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The yield index Spk proposed by Boyles (1994. Process capability with asymmetric
tolerances. Communications in Statistics – Simulation and Computation, 23 (1),
615–643) provides an exact measure on the production yield of normal processes.
Lee et al. (Lee, J.C., Hung, H.N., Pearn, W.L. and Kueng, T.L., 2002. On the
distribution of the estimated process yield index Spk. Quality and Reliability
Engineering International, 18 (2), 111–116) considered a normal approximation
for estimating Spk. In this paper, we consider a convolution approximation for
estimating Spk, and compare with the normal approximation. The comparison
results show that the convolution method does provide a more accurate
estimation to Spk as well as the production yield than the normal approximation.
An efficient step-by-step procedure based on the convolution method is developed
to illustrate how to estimate the production yield. Also investigated is the
accuracy of the convolution method which provides useful information about
sample size required for designated power levels, and for convergence.

Keywords: production yield; process capability; quality assurance; critical value;
power of test

1. Introduction

Production yield, for a long time, has been a standard criterion used in the manufacturing
industry as a common measure on process performance, and defined as the percentage
of processed product unit that falls within the manufacturing specification limits.
For product units falling out of the manufacturing tolerance, additional cost would be
incurred to the factory for scrapping or repairing the product. All passed product units,
which incur no additional cost to the factory, are equally accepted by the producer.
Numerous process capability indices (PCI) have been proposed to the manufacturing
industry, to provide numerical measures on the production yield as well as process
performance. Those indices, such as Cp, Cpk, Cpm, Cpmk, and Spk, establish the relationship
between the actual process performance and the manufacturing specifications, which
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have been the focus of the recent research in statistical and quality assurance literatures.

The explicit forms of the indices are defined as follows:

Cp ¼
USL� LSL

6�
, Cpk ¼ min

USL� �

3�
,
�� LSL

3�

� �
,

Cpm ¼
USL� LSL

6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ ð�� T Þ2

q , Cpmk ¼ min
USL� �

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ ð�� T Þ2

q ,
�� LSL

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ ð�� T Þ2

q
8><
>:

9>=
>;,

and

Spk ¼
1

3
��1

1

2
�

USL� �

�

� ��
þ
1

2
�

�� LSL

�

� ��
,

where USL and LSL are the upper and lower specification limits, respectively, � is the

process mean, � is the process standard deviation, T is the target value, �(�) is the

cumulatively distribution function (CDF) of the standard normal variable, and ��1(�) is

the inverse function of �(�).
The index Cp measures the overall process variation relative to the specification

tolerance, therefore only reflects the process precision (the product consistency) (see Juran

1974, Kane 1986). Owing to the simplicity of the design, Cp cannot reflect the tendency of

process centring. In order to reflect the deviations of process mean from the target value,

several indices similar in nature to Cp, such as Cpk, Cpm, Cpmk, have been proposed.

Those indices attempt to take into consideration the magnitude of process variance as well

as process location. The Cpk index was developed because the Cp index can not adequately

deal with cases that process mean is not centred. However, a large value of Cpk does not

really say anything about the location of the mean in the tolerance interval. The Cpk index

has been regarded as a yield-based index since it provides bounds on production yield for

a normally distributed process, 2�(3Cpk)� 1�Yield��(3Cpk) (Boyles 1991). The Cp and

Cpk indices are appropriate measures of progress for quality improvement paradigms in

which reduction of variability is the guiding principle and production yield is the primary

measure of success.
Taguchi, on the other hand, emphasises the loss in a product’s worth, rather than the

production yield, when one of its characteristics departs from the target value. Hsiang and

Taguchi (1985) introduced the index Cpm, which was also proposed independently by Chan

et al. (1988). The Cpm index is related to the idea of squared error loss, loss(X)¼ (X�T )2,

and has been called the Taguchi index. The Cpm index incorporates the process variation

with respect to the target value with the manufacturing specifications preset in the factory,

which reflects the degree of process targeting. Chan et al. (1988) also discussed the

sampling properties of the natural estimator of Cpm. Boyles (1991) provided a definitive

analysis of Cpm and its usefulness in measuring process targeting. Pearn and Shu (2003)

provided explicit formulas with efficient algorithms to obtain the lower confidence bound

of Cpm using the maximum likelihood estimator (MLE) of Cpm. Pearn et al. (2004b)

developed a two-phase supplier selection procedure based on the Cpm index providing

useful information about sample size required for a designated selection power.
Pearn et al. (1992) proposed a third-generation capability index called Cpmk, which is

constructed by combining the merits of the three indices Cp, Cpk, and Cpm. The index Cpmk

alters the user either the process variance increases or the process mean deviates from its

1246 W.L. Pearn et al.
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target value. The Cpmk index responds to the departure of the process mean from the target

value T faster than the other three indices Cp, Cpk, and Cpm, while it remains sensitive to

the changes of process variation. Vännman and Kotz (1995) obtained the distribution of

the estimated Cp(u, v) for cases with on-centre target. By taking u¼ 1 and v¼ 1, the

distribution of Cp(1, 1)¼Cpmk is obtained. Chen and Hsu (1995) proposed the asymptotic

sampling distribution of Cpmk, and showed that the estimated Cpmk is consistent,

asymptotically unbiased estimator of Cpmk and is asymptotically normal while the fourth

moment of the characteristic X is finite. Wright (1998) derived an explicit but rather

complicated expression of the probability density function (PDF) of the estimated Cpmk.

Pearn and Lin (2002) alternatively expressed the CDF and PDF of the estimated Cpmk in

terms of a mixture of the chi-square distribution and normal distribution. The CDF form

of the estimated Cpmk obtained by Pearn and Lin considerably simplify the complexity for

analysing the statistical properties of the estimated Cpmk.
Note that the indices Cpm and Cpmk are defined to emphasise the loss in a product’s

worth when one of its characteristics departs from the target value T, and the indices Cp

and Cpk can only provide a lower bound or interval estimation on the production yield.

Only the yield index Spk provides an exact measure on the production yield. We remark

that the indices presented above are designed to monitor the performance for stable

normal or near-normal processes with symmetric tolerances. In practice, the process mean

� and the process variance �2 are unknown. To calculate the index value, sample data

must be collected, and a great degree of uncertainty may be introduced into the

assessments due to the sampling errors. As the use of the capability indices grows more

widespread, users are becoming educated and sensitive to the impact of the estimators and

their distributions, learning that capability measures must be reported in confidence

intervals or via capability testing. Statistical properties of the estimators of those indices

under various process conditions have been investigated extensively, including Chan et al.

(1988), Pearn et al. (1992, 2003, 2004a, b), Kotz and Johnson (1993, 2002), Vännman and

Kotz (1995), Vännman (1997), Kotz and Lovelace (1998), Chen (2000), Zhang (2001), Lee

et al. (2002), Xie et al. (2002), Spiring et al. (2003), Montgomery (2005), Wu (2007).

2. The yield index Spk

Boyles (1994) proposed a yield measurement index, referred to as Spk, based on the

production yield of normal processes. The yield index Spk, as defined previously, also can

be alternatively expressed as

Spk ¼
1

3
��1

1

2
�

1� Cdr

Cdp

� ��
þ
1

2
�

1þ Cdr

Cdp

� ��
,

where Cdr¼ (��m)/d, Cdp¼ �/d, m¼ (USLþLSL)/2 is the midpoint of the specification

limits, and d¼ (US ~L: �LSL)/2 is the half length of the specification interval.
As mentioned previously, the index Cpk can only provide interval estimation on the

production yield. The indices Cpm and Cpmk are defined by being related to the customer’s

loss. Only the yield index Spk can provide a one-to-one correspondence to the production

yield, which can be expressed as

Yield ¼2� ð3SpkÞ � 1:

International Journal of Production Research 1247
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Table 1 summarises the corresponding production yields as well as non-conformities

in parts per million (PPM) for Spk¼ 1.0(0.1)2.0, including the most commonly used

performance requirements: 1.00, 1.33, 1.50, 1.67, and 2.00. For example, if a process has

capability index value Spk¼ 1.50, then the yield of the process is 0.999993205 and the

corresponding non-conformities is roughly seven parts per million.
Assume that X1, . . . ,Xn be a random sample of the characteristic from a normal

process. The natural estimator of Spk is defined as

Ŝpk ¼
1

3
��1

1

2
�

USL� �X

S

� ��
þ
1

2
�

�X� LSL

S

� ��
,

and can also be expressed as

Ŝpk ¼
1

3
��1

1

2
�

1� Ĉdr

Ĉdp

 !(
þ
1

2
�

1þ Ĉdr

Ĉdp

 !)
,

where Ĉdr ¼ ð �X�mÞ=d and Ĉdp ¼ S=d are natural estimators of Cdr and Cdp, respectively,
�X ¼ 1

n

Pn
i¼1 Xi is the sample mean, and S2 ¼ 1

n�1

Pn
i¼1 ðXi � �XÞ2 is the sample variance. The

distribution of the natural estimator of Spk is mathematically intractable as it is a complex

function of the statistics �X and S2 (or Ĉdr and Ĉdp). However, we can profile the sampling

distribution of Spk by using a simulation technique. Figure 1 shows the histograms of Ŝpk

with simulation parameters Spk¼ 1.0, �¼ (��m)/�¼ 0, and sample size n¼ 20, 30, 50, 80

each with 10,000 simulated Ŝpk. The histograms reveal that the probability density

function (PDF) of Ŝpk is nearly bell-shaped, symmetric to the real Spk for large sample

sizes, and slightly skewed to the right for small sample sizes.
Many researchers have focused on the sampling distribution of Spk. Lee et al. (2002)

derived a normal approximated distribution of the estimated Spk. Pearn et al. (2004a)

investigated the accuracy of the normal approximation computationally, and suggested

that a sample size greater than 150 is required for the normal approximation sufficiently

accurate. Pearn and Cheng (2007) further derived a normal approximated distribution of

Table 1. Various Spk values and the corresponding
production yields as well as non-conformities in PPM.

Spk Yield PPM

1.00 0.997300204 2699.796
1.10 0.999033152 966.848
1.20 0.999681783 318.217
1.30 0.999903807 96.193
1.33 0.999933927 66.073
1.40 0.999973309 26.691
1.50 0.999993205 6.795
1.60 0.999998413 1.587
1.67 0.999999456 0.544
1.70 0.999999660 0.340
1.80 0.999999933 0.067
1.90 0.999999988 0.012
2.00 0.999999998 0.002

1248 W.L. Pearn et al.
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the estimated Spk under multiple samples, and investigated the sample sizes required to
converge to Spk within a designated accuracy. Chen (2005) considered that the formula of
the normal approximation is messy and cumbersome to deal with. Chen (2005) applied
four bootstrap methods to find the lower confidence bounds on Spk, and showed that the
standard bootstrap (SB) method significantly outperforms the other three bootstrap
methods in coverage fraction. We note, however, the bootstrap re-sampling method results
in different solutions each time, while the theoretical sampling distribution approach
provides a unique lower bound for the same sample estimates.

The distribution of Ŝpk is analytically intractable, but approximate distributions of Ŝpk

can be obtained. In the following sections, two approximate distributions are considered
and compared to the distribution of the estimated Spk obtained via simulations.

3. Normal approximation of Ŝpk: Ŝ
0
pk

Lee et al. (2002) considered a normal approximation of Ŝpk, which is denoted Ŝ0pk in this
paper. The normal distribution of Ŝ0pk is distributed with a mean Spk and a variance
(a2þ b2)/[36n’2(3Spk)], i.e.

Ŝ0pk � N Spk,
a2 þ b2

36n�2ð3SpkÞ

� �
,

Figure 1. Histograms of Ŝpk with simulation parameters Spk¼ 1.0 and �¼ 0.

International Journal of Production Research 1249
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where

a ¼
1ffiffiffi
2
p

1� Cdr

Cdp
�

1� Cdr

Cdp

� �
þ
1þ Cdr

Cdp
�

1þ Cdr

Cdp

� �� �
,

and

b ¼ �
1� Cdr

Cdp

� �
� �

1þ Cdr

Cdp

� �
:

The normal approximation is useful in statistical inferences for Spk. Consider the following

null versus alternative hypotheses:

H0: Spk�C, a specified value;
H1: Spk4C.

The decision rule with 1�� confidence level should be that to reject the null hypothesis H0

if the sample statistic Ŝpk is equal to or larger than the critical value c0, where c0 satisfies

the following equation

Pr Ŝ0pk � c0 jH0: Spk � C
n o

� �:

Lee et al. (2002) suggested performing the hypothesis testing with the test statistic

T ¼ Ŝpk � C
� � 6 ffiffiffi

n
p
� 3Ŝpk

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
â2 þ b̂2

p ,

where â and b̂ are the natural estimators of a and b, with Cdr and Cdp replaced by Ĉdr and

Ĉdp, respectively. Then, the decision rule becomes that the null hypothesis H0 would be

rejected if T� z�, where z� is the upper 100�% point of the standard normal distribution.
This approach is intuitive and reasonable, but introduces additional sampling errors

from estimating a and b (or Cdr and Cdp) with â and b̂ (or Ĉdr and Ĉdp). Thus, it would

certainly become less reliable. For example, in Table 2 the sample estimate of Spk in

Process B is larger than the one in Process A, but contradictorily it turns out a smaller test

statistic T in Process B. Table 2 shows a couple of examples for testing H0: Spk� 1.0 versus

H1: Spk4 1.0 in which the sample estimate of Spk is larger (e.g. Processes B,D, F, and H),

but on the contrary, the corresponding test statistic T is smaller.

Table 2. Contradiction between Ŝpk and test statistic T in Lee’s method.

Process �X S Ĉdr Ĉdp Ŝpk T

A 7.695115 1.365970 0.139023 0.273194 1.114490 0.807547
B 7.674245 1.372115 0.134849 0.274423 1.114555 0.807412
C 7.707630 1.335160 0.141526 0.267032 1.134942 1.207505
D 7.681125 1.342895 0.136225 0.268579 1.135032 1.207252
E 7.683340 1.314965 0.136668 0.262993 1.156439 1.063747
F 7.650165 1.324405 0.130033 0.264881 1.156573 1.063459
G 7.700125 1.219685 0.140025 0.243937 1.234395 1.929673
H 7.680760 1.224995 0.136152 0.244999 1.234452 1.929267

1250 W.L. Pearn et al.

D
ow

nl
oa

de
d 

by
 [

N
at

io
na

l C
hi

ao
 T

un
g 

U
ni

ve
rs

ity
 ]

 a
t 2

3:
05

 2
4 

A
pr

il 
20

14
 



Pearn et al. (2004a) showed that for a specific Spk (e.g. Spk¼C), the variance of Ŝ0pk
would be the largest with on-centre processes, i.e. with �¼ (��m)/�¼ 0. Consequently,

the critical value of testing H0: Spk�C versus H1: Spk4C would be the largest, and the

test statistic T would be the smallest with �¼ 0. Hence, for practical purpose we would

obtain the test statistic (or critical value) with �¼ 0 without having to further estimate the

parameter � (or parameters a and b). The test statistic T obtained in this way is increasing

in Ŝpk, and there would be no contradiction. Pearn et al. (2004a) listed in the Table III of

the published paper the critical values c0 of the Ŝ
0
pk approach which were obtained by the

following probability

Pr Ŝ0pk � c0jSpk � C and � ¼ 0
n o

� �:

Lee et al. (2002) showed that the normal distribution of Ŝ0pk can produce an adequate

approximation to the actual distribution of Ŝpk for a large enough sample size. However,

Pearn et al. (2004a) noted that the normal approximation would significantly under-

calculate the critical values for small sample sizes, and suggested that a sample of size

greater than 150 is recommended in real applications, for which the magnitude of under-

calculation would be as large as 0.02 at most. Since the critical value of the Ŝ0pk approach is

significantly under-calculated for small sample sizes, it is necessary to do some

improvement.

4. Convolution approximation of Ŝpk: Ŝ
00
pk

The critical value obtained from the normal approximation is significantly under-

calculated for small sample sizes. Thus, we go further to do some improvement by

considering a convolution approximation of the estimated Spk. First, we define the two

random variables Z ¼
ffiffiffi
n
p
ð �X� �Þ=� and Y ¼

ffiffiffi
n
p
ðS2 � �2Þ=2�2. The two random variables

Z and Y are independent since �X and S2 are independent variables. It is well-known that

the variable Z follows the standard normal distribution N(0, 1) according to the famous

Central Limit Theory, and Y can be expressed as a function of a chi-square random

variable with n� 1 degrees of freedom, i.e.

Z � N 0, 1ð Þ, Y �

ffiffiffi
n
p

2

�2n�1
ðn� 1Þ

� 1

� �
:

Then, we can rewrite the form of Ŝpk as the following analytical expansion:

Ŝpk ¼ Spk þD1ZþD2YþD3Z
2 þD4ZYþD5Y

2 þOp
1

n
ffiffiffi
n
p

� �
,

where

D1 ¼
1ffiffiffi
n
p

��0
6�ð3SpkÞ

� �
, D2 ¼

1ffiffiffi
n
p

��1
6�ð3SpkÞ

� �
, D3 ¼

1

n

Spk�
2
0

8 �ð3SpkÞ
	 
2 � �1

12�ð3SpkÞ

 !
,

D4 ¼
1

n

Spk�0�1

4 �ð3SpkÞ
	 
2 þ �0 � �2

6�ð3SpkÞ

 !
, D5 ¼

1

n

Spk�
2
1

8 �ð3SpkÞ
	 
2 þ 3�1 � �3

12�ð3SpkÞ

 !
,
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and

�k ¼
1� Cdr

Cdp

� �k

�
1� Cdr

Cdp

� �
þ ð�1Þkþ1 �

1þ Cdr

Cdp

� �k

�
1þ Cdr

Cdp

� �
, k ¼ 0, 1, 2, 3:

Let

Ŝ 00pk ¼ Spk þD1ZþD2YþD3Z
2 þD4ZYþD5Y

2:

The cumulative distribution function (CDF) of Ŝ00pk, FŜ00
pk
ðxÞ, then can be derived by the

probability

FŜ00
pk

ðxÞ ¼ Pr Ŝ 00pk � x � 0
n o

¼ Pr D3 Zþ
D1 þD4Y

2D3

� �2

�
E1ðYþ E3Þ

2

4D3
þ

�1ðxÞ

4D3E1
� 0

( )
,

where

E1 ¼ D2
4 � 4D3D5, E2 ¼ D1D4 � 2D2D3, E3 ¼

E2

E1
, E4 ¼ 4D3Spk �D2

1,

and

�1ðxÞ ¼ E2
2 � E1ð4D3x� E4Þ:

The explicit form of the CDF of Ŝ00pk is presented in the Appendix. The CDF of Ŝ00pk
consists of eight parts according to the signs of D3, E1 and y0þE3, where y0¼�

ffiffi
n
p

2 is the

minimal value of the variable Y. Applying the Leibniz’s rule for derivatives, we can also

obtain the probability density function (PDF) of Ŝ00pk.
Again, we consider the following hypothesis testing

H0: Spk�C, a specified value;
H1: Spk4C.

It is inevitable to face the same problem or contradiction as in the normal

approximation. Thus, we examine the behaviour of the critical values c0 against the

parameter � before we do the hypothesis testing for Spk. We perform extensive calculations
to obtain the critical values c0 for �¼ 0(0.05)3.0, n¼ 20(10)200, Spk¼ 1.0(0.1)2.0, 1.33,

1.67, and confidence level 1� �¼ 0.95. Figure 2 shows parts of the results for � versus the
critical values. The parameter values we investigated, �¼ 0(0.05)3.0, cover a wide range of

applications with process capability Spk � 1.0. Note that for an on-centre process the yield
index Spk5 1.0 indicates that six-sigma of the process is larger than the manufacturing

specification tolerance, i.e. 6�4USL�LSL, and such a process is said to be inadequate.

The results of our extensive calculations show the following features of the critical values
obtained from the convolution approximation.

(i) The critical value obtains its maximum with � around 0.5, minimum with �¼ 0,
and stays at the same value for �� 1.0 in all cases.

(ii) The critical value reaches its maximum with � slightly larger than 0.5 for n� 50,

and with � slightly smaller than 0.5 for n4 50.
(iii) The larger the sample size n, the smaller the difference between the maximal and

minimal critical values.
(iv) The larger the sample size n, the larger the difference between the maximal critical

value (with � around 0.5) and the converged critical value (with �� 1.0).
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(v) The larger the value of Spk, the larger the difference between the maximal and
minimal critical values.

(vi) The larger the value of Spk, the smaller the difference between the maximal critical
value (with � around 0.5) and the converged one (with �� 1.0).

(vii) The difference between the maximal critical value (with � around 0.5) and the
converged critical value (with �� 1.0) is always less than 0.0006.

(viii) The critical value is increasing in Spk (the testing parameter), and decreasing in
sample size n, which is definite in the statistical inference.

Figure 2. � versus critical values for various n and Spk.
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For assurance purposes, we calculate the critical value based on the convolution

approximation with �¼ 0.5 to obtain the maximal critical value c0 for testing the

hypotheses H0: Spk�C versus H1: Spk4C, since the critical value c0 reaches its maximum

with � around 0.5 in all cases.

Pr Ŝ 00pk � c0jSpk � C and � ¼ 0:5
n o

� �:

Thus, the level of confidence can be ensured, and the decisions made based on such an

approach are indeed more reliable. We note that the above result is impossible to prove

mathematically.

5. Comparisons of both approximations

5.1 Comparison of probability curves

We perform extensive calculations to draw the PDFs and CDFs of Ŝ0pk and Ŝ00pk as well as

the density and distribution curves of the estimated Spk via simulation for process

parameters �¼ 0(0.25)1.0, Spk¼ 1.0(0.25)2.0, and sample size n¼ 30, 50, 80, 100. Each of

the density and distribution curves is obtained by 1,000,000 simulated Ŝpk. Parts of the

calculation results are presented in Figure 3. The calculation results also reveal the

following general features.

(i) The density curve of Ŝpk is nearly bell-shaped, symmetric to the real Spk, and so

are the PDFs of Ŝ0pk and Ŝ00pk.
(ii) The tail probability of Ŝ00pk is closer to the one of the simulated Ŝpk than that of Ŝ0pk.
(iii) The CDFs of Ŝ0pk and Ŝ00pk are closer to the distribution curves of Ŝpk with a large �

than those with a small �.
(iv) The larger the sample sizes n, the smaller the variance of Ŝpk, Ŝ

0
pk, and Ŝ00pk, which is

definite for all sample estimators.

The calculation results show that the cumulative distribution functions of Ŝ00pk are closer

to the distribution curves of the simulated Ŝpk than CDFs of Ŝ0pk. Though the distribution

function of Ŝ00pk (the convolution method) is more complicated than that of Ŝ0pk (the normal

approximation), it does produce a more accurate approximation to the sampling

distribution of Spk than the normal approximation. Besides, by the high development

of computer technology, complex functions are no longer a problem for calculation.
Making a decision accurately is relatively more important than easy calculation.

5.2 Comparison of critical values

Decision rule for testing hypotheses H0: Spk�C versus H1: Spk4C based on the
normal and convolution approximations are conducted, respectively. The critical value

which is closer to the critical value of the simulated Ŝpk is regarded as the more accurate

and reliable one. We know that for the same Spk, the maximal variance of Ŝ0pk occurs at

�¼ 0, i.e. process mean is on the centre of the specification limits (Pearn et al. 2004a).

Thus, when testing the hypotheses based on the distribution of Ŝ0pk, we would set �¼ 0 to

obtain the maximal critical value of the normal approximation. On the other hand,
we would set �¼ 0.5 while testing the hypotheses based on the convolution method for

the same reason.
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To compute the critical value of the convolution method, we developed a Matlab
program (available on request). The program reads the minimal capability requirement C,
the significant level �, and the sample size n, and outputs with the critical value.
Table 3 shows the critical values for the normal and convolution approximations as well as
the one of Ŝpk via simulation, for testing hypotheses H0: Spk�C versus H1: Spk4C with
significant level �¼ 0.05. The critical values of Ŝpk (via simulation) and Ŝ0pk (the normal
approximation) are extracts from those presented in the paper of Pearn et al. (2004a).
We note that the critical values of the convolution approximation are always larger
than those of the normal approximation, and are closer to the critical values of the

Figure 3. The PDF (l.h.s.) and CDF (r.h.s.) of Ŝ0pk and Ŝ00pk as well as the density and distribution
curves of Ŝpk via simulation.

International Journal of Production Research 1255

D
ow

nl
oa

de
d 

by
 [

N
at

io
na

l C
hi

ao
 T

un
g 

U
ni

ve
rs

ity
 ]

 a
t 2

3:
05

 2
4 

A
pr

il 
20

14
 



simulated Ŝpk, the 100(1��) percentile point of Ŝpk under H0. That is the accuracy of the
convolution method is greater than the normal approximation.

Note that the normal approximation significantly under-calculates the critical values
for small sample sizes, particularly for n� 40, as the magnitude of the under-calculation
exceeds 0.1. The large magnitude of under-calculation results in huge probability of
wrongly rejecting H0: Spk�C while actually the yield index Spk is smaller than or equal to
a specific value C, which incurring the risk of the customers by accepting products
with less quality assurance. Therefore, for short run applications, one should avoid using
the normal approximation. It is also noted that the magnitude of under-calculation of the

Table 3. Critical values of the two approximations versus the simulated ones.

Spk 1.00 1.33 1.50 1.67 2.00

n Ŝ0pk Ŝ00pk Ŝpk Ŝ0pk Ŝ00pk Ŝpk Ŝ0pk Ŝ00pk Ŝpk Ŝ0pk Ŝ00pk Ŝpk Ŝ0pk Ŝ00pk Ŝpk

20 1.26 1.31 1.37 1.68 1.74 1.82 1.89 1.97 2.05 2.11 2.19 2.30 2.52 2.63 2.74
25 1.23 1.27 1.31 1.64 1.69 1.75 1.85 1.91 1.98 2.06 2.13 2.20 2.47 2.56 2.63
30 1.21 1.25 1.28 1.61 1.66 1.70 1.82 1.87 1.93 2.03 2.09 2.14 2.43 2.50 2.57
35 1.20 1.23 1.25 1.59 1.63 1.67 1.80 1.84 1.89 2.00 2.05 2.10 2.39 2.46 2.51
40 1.18 1.21 1.23 1.58 1.61 1.64 1.78 1.82 1.85 1.98 2.02 2.06 2.37 2.42 2.47
45 1.17 1.20 1.22 1.56 1.59 1.61 1.76 1.80 1.82 1.96 2.00 2.02 2.35 2.40 2.43
50 1.16 1.18 1.20 1.55 1.58 1.60 1.75 1.78 1.80 1.95 1.98 2.01 2.33 2.38 2.40
55 1.16 1.18 1.19 1.54 1.56 1.58 1.74 1.77 1.79 1.93 1.97 1.99 2.31 2.36 2.38
60 1.15 1.17 1.18 1.53 1.55 1.57 1.73 1.75 1.77 1.92 1.95 1.98 2.30 2.34 2.36
65 1.14 1.16 1.17 1.52 1.54 1.56 1.72 1.74 1.76 1.91 1.94 1.96 2.29 2.32 2.34
70 1.14 1.15 1.16 1.52 1.54 1.55 1.71 1.73 1.77 1.90 1.93 1.95 2.28 2.31 2.33
75 1.13 1.15 1.15 1.51 1.53 1.54 1.70 1.72 1.74 1.89 1.92 1.94 2.27 2.30 2.31
80 1.13 1.14 1.15 1.50 1.52 1.53 1.70 1.72 1.73 1.89 1.91 1.93 2.26 2.29 2.31
85 1.13 1.14 1.14 1.50 1.51 1.53 1.69 1.71 1.72 1.88 1.90 1.92 2.25 2.28 2.30
90 1.12 1.13 1.14 1.49 1.51 1.52 1.68 1.70 1.71 1.88 1.90 1.91 2.25 2.27 2.28
95 1.12 1.13 1.14 1.49 1.50 1.51 1.68 1.70 1.71 1.87 1.89 1.90 2.24 2.26 2.27
100 1.12 1.13 1.13 1.49 1.50 1.50 1.67 1.69 1.70 1.86 1.88 1.89 2.23 2.26 2.27
105 1.11 1.12 1.13 1.48 1.49 1.50 1.67 1.69 1.70 1.86 1.88 1.89 2.23 2.25 2.26
110 1.11 1.12 1.13 1.48 1.49 1.50 1.67 1.68 1.69 1.86 1.87 1.89 2.22 2.24 2.25
115 1.11 1.12 1.12 1.47 1.49 1.49 1.66 1.68 1.69 1.85 1.87 1.88 2.22 2.24 2.25
120 1.11 1.11 1.12 1.47 1.48 1.49 1.66 1.67 1.68 1.85 1.86 1.87 2.21 2.23 2.24
125 1.10 1.11 1.12 1.47 1.48 1.49 1.66 1.67 1.68 1.84 1.86 1.86 2.21 2.23 2.24
130 1.10 1.11 1.12 1.47 1.48 1.48 1.65 1.67 1.68 1.84 1.86 1.86 2.20 2.22 2.23
135 1.10 1.11 1.11 1.46 1.47 1.48 1.65 1.66 1.67 1.84 1.85 1.86 2.20 2.22 2.23
140 1.10 1.11 1.11 1.46 1.47 1.48 1.65 1.66 1.67 1.83 1.85 1.86 2.20 2.21 2.22
145 1.10 1.10 1.11 1.46 1.47 1.48 1.65 1.67 1.66 1.83 1.84 1.85 2.19 2.21 2.22
150 1.10 1.10 1.11 1.46 1.47 1.47 1.64 1.65 1.66 1.83 1.84 1.85 2.19 2.21 2.21
155 1.09 1.10 1.10 1.45 1.46 1.47 1.64 1.65 1.66 1.83 1.84 1.84 2.19 2.20 2.21
160 1.09 1.10 1.10 1.45 1.46 1.47 1.64 1.65 1.65 1.82 1.84 1.84 2.19 2.20 2.21
165 1.09 1.10 1.10 1.45 1.46 1.46 1.64 1.65 1.65 1.82 1.83 1.84 2.18 2.20 2.20
170 1.09 1.10 1.10 1.45 1.46 1.46 1.63 1.64 1.65 1.82 1.83 1.84 2.18 2.19 2.20
175 1.09 1.09 1.10 1.45 1.46 1.46 1.63 1.64 1.65 1.82 1.83 1.83 2.18 2.19 2.20
180 1.09 1.09 1.10 1.45 1.45 1.46 1.63 1.64 1.65 1.82 1.83 1.83 2.17 2.19 2.19
185 1.09 1.09 1.09 1.44 1.45 1.46 1.63 1.64 1.64 1.81 1.82 1.83 2.17 2.18 2.19
190 1.08 1.09 1.09 1.44 1.45 1.45 1.63 1.64 1.64 1.81 1.82 1.83 2.17 2.18 2.19
195 1.08 1.09 1.09 1.44 1.45 1.45 1.63 1.63 1.64 1.81 1.82 1.82 2.17 2.18 2.18
200 1.08 1.09 1.09 1.44 1.45 1.45 1.62 1.63 1.64 1.81 1.82 1.82 2.16 2.18 2.18
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normal approximation can be as large as 0.03 for n¼ 110, and 0.02 for n¼ 150. Thus, in
real applications a sample of size greater than 150 is recommended for using the normal
approximation (Pearn et al. 2004a).

The convolution method also under-calculates the critical values, but it always
provides a closer estimate to the critical value of Ŝpk than the normal approximation.
The magnitude of the under-calculation of the convolution approximation is as large as
0.03 for n¼ 60, 0.02 for n¼ 70, and 0.01 for n¼ 90. As we know previously, the magnitude
of under-calculation of the normal approximation is as large as 0.03 for n¼ 110, and 0.02
for n¼ 150. That is, if the allowable magnitude of under-calculation is 0.02, a sample size
of 70 is enough for using the convolution method, while a sample size of 150 is enough for
the normal approximation, which is more than twice sample sizes of the convolution
method. Thus, the proposed convolution method does provide a better reliability
assurance than the existing normal approximation.

5.3 Comparison of powers

The power of test calculates the probability of correctly rejecting the null hypothesis

H0: Spk�C while actually Spk4C. It is well known that the power of test is the larger the
better. As we know previously, the critical value of the normal approximation is highly
under-calculated for small sample sizes. Consequently, the power (probability of
rejecting H0) would be highly over-calculated if the under-calculated critical value is
used as the testing rule. To compare both approximations on the same basis, we define and
calculate the power of both approximations as the probability that the sample estimator is
larger than the critical value c0 of simulated Ŝpk as follows:

powerðŜ 0pkÞ ¼ PrðŜ 0pk 4 c0 jSpk under H1, � ¼ 0Þ,

powerðŜ 00pkÞ ¼ PrðŜ00pk 4 c0 jSpk under H1, � ¼ 0:5Þ:

Figure 4 shows the powers of the normal and convolution approximations for testing

(a) H0: Spk� 1.0 versus H1: Spk4 1.0 with sample size n¼ 30,
(b) H0: Spk� 1.0 versus H1: Spk4 1.0 with sample size n¼ 50,
(c) H0: Spk� 1.5 versus H1: Spk4 1.5 with sample size n¼ 30, and
(d) H0: Spk� 1.5 versus H1: Spk4 1.5 with sample size n¼ 50 and �¼ 0.05.

Obviously, the power of the convolution method is always greater than the normal
approximation, which means the capability of correctly rejecting the bad product lots of
the convolution method is stronger than that of the normal approximation.

So far we know that the tail probability and critical value of the convolution method
are closer to those of the simulated Ŝpk than those of the normal approximation, and the
power of the convolution method is always greater than that of the normal approximation.
All of above indicate that the convolution method does make a more accurate and reliable
approximation to the sampling behaviour of Spk than the normal approximation.

Following, we develop an efficient step-by-step procedure based on the convolution
method for testing hypotheses H0: Spk�C versus H1: Spk4C, where C is the minimal
capability requirement defined by the customer or product designer. Engineers or
practitioners can easily apply the procedure to their in-plant applications to obtain
reliable decisions.
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Procedure for using the convolution method

Step 1: Decide the minimal capability requirement C of Spk (normally set to
1.00, 1.33, 1.50, 1.67 or 2.0), and the significant level � (normally set to 0.10, 0.05, or 0.025).

Step 2: Randomly sample n samples from the products.

Step 3: Calculate the sample estimate of Ŝpk.

Step 4: Check out Table 3 or run the Matlab program (available on request) for the
critical value based on the corresponding capability requirement of Spk, significant level
and sample size n.

Step 5: Conclude that the product capability Spk is larger than the minimal capability
requirement C, and production yield is larger than 2�(3�minimal requirement)� 1 with
100(1� �)% confidence level, if the sample estimate Ŝpk is larger than or equal to the
critical value c0 of the convolution method. Otherwise, we do not have sufficient
information to make such a conclusion.

Figure 4. Power curves for testing (a) H0: Spk�1.0 vs H1: Spk4 1.0, n¼ 30; (b) H0: Spk�1.0 vs
H1: Spk4 1.0, n¼ 50; (c) H0: Spk�1.5 vs H1: Spk4 1.5, n¼ 30; (d) H0: Spk�1.5 vs H1: Spk4 1.5,
n¼ 50.
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6. Accuracy analysis

The information of required sample size is important for in-plant applications, as it

directly relates to the cost of the data collection plan. Following, we investigate the

accuracy of the convolution method which provides useful information about the sample

size required for designated power levels and for convergence.

6.1 Sample size required for designated power

The decision rule of hypothesis testing depends solely on the significant level �, the

maximal probability of Type I error, and ignores the probability of Type II error 	. Once

the sample size n and � risk are chosen for testing a hypothesis, the power of test 1�	, the
probability of correctly rejecting H0 while H1 is true, will be fixed. To decrease the 	 risk

and in the meantime maintain the � risk in a small level, the sample size should be

increased.
The required sample size of the convolution method can be obtained by a recursive

search with the following two constraints:

Pr Ŝ00pk � c0 jSpk � C and � ¼ 0:5
n o

� �,

and

Pr Ŝ00pk � c0 jSpk 4C and � ¼ 0:5
n o

� 1� 	,

where c0 is the critical value of the convolution method. Table 4 shows the minimal sample

size required for testing H0: Spk�C, C¼ 1.0, 1.33, 1.50, 1.67, while actually Spk¼Cþ h,

h¼ 0.15(0.05)0.35, with designated � levels¼ 0.1, 0.05, 0.025, and power levels¼ 0.7, 0.8,

0.9, 0.95.
Note that the sample size required is a function of the � and power levels, the minimal

capability requirement C of Spk, and the difference between the actual value of Spk and the

minimal requirement C. Table 4 shows that the larger the difference, the smaller the

sample size required for fixed � and power levels. For fixed �, minimal requirement C, and

actual value of Spk, the sample size increases as the designated power level increases.

This phenomenon can be explained easily, since the smaller the difference and the greater

the desired power level, the more sample size should be collected to account for the smaller

uncertainty in the estimation.

6.2 Sample size required for convergence

Table 5 displays the sample sizes required for the convolution approximation to converge

to Spk within a designated accuracy "¼ 0.12(0.01)0.03.

Pr Ŝ00pk � Spk

��� ��� � "n o
� 1� �

For example, for Spk¼ 1.33 with risk �¼ 0.025, a sample size of n� 3831 ensures that the

difference between sample estimate and actual parameter would be no greater than 0.03

with 97.5% confidence. Thus, if Ŝpk¼ 1.33, then we may conclude that the actual Spk is

greater than 1.3, actually in the interval of (1.30, 1.36), with 97.5% confidence. Note that
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the investigation is not for practical purpose. But, the computations illustrate the rate of
convergence for the convolution approximation to converge to actual Spk.

7. Conclusions

Production yield is the most common and standard criteria used in the manufacturing
industry for measuring process performance. The yield index Spk provides a one-to-one
measure on the yield of normal processes, while no other indices can. The statistical
properties of the natural estimator of Spk are mathematically intractable, and the existing
approach (the normal approximation) does not provide adequate accuracy, particularly,
for small sample sizes. In this paper, we considered the convolution approximation.

Table 4. Sample size required for designated power levels of the convolution method.

� Spk

Power

� Spk

Power

0.7 0.8 0.9 0.95 0.7 0.8 0.9 0.95

(a) H0: Spk�1.0 vs H1: Spk4 1.0 (b) H0: Spk�1.33 vs H1: Spk4 1.33

0.10 1.15 83 113 161 207 0.10 1.48 142 194 278 360
1.20 49 66 212 265 1.53 83 113 161 207
1.25 33 44 62 78 1.58 55 75 106 135
1.30 24 32 44 55 1.63 40 53 75 95
1.35 18 24 33 40 1.68 30 40 56 71

0.05 1.15 120 156 212 265 0.05 1.48 205 267 366 458
1.20 71 91 124 154 1.53 120 156 212 264
1.25 47 61 82 101 1.58 79 103 140 173
1.30 34 44 59 72 1.63 57 74 99 123
1.35 26 33 44 53 1.68 43 56 75 92

0.025 1.15 158 199 262 321 0.025 1.48 270 340 451 554
1.20 93 116 153 187 1.53 157 198 262 321
1.25 62 77 101 125 1.58 104 131 172 210
1.30 44 56 73 88 1.63 74 94 123 149
1.35 33 42 55 66 1.68 56 71 93 112

(c) H0: Spk�1.5 vs H1: Spk4 1.5 (d) H0: Spk�1.67 vs H1: Spk4 1.67

0.10 1.65 179 244 352 454 0.10 1.82 220 301 433 560
1.70 104 142 203 261 1.87 128 174 250 321
1.75 69 94 133 170 1.92 84 113 163 210
1.80 49 67 94 120 1.97 60 82 116 148
1.85 37 50 71 90 2.02 46 62 87 110

0.05 1.65 259 337 462 579 0.05 1.82 318 415 569 712
1.70 150 195 267 333 1.87 185 240 328 407
1.75 99 129 175 218 1.92 122 158 215 268
1.80 71 92 125 155 1.97 87 113 153 190
1.85 54 69 94 116 2.02 65 85 115 142

0.025 1.65 340 429 569 700 0.025 1.82 418 528 700 860
1.70 197 249 329 403 1.87 242 305 404 497
1.75 130 164 216 264 1.92 159 201 265 325
1.80 93 117 154 187 1.97 114 143 189 230
1.85 70 88 116 141 2.02 85 108 142 172
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The proposed approach, indeed, outperforms the existing method in providing more

accurate and reliable estimation for Spk as well as production yield. An efficient step-

by-step procedure is developed for using the convolution method to estimate the

production yield. The accuracy of the convolution method is also investigated, which

provides useful information about the sample size required for designated power levels,

and for convergence. The sample size information and the efficient step-by-step procedure

are useful to the practitioners for making reliable decisions regarding process performance

based on production yield.
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Appendix: CDF of Ŝ00pk
A. Notations

To simplify the derivation, we define the following notations. Let

Z ¼
ffiffiffi
n
p
ð �X� �Þ=�, and Y ¼

ffiffiffi
n
p
ðS2 � �2Þ=2�2:

Consider the following analytical expansion of Ŝpk

Ŝpk ¼ Spk þD1ZþD2YþD3Z
2 þD4ZYþD5Y

2 þOp
1

n
ffiffiffi
n
p

� �
,
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where

D1 ¼
1ffiffiffi
n
p

��0
6�ð3SpkÞ

� �
, D2 ¼

1ffiffiffi
n
p

��1
6�ð3SpkÞ

� �
, D3 ¼

1

n

Spk�
2
0

8 �ð3SpkÞ
	 
2 � �1

12�ð3SpkÞ

 !
,

D4 ¼
1

n

Spk�0�1

4 �ð3SpkÞ
	 
2 þ �0 � �2

6�ð3SpkÞ

 !
, D5 ¼

1

n

Spk�
2
1

8 �ð3SpkÞ
	 
2 þ 3�1 � �3

12�ð3SpkÞ

 !
,

and

�k ¼
1� Cdr

Cdp

� �k

�
1� Cdr

Cdp

� �
þ ð�1Þkþ1 �

1þ Cdr

Cdp

� �k

�
1þ Cdr

Cdp

� �
, k ¼ 0, 1, 2, 3:

Let

Ŝ 00pk ¼ Spk þD1ZþD2YþD3Z
2 þD4ZYþD5Y

2:

The CDF of Ŝ00pk then can be derived by the probability

FŜ00
pk

ðxÞ ¼ Pr Ŝ00pk � x � 0
n o

¼ Pr D3 Zþ
D1 þD4Y

2D3

� �2

�
E1ðYþ E3Þ

2

4D3
þ

�1ðxÞ

4D3E1
� 0

( )
,

where

E1 ¼ D2
4 � 4D3D5, E2 ¼ D1D4 � 2D2D3, E3 ¼

E2

E1
, E4 ¼ 4D3Spk �D2

1,

�1ðxÞ ¼ E2
2 � E1ð4D3x� E4Þ, and �2ðY;xÞ ¼ E1ðYþ E3Þ

2
�

�1ðxÞ

E1
:

Moreover, we define the following notations through the derivation:

u1ðxÞ ¼ �E3 �

ffiffiffiffiffiffiffiffiffiffiffiffi
�1ðxÞ

E2
1

s
, v1ðxÞ ¼ �E3 þ

ffiffiffiffiffiffiffiffiffiffiffiffi
�1ðxÞ

E2
1

s
,

u2ð y; xÞ ¼ �
D1 þD4y

2D3

� �
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2ð y; xÞ

4D2
3

s
, v2ð y;xÞ ¼ �

D1 þD4y

2D3

� �
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2ð y; xÞ

4D2
3

s
,

y0¼�
ffiffiffi
n
p
=2 is the minimum value of the random variable Y, and  (�) is the PDF of the random

variable Y.

B. CDF of Ŝ 00pk
Case 1: For D35 0, E15 0, y04 –E3.

x5
E4 þ E2E3

4D3
�
E1ð y0 þ E3Þ

2

4D3
,

FðxÞ ¼

Z 1
v1ðxÞ

 ð yÞdyþ

Z v1ðxÞ

y0

�½u2ð y;xÞ� þ�½�v2ð y;xÞ�
� 


 ð yÞdy;

X �
E4 þ E2E3

4D3
�
E1ð y0 þ E3Þ

2

4D3
, FðxÞ ¼ 1:
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Case 2: For D35 0, E15 0, y05 –E3.

x5
E4 þ E2E3

4D3
�
E1ð y0 þ E3Þ

2

4D3
,

FðxÞ ¼

Z 1
v1ðxÞ

 ð yÞdyþ

Z v1ðxÞ

y0

�
�½u2ð y;xÞ� þ�½�v2ð y;xÞ�



 ð yÞdy;

E4 þ E2E3

4D3
�
E1ð y0 þ E3Þ

2

4D3
� x5

E4 þ E2E3

4D3
,

FðxÞ ¼

Z u1ðxÞ

y0

 ð yÞdyþ

Z 1
v1ðxÞ

 ð yÞdyþ

Z v1ðxÞ

u1ðxÞ

�
�½u2ð y; xÞ� þ�½�v2ð y; xÞ�



 ð yÞdy;

x �
E4 þ E2E3

4D3
, FðxÞ ¼ 1:

Case 3: For D35 0, E14 0, y04 –E3.

x5
E4 þ E2E3

4D3
�
E1ð y0 þ E3Þ

2

4D3
,

FðxÞ ¼

Z 1
y0

�
�½u2ð y;xÞ� þ�½�v2ð y; xÞ�



 ð yÞdy;

x �
E4 þ E2E3

4D3
�
E1ð y0 þ E3Þ

2

4D3
,

FðxÞ ¼

Z v1ðxÞ

y0

 ð yÞdyþ

Z 1
v1ðxÞ

�
�½u2ð y; xÞ� þ�½�v2ð y; xÞ�



 ð yÞdy:

Case 4: For D35 0, E14 0, y05 –E3.

x5
E4 þ E2E3

4D3
,

FðxÞ ¼

Z 1
y0

�
�½u2ð y;xÞ� þ�½�v2ð y;xÞ�



 ð yÞdy;

E4 þ E2E3

4D3
� x5

E4 þ E2E3

4D3
�
E1ð y0 þ E3Þ

2

4D3
,

FðxÞ ¼

Z v1ðxÞ

u1ðxÞ

 ð yÞdyþ

Z u1ðxÞ

y0

�
�½u2ð y;xÞ� þ�½�v2ð y;xÞ�



 ð yÞdy

þ

Z 1
v1ðxÞ

�
�½u2ð y;xÞ� þ�½�v2ð y;xÞ�



 ð yÞdy;

x �
E4 þ E2E3

4D3
�
E1ð y0 þ E3Þ

2

4D3
,

FðxÞ ¼

Z v1ðxÞ

y0

 ð yÞdyþ

Z 1
v1ðxÞ

�
�½u2ð y;xÞ� þ�½�v2ð y; xÞ�



 ð yÞdy:
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Case 5: For D34 0, E14 0, y04 –E3.

x5
E4 þ E2E3

4D3
�
E1ð y0 þ E3Þ

2

4D3
,

FðxÞ ¼

Z 1
v1ðxÞ

�
�½v2ð y;xÞ� ��½u2ð y; xÞ�



 ð yÞdy;

x �
E4 þ E2E3

4D3
�
E1ð y0 þ E3Þ

2

4D3
,

FðxÞ ¼

Z 1
y0

�
�½v2ð y; xÞ� ��½u2ð y; xÞ�



 ð yÞdy:

Case 6: For D34 0, E14 0, y05 –E3.

x5
E4 þ E2E3

4D3
�
E1ð y0 þ E3Þ

2

4D3
,

FðxÞ ¼

Z 1
v1ðxÞ

�
�½v2ð y;xÞ� ��½u2ð y;xÞ�



 ð yÞdy;

E4 þ E2E3

4D3
�
E1ð y0 þ E3Þ

2

4D3
� x5

E4 þ E2E3

4D3
,

FðxÞ ¼

Z u1ðxÞ

y0

�
�½v2ð y; xÞ� ��½u2ð y;xÞ�



 ð yÞdyþ

Z 1
v1ðxÞ

�
�½v2ð y;xÞ� ��½u2ð y;xÞ�



 ð yÞdy;

x �
E4 þ E2E3

4D3
,

FðxÞ ¼

Z 1
y0

�
�½v2ð y;xÞ� ��½u2ð y; xÞ�



 ð yÞdy:

Case 7: For D34 0, E15 0, y04 –E3.

x5
E4 þ E2E3

4D3
�
E1ð y0 þ E3Þ

2

4D3
, FðxÞ ¼ 0;

x �
E4 þ E2E3

4D3
�
E1ð y0 þ E3Þ

2

4D3
, FðxÞ ¼

Z v1ðxÞ

y0

�
�½v2ð y; xÞ� ��½u2ð y; xÞ�



 ð yÞdy:

Case 8: For D34 0, E15 0, y05 –E3.

x5
E4 þ E2E3

4D3
, FðxÞ ¼ 0;

E4 þ E2E3

4D3
� x5

E4 þ E2E3

4D3
�
E1ð y0 þ E3Þ

2

4D3
,

FðxÞ ¼

Z v1ðxÞ

u1ðxÞ

�
�½v2ð y;xÞ� ��½u2ð y;xÞ�



 ð yÞdy;

x �
E4 þ E2E3

4D3
�
E1ð y0 þ E3Þ

2

4D3
,

FðxÞ ¼

Z v1ðxÞ

y0

�
�½v2ð y;xÞ� ��½u2ð y;xÞ�



 ð yÞdy:
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