
and 
H ( n )  = [h1(O;n),h1(l;n) ,..., hl(N - l ; n ) ,  

hzo(0; n) ,  h2o(l; n), ..., h2,N-1(0;n)IT ( 6 )  
By modifying the filtered-X LMS algorithm [4], we obtain the fil- 
tered-X second-order Volterra LMS algorithm with the coefficient 
adaptation as follows: 

H ( n  + 1) = H ( n )  + p e ( n ) U ( n )  (7)  
where p is a diagonal matrix with pL for the fEst N diagonal 
entries and pn for the rest of the diagonal entries, and U(n) is the 
filtered signal vector shown below 

U ( n )  = [u(n),u(n - l), ...) u(n - N + l),  

U Z O ( ~ ) , U ~ O ( ~  - I), ..., ~ , ~ - i ( n ) ] ~  (8) 
Note that the dimension of X(rz), H(n) and U(n) is (N(N+3)/2) x 1. 
Based on the multichannel structure, the N+l independent ele- 
ments of U(n) can be obtained from U(n) = s^(n)* X(n) ,  where 

n),u,,(n), ..., u2N-l (n)]&+,, s^(n) is the lmpulse response of the 
secondary path estimate S(z). Note that u(n) = s"(n)* x(n) and 
U&) = s^(n)* {x(n)x(n-j)},j = 0,1, ..., N-1. The implementation is 
also depicted in Fig. 1. 

X(n> = [x(n),x,o(n),x,,(~), - - - 2  X2.H-1 @>iTN.F!, X I ,  U ( 4  = [u(n),U2o(- 

nonlinear primary path G 

e hi 
I '  - 1  I 

LMS o r  RLS I 
376111 

Fig. 1 Active noise control system using filtered-X second-order Volt- 
erra adaptive algorithm 

Similar to the derivation in [4], we propose the filtered-X sec- 
ond-order Volterra RLS algorithm as following 

e(.) = d ( n )  - s(n)  * y(n) = d(n) - s(n)  * { ~ ~ ( n ) ~ ( n ) }  

(9) 

(10) 
X-lP(n - l ) U ( n )  

1 + X-lUT(n)P(n - l ) U ( n )  
k(n) = 

H ( n  + 1) = H ( n )  + k(n)e(n)  (11) 

P(n)  = X-lP(n - 1) - X- 'k (n)UT(n)P(n  - 1) (12) 
where h (0 e h 5 1) is the forgetting factor, k(n) the gain vector 
and U(n) defined in eqn. 8. Note that e(n) is the residual noise 
measured by the error sensor; and the coefficient vector in eqn. 11 
is shifted by one sample as compared with the one in the standard 
RLS since the coefficient vector is required before the next sample 
arrives in order to generate the adaptive filter output y(n) in eqn. 9. 

Simulation: In the following simulation, we use the zero-mean 
Gaussian noise with a variance of 1.0 as the input signal and 
obtain the primary disturbance d(n) with a quadratic nonlinearity 
by the following procedure. We first filter the input x(n) using a 
delayed bandpass filter given by C,(z) = ~-~/(1-0.22~) to generate 
p(n), where p(n) = c,(n)* x(n); we then obtain q(n) using p(n) and a 
quadratic function in the following expression q(n) = 
p(n)+0.5p2(n); we finally filter q(n) via another delayed bandpass 
filter represented by C,(z) = ~ ~ / ( 1 4 . 2 5 ~ ~ )  to give the primary dis- 
turbance d(n) = c,jn)* q(n). Notice that c , ( ~ )  and c&) are the 
impulse responses of C,(z) and C,(z), respectively. The secondary- 
path transfer function is assumed to be S(z) = ~-~/ (1+.39)  (a 
delayed bandpass) while the secondary path estimate is S(z) = z2/ 

( 1 4 . 3 5 ~ ~ ) .  We choose the memory span of the adaptive second- 
order Volterra filter as N = 9 so that the number of filter coeffi- 
cients is 54(N(N+3)/2). We set the step sizes as pL = 0.01 and pe = 
0.001 for the filtered-X second-order Volterra LMS, and the for- 
getting factor as 1 = 0.995 for the fdtered-X second-order Volterra 
RLS. As a comparison, we also use the standard filtered-X LMS 
algorithm with a fiter order of 54 for the adaptive FIR filter, and 
set the step size as 0.0002. The squared residue errors are plotted 
in Fig. 2 for 3500 iterations. As illustrated in Fig. 2, the standard 
filtered-X LMS performs poorly, while both developed algorithms 
can perform well to reduce the primary disturbance. Specially, the 
filtered-X second-order Volterra RLS algorithm achieves the sig- 
nificantly improved performance in terms of convergence speed. 

20 I 1 

-80 I I 
0 1000 2000 3000 

number of iterations 

Fig. 2 Performance comparison for filtered-X adaptive algorithms 

(i) standard filtered-X LMS 
(ii) filtered-X second-order Volterra LMS 
(iii) filtered-X second-order Volterra RLS 

Conclusion: We have developed the filtered-X second-order Volt- 
erra adaptive algorithms based on a multichannel structure for 
active noise control. The simulation results demonstrate that the 
developed algorithms outperform the standard fitered-X LMS 
algorithm when the primary path has a quadratic nonlinearity. 
The ftltered-X second-order Volterra RLS algorithm converges very 
fast at the cost of an increase in the computational complexity. 
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Modified Moose estimator for tracking 
highly manoeuvring targets 

Chi-Min Liu and Kuo-Guan Wu 

Indexing terms: Target tracking, Kalman filters 

The Moose's adaptive state estimator has proved successful in 
tracking a manoeuvring submarine 111. However, its application 
to track highly manoeuvring aircraft will encounter problems in 
complexity and tracking accuracy [2, 31. The authors present a 
new algorithm that extends the Moose estimator to solve its 
problems. The new algorithm is verified through Monte-Carlo 
simulation and shows a better performance than the origmal 
Moose algorithm. 
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Introduction: The major aspects of designing an algorithm for 
tracking manoeuvring targets includes the modelling of the input 
exercised by the pilot that causes manoeuvres, and the combina- 
tion of the manoeuvre model with the Kalman filter to form the 
tracking algorithm. In the Moose's adaptive state estimator [ 11, 
the possible manoeuvre inputs are discretised into a finite set of 
values and the transition among those discrete values is modelled 
as a semi-Markov process. The Moose estimator consists of a 
Baysian method for manoeuvre estimation and a single Kalman 
fdter for state estimation. The Baysian method estimates a target's 
manoeuvre value by a weighted combination of those discrete val- 
ues; the single Kalman filter estimates a target's state by taking 
the manoeuvre estimate as the true manoeuvre value in computing 
the state prediction. When the Moose's algorithm is used to track 
highly manoeuvring targets, the following difficulties will arise [2, 
31. First, its complexity increases with the large set of discrete val- 
ues for covering the wide range of manoeuvres. Secondly, the 
measurement noise affects the evaluation of the weighting proba- 
bilities of Baysian manoeuvre estimation, and hence degrades the 
accuracy of manoeuvre and state estimation results. 

To solve these difficulties, we modify the Moose's algorithm 
with the following extensions. First, the manoeuvre model is 
extended to consider the second-order statistic of the manoeuvre 
variable. Secondly, the measurement noise is smoothed by a 
scheme that explores the correlation between successive manoeu- 
vre values. Thirdly, the manoeuvre estimation error is compen- 
sated in the Kalman filter to improve its convergence behaviour. 
Simulation results demonstrate that the resultant new algorithm 
can track highly manoeuvring targets with a better performance 
than the original Moose algorithm. 

Algorithm derivation: The dynamic and measurement of a 
manoeuvring target can be modelled by the following equations: 

z ( k )  = @ ' 2 ( 5  - I) + B ' U ( k  - 1) + w(k - 1) (1) 

z ( k )  = H ' z ( k )  + w ( k )  (2) 
where x(k) is the state vector and z(k) is the measurement vector. 
U(k - 1) denotes the manoeuvre input vector. v(k) is a zero-mean 
white Gaussian process with covariance matrix Q; w(k) denotes 
the measurement noise, assumed to be a zero-mean white Gaus- 
sian process with a non-zero covariance R. Considering eqns. 1 
and 2, if U(k - 1) is known, the Kalman filter can be used to track 
the target. In practice, however, U(k - 1) is unknown. In this Let- 
ter, we consider U(k - 1)  as an unknown variable and model its 
probability density function as a mixture of multiple Gaussian 
density functions as 

N 
f ( U ( k  - l)lZk) = w,(k - 1).  N ( U ( k  - 1); U,, C,) ( 3 )  

i=l 

where Zk denotes the cumulative measurement sequence z(l), ..., 
z(k); N(U(k - I); U;, C,) is a Gaussian density function of mean U, 
and covariance C,; w,(k - 1) denotes the mixture weight. The mean 
and covariance of U(k - 1) can be obtained from those of the mix- 
ture components by the following two equations: 

N 
U ( k  - 1) = C W i ( k  - 1) U, 

C(k-  1) = C W i ( l i - l ) .  [C,+ (U@-1) -Uz) .  (Up-1)  -U$] 

(4) 
i=l 

N 

Z = 1  

(5) 
We take the mean value in eqn. 4 as the estimate of U(k - 1) and 
use the covariance in eqn. 5 to evaluate the estimation error of 
eqn. 4. 

The expressions for evaluating w,(k - 1) are summarised as fol- 
lows. Denote the event that U(k - 1) belongs to the ith mixture 
component by Ui(k - 1) and assume that the transition among the 
mixture components satisfies the first-order Markov property, 
then according to the Bayes rule, w,(k - 1) can be evaluated by 

where Pr( q(k - 1)IE-l) is recursively computed by 
N 

Pr(U,(k - I)Iz~-') = Cpj, .Pr(Uj(k ~ 2)lzk-') (7) 

and Pr(z(k)l q(k - l), E-') is evaluated by the Gaussian function 
3=1 

Pr(z(k)lUi(k - I), 2"') = 

N ( z ( k ) ;  H(@ . ~ ( k  - 1lk - 1) + B .  U,), S i ( k ) )  (8) 

S,(k) = H * @ * P(k  - Ilk - 1) .  B t .  H t  + H .  Q . H t  
+ R +  H .  B .  C , .  B t .  H t  (9) 

The pl, in eqn. 7 ,  which equals Pr( U,@ - 1)1 q(k - 2)), denotes the 
Markov transition probability; the P(k - Ilk - 1) in eqn. 9 denotes 
the covariance of the state estimate at the (k - l)th sampling 
instant. 

To reduce the effect of the measurement noise on the accuracy 
of eqn. 8, the following scheme will be used to smooth the noisy 
measurement z(k) before computing eqn. 8. The preprocessing 
scheme consists of the state update equations of Kalman filtering, 
with the approximation of U(k - 1) by the manoeuvre estimate 
U(k - 2) of the previous sampling instant, and with the reduction 
of the Kalman gain matrix by a scaling matrix a@). As a result, 
S,(k) is modified to be 

S,l(k) = H .  a ( k )  . K ( k )  * S ( k )  + K t ( k )  . d ( k )  H t  
+ H .  B - C i .  B t .  Ht  (10) 

a(k) is designed to reduce S,(k) to be of the same order as its final 
term. In this way, it will become possible to discriminate the cor- 
rectness of each U,(k - 1) from the likelihood function, and thus to 
obtain accurate weighting probability w,(k - 1) and accurate 
manoeuvre estimate U(k - 1). 

The manoeuvre estimation results U(k - 1) and C(k - 1) are 
incorporated into the prediction equations of Kalman filtering by 

li.(klk - 1) = @ .  $ ( k  - Ilk - I )  + B .  i i ( k  - 1) (11) 

~ ( k l  k - 1) = .P(~c  - 1 I k - 1). Q ~ + Q +  B q l c -  1). B~ (la) 
Then, a target's current state estimate x(klk) can be obtained by 
performing the update equations of standard Kahnan filtering. 
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Fig. 1 Accelerations of target in x direction 

Results and discussion: To compare the performance of the pro- 
posed algorithm with the original Moose estimator, a 2D target 
scenario was generated according to eqns. 1 and 2 with @, B, H - 
being 

r l T O O  
0 1 0 0  
O O l T  

L o o 0 1  

B =  
T 2 / 2  0 

T O  
0 T2 /2  
O T  

T was set as 1 s. v(k) was set as a zero process and w(k) was set to 
have the covariance matrix 
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The target scenario was designed to contain five different manoeu- 
vring periods, with acceleration values ranging from -15 to 15g. 
The x-acceleration process of the target is shown in Fig. 1. A 50- 
run Monte Carlo simulation was conducted, with the x- and y-  
movements being tracked independently. 

The parameters of the proposed algorithm are summarised as 
follows. The probability density function of the manoeuvre varia- 
ble was designed to consist of 18 Gaussian functions. The means 
of the first 17 functions were selected as: -160, -140, -120, -100, 
-80, -60, -40, -20, 0, 20, 40, 60, 80, 100, 120, 140, 160m/s2; the 
variances were all selected as 50 (m/s2>2. The 18th Gaussian func- 
tion was designed to have mean 0 m/s2 and variance 1 ( m / ~ ~ ) ~ .  The 
Markov transition probability was set as pzt = 0.8, and pu = 0.2117 
V i # j .  As to the implementation of the Moose algorithm, 17 dis- 
crete values: -160, -140, -120, -100, -80, -60, 4 0 ,  -20, 0, 20, 40, 
60, 80, 100, 120, 140, 160mlsz were selected as the mean accelera- 
tion values. The Markov transition probability was designed as p,t 
= 0.96, and pu = 0.0025 Vi # j .  
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Fig. 2 RMS acceleration estimation errors of both original Moose algo- 
rithm and proposed algorithm in x direction 

- _ _ _  proposed algorithm 
Moose algorithm 

Fig. 2 shows the acceleration estimation errors of both algo- 
rithms. From Fig. 2 we can fmd that the acceleration errors of the 
proposed algorithm converge faster to smaller values than the 
Moose algorithm during both the non-manoeuvring and the 
manoeuvring periods. The magnitudes of the transient errors of 
the proposed algorithm at the beginnings of manoeuvres depend 
on the acceleration values. Those transient errors can be attributed 
to the measurement preprocessing scheme, which increases the 
effect of the previous acceleration estimate and decreases the effect 
of the current measurement on the current acceleration estimation. 
However, during the constant-acceleration periods, the transient 
errors can converge fast, to be as large as those during the non- 
manoeuvring periods. 
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Selective SC-filters with low passive 
sensitivity 

M.D. Lutovac, D. Novakovic and I. Markoski 

Indexing terms: Elliptic filters, Switched capacitor filt ers 

A standard mode of operation of the universal switch-capacitor 
(SC) filter is modified so that very selective elliptic-function filters 
can be realised with a reduced number of external resistors and 
very low passive sensitivity. 

Introduction: This Letter presents a modification to one mode of 
operation of the cascade connection of second-order SC-filters 
with reduced passive sensitivity. A selective SC-filter with a very 
high Q-factor (Q > 20) requires tiny external resistor tolerances. In 
Table 1 the sensitivities of the best active RC filters [l], mode-3a 
SC-filters [2] and modified SC-filter, called mode-ld, (in [2] there 
are modes la, l b  and IC) are summarised. When the Q-factors are 
very high (e.g. Q = 20), the passive sensitivity of an SC-fdter in 
mode-3a is half of the sensitivity of active RC filters. The passive 
sensitivity of an SC-filter in mode-ld is several times lower than 
the sensitivity of mode-3a (10 times in Table 1). The low sensitiv- 
ity is due to the zero passive pole-frequency sensitivity, which 
means that the pole-frequency depends only on the clock- 
frequency. 

For attenuation poles very close to the passband edge fre- 
quency, the passive sensitivity of RC and SC-filters mode-3a could 
be very high. For SC-filters in mode-ld, the passive sensitivity is 
always < 0.5. 

Table 1: Approximate value of maximal passive sensitivities 

112 112 0 

Q >> 1, passband edge frequency wp = 1, notch frequency w, > 1, pole-fre- 
quency w, > 1, R resistor, H: transfer function, RC: second order active 
RC filter, SC: switched-capacitor flter in mode 3a or Id 

Filter transfer function: Nevertheless, despite the superiority of 
mode-1 over other modes and active RC filters, mode-1 is used 
more theoretically, rather than in practical realisations of selective 
filters. The main reason is that, usually, a different clock fre- 
quency must be implemented for two or more biquads. 

To use a single clock-frequency, the pole-frequency of all 
biquads must be identical. Although the Buttenvorth filter has all 
poles on a circle, the order is usually extremely high for very selec- 
tive applications. Recently proposed elliptic-function filters [3] 
have all poles on a circle and very selective specifications could be 
fulfilled with the order slightly higher than the theoretically mini- 
mal order. The transfer function H, of the even-order fiter is 

. . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . .  
;modification of j 

Fig. 1 Mode-1 and mode-Id of second-order SC-filter 

Mode I of SC universalfilters: In Fig. 1, a second-order SC filter 
in mode-1, and its modification is shown. The filter consists of an 
integrated circuit (IC) and four resistors R2, R3, Rh and R,. The 
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