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Massabò et al. (2007) introduced a quick method
for estimating the transverse dispersion coefficient in
laboratory experiments without a priori knowledge of the
longitudinal dispersion coefficient. The method is based
on the analytical solution of the advective-dispersion
equation (ADE) given in Massabò et al. (2006) for a
pulse injection of a nonreactive solute in a soil column.
They solved for the transverse dispersion coefficient
as an unknown using an expression for the ratio of
concentrations sampled at two points within the column.
The exact solution for the concentration C(r , z, t) is
(Massabò et al. 2007, equation 5):
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where DL and DT are the longitudinal and transverse
dispersion coefficients, respectively, u is average linear
velocity, r is radial distance from the centerline of the
well, R is column radius, J0(·) and J1(·) are first kind
Bessel functions of zero and first order, and Zk,1 is the
kth root of J1(·).

The coefficient Ak in Equation 1 is defined as
(Massabò et al. 2007, equation 7)
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where σ is solute mass injected over the cross section,
n is porosity, and ρ represents the radius of the injected
solute. Massabò et al. (2007) mentioned that summing an
infinite number of terms is required to obtain an accurate
solution for the concentration C(r , z, t) but, for practical
applications, 1000 terms are sufficient.

In this comment, we suggest an alternative approach.
The Shanks method (Shanks 1955) accelerates conver-
gence when evaluating the Bessel functions and infinite
series in Equation 1. The Shanks method is a nonlinear
iterative algorithm based on the sequence of partial sums
(Shanks 1955). This method has been successfully used
in groundwater problems (see, e.g., Peng et al. 2002; Yeh
et al. 2003). The Bessel functions in Equation 1 can be
approximated by the formulas given in Watson (1958) and
Abramowitz and Stegun (1964) and the large positive kth
root, Zk,v, can be approximated as (Yeh and Chang 2006):

Zk,v = β − (4v2 − 1)/(8β)

− [4(4v2 − 1)(28v2 − 31)]/3(8β)3 (3)

where β = (π/4)(2v + 4k − 1).
Let Sn represent a partial sum with n terms for an

infinite series. A simplified expression for the Shanks
transform developed by Wynn (1956) is:

es+1(Sn) = es−1(Sn+1) + 1

es(Sn+1) − es(Sn)
,

s = 1, 2, 3 . . . (4)

where e0(Sn) = Sn and e1(Sn) = [Sn+1 − Sn]−1.
Applying the Shanks transform to compute a given

series requires setting a convergence criterion defined as:∣∣∣∣e2r+2(Sn−1) − e2r (Sn)

e2r+2(Sn−1)

∣∣∣∣ � ε (5)

where ε is related to a desired accuracy. The running sum
is terminated when this criterion is met.

Assume that σ = 0.05, ρ = 0.05 m, n = 0.3, R =
0.1 m, r = 0.02 m, z = 1 m, u = 10−4 m/s, DT = 3 ×
10−9 m2/s, and DL = 3 × 10−1 m2/s for t = 3, 30, or
300 s. Table 1 shows the numerical results for Equation 1
computed by the method we suggest here and the direct
sum, which adds all the required terms until the speci-
fied accuracy criterion is met. The required terms for the
direct sum with an accuracy to 10−7 are 888 and 86 when
t = 3 and 300 s, respectively. For the same accuracy and
test times, the suggested method requires fewer than 30
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Table 1
Required Terms in Achieving an Accuracy to 10−7

When Employing the Direct Sum and the Suggested
Method to evaluate Equation 1 at Various Times

Number of Terms

t (s)

Exact
Solution
C (r , z , t ) Direct Sum Suggested Method

3 0.0375315 888 29
30 0.0152394 312 24
300 0.0049411 86 24

terms. Table 1 indicates that the number of terms for the
direct sum with an accuracy to 10−7 increases signifi-
cantly with decreasing time. Table 1 also indicates that the
suggested method converges much faster than the direct
sum when t is small. Obviously, the suggested method
is computationally efficient for infinite series such as
Equation 1. Moreover, it can also be used to compute the
solution in terms of the unknown parameter, in this case
the transverse dispersion coefficient (Massabò et al. 2007,
equation 11).
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