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Due to its extensive applicability and computational ease, moderated multiple re-
gression (MMR) has been widely employed to analyze interaction effects between
2 continuous predictor variables. Accordingly, considerable attention has been
drawn toward the supposed multicollinearity problem between predictor variables
and their cross-product term. This article attempts to clarify the misconception
of multicollinearity in MMR studies. The counterintuitive yet beneficial effects of
multicollinearity on the ability to detect moderator relationships are explored. Com-
prehensive treatments and numerical investigations are presented for the simplest
interaction model and more complex three-predictor setting. The results provide
critical insight that both helps avoid misleading interpretations and yields better
understanding for the impact of intercorrelation among predictor variables in MMR
analyses.

The use of moderated multiple regression (MMR) has become common across a
wide variety of social science disciplines in the search for interaction effects. But
despite its popularity, substantial concerns have been raised regarding the consid-
erable difficulties of detecting moderation relationships that are strongly expected
or theoretically supported. Numerous researchers have noted that the hypothesis
tests of moderating effects often have low statistical power and yield erroneous
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conclusions, impeding the theoretical development and scientific advancement
of moderation research. In response to this problem, design considerations and
model characteristics pertaining to power issues in MMR applications have been
examined both conceptually and empirically. Notably, Aguinis (1995) identified
prominent factors that attenuate statistical power and proposed practical solutions
to low-power situations, especially for models with continuous moderators. On
the other hand, Aguinis and Stone-Romero (1997) and Stone-Romero, Alliger,
and Aguinis (1994) focused on the methodological artifacts and critical implica-
tions associated with statistical power of dichotomous moderators. Furthermore,
the recent review by Aguinis, Beaty, Boik, and Pierce (2005) emphasized the
importance of effect size and power in assessing moderating effects in the context
of categorical moderators. In light of these discussions in the current literature,
the responsible factors that stand out as being most crucial include sample size,
magnitude of moderating effect, reliability of criterion and predictor variable
scores, joint distribution of predictor variables, and intercorrelation of predictor
variables.

In addition to the general treatment by Aguinis (1995) mentioned earlier,
the multicollinearity problem in MMR has been examined by Cronbach (1987);
Dunlap and Kemery (1987, 1988); Ganzach (1998); and Morris, Sherman, and
Mansfield (1986), among others. It should be evident that the intercorrelation
among the continuous predictor variables and their cross-product term is in-
evitably relevant to the detection of interaction in general. Hence, no single
study of MMR with continuous variables will be adequate without consider-
ing the notion of multicollinearity. Accordingly, it is important to emphasize
the distinction between essential and nonessential multicollinearity (Marquardt,
1980). Essential multicollinearity exists because of actual relationships between
predictor variables, whereas the latter occurs merely due to the scaling or nonzero
mean of predictor variable and can be removed by centering predictor variables.
Related issues can be found in Kromrey and Foster-Johnson (1998), Smith and
Sasaki (1979), and Tate (1984). It is generally known that other remedies exist
for coping with multicollinearity as discussed in linear regression textbooks
such as Cohen, Cohen, West and Aiken (2003) and Kutner, Nachtsheim, and
Neter (2004). However, for clear understanding it is essential that researchers
direct the subtle formulation and evaluation of moderating effects with sound
theory and consider the delicate interrelationships and significance within the
response and predictor variables. Specifically, a numerical example is provided
in a later section to demonstrate the commonly used remedy of collecting
additional data for alleviating the problem of multicollinearity. However, it does
not yield the expected result in terms of increasing the ability to detect interaction
effects.

In line with the foregoing concerns, Dunlap and Kemery (1988) examined
the effects of both predictor reliabilities and predictor correlations on the sta-
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tistical power of MMR. Their Monte Carlo simulation results showed that, as
anticipated, the power to detect moderating effects is diminished by predictor
unreliability. However, the corresponding empirical evidence gives rise to the
surprising contention that the ability to detect interaction effects increases with
increasing correlation between predictor variables. Because their discussions
were focused more on the major issue of measurement error, and numerical
findings were obtained from somehow limited settings in the context of two-
predictor interaction models, Dunlap and Kemery (1988) did not provide insight
into the counterintuitive power behavior in relation to multicollinearity diag-
nostics. It seems that this particular result has been overlooked in the literature
and a further explanation that incorporates the notion of multicollinearity does
not exist to our knowledge. Accordingly, it is of practical importance to assess
whether this situation persists over a broader range of model configurations
without the complication of unreliability.

In order to enhance the methodological integrity and fundamental usefulness
of MMR, this article aims to explore the implications of intercorrelations among
the continuous predictors and to account for misconception in the detection of
moderating effects. In particular, the distinct power performance of the inter-
active models involving two predictor variables is presented to highlight the
possible misapprehension when researchers apply heuristics learned from regular
linear regression to MMR. Moreover, similar treatment and in-depth discussion
are extended to the three-variable interaction model. For completeness, the
Appendix summarizes the main results from the significance test of regression
coefficients in the context of multiple linear regression with particular emphasis
on the consideration of stochastic predictor variables. Informative figures and
numerical results are presented to illustrate the essential features of MMR
analyses.

TWO-PREDICTOR INTERACTION MODEL

Most MMR research has focused on the occurrence of interactive effects between
two continuous predictor variables that are usually conceptualized in terms of
the model

Y, =B +BxXi +B2zZi +BxzXiZi + &, )]

where Y; is the value of the response variable Y; X; and Z; are the known
constants of the predictors X and Z; ¢; are iid N (0, 02) random errors for i =
1,...,N;andB;, By, Pz, and fxz are unknown parameters. The existence of the
regression coefficient fxz associated with the cross-product term in Equation (1)
indicates that the linear relationship between the criterion variable and predictor



Downloaded by [National Chiao Tung University | at 23:31 24 April 2014

486  SHIEH

variable is dependent on the level of the other predictor variable. In contrast,
the simple additive model without the multiplicative term

Yi =81 +BxXi +BzZi + =

reveals that the association or strength between the response variable and each
of the predictor variables is unaffected by or immaterial to the value of other
predictor variables. The objective of MMR is to determine whether the under-
lying data structure can best be approximated by an additive or an interactive
formulation. In practice, the detection of moderating effects is conducted with
the partial F or partial ¢ test for the hypothesis Hy: Pxz = 0 versus H;: Bxz # 0
in the multiple linear regression framework.

It is generally known that the parameter estimation and hypothesis testing of
multiple regression analysis can be plagued by the effects of multicollinearity.
According to the fundamental properties of standard linear regression analysis
presented in the Appendix, the estimated variances of the least squares coefficient
estimators given in Equation (AS5) are linked to the formal measure of variance
inflation factor (VIF) for identifying the degree of multicollinearity. When a
predictor variable has a strong linear association with other predictor variables,
the associated VIF and variance estimate of regression coefficient estimator are
excessively large. A commonly used rule of thumb is that a VIF of 10 or more
is evidence of severe multicollinearity (Cohen et al., 2003, p. 423; Kutner et al.,
2004, p. 387). Hence, the hypothesis testing of interaction effects is hampered
and the power for detecting the moderation relationship is reduced because of
the intercorrelation among the predictor variables.

Moreover, the adverse effects of multicollinearity on the linear regression
analysis with the additive model are clearly apparent. Let 6 x denote the least
squares estimator of regression coefficient Py, then the simple additive structure
gives the following VIF of predictor variable X and estimated variance of

Bx:
62 - VIF(X)
S%

’

VIF(X) = and V(By) =

1—r2
where r = r(X, Z) is the Pearson product-moment correlation coefficient be-
tween the two predictor variables X and Z, 62 is the usual unbiased esti-
mator of o2, and S3 = Z,N=1(Xi — X)? is the corrected sum of squares
with X = Z,N=1 X;/N. Similar results can be readily obtained for the sec-
ond predictor variable Z. It is evident from the expressions just described
that the degree of linear dependence between the two predictor variables mea-
sured by the simple correlation r has a significant influence on the multi-
collinearity index of VIF and the variance estimate v (6 x). The great sim-
plicity of the additive model both makes it possible to convey the notion of
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multicollinearity without the burden of complex formulas and permits compu-
tational ease in empirical examination. For example, related implication and
numerical illustration are well demonstrated in the acclaimed texts of Cohen
et al. (2003, Sec. 10.5) and Kutner et al. (2004, Sec. 7.6). This reinforces
the general perception and common practice that researchers should fully un-
derstand the intercorrelations among the predictor variables and carefully at-
tend to the potential multicollinearity problem in a multiple regression analy-
sis.

In view of the continuous characteristics of measurements X and Z, it is
clear that the sample values and data characteristics in a study vary from one
application to another. Accordingly, the value of simple correlation coefficient
r represents only a realization of r over the whole range of [—1, 1]. Hence, it
is of theoretical importance to investigate the overall impact of any underlying
correlation between the two predictor variables on the various properties of
MMR. In fact, the intercorrelation structure among the predictor variables is
one of the inherent characteristics determined by the joint distribution of predic-
tor variables, which in turn represents an indispensable artifact for detecting
moderating effects. To extend the concept and applicability of MMR, it is
more appropriate to employ the random regression or unconditional setup in
which not only are values of the response variable for each participant available
after the observations are made but the levels of predictor variables are also
outcomes of the study. Thus the continuous predictor and moderator variables
{(X;,Z;),i = 1,...,N} in Equation (1) are random variables with a joint
probability distribution. This assumption is closely related to the consideration
of stochastic regressors in econometrics. The impacts of the intercorrelation
relationship on multicollinearity diagnostics and statistical features for identify-
ing interaction effects are presented in the following analytical and numerical
investigation.

Because of the complex nature of the random formulation under study, a
complete theoretical solution is not feasible and the investigation is conducted
in two stages. In the first stage, statistical derivations are carried out to gain
an understanding of some specific phenomena for random regression models,
subsuming the prescribed additive and interactive models and other MMR as
special cases. The second stage is a large-scale simulation study in which
pseudorandom data were generated with desired structural equations and then
analyzed to determine the overall power behavior for discovering the main and
interaction effects and unconditional performance of commonly used multi-
collinearity measures.

First, the corresponding important statistical features for identifying inter-
action effects and multicollinearity diagnostics with the extra complication of
stochastic predictor variables are described in Equations (A7)—-(A9) of the Ap-
pendix. The resulting formulas are difficult to comprehend in generic expres-
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sions; however, they allow various distributions for regressor variables to be
treated as variations on a common theme and they serve to tie together the
notions of moderation and correlation. Nevertheless, they contain essential infor-
mation as to whether a given correlation structure reduces the power for detecting
moderation relation whenever the distribution of predictor variables is available.
Regarding the distributional assumptions of the associated predictor variables,
it is common to assume that the two continuous predictor variables have a joint
bivariate normal distribution in illustrative and theoretical treatments of MMR
such as McClelland and Judd (1993), O’Connor (2006), and Shieh (2009). The
bivariate normality assumption not only provides a useful situation in its own
right but also has the advantage of naturally including the correlation between the
two variables as a single free parameter. It is important to note that, although both
X and Z are normally distributed, the interaction term X Z is obviously not a
normal random variable. As mentioned earlier, joint distribution of the predictor
variables is one of the deterministic factors of detecting moderating effects, and
so it may distort statistical power analysis and lead to invalid conclusions if one
mistakenly applies a multinormal setup to the regressors of MMR.

In the second stage of numerical examination, the prescribed interactive
models with bivariate normal predictor variables are used as the base for Monte
Carlo assessment. Without loss of generality, the two predictors (X, Z) are
assumed to have a bivariate normal distribution with mean (0, 0), variance (1,
1), and correlation p ranging from —0.9 to 0.9 in increments of 0.1. Moreover,
the power level is a function of regression coefficient § and error variance
o2 through B/o. Hence, the parameters are chosen as B; = By = Bz =
Bxz = 0.25 and o> = 1. With sample size N = 100 and selected model
configurations, the estimates of unconditional magnitudes are then computed
through simulation of 10,000 replicate data sets. For each replicate, N sets of
predictor variables are generated from the selected bivariate normal distribution.
These values in turn determine the mean responses for generating N normal
outcomes with the underlying linear regression model. Then the sample variance,
test statistic, VIF, and regressor correlation matrix determinant (RCMD) are
calculated. The simulated power is the proportion of the 10,000 replicates whose
test statistic |¢| values exceed the critical value with significance level a = 0.05.
In addition, the overall estimates of variance, VIF, and RCMD are the arithmetic
means of the corresponding 10,000 replicated values. All calculations were
performed using programs written with SAS/IML (SAS Institute, 2008). Detailed
numerical results of the simulation studies are reported in Table 1. Specifically,
the simulated values of unconditional variance, power, and VIF associated with
predictor X are denoted by \)(6 x), (tx) and ¢(X), respectively, whereas the
corresponding values for product term XZ are presented by \)(6 xz), (txz)
and ¢(XZ). The overall RCMD is denoted by 8 in Table 1 as well. Because
predictors X and Z are interchangeable under bivariate normal distribution, the
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TABLE 1
The Simulated Results of Two-Predictor Interaction Model
With BX = BXZ = 0.25 and N = 100

Variance Power VIF? Variance Power VIF? RCMDb

p v(Bx) (tx) d(X) v(Bxz) (txz) d(XZ) 8
—09 0.0555 0.1858 5.4778 0.0067 0.8546 1.0641 0.1802
—0.8 0.0294 0.3078 2.8882 0.0074 0.8236 1.0641 0.3404
—0.7 0.0208 0.4094 2.0351 0.0082 0.7906 1.0633 0.4816
—0.6 0.0167 0.4898 1.6220 0.0089 0.7602 1.0634 0.6031
—05 0.0142 0.5532 1.3870 0.0095 0.7333 1.0630 0.7039
—0.4 0.0127 0.5978 1.2396 0.0102 0.7031 1.0642 0.7860
—03 0.0118 0.6317 1.1423 0.0108 0.6802 1.0625 0.8525
—0.2 0.0112 0.6541 1.0858 0.0112 0.6653 1.0628 0.8970
—0.1 0.0109 0.6651 1.0531 0.0116 0.6507 1.0643 0.9239
0 0.0107 0.6702 1.0423 0.0116 0.6500 1.0639 0.9337
0.1 0.0108 0.6661 1.0530 0.0115 0.6547 1.0630 0.9248
0.2 0.0112 0.6535 1.0845 0.0112 0.6632 1.0630 0.8978
0.3 0.0117 0.6324 1.1434 0.0107 0.6831 1.0629 0.8517
0.4 0.0127 0.5983 1.2361 0.0102 0.7038 1.0642 0.7877
0.5 0.0142 0.5524 1.3852 0.0096 0.7315 1.0623 0.7051
0.6 0.0166 0.4899 1.6232 0.0088 0.7609 1.0616 0.6030
0.7 0.0208 0.4094 2.0363 0.0082 0.7899 1.0640 0.4813
0.8 0.0294 0.3082 2.8870 0.0074 0.8253 1.0626 0.3408
0.9 0.0556 0.1855 5.4697 0.0068 0.8509 1.0643 0.1807

“Variance inflation factor. ’Regressor correlation matrix determinant.

symmetric situations of predictor Z are omitted. For a concise visualization of
the overall multicollinearity diagnostics with respect to the change of correlation
p, Figure 1 depicts the relationship of simulated VIF for regressors X and XZ
and RCMD with p. In addition, Figure 2 presents the plot of simulated power of
ty and tyz against p for the tests of main and interaction effects, respectively.
It is clear from Table 1 that the effect of positive and negative correlation
p is symmetric on all seven measurements of variance, power, VIF, and deter-
minant. In particular, Figure 1 reveals that the graphs of VIF measure ¢(X)
and determinant § are symmetric with respect to p = 0 and the degrees of
multicollinearity are increasing monotonous with increasing |p|. However, the
VIF measure ¢(X Z) remains almost constant. It should be noted that the uncon-
ditional variances have opposite patterns with respect to the correlation between
X and Z. The overall \)(6 x) is an increasing function of |p|, whereas \)(6 xz)
is decreasing with increasing magnitude of |p|. Moreover, the unconditional
variance V(BX) is larger than \)(GXZ) for |p| > 0.2, and this situation is reversed
for |p| < 0.2. The distinct behaviors of variances lead to power performance
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FIGURE 1 The simulated multicollinearity measures of two-predictor interaction model.

that is completely unexpected. As shown in Figure 2, the power function (fx)
decreases as the correlation becomes stronger, whereas the power of detecting
interaction effects (fxz) is essentially amplified for larger value of |p|. Hence,
this particular exposition provides an obvious contradiction to the common
impression that intercorrelation or multicollinearity between predictor variables
is always detrimental to the power for detecting parameter effects. Consequently,
researchers can make understandable but serious mistakes when they apply
heuristics learned from simple additive models to MMR. Because the actual
effect sizes of interaction terms in MMR applications are generally quite small,
we also performed similar numerical computations for regression coefficients
Br = Bx = Pz = 0.25, Bxz = 0.10, and sample size N = 250, while
all other factors remained constant. The corresponding results are presented
in Table 2. Comparatively, the unconditional variances \)(6 x) and \)(6 xz) and
power level (fxz) are much smaller than those in Table 1. However, the
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FIGURE 2 The simulated powers of two-predictor interaction model.

prescribed phenomena regarding their behavior relative to correlation p continue
to exist in this case. In short, the advocated contention regarding the adverse
relationship between multicollinearity and power in the literature for linear
regression models does not generalize to MMR in a straightforward manner.
The complex and yet important consequences of multiplicative components in
MMR analyses will further be exemplified for three-predictor interaction models
in the next section.

THREE-PREDICTOR INTERACTION MODEL

In view of the counterintuitive behavior in the most common procedure for
detecting two-way interaction effects, it is prudent to extend the investigations
to other widely useful MMR models. Particularly, the natural extension with
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TABLE 2
The Simulated Results of Two-Predictor Interaction Model
With By = 0.25, Bxz = 0.10, and N = 250

Variance Power VIF® Variance Power VIF? RCMDb

p v(Bx) (tx) d(X) v(Bxz) (txz) d(XZ) 8
—09 0.0215 0.3992 5.3410 0.0024 0.5441 1.0247 0.1861
—0.8 0.0114 0.6481 2.8232 0.0026 0.5063 1.0246 03516
—0.7 0.0080 0.7941 1.9929 0.0029 0.4700 1.0247 0.4974
—0.6 0.0064 0.8747 1.5862 0.0032 0.4364 1.0240 0.6245
—05 0.0055 0.9197 1.3532 0.0034 0.4101 1.0245 0.7312
—0.4 0.0049 0.9443 1.2089 0.0037 0.3856 1.0241 0.8183
—03 0.0045 0.9583 1.1165 0.0039 0.3650 1.0248 0.8857
—0.2 0.0043 0.9660 1.0584 0.0041 0.3515 1.0249 0.9338
—0.1 0.0041 0.9706 1.0264 0.0042 0.3454 1.0242 0.9632
0 0.0041 0.9717 1.0162 0.0042 0.3416 1.0245 0.9727
0.1 0.0042 0.9704 1.0263 0.0042 0.3443 1.0244 0.9632
0.2 0.0043 0.9665 1.0584 0.0041 0.3529 1.0246 0.9341
0.3 0.0045 0.9584 1.1173 0.0039 0.3671 1.0244 0.8852
0.4 0.0049 0.9444 1.2093 0.0037 0.3861 1.0247 0.8178
0.5 0.0055 0.9194 1.3539 0.0034 0.4091 1.0248 0.7308
0.6 0.0064 0.8750 1.5865 0.0032 0.4376 1.0248 0.6240
0.7 0.0080 0.7943 1.9896 0.0029 0.4706 1.0242 0.4984
0.8 0.0113 0.6490 2.8185 0.0026 0.5057 1.0247 0.3522
0.9 0.0215 0.3988 5.3535 0.0024 0.5446 1.0244 0.1857

“4Variance inflation factor. ?Regressor correlation matrix determinant.

three predictor variables represents another important application of MMR in
which the relation between the response variable Y and predictor variable X
varies across levels of the other two predictor variables, Z and W, and their
combinations. This results in the following three-predictor interaction model:

Yi =81 +BxXi +B2Zi +BwW, +BxzXiZi +BxwXiWi +Bzw ZiW;
2
+Bxzw Xi Z; W, + &,

where Y; is the value of the response variable Y'; X;, Z;, and W; are the known
constants of the predictors X, Z, and W; ¢; are iid N (O, 02) random errors
fori = 1,...,N; and B], Bx, Bz, 6w, sz, 6xw, Bzw, and BXZW are un-
known parameters. With the hierarchical or step-down approach, the regression
coefficient Byzw associated with the highest order product term of all three
predictors XZ W indicates the strength of the most essential moderating effect.
On the other hand, the two-way interactions (Byz, Pxw, and Bz ) and first-
order effects (By, Pz, and Py ) represent conditional effects that can be examined
to facilitate the interpretation of the underlying complex interaction structure.
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Readers can refer to Aiken and West (1991), Dawson and Richter (2006), and
Jaccard and Turrisi (2003) for further details. To provide an insight into MMR
research, the focus here is on the potential misunderstanding of the influence of
multicollinearity within the context of three-predictor interaction model. Similar
to the two-predictor case, a Monte Carlo simulation study was conducted to
evaluate the influence of intercorrelations between predictor variables on the
analysis of all first-, second- and third-order effects.

The empirical study involves multivariate normal predictor variables X, Z,

and W with null means Wy = pwz = pw = 0, unit variance 0)2( = 0% =

G%V = 1, correlation Cor(X, Z) = p ranging from —0.9 to 0.9 in increments of
0.1, and Cor(X, W) = Cor(Z, W) = 0. It should be clear from a theoretical
standpoint that there are many situations with practical usefulness among sets of
correlations. The designated correlation matrix of the three predictors represents
merely a single possibility and serves the purpose well for demonstrating the
concealed feature of MMR. Moreover, the model parameters in Equation (2)
are chosen as B; = Bx = Pz = Pw = Pxz = Bxw = Bzw = Bxzw =
0.25, 0> = 1, and sample size N = 100. The simulation closely follows the
previous numerical investigation in which the Monte Carlo integration procedure
was implemented to determine the unconditional measurements through 10,000
replicate data sets.

The corresponding simulated results for main effects, two-way interactions,
and three-way interaction are summarized in Tables 3-5, respectively. Due to
the model’s complexity, the resultant phenomenon can be made more com-
prehensible with the help of diagrams. The multicollinearity VIF measure-
ments of regressors X, W, XZ, XW, and XZW, denoted by ¢(X), (W),
O(XZ), ¢(XW), and $¢(XZW), respectively, and RCMD § are depicted in
Figure 3. Alternatively, the respective simulated power levels (tx), (tw),

(lxz), (lzw), and (lxzw) of t tests ty, tw, txz, tzw, and tyzw are plotted
in Figure 4. Because of the interchangeability between X and Z and X W and
Z W, the results associated with regressors Z and ZW are not presented here.
According to the visual information of Figure 3, all the diagrams of VIF values
are concave whereas the RCMD curve is convex, but all are symmetric about
p = 0. It follows from a simple guideline that multicollinearity is declared
to exist whenever any VIF value is at least equal to 10. Thus, the resultant
degrees of multicollinearity are not severe according to the reported magnitudes
of VIF values. In contrast, the small § values for |p| > 0.5 indicate that the
degree of multicollinearity is considered problematic. The patterns of the VIF
and RCMD diagnostics are unquestionably clear that the levels of intercorrelation
among the regressors increase with the strength of correlation between the
two predictors X and Z. Consequently, the heuristic about the adverse effects
of multicollinearity would suggest that the corresponding estimated variance
of regression coefficients should be inflated and power of the resulting test
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TABLE 3
The Simulated Results for X and W of Three-Predictor Interaction Model
With Bx = By = 0.25 and N = 100

Variance Power VIF¢ Variance Power VIF¢
p v(Bx) (tx) $(X) v(Bw) (tw) d(W)
—0.9 0.0593 0.1772 5.8344 0.0172 0.4809 1.6646
—0.8 0.0315 0.2914 3.0941 0.0164 0.4986 1.5907
—0.7 0.0224 0.3866 2.1862 0.0156 0.5188 1.5103
—0.6 0.0178 0.4641 1.7464 0.0148 0.5397 1.4297
—0.5 0.0154 0.5218 1.4945 0.0139 0.5638 1.3489
—0.4 0.0138 0.5646 1.3411 0.0132 0.5853 1.2794
—0.3 0.0127 0.5989 1.2387 0.0125 0.6062 1.2171
—0.2 0.0122 0.6184 1.1777 0.0121 0.6216 1.1718
—0.1 0.0118 0.6323 1.1430 0.0118 0.6319 1.1427
0 0.0117 0.6358 1.1333 0.0117 0.6354 1.1323
0.1 0.0118 0.6304 1.1439 0.0118 0.6310 1.1420
0.2 0.0121 0.6189 1.1760 0.0120 0.6231 1.1696
0.3 0.0128 0.5970 1.2396 0.0126 0.6046 1.2181
0.4 0.0138 0.5664 1.3409 0.0132 0.5858 1.2782
0.5 0.0153 0.5237 1.4920 0.0139 0.5631 1.3518
0.6 0.0179 0.4635 1.7449 0.0147 0.5401 1.4323
0.7 0.0223 0.3871 2.1868 0.0156 0.5192 1.5109
0.8 0.0315 0.2912 3.0974 0.0164 0.4997 1.5915
0.9 0.0594 0.1770 5.8503 0.0172 0.4802 1.6667

“Variance inflation factor.

of main effects, two-way interactions, or three-way interaction will decline
as the only present pairwise correlation p of X and Z increases in abso-
lute size. The results show that the general notion is applicable only to the
cases associated with regressors X, W, and cross-product X W. In other words,
the unconditional estimated variances \)(6 X), \)(ESW), and \)(6 XWw) are convex
functions of correlation p, and conversely, power levels (tfx), (tw), and

(tzw) are concave with respect to correlation p. Nonetheless, the conventional
account does not apply to the other two regressors in terms of product terms
XZ and XZW . Surprisingly, the two variance estimates \)(GXZ) and \)(GXZW)
are concave with respect to p, and in turn, the respective power functions

(txz) and (txzw) are convex, as shown in Figure 4. Thus, the established
guidance about the detrimental impact of multicollinearity in the context additive
multiple regression is not completely applicable to interaction models. As in the
previous case of a two-predictor interaction model, the empirical investigation
was extended to the setting with B; = By = Bz = Bw = 0.25, Bxz =
Bxw = Bzw = 0.15, Pxzw = 0.10, and sample size N = 250. According the
results summarized in Tables 6-8, it is clear that the general contention described
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TABLE 4
The Simulated Results for XZ and XW of Three-Predictor Interaction Model
With BXZ = BXW = 0.25 and N = 100

Variance Power VIF¢ Variance Power VIF¢
p v(Bxz) (txz) d(XZ) v(Bxw) (txw) SXW)
—0.9 0.0080 0.7994 1.2692 0.0663 0.1696 6.3426
—0.8 0.0087 0.7666 1.2701 0.0354 0.2762 3.3766
—0.7 0.0096 0.7323 1.2693 0.0251 0.3654 2.3758
—0.6 0.0103 0.7026 1.2588 0.0202 0.4353 1.8955
—0.5 0.0112 0.6685 1.2550 0.0174 0.4882 1.6215
—0.4 0.0120 0.6419 1.2493 0.0157 0.5285 1.4525
—0.3 0.0125 0.6232 1.2407 0.0145 0.5596 1.3417
—0.2 0.0129 0.6076 1.2350 0.0138 0.5785 1.2786
—0.1 0.0132 0.5986 1.2291 0.0134 0.5905 1.2428
0 0.0133 0.5936 1.2282 0.0133 0.5937 1.2286
0.1 0.0132 0.5964 1.2329 0.0135 0.5893 1.2429
0.2 0.0130 0.6053 1.2333 0.0138 0.5792 1.2743
0.3 0.0126 0.6209 1.2398 0.0146 0.5562 1.3434
0.4 0.0118 0.6452 1.2497 0.0156 0.5304 1.4505
0.5 0.0112 0.6704 1.2562 0.0174 0.4901 1.6211
0.6 0.0105 0.6974 1.2591 0.0201 0.4370 1.8964
0.7 0.0096 0.7313 1.2694 0.0251 0.3656 2.3778
0.8 0.0087 0.7667 1.2747 0.0352 0.2774 3.3689
09 0.0080 0.7989 1.2692 0.0666 0.1692 6.3851

“Variance inflation factor.

earlier can still apply in this situation with smaller effect size. Although these
empirical examinations depend exclusively on simulation results, the assessments
of the three-predictor interaction formulation illustrate the advocated caution and
unfavorable perception of intercorrelations among predictor variables should not
be applied indiscriminately. More important, the positive influence of correlation
p on the detection of a three-way moderating effect raises a practical concern
for MMR researchers to reevaluate the underlying predictor interrelationships
and their impact on model selection and inference.

NUMERICAL EXAMPLE

In addition to the detailed empirical investigations employing Monte Carlo sim-
ulation study, it is instructive to exemplify the impact of multicollinearity on the
detection of three-way interactions that might be encountered in applied work.
The study of the importance of relationship in Kwong and Leung (2002) is used
as an illustrative context. In that study they examined the compensatory effect
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TABLE 5
The Simulated Results for XZW of Three-Predictor Interaction
Model With Bxzy = 0.25 and N = 100

Variance Power VIF? RCMDb

p v(Bxzw) (txzw) d(XZW) 8
—0.9 0.0101 0.7237 2.0587 0.0152
—0.8 0.0110 0.6936 1.9699 0.0553
—0.7 0.0121 0.6593 1.8747 0.1154
—0.6 0.0130 0.6302 1.7652 0.1896
—05 0.0140 0.6009 1.6598 0.2735
—0.4 0.0149 0.5743 1.5712 0.3555
—03 0.0156 0.5588 1.4848 0.4355
—0.2 0.0160 0.5457 1.4225 0.4982
—0.1 0.0163 0.5365 1.3848 0.5405
0 0.0165 0.5305 1.3702 0.5552
0.1 0.0164 0.5355 1.3894 0.5382
0.2 0.0160 0.5429 1.4195 0.5011
0.3 0.0156 0.5560 1.4829 0.4359
0.4 0.0148 0.5770 1.5698 0.3566
0.5 0.0140 0.6009 1.6671 0.2722
0.6 0.0131 0.6273 1.7653 0.1900
0.7 0.0121 0.6594 1.8730 0.1156
0.8 0.0110 0.6940 1.9731 0.0548
0.9 0.0101 0.7244 2.0586 0.0150

“4Variance inflation factor. "Regressor correlation matrix determi-
nant.

between procedural justice and outcome favorability in determining people’s
reaction to a decision. Given the compensatory effect, procedural fairness has a
particularly strong and positive impact on people’s response to low outcomes.
However, they argued that the compensatory effect is conditional upon other
contextual variables and studied the three-way interaction in which the perceived
importance of the relationship between people moderates the compensatory
effect of procedural justice. They tested the hypothesis that the tendency for
procedural justice to have a stronger and more positive impact on people’s
response when outcome is low versus high should be more pronounced for an
important relationship than for an unimportant relationship. The study concluded
that the interaction effect is operative only when the relationship with the other
party is important to that person.

For the purpose of demonstration, the summary statistics and analysis results
presented in Tables 1 and 2 of Kwong and Leung (2002) were utilized to generate
the two hypothetical data sets reported in Table 9. According to the formulation
of Kwong and Leung, the criterion variable (Y') represents the measurement of
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FIGURE 3 The simulated multicollinearity measures of three-predictor interaction model.

feeling or happiness, and the three predictor variables are interactional justice
(X), outcome favorability (Z), and prior closeness (W). As noted in Aiken
and West (1991, p. 36), the so-called nonessential multicollinearity can be
removed by centering variables. Hence, the observed values of the three pre-
dictors in Table 9 were mean-centered in the following MMR analyses. With
the 30 observations in Data 1, the simple correlations are r(X, Z) = 0.4883,
r(X, W) =0.3541, and r(Z, W) = 0.2605. The sample data was analyzed with
a three-way interaction regression model. We are particularly concerned with the
interaction term X Z W, and the resulting test statistic is tyzy = —2.1873 with
p value = .0396. Hence, the test of three-way interaction Hy: Bxyzw = 0 can be
rejected at the significance level a = 0.05. However, close examination of the
variance inflation factor associated with the cross-product term X ZW shows that
VIF(XZW) = 11.94 and regressor correlation matrix determinant RCMD =
0.0098. In practice, the VIF values in excess of 10 or the quantities RCMD
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FIGURE 4 The simulated powers of three-predictor interaction model.

close to 0 are considered problematic. In these circumstances, the common
procedure is to consider approaches to solving the problem of multicollinearity
before concluding that there is sufficient evidence to indicate an interaction.
Accordingly, the collection of additional data provides a feasible solution and
is commonly recommended. With the additional 20 observations presented in
Data 2 of Table 9, the detection of three-way interaction was reanalyzed with
a total of sample size N = 50. In this case, the three pairwise correlations
are r(X,Z) = 04799, r(X,W) = 0.2308, and r(Z, W) = 0.1868. The
magnitudes of these correlations are less than those calculated with Data 1.
Moreover, the multicollinearity index VIF reduced to VIF(XZW) = 2.99,
whereas regressor correlation matrix determinant changed into RCMD = 0.1083.
Thus, the severity of multicollinearity is alleviated to some extent as intended
by the inclusion of extra samples. However, the resulting test statistic for the
interaction effect is tyzw = —1.9104 and the corresponding p value = .0629.
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TABLE 6
The Simulated Results for X and W of Three-Predictor Interaction Model
With Bx = By = 0.25 and N = 250

Variance Power VIF¢ Variance Power VIF¢
p v(Bx) (tx) $(X) v(Bw) (tw) d(W)
—0.9 0.0221 0.3909 5.4768 0.0062 0.8831 1.5380
—0.8 0.0117 0.6377 2.8933 0.0060 0.8959 1.4725
—0.7 0.0083 0.7830 2.0471 0.0057 0.9093 1.4026
—0.6 0.0066 0.8659 1.6328 0.0054 0.9228 1.3302
—0.5 0.0056 09117 1.3923 0.0051 0.9354 1.2577
—0.4 0.0050 0.9382 1.2469 0.0048 0.9459 1.1923
—0.3 0.0047 0.9531 1.1515 0.0046 0.9556 1.1335
—0.2 0.0044 0.9618 1.0921 0.0044 0.9620 1.0884
—0.1 0.0043 0.9659 1.0596 0.0043 0.9659 1.0599
0 0.0042 0.9673 1.0497 0.0042 0.9674 1.0493
0.1 0.0043 0.9661 1.0600 0.0043 0.9660 1.0600
0.2 0.0044 0.9616 1.0921 0.0044 0.9621 1.0880
0.3 0.0047 0.9531 1.1523 0.0046 0.9552 1.1337
0.4 0.0050 0.9380 1.2456 0.0048 0.9465 1.1923
0.5 0.0056 09119 1.3936 0.0051 0.9350 1.2579
0.6 0.0066 0.8653 1.6323 0.0054 0.9223 1.3315
0.7 0.0083 0.7830 2.0484 0.0057 0.9094 1.4023
0.8 0.0117 0.6375 2.8914 0.0060 0.8958 1.4723
09 0.0221 0.3910 5.4838 0.0062 0.8829 1.5405

“Variance inflation factor.

Unfortunately, we are unable to claim there is a significant moderation effect at
a 0.05 level of significance for the expanded data. This numerical illustration
contradicts the preconceived notion about the attempt to resolve the threat of
multicollinearity, thereby increasing the precision of estimates and improving the
ability to detect interaction effects. Such finding provides a better understanding
and demonstration on the diverse impact of predictor intercorrelations in MMR
applications.

IMPLICATION FOR MODERATION ANALYSIS

Unlike the typical results of regression analyses, the prescribed simulation study
and numerical example reveal a contrasting and positive impact of predictor
intercorrelations on the detection of moderating effects. Researchers using MMR
should be aware of this tendency of power for the detection of moderator effects
to be lost at the expense of overemphasis on mitigation of multicollinearity be-
tween predictor variables. From the methodological standpoint, the techniques of
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TABLE 7
The Simulated Results for XZ and XW of Three-Predictor Interaction Model
With BXZ = BXW = 0.15 and N = 250

Variance Power VIF¢ Variance Power VIF¢
p v(Bxz) (txz) d(XZ) v(Bxw) (txw) SXW)
—0.9 0.0026 0.8371 1.1045 0.0232 0.1694 5.6767
—0.8 0.0028 0.8032 1.1053 0.0123 0.2780 3.0023
—0.7 0.0031 0.7667 1.1043 0.0087 0.3693 2.1172
—0.6 0.0034 0.7336 1.1029 0.0069 0.4437 1.6888
—0.5 0.0037 0.6982 1.0994 0.0059 0.5007 1.4407
—0.4 0.0039 0.6718 1.0966 0.0053 0.5430 1.2904
—0.3 0.0042 0.6463 1.0927 0.0049 0.5772 1.2920
—0.2 0.0043 0.6282 1.0889 0.0047 0.5976 1.1313
—0.1 0.0044 0.6187 1.0868 0.0046 0.6089 1.0985
0 0.0045 0.6136 1.0888 0.0045 0.6141 1.0876
0.1 0.0045 0.6167 1.0889 0.0045 0.6099 1.0988
0.2 0.0044 0.6278 1.0907 0.0047 0.5968 1.1306
0.3 0.0041 0.6489 1.0915 0.0049 0.5750 1.1936
0.4 0.0039 0.6709 1.0946 0.0053 0.5440 1.2898
0.5 0.0037 0.7001 1.0990 0.0060 0.4995 1.4416
0.6 0.0034 0.7315 1.1000 0.0070 0.4420 1.6901
0.7 0.0031 0.7680 1.1040 0.0087 0.3697 2.1185
0.8 0.0029 0.8012 1.1064 0.0123 0.2779 2.9962
0.9 0.0026 0.8365 1.1053 0.0231 0.1696 5.6860

“Variance inflation factor.

multiple regression and other multivariate methods were developed to synthesize
the complex information of correlated data in the first place. It seems paradoxical
that the common practice has been overwhelmingly prone to remove or diminish
intercorrelation and multicollinearity among variables, whereas the advanced
methodologies are supposed to fully account for their intertwined structure in
order to help advance social science theory.

CONCLUSION

It is well known that multicollinearity is closely related to the popular statistical
tool of multiple linear regression. Hence, practitioners in applied research must
become conversant with various diagnostic procedures for identifying, reducing,
or removing the cause and threat of multicollinearity. The simplest MMR is
essentially a special case of multiple linear regression that allows particularly
the relation between the response variable and a predictor variable to depend on
the level of another predictor variable. The basic rationale of moderation can
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TABLE 8
The Simulated Results for XZW of Three-Predictor Interaction
Model With Bxzy = 0.10 and N = 250

Variance Power VIF® RCMDb

p v(Bxzw) (txzw) d(XZW) 8
—0.9 0.0029 0.4856 1.6918 0.0199
—0.8 0.0032 0.4535 1.6187 0.0740
—0.7 0.0035 0.4200 1.5440 0.1546
—0.6 0.0038 0.3927 1.4638 0.2551
—05 0.0041 0.3664 1.3817 0.3700
—04 0.0044 0.3476 1.3065 0.4862
—0.3 0.0046 0.3321 1.2394 0.5991
—0.2 0.0048 0.3196 1.1854 0.6935
—0.1 0.0049 0.3127 1.1522 0.7554
0 0.0050 03110 1.1425 0.7756
0.1 0.0050 03125 1.1545 0.7535
0.2 0.0048 0.3195 1.1864 0.6931
0.3 0.0046 0.3336 1.2382 0.5991
0.4 0.0044 0.3472 1.3040 0.4883
0.5 0.0041 0.3669 1.3806 0.3701
0.6 0.0038 0.3907 1.4602 0.2557
0.7 0.0035 0.4222 1.5425 0.1545
0.8 0.0032 0.4504 1.6206 0.0740
0.9 0.0029 0.4866 1.6914 0.0198

“4Variance inflation factor. ?Regressor correlation matrix determi-
nant.

be readily extended to three-way interactions and more complex situations. In
view of the apparent intercorrelated structure between the predictor variables
and their combined higher order or cross-product terms in interaction models,
the supposed adverse effects associated with high or extreme multicollinearity
are often encountered in many MMR applications. Unfortunately, it is subject to
serious misunderstanding that predictor intercorrelations incur nothing but harm
to the detection of moderation or interaction effects in MMR study.

This article focuses on the two most fundamental MMR models with two- and
three-predictor interaction effects and explores the impact of intercorrelations on
the multicollinearity diagnostics and power in testing for main and interaction
effects under the convenient distributional assumption of bivariate or multivariate
normal predictors. The extensive empirical results of Monte Carlo simulation
studies showed that the power of detecting interaction effects may increase with
greater correlation between predictor variables when all other factors are fixed.
Hence, the detrimental effects of multicollinearity associated with additive mul-
tiple linear regression are not necessarily present with MMR analysis. Regarding
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TABLE 9
Hypothetical Data Sets

Y X z w Y X V4 w Y X z w

Data 1 (N = 30)

202 32 21 26 319 26 21 16 393 37 28 47
332 35 32 31 376 28 19 17 196 40 29 36
263 36 33 13 464 38 33 24 378 33 24 03
143 43 41 53 221 36 16 23 169 21 29 17
340 29 25 35 507 36 41 30 547 39 27 38
224 40 25 38 187 38 31 32 303 26 34 28
165 14 06 29 424 43 28 27 254 29 21 32
339 46 51 49 388 28 29 39 369 36 35 17
198 22 40 26 320 27 27 33 472 42 34 23
302 33 25 59 321 08 26 18 101 24 13 26
Data 2 (N = 20)

362 42 36 23 39 25 14 11 376 21 17 37
135 29 12 09 534 46 41 21 368 29 32 44
408 38 31 17 352 22 29 19 099 30 17 34
157 22 25 15 224 21 24 29 28 25 29 39
339 37 26 36 295 27 20 35 330 24 31 26
512 52 39 23 342 27 40 34 213 26 25 30
331 25 37 19 266 40 24 47

the distributional configuration of predictor variables, normality is of course not
the only situation of practical interest. There are also many useful assumptions
to consider for the continuous predictor variables. More important, additional
Monte Carlo simulations confirmed that the emphasized counterintuitive phe-
nomenon is not unique to the normality assumption of the predictor variables. In
view of the indispensable role of the joint distribution of predictors, researchers
should make a comprehensive appraisal of the underlying data characteristics and
their impact on statistical power for the detection of moderating effects. Given
the complex interrelationships that exist among predictor variables and cross-
product terms in MMR studies, it is important to reorient the general idea about
the presence of multicollinearity because the detection of interaction effects need
not be hindered by increased correlation between predictor variables.
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APPENDIX

Fundamental Results of Random Regression Models

Consider the standard multiple linear regression model with dependent variable
Y and all the levels of p independent variables X1, ..., X, fixed a priori:

Y =XB +e, (A1)

where Y = (Y1,...,Yy)T, Y; is the value of the dependent variable Y; X =
(1y,Xp) with 1y is the N x 1 vector of all 1s, Xp = (Xi,...,Xy)T is often
called the design matrix, X; = (X,-l,...,X,-p)T, Xi1,...,X;, are the known
constants of the p independent variables fori = 1,..., N; B = (Bo,B1,...,Bp)"
with Bo, B1,....P, are unknown parameters; and € = (g1, ..., en)T with g are
iid N (0, 0?) random variables fori = 1,..., N.

Frequently, the inferences are concerned mainly with the regression coeffi-
cients B; = (B1,...,P,)T in Equation (A1) and the corresponding ordinary least
squares estimator is f; = (X% X¢) 'XLY, where X¢ = (Iy —J/N)X) is the
centered form of Xp, Iy is the identity matrix of dimension N, and J is the
N x N square matrix of 1s. With this formulation, it is easily seen that

BiIXp ~ N,(B,.0°Sy)),

where Sy = XL Xc. Note that 6> = SSE/(N — p — 1) is the usual unbiased
estimator of o and SSE/o? is distributed as y>(N — p — 1), a chi-square
distribution with N — p — 1 degrees of freedom and is independent of §,.

For convenience of illustration, it can be shown that

BelXp ~ NP, V(i)

where

02

V(Bk) = W,

R,% is the coefficient of determination or R? in the regression of X; on all
other variables (X1, ..., Xi—1, Xi41....,Xp), and S2 = Z:N=1(Xik —X)? is
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the corrected sum of squares with X; = Z:N=1 Xix/N fork = 1,..., p. The
corresponding test for the hypothesis Hy: Br = O versus Hy: Br # O is based on

B

h = ——= , (A2)
TG
where
A G2
VEBr) = m (A3)

If the null hypothesis Hy: B = 0 is true, the statistic # is distributed as (N —
p — 1), a central ¢ distribution with N — p — 1 degrees of freedom, and Hy is
rejected at the significance level o if |txz| > ty—p—14/2, Where ty_p_14/2 is
the upper 100(a/2)th percentile of the ¢ distribution (N — p — 1).

Note that variance inflation factor (VIF) is a formal measure for identifying
the extent of multicollinearity. In this case, the VIF of Xj is

VIF(Xy) = (A4)

1— R,% '
For example, see Kutner, Nachtsheim, and Neter (2004, Sec. 10.5). With the

definition in Equation (A4), the variance of 6/( is directly linked to the widely
used multicollinearity diagnostic of VIF through

2
A o” - VIF(Xy)
Vi) = ——
Sk
Also, the corresponding estimated variance in Equation (A3) can be rewritten
as

A2

V@ = T, (A5)
Sk
When X has a substantial multicollinearity with the other predictor variables
so that R,% is substantially larger than 0, then VIF (X)) and 17(6/() in Equations
(A4) and (AS) are considerably inflated and even unbounded. The immediate
and adverse consequence of large 17(6/() is the #; test in Equation (A2) may
lead to false null hypotheses of no effect that disagree with prior knowledge and
theoretical grounding. Another widely used multicollinearity diagnostic is the
regressor correlation matrix determinant |R|, where R = D™V/2(XL X )D~Y/2 is
the regressor correlation matrix with diagonal matrix D = diag(S?, S, ..., Sﬁ).
The diagnostic of regressor correlation matrix determinant ranges from O when
there is perfect multicollinearity to 1 when there is no multicollinearity.
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Moreover, the resulting power function for the test Hy: By = 0 versus Hj:

B # 0 is
P{|tk| > tN—p—l,a/2|XD} = P{|I(N a2 1, A)| > tN—p—l,a/2|XD}a (Aé)

where 1 (N — p — 1, A) is the noncentral ¢ distribution with N — p — 1 degrees
of freedom and noncentrality parameter

Ae_ B
{V(Br)}/?

Traditionally, the multiple regression model defined earlier is referred to as
a fixed (conditional) model. The corresponding results would be specific to
the particular values of the predictor variables that are observed or preset
by the researcher. Under the random regression setup, the predictor variables

X;, i = 1,...,N, are assumed to have a joint probability density function
f(Xi1,..., Xip) and the form of f(X;i,...,X;,) does not depend on any
of the unknown parameters (Bo, B1,...,B,) and o2, It is conceivable that the

extended consideration of random feature associated with predictors complicates
the fundamental statistical properties of the inferential procedures. However, the
estimates of parameters and tests of hypotheses are the same under both fixed
and random formulations. Nonetheless, the distinction between the two modeling
approaches becomes important when unconditional or overall properties are to
be evaluated.

Note that the observed values of X;,7 = 1,..., N, only represent one real-
ization over the whole domain of (Xi,..., X,). Interestingly, the unconditional

mean E [6/(] of 6/( remains unbiased because

ElBi] = Ex[Ev{i}] = Ex[Bi] = Br.

where the expectations Ey[-] and Ex|[-] are taken with respect to the iid proba-
bility distributions f(Y;) and f(Xii,...,Xip) of ¥; and X; = (Xi1, ..., X,-p)T,
respectively, i = 1, ..., N. Also, the unconditional variance v(Bx) of P is given
by

VIF(Xy)

@w=m@—mﬂ=mwa@—m%=&m[ i ](M)
k

The power function in the context of random regression is defined as the expected
value of the conditional power function given in Equation (A6) as follows:

() = P{lt| > tn—p—1.0/2} = Ex[P{t(N—p—1, A)| > IN—p—1.4/2}]- (A8)
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Likewise, the unconditional multicollinearity diagnostics of VIF and determinant
of regressor correlation matrix are expressed as ¢p(X) and 8, respectively, where

&(Xx) = Ex[VIF(Xy)] fork =1,...,p, and § = Ex[|R]].  (A9)

In general, there is no simple closed-form expression for the preceding quantities
given in Equations (A7)—(A9) except in some special cases. Therefore, it is
extremely cumbersome to evaluate the multidimensional integration with respect
to the joint probability density distribution of (X1, ..., X,). Instead, Monte Carlo
integration provides a computationally feasible and practically accurate solution.
Finally, the corresponding hypothesis testing procedures and power functions for
the two one-sided tests of Hy: Br < 0 versus H;: B¢ > 0 and Hy: B > O versus
H;: Br < 0 and even nonzero minimum effect can be readily established but the
details are not given here.



