\begin{array}{c} P_{3/12} \\ 0.123 \\ 0.061 \\ 0.747 \\ 3.530 \\ 0.282 \\ 0.125 \\ 0.195 \\ 0.048 \\ 0.204 \end{array}$	P _{4/12} 0.157 0.105 1.157 4.875 0.369 0.189 0.117 0.044 0.284	P _{5/12} 0.141 0.083 0.781 3.480 0.338 0.151 0.077 0.050 0.244	P _{6/12} 0.103 0.049 0.319 2.726 0.276 0.055 0.113 0.043 0.165	P _{7/12} 0.081 0.043 0.416 2.543 0.307 0.081 0.064 0.028 0.134	P _{8/12} 0.065 0.032 0.275 2.131 0.289 0.075 0.068 0.023 0.111	P _{9/12} 0.054 0.036 1.030 3.636 0.369 0.234 0.124 0.018 0.103	P _{10/12} 0.035 0.019 0.149 1.763 0.321 0.046 -0.009 0.011 0.061	P _{11/12} 0.031 0.021 1.358 4.962 0.359 0.238 0.197 0.010 0.058	$\begin{array}{c} P_{12/12} \\ 0.023 \\ 0.014 \\ 1.172 \\ 4.515 \\ 0.323 \\ 0.205 \\ 0.165 \\ 0.009 \\ 0.040 \end{array}$
(b) Patterin A Mean Stdev Skewness Kurtosis L-CV L-Skew L-Kurt 90% Lower Limit 90% Upper Limit Pauz	2 P _{1/12} 0.088 0.070 0.749 2.361 0.454 0.240 0.019 0.017 0.189 0.397	P _{2/12} 0.100 0.055 0.284 2.231 0.323 0.077 0.091 0.027 0.181	P _{3/12} 0.123 0.061 0.747 3.530 0.282 0.125 0.125 0.195 0.048 0.204	P _{4/12} 0.157 0.105 1.157 4.875 0.369 0.189 0.117 0.044 0.284	P _{5/12} 0.141 0.083 0.781 3.480 0.338 0.151 0.077 0.050 0.244	P _{6/12} 0.103 0.049 0.319 2.726 0.276 0.055 0.113 0.043 0.165	P _{7/12} 0.081 0.043 0.416 2.543 0.307 0.081 0.064 0.028 0.134	P _{8/12} 0.065 0.032 0.275 2.131 0.289 0.075 0.068 0.023 0.111	P _{9/12} 0.054 0.036 1.030 3.636 0.369 0.234 0.124 0.018 0.103	$\begin{array}{c} P_{10/12} \\ 0.035 \\ 0.019 \\ 0.149 \\ 1.763 \\ 0.321 \\ 0.046 \\ -0.009 \\ 0.011 \\ 0.061 \end{array}$	$\begin{array}{c} P_{11/12} \\ 0.031 \\ 0.021 \\ 1.358 \\ 4.962 \\ 0.359 \\ 0.238 \\ 0.197 \\ 0.010 \\ 0.058 \end{array}$	$\begin{array}{c} P_{12/12} \\ 0.023 \\ 0.014 \\ 1.172 \\ 4.515 \\ 0.323 \\ 0.205 \\ 0.165 \\ 0.009 \\ 0.040 \end{array}$
(b) Patterin A Mean Stdev Skewness L-CV L-Skew L-Kurt 90% Lower Limit 90% Upper Limit P _{2/12} P _{3/12}	Z P _{1/12} 0.088 0.070 0.749 2.361 0.454 0.240 0.019 0.017 0.189 0.397 -0.368	P ₂₇₁₂ 0.100 0.055 0.284 2.231 0.323 0.077 0.091 0.027 0.181	$\begin{array}{c} P_{3/12} \\ 0.123 \\ 0.061 \\ 0.747 \\ 3.530 \\ 0.282 \\ 0.125 \\ 0.195 \\ 0.048 \\ 0.204 \end{array}$	$\begin{array}{c} P_{4/12} \\ 0.157 \\ 0.105 \\ 1.157 \\ 4.875 \\ 0.369 \\ 0.189 \\ 0.117 \\ 0.044 \\ 0.284 \end{array}$	$\begin{array}{c} P_{5/12} \\ 0.141 \\ 0.083 \\ 0.781 \\ 3.480 \\ 0.338 \\ 0.151 \\ 0.077 \\ 0.050 \\ 0.244 \end{array}$	$\begin{array}{c} P_{612} \\ 0.103 \\ 0.049 \\ 0.319 \\ 2.726 \\ 0.276 \\ 0.055 \\ 0.113 \\ 0.043 \\ 0.165 \end{array}$	P _{7/12} 0.081 0.043 0.416 2.543 0.307 0.081 0.064 0.028 0.134	$\begin{array}{c} P_{8/12} \\ 0.065 \\ 0.032 \\ 0.275 \\ 2.131 \\ 0.289 \\ 0.075 \\ 0.068 \\ 0.023 \\ 0.111 \end{array}$	P _{9/12} 0.054 0.036 1.030 3.636 0.369 0.234 0.124 0.018 0.103	$\begin{array}{c} P_{10/12} \\ 0.035 \\ 0.019 \\ 0.149 \\ 1.763 \\ 0.321 \\ 0.046 \\ -0.009 \\ 0.011 \\ 0.061 \end{array}$	$\begin{array}{c} P_{11/12} \\ 0.031 \\ 0.021 \\ 1.358 \\ 4.962 \\ 0.359 \\ 0.238 \\ 0.197 \\ 0.010 \\ 0.058 \end{array}$	$\begin{array}{c} P_{12/12} \\ 0.023 \\ 0.014 \\ 1.172 \\ 4.515 \\ 0.323 \\ 0.205 \\ 0.165 \\ 0.009 \\ 0.040 \end{array}$
(b) Patterin A Mean Stdev Skewness Kurtosis L-CV L-Skew L-Kurt 90% Lower Limit 90% Upper Limit P _{2/12} P _{3/12} P _{4/12}	Z P _{1/12} 0.088 0.070 0.749 2.361 0.454 0.240 0.019 0.017 0.189 0.397 -0.368 -0.537	P ₂₇₁₂ 0.100 0.055 0.284 2.231 0.323 0.077 0.091 0.027 0.181 0.002 -0.734	P _{3/12} 0.123 0.061 0.747 3.530 0.282 0.125 0.125 0.195 0.048 0.204	P _{4/12} 0.157 0.105 1.157 4.875 0.369 0.189 0.117 0.044 0.284	P _{5/12} 0.141 0.083 0.781 3.480 0.338 0.151 0.077 0.050 0.244	P _{6/12} 0.103 0.049 0.319 2.726 0.276 0.055 0.113 0.043 0.165	P _{7/12} 0.081 0.043 0.416 2.543 0.307 0.081 0.064 0.028 0.134	$\begin{array}{c} P_{8/12} \\ 0.065 \\ 0.032 \\ 0.275 \\ 2.131 \\ 0.289 \\ 0.075 \\ 0.068 \\ 0.023 \\ 0.111 \end{array}$	P _{9/12} 0.054 0.036 1.030 3.636 0.369 0.234 0.124 0.018 0.103	$\begin{array}{c} P_{10/12} \\ 0.035 \\ 0.019 \\ 0.149 \\ 1.763 \\ 0.321 \\ 0.046 \\ -0.009 \\ 0.011 \\ 0.061 \end{array}$	P _{11/12} 0.031 0.021 1.358 4.962 0.359 0.238 0.197 0.010 0.058	$\begin{array}{c} P_{12/12} \\ 0.023 \\ 0.014 \\ 1.172 \\ 4.515 \\ 0.323 \\ 0.205 \\ 0.165 \\ 0.009 \\ 0.040 \end{array}$
(b) Patterin A Mean Stdev Skewness Kurtosis L-CV L-Skew L-Kurt 90% Lower Limit 90% Upper Limit P _{2/12} P _{3/12} P _{4/12} P _{5/12}	2 P _{1/12} 0.088 0.070 0.749 2.361 0.454 0.240 0.019 0.017 0.189 0.397 -0.368 -0.537 -0.336	P ₂₇₁₂ 0.100 0.055 0.284 2.231 0.323 0.077 0.091 0.027 0.181 0.002 -0.734 -0.464	P _{3/12} 0.123 0.061 0.747 3.530 0.282 0.125 0.125 0.195 0.048 0.204	P _{4/12} 0.157 0.105 1.157 4.875 0.369 0.189 0.117 0.044 0.284	P _{5/12} 0.141 0.083 0.781 3.480 0.338 0.151 0.077 0.050 0.244	P ₆₁₂ 0.103 0.049 0.319 2.726 0.276 0.055 0.113 0.043 0.165	P _{7/12} 0.081 0.043 0.416 2.543 0.307 0.081 0.064 0.028 0.134	P _{8/12} 0.065 0.032 0.275 2.131 0.289 0.075 0.068 0.023 0.111	P _{9/12} 0.054 0.036 1.030 3.636 0.234 0.124 0.018 0.103	P _{10/12} 0.035 0.019 0.149 1.763 0.321 0.046 -0.009 0.011 0.061	P _{11/12} 0.031 0.021 1.358 4.962 0.359 0.238 0.197 0.010 0.058	$\begin{array}{c} P_{12/12} \\ 0.023 \\ 0.014 \\ 1.172 \\ 4.515 \\ 0.323 \\ 0.205 \\ 0.165 \\ 0.009 \\ 0.040 \end{array}$
(b) Patterin A Mean Stdev Skewness Kurtosis L-CV L-Skew L-Kurt 90% Lower Limit 90% Upper Limit $P_{2/12}$ $P_{3/12}$ $P_{4/12}$ $P_{5/12}$ $P_{6/12}$	2 P _{1/12} 0.088 0.070 0.749 2.361 0.454 0.240 0.019 0.017 0.189 0.397 -0.368 -0.537 -0.336 -0.014	P _{2/12} 0.100 0.055 0.284 2.231 0.323 0.077 0.091 0.027 0.181 0.002 -0.734 -0.464 0.080	P _{3/12} 0.123 0.061 0.747 3.530 0.282 0.125 0.125 0.195 0.048 0.204	P _{4/12} 0.157 0.105 1.157 4.875 0.369 0.189 0.117 0.044 0.284	P _{5/12} 0.141 0.083 0.781 3.480 0.338 0.151 0.077 0.050 0.244	P _{6/12} 0.103 0.049 0.319 2.726 0.276 0.055 0.113 0.043 0.165	P _{7/12} 0.081 0.043 0.416 -2.543 0.307 0.081 0.064 0.028 0.134	P _{8/12} 0.065 0.032 0.275 2.131 0.289 0.075 0.068 0.023 0.111	P _{9/12} 0.054 0.036 1.030 3.636 0.234 0.124 0.018 0.103	P _{10/12} 0.035 0.019 0.149 1.763 0.321 0.046 -0.009 0.011 0.061	P _{11/12} 0.031 0.021 1.358 4.962 0.359 0.238 0.197 0.010 0.058	$\begin{array}{c} P_{12/12} \\ 0.023 \\ 0.014 \\ 1.172 \\ 4.515 \\ 0.323 \\ 0.205 \\ 0.165 \\ 0.009 \\ 0.040 \end{array}$
(b) Patterin A Mean Stdev Skewness Kurtosis L-CV L-Skew L-Kurt 90% Lower Limit 90% Upper Limit $P_{2/12}$ $P_{3/12}$ $P_{4/12}$ $P_{5/12}$ $P_{6/12}$ $P_{7/12}$	2 P _{1/12} 0.088 0.070 0.749 2.361 0.454 0.240 0.019 0.017 0.189 0.397 -0.368 -0.537 -0.336 -0.014 0.075	P _{2/12} 0.100 0.055 0.284 2.231 0.323 0.077 0.091 0.027 0.181 0.002 -0.734 -0.464 0.080 0.260	P _{3/12} 0.123 0.061 0.747 3.530 0.282 0.125 0.125 0.195 0.048 0.204 0.009 -0.141 -0.213 -0.157	P _{4/12} 0.157 0.105 1.157 4.875 0.369 0.189 0.117 0.044 0.284 0.284	P ₅₇₁₂ 0.141 0.083 0.781 3.480 0.338 0.151 0.077 0.050 0.244	P _{6/12} 0.103 0.049 2.726 0.276 0.055 0.113 0.043 0.165	P _{7/12} 0.081 0.043 0.416 2.543 0.307 0.081 0.064 0.028 0.134	P _{8/12} 0.065 0.032 0.275 2.131 0.289 0.075 0.068 0.023 0.111	P _{9/12} 0.054 0.036 1.030 3.636 0.234 0.234 0.124 0.018 0.103	P _{10/12} 0.035 0.019 0.149 1.763 0.321 0.046 -0.009 0.011 0.061	P _{11/12} 0.031 0.021 1.358 4.962 0.359 0.238 0.197 0.010 0.058	P _{12/12} 0.023 0.014 1.172 4.515 0.323 0.205 0.165 0.009 0.040
(b) Patterin A Mean Stdev Skewness Kurtosis L-CV L-Skew L-Kurt 90% Lower Limit 90% Upper Limit $P_{2/12}$ $P_{3/12}$ $P_{4/12}$ $P_{5/12}$ $P_{6/12}$ $P_{7/12}$ $P_{8/12}$	2 P _{1/12} 0.088 0.070 0.749 2.361 0.454 0.240 0.019 0.017 0.189 0.397 -0.368 -0.537 -0.336 -0.014 0.075 0.258	P _{2/12} 0.100 0.055 0.284 2.231 0.323 0.077 0.091 0.027 0.181 0.002 -0.734 -0.464 0.080 0.260 0.327	P _{3/12} 0.123 0.061 0.747 3.530 0.282 0.125 0.125 0.195 0.048 0.204 0.009 -0.141 -0.213 -0.157 -0.003	P _{4/12} 0.157 0.105 1.157 4.875 0.369 0.189 0.117 0.044 0.284 0.284 0.215 -0.252 -0.307 -0.339	P _{5/12} 0.141 0.083 0.781 3.480 0.338 0.151 0.077 0.050 0.244 0.271 -0.352 -0.658	P _{6/12} 0.103 0.049 0.319 2.726 0.276 0.055 0.113 0.043 0.165 0.064 -0.356	P _{7/12} 0.081 0.043 0.416 -2.543 0.307 0.081 0.064 0.028 0.134	P _{8/12} 0.065 0.032 0.275 2.131 0.289 0.075 0.068 0.023 0.111	$\begin{array}{c} \mathbf{P}_{9/12} \\ 0.054 \\ 0.036 \\ 1.030 \\ 3.636 \\ 0.369 \\ 0.234 \\ 0.124 \\ 0.018 \\ 0.103 \end{array}$	P _{10/12} 0.035 0.019 0.149 1.763 0.321 0.046 -0.009 0.011 0.061	P _{11/12} 0.031 0.021 1.358 4.962 0.359 0.238 0.197 0.010 0.058	P _{12/12} 0.023 0.014 1.172 4.515 0.323 0.205 0.165 0.009 0.040
(b) Patterin A Mean Stdev Skewness Kurtosis L-CV L-Skew L-Kurt 90% Lower Limit 90% Upper Limit $P_{2/12}$ $P_{3/12}$ $P_{4/12}$ $P_{5/12}$ $P_{6/12}$ $P_{7/12}$ $P_{8/12}$ $P_{9/12}$	2 P _{1/12} 0.088 0.070 0.749 2.361 0.454 0.240 0.019 0.017 0.189 0.397 -0.368 -0.537 -0.336 -0.014 0.075 0.258 0.162	P _{2/12} 0.100 0.055 0.284 2.231 0.323 0.077 0.091 0.027 0.181 0.002 -0.734 -0.464 0.080 0.260 0.327 0.155	P _{3/12} 0.123           0.061           0.747           3.530           0.282           0.125           0.195           0.048           0.204	P _{4/12} 0.157 0.105 1.157 4.875 0.369 0.189 0.117 0.044 0.284 0.215 -0.252 -0.307 -0.339 -0.324	P _{5/12} 0.141 0.083 0.781 3.480 0.338 0.151 0.077 0.050 0.244 0.271 -0.352 -0.658 -0.318	P _{6/12} 0.103 0.049 0.319 2.726 0.276 0.055 0.113 0.043 0.165 0.064 -0.356 -0.269	P _{7/12} 0.081 0.043 0.416 -2.543 0.307 0.081 0.064 0.028 0.134	P _{8/12} 0.065 0.032 0.275 2.131 0.289 0.075 0.068 0.023 0.111	P _{9/12} 0.054 0.036 1.030 3.636 0.369 0.234 0.124 0.018 0.103	P _{10/12} 0.035 0.019 0.149 1.763 0.321 0.046 -0.009 0.011 0.061	P _{11/12} 0.031 0.021 1.358 4.962 0.359 0.238 0.197 0.010 0.058	$\begin{array}{c} P_{12/12} \\ 0.023 \\ 0.014 \\ 1.172 \\ 4.515 \\ 0.323 \\ 0.205 \\ 0.165 \\ 0.009 \\ 0.040 \end{array}$
(b) Patterin A Mean Stdev Skewness Kurtosis L-CV L-Skew L-Kurt 90% Lower Limit 90% Upper Limit $P_{2/12}$ $P_{3/12}$ $P_{4/12}$ $P_{5/12}$ $P_{6/12}$ $P_{7/12}$ $P_{8/12}$ $P_{9/12}$ $P_{10/12}$	2 P _{1/12} 0.088 0.070 0.749 2.361 0.454 0.240 0.019 0.017 0.189 0.397 -0.368 -0.537 -0.336 -0.014 0.075 0.258 0.162 -0.156	P ₂₇₁₂ 0.100 0.055 0.284 2.231 0.323 0.077 0.091 0.027 0.091 0.027 0.181 0.002 -0.734 -0.464 0.080 0.260 0.327 0.155 -0.003	P _{3/12} 0.123 0.061 0.747 3.530 0.282 0.125 0.195 0.048 0.204 0.009 -0.141 -0.213 -0.157 -0.003 -0.081 -0.081	P _{4/12} 0.157 0.105 1.157 4.875 0.369 0.189 0.117 0.044 0.284 0.284 0.215 -0.252 -0.307 -0.339 -0.324 0.070	P _{5/12} 0.141 0.083 0.781 3.480 0.338 0.151 0.077 0.050 0.244 0.271 -0.352 -0.658 -0.318 -0.230	P ₆₁₂ 0.103 0.049 0.319 2.726 0.276 0.276 0.113 0.043 0.165 0.165 0.165	P _{7/12} 0.081 0.043 0.416 2.543 0.307 0.081 0.064 0.028 0.134	P _{8/12} 0.065 0.032 0.275 2.131 0.289 0.075 0.068 0.023 0.111 0.111	P _{9/12} 0.054 0.036 1.030 3.636 0.369 0.234 0.124 0.018 0.103	$\begin{array}{c} P_{10/12} \\ 0.035 \\ 0.019 \\ 0.149 \\ 1.763 \\ 0.321 \\ 0.046 \\ -0.009 \\ 0.011 \\ 0.061 \end{array}$	P _{11/12} 0.031 0.021 1.358 4.962 0.359 0.238 0.197 0.010 0.058	$\begin{array}{c} P_{12/12} \\ 0.023 \\ 0.014 \\ 1.172 \\ 4.515 \\ 0.323 \\ 0.205 \\ 0.165 \\ 0.009 \\ 0.040 \end{array}$
(b) Patterin A Mean Stdev Skewness Kurtosis L-CV L-Skew L-Kurt 90% Lower Limit 90% Upper Limit $P_{2/12}$ $P_{3/12}$ $P_{4/12}$ $P_{5/12}$ $P_{6/12}$ $P_{7/12}$ $P_{8/12}$ $P_{9/12}$ $P_{10/12}$ $P_{11/12}$	2 P _{1/12} 0.088 0.070 0.749 2.361 0.454 0.240 0.019 0.017 0.189 0.397 -0.368 -0.537 -0.336 -0.014 0.075 0.258 0.162 -0.156 -0.115	P ₂₇₁₂ 0.100 0.055 0.284 2.231 0.323 0.077 0.091 0.027 0.181 0.002 -0.734 -0.464 0.080 0.260 0.327 0.155 -0.003 -0.074	P _{3/12} 0.123 0.061 0.747 3.530 0.282 0.125 0.195 0.048 0.204 0.009 -0.141 -0.213 -0.157 -0.003 -0.081 -0.081 -0.161	P _{4/12} 0.157 0.105 1.157 4.875 0.369 0.189 0.117 0.044 0.284 0.284 0.215 -0.252 -0.307 -0.339 -0.324 0.070 0.264	P _{5/12} 0.141 0.083 0.781 3.480 0.338 0.151 0.077 0.050 0.244 0.271 -0.352 -0.658 -0.318 -0.230 -0.249	P _{6/12} 0.103 0.049 0.319 2.726 0.276 0.276 0.113 0.043 0.165 0.165 0.165 0.165	P _{7/12} 0.081 0.043 0.416 2.543 0.307 0.081 0.064 0.028 0.134 0.134	P _{8/12} 0.065 0.032 0.275 2.131 0.289 0.075 0.068 0.023 0.111 0.111	P _{9/12} 0.054 0.036 1.030 3.636 0.369 0.234 0.124 0.018 0.103 0.103	P _{10/12} 0.035 0.019 0.149 1.763 0.321 0.042 -0.009 0.011 0.061	P _{11/12} 0.031 0.021 1.358 4.962 0.359 0.238 0.197 0.010 0.058	$\begin{array}{c} P_{12/12} \\ 0.023 \\ 0.014 \\ 1.172 \\ 4.515 \\ 0.323 \\ 0.205 \\ 0.165 \\ 0.009 \\ 0.040 \end{array}$
(b) Patterin A Mean Stdev Skewness Kurtosis L-CV L-Skew L-Kurt 90% Lower Limit 90% Upper Limit $P_{2/12}$ $P_{3/12}$ $P_{4/12}$ $P_{5/12}$ $P_{6/12}$ $P_{7/12}$ $P_{8/12}$ $P_{9/12}$ $P_{10/12}$ $P_{11/12}$ $P_{10/12}$	2 P _{1/12} 0.088 0.070 0.749 2.361 0.454 0.240 0.019 0.017 0.189 0.397 -0.368 -0.537 -0.336 -0.014 0.075 0.258 0.162 -0.156 -0.115 0.244	P ₂₇₁₂ 0.100 0.055 0.284 2.231 0.323 0.077 0.091 0.027 0.181 0.002 -0.734 -0.464 0.080 0.260 0.327 0.155 -0.003 -0.774 0.197	P _{3/12} 0.123 0.061 0.747 3.530 0.282 0.125 0.125 0.195 0.048 0.204 0.009 -0.141 -0.213 -0.157 -0.003 -0.081 -0.081 -0.0161 0.016	P _{4/12} 0.157 0.105 1.157 4.875 0.369 0.189 0.117 0.044 0.284 0.284 0.215 -0.252 -0.307 -0.339 -0.324 0.070 0.264 -0.259	P _{5/12} 0.141 0.083 0.781 3.480 0.338 0.151 0.077 0.050 0.244 0.244 0.2271 -0.352 -0.658 -0.318 -0.230 -0.249 -0.334	P _{6/12} 0.103 0.049 0.319 2.726 0.276 0.276 0.055 0.113 0.043 0.165 0.165 0.165 0.064 -0.356 -0.269 -0.402 -0.327 -0.250	P _{7/12} 0.081 0.043 0.416 2.543 0.307 0.081 0.064 0.028 0.134 0.028 0.134	P _{8/12} 0.065 0.032 0.275 2.131 0.289 0.075 0.068 0.023 0.111 0.615 0.089 -0.100 -0.006	P _{9/12} 0.054 0.036 1.030 3.636 0.369 0.234 0.124 0.018 0.103 0.103	P _{10/12} 0.035 0.019 0.149 1.763 0.321 0.046 -0.009 0.011 0.061	P _{11/12} 0.031 0.021 1.358 4.962 0.359 0.238 0.197 0.010 0.058	$\begin{array}{c} P_{12/12} \\ 0.023 \\ 0.014 \\ 1.172 \\ 4.515 \\ 0.323 \\ 0.205 \\ 0.165 \\ 0.009 \\ 0.040 \end{array}$

# (c) Pattern C

	P _{1/12}	P _{2/12}	P _{3/12}	P _{4/12}	P _{5/12}	P _{6/12}	P _{7/12}	P _{8/12}	P _{9/12}	P _{10/12}	P _{11/12}	P _{12/12}
Mean	0.026	0.031	0.042	0.080	0.175	0.190	0.159	0.130	0.067	0.036	0.030	0.033
Stdev	0.020	0.021	0.030	0.051	0.061	0.063	0.071	0.061	0.041	0.022	0.023	0.029
Skewness	1.800	0.745	1.285	1.158	0.724	0.425	0.187	0.010	1.168	0.513	1.937	2.004
Kurtosis	7.488	2.975	4.804	4.773	3.410	2.724	2.148	1.741	5.181	2.344	7.654	7.830
L-CV	0.393	0.387	0.387	0.350	0.201	0.194	0.264	0.279	0.337	0.360	0.403	0.446
L-Skew	0.264	0.170	0.231	0.184	0.145	0.080	0.048	0.005	0.159	0.136	0.311	0.356
L-Kurt	0.171	0.094	0.233	0.181	0.135	0.098	0.065	-0.020	0.192	0.065	0.251	0.227
90% Lower Limit	0.008	0.007	0.009	0.024	0.107	0.113	0.068	0.053	0.019	0.010	0.008	0.007
90% Upper Limit	0.049	0.061	0.081	0.144	0.259	0.271	0.260	0.209	0.116	0.069	0.060	0.071
P _{2/12}	0.557											
P _{3/12}	0.163	0.715										
P _{4/12}	-0.120	-0.096	0.016									
P _{5/12}	-0.128	-0.234	-0.282	0.044								
P _{6/12}	-0.154	-0.277	-0.280	-0.159	0.115							
P _{7/12}	-0.011	-0.133	-0.213	-0.580	-0.492	0.005						
P _{8/12}	0.044	-0.068	-0.099	-0.432	-0.451	-0.236	0.593					
P _{9/12}	-0.123	0.024	0.101	0.496	-0.244	-0.472	-0.301	-0.099				
P _{10/12}	-0.262	0.157	0.486	0.045	-0.190	-0.223	-0.311	-0.167	0.280			
P _{11/12}	-0.205	-0.240	-0.190	0.054	0.203	0.036	-0.169	-0.442	-0.153	0.242		
P _{12/12}	0.040	-0.071	-0.117	0.195	0.563	-0.257	-0.505	-0.570	0.092	0.112	0.457	



# (d) Pattern U

	P _{1/12}	P _{2/12}	P _{3/12}	$P_{4/12}$	P _{5/12}	P _{6/12}	P _{7/12}	P _{8/12}	P _{9/12}	P _{10/12}	P _{11/12}	P _{12/12}
Mean	0.054	0.079	0.087	0.084	0.095	0.085	0.097	0.093	0.096	0.091	0.084	0.056
Stdev	0.037	0.035	0.034	0.042	0.054	0.036	0.051	0.043	0.035	0.039	0.038	0.037
Skewness	1.511	0.332	0.505	0.366	1.357	0.582	0.620	0.201	0.295	0.379	0.992	0.972
Kurtosis	6.006	2.447	2.685	3.027	6.074	3.091	3.375	2.477	2.597	2.847	4.225	3.405
L-CV	0.369	0.252	0.228	0.283	0.306	0.243	0.302	0.269	0.213	0.244	0.252	0.373
L-Skew	0.262	0.075	0.119	0.058	0.175	0.097	0.097	0.050	0.068	0.075	0.169	0.235
L-Kurt	0.127	0.078	0.106	0.163	0.191	0.121	0.080	0.094	0.119	0.170	0.177	0.081
90% Lower Limit	0.017	0.038	0.047	0.030	0.037	0.041	0.036	0.040	0.051	0.039	0.041	0.017
90% Upper Limit	0.097	0.126	0.136	0.139	0.156	0.129	0.160	0.150	0.145	0.148	0.132	0.109
P _{2/12}	0.312		2.5	1.50				1.2				
P _{3/12}	-0.264	0.201	978 S	S. 71			14	857 I				
P _{4/12}	-0.327	-0.197	0.007				10					
P _{5/12}	-0.371	-0.356	-0.280	0.494			22.9					
P _{6/12}	0.115	-0.277	-0.388	-0.285	0.083		· ·					
P _{7/12}	0.246	-0.114	-0.268	-0.572	-0.459	0.211						
P _{8/12}	0.030	-0.050	-0.137	-0.289	-0.340	0.037	0.461					
P _{9/12}	-0.078	-0.248	-0.169	-0.116	-0.002	0.108	-0.002	0.226				
P _{10/12}	-0.245	-0.304	0.300	-0.008	-0.251	-0.076	-0.058	-0.164	0.091			
P _{11/12}	-0.334	0.218	0.167	0.139	-0.040	-0.276	-0.293	-0.296	-0.484	-0.002		
P _{12/12}	0.039	0.115	0.132	0.045	0.209	-0.347	-0.338	-0.605	-0.315	-0.157	0.336	

## (e) Pattern D1

	P _{1/12}	P _{2/12}	P _{3/12}	P _{4/12}	P _{5/12}	P _{6/12}	P _{7/12}	P _{8/12}	P _{9/12}	P _{10/12}	P _{11/12}	P _{12/12}
Mean	0.024	0.032	0.044	0.054	0.070	0.096	0.141	0.162	0.155	0.113	0.063	0.044
Stdev	0.017	0.021	0.022	0.028	0.037	0.051	0.056	0.063	0.069	0.050	0.031	0.033
Skewness	1.074	0.980	0.355	0.456	0.471	0.761	0.235	0.738	0.643	1.056	0.175	1.099
Kurtosis	3.446	3.393	2.620	2.830	2.636	2.978	2.404	3.871	3.227	5.223	2.171	3.422
L-CV	0.372	0.368	0.291	0.290	0.306	0.303	0.228	0.216	0.251	0.237	0.285	0.405
L-Skew	0.255	0.231	0.057	0.081	0.103	0.175	0.069	0.143	0.145	0.177	0.045	0.276
L-Kurt	0.139	0.107	0.066	0.130	0.084	0.105	0.115	0.194	0.128	0.262	0.072	0.120
90% Lower Limit	0.007	0.010	0.016	0.018	0.023	0.039	0.072	0.097	0.077	0.064	0.023	0.012
90% Upper Limit	0.051	0.062	0.073	0.092	0.120	0.171	0.227	0.246	0.249	0.176	0.108	0.097
P _{2/12}	0.782											
P _{3/12}	0.298	0.450										
P _{4/12}	0.081	0.158	0.451									
P _{5/12}	-0.407	-0.302	-0.150	0.167								
P _{6/12}	-0.488	-0.517	-0.262	-0.228	0.398							
P _{7/12}	-0.095	-0.191	-0.220	-0.282	-0.165	0.239						
P _{8/12}	-0.068	-0.024	-0.128	-0.330	-0.465	-0.362	0.369					
P _{9/12}	0.062	0.028	-0.084	-0.152	-0.221	-0.396	-0.375	0.079				
P _{10/12}	-0.014	-0.027	0.081	0.085	-0.118	-0.159	-0.676	-0.299	0.259			
P _{11/12}	0.029	0.046	-0.227	0.136	0.220	0.124	-0.151	-0.396	-0.520	0.070		
P _{12/12}	0.100	-0.024	-0.038	0.054	0.225	0.183	-0.080	-0.391	-0.521	-0.124	0.623	



# (f) Pattern D2

	P _{1/12}	P _{2/12}	P _{3/12}	P _{4/12}	P _{5/12}	P _{6/12}	P _{7/12}	P _{8/12}	P _{9/12}	P _{10/12}	P _{11/12}	P _{12/12}
Mean	0.026	0.034	0.037	0.024	0.033	0.040	0.069	0.095	0.172	0.179	0.150	0.141
Stdev	0.029	0.028	0.035	0.019	0.024	0.029	0.044	0.062	0.084	0.070	0.067	0.073
Skewness	1.717	1.157	1.679	0.695	0.541	0.913	0.399	0.875	0.758	-0.189	0.038	-0.005
Kurtosis	4.858	3.894	5.455	2.106	1.840	3.382	2.202	2.768	4.298	2.913	2.299	2.235
L-CV	0.562	0.453	0.493	0.448	0.431	0.418	0.386	0.372	0.276	0.229	0.267	0.313
L-Skew	0.511	0.277	0.366	0.255	0.212	0.216	0.115	0.263	0.096	0.004	0.016	0.003
L-Kurt	0.265	0.165	0.237	0.000	-0.052	0.127	0.083	0.162	0.282	0.150	0.134	0.109
90% Lower Limit	0.005	0.007	0.007	0.006	0.008	0.008	0.014	0.031	0.071	0.099	0.060	0.044
90% Upper Limit	0.071	0.074	0.083	0.053	0.067	0.080	0.133	0.189	0.272	0.269	0.243	0.240
P _{2/12}	0.784	1		PLAN PLAN				1. 14				
P _{3/12}	0.224	0.670	228	S. 1			14	257				
P _{4/12}	0.454	0.393	0.316	1000			100					
P _{5/12}	0.144	0.024	0.118	0.364			22.9					
P _{6/12}	0.297	0.184	0.128	0.195	0.867		5 P					
P _{7/12}	-0.368	-0.365	-0.338	-0.156	-0.264	-0.136						
P _{8/12}	-0.321	-0.134	-0.143	-0.322	-0.523	-0.333	0.591					
P _{9/12}	-0.209	-0.059	0.013	-0.191	-0.244	-0.278	0.356	0.278				
P _{10/12}	-0.138	-0.358	-0.418	-0.065	-0.230	-0.313	-0.115	-0.209	-0.117			
P _{11/12}	0.065	-0.222	-0.121	-0.021	0.370	0.234	-0.575	-0.658	-0.679	0.190		
P _{12/12}	-0.277	-0.246	-0.169	-0.268	-0.123	-0.211	-0.253	-0.090	-0.530	-0.146	0.501	

# 2. 雨季(Wet-season)

## (a) Pattern A1

	P _{1/12}	P _{2/12}	P _{3/12}	P _{4/12}	P _{5/12}	P _{6/12}	P _{7/12}	P _{8/12}	P _{9/12}	P _{10/12}	P _{11/12}	P _{12/12}
Mean	0.184	0.202	0.187	0.132	0.079	0.063	0.038	0.033	0.025	0.023	0.018	0.016
Stdev	0.085	0.072	0.081	0.074	0.052	0.044	0.031	0.022	0.019	0.019	0.014	0.015
Skewness	0.335	1.121	0.680	0.363	0.742	0.881	2.150	1.019	1.396	2.820	1.886	3.055
Kurtosis	3.497	5.703	4.141	2.699	2.803	2.878	11.756	3.747	4.828	15.742	7.538	18.661
L-CV	0.257	0.192	0.237	0.321	0.368	0.390	0.405	0.367	0.403	0.403	0.398	0.432
L-Skew	0.040	0.171	0.104	0.056	0.177	0.219	0.278	0.209	0.295	0.318	0.312	0.401
L-Kurt	0.174	0.191	0.198	0.074	0.075	0.088	0.164	0.114	0.139	0.205	0.188	0.228
90% Lower Limit	0.072	0.124	0.087	0.035	0.020	0.016	0.009	0.009	0.007	0.006	0.005	0.005
90% Upper Limit	0.294	0.303	0.291	0.226	0.157	0.140	0.077	0.063	0.054	0.043	0.034	0.033
P _{2/12}	0.281											
P _{3/12}	-0.607	-0.114										
P _{4/12}	-0.509	-0.625	0.328									
P _{5/12}	-0.300	-0.468	-0.188	0.344								
P _{6/12}	-0.154	-0.293	-0.266	-0.049	0.514							
P _{7/12}	0.044	-0.071	-0.248	-0.249	-0.223	0.115						
P _{8/12}	0.029	-0.049	-0.260	-0.184	-0.271	-0.123	0.609					
P _{9/12}	-0.001	0.034	-0.133	-0.297	-0.222	-0.224	0.122	0.520				
P _{10/12}	0.062	-0.056	-0.172	-0.225	-0.176	-0.212	-0.011	0.166	0.549			
P _{11/12}	-0.007	0.068	-0.160	-0.269	-0.173	-0.146	-0.004	0.072	0.292	0.625		
P _{12/12}	0.049	-0.040	-0.171	-0.153	-0.150	-0.106	<b>0</b> .018	0.006	0.156	0.385	0.723	
			3	1			1	Er.				
(b) Pattern A	2	4	1		E B	5						

## (b) Pattern A2

	P _{1/12}	P _{2/12}	P _{3/12}	P _{4/12}	P _{5/12}	P _{6/12}	P _{7/12}	P _{8/12}	P _{9/12}	P _{10/12}	P _{11/12}	P _{12/12}
Mean	0.071	0.087	0.130	0.171	0.158	0.123	0.074	0.060	0.043	0.034	0.028	0.022
Stdev	0.056	0.053	0.068	0.081	0.078	0.069	0.045	0.038	0.029	0.026	0.022	0.019
Skewness	1.026	0.646	0.461	-0.417	0.546	0.770	0.769	1.163	1.118	1.547	1.400	1.688
Kurtosis	3.794	3.713	3.035	2.9 <mark>61</mark>	3.234	3.334	3.200	4.463	4.827	6.046	5.122	6.164
L-CV	0.429	0.337	0.296	0.268	0.277	0.312	0.337	0.347	0.366	0.394	0.422	0.433
L-Skew	0.225	0.080	0.078	0.069	0.094	0.152	0.161	0.217	0.198	0.269	0.284	0.330
L-Kurt	0.072	0.079	0.130	0.074	0.098	0.123	0.095	0.144	0.096	0.155	0.122	0.162
90% Lower Limit	0.013	0.020	0.041	0.071	0.063	0.044	0.024	0.018	0.011	0.009	0.006	0.005
90% Upper Limit	0.144	0.147	0.222	0.270	0.262	0.224	0.141	0.113	0.080	0.068	0.058	0.048
P _{2/12}	0.519		- 97	1.00	1. A.	1.1	100					
P _{3/12}	-0.352	0.071		432	1000		19 M I					
$P_{4/12}$	-0.584	-0.685	0.160	1.1	283	3.0						
P _{5/12}	-0.410	-0.562	-0.356	0.408								
P _{6/12}	-0.153	-0.277	-0.518	-0.087	0.437							
P _{7/12}	0.106	0.107	-0.076	-0.372	-0.345	0.046						
P _{8/12}	0.250	0.181	-0.083	-0.385	-0.465	-0.185	0.517					
$P_{9/12}$	0.215	0.207	-0.021	-0.236	-0.395	-0.299	-0.103	0.266				
P _{10/12}	0.091	0.182	0.135	-0.170	-0.350	-0.377	-0.217	-0.063	0.516			
P _{11/12}	0.213	0.293	0.055	-0.207	-0.298	-0.371	-0.219	-0.126	0.062	0.470		
P _{12/12}	0.174	0.165	0.029	-0.100	-0.227	-0.317	-0.195	-0.117	0.008	0.233	0.697	

# (c) Pattern C

	P _{1/12}	P _{2/12}	P _{3/12}	P _{4/12}	P _{5/12}	P _{6/12}	P _{7/12}	P _{8/12}	P _{9/12}	P _{10/12}	P _{11/12}	P _{12/12}
Mean	0.030	0.035	0.052	0.088	0.153	0.190	0.173	0.125	0.067	0.039	0.026	0.021
Stdev	0.028	0.027	0.034	0.058	0.073	0.073	0.074	0.061	0.046	0.027	0.020	0.019
Skewness	1.986	1.383	0.839	0.619	0.846	0.662	0.329	0.680	0.781	1.088	1.575	2.191
Kurtosis	8.147	5.217	3.709	2.796	4.496	3.872	3.584	3.786	2.969	4.025	6.664	9.894
L-CV	0.455	0.413	0.367	0.370	0.261	0.211	0.239	0.272	0.386	0.377	0.398	0.425
L-Skew	0.357	0.255	0.147	0.133	0.114	0.103	0.032	0.114	0.178	0.212	0.271	0.357
L-Kurt	0.177	0.130	0.099	0.070	0.175	0.147	0.143	0.099	0.078	0.123	0.138	0.189
90% Lower Limit	0.007	0.008	0.011	0.017	0.071	0.107	0.078	0.055	0.015	0.009	0.007	0.006
90% Upper Limit	0.064	0.068	0.096	0.167	0.239	0.279	0.265	0.209	0.130	0.076	0.053	0.045
P _{2/12}	0.541											
P _{3/12}	0.002	0.290										
P _{4/12}	-0.187	-0.161	0.200									
P _{5/12}	-0.214	-0.313	-0.322	0.067								
P _{6/12}	-0.157	-0.252	-0.302	-0.377	0.116							
P _{7/12}	-0.018	-0.101	-0.139	-0.400	-0.493	0.088						
P _{8/12}	-0.050	0.076	-0.022	-0.315	-0.141	-0.404	0.215					
P _{9/12}	-0.026	0.033	0.043	0.272	-0.300	-0.365	-0.233	0.051				
P _{10/12}	-0.001	0.005	0.116	0.067	-0.067	-0.143	-0.257	-0.302	0.193			
P _{11/12}	0.047	0.039	-0.024	0.056	0.003	-0.014	-0.236	-0.371	-0.144	0.339		
P _{12/12}	0.001	-0.060	-0.042	0.050	0.014	0.064	-0.204	-0.311	-0.176	0.128	0.741	



# (d) Pattern U

	P _{1/12}	P _{2/12}	P _{3/12}	P _{4/12}	P _{5/12}	P _{6/12}	P _{7/12}	P _{8/12}	P _{9/12}	P _{10/12}	P _{11/12}	P _{12/12}
Mean	0.078	0.086	0.089	0.079	0.078	0.074	0.087	0.104	0.108	0.093	0.072	0.053
Stdev	0.057	0.048	0.047	0.045	0.048	0.043	0.050	0.059	0.055	0.050	0.046	0.039
Skewness	1.030	1.970	1.398	0.957	1.067	0.723	0.842	0.811	0.698	1.282	2.363	0.818
Kurtosis	4.229	11.535	7.907	4.660	5.667	3.562	4.471	3.802	3.544	5.540	16.441	3.062
L-CV	0.397	0.286	0.279	0.315	0.341	0.326	0.320	-0.314	0.284	0.284	0.325	0.410
L-Skew	0.187	0.168	0.115	0.135	0.142	0.119	0.116	0.135	0.124	0.190	0.178	0.189
L-Kurt	0.102	0.203	0.218	0.144	0.118	0.121	0.126	0.138	0.115	0.220	0.160	0.060
90% Lower Limit	0.015	0.034	0.031	0.024	0.020	0.019	0.024	0.034	0.043	0.039	0.023	0.010
90% Upper Limit	0.155	0.140	0.138	0.141	0.142	0.129	0.155	0.178	0.186	0.154	0.125	0.105
P _{2/12}	0.302			10.000				1800				
P _{3/12}	-0.459	-0.103	47 D.S.	5 T.			14	652				
P _{4/12}	-0.506	-0.528	0.289	1.00			14					
P _{5/12}	-0.423	-0.419	-0.077	0.412	-		an.	P				
P _{6/12}	-0.207	-0.129	-0.188	0.022	0.330		5 P. L					
P _{7/12}	-0.096	-0.097	-0.067	-0.120	-0.249	0.136						
P _{8/12}	0.128	0.052	-0.100	-0.236	-0.385	-0.308	0.378					
P _{9/12}	0.033	-0.022	-0.056	-0.163	-0.131	-0.367	-0.065	0.308				
P _{10/12}	-0.048	-0.057	-0.052	0.080	0.055	-0.185	-0.450	-0.418	0.090			
P _{11/12}	-0.058	-0.075	-0.030	0.044	0.084	0.073	-0.287	-0.488	-0.522	0.164		
P _{12/12}	0.085	-0.033	-0.036	-0.079	0.062	0.111	-0.211	-0.356	-0.478	-0.141	0.427	

## (d) Pattern D1

	P _{1/12}	P _{2/12}	P _{3/12}	P _{4/12}	P _{5/12}	P _{6/12}	P _{7/12}	P _{8/12}	P _{9/12}	P _{10/12}	P _{11/12}	P _{12/12}
Mean	0.026	0.029	0.033	0.049	0.068	0.088	0.153	0.187	0.161	0.104	0.058	0.044
Stdev	0.023	0.023	0.023	0.032	0.042	0.054	0.082	0.086	0.079	0.060	0.040	0.033
Skewness	1.794	1.656	1.010	0.756	0.743	0.741	0.860	0.716	0.582	0.655	0.771	0.738
Kurtosis	6.318	6.941	3.743	2.795	3.350	3.065	4.179	3.988	3.637	3.369	3.507	2.572
L-CV	0.447	0.411	0.388	0.371	0.346	0.343	0.295	0.255	0.274	0.324	0.380	0.427
L-Skew	0.368	0.293	0.217	0.186	0.148	0.155	0.129	0.100	0.074	0.114	0.140	0.200
L-Kurt	0.189	0.149	0.095	0.069	0.070	0.097	0.129	0.154	0.082	0.120	0.077	0.041
90% Lower Limit	0.006	0.007	0.008	0.012	0.020	0.026	0.059	0.081	0.063	0.033	0.010	0.007
90% Upper Limit	0.059	0.062	0.067	0.097	0.129	0.164	0.251	0.297	0.255	0.184	0.111	0.095
P _{2/12}	0.589											
P _{3/12}	0.015	0.227										
P _{4/12}	-0.222	-0.119	0.394									
P _{5/12}	-0.299	-0.244	-0.120	0.256								
P _{6/12}	-0.209	-0.211	-0.146	-0.148	0.433							
P _{7/12}	-0.137	-0.259	-0.358	-0.310	-0.210	0.022						
P _{8/12}	-0.184	-0.190	-0.276	-0.169	-0.277	-0.347	0.349					
P _{9/12}	0.105	-0.029	0.000	0.058	-0.315	-0.352	-0.345	-0.032				
P _{10/12}	0.129	0.249	0.358	0.009	-0.094	-0.051	-0.567	-0.515	0.129			
P _{11/12}	0.098	0.141	0.103	-0.004	0.157	0.063	-0.242	-0.460	-0.386	0.199		
P _{12/12}	0.038	0.095	-0.032	-0.039	0.216	0.061	-0.183	-0.372	-0.350	0.060	0.620	



## (e) Pattern D2

			A COMPANY OF A COM					the state of the s				
	P _{1/12}	P _{2/12}	P _{3/12}	P _{4/12}	P _{5/12}	P _{6/12}	P _{7/12}	P _{8/12}	P _{9/12}	P _{10/12}	P _{11/12}	P _{12/12}
Mean	0.027	0.027	0.030	0.034	0.044	0.047	0.074	0.090	0.144	0.174	0.166	0.142
Stdev	0.026	0.019	0.022	0.027	0.033	0.033	0.047	0.054	0.068	0.069	0.062	0.074
Skewness	2.689	1.152	1.020	1.620	1.241	1.242	0.445	0.413	0.263	0.802	0.806	0.376
Kurtosis	13.373	3.848	3.635	5.932	4.408	5.500	2.080	2.294	2.962	3.692	3.587	3.522
L-CV	0.447	0.382	0.393	0.408	0.401	0.377	0.366	0.341	0.268	0.217	0.205	0.293
L-Skew	0.351	0.249	0.218	0.301	0.269	0.201	0.124	0.100	0.036	0.172	0.170	0.031
L-Kurt	0.204	0.141	0.109	0.183	0.125	0.113	0.020	0.040	0.154	0.190	0.178	0.147
90% Lower Limit	0.006	0.007	0.007	0.008	0.011	0.011	0.017	0.026	0.046	0.099	0.099	0.036
90% Upper Limit	0.055	0.057	0.061	0.071	0.097	0.094	0.144	0.160	0.237	0.269	0.251	0.240
P _{2/12}	0.672			1.1				10.00				
P _{3/12}	0.293	0.555	28	S. 1			14	851				
$P_{4/12}$	0.174	0.283	0.676	100			100					
P _{5/12}	-0.021	0.096	0.248	0.460		-	20.0					
P _{6/12}	-0.149	-0.093	-0.009	0.018	0.580		· ·					
$P_{7/12}$	-0.252	-0.269	-0.334	-0.313	-0.122	0.142						
P _{8/12}	-0.176	-0.106	-0.180	-0.338	-0.272	-0.104	0.578					
P _{9/12}	0.012	0.006	-0.167	-0.316	-0.368	-0.257	-0.040	0.310				
P _{10/12}	0.019	-0.078	-0.246	-0.180	-0.252	-0.143	-0.275	-0.275	0.196			
P _{11/12}	-0.070	-0.258	-0.008	0.090	-0.077	-0.124	-0.346	-0.551	-0.537	0.019		
P _{12/12}	-0.277	-0.227	-0.149	-0.071	-0.032	-0.159	-0.128	-0.243	-0.420	-0.424	0.415	

表 4.7 六群雨型無因次降雨量對數比率 ( $R_{\tau}, \tau = 1, 2, ..., 12$ ) 之 Johnson 分佈類型

## 及其參數值

## 1.乾季(Dry-season)

Pattern	Parameter	R _{1/12}	R _{2/12}	R _{4/12}	R _{5/12}	R _{6/12}	R _{7/12}	R _{8/12}	R _{9/12}	R _{10/12}	R _{11/12}	R _{12/12}
A1	Type	SB	SB	SB	SB	SB	SB	SB	SB	SB	SB	SB
	γ	-0.97	10.53	-1.36	-0.51	-0.37	-0.33	-0.22	0.04	0.12	0.41	1.14
	δ	1.25	3.02	0.85	0.32	0.6	0.78	1.19	0.89	0.5	0.58	0.71
	ξ	4.93	48.69	2.61	1.73	2.87	3.39	4.73	4.53	2.74	3.58	4.9
	λ	-3.5	-1.52	-2.33	-1.72	-2.77	-3.79	-4.5	-4.36	-3.61	-3.75	-3.77
A2	Type	$S_B$	$S_B$	$S_U$	SB	$S_U$	$S_U$	$S_U$	$S_B$	$S_B$	$S_B$	$S_B$
	γ	-1	-2.2	-0.24	3.81	0.66	0.94	2.78	-5.76	-1.05	0.11	0.04
	δ	2.6	1.29	2.37	2.45	3.24	2.67	3.42	2.34	1.43	2.42	1.14
	ξ	14.14	8.71	2.04	16.07	2.87	2.16	1.77	26.96	6.3	9.56	4.58
	λ	-8.95	-7.43	-0.08	-2.85	0.44	0.39	1.03	-25.61	-5.48	-6.13	-3.95
С	Type	SB	SB	SB	$S_B$	SB	SB	$S_U$	$S_U$	$S_U$	$S_U$	$S_U$
	γ	-2.85	-3.17	1.23	1.36	1.53	1.79	-1.66	-5.97	-1.32	-1.85	-1.78
	δ	2.89	2.41	0.59	1.18	2.1	1.61	2.89	2.74	2.73	2.58	3.28
	ξ	11.42	8.12	5.85	7.08	10.28	10.06	2.51	0.68	1.96	2.23	3.21
	λ	-8.68	-6.6	-0.39	-0.2	-1.64	-1.11	-0.3	-2.58	-1.11	-2.16	-2.16
U	Type	$\mathbf{S}_{\mathrm{U}}$	$S_U$	SB	SB	$S_U$	$S_B$	$S_U$	$S_B$	$S_U$	$S_B$	$S_B$
	γ	-0.67	0.06	-4.77	-1.43	-5.08	-5.05	1.05	0.04	2.76	-2.61	-0.21
	δ	2.53	1.71	2.3	2.97	15.29	4.68	2.73	2.68	4.11	2.8	0.88
	ξ	1.99	0.91	16.72	10.13	10.66	20.88	1.88	7.24	1.78	7.56	3.39
	λ	-1.2	-0.07	-14.86	-6.23	-3.65	-15.5	0.8	-3.49	1.35	-5.44	-2.44
D1	Type	SB	SB	SU	$S_U$	SB	SU	SU	SB	$S_U$	$S_U$	SB
	γ	-1.39	-1.99	0.56	5.65	0.2	0.38	0.33	1.36	0.42	1.32	0.68
	δ	1.69	1.51	2.21	9.0 <mark>6</mark>	1.18	3.52	2.35	2.37	1.89	3.52	2.54
	ξ	7.23	6.31	1.15	6.99	5.1	2.92	1.76	8.61	1.35	3.1	10.65
	λ	-5.6	-5.25	0.53	5.11	-1.59	1.54	1.64	-1.86	1.31	1.59	-4.77
D2	Type	SB	-S _B	SB	SB	SB	S _B	SB	SB	$S_B$	$S_B$	SB
	γ	-0.36	-0.01	-4.67	1.01	0.86	-0.81	-0.31	0.22	-0.19	0.33	-0.17
	δ	0.68	0.88	1.7	1.06	1.26	0.96	0.67	1.27	0.73	0.37	1.13
	ξ	3.45	1.96	24	6.91	7.2	7.43	4.57	5.82	5.13	3.66	8.07
	λ	-2.48	-1	-22.68	-2.15	-2.36	-4.21	-1.52	-0.88	-0.95	0.25	-2.79

2. 雨季(Wet-season) 1896

Pattern	Parameter	R _{1/12}	R _{2/12}	R _{4/12}	R _{5/12}	R _{6/12}	R _{7/12}	R _{8/12}	R _{9/12}	R _{10/12}	R _{11/12}	R _{12/12}
A1	Туре	SU	SU	SB	SB	SB						
	γ	0.44	-0.53	-2.3	-1.61	-0.61	1.07	0.76	1.01	2.72	2.62	1.11
	δ	2.02	1.72	1.07	1.56	1.53	2.93	3.16	1.92	3.73	3.23	1.63
	ξ	1.79	0.94	7.43	8.19	7.34	13.43	13.48	8.77	17.65	14.96	7.77
	λ	0.4	-0.22	-6.89	-6.93	-5.6	-7.31	-7.82	-5.49	-8.07	-7.17	-5.34
A2	Туре	SB	SU	SU	SU	SU	SU	SU	SB	SU	SB	SB
	γ	-0.65	2.24	-4.17	-1.03	-0.51	0.33	0.44	13.38	-1.31	0.3	2.11
	δ	2.29	2.68	2.31	2.33	2.35	2.63	6.81	10.2	5.86	3.9	5.33
	ξ	12.43	1.78	0.56	2.07	2.53	2.39	6.7	63.11	5.52	17.14	24.37
	λ	-7.84	1.33	-1.51	-0.8	-0.65	-0.26	-0.37	-14.59	-2.7	-9.92	-11.72
С	Туре	SU	SU	SU	SU	SU	SB	SB	SU	SB	SB	SB
	γ	0.27	1.88	-1.6	-2.42	-0.5	0.93	1.13	-0.83	0.88	0.97	1.85
	δ	2.49	2.43	2.21	4.2	2.83	1.51	1.16	4.5	2.7	2.43	2.71
	ξ	2.5	1.56	1.54	4.1	2.78	7.28	6.29	4.96	12.1	12.18	14.33
	λ	-0.32	1.01	-0.83	-1.34	0.99	-1.27	-0.86	-0.7	-5.38	-5.61	-5.77
U	Туре	SU	SU	SU								
	γ	-0.25	-0.02	0.03	-0.25	-0.38	0.14	-0.02	-0.25	-0.01	-0.05	0.18
	δ	3.91	1.61	1.45	1.8	2.56	2.1	1.73	1.65	1.73	2.18	2.85
	ξ	5.05	1.25	0.93	1.56	2.43	1.93	1.53	1.29	1.37	1.9	3.03
	λ	-0.61	-0.04	-0.12	-0.46	-0.63	0.08	0.1	-0.03	0.05	-0.29	-0.49
D1	Туре	SU	SU	SB	SU	SB	SB	SU	SB	SU	SB	SB
	γ	0.19	-0.07	2.09	-1.52	-0.65	-4.93	0.55	1.78	0.69	-1.35	0.1
	δ	2.66	1.84	1.11	5.58	4.03	5.93	2.59	3.52	2.58	4.6	2.44
	ξ	2.57	1.37	7.27	5.99	18.84	34.75	2.64	15.56	2.17	21.73	12.92
	λ	-0.11	-0.21	-0.77	-0.91	-9.13	-22.52	2.51	-4.15	1.84	-11.89	-6.14
D2	Туре	SU	SU	SU	SU	SU	SB	SB	SU	SU	SB	SB
	γ	0.53	0.67	-1.11	-0.26	-0.62	-0.69	-4.8	2.15	-2.02	1.1	0.41
	δ	1.81	2.11	1.61	2.26	3.94	2.4	3.83	3.41	8.3	1.46	1.85
	ξ	1.12	0.92	0.65	2.08	4.13	13.31	26.95	2.99	8.32	6.84	9.65
	λ	0.23	0.27	-0.49	0.11	-0.2	-6.65	-19.73	3.79	-0.09	-0.36	-2.68



1. 降雨延時

Pattern	0-5	5 10	10 20	> 20	Total
	87	135	39	1	262
A1	5.1	8.0	2.3	0.1	15.5
	33.2	51.5	14.9	0.4	100.0
	20.3	16.3	10.8	1.4	15.5
	95	233	78	10	416
A2	5.6	13.8	4.6	0.6	24.6
	22.8	56.0	18.8	2.4	100.0
	22.2	28.1	21.7	13.5	24.6
	84	177	67	8	336
С	5.0	10.5	4.0	0.5	19.9
	25.0	52.7	19.9	2.4	100.0
	19.6	21.4	18.6	10.8	19.9
	47	119	95	30	291
U	2.8	7.0	5.6	1.8	17.2
	16.2	40.9	32.6	10.3	100.0
	11.0	14.4	26.4	40.5	17.2
	56	116	61	18	251
D1	3.3	6.9	3.6	1.1	14.9
	22.3	46.2	24.3	7.2	100.0
	13.1	14.0	16.9	24.3	14.9
	59	48	20	7	134
D2	3.5	2.8	1.2	0.4	7.9
	44.0	35.8	14.9	5.2	100.0
	13.8	5.8	5.6	9.5	7.9
Total	428	828	360	74	1690
	25.3	49.0	21.3	4.4	100.0
	$\chi^2 = 123.149$	DF=15	p-value=0.00	15	

Storm duration ( hours )



## 表 4.8 (續)(降雨量)

Rainfall Depth (mm)										
Pattern	0-50	50-100	100-200	> 200	Total					
	141	90	25	6	262					
A1	8.3	5.3	1.5	0.4	15.5					
	53.8	34.4	9.5	2.3	100.0					
	16.8	15.3	12.1	10.5	15.5					
	196	165	44	11	416					
A2	11.6	9.8	2.6	0.7	24.6					
	47.1	39.7	10.6	2.6	100.0					
	23.4	28.0	21.4	19.3	24.6					
	176	104	47	9	336					
С	10.4	6.2	2.8	0.5	19.9					
	52.4	31.0	14.0	2.7	100.0					
	21.0	17.6	22.8	15.8	19.9					
	131	102	43	15	291					
U	7.8	6.0	2.5	0.9	17.2					
	45.0	35.1	14.8	5.2	100.0					
	15.7	17.3	20.9	26.3	17.2					
	112 🌄	93	-34	12	251					
D1	6.6	5.5	2.0	0.7	14.9					
	44.6	37.1	13.5	4.8	100.0					
	13.4	15.8	16.5	21.1	14.9					
	81	36	13	4	134					
D2	4.8	2.1	0.8	-0.2	7.9					
	60.4	26.9	9.7	3.0	100.0					
	9.7	6.1	6.3	7.0	7.9					
Total	837 🌠	590	206	57	1690					
	49.5	34.9	12.2	3.4	100.0					
	$\chi^2 = 26.958$ DF=15 p-value= 0.029									

a the fight a

表 4.8 (續)(季節(乾、雨季))

Pattern	Dry-season	Wet-season	Total
	14	248	262
A1	0.8	14.7	15.5
	5.3	94.7	100
	0.1	0.2	15.5
	35	381	416
A2	2.1	22.5	24.6
	8.4	91.6	100
	0.2	0.3	24.6
	29	307	336
С	1.7	18.2	19.9
	8.6	91.4	100
	0.2	0.2	19.9
	42	249	291
U	2.5	14.7	17.2
	14.4	85.6	100
	0.2	0.2	17.2
	46	205	251
D1 🔒	2.7	12.1	14.9
	18.3	81.7	100
	0.3	0.1	14.9
	17	117	134
D2	1.0	6.9	7.9
	12.7	87.3	100
î	0.1	0.1	7.9
Total	183	1507	1690
	10.8	89.2	100
$\chi^2 = 31.366$	DF=5	p-value=0.00	

Record length	Period	Mean	Stdev	Dispersion index	p-value
1 st 20 yr	Dry	1.60	1.43	24.22	0.188
1 20-yi	Wet	13.25	4.87	33.97	0.019
1 st 50 xm	Dry	1.86	1.34	47.44	0.536
1 50-yi	Wet	13.70	4.61	76.01	0.008
1 st 90 yr	Dry	1.68	1.26	75.23	0.599
1 80-yi	Wet	13.83	4.38	109.38	0.013

指數表

表 4.10 不同現有時雨量資料(m=20-yr、50-yr 及 80-yr)之模擬降雨特性之

(a) Based on 1 st 20-yr observations										
	- Decord		Duration	Depth	Inter-event Time					
	Record		(hours)	(mm)	(hours)					
	Entire		7.97	68.93	287.42					
Mean	Observed		8.15	72.26	293.09					
	Simulated	Mean	8.17	72.36	301.75					
	Simulated	Stdev	0.13	1.41	8.26					
	Entire		5.41	54.98	381.97					
Stdev	Observed		5.44	60.22	406.84					
	Simulated	Mean	5.45	60.25	405.59					
	Simulated	Stdev	0.26	2.99	17.04					
	Entire		2.08	3.44	2.29					
Skew	Observed		2.04	3.57	2.19					
c;	Simulated	Mean	2.33	3.06	2.69					
	Simulated	Stdev	0.60	0.63	0.38					
	Entire		8.87	19.34	9.94					
Kurtosis	Observed		8.86	20.91	8.29					
	Simulated	Mean	13.73	19.87	14.31					
	Simulated	Stdev	11.76	10.76	5.70					
	Entire		0.34	0.34	0.63					
L-Cv	Observed		0.33	0.35	0.65					
	Simulated	Mean	0.33	0.39	0.61					
	Simulated	Stdev	0.011	0.01	0.01					
	Entire		0.31	0.49	0.42					
L-Skew	Observed		0.31	0.49	0.46					
	Simulated	Mean	0.30	0.36	0.45					
	Simulated	Stdev	0.03	0.02	0.02					
	Entire		0.21	0.29	0.18					
L-Kurt	Observed		0.21	0.29	0.21					
	Simulated	Mean	0.20	0.23	0.22					
	-	Stdev	0.03	0.03	0.04					

# 統計分析結果

Note: Entire = 100-yr observed rainfall data Observed = 1st 20-yr observed rainfall data Simulated = 1st 20-yr observed + 80-yr of simulated rainfall data

Correl coeffi	ation cient	(Dur, Dep)	(Dur, Dep)	(Dep, IaT)
Entire		0.66	0.04	-0.04
Observed		0.65	0.09	-0.04
C	Mean	0.66	0.09	-0.04
Simulated	Stdev	0.02	0.03	0.02
			-	

Note: Dur = Duration; Dep = Depth; IaT = Inter-event time.

(-) = = = =				-	-
	Descrid		Duration	Depth	Inter-event Time
	Record		(hours)	(mm)	(hours)
	Entire		7.97	68.85	287.42
Mean	Observed		8.05	67.97	296.90
	Gimulated	Mean	8.07	68.00	301.22
	Simulated	Stdev	0.09	0.90	Depth (mm)Inter-event Time (hours) $68.85$ $287.42$ $67.97$ $296.90$ $68.00$ $301.22$ $0.90$ $6.60$ $54.98$ $381.97$ $55.74$ $405.15$ $55.79$ $406.05$ $2.09$ $15.32$ $3.44$ $2.29$ $3.92$ $2.21$ $3.39$ $2.50$ $0.54$ $0.30$ $19.34$ $9.95$ $24.38$ $8.77$ $21.77$ $12.06$ $10.24$ $4.19$ $0.34$ $0.63$ $0.33$ $0.65$ $0.36$ $0.63$ $0.01$ $0.01$ $0.49$ $0.42$ $0.50$ $0.44$ $0.49$ $0.46$ $0.01$ $0.01$ $0.29$ $0.18$ $0.31$ $0.18$ $0.29$ $0.21$ $0.02$ $0.03$
	Entire		5.41	54.98	381.97
Stdev	Observed		5.32	55.74	405.15
	Simulated	Mean	5.36	55.79	406.05
	Simulated	Stdev	0.18	2.09	15.32
	Entire		2.08	3.44	2.29
Skew	Observed		2.13	3.92	2.21
Simi Stdev Obse Simi Skew Obse Simi Skew Obse Simi Kurt Obse Simi L-Cv Obse Simi L-Skew Obse Simi Enti L-Skew Obse Simi	Simulated	Mean	2.23	3.39	2.50
	Simulated	Stdev	0.44	0.54	0.30
	Entire		8.87	19.34	9.95
Kurt	Observed		9.40	24.38	8.77
	Simulated	Mean	11.87	21.77	12.06
	Simulated	Stdev	7.59	10.24	4.19
L-Cv	Entire		0.34	0.34	0.63
	Observed		0.33	0.33	0.65
	Simulated	Mean	0.33	0.36	0.63
	Simulated	Stdev	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.01	
	Entire		0.32	0.49	0.42
L-Skew	Observed		0.31	0.50	0.44
Simula Entire L-Cv Observ Simula L-Skew Observ Simula Entire Entire	Simulated	Mean	0.31	0.49	0.46
	Simulated	Stdev	0.02	0.01	0.01
	Entire		0.21	0.29	0.18
L-Kurt	Observed		0.21	0.31	0.18
	Simulated	Mean	0.21	0.29	0.21
	Simulated	Stdev	0.02	0.02	0.03
Note: En	tire = 100-y	r observe	d rainfall data		
Ot Sii	$pserved = 1^{st}$ mulated = $1^{st}$	^t 50-yr ob ^t 50-yr ol	served rainfall pserved + 50-y	data r of simulated rai	nfall data
Cor	relation		r Den)	(Dur Den)	(Dep. InT.)
coe	fficient	(Dt	n, DCp)	(Dui, Dep)	(Dep, 1a1)
Entire			0.66	0.04	-0.04
Observed	d		0.64	0.05	-0.05
Circulate	, Mean		0.64	0.05	-0.05

(b)	) Based	on	1 st	50-yr	ol	bservation	s
-----	---------	----	-----------------	-------	----	------------	---

SimulatedMean0.640.05Stdev0.020.02Note: Dur = Duration; Dep = Depth; IaT = Inter-event time.

0.02

(-) =					
	- Decord		Duration	Depth	Inter-event Time
	Recolu		(hours)	(mm)	(hours)
	Entire		7.97	68.85	287.42
Mean	Observed		7.96	67.87	296.55
	Simulated	Mean	Duration (hours)         Depth (mm)         Inter-event Time (hours) $7.97$ 68.85         287.42 $7.96$ $67.87$ 296.55 $7.98$ $68.14$ 298.61 $0.06$ $0.59$ $4.25$ $5.41$ $54.98$ $381.97$ $5.31$ $53.57$ $395.73$ $5.33$ $53.74$ $396.92$ $0.12$ $1.21$ $8.76$ $2.08$ $3.44$ $2.29$ $2.05$ $3.57$ $2.23$ $2.11$ $3.38$ $2.35$ $0.23$ $0.17$ $0.16$ $8.87$ $19.34$ $9.95$ $8.89$ $21.24$ $9.25$ $9.94$ $20.06$ $10.52$ $2.99$ $2.11$ $1.87$ $0.34$ $0.34$ $0.63$ $0.31$ $0.44$ $0.43$ $0.31$ $0.44$ $0.43$ $0.20$ $0.29$ $0.18$ $0.21$ $0.29$ $0.18$ <	298.61	
	Sinulated	Stdev	0.06	0.59	4.25
	Entire		5.41	54.98	381.97
Stdev	Observed		5.31	53.57	395.73
	Simulated	Mean	5.33	53.74	396.92
	Simulated	Stdev	0.12	1.21	8.76
	Entire		2.08	3.44	Depth (mm)         Inter-event Time (hours) $68.85$ $287.42$ $67.87$ $296.55$ $68.14$ $298.61$ $0.59$ $4.25$ $54.98$ $381.97$ $53.57$ $395.73$ $53.74$ $396.92$ $1.21$ $8.76$ $3.44$ $2.29$ $3.57$ $2.23$ $3.38$ $2.35$ $0.17$ $0.16$ $19.34$ $9.95$ $21.24$ $9.25$ $20.06$ $10.52$ $2.11$ $1.87$ $0.34$ $0.63$ $0.33$ $0.63$ $0.34$ $0.63$ $0.34$ $0.63$ $0.48$ $0.43$ $0.44$ $0.43$ $0.29$ $0.18$ $0.29$ $0.18$ $0.28$ $0.19$ $0.01$ $0.02$
Skew	Observed		2.05	3.57	2.23
	Simulated	Mean	2.11	3.38	2.35
	Simulated	Stdev	0.23	nation       Deprin       Inter-event rate         nours)       (mm)       (hours)         7.97       68.85       287.42         7.96       67.87       296.55         7.98       68.14       298.61         0.06       0.59       4.25         5.41       54.98       381.97         5.33       53.74       396.92         0.12       1.21       8.76         2.08       3.44       2.29         2.05       3.57       2.23         2.11       3.38       2.35         0.23       0.17       0.16         8.87       19.34       9.95         8.89       21.24       9.25         9.94       20.06       10.52         2.99       2.11       1.87         0.34       0.33       0.63         0.33       0.34       0.63         0.31       0.44       0.43         0.31       0.44       0.43         0.29       0.18       0.21         0.20       0.28       0.19         0.02       0.01       0.02         0.02       0.01       0.02 <td< td=""></td<>	
	Entire		8.87	19.34	9.95
Kurt	Observed		8.89	21.24	9.25
	Cimulated	Mean	9.94	20.06	10.52
	Simulated	Stdev	2.99	2.11	1.87
	Entire		0.34	0.34	0.63
L-Cv	Observed		0.33	0.33	0.63
	Cimulated	Mean	0.33	0.34	0.63
	Simulated	Stdev	0.01	0.01	0.003
	Entire		0.32	0.49	0.42
L-Skew	Observed		0.31	0.48	0.43
	C:1.41	Mean	0.31	0.44	0.43
	Entire Observed Simulated $\frac{M}{Sto}$ Entire Observed Simulated $\frac{M}{Sto}$ Entire Observed Simulated $\frac{M}{Sto}$ Entire W Observed Simulated $\frac{M}{Sto}$ Entire w Observed Simulated $\frac{M}{Sto}$ Entire it Observed Simulated $\frac{M}{Sto}$ Entire Simulated $\frac{M}{Sto}$ Entire Simulated $\frac{M}{Sto}$ Correlation Simulated $\frac{M}{Sto}$	Stdev	0.01	0.01	0.01
	Entire		0.21	0.29	0.18
L-Kurt	Observed		0.21	0.29	0.18
	C:11	Mean	0.20	0.28	0.19
	Simulated	Stdev	0.02	0.01	0.02
Note: En	tire = 100-y	r observe	d rainfall data	-	-
Ob	served = $1^{st}$	80-yr ob	served rainfall	data	
Sir	nulated = 1 ^s	[#] 80-yr ol	oserved + 20-yr	r of simulated rain	fall data
			_		
Corr coef	elation ficient	(Dur	, Dep)	(Dur, Dep)	(Dep, IaT)
Entire		0	.66	0.04	-0.04
Observed	1	0	.65	0.06	-0.05
~ .	. Mean	0	.65	0.06	-0.05
Simulate	d Stdev	0	.01	0.01	4.25 381.97 395.73 396.92 8.76 2.29 2.23 2.35 0.16 9.95 9.25 10.52 1.87 0.63 0.63 0.63 0.63 0.63 0.003 0.42 0.43 0.43 0.43 0.43 0.43 0.43 0.18 0.18 0.18 0.19 0.02 
					-

(c) Based on 1st 80-yr observations

Note: Dur = Duration; Dep = Depth; IaT = Inter-event time.

Record	Doriod	Storm d	iration	Rainfall	depth	Inter-eve	nt time
length	Fenou	Distribution	p-value	Distribution	p-value	Distribution	p-value
		N	3.12E-02	Ν	9.50E-03	Ν	2.03E-01
Record length 1 st 20-yr 1 st 50-yr 1 st 80-yr	Derr	LN	3.62E-01	LN	1.19E-01	LN	2.37E-01
	Diy	GAM	2.54E-01	GAM	5.53E-02	GAM	2.05E-01
		EXP	2.00E-03	EXP	5.95E-02	EXP	7.22E-02
		Ν	0.00E+00	Ν	0.00E+00	Ν	0.00E+00
	Wat	LN	5.29E-02	LN	2.00E-04	LN	6.20E-03
	wei	GAM	2.06E-02	GAM	0.00E+00	GAM	4.22E-01
		EXP	0.00E+00	EXP	0.00E+00	EXP	0.00E+00
	Dry	N	5.00E-04	Ν	0.00E+00	Ν	1.67E-02
		LN	1.99E-01	LN	1.10E-02	LN	4.50E-02
		GAM	5.61E-02	GAM	3.00E-04	GAM	2.63E-01
1 st 50 yr		EXP	0.00E+00	EXP	3.00E-04	EXP	4.32E-02
1 50-yi	Wet	N	0.00E+00	Ν	0.00E+00	Ν	0.00E+00
		LN	6.00E-04	LN	0.00E+00	LN	0.00E+00
		GAM	1.00E-04	GAM	0.00E+00	GAM	3.20E-03
1 st 50-yr 1 st 80-yr		EXP	0.00E+00	EXP	0.00E+00	EXP	0.00E+00
		N	2.00E-04	Ν	0.00E+00	Ν	1.49E-02
	Dev	LN	1.95E-01	LN	7.00E-04	LN	8.50E-03
	Dry	GAM	6.06E-02	GAM	0.00E+00	GAM	1.06E-01
1 st 00 m		EXP	0.00E+00	EXP	0.00E+00	EXP	9.33E-02
1 80-yr		N	0.00E+00	N	0.00E+00	Ν	0.00E+00
	Wet	LN	0.00E+00	LN	0.00E+00	LN	0.00E+00
	wei	GAM	0.00E+00	GAM	0.00E+00	GAM	1.00E-04
		EXP	0.00E+00	EXP	0.00E+00	EXP	0.00E+00

及事件間隔時間之合適機率分佈函數 K-S 檢定表

Note: N-normal; LN-lognormal; GAM-gamma; EXP-exponential

表 4.12 不同現有時雨量資料(m=20、50 及 80 年)與模擬合成降雨序列之降

Record		Duration (hours)	Depth (mm)	Inter-event Time (hours)
1st 20-yr	Observed	2.26	4.83	1.97
	Simulated	<b>1</b> 2.51	4.98	4.99
1st 50-yr	Observed	1.00	1.39	3.30
	Simulated	<b>I</b> 1.25	1.35	4.80
1st 80-yr	Observed	0.13	1.54	3.18
	Simulated	<b>I</b> 0.13	1.15	3.89

雨特性平均值之相對誤差 $\varepsilon_{\theta_{m,n-m}}$ ,

Note: Observed =  $1^{st}$  m-yr observed rainfall data

Simulated =  $1^{st}$  m-yr observed + (n-m)-yr of simulated rainfall data



a <u>) Based o</u>	on the first 2	20 years	of observat	ions			
	Record ler	ngth	1-hr	2-hr	6-hr	12-hr	24-hr
	Entire		59.03	89.90	144.52	181.69	232.22
Mean	Observed		53.57	85.19	150.92	187.85	250.69
(mm)	Cimulated	Mean	52.98	86.47	151.07	186.96	217.82
	Simulated	Stdev	1.51	2.39	4.01	4.92	5.71
	Entire		17.28	29.92	61.53	76.16	99.35
Stdev	Observed		15.69	33.91	72.25	83.26	130.01
(mm)	Gimmleted	Mean	19.22	32.02	59.36	76.00	95.32
	Simulated	Stdev	1.94	2.81	5.43	7.20	8.37
	Entire		0.70	0.68	1.97	1.58	1.48
Skew	Observed		0.74	0.99	1.75	1.49	1.85
	Simulated	Mean	1.55	1.45	1.56	1.53	1.85
	Simulated	Stdev	0.71	0.52	0.47	0.51 0.42	0.42
	Entire		3.20	3.17	8.77	7.03	6.94
Kurt	Observed		2.93	3.43	6.48	5.89	7.27
	Simulated	Mean	7.65	6.65	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9.03	
	Simulated	Stdev	6.80	3.56	3.31	3.65	3.05
	Entire		0.16	0.19	0.22	0.22	0.23
L-Cv	Observed		0.17	0.23	0.25	0.24	0.27
	Simulated	Mean	0.19	0.20	0.21	0.21	12-hr $24$ -hr $181.69$ $232.22$ $187.85$ $250.69$ $186.96$ $217.82$ $4.92$ $5.71$ $76.16$ $99.35$ $83.26$ $130.01$ $76.00$ $95.32$ $7.20$ $8.37$ $1.58$ $1.48$ $1.49$ $1.85$ $1.53$ $1.85$ $0.51$ $0.42$ $7.03$ $6.94$ $5.89$ $7.27$ $6.93$ $9.03$ $3.65$ $3.05$ $0.22$ $0.23$ $0.24$ $0.27$ $0.21$ $0.22$ $0.23$ $0.27$ $0.22$ $0.24$ $0.04$ $0.09$ $0.16$ $0.16$ $0.27$ $0.29$ $0.18$ $0.18$ $0.03$ $0.10$
	Simulated	Stdev	0.03	0.03	0.01	0.01	0.03
	Entire		0.13	0.13	0.25	0.22	0.20
L-Skew	Observed		0.20	0.23	0.29	0.23	0.27
	Simulated	Mean	0.22	0.22	0.22	0.22	0.24
	Simulated	Stdev	0.10	0.11	0.04	0.04	0.09
	Entire		0.12	0.12	0.22	0.16	0.16
L-Kurt	Observed		0.18	0.16	0.28	0.27	0.29
	Simulated	Mean	0.18	0.17	0.18	0.18	0.18
	Simulated	Stdev	0.11	0.11	0.04	0.03	0.10

值之統計特性比較

Note: Entire = 100-yr observed rainfall data Observed = 1st 20-yr observed rainfall data Simulated = 1st 20-yr observed + 80-yr of simulated rainfall data

#### 表 4.13(續)

·						
	Record length	1-hr	2-hr	6-hr	12-hr	24-hr
	Entire	59.03	89.90	144.52	181.69	232.22
Mean	Observed	54.54	84.62	145.01	182.25	232.13
(mm)	Gimmleted Mean	52.35	82.93	141.94	177.42	211.57
	Simulated Stdev	1.30	2.05	3.35	4.47	5.50
	Entire	17.28	29.92	61.53	76.16	99.35
Stdev	Observed	15.77	31.12	70.73	86.08	111.13
(mm)	Mean	17.13	29.19	57.74	73.49	93.45
	Simulated Stdev	1.52	2.31	3.89	5.01	5.97
	Entire	0.70	0.68	1.97	1.58	1.48
Skew	Observed	0.76	1.04	2.18	1.96	1.93
	Simulated Mean	1.20	1.28	2.11	1.86	1.97
	Stdev	0.41	0.42	0.34	0.33	0.31
	Entire	3.20	3.17	8.77	7.03	6.94
Kurt	Observed	3.25	3.87	8.75	7.80	7.99
	Simulated Mean	5.41	5.46	10.11	8.47	9.32
	Stdev	2.59	2.87	2.53	2.20	1.99
	Entire	0.16	0.19	0.22	0.22	0.23
L-Cv	Observed	0.16	0.20	0.24	0.24	0.25
	Simulated Mean	0.18	0.19	0.20	0.21	0.22
	Stdev	0.01	0.01	0.01	0.01	9       232.22         5       232.13         2       211.57         5.50       5.99.35         8       111.13         9       93.45         5.97       1.48         1.93       1.97         0.31       6.94         7.99       9.32         1.99       0.23         0.25       0.22         0.01       0.20         0.29       0.26         0.03       0.16         0.19       0.19
	Entire	0.13	0.13	0.25	0.22	0.20
L-Skew	Observed	0.17	0.20	0.32	0.29	0.29
	Simulated Mean	0.19	0.21	0.25	0.24	0.26
	Stillated Stdev	0.04	0.04	0.03	0.03	0.03
	Entire	0.12	0.12	0.22	0.16	0.16
L-Kurt	Observed	0.13	0.16	0.27	0.23	0.19
	Simulated Mean	0.16	0.17	0.22	0.20	0.19
	Stdev Stdev	0.03	0.03	0.03	0.03	0.02

(b) Based on the first 50 years of observations

Note: Entire = 100-yr observed rainfall data Observed = 1st 50-yr observed rainfall data Simulated = 1st 50-yr observed + 50-yr of simulated rainfall data

#### 表 4.13(續)

(c) Based on the first 80 years of observations

					_	_
	Record length	ı 1-hr	2-hr	6-hr	12-hr	24-hr
	Entire	59.03	89.90	144.52	181.69	232.22
Mean	Observed	57.12	86.59	139.84	176.62	226.27
(mm)	Circulated Me	ean 55.33	85.24	140.05	175.96	217.52
	Simulated	lev 0.95	1.42	2.48	3.32	3.61
	Entire	17.28	29.92	61.53	76.16	99.35
Stdev	Observed	16.87	30.23	63.59	77.97	100.94
(mm)	Simulated Me	ean 17.15	29.28	58.53	73.25	94.49
	Simulated	lev 0.87	1.38	2.24	3.23	3.32
	Entire	0.70	0.68	1.97	1.58	1.48
Skew	Observed	0.73	0.87	2.28	1.87	1.74
	Simulated Mo	ean 0.87	1.05	2.19	1.82	1.78
	Sinuated Sto	lev 0.23	0.27	0.15	0.15	0.13
	Entire	3.20	3.17	8.77	7.03	6.94
Kurt	Observed	3.33	3.53	9.88	8.15	8.10
	Simulated Me	ean 3.95	4.38	10.21	8.25	8.45
	Simulated Sto	lev 1.04	1.63	0.99	0.89	0.78
	Entire	0.16	0.19	0.22	0.22	0.23
L-Cv	Observed	0.17	0.19	0.22	0.23	0.23
	Simulated Mo	ean 0.17	0.19	0.21	0.21	0.23
	Stitutated Sto	lev 0.01	0.01	0.01	0.01	0.01
	Entire	0.13	0.13	0.25	0.22	0.20
L-Skew	Observed	0.14	0.17	0.29	0.26	0.23
	Simulated Mo	ean 0.16	0.18	0.26	0.24	0.23
	Simulated Sto	lev 0.03	0.02	0.02	0.02	0.02
	Entire	0.12	0.12	0.22	0.16	0.16
L-Kurt	Observed	0.11	0.14	0.25	0.19	0.17
	Simulated Mo	ean 0.12	0.15	0.23	0.19	0.17
	Simulated Sto	lev 0.02	0.02	0.02	0.02	0.02

Note: Entire = 100-yr observed rainfall data Observed = 1st 80-yr observed rainfall data Simulated = 1st 80-yr observed + 20-yr of simulated rainfall data

Record length	Consecutive	e rainy days	1-day	2-day	3-day
	2-day		0.00E+00		
Record length 100 yrs (2)不同現有雨 Record length 10 yrs 20 yrs 30 yrs	3-day		0.00E+00	0.00E+00	
	4-day		0.00E+00	0.00E+00	1.82E-02
(2)不同現有雨	量資料		-	_	_
Record length	Consecutive	e rainy days	1-day	2-day	3-day
10 yrs	2 .1	Mean	3.75E-02		
	2-day	$Pr\!\left(p_{value} \le 5\%\right)$	75.05%		
	2 days	Mean	1.29E-02	6.55E-02	
	3-day	$Pr\!\left(p_{value} \le 5\%\right)$	93.23%	56.44%	
	4-day	Mean	2.28E-03	1.36E-02	2.15E-01
		$Pr\!\left(p_{value} \le 5\%\right)$	99.99%	91.20%	18.95%
	2-day	Mean	2.06E-03		
		$Pr\!\left(p_{value} \le 5\%\right)$	99.99%		
20	3-day	Mean	7.44E-04	6.93E-03	
20 yis		$Pr\!\left(p_{value} \le 5\%\right)$	99.99%	96.52%	
	1 day	Mean	2.00E-06	4.10E-05	2.41E-01
	4-day	$Pr\!\left(p_{value} \le 5\%\right)$	99.99%	99.99%	14.37%
	2 day	Mean	3.22E-04		
	2-day	$Pr\!\left(p_{value} \le 5\%\right)$	99.99%		
20 тто	2 day	Mean	7.60E-05	2.71E-04	
30 yrs	5-uay	$Pr\!\left(p_{value}\!\le\!5\%\right)$	99.99%	99.99%	
	1-day	Mean	0.00E+00	0.00E+00	2.16E-01
	4-uay	$Pr\!\left(p_{value} \le 5\%\right)$	99.99%	99.99%	20.96%

(1)100年雨量資料

consecutive rainy days	Prob	Total rainfall dpeth (mm)	1-hr	2-hr	6-hr	12-hr	24-hr
	0.500	93.8	32.2	52.9	79.9	92.3	93.8
	0.550	98.6	33.5	55.2	83.6	96.8	98.6
	0.600	103.8	34.9	57.7	87.6	101.7	103.8
	0.650	109.5	36.4	60.4	92.0	107.1	109.5
	0.700	115.9	38.1	63.4	96.9	113.1	115.9
1	0.750	123.4	40.0	66.8	102.6	120.1	123.3
	0.800	132.4	42.3	70.8	109.4	128.5	132.3
	0.850	143.8	45.1	75.9	118.1	139.2	143.8
	0.900	160.0	49.1	82.8	130.3	154.2	160.0
	0.950	188.4	55.7	94.6	151.5	180.4	188.4
	0.980	228.4	64.5	110.3	180.9	216.9	228.4
	0.990	261.3	71.4	122.5	204.8	246.6	261.2
	0.995	296.9	78.5	135.0	230.5	278.7	296.9
	0.998	349.4	88.3	152.4	267.9	325.6	349.4
	0.999	393.9	96.3	166.3	299.4	365.1	394.0
	0.500	171.7	33.7	56.8	95.2	125.5	144.4
	0.550	184.3	35.7	60.4	101.3	133.4	154.0
	0.600	198.0	37.8	64.2	107.9	141.8	164.3
	0.650	213.0	40.1	68.3	115.1	151.1	175.6
	0.700	229.9	42.6	72.9	123.2	161.4	188.3
	0.750	249.5	45.4	78.1	132.6	173.3	202.8
2	0.800	272.9	48.7	84.3	143.9	187.6	220.2
	0.850	302.8	52.8	92.0	158.2	205.6	242.2
	0.900	344.6	58.3	102.6	178.3	230.7	272.8
	0.950	416.7	67.3	120.3	212.8	273.8	325.3
	0.980	515.7	78.8	143.6	260.4	332.5	396.5
	0.990	594.8	-87.3	161.4	298.5	379.1	452.9
	0.995	678.7	95.7	179.5	339.0	428.2	512.0
	0.998	798.4	106.9	204.1	397.0	497.7	595.3
	0.999	896.9	115.5	223.4	445.0	554.4	663.0
	0.500	251.0	33.3	57.1	102.8	130.2	146.3
	0.550 -	267.5	35.0	60.2	108.8	138.0	155.2
	0.600	285.4	36.8	63.4	115.2	146.3	164.7
	0.650	304.9	38.8	67.0	122.0	155.1	175.1
	0.700	326.7	41.0	70.9	129.4	164.8	186.6
	0.750	351.8	43.4	75.3	137.7	175.7	199.7
3	0.800	381.6	46.4	80.5	147.4	188.3	215.3
	0.850	419.0	50.0	87.1	159.3	203.8	234.7
	0.900	470.3	54.9	96.0	175.1	224.4	261.3
	0.950	556.0	63.2	111.0	200.5	257.5	305.6
	0.980	668.0	74.0	130.7	232.2	298.8	363.7
	0.990	753.6	82.2	145.8	255.4	329.1	408.0
	0.995	840.9	90.5	161.2	278.2	358.9	453.2
	0.998	960.4	101.9	182.2	308.2	398.3	514.6
	0.999	1055.1	110.8	198.7	330.9	428.1	562.8

不同延時最大降雨量分位數表



I.I.S.S

Ť.



(2) 採用 P-based 降雨座標

圖 4.2 五群雨型(5-group rainstorm pattern)





圖 4.3 六群雨型(6-group rainstorm pattern)





圖 4.4 七群雨型(7-group rainstorm pattern)



(2) 採用 P-based 降雨座標

圖 4.5 六群雨型(7-group rainstorm pattern)之平均無因次降雨量  $P_{\tau}$ 



圖 4.6 模式驗證過程



圖 4.7(a) 100-yrs(Entire record)、20-yrs(Observed)及合成降雨 DDF 曲線平均 值(Mean)、中位數(Median)及 90%上下限值(90% Upper and Lower limit)之



圖 4.7(b) (降雨延時 t=2-hr)



圖 4.7(d) (降雨延時 t=12-hr)




圖 4.8(a) 100-yrs(Entire record)、50-yrs(Observed)及合成降雨 DDF 曲線平均 值(Mean)、中位數(Median)及 90%上下限值(90% Upper and Lower limit)之



圖 4.7(b) (降雨延時 t=2-hr)



圖 4.8(d) (降雨延時 t=12-hr)





圖 4.9(a) 100-yrs(Entire record)、80-yrs(Observed)及合成降雨 DDF 曲線平均



圖 4.9(b) (降雨延時 t=2-hr)



圖 4.9(d) (降雨延時 t=12-hr)





圖 4.10(b) (降雨延時 t=2-hr)



圖 4.10(d) (降雨延時 t=12-hr)





圖 4.11(b) (降雨延時 t=2-hr)



圖 4.11(d) (降雨延時 t=12-hr)









圖 4.12(d) 降雨延時 t=12-hr)





圖 4.14 不同連續日降雨事件之1小時降雨 DDF 曲線之比較







圖 4.15(c) (降雨延時 t=12-hr)





圖 4.16(a) AE 模式採用 20 年現有時雨量資料所得降雨 DDF 曲線平均值





圖 4.16(b) (降雨延時 t=2-hr)









圖 4.17(b) (降雨延時 t=2-hr)



圖 4.17(d) (降雨延時 t=12-hr)





圖 4.18(1b) (降雨延時 t=2-hr)



圖 4.18(1d) (降雨延時 t=12-hr)





圖 4.18(2a) AE 模式採用 10 年現有雨量資料及不同日雨量增加年限(*l*=10、 20、30 及 40 年)所得降雨 DDF 曲線之相對誤差平均值 ē_{m+/,model}



圖 4.18(2b) (降雨延時 t=2-hr)



圖 4.18(2d) (降雨延時 t=12-hr)





圖 4.19(1a) AME 模式採用 20 年現有時雨量資料年及不同日雨量增加年限 (*l*=10、20 及 30 年)所得降雨 DDF 曲線之相對誤差平均值 ε_{m+l,model}



圖 4.19(1b) (降雨延時 t=2-hr)



圖 4.19(1d) (降雨延時 t=12-hr)





圖 4.19(2a) AE 模式採用 20 年現有時雨量資料不同日雨量增加年限(*l*=10、 20 及 30 年)所得降雨 DDF 曲線之相對誤差平均值 ē_{m+1,model}



圖 4.19(2b) (降雨延時 t=2-hr)


圖 4.19(2d) (降雨延時 t=12-hr)





圖 4.20(1b) (降雨延時 t=2-hr)



圖 4.20(1d) (降雨延時 t=12-hr)





圖 4.20(2a) AE 模式採用 30 年現有時雨量資料及不同日雨量增加年限(*l*=10



圖 4.20(2b) (降雨延時 t=2-hr)



圖 4.20(2d) (降雨延時 t=12-hr)





圖 4.21(a) AME 及 AE 模式採用 10 年現有時雨量資料及不同日雨量資料增

加年限所得相對誤差 $\varepsilon_{m+l,model}$ 小於或等於AMS之 $\varepsilon_{m,AMS}$ 之機率 Pr( $\varepsilon_{m+l,model} \leq \varepsilon_{m,AMS}$ )(重現期距T=50-yr)



圖 4.21(b) (重現期距 T=100-yr)



圖 4.21(d) (重現期距 T=1000-yr)



圖 4.22(a) AME 及 AE 模式採用 20 年現有時雨量資料及不同日雨量資料增



100



圖 4.22(b) (重現期距 T=100-yr)



圖 4.22(d) (重現期距 T=1000-yr)





圖 4.23(b) (重現期距 T=100-yr)



圖 4.23(d) (重現期距 T=1000-yr)



圖 4.25(a) AME、AE 及 AMS 模式所推得降雨 DDF 曲線(降雨延時 t=1-hr)



圖 4.25(c) (降雨延時 t=6-hr)



圖 4.25(e) (降雨延時 t=24-hr)



圖 4.26(a) AMS、AME 及 AE 模式所得降雨 DDF 曲線之相對誤差



圖 4.26(a) (降雨延時 t=2-hr)



圖 4.26(d) (降雨延時 t=12-hr)



### 第五章 結論與建議

本章根據第四章模式驗證結果整理出相關結論,並提出可供未來可研究 方向之建議。

#### 5.1 結論

(1) 隨機降雨序列模擬機制

本文採用香港天文台站所測得 100 年時雨量資料,將每年分為乾季(四 月至九月)及濕季(1-3 月及 10-12 月),並從中所篩選出 1690 場降雨事件之 特性,包括降雨事件年發生數目、降雨延時、總降雨量、事件間隔時間及 雨型(其中雨型可分為前進型(A1 及 A2)、中央型(C)、均勻型(U)、延後型 (D1 及 D2)等六種雨型),以上述降雨特性之統計分析結果為基礎,發展一 套隨機降雨序列模擬機制(Stochastic rainfall series generation, SRSG, model),用以衍生降雨事件來建立成降雨序列。茲將模式在發展過程及驗 證結果整理如下,

- 本文所發展隨機降雨序列模擬(SRSG)機制確實有能力能製造保存原 有統計統性之降雨事件。
- 2. SRSG 模式也可藉由模擬合成降雨序列方式來延伸降雨資料紀錄,以 達到改善降雨量-延時-頻率(DDF)曲線之準確性,特別是在推估重現 期距大於實測時雨量資料紀錄之年最大降雨量分位數,其改善程度 最為明顯。
- 由於 SRSG 模式具有大量製造降雨序列之功能,因此亦可將此模式 應用於水文及水理模式之不確定性分析,用以評估降雨資料之不確 定性對其模式之影響程度。
- (2) 採用日雨量資訊之時雨量頻率分析模式 本文另一發展模式為採用日雨量資訊之時雨量頻率分析模式,模式依據

所採用日雨量及時雨量之資料型式可區分為二模式:(1)年最大值事件模式 (Annual-maximum-events, AME, model):即不同連續日降雨事件總雨量及 其不同延時最大降雨量皆採用年最大值;及(2)所有事件模式(All-events, AE, model):即採用所有降雨事件之模式。茲將模式在發展過程及驗證結果整 理如下,

- 當實測時雨量資料小於10年則可分成單日(single-rainy-day events)及 大於一日(more-than-one-day events)二種連續降雨事件;但若時雨量 資料大於10年以上,則可分成單日,2日(two-consecutive-rainy-days events)及大於2日(more-than-two-days events)等三種事件。
- 2. 相對於傳統採用之年最大降雨序列之頻率分析(即本文所定義的 AMS 模式)而言,因 AME 及 AE 模式採用不同連續日降雨事件之雨 量資料,可推得較具有可靠及準確性之降雨 DDF 曲線。
- 4. AME模式較適用於短實測時雨量資料之不同延時降雨 DDF 曲線之 推估,而 AME模式則適用於當具有較長的日雨量資料紀錄年限之降 雨 DDF 曲線之推估。

1896

- (3) 整合模式
  - 1. 雖本文係僅採用降雨 DDF 曲線來驗證模式,但因 SRSG 模式可製造 一整年的降雨序列,故理論上亦可應用於其他水文分析,例如透過 降雨-逕流模式(例如單位歷線或水筒模式)可推得逕流歷線,則可將 此模擬逕流量應用於相關水理分析(如河道演算或淹水模擬)。
  - 若需將降雨序列應用於乾旱分析、降雨-逕流或淹水演算等水文水理 分析,則可採用 SRSG 模式。
  - 反之分析目的若僅為推估降雨 DDF 曲線,則可採用利用日雨量之 AME 及 AE 模式。
  - 但若降雨 DDF 曲線推估成效不佳或是時雨量資料過於不足,則可應
     用 SRSG 模式製造合成降雨序列,也就是增加日雨量及時雨量資料

紀錄年限,來改善總雨量及其不同延時最大降雨量分位數關係,藉 以提高 AME 及 AE 模式之可靠度。

5. 亦可利用 SRSG 模式可考量降雨特性之不確定性來衍生大量降雨序 列之功能,藉以評估 AME 及 AE 模式所推得 DDF 降雨頻率曲線之 可靠度,並可針對需要 DDF 頻率曲線之相關水文分析(例如水工結 構物或水資源規劃等)進行風險分析。

### 5.2 建議

- 本文係以香港天文台站 100 年時雨量記錄來建置模式,經由第四章 模式驗證結果證明所建立的模式可得合理且可被接受的結果,因此 未來可將此套模式應用於台灣地區降雨序列之模擬。
- 2. 在發展隨機降雨序列模擬機制過程中,本文將每年的降雨序列分為 乾濕二季,但實際上降雨在四季甚致在12月份各有不同的特性,因 此未來可將降雨序列分為四季或12月份,藉以發展降雨序列模擬機 制,期使所發展之模式能衍生更多符合實際自然降雨現象之降雨特 性。
- 3. 由於 AME 及 AE 模式具有利用日雨量資料下可改善推估降雨 DDF 曲線準確性之成效,故可將模式應用於評估自計雨量站之有效紀錄 年限。所謂有效紀錄年限為由雨量站時雨量資料推得具有可靠度的 DDF 曲線之最短時雨量資料年限。當雨量站時雨量紀錄達到有效紀錄年限時,則可將雨量站改為只紀錄日雨量之普通雨量站。如此作 法,不僅可減少雨量站維護費用,更可將經費用作為設置其他自計 雨量站,藉以增加自計雨量站網密度,進而提高水文及水理分析結 果之可靠度。
- 由於 SRSG 模式可衍生完整的降雨序列,不僅可將其應用於降雨極端值分析包括暴雨及乾旱分析,更可以配合降雨-逕流模式而衍生流 量資料。

- 5. 在 AME 及 AE 模式模式發展過程中,係假設不同連續日降雨事件間 為相互獨立,然而實際上各降雨事件應存著程度不一的相關性,若 忽略此一相關性,則可能對所推得降雨 DDF 曲線之品質造成影響。 因此末來可考慮各連續日降雨事件之相關性,建立一符合實際降雨 情形之 AME 及 AE 模式。
- 6. 由於本文所展的模式皆根據香港天文台單站降雨資料所發展而成,因此可針對其他雨量站進行相同分析,建立符合各站降雨情況之模式,最後採用區域化分析法發展一區域 AME 及 AE 模式,配合區域 SRSG 模式,則可模擬流域內無設站之降雨序列及降雨 DDF 曲線,若結合降雨-逕流模式則亦可推估無設站集水區之逕流歷線,以提供水工結構物設計或水資源開發之用。



## 參考文獻

Acreman, M.C., 1990. "A simple stochastic model of hourly rainfall for Farnborough, *England.*" *Hydro. Sci. J.*, 35(2): 119-148.

Aitchison, J. 1986. *Statistical Analysis of Compositional Data*. Chapman and Hall Inc., New York, NY.

**Alexandersson, H.**, 1985. "A simple stochastic model of the precipitation process." *J. of Climate and Applied Meteorology*, 24: 1285-1295.

Bonta, J.V. and Rao, A.R., 1988. "Factors affecting the identification of independent rainstorm events." *J. Hydrol.*, 98: 275-293.

100

Borgman, L.E. and Faucette, R.C. (1993) Frequency-domain simulation and stochastic interpolation of random vectors in multidimensional space. *Computational Stochastic Mechanics*. Edited by H.D. Cheng and C.Y. Yang. Elsevier, London, UK. Cameron, D.S., Beven, K.J., Tawn, J., Blazkova, S., and Naden, P., 1999. "Flood

frequency estimation for a gauged upland catchment (with uncertainty)." *J. Hydrol.*, 219: 169-187.

Cameron, D., Beven, K., and Tawn, J., 2000. "An evaluation of three stochastic rainfall models." *J. Hydrol.*, 228: 130-149.

Cernesson, F., Lavabre, J., and Masson J.M., 1996. "Stochastic model for generating hourly hyetograph." *Atmospheric Rsrch.*, 42: 149-161.

Chang, C.H., Yang, J.C., and Tung, Y.K., 1997. "Incorporate marginal distributions in point estimate methods for uncertainty analysis." *J. Hydraul. Engrg.*, ASCE, 123(3): 244-251.

**Collins, A.J.** (1980) *Introduction to Multivariate Analysis*. Chapman and Hall, Inc. London.

Connolly, R. D., Schirmer, J., and Dunn, P.K., 1998. "A daily rainfall

disaggregation model." Agriculture and Forest Meteorology, 92: 105-117.

**Consul, P.C.**, 1989. "Generalized Poisson distribution: properties and application." Marcel Dekker, INC, New York.

**Cowpertwait, P.S.P.**, 1991. "Further evelopment of the Neyman-Scott clustered point process for modelling rainfall." *Water Resour. Res.*, 27(7):1431-1438.

**Cowpertwait, P.S.P.,** 1994. "A generalized point process model for rainfall." *Proc. Roy. Soc. London*, A447:23-37.

Cowpertwait, P.S.P., O'Connell, P.E., Metcalfe, A.V., and Mawdsley, J.A., 1996. "Stochastic point process modelling of rainfall. I. Single-site fitting and validation." *J. Hydrol.*, 175:17-46.

Cowpertwait, P.S.P., O'Connell, P.E., Metcalfe, A.V., and Mawdsley, J.A., 1996. "Stochastic point process modelling of rainfall. II. Regionalisation and disaggregation." J. Hydrol., 175:47-46.

**Cowpertwait, P.S.P.,** 1998. "A Poisson-cluster model of rainfall: high-order moments and extreme values." *Proc. Roy. Soc. London*, A457:885-898.

**Cowpertwait, P.S.P.,** 2004. "Mixed rectangular pulses models for rainfall." *Hydrology and Earth System Sciences*, 8(5):993-1000.

Cunnane, C., 1999. "A note on the Poisson assumption in partial duration series modes." *Water Resour. Res.*, 15(2): 489-494.

**Eagleson, P.S.**, 1977. "The distribution of annual precipitation derived from observed storm sequence." *Water Resour. Res.* 14(5): 713-721.

Fang, T.Q. and Tung, Y.K., 1996. "Analysis of Wyoming extreme precipitation patterns and their uncertainty for safety evaluation of hydraulic structure." *Technical Report, WWRC-96.5*, Wyoming Water Resource Center, Univ. of Wyoming, Laramie, Wyoming.

**Glasbey, C.A., Cooper, G., and McGechan, M.B.**, 1995. "Disaggregation of daily rainfall by conditional simulation from a point-process model." *J. Hydrol.*, 165: 1-9.

Hannah, D.M. and Smith, B.P.G, Gurnell, A.M., and McGregor, R.M. (2000) An approach to hydrograph classification. *Hydrol. Process*, 14, 317-338.

Harrold, T.I., Sharma, A., and Sheather, S.J., 2003. "A nonparametric model for stochastic generation of daily rainfall amounts." *Water Resour. Res.*, 39(12): SWC

10-1 - 10-10.

Hershenhorn, J. and Woolhiser, D.A. 1987. "Disaggregation of daily rainfall." J. *Hydrol.*, 98: 299-322.

Hill, I.D., Hill, R., and Holder, R.L., 1976. "Algorithm AS 99 Fitting Johnson curves by moments." *Appl. Statist.*, 25: 180-189.

Huff, F.A. (1967) Time distribution of rainfall in heavy rainfalls. *Water Resour. Res.*, 3(4): 1007-1019.

Hosking, J.R.M., 1986. *The theory of probability weighted moments*. IBM Research report, No. 12210, October.

Hosking, J.R.M., 1990. "L-moments: analysis and estimation of distribution using linear combination of order statistics." *J.R. Stat. Soc.*, *Ser. B.*, 52: 105-124.

Hosking, J.R.M., 1992. "Moments or L. moments?" *The American Statistician*, 46(3): 186-189.

Hosking, J.R.M. and Wallis, J.R., 1997. *Regional frequency analysis: an approach based on L-moments*. Camberidge university press, New York.

**Johnson, N.L.**, 1949. "System of frequency curves generated  $z_i = \gamma + \delta \ln[y_i^{\alpha} / (1 - y_i^{\alpha})]$  by method of translation." *Biometrika*, 36, 149-176.

Koutsoyiannis, D. and Onof, C., 2001. "Rainfall disaggregation using adjusting procedures on a Poisson cluster model." *J. Hydrol.*, 246, 109-122.

Lambert, M. and Kuczera, G., 1996. "A stochastic model of rainfall and temporal patterns." *Proceedings, Stochastic Hydraulics*, Balkema, Rotterdam.

Lin, G.F., Chen, L.H., and Kao, S.C. (2004) Development of regional design hyetographs. *Hydrol. Process*, 19, 937-946.

Liu, P.L. and Der Kiureghian, A., 1986. "Multivariate distribution models with prescribed marginals covariances." *Probabilistic Engineering Mech.*, 1(2): 105-112.

Lovejoy, S. and Schertzer, D., 1990. "Multifractal, universality classes, and satellite and radar measurements of cloud rain fields." *J. Geophys. Res.*, 95:2021-2031.

Marien, J.L. and Vandewiele, G.L., 1986. "A point rainfall generator with internal storm structure." *Water Resour. Res.*, 22(4), 475-482.

Mason, J., 1986. "Numerical weather prediction." *Proc. R. Soc. London*, A407:51-60.Minitab Inc., 1999. *Minitab User's Guide*, *Release 13*.

MacQueen, J. (1967) Some methods for classification and analysis of multivariate observations. *Proc.* 5th Berkeley Symp., 1: 281-297.

Mason, J., 1986. "Numerical weather prediction." Proc. R. Lodon, A407:51-60.

**Morris, C.D.**, 1981. "A stochastic model for an intermittent hydrologic process." *Ph.D. thesis*, Dept. of Civil Eng., Univ. of Illinois at Urbana-Champaign.

Nataf, A., 1962. "Determinaiton des distributions don't les marges sont donnees." *Computes Rendus de l'Academie des Sciences*, Paris, 225: 42-43.

Nguyen, V.T.V., and Chaleeraktrgkoon. C., 1990. "Estimation o hourly rainfall distribution based on available daily rainfall data." *American Water Resour*. *Association*, 11, 67-76.

Nguyen, V.T.V., Nguyen, T.D., and Wang, H., 1998. "Regional estimation of short duration rainfall extremes." *Water Sci. Technol.*, 37(11): 15-19.

Onof, C., Chandler, R.E., Kakou, A., Northrop, P., Wheater, H.S., Isham, V., 2000.

"Rainfall modelling using Poisson-cluster process: a review of developments." *Stochastic Envir. Res. and Risk Assessment*, 14:384-411.

**Onof, C., Townend, J., and Kee., R**., 2005. "Comparison of two hour to 5-min rainfall disaggregators." *Atmospheric Research*, 77: 176-187.

Pilgrim, D.H. and Cordery, I. (1975) "Rainfall temporal patterns for design floods."*J. Hydraul. Div.*, ASCE, 101(HY1): 81-95.

**Ramos, M.C.** (2001) Divisive and hierarchical clustering techniques to analyze variability of rainfall distribution patterns in a Mediterranean region. *Atmospheric Research*, 57: 123-138.

Rodriguez-Iturbe, I., Cox, D.R., and Isham, V., 1987. "A point process model for rainfall: further development." *Proc. R. Soc. London.* Ser. A, 410: 269-298.

Stedinger, J.R., Vogel, R.M., and Foufoula-Georgoiu, E., 1993. *Chapter 18: Frequency analysis of extreme events. Handbook of Hydrology*, D.R. Maidment(ed.), Mcgraw-Hill, New York.

Stern R.D. and Coe, R., 1984. "A model fitting analysis of daily rainfall data." *J. Roy. Statist. Soc.*, 147(1):1-34.

**Tung, Y.K. and Yen, B.C.**, 2005. *Hydrosystems engineering uncertainty analysis*. McGraw Hill, New York.

**Verhoest, N., Troch, P.A., and De Troch, F.P.**, 1997. "On the applicability of Bartlett-Lewis rectangular pulses models in the modeling of design storms at a point." *J. Hydrol.*, 202: 108-120.

Vogel, R.M. and Neil, M.F., 1993. "L-moment diagrams should replace product moment diagrams." *Water Res. Res.*, 29(6): 1745-1752.

Waymire, E. and Gupta, V.K., 1981a. "The mathematical structure of rainfall representation. 1. A review of stochastic rainfall models." *Water Resour. Res.*, 17(5):

1261-1272.

Waymire, E. and Gupta, V.K., 1981b. "The mathematical structure of rainfall representation. 2. A review of the theory of point processes." *Water Resour. Res.*, 17(5): 1273-1285.

Waymire, E. and Gupta, V.K., 1981c. "The mathematical structure of rainfall representation. 3. Some applications of the point process theory to rainfall processes." *Water Resour. Res.*, 17(5): 1286-1294.

Wu, S.J., Tung, Y.K, and Yang, J.C., 2006. "Identification and stochastic generation of representative rainfall temporal patterns in Hong Kong territory." *Stoch. Evnir. Res and Risk Ass.*, 20(3), 171-183.

Yen, B.C., Chow, V.T., 1980. "Design hyetographs for small drainage structures." *J. Hydraul. Engrg.*, ASCE, 106(HY6): 1055-1076.

Zurich, A.K. (1971) Statistical-analytical methods in theoretical regional design hyetograph. *Geoforum*, 7: 39-53.

張守陽,「基隆河集水區系統降雨分析與水文預測之研究」,國立台灣大學農業工 程學系碩士論文,民國72年6月。

余濬,「降雨設計雨型之研究」,國立台灣大學土木工程學系碩士論文,民國 77 年6月。

**顏清連**,「台北都會區大眾捷運系統防洪排水設計之研究」,台灣大學水工試驗所 研究報告第100號,民國78年12月。

林國峰、張守陽,「台灣地區雨型之研究」,行政院國科會專題研究成果報告,民國 81 年 12 月。

**張斐章、易任、林獻博及王文清**,「運用線性動差於水文頻率分析之研究」,台灣 水利,第43卷,第2期,第24-36頁,民國84年6月。

王如意及李孟穎,「水文頻率分析之離群值、可信區間與最小需求記錄年數」,台 灣水利,第43卷,第2期,第1-21頁,民國84年6月。

揭錦釧、湯有光、葉克家,「台灣水庫集水區極端暴雨及其不定性之研究」,台灣

電力公司委託計畫報告,民國 86 年 12 月。

鄭克聲、許恩菁及葉惠中,「具隨機碎形特性之設計暴雨雨型」,台灣水利, 第47卷,第3期,第43-54頁,民國88年9月。



# 附錄 多變量蒙地卡羅 MMCS 法參數之推求

由 2.3 節所述,非常態多變量蒙地卡羅模擬包含三步驟:(1)標準常態轉換;(2)正交轉換及;(3)逆轉換,其中各步驟所需使用之參數(D_x^{-1/2},V^t,Λ^t) 如圖 2.2 中所示。現將各參數之推導過程列於如下(Tung and Yen, 2005)。 (1) 標準常態轉換(Normal transformation)

第一步驟之主要目的為將非常態相關變量轉換成常態相關數量。現假設有 k 個隨機變數 X = (X₁, X₂, ..., X_K)^t,其平均值、變異數及共協變方分別為

平均值:
$$\mu_x = (\mu_1, \mu_2, ..., \mu_K)^t$$
 (A.1)

變異數:
$$\sigma_x^2 = (\sigma_1^2, \sigma_2^2, ..., \sigma_K^2)^t$$
 (A.2)

共協變方:
$$C_x = \begin{bmatrix} \sigma_{11} & \sigma_{12} & \sigma_{12} & \dots & \sigma_{1K} \\ \sigma_{21} & \sigma_{22} & \sigma_{23} & \dots & \sigma_{2k} \\ \vdots & \vdots & \vdots & \dots & \vdots \\ \sigma_{K1} & \sigma_{K2} & \sigma_{K3} & \dots & \sigma_{KK} \end{bmatrix}$$
 (A.3)

其中 $\sigma_{ij}$ 為隨機變數 $X_i \mathcal{O} X_j 共協變方 \circ 因當 i=j$ 時共協變方 $\sigma_{ij}$ 即為隨機變數 之變異數 $\sigma_i^2$ ,且因相關係數 $\rho_{ij} = \sigma_{ij} / \sigma_i^2 \sigma_j^2$ 則相關係數矩陣 $R_x$ 可表示為

$$\mathbf{R}_{\mathbf{x}} = \begin{bmatrix} 1 & \rho_{12} & \rho_{13} & \dots & \rho_{1K} \\ \rho_{21} & 1 & \rho_{23} & \dots & \rho_{2k} \\ \vdots & \vdots & \vdots & \dots & \vdots \\ \rho_{K1} & \rho_{K2} & \rho_{K3} & \dots & 1 \end{bmatrix}$$
(A.3)

式中 $\rho_{ij} = \sigma_{ij} / (\sigma_i^2 \sigma_j^2)$ 。若將隨機變數之標準化,則標準隨機變數可表示為 X' =  $(X - \mu_x) / D_x^{-1/2}$ ,因其平均值及變異數分別為0及1,故共協變方 $\sigma_{ij}$ 可表示為

$$\sigma_{ij}^{'} = E\left[(X_{i}^{'} - \mu_{i}^{'})(X_{j}^{'} - \mu_{j}^{'})\right] / \sigma_{i}^{'} \sigma_{j} = E\left[X_{i}^{'}X_{j}^{'}\right]$$
$$= E\left[\frac{(X_{i} - \mu_{i})(X_{j} - \mu_{j})}{\sigma_{i}\sigma_{j}}\right] = \rho_{ij}$$
(A.4)

由上式可知標準隨機變數X 共協變方矩陣C。等於為隨機變數 X 之相關

係數矩陣R,,進而證明了(2.6)式之成立。

(2) 正交轉換(Orthogonal transform)

此步驟主要係將由步驟(1)所得相關性多變量經過常態轉換成標準常 態變量後,再利用正交轉換成獨立的常態變量,也說是將步驟(1)所推得之 相關係數矩陣 $R_x$ 成為單位矩陣I。在矩陣分析中因可藉由 spectral decomposition 法可將矩陣分解成特徵向量(Eigenvector)與其特徵值 (Eigenvaule)之組成,故矩陣 $R_x$ 或 $C_y$ 可表示為

$$\mathbf{R}_{\mathbf{x}} = \mathbf{C}_{\mathbf{y}} = \mathbf{V} \mathbf{\Lambda} \mathbf{V}^{\mathsf{t}} \tag{A.7}$$

其中 V 為K×K特徵向量(Eigenvector)矩陣V=( $v_1$ ,  $v_2$ ,..., $v_K$ ) 且VV^t=I; 及  $\Lambda$  = diag( $\lambda_1$ ,  $\lambda_2$ ,  $\lambda_2$ ,..., $\lambda_K$ ) 為特徵值矩陣,為一對角線矩陣(Diagonal matrix),即

$$\Lambda = \begin{bmatrix} \lambda_1 & 0 & 0 & 0 \\ 0 & \lambda_2 & 0 & 0 \\ 0 & 0 & \vdots & 0 \\ 0 & 0 & \dots & \lambda_K \end{bmatrix}$$
(A.8)

因(A.7)式亦可表為下式

$$\mathbf{V}^{\mathsf{t}}\mathbf{R}_{\mathsf{x}}\mathbf{V} = \Lambda \tag{A.8}$$

若令隨機變數U=V'X',其中X'具有相關性的常態隨機變數,其平均值為 E[U]=E[V'X']=V'E[X']=0 (A.9)

則共協變方為

$$C_{u} = E[U_{i}U_{j}] = E[V^{t}X_{i}^{'}V^{t}X_{j}^{'}]$$
$$= V^{t}E[X_{i}^{'}X_{j}^{'}]V = V^{t}C_{x}^{'}V$$
(A.10)

$$= V^{t}R_{x}V = \Lambda$$

由(A.8)及(A.10)式可知,變數U之共協變方,而變異數為λ,故U為無相 關性的隨機變數(Uncorrelated standard random variable)。此時,若將變數U 予以標準化,則可得

$$\mathbf{Y} = \boldsymbol{\Lambda}^{-1/2} \mathbf{U} \tag{A.11}$$

式中 Y 一無相關性之標準隨機變數,其平均值為 0 而變異數為 1。將

U=V'X'代入(A.11)式則可得

$$\mathbf{Y} = \boldsymbol{\Lambda}^{-1/2} \mathbf{V}^{\mathsf{t}} \mathbf{X}^{\mathsf{t}} \tag{A.12}$$

由(A.12)式與(2.6)式Y=T⁻¹X 相互比較可看出,轉換因子T為

$$T^{-1} = \Lambda^{-1/2} V^{t}$$

$$T = V \Lambda^{t}$$
(A.13)

綜合上述,不同隨機變數之統計特性為X~(μ, C,),X~(QR), U~(QΛ), Y~(QI), 在實際空間之隨機變數 X 與不具相關性之隨機變數 Y 之關係為

$$X = \mu_{x} + D_{x}^{1/2} V \Lambda^{1/2} Y = \mu_{x} + D_{x}^{1/2} \Lambda Y$$
 (A.14)