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Due to its extensive applicability and computational ease, moderated multiple re-

gression (MMR) has been widely employed to analyze interaction effects between

2 continuous predictor variables. Accordingly, considerable attention has been

drawn toward the supposed multicollinearity problem between predictor variables

and their cross-product term. This article attempts to clarify the misconception

of multicollinearity in MMR studies. The counterintuitive yet beneficial effects of

multicollinearity on the ability to detect moderator relationships are explored. Com-

prehensive treatments and numerical investigations are presented for the simplest

interaction model and more complex three-predictor setting. The results provide

critical insight that both helps avoid misleading interpretations and yields better

understanding for the impact of intercorrelation among predictor variables in MMR

analyses.

The use of moderated multiple regression (MMR) has become common across a

wide variety of social science disciplines in the search for interaction effects. But

despite its popularity, substantial concerns have been raised regarding the consid-

erable difficulties of detecting moderation relationships that are strongly expected

or theoretically supported. Numerous researchers have noted that the hypothesis

tests of moderating effects often have low statistical power and yield erroneous
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484 SHIEH

conclusions, impeding the theoretical development and scientific advancement

of moderation research. In response to this problem, design considerations and

model characteristics pertaining to power issues in MMR applications have been

examined both conceptually and empirically. Notably, Aguinis (1995) identified

prominent factors that attenuate statistical power and proposed practical solutions

to low-power situations, especially for models with continuous moderators. On

the other hand, Aguinis and Stone-Romero (1997) and Stone-Romero, Alliger,

and Aguinis (1994) focused on the methodological artifacts and critical implica-

tions associated with statistical power of dichotomous moderators. Furthermore,

the recent review by Aguinis, Beaty, Boik, and Pierce (2005) emphasized the

importance of effect size and power in assessing moderating effects in the context

of categorical moderators. In light of these discussions in the current literature,

the responsible factors that stand out as being most crucial include sample size,

magnitude of moderating effect, reliability of criterion and predictor variable

scores, joint distribution of predictor variables, and intercorrelation of predictor

variables.

In addition to the general treatment by Aguinis (1995) mentioned earlier,

the multicollinearity problem in MMR has been examined by Cronbach (1987);

Dunlap and Kemery (1987, 1988); Ganzach (1998); and Morris, Sherman, and

Mansfield (1986), among others. It should be evident that the intercorrelation

among the continuous predictor variables and their cross-product term is in-

evitably relevant to the detection of interaction in general. Hence, no single

study of MMR with continuous variables will be adequate without consider-

ing the notion of multicollinearity. Accordingly, it is important to emphasize

the distinction between essential and nonessential multicollinearity (Marquardt,

1980). Essential multicollinearity exists because of actual relationships between

predictor variables, whereas the latter occurs merely due to the scaling or nonzero

mean of predictor variable and can be removed by centering predictor variables.

Related issues can be found in Kromrey and Foster-Johnson (1998), Smith and

Sasaki (1979), and Tate (1984). It is generally known that other remedies exist

for coping with multicollinearity as discussed in linear regression textbooks

such as Cohen, Cohen, West and Aiken (2003) and Kutner, Nachtsheim, and

Neter (2004). However, for clear understanding it is essential that researchers

direct the subtle formulation and evaluation of moderating effects with sound

theory and consider the delicate interrelationships and significance within the

response and predictor variables. Specifically, a numerical example is provided

in a later section to demonstrate the commonly used remedy of collecting

additional data for alleviating the problem of multicollinearity. However, it does

not yield the expected result in terms of increasing the ability to detect interaction

effects.

In line with the foregoing concerns, Dunlap and Kemery (1988) examined

the effects of both predictor reliabilities and predictor correlations on the sta-
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MISCONCEPTION OF MULTICOLLINEARITY 485

tistical power of MMR. Their Monte Carlo simulation results showed that, as

anticipated, the power to detect moderating effects is diminished by predictor

unreliability. However, the corresponding empirical evidence gives rise to the

surprising contention that the ability to detect interaction effects increases with

increasing correlation between predictor variables. Because their discussions

were focused more on the major issue of measurement error, and numerical

findings were obtained from somehow limited settings in the context of two-

predictor interaction models, Dunlap and Kemery (1988) did not provide insight

into the counterintuitive power behavior in relation to multicollinearity diag-

nostics. It seems that this particular result has been overlooked in the literature

and a further explanation that incorporates the notion of multicollinearity does

not exist to our knowledge. Accordingly, it is of practical importance to assess

whether this situation persists over a broader range of model configurations

without the complication of unreliability.

In order to enhance the methodological integrity and fundamental usefulness

of MMR, this article aims to explore the implications of intercorrelations among

the continuous predictors and to account for misconception in the detection of

moderating effects. In particular, the distinct power performance of the inter-

active models involving two predictor variables is presented to highlight the

possible misapprehension when researchers apply heuristics learned from regular

linear regression to MMR. Moreover, similar treatment and in-depth discussion

are extended to the three-variable interaction model. For completeness, the

Appendix summarizes the main results from the significance test of regression

coefficients in the context of multiple linear regression with particular emphasis

on the consideration of stochastic predictor variables. Informative figures and

numerical results are presented to illustrate the essential features of MMR

analyses.

TWO-PREDICTOR INTERACTION MODEL

Most MMR research has focused on the occurrence of interactive effects between

two continuous predictor variables that are usually conceptualized in terms of

the model

Yi D “I C “X Xi C “ZZi C “XZXi Zi C ©i ; (1)

where Yi is the value of the response variable Y ; Xi and Zi are the known

constants of the predictors X and Z; ©i are iid N.0; ¢2/ random errors for i D

1; : : : ; N ; and “I , “X , “Z , and “XZ are unknown parameters. The existence of the

regression coefficient “XZ associated with the cross-product term in Equation (1)

indicates that the linear relationship between the criterion variable and predictor
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486 SHIEH

variable is dependent on the level of the other predictor variable. In contrast,

the simple additive model without the multiplicative term

Yi D “I C “X Xi C “ZZi C ©i

reveals that the association or strength between the response variable and each

of the predictor variables is unaffected by or immaterial to the value of other

predictor variables. The objective of MMR is to determine whether the under-

lying data structure can best be approximated by an additive or an interactive

formulation. In practice, the detection of moderating effects is conducted with

the partial F or partial t test for the hypothesis H0: “XZ D 0 versus H1: “XZ ¤ 0

in the multiple linear regression framework.

It is generally known that the parameter estimation and hypothesis testing of

multiple regression analysis can be plagued by the effects of multicollinearity.

According to the fundamental properties of standard linear regression analysis

presented in the Appendix, the estimated variances of the least squares coefficient

estimators given in Equation (A5) are linked to the formal measure of variance

inflation factor (VIF) for identifying the degree of multicollinearity. When a

predictor variable has a strong linear association with other predictor variables,

the associated VIF and variance estimate of regression coefficient estimator are

excessively large. A commonly used rule of thumb is that a VIF of 10 or more

is evidence of severe multicollinearity (Cohen et al., 2003, p. 423; Kutner et al.,

2004, p. 387). Hence, the hypothesis testing of interaction effects is hampered

and the power for detecting the moderation relationship is reduced because of

the intercorrelation among the predictor variables.

Moreover, the adverse effects of multicollinearity on the linear regression

analysis with the additive model are clearly apparent. Let O“X denote the least

squares estimator of regression coefficient “X , then the simple additive structure

gives the following VIF of predictor variable X and estimated variance of
O“X :

VIF.X/ D
1

1 � r2
and OV .O“X / D

O¢2 � VIF.X/

S2
X

;

where r D r.X; Z/ is the Pearson product-moment correlation coefficient be-

tween the two predictor variables X and Z, O¢2 is the usual unbiased esti-

mator of ¢2, and S2
X D

PN
iD1.Xi � X/2 is the corrected sum of squares

with X D
PN

iD1 Xi =N . Similar results can be readily obtained for the sec-

ond predictor variable Z. It is evident from the expressions just described

that the degree of linear dependence between the two predictor variables mea-

sured by the simple correlation r has a significant influence on the multi-

collinearity index of VIF and the variance estimate OV .O“X /. The great sim-

plicity of the additive model both makes it possible to convey the notion of
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MISCONCEPTION OF MULTICOLLINEARITY 487

multicollinearity without the burden of complex formulas and permits compu-

tational ease in empirical examination. For example, related implication and

numerical illustration are well demonstrated in the acclaimed texts of Cohen

et al. (2003, Sec. 10.5) and Kutner et al. (2004, Sec. 7.6). This reinforces

the general perception and common practice that researchers should fully un-

derstand the intercorrelations among the predictor variables and carefully at-

tend to the potential multicollinearity problem in a multiple regression analy-

sis.

In view of the continuous characteristics of measurements X and Z, it is

clear that the sample values and data characteristics in a study vary from one

application to another. Accordingly, the value of simple correlation coefficient

r represents only a realization of r over the whole range of [�1, 1]. Hence, it

is of theoretical importance to investigate the overall impact of any underlying

correlation between the two predictor variables on the various properties of

MMR. In fact, the intercorrelation structure among the predictor variables is

one of the inherent characteristics determined by the joint distribution of predic-

tor variables, which in turn represents an indispensable artifact for detecting

moderating effects. To extend the concept and applicability of MMR, it is

more appropriate to employ the random regression or unconditional setup in

which not only are values of the response variable for each participant available

after the observations are made but the levels of predictor variables are also

outcomes of the study. Thus the continuous predictor and moderator variables

f.Xi ; Zi/; i D 1; : : : ; N g in Equation (1) are random variables with a joint

probability distribution. This assumption is closely related to the consideration

of stochastic regressors in econometrics. The impacts of the intercorrelation

relationship on multicollinearity diagnostics and statistical features for identify-

ing interaction effects are presented in the following analytical and numerical

investigation.

Because of the complex nature of the random formulation under study, a

complete theoretical solution is not feasible and the investigation is conducted

in two stages. In the first stage, statistical derivations are carried out to gain

an understanding of some specific phenomena for random regression models,

subsuming the prescribed additive and interactive models and other MMR as

special cases. The second stage is a large-scale simulation study in which

pseudorandom data were generated with desired structural equations and then

analyzed to determine the overall power behavior for discovering the main and

interaction effects and unconditional performance of commonly used multi-

collinearity measures.

First, the corresponding important statistical features for identifying inter-

action effects and multicollinearity diagnostics with the extra complication of

stochastic predictor variables are described in Equations (A7)–(A9) of the Ap-

pendix. The resulting formulas are difficult to comprehend in generic expres-
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488 SHIEH

sions; however, they allow various distributions for regressor variables to be

treated as variations on a common theme and they serve to tie together the

notions of moderation and correlation. Nevertheless, they contain essential infor-

mation as to whether a given correlation structure reduces the power for detecting

moderation relation whenever the distribution of predictor variables is available.

Regarding the distributional assumptions of the associated predictor variables,

it is common to assume that the two continuous predictor variables have a joint

bivariate normal distribution in illustrative and theoretical treatments of MMR

such as McClelland and Judd (1993), O’Connor (2006), and Shieh (2009). The

bivariate normality assumption not only provides a useful situation in its own

right but also has the advantage of naturally including the correlation between the

two variables as a single free parameter. It is important to note that, although both

X and Z are normally distributed, the interaction term XZ is obviously not a

normal random variable. As mentioned earlier, joint distribution of the predictor

variables is one of the deterministic factors of detecting moderating effects, and

so it may distort statistical power analysis and lead to invalid conclusions if one

mistakenly applies a multinormal setup to the regressors of MMR.

In the second stage of numerical examination, the prescribed interactive

models with bivariate normal predictor variables are used as the base for Monte

Carlo assessment. Without loss of generality, the two predictors .X; Z/ are

assumed to have a bivariate normal distribution with mean (0, 0), variance (1,

1), and correlation ¡ ranging from �0.9 to 0.9 in increments of 0.1. Moreover,

the power level is a function of regression coefficient “ and error variance

¢2 through “=¢. Hence, the parameters are chosen as “I D “X D “Z D
“XZ D 0:25 and ¢2 D 1. With sample size N D 100 and selected model

configurations, the estimates of unconditional magnitudes are then computed

through simulation of 10,000 replicate data sets. For each replicate, N sets of

predictor variables are generated from the selected bivariate normal distribution.

These values in turn determine the mean responses for generating N normal

outcomes with the underlying linear regression model. Then the sample variance,

test statistic, VIF, and regressor correlation matrix determinant (RCMD) are

calculated. The simulated power is the proportion of the 10,000 replicates whose

test statistic jt j values exceed the critical value with significance level ’ D 0:05.

In addition, the overall estimates of variance, VIF, and RCMD are the arithmetic

means of the corresponding 10,000 replicated values. All calculations were

performed using programs written with SAS/IML (SAS Institute, 2008). Detailed

numerical results of the simulation studies are reported in Table 1. Specifically,

the simulated values of unconditional variance, power, and VIF associated with

predictor X are denoted by �.O“X /,  .tX / and ¥.X/, respectively, whereas the

corresponding values for product term XZ are presented by �.O“XZ /,  .tXZ/

and ¥.XZ/. The overall RCMD is denoted by • in Table 1 as well. Because

predictors X and Z are interchangeable under bivariate normal distribution, the
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MISCONCEPTION OF MULTICOLLINEARITY 489

TABLE 1

The Simulated Results of Two-Predictor Interaction Model

With “X D “XZ D 0.25 and N D 100

¡

Variance

�.O“X /

Power

 .tX /

VIFa

¥.X/

Variance

�.O“XZ/

Power

 .tXZ /

VIFa

¥.XZ/

RCMDb

•

�0.9 0.0555 0.1858 5.4778 0.0067 0.8546 1.0641 0.1802

�0.8 0.0294 0.3078 2.8882 0.0074 0.8236 1.0641 0.3404

�0.7 0.0208 0.4094 2.0351 0.0082 0.7906 1.0633 0.4816

�0.6 0.0167 0.4898 1.6220 0.0089 0.7602 1.0634 0.6031

�0.5 0.0142 0.5532 1.3870 0.0095 0.7333 1.0630 0.7039

�0.4 0.0127 0.5978 1.2396 0.0102 0.7031 1.0642 0.7860

�0.3 0.0118 0.6317 1.1423 0.0108 0.6802 1.0625 0.8525

�0.2 0.0112 0.6541 1.0858 0.0112 0.6653 1.0628 0.8970

�0.1 0.0109 0.6651 1.0531 0.0116 0.6507 1.0643 0.9239

0 0.0107 0.6702 1.0423 0.0116 0.6500 1.0639 0.9337

0.1 0.0108 0.6661 1.0530 0.0115 0.6547 1.0630 0.9248

0.2 0.0112 0.6535 1.0845 0.0112 0.6632 1.0630 0.8978

0.3 0.0117 0.6324 1.1434 0.0107 0.6831 1.0629 0.8517

0.4 0.0127 0.5983 1.2361 0.0102 0.7038 1.0642 0.7877

0.5 0.0142 0.5524 1.3852 0.0096 0.7315 1.0623 0.7051

0.6 0.0166 0.4899 1.6232 0.0088 0.7609 1.0616 0.6030

0.7 0.0208 0.4094 2.0363 0.0082 0.7899 1.0640 0.4813

0.8 0.0294 0.3082 2.8870 0.0074 0.8253 1.0626 0.3408

0.9 0.0556 0.1855 5.4697 0.0068 0.8509 1.0643 0.1807

aVariance inflation factor. bRegressor correlation matrix determinant.

symmetric situations of predictor Z are omitted. For a concise visualization of

the overall multicollinearity diagnostics with respect to the change of correlation

¡, Figure 1 depicts the relationship of simulated VIF for regressors X and XZ

and RCMD with ¡. In addition, Figure 2 presents the plot of simulated power of

tX and tXZ against ¡ for the tests of main and interaction effects, respectively.

It is clear from Table 1 that the effect of positive and negative correlation

¡ is symmetric on all seven measurements of variance, power, VIF, and deter-

minant. In particular, Figure 1 reveals that the graphs of VIF measure ¥.X/

and determinant • are symmetric with respect to ¡ D 0 and the degrees of

multicollinearity are increasing monotonous with increasing j¡j. However, the

VIF measure ¥.XZ/ remains almost constant. It should be noted that the uncon-

ditional variances have opposite patterns with respect to the correlation between

X and Z. The overall �.O“X / is an increasing function of j¡j, whereas �.O“XZ /

is decreasing with increasing magnitude of j¡j. Moreover, the unconditional

variance �.O“X / is larger than �.O“XZ/ for j¡j > 0:2, and this situation is reversed

for j¡j < 0:2. The distinct behaviors of variances lead to power performance
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490 SHIEH

FIGURE 1 The simulated multicollinearity measures of two-predictor interaction model.

that is completely unexpected. As shown in Figure 2, the power function  .tX /

decreases as the correlation becomes stronger, whereas the power of detecting

interaction effects  .tXZ/ is essentially amplified for larger value of j¡j. Hence,

this particular exposition provides an obvious contradiction to the common

impression that intercorrelation or multicollinearity between predictor variables

is always detrimental to the power for detecting parameter effects. Consequently,

researchers can make understandable but serious mistakes when they apply

heuristics learned from simple additive models to MMR. Because the actual

effect sizes of interaction terms in MMR applications are generally quite small,

we also performed similar numerical computations for regression coefficients

“I D “X D “Z D 0:25, “XZ D 0:10, and sample size N D 250, while

all other factors remained constant. The corresponding results are presented

in Table 2. Comparatively, the unconditional variances �.O“X / and �.O“XZ/ and

power level  .tXZ/ are much smaller than those in Table 1. However, the
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MISCONCEPTION OF MULTICOLLINEARITY 491

FIGURE 2 The simulated powers of two-predictor interaction model.

prescribed phenomena regarding their behavior relative to correlation ¡ continue

to exist in this case. In short, the advocated contention regarding the adverse

relationship between multicollinearity and power in the literature for linear

regression models does not generalize to MMR in a straightforward manner.

The complex and yet important consequences of multiplicative components in

MMR analyses will further be exemplified for three-predictor interaction models

in the next section.

THREE-PREDICTOR INTERACTION MODEL

In view of the counterintuitive behavior in the most common procedure for

detecting two-way interaction effects, it is prudent to extend the investigations

to other widely useful MMR models. Particularly, the natural extension with
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492 SHIEH

TABLE 2

The Simulated Results of Two-Predictor Interaction Model

With “X D 0.25, “XZ D 0.10, and N D 250

¡

Variance

�.O“X /

Power

 .tX /

VIFa

¥.X/

Variance

�.O“XZ /

Power

 .tXZ/

VIFa

¥.XZ/

RCMDb

•

�0.9 0.0215 0.3992 5.3410 0.0024 0.5441 1.0247 0.1861

�0.8 0.0114 0.6481 2.8232 0.0026 0.5063 1.0246 0.3516

�0.7 0.0080 0.7941 1.9929 0.0029 0.4700 1.0247 0.4974

�0.6 0.0064 0.8747 1.5862 0.0032 0.4364 1.0240 0.6245

�0.5 0.0055 0.9197 1.3532 0.0034 0.4101 1.0245 0.7312

�0.4 0.0049 0.9443 1.2089 0.0037 0.3856 1.0241 0.8183

�0.3 0.0045 0.9583 1.1165 0.0039 0.3650 1.0248 0.8857

�0.2 0.0043 0.9660 1.0584 0.0041 0.3515 1.0249 0.9338

�0.1 0.0041 0.9706 1.0264 0.0042 0.3454 1.0242 0.9632

0 0.0041 0.9717 1.0162 0.0042 0.3416 1.0245 0.9727

0.1 0.0042 0.9704 1.0263 0.0042 0.3443 1.0244 0.9632

0.2 0.0043 0.9665 1.0584 0.0041 0.3529 1.0246 0.9341

0.3 0.0045 0.9584 1.1173 0.0039 0.3671 1.0244 0.8852

0.4 0.0049 0.9444 1.2093 0.0037 0.3861 1.0247 0.8178

0.5 0.0055 0.9194 1.3539 0.0034 0.4091 1.0248 0.7308

0.6 0.0064 0.8750 1.5865 0.0032 0.4376 1.0248 0.6240

0.7 0.0080 0.7943 1.9896 0.0029 0.4706 1.0242 0.4984

0.8 0.0113 0.6490 2.8185 0.0026 0.5057 1.0247 0.3522

0.9 0.0215 0.3988 5.3535 0.0024 0.5446 1.0244 0.1857

aVariance inflation factor. bRegressor correlation matrix determinant.

three predictor variables represents another important application of MMR in

which the relation between the response variable Y and predictor variable X

varies across levels of the other two predictor variables, Z and W , and their

combinations. This results in the following three-predictor interaction model:

Yi D “I C “X Xi C “ZZi C “W Wi C “XZXi Zi C “XW Xi Wi C “ZW Zi Wi

C “XZW Xi Zi Wi C ©i ;
(2)

where Yi is the value of the response variable Y ; Xi , Zi , and Wi are the known

constants of the predictors X , Z, and W ; ©i are iid N.0; ¢2/ random errors

for i D 1; : : : ; N ; and “I , “X , “Z , “W , “XZ , “XW , “ZW , and “XZW are un-

known parameters. With the hierarchical or step-down approach, the regression

coefficient “XZW associated with the highest order product term of all three

predictors XZW indicates the strength of the most essential moderating effect.

On the other hand, the two-way interactions (“XZ , “XW , and “ZW ) and first-

order effects (“X , “Z , and “W ) represent conditional effects that can be examined

to facilitate the interpretation of the underlying complex interaction structure.
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MISCONCEPTION OF MULTICOLLINEARITY 493

Readers can refer to Aiken and West (1991), Dawson and Richter (2006), and

Jaccard and Turrisi (2003) for further details. To provide an insight into MMR

research, the focus here is on the potential misunderstanding of the influence of

multicollinearity within the context of three-predictor interaction model. Similar

to the two-predictor case, a Monte Carlo simulation study was conducted to

evaluate the influence of intercorrelations between predictor variables on the

analysis of all first-, second- and third-order effects.

The empirical study involves multivariate normal predictor variables X , Z,

and W with null means �X D �Z D �W D 0, unit variance ¢2
X D ¢2

Z D

¢2
W D 1, correlation Cor.X; Z/ D ¡ ranging from �0.9 to 0.9 in increments of

0.1, and Cor.X; W / D Cor.Z; W / D 0. It should be clear from a theoretical

standpoint that there are many situations with practical usefulness among sets of

correlations. The designated correlation matrix of the three predictors represents

merely a single possibility and serves the purpose well for demonstrating the

concealed feature of MMR. Moreover, the model parameters in Equation (2)

are chosen as “I D “X D “Z D “W D “XZ D “XW D “ZW D “XZW D

0:25, ¢2 D 1, and sample size N D 100. The simulation closely follows the

previous numerical investigation in which the Monte Carlo integration procedure

was implemented to determine the unconditional measurements through 10,000

replicate data sets.

The corresponding simulated results for main effects, two-way interactions,

and three-way interaction are summarized in Tables 3–5, respectively. Due to

the model’s complexity, the resultant phenomenon can be made more com-

prehensible with the help of diagrams. The multicollinearity VIF measure-

ments of regressors X , W , XZ, XW , and XZW , denoted by ¥.X/, ¥.W /,

¥.XZ/, ¥.XW /, and ¥.XZW /, respectively, and RCMD • are depicted in

Figure 3. Alternatively, the respective simulated power levels  .tX /,  .tW /,

 .tXZ /,  .tZW /, and  .tXZW / of t tests tX , tW , tXZ , tZW , and tXZW are plotted

in Figure 4. Because of the interchangeability between X and Z and XW and

ZW , the results associated with regressors Z and ZW are not presented here.

According to the visual information of Figure 3, all the diagrams of VIF values

are concave whereas the RCMD curve is convex, but all are symmetric about

¡ D 0. It follows from a simple guideline that multicollinearity is declared

to exist whenever any VIF value is at least equal to 10. Thus, the resultant

degrees of multicollinearity are not severe according to the reported magnitudes

of VIF values. In contrast, the small • values for j¡j > 0:5 indicate that the

degree of multicollinearity is considered problematic. The patterns of the VIF

and RCMD diagnostics are unquestionably clear that the levels of intercorrelation

among the regressors increase with the strength of correlation between the

two predictors X and Z. Consequently, the heuristic about the adverse effects

of multicollinearity would suggest that the corresponding estimated variance

of regression coefficients should be inflated and power of the resulting test
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TABLE 3

The Simulated Results for X and W of Three-Predictor Interaction Model

With “X D “W D 0.25 and N D 100

¡

Variance

�.O“X /

Power

 .tX /

VIFa

¥.X/

Variance

�.O“W /

Power

 .tW /

VIFa

¥.W /

�0.9 0.0593 0.1772 5.8344 0.0172 0.4809 1.6646

�0.8 0.0315 0.2914 3.0941 0.0164 0.4986 1.5907

�0.7 0.0224 0.3866 2.1862 0.0156 0.5188 1.5103

�0.6 0.0178 0.4641 1.7464 0.0148 0.5397 1.4297

�0.5 0.0154 0.5218 1.4945 0.0139 0.5638 1.3489

�0.4 0.0138 0.5646 1.3411 0.0132 0.5853 1.2794

�0.3 0.0127 0.5989 1.2387 0.0125 0.6062 1.2171

�0.2 0.0122 0.6184 1.1777 0.0121 0.6216 1.1718

�0.1 0.0118 0.6323 1.1430 0.0118 0.6319 1.1427

0 0.0117 0.6358 1.1333 0.0117 0.6354 1.1323

0.1 0.0118 0.6304 1.1439 0.0118 0.6310 1.1420

0.2 0.0121 0.6189 1.1760 0.0120 0.6231 1.1696

0.3 0.0128 0.5970 1.2396 0.0126 0.6046 1.2181

0.4 0.0138 0.5664 1.3409 0.0132 0.5858 1.2782

0.5 0.0153 0.5237 1.4920 0.0139 0.5631 1.3518

0.6 0.0179 0.4635 1.7449 0.0147 0.5401 1.4323

0.7 0.0223 0.3871 2.1868 0.0156 0.5192 1.5109

0.8 0.0315 0.2912 3.0974 0.0164 0.4997 1.5915

0.9 0.0594 0.1770 5.8503 0.0172 0.4802 1.6667

aVariance inflation factor.

of main effects, two-way interactions, or three-way interaction will decline

as the only present pairwise correlation ¡ of X and Z increases in abso-

lute size. The results show that the general notion is applicable only to the

cases associated with regressors X , W , and cross-product XW . In other words,

the unconditional estimated variances �.O“X /, �.O“W /, and �.O“XW / are convex

functions of correlation ¡, and conversely, power levels  .tX /,  .tW /, and

 .tZW / are concave with respect to correlation ¡. Nonetheless, the conventional

account does not apply to the other two regressors in terms of product terms

XZ and XZW . Surprisingly, the two variance estimates �.O“XZ/ and �.O“XZW /

are concave with respect to ¡, and in turn, the respective power functions

 .tXZ/ and  .tXZW / are convex, as shown in Figure 4. Thus, the established

guidance about the detrimental impact of multicollinearity in the context additive

multiple regression is not completely applicable to interaction models. As in the

previous case of a two-predictor interaction model, the empirical investigation

was extended to the setting with “I D “X D “Z D “W D 0:25, “XZ D
“XW D “ZW D 0:15, “XZW D 0:10, and sample size N D 250. According the

results summarized in Tables 6–8, it is clear that the general contention described
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MISCONCEPTION OF MULTICOLLINEARITY 495

TABLE 4

The Simulated Results for XZ and XW of Three-Predictor Interaction Model

With “XZ D “XW D 0.25 and N D 100

¡

Variance

�.O“XZ/

Power

 .tXZ/

VIFa

¥.XZ/

Variance

�.O“XW /

Power

 .tXW /

VIFa

¥.XW /

�0.9 0.0080 0.7994 1.2692 0.0663 0.1696 6.3426

�0.8 0.0087 0.7666 1.2701 0.0354 0.2762 3.3766

�0.7 0.0096 0.7323 1.2693 0.0251 0.3654 2.3758

�0.6 0.0103 0.7026 1.2588 0.0202 0.4353 1.8955

�0.5 0.0112 0.6685 1.2550 0.0174 0.4882 1.6215

�0.4 0.0120 0.6419 1.2493 0.0157 0.5285 1.4525

�0.3 0.0125 0.6232 1.2407 0.0145 0.5596 1.3417

�0.2 0.0129 0.6076 1.2350 0.0138 0.5785 1.2786

�0.1 0.0132 0.5986 1.2291 0.0134 0.5905 1.2428

0 0.0133 0.5936 1.2282 0.0133 0.5937 1.2286

0.1 0.0132 0.5964 1.2329 0.0135 0.5893 1.2429

0.2 0.0130 0.6053 1.2333 0.0138 0.5792 1.2743

0.3 0.0126 0.6209 1.2398 0.0146 0.5562 1.3434

0.4 0.0118 0.6452 1.2497 0.0156 0.5304 1.4505

0.5 0.0112 0.6704 1.2562 0.0174 0.4901 1.6211

0.6 0.0105 0.6974 1.2591 0.0201 0.4370 1.8964

0.7 0.0096 0.7313 1.2694 0.0251 0.3656 2.3778

0.8 0.0087 0.7667 1.2747 0.0352 0.2774 3.3689

0.9 0.0080 0.7989 1.2692 0.0666 0.1692 6.3851

aVariance inflation factor.

earlier can still apply in this situation with smaller effect size. Although these

empirical examinations depend exclusively on simulation results, the assessments

of the three-predictor interaction formulation illustrate the advocated caution and

unfavorable perception of intercorrelations among predictor variables should not

be applied indiscriminately. More important, the positive influence of correlation

¡ on the detection of a three-way moderating effect raises a practical concern

for MMR researchers to reevaluate the underlying predictor interrelationships

and their impact on model selection and inference.

NUMERICAL EXAMPLE

In addition to the detailed empirical investigations employing Monte Carlo sim-

ulation study, it is instructive to exemplify the impact of multicollinearity on the

detection of three-way interactions that might be encountered in applied work.

The study of the importance of relationship in Kwong and Leung (2002) is used

as an illustrative context. In that study they examined the compensatory effect
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496 SHIEH

TABLE 5

The Simulated Results for XZW of Three-Predictor Interaction

Model With “XZW D 0.25 and N D 100

¡

Variance

�.O“XZW /

Power

 .tXZW /

VIFa

¥.XZW /

RCMDb

•

�0.9 0.0101 0.7237 2.0587 0.0152

�0.8 0.0110 0.6936 1.9699 0.0553

�0.7 0.0121 0.6593 1.8747 0.1154

�0.6 0.0130 0.6302 1.7652 0.1896

�0.5 0.0140 0.6009 1.6598 0.2735

�0.4 0.0149 0.5743 1.5712 0.3555

�0.3 0.0156 0.5588 1.4848 0.4355

�0.2 0.0160 0.5457 1.4225 0.4982

�0.1 0.0163 0.5365 1.3848 0.5405

0 0.0165 0.5305 1.3702 0.5552

0.1 0.0164 0.5355 1.3894 0.5382

0.2 0.0160 0.5429 1.4195 0.5011

0.3 0.0156 0.5560 1.4829 0.4359

0.4 0.0148 0.5770 1.5698 0.3566

0.5 0.0140 0.6009 1.6671 0.2722

0.6 0.0131 0.6273 1.7653 0.1900

0.7 0.0121 0.6594 1.8730 0.1156

0.8 0.0110 0.6940 1.9731 0.0548

0.9 0.0101 0.7244 2.0586 0.0150

aVariance inflation factor. bRegressor correlation matrix determi-

nant.

between procedural justice and outcome favorability in determining people’s

reaction to a decision. Given the compensatory effect, procedural fairness has a

particularly strong and positive impact on people’s response to low outcomes.

However, they argued that the compensatory effect is conditional upon other

contextual variables and studied the three-way interaction in which the perceived

importance of the relationship between people moderates the compensatory

effect of procedural justice. They tested the hypothesis that the tendency for

procedural justice to have a stronger and more positive impact on people’s

response when outcome is low versus high should be more pronounced for an

important relationship than for an unimportant relationship. The study concluded

that the interaction effect is operative only when the relationship with the other

party is important to that person.

For the purpose of demonstration, the summary statistics and analysis results

presented in Tables 1 and 2 of Kwong and Leung (2002) were utilized to generate

the two hypothetical data sets reported in Table 9. According to the formulation

of Kwong and Leung, the criterion variable .Y / represents the measurement of

D
ow

nl
oa

de
d 

by
 [

N
at

io
na

l C
hi

ao
 T

un
g 

U
ni

ve
rs

ity
 ]

 a
t 2

3:
31

 2
4 

A
pr

il 
20

14
 



MISCONCEPTION OF MULTICOLLINEARITY 497

FIGURE 3 The simulated multicollinearity measures of three-predictor interaction model.

feeling or happiness, and the three predictor variables are interactional justice

.X/, outcome favorability .Z/, and prior closeness .W /. As noted in Aiken

and West (1991, p. 36), the so-called nonessential multicollinearity can be

removed by centering variables. Hence, the observed values of the three pre-

dictors in Table 9 were mean-centered in the following MMR analyses. With

the 30 observations in Data 1, the simple correlations are r.X; Z/ D 0:4883,

r.X; W / D 0:3541, and r.Z; W / D 0:2605. The sample data was analyzed with

a three-way interaction regression model. We are particularly concerned with the

interaction term XZW , and the resulting test statistic is tXZW D �2:1873 with

p value D .0396. Hence, the test of three-way interaction H0: “XZW D 0 can be

rejected at the significance level ’ D 0:05. However, close examination of the

variance inflation factor associated with the cross-product term XZW shows that

VIF.XZW / D 11:94 and regressor correlation matrix determinant RCMD D

0.0098. In practice, the VIF values in excess of 10 or the quantities RCMD
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498 SHIEH

FIGURE 4 The simulated powers of three-predictor interaction model.

close to 0 are considered problematic. In these circumstances, the common

procedure is to consider approaches to solving the problem of multicollinearity

before concluding that there is sufficient evidence to indicate an interaction.

Accordingly, the collection of additional data provides a feasible solution and

is commonly recommended. With the additional 20 observations presented in

Data 2 of Table 9, the detection of three-way interaction was reanalyzed with

a total of sample size N D 50. In this case, the three pairwise correlations

are r.X; Z/ D 0:4799, r.X; W / D 0:2308, and r.Z; W / D 0:1868. The

magnitudes of these correlations are less than those calculated with Data 1.

Moreover, the multicollinearity index VIF reduced to VIF.XZW / D 2:99,

whereas regressor correlation matrix determinant changed into RCMD D 0.1083.

Thus, the severity of multicollinearity is alleviated to some extent as intended

by the inclusion of extra samples. However, the resulting test statistic for the

interaction effect is tXZW D �1:9104 and the corresponding p value D .0629.
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MISCONCEPTION OF MULTICOLLINEARITY 499

TABLE 6

The Simulated Results for X and W of Three-Predictor Interaction Model

With “X D “W D 0.25 and N D 250

¡

Variance

�.O“X /

Power

 .tX /

VIFa

¥.X/

Variance

�.O“W/

Power

 .tW /

VIFa

¥.W /

�0.9 0.0221 0.3909 5.4768 0.0062 0.8831 1.5380

�0.8 0.0117 0.6377 2.8933 0.0060 0.8959 1.4725

�0.7 0.0083 0.7830 2.0471 0.0057 0.9093 1.4026

�0.6 0.0066 0.8659 1.6328 0.0054 0.9228 1.3302

�0.5 0.0056 0.9117 1.3923 0.0051 0.9354 1.2577

�0.4 0.0050 0.9382 1.2469 0.0048 0.9459 1.1923

�0.3 0.0047 0.9531 1.1515 0.0046 0.9556 1.1335

�0.2 0.0044 0.9618 1.0921 0.0044 0.9620 1.0884

�0.1 0.0043 0.9659 1.0596 0.0043 0.9659 1.0599

0 0.0042 0.9673 1.0497 0.0042 0.9674 1.0493

0.1 0.0043 0.9661 1.0600 0.0043 0.9660 1.0600

0.2 0.0044 0.9616 1.0921 0.0044 0.9621 1.0880

0.3 0.0047 0.9531 1.1523 0.0046 0.9552 1.1337

0.4 0.0050 0.9380 1.2456 0.0048 0.9465 1.1923

0.5 0.0056 0.9119 1.3936 0.0051 0.9350 1.2579

0.6 0.0066 0.8653 1.6323 0.0054 0.9223 1.3315

0.7 0.0083 0.7830 2.0484 0.0057 0.9094 1.4023

0.8 0.0117 0.6375 2.8914 0.0060 0.8958 1.4723

0.9 0.0221 0.3910 5.4838 0.0062 0.8829 1.5405

aVariance inflation factor.

Unfortunately, we are unable to claim there is a significant moderation effect at

a 0.05 level of significance for the expanded data. This numerical illustration

contradicts the preconceived notion about the attempt to resolve the threat of

multicollinearity, thereby increasing the precision of estimates and improving the

ability to detect interaction effects. Such finding provides a better understanding

and demonstration on the diverse impact of predictor intercorrelations in MMR

applications.

IMPLICATION FOR MODERATION ANALYSIS

Unlike the typical results of regression analyses, the prescribed simulation study

and numerical example reveal a contrasting and positive impact of predictor

intercorrelations on the detection of moderating effects. Researchers using MMR

should be aware of this tendency of power for the detection of moderator effects

to be lost at the expense of overemphasis on mitigation of multicollinearity be-

tween predictor variables. From the methodological standpoint, the techniques of
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TABLE 7

The Simulated Results for XZ and XW of Three-Predictor Interaction Model

With “XZ D “XW D 0.15 and N D 250

¡

Variance

�.O“XZ/

Power

 .tXZ /

VIFa

¥.XZ/

Variance

�.O“XW /

Power

 .tXW /

VIFa

¥.XW /

�0.9 0.0026 0.8371 1.1045 0.0232 0.1694 5.6767

�0.8 0.0028 0.8032 1.1053 0.0123 0.2780 3.0023

�0.7 0.0031 0.7667 1.1043 0.0087 0.3693 2.1172

�0.6 0.0034 0.7336 1.1029 0.0069 0.4437 1.6888

�0.5 0.0037 0.6982 1.0994 0.0059 0.5007 1.4407

�0.4 0.0039 0.6718 1.0966 0.0053 0.5430 1.2904

�0.3 0.0042 0.6463 1.0927 0.0049 0.5772 1.2920

�0.2 0.0043 0.6282 1.0889 0.0047 0.5976 1.1313

�0.1 0.0044 0.6187 1.0868 0.0046 0.6089 1.0985

0 0.0045 0.6136 1.0888 0.0045 0.6141 1.0876

0.1 0.0045 0.6167 1.0889 0.0045 0.6099 1.0988

0.2 0.0044 0.6278 1.0907 0.0047 0.5968 1.1306

0.3 0.0041 0.6489 1.0915 0.0049 0.5750 1.1936

0.4 0.0039 0.6709 1.0946 0.0053 0.5440 1.2898

0.5 0.0037 0.7001 1.0990 0.0060 0.4995 1.4416

0.6 0.0034 0.7315 1.1000 0.0070 0.4420 1.6901

0.7 0.0031 0.7680 1.1040 0.0087 0.3697 2.1185

0.8 0.0029 0.8012 1.1064 0.0123 0.2779 2.9962

0.9 0.0026 0.8365 1.1053 0.0231 0.1696 5.6860

aVariance inflation factor.

multiple regression and other multivariate methods were developed to synthesize

the complex information of correlated data in the first place. It seems paradoxical

that the common practice has been overwhelmingly prone to remove or diminish

intercorrelation and multicollinearity among variables, whereas the advanced

methodologies are supposed to fully account for their intertwined structure in

order to help advance social science theory.

CONCLUSION

It is well known that multicollinearity is closely related to the popular statistical

tool of multiple linear regression. Hence, practitioners in applied research must

become conversant with various diagnostic procedures for identifying, reducing,

or removing the cause and threat of multicollinearity. The simplest MMR is

essentially a special case of multiple linear regression that allows particularly

the relation between the response variable and a predictor variable to depend on

the level of another predictor variable. The basic rationale of moderation can
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MISCONCEPTION OF MULTICOLLINEARITY 501

TABLE 8

The Simulated Results for XZW of Three-Predictor Interaction

Model With “XZW D 0.10 and N D 250

¡

Variance

�.O“XZW /

Power

 .tXZW /

VIFa

¥.XZW /

RCMDb

•

�0.9 0.0029 0.4856 1.6918 0.0199

�0.8 0.0032 0.4535 1.6187 0.0740

�0.7 0.0035 0.4200 1.5440 0.1546

�0.6 0.0038 0.3927 1.4638 0.2551

�0.5 0.0041 0.3664 1.3817 0.3700

�0.4 0.0044 0.3476 1.3065 0.4862

�0.3 0.0046 0.3321 1.2394 0.5991

�0.2 0.0048 0.3196 1.1854 0.6935

�0.1 0.0049 0.3127 1.1522 0.7554

0 0.0050 0.3110 1.1425 0.7756

0.1 0.0050 0.3125 1.1545 0.7535

0.2 0.0048 0.3195 1.1864 0.6931

0.3 0.0046 0.3336 1.2382 0.5991

0.4 0.0044 0.3472 1.3040 0.4883

0.5 0.0041 0.3669 1.3806 0.3701

0.6 0.0038 0.3907 1.4602 0.2557

0.7 0.0035 0.4222 1.5425 0.1545

0.8 0.0032 0.4504 1.6206 0.0740

0.9 0.0029 0.4866 1.6914 0.0198

aVariance inflation factor. bRegressor correlation matrix determi-

nant.

be readily extended to three-way interactions and more complex situations. In

view of the apparent intercorrelated structure between the predictor variables

and their combined higher order or cross-product terms in interaction models,

the supposed adverse effects associated with high or extreme multicollinearity

are often encountered in many MMR applications. Unfortunately, it is subject to

serious misunderstanding that predictor intercorrelations incur nothing but harm

to the detection of moderation or interaction effects in MMR study.

This article focuses on the two most fundamental MMR models with two- and

three-predictor interaction effects and explores the impact of intercorrelations on

the multicollinearity diagnostics and power in testing for main and interaction

effects under the convenient distributional assumption of bivariate or multivariate

normal predictors. The extensive empirical results of Monte Carlo simulation

studies showed that the power of detecting interaction effects may increase with

greater correlation between predictor variables when all other factors are fixed.

Hence, the detrimental effects of multicollinearity associated with additive mul-

tiple linear regression are not necessarily present with MMR analysis. Regarding

D
ow

nl
oa

de
d 

by
 [

N
at

io
na

l C
hi

ao
 T

un
g 

U
ni

ve
rs

ity
 ]

 a
t 2

3:
31

 2
4 

A
pr

il 
20

14
 



502 SHIEH

TABLE 9

Hypothetical Data Sets

Y X Z W Y X Z W Y X Z W

Data 1 (N D 30)

2.02 3.2 2.1 2.6 3.19 2.6 2.1 1.6 3.93 3.7 2.8 4.7

3.32 3.5 3.2 3.1 3.76 2.8 1.9 1.7 1.96 4.0 2.9 3.6

2.63 3.6 3.3 1.3 4.64 3.8 3.3 2.4 3.78 3.3 2.4 0.3

1.43 4.3 4.1 5.3 2.21 3.6 1.6 2.3 1.69 2.1 2.9 1.7

3.40 2.9 2.5 3.5 5.07 3.6 4.1 3.0 5.47 3.9 2.7 3.8

2.24 4.0 2.5 3.8 1.87 3.8 3.1 3.2 3.03 2.6 3.4 2.8

1.65 1.4 0.6 2.9 4.24 4.3 2.8 2.7 2.54 2.9 2.1 3.2

3.39 4.6 5.1 4.9 3.88 2.8 2.9 3.9 3.69 3.6 3.5 1.7

1.98 2.2 4.0 2.6 3.20 2.7 2.7 3.3 4.72 4.2 3.4 2.3

3.02 3.3 2.5 5.9 3.21 0.8 2.6 1.8 1.01 2.4 1.3 2.6

Data 2 (N D 20)

3.62 4.2 3.6 2.3 3.99 2.5 1.4 1.1 3.76 2.1 1.7 3.7

1.35 2.9 1.2 0.9 5.34 4.6 4.1 2.1 3.68 2.9 3.2 4.4

4.08 3.8 3.1 1.7 3.52 2.2 2.9 1.9 0.99 3.0 1.7 3.4

1.57 2.2 2.5 1.5 2.24 2.1 2.4 2.9 2.86 2.5 2.9 3.9

3.39 3.7 2.6 3.6 2.95 2.7 2.0 3.5 3.30 2.4 3.1 2.6

5.12 5.2 3.9 2.3 3.42 2.7 4.0 3.4 2.13 2.6 2.5 3.0

3.31 2.5 3.7 1.9 2.66 4.0 2.4 4.7

the distributional configuration of predictor variables, normality is of course not

the only situation of practical interest. There are also many useful assumptions

to consider for the continuous predictor variables. More important, additional

Monte Carlo simulations confirmed that the emphasized counterintuitive phe-

nomenon is not unique to the normality assumption of the predictor variables. In

view of the indispensable role of the joint distribution of predictors, researchers

should make a comprehensive appraisal of the underlying data characteristics and

their impact on statistical power for the detection of moderating effects. Given

the complex interrelationships that exist among predictor variables and cross-

product terms in MMR studies, it is important to reorient the general idea about

the presence of multicollinearity because the detection of interaction effects need

not be hindered by increased correlation between predictor variables.
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APPENDIX

Fundamental Results of Random Regression Models

Consider the standard multiple linear regression model with dependent variable

Y and all the levels of p independent variables X1; : : : ; Xp fixed a priori:

Y D X“ C ©; (A1)

where Y D .Y1; : : : ; YN /T, Yi is the value of the dependent variable Y ; X D
.1N ; XD/ with 1N is the N � 1 vector of all 1s, XD D .X1; : : : ; XN /T is often

called the design matrix, Xi D .Xi1; : : : ; Xip/T , Xi1; : : : ; Xip are the known

constants of the p independent variables for i D 1; : : : ; N ; “ D .“0; “1; : : : ; “p/T

with “0, “1; : : : ; “p are unknown parameters; and © D .©1; : : : ; ©N /T with ©i are

iid N.0; ¢2/ random variables for i D 1; : : : ; N .

Frequently, the inferences are concerned mainly with the regression coeffi-

cients “1 D .“1; : : : ; “p/T in Equation (A1) and the corresponding ordinary least

squares estimator is O“1 D .XT

C XC /�1XT

C Y, where XC D .IN � J=N /XD is the

centered form of XD , IN is the identity matrix of dimension N , and J is the

N � N square matrix of 1s. With this formulation, it is easily seen that

O“1jXD � Np.“1; ¢2
S

�1
X /;

where SX D XT

C XC . Note that O¢2 D SSE=.N � p � 1/ is the usual unbiased

estimator of ¢2 and SSE=¢2 is distributed as ¦2.N � p � 1/, a chi-square

distribution with N � p � 1 degrees of freedom and is independent of O“1.

For convenience of illustration, it can be shown that

O“kjXD � N.“k ; V .O“k//;

where

V.O“k/ D
¢2

.1 � R2
k/S2

k

;

R2
k

is the coefficient of determination or R2 in the regression of Xk on all

other variables .X1; : : : ; Xk�1; XkC1; : : : ; Xp/, and S2
k

D
PN

iD1.Xik � Xk/2 is
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the corrected sum of squares with Xk D
PN

iD1 Xik=N for k D 1; : : : ; p. The

corresponding test for the hypothesis H0: “k D 0 versus H1: “k ¤ 0 is based on

tk D
O“k

f OV .O“k/g1=2
; (A2)

where

OV .O“k/ D
O¢2

.1 � R2
k/S2

k

: (A3)

If the null hypothesis H0: “k D 0 is true, the statistic tk is distributed as t.N �

p � 1/, a central t distribution with N � p � 1 degrees of freedom, and H0 is

rejected at the significance level ’ if jtXZ j > tN�p�1;’=2, where tN�p�1;’=2 is

the upper 100(’/2)th percentile of the t distribution t.N � p � 1/.

Note that variance inflation factor (VIF) is a formal measure for identifying

the extent of multicollinearity. In this case, the VIF of Xk is

VIF.Xk/ D
1

1 � R2
k

: (A4)

For example, see Kutner, Nachtsheim, and Neter (2004, Sec. 10.5). With the

definition in Equation (A4), the variance of O“k is directly linked to the widely

used multicollinearity diagnostic of VIF through

V.O“k/ D
¢2 � VIF.Xk/

S2
k

:

Also, the corresponding estimated variance in Equation (A3) can be rewritten

as

OV .O“k/ D
O¢2 � VIF.Xk/

S2
k

: (A5)

When Xk has a substantial multicollinearity with the other predictor variables

so that R2
k

is substantially larger than 0, then VIF.Xk/ and OV .O“k/ in Equations

(A4) and (A5) are considerably inflated and even unbounded. The immediate

and adverse consequence of large OV .O“k/ is the tk test in Equation (A2) may

lead to false null hypotheses of no effect that disagree with prior knowledge and

theoretical grounding. Another widely used multicollinearity diagnostic is the

regressor correlation matrix determinant jRj, where R D D�1=2.XT

C XC /D�1=2 is

the regressor correlation matrix with diagonal matrix D D diag.S2
1 ; S2

2 ; : : : ; S2
p/.

The diagnostic of regressor correlation matrix determinant ranges from 0 when

there is perfect multicollinearity to 1 when there is no multicollinearity.
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Moreover, the resulting power function for the test H0: “k D 0 versus H1:

“k ¤ 0 is

P fjtkj > tN�p�1;’=2jXDg D P fjt.N � p � 1; ƒ/j > tN�p�1;’=2jXDg; (A6)

where t.N � p � 1; ƒ/ is the noncentral t distribution with N � p � 1 degrees

of freedom and noncentrality parameter

ƒ D
“k

fV.O“k/g1=2
:

Traditionally, the multiple regression model defined earlier is referred to as

a fixed (conditional) model. The corresponding results would be specific to

the particular values of the predictor variables that are observed or preset

by the researcher. Under the random regression setup, the predictor variables

Xi , i D 1; : : : ; N , are assumed to have a joint probability density function

f .Xi1; : : : ; Xip/ and the form of f .Xi1; : : : ; Xip/ does not depend on any

of the unknown parameters .“0; “1; : : : ; “p/ and ¢2. It is conceivable that the

extended consideration of random feature associated with predictors complicates

the fundamental statistical properties of the inferential procedures. However, the

estimates of parameters and tests of hypotheses are the same under both fixed

and random formulations. Nonetheless, the distinction between the two modeling

approaches becomes important when unconditional or overall properties are to

be evaluated.

Note that the observed values of Xi , i D 1; : : : ; N , only represent one real-

ization over the whole domain of .X1; : : : ; Xp/. Interestingly, the unconditional

mean EŒ O“k � of O“k remains unbiased because

EŒ O“k � D EX ŒEY fO“kg� D EX Œ“k � D “k ;

where the expectations EY Œ�� and EX Œ�� are taken with respect to the iid proba-

bility distributions f .Yi / and f .Xi1; : : : ; Xip/ of Yi and Xi D .Xi1; : : : ; Xip/T,

respectively, i D 1; : : : ; N . Also, the unconditional variance �.O“k/ of O“k is given

by

�.O“k/ D EŒ.O“k � “k/2� D EX ŒEY f.O“k � “k/2g� D ¢2EX

�

VIF.Xk/

S2
k

�

: (A7)

The power function in the context of random regression is defined as the expected

value of the conditional power function given in Equation (A6) as follows:

 .tk/ D P fjtkj > tN�p�1;’=2g D EX ŒP fjt.N �p�1; ƒ/j > tN�p�1;’=2g�: (A8)
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Likewise, the unconditional multicollinearity diagnostics of VIF and determinant

of regressor correlation matrix are expressed as ¥.Xk/ and •, respectively, where

¥.Xk/ D EX ŒVIF.Xk/� for k D 1; : : : ; p; and • D EX ŒjRj�: (A9)

In general, there is no simple closed-form expression for the preceding quantities

given in Equations (A7)–(A9) except in some special cases. Therefore, it is

extremely cumbersome to evaluate the multidimensional integration with respect

to the joint probability density distribution of .X1; : : : ; Xp/. Instead, Monte Carlo

integration provides a computationally feasible and practically accurate solution.

Finally, the corresponding hypothesis testing procedures and power functions for

the two one-sided tests of H0: “k � 0 versus H1: “k > 0 and H0: “k � 0 versus

H1: “k < 0 and even nonzero minimum effect can be readily established but the

details are not given here.

D
ow

nl
oa

de
d 

by
 [

N
at

io
na

l C
hi

ao
 T

un
g 

U
ni

ve
rs

ity
 ]

 a
t 2

3:
31

 2
4 

A
pr

il 
20

14
 


