H + &

BT IE BT G oodp 4 BRE LY

A Study on Effective Instruction Scheduling Methods for DSP Architecture

PERENLTAEA B

fode i UBLESE BT § ookdy £ ARk 2 A7

A Study on Effective Instruction Schedulmg Methods for DSP Architecture

PR e R Student * Yi-Hsuan Lee
hERR M Advisor : Cheng Chen
B o= 2o« F
FoaloA R
B Lwm e
A-Thes's

Submitted-to'Department of Computer Science
College of Computer Science
National Chiao Tung University
in partial Fulfillment of the Requirements
for the Degree of
Doctor of Philosophy

in
Computer Science

June 2007

Hsinchu, Taiwan, Republic of China

PERREY LA EAD

BT UBLARIE BT G ookdp £ B AR 2 Y

SRR Y RE¥E R D R

o

CEREIEY SRR SRR

i
EF MR IR R R A S MR R 2 U

FdRen™ o SR Bt ARV RPN AR ki Bl G A o P EAFRRAR AR 0 S Is R

WEH T ALUEE o B L2 % (digital signal processor, DSP) & - &
BRERP RO RE R oW N ¢ 7 8 B AT MR e (multiple data

memory banks) » i 4 * heterogeneous register sets = ;% 5 @ & § 2l ¥ gLt
FRORART R AL MR AYE - 5T R B BRI AR Y (7%
oo B AEY SRR ER L RBELTEER > e E R ML (spill
codes) A 4 o o d 4R AF AR FEE FEFY 2 0 B F P EL AT -
BE R AR ERA F A AKFB I E = (high-level synthesis) srpLgE &k % g 4
WAL A R R (cost) FERTEORE) [P

AT P APREEe T e R e AR I R Y R R
RUAR i 8] > 3K 3H G pifdp 4 PARZ o VR fE A S R F B
E B LIPS 2 B AROT PR R S B
Bef A E R RS R hHY AR AL 2 BATERM FAA PR
4 5 chgdes B4 (variable partition mechanism) » v4 2 = i 4 s cdp 4 #42
;% rotation scheduling with unfolding (RSF) - rotation scheduling with tiling (RST) =
rotation scheduling with parallelization (RSP) > # % jg #75 ® (accumulator/register)
Ghfie ¥ o % = BAT T RALA L 454 Motorola DSP56000 i #f #ic i+ 31 5L AT B ch
At o & I1dp 4 4202 rotation scheduling with spill codes predicting (RSSP) »

S E B AR T 3 o RSSPendd & H A F SR L2 v R AR 3 B

% (accumulator spill) 3 2 chpsis » 3 & 24 43/ 0 spill codes e #F 24 7 4 11 4p
4 $:4%;2 rotation scheduling with spill codes avoiding (RSSA)> v €_RSSP ezt #@ >
T LR R T SR # S AR 0040 4 o RSSA B ER A2 R R {oif 0 spill codes
F AR R 4 G * B s 24 accumulator spill » 7 £ SRR H B 4 chpE
o tpat2 b PR K- B EICE (hypothetical machine model) - fe &
RSSAF 3 b T AL P HR RS, E L B s = B
Py RALY A pie- W RSSA - | Y A4 % (operand sharing) 3 34 o
#0244y £ #4272 rotation scheduling with operand reutilization (RSOR)
fe rotation scheduling with exploiting operand reutilization (RSER) - RSOR ¥ & ¥
- i B~ % (iteration) N 4 EE A E4F® * o RSER B Ak - i Bl 3%
(loop transformation) %4> & 45 7% feit B~ %) 4p 4 R e VRS
EE AEAFR Y B E o

Bty T 0 E Rt (80 N AR B R B BU T Dl AR R
PR A B PR Redg A B RAEF R AL AT R Y i E 2 B
Mo §FobAL TRBF O H R e Bl SEMRERLAEL AL

r B g

R e AR 0 T B e £ AR I T e .

A Study on Effective Instruction Scheduling M ethods for

DSP Architecture

Sudent: Yi-Hsuan Lee Advisor: Prof. Cheng Chen

Department of Computer Science, National Chiao Tung University

Abstract

As the multimedia and communication flourishing, many scientific and digital
signal processing applications are developed. These applications are iterative and
data-dominated, which are usually represented by uniform loops and characterized by
a predominance of arithmetic instructions. A‘digital signal processor (DSP) is a
special-purpose microprocessor designed toachieve high performance in digital
signal processing applications, and cemmonly employs architecture with irregular
data paths, multiple data memory banks, and heterogeneous register sets. Sufficient
compiler support is apparently important to harvest benefits of this architecture. To
optimize the throughput of such digital signal processing applications, we need to
explore the embedded parallelism of a loop and generate fewer spill codes. As the
portable system market grows rapidly, power becomes another critical constraint in
the design specification. If we consider low power design at high-level synthesis, we
can obtain much more effective power reduction with less cost and effort.

In this thesis we will focus on designing code generation methods to schedule
uniform loops on DSP architecture with multiple data memory banks. The complete
code generation process for this architecture must include several phases, and to
consider more phases at the same time may lead more effective results due to their

extremely data dependent. Our research contains three main issues. For thisfirst issue

we design three efficient variable partition mechanisms and three corresponded
methods rotation scheduling with unfolding (RSF), rotation scheduling with tiling
(RST), and rotation scheduling with parallelization (RSP) without considering the
accumulator/register assignment. In the second issue we first present method rotation
scheduling with spill codes predicting (RSSP) focus on Motorola DSP5600 covering
all code generation phases. The main feature of RSSP is to predict the occurrence of
accumulator spills, and generate corresponding spill codes in advance. After that, we
generalize RSSP to rotation scheduling with spill codes avoiding (RSSA), which can
suit various DSPs with similar architectural features. The scheduling goal of RSSA is
to achieve both shorter schedule length and fewer spill codes. Meanwhile, new
mechanisms are designed for resolving accumulator spills instead of predicting their
occurrences. Besides, we aso evaluate RSSA on a defined hypothetical machine
model, and deep study the influence of differing, number of resources on the
scheduling result. Finally, two energy-efficient code generation methods rotation
scheduling with operand reutilization (RSOR).and rotation scheduling with exploiting
operand reutilization (RSER) are proposed in our third issue. These two methods are
extended from RSSA to further consider the operand sharing technique. In RSOR
only the potential operand sharing within an original iteration is considered. In RSER
we design a novel loop transformation mechanism to reconstruct the given loop, to
find instructions with common operands hidden in different original iterations.

In addition to present detailed principles of all proposed methods, we select some
MDFGs to evaluate their performances based on metrics schedule length, instruction
count, and the number of operand reutilizations. We also design analytic models for
every proposed method, which can calculate the overall scheduling length and the
number of operand reutilizations of a reconstructed loop. Preliminary evaluations

show that all proposed methods can achieve desirable results.

iv

Acknowledgements

| would like to express my sincere thanks to my advisor, Prof. Cheng Chen, for
his supervision and advice. | appreciate the other members of my thesis committee for
their time, support, and valuable comments.

There are many friends whom | wish to thank. My thanks to Dr. Der-Lin Pean,
senior Lan-Mao Chung, senior Jiang-Long Wu, Ming-Lung Tsai, and Yi-Siou Lin for
their encouragement during my initial process of doctor’s degree. | aso thank many
delightful fellows, | feel happy and relaxed because of your presence. They help mein
different ways during my stay at National Chiao Tung University.

Finally, | am grateful to my dearest family. Without their support, | can not finish

thisthesis. Thisthesisis dedicated to them:

Chinese ADSIIaCl....cvuiniiniuiuiiiiiiiiiiiii e, [
[S1aTo] IS WAV oS { = (o S P T TP iii
ACKNOWI EOgEMENTS. 1 tieiieiiieietintieententeesssntessessnssssnssssemonssssnsssssssnssssnss v
0] 1= | vi
List Of TADIES. c.iuiniuiiiiiiiiiiiiiiiiiicrrr e iX
LISt Of FIgUIES.ceiniieieiieeeiieiieiiieenteaceeencescnsensscnsoscnsassnsensssnsansnsanseranas Xi
R 01§ oo [T o o R 1
1.1 The Practicability Of DSP.........cooiii e 1
1.2 The Power Constraint Of DSP..........ouiiiiii e, 2
1.3 Our StudiesinthiS TheSIS.o B lliia .o 4
1.3.1 Variable Partition MeChanmiSmMS. 5 b b it e 4
1.3.2 Code Generation Methods for DSPwith Multiple Data Memory Banks......... 6
1.3.3 Energy-efficient Code Generation Methods...«..........................oa. 7
1.4 Thesis Organization............. 0 e 9
2 Fundamental Background.....cceceeieeeeiieeieenienreesnssecessnsessnssssssnsossnssnses 10
2.1 Program MOEL...... ... 10
2.2 Retiming TEChNIQUE. 11
2.3 Unimodular Transformations.c.oueeeiiiiiiiie e 14
2.4 Related WOIK. ... 15
2.4.1 Retiming-based Instruction Scheduling Methods.....................oooiieni. 15
2.4.2 Variable Partition Mechanisms.............coooiiiiiiiiiiii 16
2.4.3 Code Generation Methods for DSP with Multiple Data Memory Banks........ 17
2.4.4 Energy-efficient Code Generation Methods................coooiiiiiiiiiiinnn. 19
3 Variable Partition MechaniSmS....cceveiiiiiiiiiiiiiiiiiiniiiiiiiiieieneniienenenene, 22

vi

3.1 Haws of RSVR......ouiiii i 22

3.2 Rotation Scheduling with Unfolding (RSF) and Rotation Scheduling with Tiling

(351 PP 23
3.3 Rotation Scheduling with Paralelization (RSP)..............cooooiiiiiiiiii, 28
3.4 Performance EVAlULioNS.............ooiiiiiiiiiii e 31
3.4.1 Performance Studiesof aSingle lteration. ... 31
3.4.2 Performance Studies of the Entire Retimed LOOp..............ccoevivviiinnn... 33
3.4.3 Comparisonsamong RSF, RST, and RSP.............coiviiiiiiiiiiie, 34
4 Effective Code Generation Method for Motorola DSP56000............cu.ue.... 39
4.1 Motorola DSP56000 ArchiteCture............cooviiiiiiiiiiieeee, 39
4.2 DesSign MOUVELIONS.uiniiit et 41
4.3 Rotation Scheduling with Spill Codes Predicting (RSSP)............cccoovivinee. 42
4.3.1 MDFG CONSIIUCHION. .. 5. s seienens s e e et 43
4.3.2 TDAG CONSIIUCLION. ... 5k . o bt e« set e e eieteeeteaeteae e eenenan 43
4.3.3 TDAG MOIfiCatioN. o e sile e et et 46
4.3.4 ALU Instruction Scheduling............coooviiiiiiii e 49
4.3.5 Other Instruction SCheduling............ooiiiiii e 50
4.3.6 Initial Schedule REtMING. 52
4.4 Performance EvalUations.............oc.iuiuiuiiiiiii e 53
5 Effective Generalized Code Generation Method......cccovvvieieieiniininennnnnns 57
5.1 Hypothetical Machine Model..............cooiiiii e, 57
5.2 DeSigNn MOLIVALIONS. ...t e e 60
5.3 Rotation Scheduling with Spill Codes Avoiding (RSSA)..........cceviviiinnn.n. 62
5.3.1 Instruction Scheduling (1).........coooriiiii e 62
5.3.2 Instruction Scheduling (11).........oooiiiii e, 67
5.3.3 Initial Schedule Retiming..............cooiiiii e, 69

5.4 Applyingto Real DSPFamilies. ..o, 69

541 DataMemory BanK...... ..o 70
5.4 2 FUNCtioN UNit......o.ouiii 70
D543 REGISIEr SEL. ...t 71
5.5 Performance EValuations...............ooiiiiiiiiii i 72
5.5.1 Comparison with Previous WOrK............coooiiiiiiiiii e, 72
5.5.2 The Influence of RESOUICES...........coviiiiiiiiii 74
5.5.3 Brief SUMMAIiES.ooininiiii e 80
6 Energy-efficient Code Generation Methods.....ceeveiieiieiiiiiicniieiniceenennnnn. 83
6.1 Brief Analyses of RSSA ..., 83
6.2 Rotation Scheduling with Operand Reutilization (RSOR).............cccoevivenene. 84
6.2.1 Detailed Algorithms of RSOR....... ..o 84
6.2.2 Comparisons between RSSA@and RSOR. ... oo, 87
6.3 Rotation Scheduling with Exploiting-Operand Reutilization (RSER)............. 89
6.3.1 MDFG Reconstruction Mechanism.....cii. it o 90
6.3.2 Detailed Algorithmsof RSER. ... 95
6.3.3 The Difference between Proposed Methods and Other Methods................. 96
6.4 Performance EValuations...............ooiiiiiiiii i 98
7 Conclusionsand FUtUre WOrK.....eeveveiiiiiiniiiiieieieiiieiinenenininienaceee. 105
7.1 CONCIUSIONS.uttii e 105
7.2 FULUrE WOTK. ... 109
REFEIENCE. it 11
Appendix A The Analytic Model for RSVR, RSF, RST, and RSP.................. 17
Appendix B The Analytic Model for RSOR and RSER......ccccceviiuiiiininannn.. 122
AULhOr’s PUDIICAtioN LiSteiucuieiuieieieiiiiiiiiiiiiiiiiuiiieieieniiinininieiaeaeaaees 131
VB e eenieiineinrnrntieratersesesnsnsessssesnssssssasassssssnssssssssssnsnssssssnssssssnsnsnses 133

Table 3.1

Table 3.2

Table 3.3

Table4.1

Table5.1

Table 5.2

Table5.3

Table5.4

Table 5.5

Table 5.6

Table 5.7

Table 5.8

Table 5.9

Table 5.10

Table 6.1

Table 6.2

Table 6.3

List of Tables

Experimental results (1 function unit)(schedule length, retiming depth)..32

Experimental results (2 function unit)(schedule length, retiming depth)..32

Variables defined intheanalyticmodel....................ocoo . 34
Experimental results for asingle iteration in the repetitive pattern......... 53
Architectural features of some popular DSPs................ocoiiiiiin 59
Variables defined for solving accumulator/register spills................... 65
Schedule lengths obtained by different code generation algorithms....... 73

Number of operations really executed in an iteration obtained by different
code generation algorithms..................o 74
Characteristics of selected dFDAGS.cueviuiiiiiiiiiiiiiiieee, 75
Experimental results; with-target ‘architectures contains different number
Of @CCUMUIBLONS. . s et e e 76
Experimental results, with.target architectures contains different number
Of TEgIStErS. ..o 76
Experimental results, with target architectures contains different number
Of FUNCLION UNITS. ..o 77
Experimental results, with target architectures contains different number
Of FUNCLION UNITS., 78
Experimental results, with target architectures contains different number
of datamemory banks. ... 79
Average current required for each instruction [20]........................ 87
The comparison between RSOR and RSSA (the number of OPRS)....... 88
The comparison between RSOR and RSSA (under Motorola DSP56000

AICNITECIUNE) ... e 89

Table 6.4
Table 6.5
Table 6.6
TableA.1

TableB.1

The number of OPRs obtained by different scheduling methods............98

The comparison among four methods (under Motorola DSP56000)...100

Definitions of variables used in the analytic model........................ 102
Variables defined in theanalyticmodel......................coon, 118
Definitions of variables used in the analytic model........................ 123

Figure 2.1

Figure 2.2

Figure 2.3
Figure 3.1

Figure 3.2

Figure 3.3
Figure 3.4
Figure 3.5

Figure 3.6

Figure 3.7

Figure 3.8

Figure 3.9
Figure 3.10
Figure 3.11

Figure 3.12

Figure 3.13

Figure 3.14

Listsof Figures
The MDFG example. (a) Nested loops in C code, (b) corresponding
MDFG, (C) NOELYPES. .. ., 11

Retiming example. (a) Retimed MDFG of Figure 2.1(a), (b) schedule

before retiming, (c) schedule after retiming.........................oooo 12
(a) Original iteration space, (b)(c) changed iteration spaces.............. 13
(a) MDFG fragment, (b) scheduling result of RSVR...................... 23

Variable partition results of MDFG in Figure 2.1(b). (a) Based on

rightmost indices, (b) based on leftmost indices............................ 24
Two consecutive iterations of nested loop in Figure 2.1(a)................ 25
The entire scheduling StepSIOf RSF.............oiviiiii 25
The entire scheduling stepsof RST....x...........coooiiiiiiiiii, 26

(8 Unfolding MDFG of Figure 2.1(b), (b) tiled MDFG of Figure

(&) Unfolded nested loop in canonical form, (b) two consecutive
TEEIAIIONS. ...t 27
(a) Tiled nested loop in canonical form, (b) two consecutive iterations 28
The entire scheduling steps of RSP..............coooiiiiii, 29
Loop pardleization algorithm.................oo 29
(8) The parallelized MDFG of Figure 2.1(b), (b) scheduling result of
Figure 2.1(b) USINg RSP. ... 30
The unfolded MDFG of Figure 3.12(b)..........cccooiiiiiiiii 31

Overall schedule lengths of DSP applications (1 function unit, 2 memory

xi

Figure 3.15

Figure 4.1

Figure 4.2
Figure 4.3
Figure 4.4

Figure 4.5

Figure 4.6
Figure 4.7
Figure 4.8
Figure 4.9
Figure 4.10
Figure 4.11
Figure 4.12

Figure 4.13

Figure 4.14
Figure 4.15

Figure 5.1

Figure 5.2

Figure 5.3

Overall schedule lengths of DSP applications (1 function unit, 2 memory

FaMIY .. 40
Motorola DSP56000 architeCture..............oeveiiiiiiiiiiieeeen, 41
The entire scheduling steps of RSSP.............cccooiiiii 43
The TDAG constructing algorithm. ..., 44

(a) Two cases of removing memory accesses, (b) TDAG of MDFG in
FIQUrE 2.0(D) ... 45

() A TDAG fragment, (b) after inserting the register transfer w......... 46

The register transfer inserting algorithm.......................conil, 46
The Ggp and Gy constructing algorithm. ..., 47
The Mark_Edge algorithm.ot 47
The Check Cycle a gorithml e, oot 48
Two G, fragments with.accumulator spill................................. 48
The memory access inserting algorithm.....................oooiinne. 49

Scheduling steps of RSSA. () An TDAG example, (b) ALU instruction

only, (c) initial scheduling result, (d) retimed scheduling result......... 50
Overall schedule lengths of DSP applications.............................. 55
Overall schedule lengths of DSP applications.............................. 56

An example of code compaction. (a) Uncompacted code, (b) compacted

code, (c)(d) two scheduling results after resource assignment............ 61
The entire scheduling stepsof RSSA ..., 63
The Gop example. (a) TDAG, (b) corresponding Gop......cevvvvvninnnnn 64

Figure 5.4(a) Ggp nodes only scheduling result of Figure 5.3(a), unlimited resource 64

Figure 5.4(b) Gy, nodes only scheduling result of Figure 5.3(a), with unlimited

Xii

NUMDBDEr Of rEQIStErS. ... o, 66

Figure 5.4(c) Ggp nodes only scheduling result of Figure 5.3(a), without accumulator

SIS, 67
Figure 5.4(d) The initial scheduling result of G; of Figure 5.3(8)........................ 68
Figure 5.4(e) The retimed scheduling result of G; of Figure 5.3(a)...................... 70
Figure6.1 Anexampleof TDAG and sharing Sets.........c.cooviiiiiiiiiiiiiiiiin, 85
Figure6.2 Scheduling results of Figure 6.1. (8) RSSA, (b) RSOR................... 85
Figure 6.3 The overall scheduling algorithm of RSOR...................oooooiin 86
Figure6.4 The MDFG eXample.........c.ooviniiiiii e, 91
Figure6.5 The MDFG reconstructing algorithm........................ol, 92
Figure6.6 Anexample used toillustrate stepsof RSER....................c.oae. 94
Figure 6.7 The overall scheduling algorithm.of RSER................................. 95
Figure 6.8 The corresponding TDAG of (a)-Figure 6.6(a), (b) Figure 6.6(d)........ 96
Figure 6.9 Scheduling results of Figure 6.6(a). (8) RSOR, (b) RSER................ 96
Figure 6.10 Experimental results of DSP_applications (1 function unit, overall

schedule length)...........oooiii i 103
Figure 6.11 Experimental results of DSP applications (2 function unit, overall

schedule length).... ... 104
FigureA.1 Iteration spaces of a loop with depth one. (&) Original, (b) applying

RSVR, (C) applying RSF. ... 118
FigureA.2 Iteration spaces of a loop with depth two. (&) Original, (b) applying

RSVR, (c) applying RSF, (d) applying RST.............cooiiiiiiiii, 119
FigureA.3 Iteration spaces of a loop with depth two. (a) Original, (b)(c) applying

RO e 121
FigureB.1 Iteration spaces of a loop with depth one. (@) Original, (b) applying

RSOR(RSVR), (€) applying RSOR(RSF).......evveeeeeeereeeeeeen, 124

Xiii

Figure B.2

Figure B.3

Figure B.4

Figure B.5

Figure B.6

Iteration spaces of a loop with depth one. (&) Original, (b) applying
RSER(RSVR), () applying RSER(RSF)......eeeeeeeeeeeeeeeees 124
Iteration spaces of a loop with depth two. (&) Original, (b) applying
RSOR(RSVR), (c) applying RSOR(RSF), (d) applying RSOR (RST)126
Iteration spaces of a loop with depth two. (a) Applying RSER(RSVR),
formula (B.8), (b) applying RSER(RSVR), formula (B.9).............. 127
Iteration spaces of a loop with depth two. (a) Applying RSER(RSF),
formula (B.10), (b) applying RSER(RSF), formula (B.11).............. 129
Iteration spaces of a loop with depth two. (a) Applying RSER(RST),

formula (B.12), (b) applying RSER(RST), formula (B.13).............. 130

Xiv

Chapter1. Introduction

1.1 The Practicability of DSP

Most scientific and digital signal processing applications, such as fluid dynamics,
weather forecasting, image processing, video compression, and speech recognition are
iterative and usually represented by uniform nested loops [1-5]. All these applications
belong to data-dominated category, which are characterized by a predominance of
arithmetic instructions and an absence of control-flow within the data path [5]. A
digital signal processor (DSP) is a special-purpose microprocessor that is designed
and produced to better match DSP applications [3, 6-8]. Unlike general-purpose
microprocessors, the DSP design is based on the Harvard architecture, and often
includes several independent functionunits those are capable of operating in paralléel
[3, 7-8]. In order to meet ever-increasing demands for higher performance and
stringent power requirement; such DSPs commonly employ architectures with
irregular data paths, heterogeneous register-sets, and multiple data memory banks [9].
For the data path, this architecture’ has multiple small register files dedicated to
different sets of function unit instead of a large number of centralized homogeneous
registers. In addition, because multiple data memory banks are connected through
independent data buses, variables can be partitioned into separate banks and accessed
simultaneously. These architectural features are supported by some embedded DSP
families, such as Motorola DSP56000 [10], Analog Device ADSP2100 [11], NEC
uPD77016 [12], and Texas Instruments TM S320C6000 [13].

Although parallel access, which is enabled by multi-bank memory, is useful to
explore the potential of higher memory bandwidth, it gives rise to the problem of how
to partition the variables into multiple data memory banks [6, 9, 14-20]. Similarly,

using heterogeneous register sets can decrease the architectural complexity but

increase the difficulty of deciding which register set to use for a certain instruction [9,
17, 21-23]. It is well known that compilation techniques for genera-purpose
microprocessor do not adapt well to the irregularities of DSP. Therefore, to harvest the
benefits provided by DSPs with irregular architectural features, adequate compiler
support is obviously essential [3, 8].

Many researches seek to design code generation methods for specific DSP
architectures to fully use their features. The complete code generation process for
DSP with multiple data memory banks must include five phases: intermediate
representation, code compaction, instruction scheduling, memory bank assignment (or
variable partition), and accumulator/register assgnment [17]. These phases can be
performed individually in various sequences because they are logically independent.
Meanwhile, because they are extremely_data dependent, considering more phases at
the same time may |lead more €ffective results. Since:nested loops are the most time-
critical section in such DSP applications, their-execution time will dominate the entire
computational performance. To optimize the.execution rate of such applications we
need to explore the embedded parallelism of a loop. Moreover, due to strict resource
constraints of the DSP architecture, accumulator/register spills will supposedly occur
very often compared to general-purpose microprocessor. If more spill codes are added,
not only the schedule length may be lengthened, but also consumes more power to
execute those additional instructions. That is, in addition to increase the instruction-
level paralelism, how to avoid generating too many spill codes is also an important

issue of designing the code generation method for DSP architecture.

1.2 The Power Constraint of DSP
Until 1980’s, throughput and latency are two important factors used to determine

the quality of an embedded system. In 1990’s, as the portable system such as cellular

2

phone or portable electronic devices grows rapidly, power consumption becomes
another important constraint in the design specification [24]. Because low power is
now one of the major concerns in system design, this has forced to analyze and
optimize power in all components of a system [25]. Most research to date on power
minimization in DSPs is focused on hardware solution. However, if we consider low
power design at higher levels of abstractions, we can apply various transformation
techniques to system design with wider view and obtain much more effective power
reduction with less cost and effort [24, 26].

High-level synthesis techniques for low power have mostly targeted data-
dominated designs [5]. In a data-dominated application specific circuit such as DSP, it
is the power consumed in the data path, including function units, registers, and
interconnections, that accounts for a large fraction.of the overall power budget [24].
Power consumption is mainly: considered in. the function units, among units that
compose a data path [4, 27].-As shown-in-[4], authors present that function units
account for over 80% of the total data.path power, if the data path contains n function
units, 4n registers, and 8n multiplexers. Authors of [24, 28] further show that if the
overall system is divided into components including data path, clock, and controller,
function units will contribute about 40%~60% power to the overall system. Therefore,
if we can reduce power consumed by function units, the entire power consumption of
the system can be reasonably decreased.

In most cases, the power consumed by a resource mainly depends on the input
switching activity induced by the data being stored or processed [29]. For a function
unit, the power consumption will be reduced by reducing the switching activity
involving its input signals [28]. Many researches on power minimization in high-level
synthesis attempt to reduce the input activity of function units. Operand sharing is

one of these techniques, which binds one identical function unit to more than two

3

instructions containing at least one common operand, and any ingtruction without a
common operand does not intervene between these instructions [28]. As presented in
[27], the average power consumption of a multiplication (or an addition) when one of
its operands remains unchanged with respect to the previous instruction is 35% (or
25%) less than when both operands change. Therefore, to increase the potential for a
function unit to reuse an operand, the average power consumption of the function unit
is dramatically lower. Operand sharing also assists in reducing the number of memory
accesses, which tends to prevent the limited number of memory ports from increasing
system latency. Furthermore, as shown in [28], because the power consumed by
components other than function units are little increase or no increase at al after
applying operand sharing, operand sharing is obviously an appropriate technique in

low power design.

1.3 Our Sudiesin thisThess

Many DSP applications usually-contain.repetitive groups of operations, which
are easily represented by uniform loops and modeled by multi-dimensional data flow
graph (MDFG) [2-3]. From above descriptions, clearly that the code generation plays
an important role to harvest benefits provided by irregular DSP architectures. With
appropriate instruction ordering sequences, we can obtain scheduling results with
shorter schedule length, smaller codes size, or less power consumption. In this thesis
we focus on designing code generation methods to schedule uniform loops on DSP

with multiple data memory banks. Our three study issues are presented as follows.

1.3.1 Variable Partition Mechanisms
For the architecture with multiple data memory banks, the performance gain

strongly depends on variable partition and instruction scheduling techniques. Hence,

4

our first issue is about variable partition. At first we analyze a related method rotation
scheduling with variable repartitioning (RSVR) [30] in some detail. We claim that
although RSVR is effective, it uses complex mechanisms to partition variables
initially and repartition them during instruction scheduling. Note that a variable in
MDFG indicates an array not just a single scalar. Therefore, we present three efficient
variable partition mechanisms directly according to their array indices. After
transforming the given MDFG by appropriate techniques such as unfolding [31], tiling
[32], and unimodular transformations [33], we apply the multi-dimensional rotation
scheduling [34-35] to schedule instructions. Three code generation methods named
rotation scheduling with unfolding (RSF), rotation scheduling with tiling (RST), and
rotation scheduling with parallelization (RSP) are proposed corresponded to different
variable partition mechanisms {14, 36]. Without repartitioning variables during
instruction scheduling, our three methods are-obviousy efficient compared to RSVR.
Moreover, we a'so define an analyti¢.model-to-cal culate the overall schedule length of
an entire retimed loop. Several MDFEGs represented DSP applications are selected for
performance evaluations. From evaluation results, our methods RSF, RST, and RSP
can achieve effective results compared to RSVR, for both a single repetitive iteration
and the entire retimed loop. Moreover, the enlarged graph gives a more global view of
the data dependencies, which is beneficial for exploring the instruction-level
parallelism between different iterations. As for the effectiveness among methods RSF,
RST, and RSP, the answer will depend on the topology and loop-carried dependencies
of the given nested loop. We also list comparisons among three proposed methods and
suggest which method is suitable based on loop-carried dependencies the given
MDFG has. Variable partition mechanisms proposed in RSVR and our three methods

will be applied in subsequent severa studies.

1.3.2 Code Generation Methods for DSP with Multiple Data M emory Banks

In section 1.1 we have introduced that the complete code generation process for
DSP with multiple data memory banks must include five phases. RSF, RST, and RSP
have covered all except the accumulator/register assignment phase. Besides, above
methods directly use data memory to store and rel oad operands, so many unnecessary
memory accesses may be generated to degrade the performance. Since considering
more phases in a code generation method may lead more effective results, we will
design a new method to include accumulator/register assignment and further improve
overall performance. The proposed method rotation scheduling with spill codes
predicting (RSSP) is focus on Motorola DSP56000 [37]. Its main feature is to predict
the occurrence of accumulator/register spills in advance, and schedule corresponding
spill codes in parallel with other,instructions. In addition, we also define a translated
data acyclic graph (TDAG) censtructed from the given MDFG in order to remove
possible unnecessary memory accesses. We still.use selected MDFGs and the analytic
model proposed above to evaluate RSSP. Apparently that RSSP outperforms all of
RSF, RST, and RSP, because RSSP schedules instructions based on the TDAG which
contains less instructions than the MDFG. Comparing to other related studies, RSSP
still has advantages of shorter schedule length, for both a single repetitive iteration
and the entire retimed |oop.

RSSP looks quite effective and efficient, but it is not scalable and specifically
designed for Motorola DSP56000. Hence, we will generalize it to suit various DSPs
with similar architectural features, and propose another method rotation scheduling
with spill codes avoiding (RSSA) [38]. The scheduling goal of RSSA is to achieve
shorter schedule length and fewer spill codes. In RSSA we design another mechanism
to resolve accumulator spills instead of to predict their occurrences, because the

predicting results become inaccurate easily when the target architecture is no longer

6

specific. Moreover, we also integrate these mechanisms into instruction scheduling
phase to make RSSA more efficient. We evaluate RSSA according to two metrics
schedule length and instruction count at the same time. Suppose the target architecture
equals to the Motorola DSP56000, our RSSA usually achieves the shortest schedule
length and considerably fewer spill codes compared to other related studies. The main
reason is that RSSA can fully utilize system resources and insert spill codes only
when required. On the other hand, in addition to design effective code generation
method, increasing the number of resources is essentially a more direct way to
achieve effective scheduling results. Hence, we also define a parameterized machine
model to simulate architectures with different number of resources. After evaluating
MDFGs using RSSA on this hypothetical machine model, the influence of differing
number of resources on the scheduling results is further deep studied in this thesis.
Finally, we describe that with=miner modifications, our hypothetical machine model
and RSSA is capable for applying to. DSPfamilies such as Motorola DSP56000 [10],
Analog Device ADSP2100 [11],, NEC uPD77016 [12], and Texas Instruments
TMS320C6000 [13]. This indicates that the proposed machine model and code
generation method have enough flexibility, which are suitable to DSPs with various

architectural features.

1.3.3 Energy-efficient Code Generation Methods

As mentioned in section 1.2, low power consumption becomes another important
constraint in the DSP design specification in addition to shorter schedule length and
less spill codes. To increase the potential for a function unit to reuse an operand is an
appropriate way, because the power consumed by function units will be dramatically
lower. Therefore, in the third issue of this thesis, we will propose energy-efficient

code generation methods based on the operand sharing technique. At first we analyze

7

RSSA in view of low power consumption. Then, rotation scheduling with operand
reutilization (RSOR) is proposed by integrating the operand sharing technique into
RSSA, where the original features of RSSA are al retained. In RSOR we add a
mechanism to group ALU instructions sharing the same operand into a sharing set.
Then, the same scheduling steps used in RSSA are applied, and instructions belong to
a sharing set are restrictively scheduled at consecutive time steps to reuse operands.
According to preliminary evaluations, because we restrict the execution sequence of
some ALU instructions to achieve operand reusing, schedules generated by RSOR
may be dightly longer and with more instruction count compared to RSSA.
Unfortunately, common operands are not encountered very frequently in real designs,
resulting in few opportunities of operand sharing, and hence insignificant power
reduction [29]. Nevertheless, ipstructions with:eommon operands may be hidden
inside the original MDFG, which.can be generated using some loop transformation
techniques. Thus, we proposed anather-method rotation scheduling with exploiting
operand reutilization (RSER), which-is extended from RSOR and aimed to further
explore potential operand sharing between different iterations. In RSER we define an
exploitable sharing set to group load variable instructions reference the same array
element in different iterations. An MDFG reconstruction algorithm is also designed
based on the retiming [39] technique, to concentrate instructions in a same exploitable
sharing set into the same iteration. Then, RSOR is applied to schedule the
reconstructed MDFG, so operand sharing within an iteration and existing in different
iterations can be both explored in RSER. Metrics including schedule length,
instruction count, the number of operands been reused, and information provided
from [20] are used to evaluate RSOR and RSER. Besides, we extend the analytic
model defined before, to calculate the overall schedule length and the number of

operands been reused for the entire retimed loop. From evaluation results, we find that

8

both RSOR and RSER can successfully explore operand sharing within an iteration.
Using RSER further can achieve more number of operands been reused, which
indicates that exploiting the operand sharing in different iterations is beneficial for
energy-efficient instruction scheduling. On the other hand, because some ALU
instructions are restrictively scheduled at consecutive time steps to achieve operand
reusing, using RSOR and RSER may generate longer schedules for a single repetitive
iteration. However, the overall schedule lengths obtained by RSOR and RSER are still
better compared to related studies, because they can effectively explore the
instruction-level paralelism between successive iterations. As for the instruction
count, the proposed two methods require quite fewer spill codes for a repetitive
iteration, but RSER will generate considerable prologue and epilogue codes. That is,
if the instruction count is taken ,as the evaluation-metric, RSER will perform poorly

compared to related methods.

1.4 ThesisOrganization

The remainder of this thesis is organized as follows. Chapter 2 surveys the
fundamental background and related work. In chapter 3 we focus on variable partition
mechanisms, and introduce three proposed methods RSF, RST, and RSP. Chapter 4
contains an overview of the Motorola DSP56000 architecture, and principles and
algorithms of proposed method RSSP are aso included. In chapter 5, we present our
hypothetical machine model and the general method RSSA, and describe their
flexibilities to apply to other real DSP families. Two energy-efficient code generation
methods RSOR and RSER extended from RSSA are introduced in chapter 6. Finally,

in chapter 7 we list conclusions and plans for future work.

Chapter 2. Fundamental Background

In this chapter, we first model the given problem and survey some fundamentals.
Then, we introduce two basic techniques retiming and unimodular transformations
widely used in instruction scheduling. After that, related work of our studies in this

thesisis presented.

2.1 Program Model [37-38]

Because most scientific and digital signal processing applications usually contain

repetitive groups of operations, they can be easily represented by uniform nested
loops. A multi-dimensional data flow graph (MDFG) is commonly used to model
uniform nested loops. We define the, MDFG-to be the same as in [37-38], which is
slightly different from previous studies {14, 30].
Definition 2.1 A MDFG G =V, E, X, d, P) isa node-weighted and edge-weighted
direct graph, where V is the set.of computation nodes; E | V~ V is the edge set that
defines the precedence relations; X(e).represents the variable accessed by an edge €
d(e) is afunction from E to Z" representing the multi-dimensiona delays between two
nodes, where n is the number of dimensions; and P(v) represents the node type (see
Figure 2.1(c)).

Figure 2.1 shows an example of a nested loop and its corresponding MDFG.
Nodes in the MDFG include ALU instructions (multiplications and additions),
memory accesses (load/store variables and load constants), and register transfers.
Note that an edge, e, that does not involve a memory access does not have a label X(e).
An MDFG isrealizableif there exists a schedule vector s, suchthat s - d 2 0, whered
are loop-carried dependencies. A schedule vector s is the normal vector for a set of

parallel equitemporal hyperplanes that define a sequence of execution [40]. An

10

fori=1tom
forj=1ton
D[i, jl =B[i-1,j] * C[i-1,}-2] ;
Ali,j1=D[i,j]~ 05;
Bli,jl =A[i,j] +1; ..\
Cli,j1=Ali,j-1]+2;
end B
end

@

P(v)[Meaning

M | Multiplication
Addition
Load variable

\

Sore varizble (" Multiplication [| Load variable

Register transfer O Addition i_____j Store variable
Load constant
A L oad constant <> Register transfer
(© (b)

Figure 2.1. The MDFG example. (a) Nested loop in C code, (b) corresponding
MDFG (c) node types:

O|ld|lwn|r | >

iteration is equivalent to the execution of each node in V exactly once. The period
during which all nodes in an iteration are executed, according to data dependencies
and without resource constraints, is caled a cycle period. It is aso the maximum
execution time among paths that have no delay, which will dominate the entire
execution time of a nested loop. Note that many MDFGs can represent a single DSP

application, depending on its representation by nested loops.

2.2 Retiming Technique [39]

Retiming is a popular technique that reassigns delays to enhance execution
performance for a circuit. For aloop, retiming is a loop transformation technique that
can be used to increase the throughput and improve the utilization of resources, by

introducing partial overlap between the execution time of successive iterations. The

n

ALU M; M, ALU M; M,
A e e
0, 1) ,\’5\) (0,3) 2] 2 9 u pl 2 9 1
3| 13 5 3 4 1| 13 5 3
14 %D {15; @ 4 10 4 2 10 4
ﬁ% B 3 c 5] 6 15 3| 6 0 15
l 1/(1' -1) 6 7 4 701
@ @ 7 8 5] 2 8 1
8| 12 6| 12 o9
TA 33 AT(L b 9 14 v 7 14
'\:6:) IE' (b) A e 13 5 3
J/A e 10 4
- AL 2) prologue el 6 15
(a) N e 7
repetitive pattern e 8
r@@=r(1)=r2=(1,-1) / e| 12
r(Q=r(11)=(1,-1) epilogue © ¥ e 14

Figure 2.2. Retiming example. (a) Retimed MDFG of Figure 2.1(a), (b)
schedule before retiming, (c) schedule after retiming.

retiming vector r(u), afunction fromV to Z", represents the offset between the original
iteration and that after retiming. Ashew MDFG G; =.(V, E, X, d;, P) is created after
applying r, such that each iteration still”’has.one execution of each node. Delay vectors
will be changed accordingly to preserve the original data dependencies. Definitions
and properties of retiming are shown below.
Definition 2.2 Given any MDFG G = (V, E, X, d, P), retiming function r, and retimed
MDFG G; = (V, E, X, dr, P), we define the retimed delay vector for every edge, path,
and cycle, respectively, by:
(a) d,(e) = d(e) + r(u) —r(v) for every edge u%4® v, u,vi Vandel E.
(b) di(p) = d(p) + r(u) —r(v) for every path u3#® v,u,vi Vandpl G.
(©) di(l)=d()forany cyclel T G.

Based on above definition, MDFGs G and G; are logically equivalent, and the
only difference between them is the delay vectors. Figure 2.2 shows an example of
retiming technique. Figure 2.2(a) is the retimed MDFG of Figure 2.1(b), and Figure

2.2(b)(c) list schedules before and after retiming respectively. A prologue is the

12

ya

NN

\\ (51:%)
\\\
m’ niterations cael: s=(1,0) case2. s=(s,)
@ (b) (©

[] repetitivepattern [] list [] prologue+ epilogue

Figure 2.3. (a) Original iteration space, (b)(c) changed iteration spaces.

instruction set that must be executed to provide necessary data for the iterative
process. An epilogue is the complementary set that will be executed to complete the
process. If the nested loop contains sufficient iterations, the time required for prologue
and epilogue are negligible.

Because applying retiming.technique will change delay vectors of a realizable
MDFG G, we must guarantee the retimed MRFG.G; s till realizable. As mentioned
in chapter 2.1, arealizable MDFG G.must-have a feasible schedule vector s. In [34], it
indicates that if we retime MDFG'G with a retiming base r orthogonal to s (s” r), the
retimed MDFG G; is definitely realizable. The feasible retiming base is not unique for
a given MDFG, but in [34] it doesn’t propose how to select a best one. In our early
study [41], we analyze the relationship between the selection of schedule vector and
the change of iteration space in some detail. From analyzing results we find that the
overall schedule length is strongly dependent on which feasible schedule vector been
selected, especialy for nested loops with depth greater than one. If an unsuitable
schedule vector is used, the time required to execute prologue and epilogue will
occupy considerable part of the overall schedule length. We take a nested loop with
depth two as an example. Figure 2.3 shows two cases of modified iteration space after
applying retiming technique using different retiming bases. In [41] we prove that the

overall schedule length of case 1 is aways shorter than or equal to that of case 2,

13

which implies that s = (1, 0) will be the best selection if it is feasible. Therefore, in
[41] we propose a simple agorithm to select the best schedule vector for a given
MDFG which will achieve minimum overall schedule length after applying the
retiming technique. We also list a formulato calculate the overall schedule length of a
retimed nested loop. This formula will be used to evaluate code generation methods

proposed in thisthesis.

2.3 Unimodular Transformations[33]

Loop transformation is one of basic techniques for parallel compiler design. It
changes the execution sequence of iterations to achieve higher degree of paralelism.
Unimodular transformations technique unifies loop permutation, skewing, and
reversal, and models them as elementary_matrix transformations. All combinations of
these loop transformations can: simply be represented as products of the elementary
transformation matrices.

Although unimodular transformations technique is one of the most important
techniques used to parallelize uniform nested loops, it doesn’t explain how to use its
transformations. In [42] we propose a simple agorithm to parallelize the inner loop of
a uniform nested loop with depth two. Note that the transformation matrix to
parallelize a nested loop is not unique, and our algorithm can obtain one with
minimum skew factor. For a given MDFG G, a new MDFG G, is created after
applying loop paralelization. G and G, are still logically equivalent, and the only
difference between them is the delay vectors, just like applying retiming technique.
Some formulas are listed in [42] to calculate the overall schedule length of a
parallelized nested loop with depth two. These formulas will be modified further to

evaluate one of code generation method proposed in thisthesis.

14

2.4 Related Work

In this section we survey some related work of our studies. The content of this
section is divided into four parts: retiming-based instruction scheduling methods,
variable partition mechanisms, code generation methods for DSP architecture with
multiple data memory banks, and energy-efficient code generation methods. Some

related studies of each part are introduced in the following subsections.

24.1 Retiming-based Instruction Scheduling M ethods [34-35, 43]

Since retiming technique is useful for generating compact schedules, many
instruction scheduling methods are designed based on it to achieve shorter schedule
length. Among them, rotation scheduling [43] and multi-dimensional rotation
scheduling [34-35] are two effective methods used to schedule MDFG with one or
more than one dimensions, respectively. Both:these methods contain two main steps.
First they ssimply generate an initialischedule using the list scheduling method under
resource constraints. Then instructions scheduled at the first time step are moved to
the prologue, and their copies originally resided in the next iteration are rescheduled
without violating resource constraints and data dependencies. This step is usually
called rotation phase. Corresponding to the given MDFG the action of rotation is
essentially equivalent to retime nodes scheduled at the first time step. For an one-
dimensional MDFG nodes are always retimed with retiming vector r(u) = 1. As for
multi-dimensiona MDFG, it must select a feasible retiming base r as the retiming
vector. After iteratively applying the rotation phase, a more compact schedule, aso
with higher throughput, can be obtained. Because these two instruction scheduling
methods are really effective and efficient, in this thesis we choose them as the basis to

design our own methods.

15

2.4.2 Variable Partition Mechanisms[15-16, 30]

As mentioned in chapter 1, appropriately partition and alocate variables is
facilitated to generate more compact schedule in DSP architecture with multiple data
memory banks. If two variables may be accessed in paralel, they should be allocated
to different data memory banks. Some researches focus on designing variable
partition mechanisms which try to evenly distribute memory accesses and explore the
potential of higher memory bandwidth. Authors of [15] construct an interference
graph (IG) to represent the parallelism available in load instructions for every basic
block, and then partition it to determine the alocation of global variables. Two
different |G partition heuristics proposed in [15] are based on the same idea: variables
will be given higher priority to be stored to different data memory banks if they may
be accessed in parallel in a deeper loop. Strictly. speaking this mechanism is not
accurate enough, because the G cannot exploit the potential parallelism of memory
accesses that reference values produced in different iterations [16]. Therefore, authors
of [16] propose another mechanism to.recover this flaw by globally constructing the
IG for entire functions, and use an integer linear programming approach instead of a
heuristic to partition variables.

Unlike above methods only focus on variable partition, rotation scheduling with
variable repartitioning (RSVR) is designed to resolve both instruction scheduling and
variable partition problems [30]. RSVR is modified from rotation scheduling, which
considers multiple memory modules while generating a schedule. For a given MDFG,
RSVR constructs a corresponding variable independence graph (VIG) to expose al
parallel memory accesses. Basically the purpose of constructing VIG is smilar as
constructing 1G in [15-16]. But in RSVR it uses more accurate information to assign
edge weights of VIG, so it can achieve better variable partition results. After alocating

variables, RSV R applies the same steps as rotation scheduling to schedul e instructions.

16

Besides, when the schedule length cannot be improved in a rotation phase, RSVR will
try to repartition variables to shorten the schedule length. In this thesis we will take
variable partition as our first study issue. Detailed descriptions and our proposed

mechanisms will be presented in chapter 3.

2.4.3 Code Generation Methods for DSP with Multiple Data Memory Banks [9,
17-23, 44]

A complete code generation process for DSP with multiple data memory banks
must include five phases: intermediate representation, code compaction, instruction
scheduling, memory bank assignment (or variable partition), and accumulator/
register assignment [17]. These five phases can be performed in various sequences
due to their logically independent; or be simultaneously considered because they are
extreme data dependences. In previous subsection.we:have listed some methods focus
on the variable partition phase. For. heterogeneous register sets, authors of [21-23]
present specific register allocation. algorithms-to-fit their irregularity. In addition to
RSVR introduced above, methods proposed in [18-19] also resolve both instruction
scheduling and memory bank assignment problems without considering the limitation
of accumulatorg/registers. Furthermore, methods [9, 17, 20, 44] contain all five phases,
and all expect [44] select Motorola DSP56000 as the target architecture. We describe
methods [9, 17] in some detail in the following.

In the method proposed in [9], its main idea is applying the graph coloring
approach to treat variable partition and accumulator/register assignment. For register/
accumulator assignment, authors of [9] specially decouple this phase into two steps.
They first classify physical registers into a set of register classes, and allocate each
temporary variable to one of the register classes. Next, the graph coloring algorithm is

applied to assign each temporary variable a physical register within the register class

17

previously allocated to it. After generating compacted codes, a weighted undirected
graph is constructed based on the sequence of variables referenced in these codes.
Then, a maximum spanning tree (MST) of this graph is identified, and variables are
assigned also using the graph coloring algorithm. Moreover, authors of this method
also propose a heuristic to resolve graph coloring problem. We think the method
proposed in [9] is efficient. But it does not present the mechanism to determine and
resolve accumulator/register spills, which is definitely required.

The method proposed in [17] is an example that simultaneously considers two
code generation phases. The Motorola DSP56000 has heterogeneous register sets, so
variables referenced from each data memory bank must be loaded in a restricted set of
locations. Thus, authors of [17] claim that variable partition and accumul ator/register
assignment should be performed Simultaneously.to maximally explore available
parallelism among move operations. After generating-compacted codes, an undirected
graph is constructed representing constrained.conditions on the register and memory
bank assignments. Then, an algorithm based on graph labeling is used to both
memory bank and accumulator/register assignments. Similar as in [9], mechanisms
used to insert spill codes are not present in [17]. In addition, authors of [17] suggest
applying ssimulated annealing to resolve the graph labeling problem, which is a
time-consuming algorithm and makes the entire method much more complicated.

In this thesis, we will study compiler design issues for DSP architecture with
multiple data memory banks and heterogeneous register sets. At first we will design a
method particularly for Motorola DSP56000. Then, we extend it to a more general
method suitable for various DSPs with similar architectural features. Furthermore, this
general method is evaluated on various architectures to study the influence of
differing number of resources on the scheduling result. Detailed descriptions and our

proposed methods will be presented in chapters 4 and 5.

18

2.4.4 Energy-efficient Code Generation M ethods [4, 20, 24-25, 28, 45-52]

In section 1.2, we have introduced the importance of considering low power
design at high-level synthesis. Authors of [45] use an experiment setup to physically
measure the current being drawn by the CPU during the execution for three
architecturally different processors. Based on physical measurements, they develop an
instruction-level power analysis technique and an instruction-level power model. The
power model consists of three main components: instruction base costs, effect of
circuit state, and other inter-instruction effects. The base cost of an instruction is the
cost associated with the basic processing required to execute the instruction. The
circuit state overhead for a pair of consecutive instructions is used to deal with the
switching activity changed between their circuit states. As for the power cost of other
inter-instruction effects, it can oceur in real_programs due to prefetch buffer and write
buffer stalls, pipeline stalls, and cache misses. For the DSP architecture, the effect of
circuit state change is more marked in.-terms. of ‘\power consumption, because its
instruction control and data path constitute a larger portion of the silicon. Besides, this
instruction-level power analysis technique also provides fundamental information that
can guide the development of energy-efficient software. Several ideas in this regard
motivated by this analysis are: reduction of memory accesses, energy cost driven code
generation, and instruction reordering for low power. For the DSP with multiple data
memory banks, instruction packing, parallel memory loads, and swapping operands
for multiplications are other possible processor-specific optimizations [25]. Therefore,
to reduce the power consumption from software is actually an appropriate way.

A number of studies have investigated appropriate scheduling of instructions to
reduce the circuit state overhead due to its significant impact on DSP architecture.
Methods proposed in [20, 25, 46] are directly based on current measurement

technique. They first record base costs of al instructions and circuit state overheads

19

for different instruction pairs. Then, a ready instruction, which will cost less power
after being appended to the current schedule according to measured data, will be
selected and scheduled first. Methods proposed in [47-49] attempt |ow-power
schedules with similar mechanisms as previous three methods. But they gather base
cost and circuit state overhead information using cycle-accurate simulators
SmplePower and SmpleScalar, instead of experimental measurement. Apparently,
using above methods can generate schedules with low circuit state overheads.
However, the measured data are only dedicated for the selected processor, so these
methods are obviously |ess general.

On the other hand, there are lots of researches on power optimization in high-
level synthesis by means of input activity reduction of function units. Authors of [50]
reduce the switched capacitance of modules using an iterative improvement technique
for scheduling and module allecating. Authors of [51=52] propose similar techniques,
to reduce the power by preserving cerrelation-of data inputs to function units through
careful binding of instructions to‘function units.-As for methods designed based on
operand sharing technique, authors of [4] present list-scheduling algorithm for low
power (LPLS), to reduce the activity of the function units by minimizing the switching
activity of their input operands. LPLS obviously trades off latency for operand reuse,
because instructions with common operands have to be scheduled consecutively and
some instruction-level paralelism cannot be successfully explored. However, LPLS
performs well only in the cases where common input operands can be identified, but it
is not easy to find common input operands in real designs. Therefore, to increase the
number of instructions with common operands, a high-level loop transformation
technique power-conscious loop folding is presented in [24]. Its main idea is to find
instructions sharing an operand in consecutive iterations. Then, a loop folding

technique is applied to concentrate these instructions in the same iteration and execute

20

them consecutively. Alternatively, the method proposed in [28] contains a force-
directed retiming to determine which instruction must be retimed. This technique aims
to make as many instructions as possible take common operands as their inputs, and
use alist scheduling to perform operand sharing under resource constraints.
Comparing instruction scheduling methods listed above, methods designed based
on operand sharing are apparently more practical. This is because these methods are
not only machine-independent, but also do not require additional memory space to
store measured information. In this thesis, we will focus on increasing the potential of
operand sharing to design energy-efficient code generation methods. Detailed

descriptions and proposed methods will be presented in chapter 6.

21

Chapter 3. Variable Partition M echanisms

In this chapter we present our first issue about variable partition mechanism. We
target on DSP architecture with multiple data memory banks, and the goal is to evenly
distribute memory accesses. At first we summarize some flaws of RSVR in section
3.1. Three proposed variable partition mechanisms and corresponding instruction
scheduling algorithms are introduced in section 3.2 and 3.3. In section 3.4 some

performance evaluations are shown.

3.1 Flawsof RSVR [14]

As introduced in section 2.4.2, RSVR resolves both instruction scheduling and
variable partition problems. It mainly; consists of four phases. constructing VIG
partitioning VIG, generating the initial; schedule, and repartitioning variables during
applying rotation scheduling. From our observations,-RSVR may contain three flaws
as follows. First, the variable ‘partition result-is not aways optimal, so RSVR will
repartition variables during rotation:phases. This repartitioning phase obviously
increases the scheduling complexity of RSVR. Second, the VIG is constructed to
expose parallel memory accesses for a loop, so the variable partition result is only
well suited to that loop. When the given program contains more than one loop, it is
difficult to find an appropriate variable partition result fitted for al loops. Third, the
parallelism between ALU instructions may be restricted by memory accesses in
special cases. Consider the MDFG fragment shown in Figure 3.1(a). Actualy, nodes 4
and 5 access different operands and can be executed in parallel. But in RSVR they
will be scheduled in seria as shown in Figure 3.1(b), because they both access the
same variable A. This case is similar as the column major problem in parallel

processing system. Some operations are data independent, but must be executed in

22

Mul Add M; M,
1 0
2 1
3| 4 2
4 3 6
5 5
6 7
(b)

Figure 3.1. (a) MDFG fragment, (b) scheduling result of RSVR.

serial due to unsuitable data allocation. In addition, since variable A is accessed many
times compared with variable B, the memory bank stored A will become the schedule
bottleneck. The reason caused above flaws is due to the variable partition mechanism.

Thus, we will propose some mechanismsto partition variables more effectively.

3.2 Rotation Scheduling with Unfolding (RSF) and Rotation Scheduling with

Tiling (RST) [14]

Note that a variable in MDFG indicates.an array not just a single scalar. Unlike
RSVR stores the entire array to a single data memory bank, we propose two
mechanisms to partition array elements according to their rightmost indices and
leftmost indices, respectively. For example, suppose there are N data memory banks,
Figure 3.2 shows two variable partition results of MDFG in Figure 2.1(b). These two
mechanisms are clearly more simple and efficient than that of used in RSVR, because
they avoid the heavy overhead caused by constructing and partitioning the VIG.

In addition to array variables, operands of ALU instructions may be constants in
DSP applications. Intuitively these constants can be loaded using immediate load
instructions. But in our studies we let constants be stored in data memory at specific
locations in advance, and use load constant instead of immediate |oad. Essentially, the

load constant is equivalent to the original load variable instruction, but will directly

23

AL 1] ... A[1, n-N+]] A[L 2] ... A[1, n-N+2] A[LN] ... A[1,n]
[A[m, 1] ... A[m, n-N+1] Alm, 2] ... A[m, n-N+2]| AImN] ... A[mn]
B[L 1] ... B[L n-N+1] B[L 2] ... B[L n-N+2] B[LN] ... B[1,1]
B[m1] ... B[m n-N+1] B[m 2] ... B[m, n-N+2]| BIm N ... B[m n]
C[1,1] ... C[1 n-N+1] C[L 2] ... C[1 n-N+2| CILN] ... C[1,1]
CIm 1] ... C[m, n-N+1] Cm, 2] ... C[m, n-N+2]| CImN] ... C[m,n]
D[L 1] ... D[1,n-N+1] D[1 2] ... D[L n-N+2| D[LN] ... D[L,n]
D[m, 1] ... D[m, n-N+1] D[m, 2] ... D[m, n-N+2] D[m/N] ... D[m,n]
Memory Bank M Memory Bank M, @ Memory Bank My
AL, 1] ... A[mN+1, 1] Al2,1] ... A[mN+2 1] AN, 1] ... A[m,1]
|A[Ln] ... A[mN+L 1] Al2n] ... A[mN+2] AN ... A[m, n]
B[L 1] ... B[mN+1, 1] B[2 1] ... B[MN+2, 1] B[N, 1] ... B[m,1]
BILnl ... BImN+1 1] Bl2n ... BImN+2]| BIN.M ... B[mn]
C[1,1] ... C[MN+L, 1] C[2,1] ... C[mN+2, 1] CIN, 1] ... C[m 1]
Clin ...C[mN+1, 1] C2m] ... CmN+2 nl| CIN,N] ... C[m,n|
D[L, 1] ... D[mN+1, 1] D2 1] ... D [mN+2, 1] D[N, 1] ... D[m 1]
D[1,n] ...D[mN+1,1] D[2,n] ... D[mN+2 n] D[N,n] ... D[m,n]
Memory Bank M Memaory Bank:-M3 (b) Memory Bank My

Figure 3.2. Variable partition‘results of MDFG in Figure 2.1(b). (a) Based on
rightmost indices, (b) based on leftmost indices.

load constants from specific address. We also assume that constants are stored in al
data memory banks. This feature makes load constant instructions can be scheduled at
any data memory bank to increase performance.

After partitioning variable, we plan to apply the concept of multi-dimensional
rotation scheduling to schedule instructions. However, it cannot be directly applied,
and we illustrate the reason using the following example. Figure 3.3 lists two
consecutive iterations of nested loop in Figure 2.1(a), and both instructions with mark
“#” correspond to nodes 4~7 in Figure 2.1(b). If we partition variables based on their
rightmost indices, operands accessed by two marked instructions will be resided in

different data memory banks. That is, nodes 4 in consecutive iterations must be

24

D[I, K =B[I-1, K ~ C[I-1, k-2] ;
AllLK =D[l,K~ 05; #

B[, K =A[l, K +1;

Cll, K =A[l, k1] +2;

D[l, k+1] =B[I-1, k+1] © C[I-1, k-1] ;
A[l, k+1] =D[I, k+1] © 0.5; (#)

B[l, k+1] =A[l, k+1] +1;

C[l, k+1] =A[l, K +2;

Figure 3.3. Two consecutive iterations of nested loop in Figure 2.1(a).

G = Construct MDFG;

Partition variables to N memory banks according to rightmost indices;
Gy = unfold G, with factor N;

Select the retiming baserr;

S=schedule Gy using list scheduling;

S’ = compact Susing multi-dimensional rotation scheduling;

© 0wk

Figure 3.4. The entire scheduling steps of RSF.

scheduled to different data memory bank, and so are nodes 7. This situation makes
traditional scheduling algorithms unusable. Partitioning variables based on their
leftmost indices will also cause similar problem.

Unfolding [31] (also caled unrolling) and tiling,[32] techniques can be used to
resolve this problem. Their feasibilities-are.proven-in Theorems 3.1 and 3.2 listed
below. Note that not every nested‘loop can be tiled directly, so we need to skew [32]
the nested loop before tiling if necessary. After unfolding or tiling the given nested
loop, multi- dimensional rotation scheduling can be successfully applied to generate a
compact schedule. Thus, based on two variable partition mechanisms, we propose
instruction scheduling algorithms named rotation scheduling with unfolding (RSF)
and rotation scheduling with tiling (RST) as listed in Figure 3.4 and 3.5, respectively.
Suppose the target architecture consists of one function unit and two data memory
banks. Figure 3.6 shows unfolded and tiled MDFGs of Figure 2.1(a), and scheduling
results generated by different methods are shown in Figure 3.7. From this example,
we find that using RSF and RST may obtain more compact schedules compared to
using RSVR. Moreover, because RSF and RST never repartition variables during

rotation phases, their scheduling complexities are obvioudly less than that of RSVR.

25

1. G = Construct MDFG,;

2. Partition variables to N memory banks according to leftmost indices;

3. Gy=tiled G, withtilesizeN" 1" ..." 1 (skewed the nested loop before tiling
if necessary);

Select the retiming baserr;

S=schedule Gy using list scheduling;

6. S’ =compact Susing multi-dimensiona rotation scheduling;

o &

Figure 3.5. The entire scheduling steps of RST.

Figure 3.6. (a) Unfolded MDFG of Figure 2.1(b), (b) tiled MDFG of Figure 2.1(b).

FU M, M, FU M1 M, FU M, M,

1 13 5 3 1 2 17 16 1 13 7 27
2 10 4 2 18 3 5 2 19 8 0
3 6 0 15 3 4 19 3 12 15 31
4 7 1 4 6 21 20 4 14 1
5 2 8 11 5 22 7 10 5 2 16 21
6 12 9 6 8 23 6 18 5 26
7 14 7 12 25 27 7 10 19
8 29 14 24 8 17 20

schedule length=7 9 6 31 9| 2 3 1

(a) 10| 28 11 9 10 4 23

11 13 0 30 11 6 9 24

12 15 1 12 28 25

13 30

schedulelength=6 (b)
(c) schedulelength =6.5

Figure 3.7. Scheduling results of Figure 2.1(b). (&) RSVR, (b) RSF, (c) RST.

26

A[l, Nk-N+1] = B[l+a, Nk-N+1+b] A C[l+c,
for i=1tom Nk-N+1+d] ; (#)
for j=1ton/N
+or’ R A[l, NK = B[l+a, Nk+b] A C[l+c, Nk+d] ; (&)
Ali, Nj-N+1] = B[i+a, Nj-N+1+b] A
Cli+c, Nj-N+1+d] ;

A[l, Nk+1] = B[I+a, Nk+1+b] A

Ali, Ni] = B[i+a, Nj+b] A Cli+c, Nj+d] ; Clhvo No1ed] - (5

J
enzn A[l, Nk+N] = B[I+a, Nk+N-+b] A
@ Cll+c, NkHN-+] ; (&)
(b)

Figure 3.8. (a) Unfolded nested loop in canonical form, (b) two consecutive iterations.

Theorem 3.1 Given a nested loop and its corresponding MDFG G. Variables are
partitioned to N data memory banks based on their rightmost indices. After unfolding
the innermost loop with factor N; every_memory access in the unfolded MDFG Gy
can be scheduled to specific data memory bank.

Proof: We use a nested loop with depth-two-as an-example. Figure 3.8 shows the
unfolded nested loop with factor N and two censecutive iterations in canonical form.
In Figure 3.8(b), instructions with the same mark will correspond to the same nodesin
Gn. From Figure 3.2(a), clearly that operands accessed by instructions with the same
mark are stored in the same data memory bank. Thus, every node in Gy can be
scheduled to specific data memory bank. Nested loop with depth more than two can
be proven using the same way.

Theorem 3.2 Given a nested loop and its corresponding MDFG G. Variables are
partitioned to N data memory banks based on their leftmost indices. After tiling the
nested loop with tilesize N" 1" ..." 1, every memory access in the transformed MDFG
Gn can be scheduled to specific data memory bank.

Proof: We still use a nested loop with depth two as an example. Figure 3.9 shows the

transformed nested loop with tile size N” 1 and two consecutive iterations in canonical

27

A[NI-N+1, K] = B[NI-N+1+a, k+b] A

for i=1tom/N CINI-N+1+c, k+d] ; (#)
for j=1ton
o’y A[NI, K] = B[NI+a, k+b] A C[NI+c, k+d] ; (&)
A[Ni-N+1, j] = B[Ni-N+1+a, j+b] A
C[Ni-N+1tc,j+d]; === === == mmmm————— -

A[NI+1, K] = B[NI+1+a, k+b] A

A[Ni, j] = B[Ni+a, j+b] A C[Ni+c, j+d] : CINI+Lrc ked] : ()

i)
e A[NI+N, K] = B[Nk+N+a, k+b] A

end @ CINIHN+c, k+d] ; (&)
(b)

Figure 3.9. (a) Tiled nested loop in canonical form, (b) two consecutive iterations.
form. In Figure 3.9(b), instructions with the same mark will correspond to the same
nodes in Gy. From Figure 3.2(b), clearly that operands accessed by instructions with
the same mark are stored in the same data memory bank. Hence, every node in Gy can
be scheduled to specific data memory bank.-Nested-oop with depth more than two

can be proven using the same way.

3.3 Rotation Scheduling with Parallelization (RSP) [36]

Because loop unfolding and tiling techniques are applied in RSF and RST to fit
variable partition results, their enlarged iterations are composed of several original
iterations. If original iterations composed of an enlarged iteration are data independent,
RSF and RST are actually effective. However, if critical paths of those original
iterations are cascaded after applying unfolding or tiling, using RSF or RST will
obtain schedules with very long schedule lengths. Therefore, we apply the unimodular
transformations to parallelize the inner loop before unfolding, which can ensure that
origina iterations composed of an unfolded iteration will not depend on each other.
This method is named rotation scheduling with parallelization (RSP). Since RSP

avoids the drawback of RSF and RST, we believe it can achieve better results.

28

No o s~wDdPRE

G, = Construct MDFG;

Partition variables to N memory banks according to specific mechanism;

G, = parallelize G, that theinner loop is parallelizable;

Gy = unfold G, with factor N;

Select theretiming base r = (0, 1);

S=schedule Gy using list scheduling;

S’ = compact Susing multi-dimensional rotation scheduling;

Figure 3.10. The entire scheduling steps of RSP,

A wbdpE

Input: MDFG G=(V, E, X, d, 1), N
Output: MDFG G’ = (V, E, X, d’, t);

G=Gw=0;
while ($ (0, @) and (b, 0) ind’, for a, b > 0)
— 1. 5 N) — g’l Ol;' ,) .
w=1" d(el dd(e= & 1 d’(e);
if ($(b,-c)ind’, forb,c>0)
W=w+ gc+D)/bl;" o1 dd@E=¢ 1 0
&c+1)/by 18
if (Nisodd)
if ((wmod N) ==2)
— .) n s e él OL:J - s .
w=w+1;"=d’(e)l d, d(e= & 1 d’(e);

" (@)1 d d(e = g ;g T d(e);

Return G’ =(V, E, X, d’, t);

S d(e);

Figure 3.11. Loop parall€ization algorithm.

to array indices and is quite simple and efficient.

29

Figure 3.10 lists the entire scheduling steps of RSP. Note that RSP is designed
only for nested loop with depth two, and the number of data memory banks must be
odd or power of two. Nevertheless, it can be further extended to cover MDFG with
higher dimensions. Figure 3.11 is the algorithm designed to parallelize the inner loop
by unimodular transformations, which is dlightly modified from the agorithm
proposed in our early study [42]. Figure 3.12(a) contains the parallelized MDFG of
Figure 2.1(b). Particular variable partition mechanism used in RSP is presented as

follows. Although this mechanism seems irregular, it still partition variables according

1 Mul Add M; M, Ms

E z 1] 18 3 5 2
@y 7y \GD 2| 34 4 19 37
_1 [P 3 6 25 20 35
1141 lD 115; 4| 22 7 27 36
A% TB i3] CT fi 5|3 20 1 23 o9
6 13 43 41 39

@ @ 7 5 15 31 10
8 8 24 47

I In 1 B
‘60 [9] 10 28 14 0 1
lA ul 2 a4 17 30 16

v_ /1,0 12 32 33 46

schedulelength =4
@ (b)

Figure 3.12. (a) The parallelized MDFG of Figure 2.1(b), (b) scheduling result
of Figure 2.1(b) using RSP.

2 data memory banks N data memory banks (N is odd)
Banki:[m, 2k+i] kI Z Bankjiz[m, kN'+ (2—-2m)mod N) +i] kI Z

N data memory banks (N = 2%, n32)

Banki:[m,k7N+((1'?m)modg)+i] 1£i£%,misodd,kTZ

Bank i: [m,k7N+((4'7m) mod%)—i] %+1£i£N, miseven k1 Z

With the similar reason of RSF and RST, the paralelized MDFG must be
unfolded before applying multi-dimensiona rotation scheduling. Moreover, schedule
vector (1, 0) can be always selected for applying retiming technique in RSP, which is
beneficial to achieve shorter overall schedule length of the retimed loop [41]. Suppose
the target architecture consists of one multiplier, one adder, and three data memory
banks. The unfolded MDFG of Figure 3.12 (@) is shown in Figure 3.13, and Figure
3.12(b) is its scheduling result generated using RSP. Finally, because variables are
never repartitioned during rotation phases, the scheduling complexity of RSP is also

|ess than that of RSVR.

30

Ta lA/ T
RAy/ § (1.0
23

Figure 3.13. The unfolded MDFG of Figure 3.12(a).

3.4 Performance Evaluations
3.4.1 Performance Studiesof aiSinglelteration

In the following, we select.several MBFGs represented DSP applications to
evaluate methods including list scheduling, RSVR, RSF RST, and RSP The
execution process for a retimed [oop-will consist'of three parts: prologue, repetitive
pattern, and epilogue. The prologue and epilogue are instruction sets that must be
executed before and after the repetitive pattern. The repetitive pattern will be iterated
many times and will dominate the entire computation performance of the given loop.
Therefore, in this subsection we first focus on a single iteration in the repetitive
pattern to compare different methods. Suppose that the system contains 1~2 function
units and 2~4 data memory banks, and both ALU and memory access instructions
take one time step to execute. Tables 3.1 and 3.2 list schedule lengths and retiming
depths obtained from different methods for a single iteration in the repetitive pattern.
Note that some schedule lengths in these tables are fractional. This is because the
MDFG may be unfolded or tiled before being scheduled, and we show the average

schedule length of an original iteration.

31

Table 3.1. Experimental results (1 function unit)(schedule length, retiming depth).

2 data memory banks

3 data memory banks

4 data memory banks

List [IRSVR| RSF | RST | RSP | List |RSVR| RSF | RST | RSP | List |RSVR| RSF | RST | RSP
[1] 9 6,1|160(|61]|60 9 6,2 | 4,143 2| 4,1 9 4,4 | 4,1 43|41
[2]] 213 | 6,2 |65,2(65,2| 6,1 | 13 | 53 |43,5|43,3(43,1] 13 | 43| 46| 44| 41
[31| 27 |25 1|24,1(24,1|24,1| 21 (17,1|17,1|17,1 (163, 21 |16,1|16,1|16,1|165,1
4| 12 | 7,2 | 7,1 |65,2|651] 12 | 54|53 |54 (51| 12 | 56|54 |55]51
[5] 7 51(51]|51|51 7 52114141 | 41 7 4,31 41)41]| 41
[6]| 19 |16,1(175,117,0|16,1| 17 [12,2|143,4123,1/12,1| 15 |12,2|13,2|12,1|12,1
[71] 31 |24,1(235,1122,1|22,1| 31 [18,2|18,2|17.3,217.3,} 31 |17,3|17,3|17,2|17,1
[81] 20 |151(15,1({17,2|15 1| 20 [12,2|12,1|12,4|12,1| 20 |12,3|12,1|12,5|12,1
[9]1] 24 |12,1|115,1 ** *x 14 | 12,110.7,1 ** *x 13 | 11,1103, 4 ** *x
[10]] 20 [19,1(21,1| ** *x 19 (19,0(20,1| ** *x 19 (19,0195, 1 ** *x
[12]] 37 [32,1|27,1| ** *x 37 |34,1(25.7, 1 ** *x 37 [35/1(245,1 ** *x
[12]] 50 [49,1(66,0| ** *x 49 |(48,1165.7,0[** *x 49 [49,01(65.5 0 ** *x

[1] Wave Digital Filter [7] Floyd-Steinberg

[2] Filter [8] “Transmission Line

[3] Infinite Impulse Response Filter 2D [9] "Infinite Impulse Response Filter 1D

[4] Forward-substitution [20] Differential Equation Solver

[5] Toeplitz Hyperbolic Cholesky Solver [11] All-pole Lattice Filter

[6] Discrete Fourier Transform [12] Elliptic Filter

Table 3.2. Experimental results (2 function units)(schedule length, retiming depth).

2 data memory banks 3 data memory banks 4 data memory banks

List |RSVR| RSF | RST | RSP | List |RSVR| RSF | RST | RSP | List [RSVR| RSF | RST | RSP
[9 6,1(60]| 61|60 9 6,2 40| 42|40 9 4,41 3,0 135,3[33,1
[2]|] 13 | 6,2 |65,2(65,2| 6,1 | 13 | 53| 45 |47,3| 41| 13 | 43 (357 34 |331
[31| 27 |251|24,1(24,1|24,1| 20 |{17,1|17,1|17,1|16,1| 21 |13,1(128,1128,1 12,1
[4]| 12 | 7,2 | 7,1 |65,2|65/1] 12 | 54 |53,2|53,3(4.3,1] 12 | 4,6 [43,3|38,6|33,1
[5] 7 5151|5050 7 521(37,1133,1(33,1}] 7 3,4 (28,2|28,0(28,1
[6]| 18 |16,1(175,117,0|16,0| 16 |11,2|12,2| 11,1107,y 13 | 8,2 [12,2| 81 | 8,1
[71] 28 |21,1(23,1(22,1|21,1| 28 |14,2|153,216.3,2/14,1| 28 | 11,3 [12.3,4125,3 11,1
[8]| 18 |151|15,1|152|151| 18 |11,2|10,1|13.7,4103, 18 | 8,3 (7.8,1|11.55/751
[91] 14 |12,1)115,1 ** *x 14 (12,1 (10.7,1 ** *x 13 (11,1(10.3, 1 ** *x
[10]] 19 [18,1(21,1| ** *x 18 (18,0(20,1| ** *x 18 [18,0(19.5, 1 ** *x
[12]] 36 [33,1|27,1| ** *x 36 |34,1(25.7,1 ** *x 36 (351245, ** *x
[12]] 48 |47,1(66,0| ** *x 44 |43,1165.7,0f ** *x 43 |43,0(655,0 ** *x

32

From these results, RSV R obviously outperforms list scheduling in all cases like
evaluations shown in [30]. Three proposed methods RSF, RST, and RSP aso achieve
effective results, but not always better than that of RSVR. This is because the enlarged
MDFG gives amore global view of the data dependencies, which is usually beneficial
for compacting schedules. However, based on our variable partition mechanisms,
most memory accesses in the same origina iteration will be scheduled to the same
data memory bank. If aniteration of RSF or RST is cascaded by original iterations, its
results will beinferior to RSVR. Besides, if memory accesses will gather at some data
memory banksin RSV R, our methods can obtain better results. As for RSP, it usually
achieves similar schedule lengths to other methods for a single iteration in the
repetitive pattern, but apparently gets smaller retiming depths. This is because an
iteration in RSP is composed of jndependent original iterations and memory accesses
will be evenly scheduled. Thus; schedules generated by list scheduling will be already

very compact, which can decrease times applying rotation phases and retiming depth.

3.4.2 Performance Sudies of the Entire Retimed L oop [14, 36]

In addition to the repetitive pattern, prologue and epilogue are also generated for
aretimed loop as described in the previous subsection. Strictly speaking, prologue and
epilogue are part of the overhead, not only for the execution time but also for the
instruction count. Many previous studies have stated that the time required to run the
prologue and epilogue are negligible if the given loop contains sufficient iterations.
However, as shown in section 2.2, the prologue and epilogue may still constitute a
considerable portion of the overall schedule length if an unsuitable schedule vector is
selected. Thus, we design an analytic model to calculate the overall schedule length of
a retimed one or two-dimensional MDFG. Nevertheless, this analytic model can be

easily extended to cover nested loop with depths greater than two.

33

Table 3.3. Variables defined in the analytic model.

Variable Definition
N Number of memory banks
m Loop bound of the outer loop for atwo-dimensional nested loop
Loop bound for an one-dimensional loop
n Loop bound of the inner loop for atwo-dimensional nested loop

prologue | Schedulelength of the prologue part of aretimed loop

epilogue | Schedulelength of the epilogue part of aretimed loop

Schedule length of asingle iteration in the repetitive pattern of a
retimed loop
list Schedule length of asingle iteration produced by list scheduling

length

Retiming depth, the number of iterations that must be moved into the
prologue and epilogue

w Skew factor used to parallelize the inner loop
half (k, N) | Schedulelength of k original iterations under N memory banks

d

Table 3.3 lists variables used in our_analytic model. For a one-dimensional |oop
the retiming base r = 1 is always.feasible. Schedule, vector (s;, &) is selected for a
two-dimensional nested loop, -Where 's;-and-S, are both positive integers. Several
formulas are defined to calculate the overall” schedule length of a retimed loop.
Detailed derivations of these formulas are listed in appendix A [14, 36].

Suppose the system contains one function unit and three data memory banks,
Figures 3.14 and 3.15 show the overall schedule length calculated by above formulas.
In view of the entire retimed loop, the overall schedule lengths of our methods
perform similar to even outperform RSVR. Hence, our RSF, RST, and RSP are not

only efficient but also as effective as RSVR.

3.4.3 Comparisonsamong RSF, RST, and RSP [14]
After evaluating RSF, RST, and RSP, we analyze the effectiveness among them.
Actually the answer will depend on the topology and loop-carried dependencies of the

nested loop. From formulas (A.6) and (A.7) listed in appendix A, we find that after

34

PR N
o o B
T T T

Execution cycles (x1000)
=
N

0 n n)
Loop size10x10 8x15 15x10 20x20 30x15 15x30 30x30 20x50 50x25 40x40 25x65 60x30 30x80 70x35 50x50

33 ¢
3 | —®—Lis —e—RSVR

S927 | —»—RSF --4--RST
<24 | --+-- RSP

82
&18
615 -
g1z

Execution cycles (x1000)
o ©

Filter

w
T

0
Loop Sizel0x10 8x15 15x10 20x20 30x15 15x30 30x30 20x50 50x25 40x40 25x65 60x30 30x80 70x35 50x50

65 I —®—List ——RSVR
860 - —%—RSF --4-- RST
S0 | -+ ReP

11R2D

Loop size0x10 8x15 15x10 20x20 30x15 15x30 30x30 20x50 50x25 40x40 25x65 60x30 30x80 70x35 50x50

—=—Lis —e—RSVR
—%—RSF - -4 - RST
S24 [-4 - RSP

27 -

forward

Loop size0ox10 8x15 15x10 20x20 30x15 15x30 30x30 20x50 50x25 40x40 25x65 60x30 30x80 70x35 50x50

o

Figure 3.14. Overall schedule lengths of DSP applications (1 function unit,
2 memory banks).

35

=
[e¢]
1

—e—Lig

g [—se—Rsr

S¥ | --+-ReP

;3’12 F

S10 |

38+

]

86 r

@, |
, | THCS
0 I I I I I I I I I I I I I I}

Loop siza0x10 8x15 15x10 20x20 30x15 15x30 30x30 20x50 50x25 40x40 25x65 60x30 30x80 70x35 50x50

—=—lis —4—RSVR
—%—RSF --a4 - RST
-+ 4+ - RSP

8 & 8 &
L

B NN W W
o o
L

Execution cycles (x1000)
2]

DFT

Loop Sizelox10 8x15 15x10 20x20 30x15 45x30° 30x30 20x50- B0x25 40x40 25x65 60x30 30x80 70x35 50x50

75 —a—Lig ——RSVR
S65 | ——RSF -+ - RSP

Floyd

Loop sizea0x10 8x15 15x10 20x20 30x15 15x30 30x30 20x50 50x25 40x40 25x65 60x30 30x80 70x35 50x50

S0r @ Lig —e—RSR
8% ——RF ---a---RST
S40 1 ..4...RP
<35 |
530 +
S5 |

Xmission

Loop Sz&0x10 8x15 15x10 20x20 30x15 15x30 30x30 20x50 50x25 40x40 25x65 60x30 30x80 70x35 50x50

Figure 3.15. Overall schedule lengths of DSP applications (1 function unit,
2 memory banks).

36

applying RSP, prologue, epilogue, and half really occupy considerable portion of the
overall schedule length. Recall that the prologue, epilogue, and half are part of the
overhead. That is, athough RSP performs as well as other methods from Figures 3.14
and 3.15, it costs more overheads on both execution time and instruction count
compared to RSF and RST, especially when the architecture contains more than two
data memory banks. Therefore, we suggest using RSP only for the DSP architecture
with two data memory banks.

In the following, we conclude some principles of RSF, RST, and RSP, If the
nested loop only contains dependencies with distances (1, O, ..., 0) but (O, ..., 0, 1),
RSF should obtain better results because original iterations in a single unfolded
iteration are data independent. On the contrary, using RST should be better if the
nested loop only contains dependencies with distances (O, ..., 0, 1) but (1, O, ..., 0),
and this nested loop can be tited.directly. These two conclusions are made directly
based on the principle of their variable partition.mechanisms. Then, if the nested loop
contains dependencies with distances (0, ...;70,"1) and (1, O, ..., 0), an enlarged
iterations in neither RSF nor RST is combined with original iterations which are data
independent. At this time RSP is suited when the architecture contains two data
memory banks. As for architectures with more than two data memory banks, we
suggest using list scheduling to schedule an iteration of RSF and RST separately and
choose the shorter one.

In paralel processing system, column major is one of common problems to
prevent the parallelism. If the target DSP architecture contains multiple data memory
banks and more than one function unit, the similar problem will also occur. When we
design methods RSF, RST, and RSP, we simply assume the given nested loop is
executed in row major sequence. After enlarging the given loop, the variable partition

mechanism will be selected based on distances of loop-carried data dependencies.

37

From descriptions listed in above paragraph, our goal isto make original iterations in
an enlarged iteration be data independent. That is, for elements of the same array
variable which will be accessed in an enlarged iteration, we will separate them into
different memory banks as far as possible. This mechanism works well when there is
only one DSP core with one or more function units. However, we never consider the
memory access sequence between different enlarged iterations. Therefore, if there are
two or more DSP cores in the target architecture, the potential column major problem

may still occur using our proposed methods.

38

Chapter 4. Effective Code Generation Method for Motorola

DSP56000

In this and next chapter, we will present our second issue about code generation
methods for DSPs with multiple data memory banks and heterogeneous register sets.
As mentioned in section 2.4.3, a complete code generation process for DSP with
multiple data memory banks must include five phases: intermediate representation,
code compaction, instruction scheduling, memory bank assignment (or variable
partition), and register/accumulator assignment [17]. Our three methods RSF, RST,
and RSP presented above directly use data memory to store temporary variables, so
they have covered all except the accumulator/register assignment phase. In this
chapter, we introduce a new method focus on‘Motorola DSP56000 to consider the
accumul ator/register assignment and further: improve overall execution performance.
Section 4.1 we briefly give an;overview.of the Motorola DSP56000. Section 4.2 lists
our design motivations, and detailed steps of -proposed method are described in

section 4.3. Finally, in section 4.4 some performance eval uations are shown.

4.1 Motorola DSP56000 Architecture [10]

In our studies we target on the DSP architecture which consists of multiple data
memory banks and heterogeneous register sets. Associated with each data memory
bank is an independent set of address bus, data bus, and independent unit to calculate
address. Motorola DSP56000/DSP56001 and DSP56300 family members are
examples of this architecture, and are commonly used in practice and in previous
researches. Many members belong to DSP56300 family, which have various memory
sizes and peripheral interfaces. However, data ALU circuits of al members of

DSP56300 family are the same, and are almost identical to those of DSP56000/

39

X DATA BUS X Data Bus

¥ DATR BUS ¥ Data Bus
. P Data Bus
Y 24
X0 Y
X1 :.'
= (1
Y0
1, Irmediate Field Y1
\ 24 \ 24 +—424 *24
Mux NMuftiplier
'/— T)
1 MULTIFLIER
A .

| Fipelne Register |
|

3
Forwarding Register
56— "
m
n

. - Bit Field Unit 4
,/ - _ \\ - and Bamel Shifter
ACCUMULATOR, \ 56
8 l\\ I GiC LT / .
Accurnulator
- ~ . and Rounding Unit r—
= 56 I 56
SHIFTER l

v g

ROURDIN — 3
AND LD
{1
ali]
A S l

— ‘Accumulator A (56)
5 |56 Shifter B i56)
56 58 58

SHIFTERLIMITER |

{ ShifteriLimiter
4 24

24

(@) (b)
Figure 4.1. Data ALU block diagram. (a) BSP56000/D SP56001, (b) DSP56300 family.

DSP56001 as shown in Figure 4.1. [The main-difference is that all ALU instructions
are completed in one clock cycle in.DSP56000/DSP56001, and performed in two
clock cyclesin pipeline fashion in DSP56300 family. Therefore, in the following we
briefly introduce the Motorola DSP56000 architecture, and design our code
generation method based on it.

As shown in Figure 4.2, the DSP56000 architectural units of interest are the data
ALU, Address Generation Unit (AGU), and X/Y memory banks. The data ALU
consists of four input registers called X0, X1, YO, and Y1, and two accumulators, A and
B. The source operands for all ALU instructions, except multiplication, must be
registers or accumulators and the destination operand must always be an accumulator.
Source operands of multiplication must always be input registers. Two buses XDB and
YDB permit two input registers or accumulators to be read or written in conjunction

during execution of an ALU instruction. Thus, up to two move operations (including

40

e
=

Y

El

| . t
Mo 2y
X1 24y X Memery ¥ Memory
WD 240 J
¥l 24y KAl YAR
J. J. L [T |
| Mulel pllsr | #FHI

o]

| 1
L [] [e [5
s T Rl | = e R 4
=] T T
H3) E3)

~EFEr

I' ! @ Ebul Tiats Bus

ABE]

I (56)
I ShifierLimlisr I

—
|

AGU

Figure 4.2. Motorola DSP56000 architecture.

memory access, register transfer, and immediate load) and one data ALU instruction
may be executed simultaneously in one cycle.

Two independent move operations executed in.the same cycle are called parallel
moves. However, due to the nature of the DSP56000 architecture, not all pairs of
move operations can be performed in-paralel.-Detailed parallel move conditions can
be found in [10]. In our studies we especially-consider the following conditions: (1)
the two move operations reference data in different data memory banks; (2) the two
destination registers are different; (3) the X/Y memory access loads into restricted

|ocations X0/YO, X1/Y1, A, or B.

4.2 Design Motivations[37]

In section 2.4.3 we have surveyed some code generation methods for DSP with
multiple data memory banks. Among them, both methods proposed in [9, 17] focus on
Motorola DSP56000 and consider all five phases of the code generation process. In
the following we summarize them and introduce our design motivations. First, these
two methods perform variable partition after code compaction, which means memory

accesses are scheduled without information of memory bank assignment. However, in

41

the DSP56000 architecture, memory accesses involved in a parallel move must
reference variables in different banks [10]. That is, memory accesses may be assumed
to be executed in parallel, but in fact their reference variables are stored in the same
data memory bank. In this situation, an extra cycle (spill code) will be required to
access them separately. If spill codes occur frequently, the computational performance
is clearly degraded. On the other hand, if variables are partitioned before code
compaction, this kind of spill codes will not occur. In our design we will use the later
mechanism to avoid the occurrence of spill codes.

Apart from location conflict for parallel moves, spill codes also possibly occur in
the accumulator/register assignment phase. In methods proposed in [9, 17], they store
variables in unlimited symbolic accumulator/register during code compaction, and
consider accumulator/register assignment at last. But in DSP numbers of accumulators
and registers are usualy strictly limited. VWhen accumulator and register spills occur,
spill codes are required and their ispill.costs-may ‘be more than one extra cycle.
Therefore, we will design mechanisms to _predict the occurrence of register and
accumulator spills in advance and generate corresponding spill codes. Then, these
spill codes can be scheduled in parallel with other instructions, which is beneficial to

decrease the spill costs.

4.3 Rotation Scheduling with Spill Codes Predicting (RSSP) [37]

In this section we introduce code generation method named rotation scheduling
with spill codes predicting (RSSP) proposed for Motorola DSP56000. As listed in
Figure 4.3 RSSP contains six parts: MDFG construction, TDAG construction, TDAG
modification, ALU instruction scheduling, other instruction scheduling, and initial

schedul e retiming. Detailed description of each part is presented as follows.

42

1. G, = Construct MDFG;
1.1. Partition variablesto X and Y memory banks;
1.2. Unfold or tile G, if necessary;
2. G;=Congruct TDAG;
3. Modify TDAG G;;
5.1. G;=Insert register transfer nodes (Gy);
5.2. (Gop, Gyr) = Construct DAG G, and Gy (Gy);
5.3. Gg, = Mark_Edge (Gop, Eop);
5.4. Gy, = Mark_Edge (Gop, Ep);
5.5. G, = Check_Cycle (Gqp, Gy);
5.6. G; = Insert memory access nodes (Gqp, Gy);
4. S= Schedule ALU instructions (Ggp);
S= Schedule other instructions (S, Gy);
6. S=Retimetheinitia scheduling result (S);

o

Figure 4.3. The entire scheduling steps of RSSP,

4.3.1 MDFG Construction

In the first part we construct the MDEG from.the high-level language using the
same mechanism as in RSF, RST;.and RSP. During the MDFG construction operands
are stored in memory, and reloaded into-registers only when they are required for use.
This mechanism appears burdensome but is-really used in some DSP compilers,
because the number of registers is limited in DSP and memory is the only safe
repository. In addition to constructing the MDFG, variables are also partitioned by
four mechanisms proposed in RSVR, RSF, RST, and RSP in the first part. Constants

are stored in both X and' Y memory banks at specific locations in advance.

4.3.2 TDAG Construction

If al instructions in the MDFG are scheduled, apparently that accumulator and
register spills will not occur. But scheduling according to this complicated MDFG
will degrade the computational performance, because ALU results can be temporarily
stored in accumulators or registers instead of directly written back to memory. Hence,

in RSSP we define a trandated data acyclic graph (TDAG) constructed from the

43

Input: G, = (V,, E., X, d, Py);

Output: G, = (V,, E;, X, PY);

Vi=Vq E={e|el E.,d(e)=(0,...,0};

Assumethat vi, Vj, Vi, Vi, Vi, Vo | V¢, and their typesareM, A, S L, M, and A

respectively;

4.1. If ($apathv, > ik—>Vv — Vpl G) //IM — M
Insert node v, into V; (set Py(v,) = T); Insert edge ey into E;
" @ml E; delete edgese,, from E, insert edges e, into E;;
Delete node v; from V;; Delete edge g from E;;
If ($eq1 E.suchthat d(eg)?® (0,...,0)):// retain v, e
Else deetenode v, from V,, ddete edge e, from E;;

42 If ($apahy; > w—v — vl G) /A —> M
Insert node v, into V; (set Py(vy) = T); Insert edge e, into E;;
" @ml E; delete edgese,, from E, insert edges e, into E;;
Delete node v, from V;; Delete edge g from E;;
If ($eq1 E.suchthat d(eg)? (0,...,0)):// retain v, ek
Else deetenode v from V, delete edge g, from E;

43. If (Japathv, — wy—Vv — Vo1 G) /IM — A
" @,1 E delete edgesa, from Eginsert edges e, into E;;
Deete node v, from V;; Delete edge e, from E;
If ($eq1 E.suchthat d(gg)? (0,..,0)):// retain v, €
Else delete node vy from V,, delete edge e, from E;;

44. 1f ($apahv, > %> —=> V1 G) /[A—~ A
" e,1 E deletéedgesa, from E, insert edges gninto E;
Delete node v, from V;; Delete edge e, from E;;
If ($eqT Ecsuchthatd(eq)® (O....,0)); // retain v, gk
Else deletenode v, from V;, delete edge g from E;

5. Xi(€e) = X(e), if eisremained in E;

6. Pyv) =P(v),if visremained in V;;

7. Return G;

Figure 4.4. The TDAG constructing algorithm.

A wDdPE

original MDFG, which is aimed at removing possible unnecessary memory accesses.
The formal definition of the TDAG is given below.

Definition 4.1 A trandated data acyclic graph (TDAG) G = (V, E, X, P) is a
node-weighted and edge-weighted direct graph, where V is the set of computation
nodes, EI V~ Visthe edge set that defines the precedence relations over the nodes
in V; X(e) represents the variable accessed by an edge e; P(v) represents the type of

node v (see Figure 2.1(c)).

B 15,
14,
(b)
Figure 4.5. (a) Two cases of removing memory accesses, (b) TDAG of MDFG

in Figure 2.1(b).

Figure 4.4 shows the TDA G construction.algetithm. For a given MDFG, the first
step is to remove edges with non-zero delays. Then,-for an ALU result written back
and reloaded in the same iteration, it-can-be-temporarily stored in an accumulator to
remove the corresponding instructions with types S and L. If an ALU result will be
used in latter iteration, its corresponding store variable instruction must be retained. In
addition, in Motorola DSP56000 both source operands of a multiplication must
always be registers. Hence, a register transfer instruction is added if necessary to
ensure all source operands are stored in registers. Figure 4.5(a) shows two cases of
removing memory accesses, and Figure 4.5(b) is the TDAG transferred from the
MDFG shown in Figure 2.1(b). Note that during constructing TDAG we smply
assume unlimited numbers of accumulators and registers. That is, the TDAG only
contains absolutely necessary memory accesses, which is beneficial to decrease the

instruction count.

Q Pv)=Mor A

P(v;) =A forLEi £m
PV =T

OEOE®

@ (b)
Figure 4.6. (a) A TDAG fragment, (b) after inserting the register transfer vi.

Input: G=(V, E, X, P), n;

Output: G, = (V,, E;, X, PY);

G =G;

Supposethat v T V; and Py(v;)) = M or A;

If (v; has more than n immediate successors vy,..., Vi, with type A)
Delete edgese,,..., em from E;;
Insert nodes vy into V; (set Py(v,) = T);
Insert edges e, ..., &minto E;

6. Return G;;

SN .

Figure 4.7. Theregister transfer inserting al gorithm.

4.3.3 TDAG Modification

One of the main goals of RSSP.is to aveid accumulator and register spills by
predicting their occurrence in advance. In the third part of RSSP we analyze and
modify the TDAG to resolve accumulator spills. Register spills will be dealt with in
the fifth part later.

Three main steps are required for this TDAG modification: insertion of register
transfers, analysis of TDAG, and insertion of memory accesses. Recall that we assume
unlimited number of accumulators when constructing the TDAG. Hence, an ALU
instructions with types M/A may have many immediate successors with type A in the
TDAG As shown in Figure 4.6(a), the ALU result of v; is a source operand of all
additions vj1 to vim. In this case we add a register transfer v if m> n, if the architecture
only consists of one data ALU and n accumulators. Figure 4.6(b) contains the TDAG

after inserting vk and the corresponding algorithm islisted in Figure 4.7.

46

Input: G=(V, E, X, P);

Output: Gop = (Vop, Eopy Sy Gor = (Vop, Epry 9);
Voo ={V|VvIl V,P(v) =M or A};
Ep={eile T Eviul V};
Ex={&jl&il Eo};

Se) ={F|el EpandEy};

Return (Ggp, Gpr);

No o s~MwDdPE

Figure 4.8. The G, and Gy, constructing algorithm.

1. Input: G=(V,E 9, E;
2. Output: G, = (V,, E,, S);
3. G =G
4. labd(v)=N," vl V;
5. label(v) =S " vdoesn’t have any immediate predecessor;
6. While($ label(v) == N)
6.1 $ e.jT E;, such that v; is the only immediate predecessor of v
iV if label(v) ==S
label (vi) = .
1label (vi), ,otherwise
6.2. $e ¢l E
If (label(v)) == N or label(v;) = ='N) label(v) = N;
dseif (label(vi)== Sorlabel(v) == S label(v) = H;
eseif (label(v)) = = V.and label (vj) ='= V) label(v) = H;
elselabel (v) = G; S(g).=T;
7. Return G;;

Figure 4.9. The Mark_Edge algorithm.

Then, we analyze TDAG topologies too predict the occurrence of accumulator
spill. Two intermediate DAGs Go, and Gy, defined as follows, are constructed using
agorithm listed in Figure 4.8. Initially we set Se) = F for al edgesin Gy, and Gy to
indicate no accumulator spill will occur. After applying algorithms listed in Figures
4.9 and 4.10, some edges in Gy, Will be set §€) = T to represent the occurrence of
accumulator spill. Figure 4.11 shows two G, fragments with accumulator spills that
will be checked by algorithms Mark_Edge and Check Cycle, respectively. Note that
Mark _Edge and Check Cycle algorithms are designed based on our analyses of

TDAG topologies. That is, they only suit the architecture consisting of data ALU and

two accumulators, such as the DSP56000.

47

Input: G=(V, E, 9, G = (Vy, Ei, X, Py);
Output: G, = (V,, E,, S);
G =G;
Delete edge e from E, such that S(e) =T,
" gl Esuchthat P(v)=T
" el E,insert edgeeinto E (set Sey) = X);
Remove edge direction in G;
. Level eachnodevi V (level(v) indicates the longest path length from v to any root
node; level(v) = 1 if visaroot node)
8. If ($acycev, = Vi —...> Vi = Vi —~...—~> V;, = VinG)
8.1. Supposev; has the smallest level (v) valuein this path;
8.2. If ((level(v) < level(vi.y) inpath v, —...— v) and (level(v) < level (V1) in
pahv —..— v)) S(g)=T,
elseS(g) =T," leve(v) = level(v) in this path;
9. ReturnG;;

o~ 0DdPE

N o

Figure 4.10. The Check _Cycle algorithm.

% % " i, P(v)=MorA

> S(e) T Q=T <

Figure 4.11. Two G, fragments with accumulator spill.

Definition 4.2 A DAG Gy, = (V, E, § is a direct graph, where V is the node set
representing ALU instructions; E1 V~ V is the edge set that defines the precedence
relations over the nodesin V; Se) is an edge mark that represents two nodes that must
be scheduled at separate time steps or not.
Definition 4.3 A DAG Gy, corresponds to an undirected DAG Gy = (V, E, S with
the same topology and characteristics.

Finally, for an edge in Gy, with §(€) = T, two memory accesses with types S and
L are inserted into the TDAG using agorithm listed in Figure 4.12. After completing
steps 3.1~3.6 listed in Figure 4.3, we will get a modified TDAG which can be

scheduled without any accumulator spill.

1. Input: G=(V,E, 9, Gy =(Vy, Ey, Xq, Py);
2. Output: G, = (V, Ey, X, PY);
3. G =Gy
4. " g1 Esuchthat Se)==T
Delete edge g; from E;
Insert nodes vg, v into V; (sat Py(vy) = S Py(v) = L);
Insert edges g, ey, §; into E; (set Xi(as) = t, Xi(g;) =t, wheretisa
temporary variable);
5. Return G;;

Figure 4.12. The memory access inserting algorithm.

4.3.4 ALU Instruction Scheduling

In the fourth part of RSSP, ALU instructions are scheduled considering the
nature of Motorola DSP56000. We first list principles that a correct schedule must
satisfy as follows, and propose scheduling rules based on these principles. For
convenience, we only permit a variable or constant.|oaded from memory to be stored
in aregister.

1. For an edge g; of a TDAG:if P(v;) =L/C/T and P(v;) = M/A, v; must be executed
no later than the next two instruetion (in the same memory bank as v;) with type
L/CIT.

2. For an edge g; of a TDAG, if P(v;) = M/A and P(v)) = S v; must be executed no
later than the next two instruction with type M/A.

3. For an edge g; of a TDAG if P(vj) = M/A and P(v;) = M/A, a most one ALU
instruction can be executed between v; and v.

Basically, ALU instructions are scheduled using list scheduling based on Gy, (V,

E, 9. Recall that the Motorola DSP56000 consists of one data ALU and two

accumulators, and all instructions are completed in one time step. For an edge g; 1 E,

its edge mark S(e;) may be F, T, or X, which indicates different rules for scheduling v;

and v;. Assume that v T V is scheduled at time step i, and the ALU result rt; of v is

stored in accumulator acci. If §(e;) = F/X, vi must be scheduled at time step i+1 or i+2

49

ALU X Y ALU X Y regxregy
VAN il 2 1 o 1.1 1
D / 2| 5 2[2 4 3.2 1
5 3| s 3| s 21
lc/l!c 4l 7 4| e 10
- 5] 9 51 7 10
@ 6 6| 9 8 1 0 O
l/ () © - 10 0 0
ALU X Y reg X regy
D C 1] 5 112 2
oy 2[6 0o 3.2 2
3| 7 b2 2
D 4l 9 4 81 2 2
{10} @ 5[2 10 b2 1 ()

Figure 4.13. Scheduling steps of RSSA. (a) An TDAG example, (b) ALU
instructions only, (c) initial scheduling result, (d) retimed scheduling resullt.
to prevent rt; being recovered before being used. Conversely, if Sg;) = T, v; can be
scheduled at time step later than,i+2, because rti will be transferred to register reg;. In
addition, if Se;) = X and v; is:scheduled at time stepi+1, an idle time step is inserted
between v; and v; for scheduling register-transfer instruction further. Because we have
already considered the occurrences of.accumulator spill, all ALU instructions can be
scheduled exactly according to the above three rules. These rules for scheduling ALU
instructions are essentially equivalent to the third principle listed above. Figure 4.13
(a) shows a TDAG example, and its scheduling result of the ALU instructions only is

listed in Figure 4.13(b).

4.3.5 Other Instruction Scheduling

After scheduling ALU instructions, other instructions including memory accesses
and register transfers are scheduled based on the modified TDAG Meanwhile, we
consider the limited number of registers during instruction scheduling, therefore no
extra action is required to determine and deal with the occurrences of register spill. In

RSSP, we use two variables reg_x(t) and reg_y(t) to record the number of registers

50

been occupied at time step t for X and Y memory banks, respectively. When

scheduling each instruction, these two variables are dynamically updated. Apparently,

if we can generate a schedule where reg_x(t) and reg_y(t) do not exceed the limited
number of registersfor all time steps, register spills will not occur.

For a correct schedule, an operand residing in an accumulator/register obviously
cannot be overwritten before being used. Recall that all instructions are completed in
one time step in Motorola DSP56000. That is, if a variable (or constant) is loaded
from memory at time step i and used at time step j, it will occupy aregister from time
step i toj-1. Similarly, an ALU result will occupy aregister fromtimestep i to j—1if it
is transferred from an accumulator at time step i and used at time step j. We conclude
scheduling rules for memory accesses and register transfers as follows.

1. According to the execution: sequence of ALU instructions, schedule their
predecessors as soon as possible.

2. Principles 1~2 listed in subsection 4.3.4-must be satisfied, and reg_x(t) and reg_y(t)
cannot exceed the number of registers for any time step.

3. If avariable is stored and loaded at consecutive time steps, these two memory
accesses can be replaced by a single register transfer.

4. If a memory access or register transfer cannot be scheduled successfully due to
insufficient registers, a variable currently occupied a register must be overwritten
and reloaded again when required.

5. If an overwritten variable is not used after being transferred from the accumulator,
the corresponding register transfer is replaced by a store variable instruction.

Figure 4.13(c) shows the scheduling result of the TDAG in Figure 4.13(a).
Finaly, because we have already considered accumulator and register spills, an

appropriate assignment of physical accumulators and registers will exist.

51

4.3.6 Initial Schedule Retiming

After generating the initial scheduling result, we apply the multi-dimensional
rotation scheduling to explore the instruction-level parallelism between different
iterations. Retimed instructions in each rotation phase are originally rescheduled as
soon as possible to reduce the schedule length. But in RSSP we redefine the
rescheduling rules for retimed instructions, in order to guarantee that the number of
registers used at all time steps will not exceed the limitation. Assume that the length
of the initial schedule is len. In the following we present conditions so that a retimed
instruction can be rescheduled at time step i. We will reschedule a retimed instruction
at the earliest time step that satisfies al conditions listed below. Moreover, because
constants are stored in both X and Y data memory banks in advance, a retimed load
constant instruction can be rescheduled_at_any data memory bank to achieve higher
performance. The retimed scheduling result-of Figure 4.13(c) is shown in Figure

4.13(d).

1. A retimed instruction with type LL/C must oecupy a register from time step i to len,
because this value or constant will be used for alater iteration.

2. A retimed instruction with type T must occupy a register from time step i to len,
because this ALU result will be used for a later iteration. In addition, the second
principle listed in subsection 4.3.4 has to be satisfied.

3. Rescheduling a retimed instruction with type S must satisfy the second principle
listed in subsection 4.3.4.

4. Rescheduling a retimed instruction with type M/A must satisfy the first or third
principle listed in subsection 4.3.4. In addition, reg_x(t) and reg_y(t) are updated

after rescheduling thisALU instruction.

52

Table 4.1. Experimental results for a single iteration in the repetitive pattern.

RSSP
RSVR| RSF | RST | RSP
Wave Digitd Filter | 7 9 9 8 6 | 85| 6 6 5 | 55|55
Filter 8 | 13 (13| 9 |115(9 6 6 | 55| 5 |45
IIR Filter 2D 20 | 29 | 33 | 25 |275| 28 [245| 16 | 16 | 16 | 16
forward-substitution| 7 12 | 12 9 10 (115| 75| 5 | 55| 5 5
THCS 6 8 8 6 | 65|55]| 5 4 4 4 4
DFT 14 (21 | 21 | 18 | 21 |185| 18 | 13 |125| 13 |125
Floyd-Steinberg 20 | 36 | 37 | 29 |325|305(235| 18 |175| 17 | 17
TransmissionLine | 15 | 20 | 21 | 19 | 18 | 25 | 18 | 12 | 12 | 12 | 12

Cho [Malik|Shiue|RSVR| RSF | RST | RSP

4.4 Performance Evaluations [37]

In the following, we select several MDFGs represented DSP applications to
evaluate methods including Cho,[9], Malik [17], Shiue [20], and RSSP. Because four
variable partition mechanismsproposed in RSVR,-RSF, RST, and RSP can be applied
in RSSP, three scheduling results are-derived. from RSSP. Meanwhile, scheduling
results obtained by RSVR [30], ‘RSE [14], RST [14], and RSP [36] are used for
comparison, after inserting necessary spill codes. Among these methods, Cho [9] and
RSSP are scheduled based on TDAG, and others are scheduled based on MDFG,
Suppose that the target architecture is the Motorola DSP56000, which consists of one
data ALU, two data memory banks, two accumulators, and four registers. All ALU
instructions and memory accesses can be completed in one time step.

Similar asin chapter 3, we evaluate performances focus on both a single iteration
in the repetitive pattern and the entire retimed loop. Table 4.1 lists schedule lengths
obtained from different methods for a single iteration in the repetitive pattern. From
these results, it is obvious that methods scheduled based on TDAG outperform
methods scheduled based on MDFG The direct reason is that we remove additional

memory accesses during constructing the TDAG in advance, which decrease the

53

number of instructions actually been scheduled. Furthermore, both RSSP and Cho [9]
are scheduled based on TDAG, and our RSSP can achieve shorter schedule lengths.
This is because the retiming technique is applied in RSSP, in order to explore the
potential instruction-level paralelism between different iterations. The effectiveness
among four scheduling results derived from RSSP is very similar for most
applications. This indicates that RSSP is sufficiently flexible and can achieve
reasonable results using various variable partition mechanisms.

For the entire retimed loop, formulas listed in appendix A can be directly used to
calculate the overall schedule length for RSSP. Figures 4.14 and 4.15 show the overall
schedule lengths of every application. For each application, we only sketch the best
result among methods RSVR, RSF, RST, and RSP. Four scheduling results are derived
from RSSP with different variable partition mechanisms, and we aso only sketch the
best one. As shown in these-figures, basically these results are the same as the
evaluations focused on a single iteration-in.the repetitive pattern. Meanwhile, as the
size of nested loop increases, the difference in overall schedule lengths between all
methods increases. That is, the proposed RSSP can save more execution time in larger

problem sizes.

oL —&—Cho —&— Madik& Shiue

820 —a—rsep - % - RSF

cee- - X

=30 L —&— Cho ——— Malik& Shiue
27 - —&—RSSP - - X-- RST

(1000 cycles

imi

Xemm XX

n

.

-_x___x---x

Executi
[{e]

o w o
T

Filter

Loop siz8Ox10 8x15 15x10 20x20 30x15 15x80-30x30 20x50-50x25 40x40 25x65 60x30 30x80 70x35 50x50

—=&—Cho —e—Madlik
—a&— Shiue - - X- -#RSSP
863 - --+ - RSVR

PR

—=&—Cho —e— Malik
| —&—Shiue - - X- - RSSP
Boq | --+ - RSVR

(1000
N
[

4ok

m

n ti

'.X"'X"'x

Executi
o ©

forward

w

0
Loop siz#9x10 8x15 15x10 20x20 30x15 15x30 30x30 20x50 50x25 40x40 25x65 60x30 30x80 70x35 50x50

Figure 4.14. Overall schedule lengths of DSP applications.

55

cycles)

P 2NN

o 0 ON
— ‘

00
'S

me (
[
® O N
—

Execution ti
oON MO

Execution time (1000 cycles)
co5RBEEER

| —®—Cho

—a&— RSSP

—&—— Malik& Shiue

- - %- - RST

[—a—Cho
| —&— Shiue
| --+ - RSVR

—e—Maik
- - X- - RSSP

P s

DFT

[—&—Cho
| —&— Shiue

- - +- - RSVR

—e—Malik
- - %- - RSSP

R

R

Floyd

Loop sizé&Ox10 8x15 15x10 20x20 30x15 15x30 30x30 20x50 50x25 40x40 25x65 60x30 30x80 70x35 50x50

55 r

—&—Cho

| ——&— Shiue

- -+ - RSF

—e— Malik
- - %- - RSSP

B

Xmission

Loop siz&Ox10 8x15 15x10 20x20 30x15 15x30 30x30 20x50 50x25 40x40 25x65 60x30 30x80 70x35 50x50

Figure 4.15. Overall schedule lengths of DSP applications.

56

Chapter 5. Effective Generalized Code Generation Method

According to descriptions in chapter 4, RSSP looks really effective and efficient,
but it is not scal able and specifically designed for Motorola DSP56000. In this chapter,
we want to extend it to a more general version, which is suitable for various DSPs
with similar architectural features. For the generalized code generation method, in
addition to achieving shorter schedule length, we take fewer spill codes as the second
scheduling goa due to its importance for DSP with heterogeneous register sets.
Furthermore, in order to deep study the influence of differing number of resources on
the scheduling result, we also define a parameterized machine model to simulate
architectures with different number of resources. In section 5.1 we present the
hypothetical machine model, and lists:design: motivations in section 5.2. Section 5.3
contains detailed steps of the generalized methed. In section 5.4, we describe how to
apply the proposed hypothetical machine model and-code generation method to real

DSP families. Finally, some perfarmance evaluations are shown in section 5.5.

5.1 Hypothetical Machine Model [38]

As mentioned before, we need a parameterized architecture to model a scalable
DSP with multiple data memory banks and heterogeneous register sets. Many
parameterized architecture models have been developed to explore and investigate
advanced compiler and architecture research [53-57]. Most of them are oriented
towards EPIC (explicitly parallel instruction computing) or superscalar architectures,
and support novel features such as prediction, control and data speculation, and
memory hierarchy. However, none of them supports both architectural features we
require, so here we define a hypothetical machine model in which more resources will

be included.

57

Table 5.1 lists architectural features of some popular DSP families, especially for
their data paths. Our parameterized machine model, defined as follows, is design to
cover al these architectural features as far as possible. Assume that it contains N data
memory banks (M;...My), k function units (FU;...FUy), k" m accumulators
(accyy...accym, ..., aCCx...aCCm), and N n registers (regis...r€un, ..., r€Oni...re€ONn)-
All function units are identical and parallel executed, which can execute all ALU
instructions including the multiplication. Source operands for all ALU instructions,
except multiplication, must be registers or accumulators and destination operands (or
ALU results) must always be accumulators. For the multiplication source operands
must always be registers. This restriction is inherited from Motorola families. We
assume that an instruction may require several time steps to complete in our
hypothetical machine model.

Due to the nature of the target architecture, -many irregular DSPs have parallel
conditions to define which instructions'can-be performed in parallel. In the following,
we list parallel conditionsin our hypoethetical machine model: (1) up to N independent
move operations and k ALU instructions can be executed simultaneously in one cycle;
(2) the N move operations reference data in different data memory banks; (3) the M;
memory access load into restricted locations regj;...regin, or al accumulators; (4) the
ALU result generated by FU; must be stored in accumulators acci;...acCim; (5) 2k
source operands must be read from different registers or accumulators.

According to above descriptions, our hypothetical machine model is basically
extended from Motorola DSP56000. However, with minor modifications, this model
and the general code generation method can satisfy all architectural features listed in
Table 5.1. We will further describe how to apply the machine model and genera
method to real DSP families in section 5.4. On the other hand, because our main

purpose is to design code generation method, our hypothetical machine model is

58

Table 5.1. Architectural features of some popular DSPs.

data memory bank

function unit

register set

DSP56000
DSP56001

* X/Y memory banks
with independent data

buses
* 2 memory reads/

* 4 24-hit reg. (X0, X1,
YO0, Y1) for source
operands

DSP56300) * 2 56-hit acc. (A, B)
i writes can be -
family for source/destination
performed
. operands
Motorola simultaneously * 1MAC
* 3 16-bit reg. (X0, YO,
Y 1) for source
DSP56800 operands
family * 2 36-bit acc. (A, B)
for source/destination
operands
* ALU:
+ 1 memory bank - 4 16-bit reg. (AXO0,
AX1,AYO0, AY1) for
* 2 memory reads can
source operands
be performed .
. . -116-bitreg. (AF/
smultaneously using AR) § o
independent buses™“} 1AL U, 1 MAC, 1) for sour
Analog | ADSP2100 Shifier destination operand
Device family I * MAC:
Parallel-execute)
- 4 16-bit reg. (MXO0,
MX1, MYO, MY1)
for source operands
- 140-bitreg. (MR)
for source/destination
operand
* X/Y memory banks
ith independent dat
mﬁ'n ependent Ak 1ALU, 1MAC, 1
PD7701 shifter * 8 40-bit reg. (RO~R7
NEC u) * ks 2 memory reads/ . e ()
family) * One unit executes at af* Homogeneous
writes can be fime
performed
simultaneously
TMS320C62x * 32 32-hit reg. (A0~
TMS320C67x * 1 memory bank A15, BO~B15)
fFamil * 2 memory reads/ * 2 register files
I y writes can be * 2 multipliers, 6 ALUs [* Homogeneous
performed * Paralel execute * 64 32-bit reg. (A0~
TMS320C64x| simultaneously using A31, B0~B31)
family independent buses * 2 register files

* Homogeneous

59

defined focus on the data path of the DSP architecture. If we want to study other
issues on the DSP architecture later, it is not difficult to further extend our model for

the target DSP to include necessary resources.

5.2 Design Motivations[37]

In RSSP we list two design motivations: performing variable partition before
code compaction and predicting accumulator spills in advance. The former is retained
in the general method because it certainly can avoid the occurrence of spill codes. On
the other hand, when the target architecture is no longer specific, to predict
accumulator spills by topological analysis of the TDAG becomes much more difficult
and inaccurate. Therefore, in the general method we design another mechanism to
resolve accumulator spills and not predict their.occurrences.

Next, we focus on the resolution of accumulator/register spills. When a register
spill occurs, the overwritten variable must-be stored back to memory and reloaded
when required. As for an accumulater spill, in addition to memory, the overwritten
ALU results also can be temporarily transferred to an available register before being
used. Consider the example shown in Figure 5.1. Assume that the target architectureis
the Motorola DSP56000, and Figure 5.1(c) lists the schedule obtained using method
described in [17]. In this schedule we find that when an accumulator spill occurs at I3,
the overwritten ALU results, m, must be stored back to memory because all variables
residing in four registers will be accessed |ater. Later another memory access is added
to reload m before lg. However, if instruction i3 is moved to Is as shown in Figure
5.1(d), m can be transferred to register YO instead of memory to eliminate one extra
spill cost. From this example, we find that it is preferable to transfer an overwritten
ALU results to aregister when an accumulator spill occurs. In the general method we

will follow this principle to determine and resolve accumulator spills.

60

MOVE &, reg0 (ig) MOVE X:areg0 Y:b,regl (lg)
MOVE b, regl (iv) MPY accO, reg0, regl X:c,reg2 Y:d,reg3 (I4)
MPY accO, reg0, regl (ip) ADD accl, accO,reg2 X:eregd Y:f,regs (lo)
MOVE c, reg2 (is) ADD acc2, accl, reg3 (1)
ADD accl, accO, reg2 (ig) ADD acc3, accl, regd acc2, X: p (1)
MOVE d, reg3 (is) ADD acc4, acc3, reg3 (Is)
ADD acc2, accl, reg3 (ig) ADD acch, acc3, reg0 acch, Y:r (lg)
MOVE acc2, p (i7) ADD acch, acch, regd (19
MOVE e, regd (ig) ADD acc?, acc0, accb (Ig)
ADD acc3, accl, regd (ig) MOVE acc7, X: t (Ig)
ADD acc4, acc3, reg3 (i)

MOVE acc4, r (i) (b)

ADD acch, acc3,reg0 (1)

MOVE f, reg5 (i13)

ADD acch, acch, regs (i14)

ADD acc?, acc0, acc6 (iss)

MOVE acc7,t (i16) €)

MOVE X:a, X0 Y:b, YO MOVE X:a,X0 Y:b YO
MPY A, X0, YO X:c, X1 Y:d VY1 MPY A, X0, YO X:c, X1 YVY:d Y1
ADD B,A, X1 X:e X1 Y:f, YO ADD B,A, X1 X:egXl1

MOVE A, X:m MOVE A YO
ADD A,B,Y1 ADD * A,B,Y1

ADD A,B, X1 A, X:p ADD' =A,B,X1 A, X:p

ADD B,AY1 ADD °B,A,Y1 Y:f, Y1
ADD B,A, X0 B,Y:r ADD | = B,A, X0 B,Y:r
ADD A,B,YO0 ADD." A,B,Y1

MOVE X: m, X0 ADD B,A, Y0

ADD B,A, X0 MOVE B, X:t

MOVE B, X:t (© (d)

Figure 5.1. An example of code compaction. (a) Uncompacted code, (b) compacted

In order to give an overwritten ALU results higher priority to be transferred to a
register, registers must be unfilled as far as possible while dealing with accumul ator
spills. But in methods [9, 17, 20] registers will be occupied by resource operands
when accumulator spills are resolved, which is unfavorable for inserting additional
register transfers. Thus, in the general method we divide the instruction scheduling
phase into two steps, and let ALU instructions be scheduled before memory accesses.

This mechanism makes registers remain unfilled during resolving accumulator spills,

code, (c)(d) two scheduling results after resource assignment.

which is able to store overwritten ALU results and reduce additional spill costs.

61

Finally, we consider the time that accumul ator/register spills been resolved in the
entire code generation process. In methods [9, 17] they both perform this action at last,
which may lengthen the schedule length like the example shown in Figure 5.1(c). The
reason is that added spill codes cannot be scheduled in parallel with other instructions.
Besides, athough in methods [9, 17] they do not present detailed mechanisms to
determine accumulator/register spills and insert spill codes, they definitely require an
independent step to do this action. If the target architecture contains strict resource
constraints, this step may cost considerable time. Thus, in the general method we want
to design efficient mechanisms to determine and resolve accumulator/register spills,
and integrate them into the instruction scheduling and code compaction phases. That
is, we consider resource constraints during instruction scheduling, and then no extra

action is required to determine aceumul ator/register.spills and insert spill codes.

5.3 Rotation Scheduling with Spill-CodesAvoiding (RSSA) [38]

In this section we introduce code generation method rotation scheduling with
spill codes avoiding (RSSA), which is generalized from RSSP to suit various DSPs
with similar architectural features. For RSSA it can handle target architectures with
various numbers of function units, accumulators, registers, and data memory banks.
As listed in Figure 5.2, RSSA contains five parts including MDFG construction,
TDAG construction, instruction scheduling (1), instruction scheduling (I1), and initial
schedule retiming. First two parts are directly inherited from RSSP, and we present

last three parts in some detail as follows.

5.3.1 Instruction Scheduling (1)
For a given loop written in high-level language, a TDAG is constructed after

completing first two parts of RSSA. In the first instruction scheduling part, our goal is

62

1. G, = Construct MDFG,;
1.1. Partition variables to memory banks;
1.2. Unfold or tile G if necessary;
2. G;=Construct TDAG (G,);
3. S= Scheduleall instructions except memory loads (Gy);
3.1. G, = Construct DAG G, (Gy);
3.2. S= Schedule nodesin Gy (Gop);
3.3. S= Determine and solve accumulator spills (S, Gyyp);
4. S= Schedule memory load instructions (S, Gy);
5. S=Retimetheinitia scheduling result (S Gy);

Figure 5.2. The entire scheduling steps of RSSA.

to schedule all instructions except memory loads and resolve corresponding register/
accumulator spills. Steps marked 3.1~3.3 in Figure 5.2 belong to the first instruction
scheduling part. In these steps we define an intermediate DAG Gg, which contains all
nodes of the TDAG will be scheduled in this part.

Definition 5.1 A DAG Gy, = (V,.E, X, P) is-a direct, graph, where V is the node set
representing ALU instructions,-register transfers, and-store variables, E1 V~ Visthe
edge set that defines the precedence relations‘over nodes in V; X(€) represents the
variable accessed by an edge e; P(Vv) represents the type of nodev.

Figure 5.3 shows another TDAG example and its corresponding Ggp. Next, we
basically schedule nodes in G, using list scheduling method, assuming the number of
accumulators/registers are unlimited. If an instruction v; requires ¢ time steps to
complete, the destination operand of v; will be ready at the next c time step. That is,
for anedge ej T Gop, if Vi is scheduled at time step t, v; can be scheduled at time step
t+c or later. Assume that all instructions are completed in one time step. Figure 5.4(a)
shows the scheduling result of Ggp in Figure 5.3(b) with only one function unit.

In the following we describe how to determine and resolve accumulator/register
spillsin our RSSA. Our ideais to calculate the number of accumulators/registers used

at every time step, and variables listed in Table 5.2 are defined for our mechanism.

63

PAREN ’ N
\ \}
112) 18]

-

117

| 19

1241 @ i25] (o) Mi02417.2324
M,: 6, 8, 10, 19, 21, 25

Figure 5.3. The Gy, example. (a) TDAG, (b) corresponding Gop.

t FU, M, M, | accel preg 1 reg.2.| acclist 1 reglist 1 reglist 2
1 1 1 0 0

2 3 2 0 0 1

3 5 X3 2 1 0 1 X3

4 7 X5 2 . 1 1 X3 X5

5 9 X7 2 2 1 1 X3, X7 X5

6 11 3 2 1 19 X3, X7 X5

7 12 X1 3 2 2 19 X3, X7 X5, X11
8 13 4 2 2 1,912 X3, X7 X5, X11
9 16 17 3 2 2 19 X3, X7 X5, X11
10] 20 21 2 2 2 9 X3, X7 X5, X11
1] 14 24 2 2 0 9 X3, X7
12| 15 19 3 0 0 9,14

13| 18 2 0 0 9

4] 22 23 1 0 0

15 25 0 0 0

Figure 5.4(a). G, nodes only scheduling result of Figure 5.3(a), unlimited resource.

That is, if an ALU result is defined and used by instructions scheduled at time step i
and j, respectively, it will occupy an accumulator from time stepsi to j—1. Similarly, if
an ALU result is transferred from an accumulator at time step i and used by the
instruction scheduled at time step |, it will occupy a register from time stepsi to j—1.

Figure 5.4(a) also shows variables defined in Table 5.2 for that Go, scheduling result.

64

Table 5.2. Variables defined for solving accumulator/register spills.

Variable Type Definition
sch(v) integer | the time step that G,, node v is schedul ed
uselist(v) | integer list |time stepsthat G, nodes, which use node v, are scheduled
. . the number of accumulators acc;, for j = 1...m, been
acc_i(t) integer

occupied at time step t

Ggp Nodes with types M or A whose generated ALU results
acclist_i(t) | nodelist |[reside in accumulators acc, for j = 1...m, at time step t,
except the one that are scheduled in FU; at time step t

the number of registers reg;, for j = 1...n, been occupied at
timestept

Gop Nodes with type T whose transferred ALU results reside
inregistersreg;, forj=1...n, attimestep t

reg_i(t) integer

reglist_i(t) | nodelist

5.3.1.1 Mechanismsfor Resolving Accumulator Spills

As described in section 5.2, we first transfer al overwritten ALU results to
registers, and temporarily store them to memory only when the number of registersis
insufficient. Suppose that an accumulator spill oceurs at time step t for accumulators
accjj. In this situation we must-select anode v-from acclist_i(t) and transfer the ALU
result generated by v to a register: From all nedes in acclist_i(t), we want to transfer
an ALU result rt that will release an accumulator with the longest time free of use.
Next, an additiona register transfer is scheduled at time step t and all variables
defined in Table 5.2 are updated accordingly. Note that the transferred value rt will be
ready at time step t+c if a register transfer instruction requires c time steps to
complete. Therefore, if rt is used by an instruction u scheduled before time step t+c,
additional time steps must be inserted to delay node u. These steps will be applied
repeatedly until all accumulator spills are resolved.

Suppose the target architecture is the Motorola DSP56000, we use the schedule
in Figure 5.4(a) to illustrate above steps. In this schedule accumulator spills occur at
time steps 5~8 and 11. At time step 5, after checking the content of uselist(u) for all

nodes u in acclist_1(5), node 9 is selected to transfer its value. An additional register

65

t FU, M, M, |acc1l reg1l reg 2| acclist 1 reglist 1 reglist 2

1 1 1 0 0

2 3 2 0 0 1

3 5 X3 2 1 0 1 X3

4 7 X5 2 1 1 1 X3 X5

5 9 X7 2 2 1 1 X3, X7 X5

6 11 X9 2 2 2 1 X3, X7 X5, X9

7 12 X1 2 2 3 1 X3, X7 X5, X9, X11
8 13 X1 2 3 3 12 X1, X3, X7 X5, X9, X11
9 16 17 1 3 3 X1, X3, X7 X5, X9, X11
10] 20 21 1 2 3 X3, X7 X5, X9, X11
1] 14 24 1 2 1 X3, X7 X9

2] 15 19 2 0 1 14 X9

13| 18 1 0 1 X9

4] 22 23 1 0 0

15 25 0 0 0

Figure 5.4(b). Gop nodes only scheduling result of Figure 5.3(a), with unlimited
number of input registers.

transfer, X9, is scheduled at memory bank M, at time step 5, because reg_1(5) is
smaller than reg_2(5). Another register transfer, X1, is also scheduled at M; at time

step 7. Figure 5.4(b) shows the:-medified schedule without any accumulator spill.

5.3.1.2 Mechanismsfor Resolving Register-Spills

After resolving accumulator spills, we still use variables defined in Table 5.2 to
deal with register spills. Note that registers reg;j are dedicated for use for referencing
data from M;, so register spills occurring at each memory bank have to be resolved
separately. Suppose that a register spill occurs at time step t for register reg;. In this
case we must select a node v from reglist_i(t) to temporarily store. From all nodes in
reglist_i(t), we store a value that will be used at latest to release a register with the
longest time interval. Assume that the selected value rt will be used at time stepsp <t
and g > t. Then, rt is stored later than time step p and reloaded earlier than time step
g-c, if aload variable instruction requires c time steps to complete. If rt is not yet
used, the added store variable instruction can replace the corresponded register

transfer. Moreover, an inserted memory access may not be successfully scheduled due

66

t FU, M4 M, |accl regl reg 2| acclist 1 reglist 1 reglist 2
1 1 1 0 0

2 3 2 0 0 1

3 5 X3 2 1 0 1 X3

4 7 X5 2 1 1 1 X3 X5

5 9 X7 2 2 1 1 X3, X7 X5

6 11 9 2 2 1 1 X3, X7 X5

7 12 S3 X11 2 1 2 1 X7 X5, X11
8 13 X1 2 2 2 12 X1, X7 X5, X11
9 16 17 1 2 2 X1, X7 X5, X11
10| 20 L3 21 1 2 2 L3, X7 X5, X11
1| 14 24 1 2 0 L3, X7
2] 15 19 2 0 0 14
13| 18 L9 1 0 1 L9
14| 22 23 1 0 0
15 25 0 0 0

Figure 5.4(c). Ggp nodes only scheduling result of Figure 5.3(a), without
accumul ator spills.

to insufficient time steps. In this case we insert an extra time step to schedule this
instruction individually as late as possible. Similarly, we update variables defined in
Table 5.2 accordingly, and repeat these steps until all register spills are resolved.

We use the schedule shown in.Figure 5:4(b) to illustrate above steps. Suppose the
target architecture is still the Motorela DSP56000,, register spills occur at time steps
7~8 at M; and time steps 6~9 at*Ma. At time'step 7, after checking the content of
uselist(u) for all nodesuinreglist_1(7), node X3 is selected. Additional S3and L3 are
scheduled at time steps 6 and 9 respectively, because this value is used by nodes 12
and 15. S9 and L9 are also inserted at time steps 5 and 12, respectively. In this case
SO can directly replace instruction X9 because X9 is not yet used at time step 5.

Figure 5.4(c) shows the scheduling result without any accumul ator/register spill.

5.3.2 Instruction Scheduling (1)

So far, we have obtained a schedule that contains al nodes in the TDAG except
those with types L/C. In the second instruction scheduling part of RSSA, remaining
memory loads will be inserted to complete the initial scheduling result. We list rules

basically inherited from RSSP to schedule memory loads and avoid generating

67

t FU, M 4 M, Jacc 1l reg1l reg 2| acclist 1 reglist 1 reglist 2
1 0 Cl 0 1 1 0 Cl

2 1 2 6 1 2 1 0,2 6

3 3 4 8 2 2 2 1 0,4 6,8

4 5 X3 2 1 2 1 X3 6, 8

5 7 C2 X5 2 2 2 1 C2, X3 8, X5
6 9 X7 10 2 2 2 1 X3, X7 10, X5
7 11 S) 2 2 1 1 X3, X7 X5

8 12 S3 X111 2 1 2 1 X7 X5, X11
9 13 X1 2 2 2 12 X1, X7 X5, X11
10| 16 17 1 2 2 X1, X7 X5, X11
1] 20 L3 21 1 2 2 L3, X7 X5, X11
12| 14 24 1 2 0 L3, X7
13| 15 19 2 0 0 14
14| 18 L9 1 0 1 L9
5] 22 23 1 0 0
16 25 0 0 0

Figure 5.4(d). The initial scheduling result of G; of Figure 5.3(a).

register spills below. Their main feature is to consider the limited number of registers

during scheduling, so that no extraaction is required to deal with register spills.

1.

According to the execution: sequence of ALU instructions, schedule their
predecessors as soon as possible.

A variable or constant |oaded inte-aregister-cannot be replaced before being used,
and reg_i(t) cannot exceed the number of registers at any time step.

If a memory load instruction cannot be scheduled successfully due to insufficient
registers, a variable currently residing in a register is selected for storing and
rel oading using the mechanism described in subsection 5.3.1.2.

For previous rule, if the selected variable is not transferred from an accumulator,
the additional store variable instruction is unnecessary.

If a memory load instruction cannot be scheduled successfully due to insufficient
time steps, an additional time step is inserted to schedule this instruction
individually as late as possible as in subsection 5.3.1.2.

Figure 5.4(d) shows the scheduling result of TDAG in Figure 5.3(a). Finally,

because we have considered accumulator/register spills aready, an appropriate

physical accumulators/registers assignment certainly exists.

68

5.3.3 Initial Schedule Retiming

In the last part of RSSA, we still apply the multi-dimensional rotation scheduling
to explore potentia instruction-level parallelism between different iterations.
Variables defined in Table 5.2 are dynamically updated during rotation phases to
determine at which time step a retimed instruction can be rescheduled. We first
describe after rescheduling an instruction at time step t, the time interva that its
corresponding value must reside in an accumulator or register. Assume that the length
of the initial schedule islen. If the retimed instruction is of type L/C/T, its referenced
value rt must occupy a register from time step t to len because this value will be used
for the later iteration. Similarly, the ALU result rt of the retimed ALU instruction must
occupy an accumulator from time step t to len. Note that the value rt is ready at time
step t+c if the rescheduled instruction reguires ¢ time steps to complete. Then, for a
retimed instruction, we reschedule.it at the earliest time step that satisfies precedence
relations, gets all ready source-operands,-and.will not cause any accumulator/register
spill. Meanwhile, variables defined.in-Table 5.2 are also updated after rescheduling an
ALU instruction, because some resources will be released by its predecessors. In
addition, a load constant can be rescheduled for any memory bank to achieve higher
performance, because we store constants in all memory banks in advance. The fina

retimed scheduling result of Figure 5.4(d) is shown in Figure 5.4(e).

5.4 Applyingto Real DSP Families

In this section, we present how to apply the hypothetical machine model and
RSSA, with some modifications, to various real DSP families with architectural
features listed in Table 5.1. We divide the description into three parts including data

memory bank, function unit, and register set.

69

t FU, M 4 M, Jacc 1l reg 1l reg 2| acclist 1 reglist 1 reglist 2
1 3 4 8 2 2 2 1 0,4 6,8

2 5 X3 2 1 2 1 X3 6, 8

3 7 C2 X5 2 2 2 1 C2, X3 8, X5
4 9 X7 10 2 2 2 1 X3, X7 10, X5
5 11 S9 2 2 1 1 X3, X7 X5

6 12 S3 X1l 2 1 2 1 X7 X5, X11
7 13 X1 2 2 2 12 X1, X7 X5, X11
8 16 17 1 2 2 X1, X7 X5, X11
9 20 L3 21 1 2 2 L3, X7 X5, X11
10| 14 24 C1l 1 2 1 L3, X7 Cl
1] 15 0 19 2 1 1 14 0 Cl
12| 18 2 L9 1 2 2 0,2 C1 L9
13| 22 23 6 1 2 2 0,2 6, C1
14 1 25 1 2 1 1 0,2 6

Figure 5.4(e). The retimed scheduling result of G; of Figure 5.3(a).

5.4.1 Data Memory Bank

For the data memory bank, the original definition of the hypothetical machine
model and RSSA can satisfy Mgtorola DSP56000/DSP56001, DSP56300, and NEC
uPD7701x families. Other architectures contain of.onty one data memory bank, so the
variable partition step is unnecessary ‘if-we_apply RSSA to them. However, these
architectures still permit parallel memory accesses, with special bus exchange unit or
independent buses. In this case we have to modify the first parallel condition of our
machine model to allow more than N move operations to be executed in one cycle.
For members of TI TMS320C6x families, because two memory reads/writes can be
performed simultaneously, we simply treat these architectures with two virtual data
memory banks and apply the original RSSA. But for Motorola DSP56800 and NEC
ADSP2100 families only two memory reads can be executed in parallel, an additional

condition will be required in instruction scheduling phases to satisfy this restriction.

5.4.2 Function Unit
For the function unit, the original definition of the hypothetical machine model

and RSSA directly satisfies all Motorola families. NEC uPD7701x family members

70

although contain three function units with different types, these function units must be
executed exclusively. In this case we can treat these architectures contain a single
function unit. Then, one instruction is scheduled at a time using the original RSSA,
and allocated to the function unit that is suitable to execute. For members of Tl and
Analog Device families, they all consist of multiple function units which can be
executed in parallel, but each function unit only can execute a restricted instruction set.
That is, we must add some additional conditions in instruction scheduling phases in
RSSA, to check only instructions that can be allocated to different function units are

scheduled in parallel.

5.4.3 Register Set

Asfor the register, the original definition.of the hypothetical machine model and
RSSA directly satisfies all Motorola families. Because the functionality of registers
AF/AR and MR in Analog Device ADSP2100 family is the same as accumulators in
Motorola families, our machine model. and RSSA basically suit these Analog Device
members. From architectural features of ADSP2100 family, in RSSA we will use
variables acc_ALU(t), acc MAC(t), and reg_1(t) to record the number of registers
used at time step t. However, because in these architectures source operands of ALU
and MAC must be stored in different register sets, a single reg_1(t) variable cannot
represent the usage of these registers. In this case we actually need two variables
reg_ALU(t) and reg_ MAC(t) to separately record the number of occupied registers for
two register sets. Then, original scheduling rules and variable modifying mechanisms
defined in RSSA can be directly applied. On the other hand, membersin NEC and Tl
families contain a homogeneous register set, which indicates all registers are identical
and used to store both source and destination operands. In our hypothetical machine

model we originally define the heterogeneous register sets. Nevertheless, if we merge

71

all accumulators and registers into a single register file, it can smulate the
architecture with a homogeneous register set. Meanwhile, since all registers are
identical, in RSSA we only need variables reg_i(t) to record the total number of
registers occupied by all source and destination operands at time step t, and variables
acc_i(t), as well as variables acclist_i(t), are no longer required. Mechanisms
designed for updating variables reg_i(t) and reglist_i(t) can be inherited from the
original RSSA. For NEC uPD7701x family members only a single reg_1(t) is
necessary. For members of Tl families, because they further divide homogeneous
registers into two independent register files, we have to use two variables reg_A(t)
and reg_B(t) for each register file.

From above descriptions, with minor modifications, our hypothetical machine
model and RSSA is capable for simulating all architectural featureslisted in Table 5.1.
Therefore, we conclude that the proposed machine:model and RSSA have enough

flexibility, which can apply to real DSPfamilies with various architectural features.

5.5 Performance Evaluations[38]
5.5.1 Comparison with Previous Work

At first we set the target architecture equivaent to the Motorola DSP56000, and
select several MDFGs represented DSP applications to evaluate methods including
Cho [9], Malik [17], Shiue [20], and RSSA. Similar as in chapter 4, four scheduling
results are derived from RSSA with different variable partition mechanisms, and
RSVR [30], RSF [14], RST [14], and RSP [36] are used for comparison after inserting
necessary spill codes. For a single iteration in the repetitive pattern, we use two
metrics including schedule length and instruction count to evaluate performance at the
same time. Shorter schedule length basically indicates shorter execution time for both

asingle iteration and the entire retimed loop. On the other hand, less instruction count

72

Table 5.3. Schedule lengths obtained by different code generation a gorithms.

RSSA
RSVR| RSF | RST | RSP

Wave Digital Filter 7 9 9 8 6 | 85| 6 6 5 | 55|55

Cho |Malik| Shiue [RSVR| RSF | RST | RSP

Filter 8 13 | 13 9 |115(| 9 6 6 | 55| 5 |45

IIR Filter 2D 20 | 29 | 33 | 25 |275| 28 |245| 16 | 16 | 16 | 16
forward-substitution 7 12 | 12 9 10 |115]| 75 5 | 55 5 5
THCS 6 8 8 6 | 65|55| 5 4 4 4 4

DFT 14 | 21 | 21 | 18 | 21 (185| 18 | 13 |125]| 13 [125

Floyd-Steinberg 20 | 36 | 37 | 29 |325]|305(235] 18 [175] 17 | 17
TransmissionLine | 15 | 20 | 21 | 19 | 18 | 25 | 18 | 12 | 12 | 12 | 12

IIR Filter 1D 11 | 15| 15 | 11 | 14 -- -- 8 8 -- --
Differential Equation 161201 21| 18 [215] -- 3 13 lus!| - i
Solver
All-pole Lattice Filter | 21 | 37 | 37 | 35 | 28 | -- -- 17 | 16 | -- -
Elliptic Filter 42 | 62 | 66 | 56 | 69 -- -- 36 | A4 -- -

indicates not only less power *consumption; but also;less memory space required to
store (smaller code size). Table 5.3 lists schedule lengths for a single iteration in the
repetitive pattern for selected MDFGs. In this table we can see that RSSA usually
achieves the shortest schedule lengths compared to other methods. The main reason is
the usage of retiming technique, which reassigns instructions in consecutive iterations
to explore potential instruction-level parallelism. As more compact codes are obtained,
system resources are fully utilized and schedule lengths are shortened.

Table 5.4 lists the instruction counts for a single iteration in the repetitive pattern.
From this table we find that RSSA and Cho [9] generate much less instruction counts,
because they use accumulators and registers to store temporary variables. Other
methods directly let temporary variables write back to memory and reload when
required, so many memory accesses are really unnecessary. Therefore, instruction
counts generated by RSSA and Cho [9] can be kept relatively low. In subsection 5.5.3

we will further describe the effectiveness of RSSA on both evaluation metrics.

73

Table 5.4. Number of operations really executed in an iteration obtained by
different code generation algorithms.

RSSA
RSVR| RSF | RST | RSP

Wave Digital Filter | 13 | 16 | 16 | 16 |155| 16 | 16 | 14 | 13 | 13 | 14

Cho |Malik| Shiue [RSVR| RSF | RST | RSP

Filter 11 | 16 [16 | 16 | 16 | 16 | 16 | 11 |105(105] 11

IIR Filter 2D 37 |1 64|68 | 64|64 |64 |64 37| 37| 37| 37
forward-substitution | 11 | 20 | 20 | 18 |175| 18 | 18 | 11 |105|105] 11
THCS 10 | 16 [16 | 14 [145] 14 | 14 | 10 | 95| 10 | 10

DFT 20 | 48 | 49 | 44 | 44 | 44 |455| 32 | 30 |315] 32

Floyd-Steinberg 39 | 68| 70 | 59 | 59 |595| 59 | 39 [395| 40 | 41
Transmission Line 28 | 48 | 48 | 42 | 42 | 42 | 42 | 29 | 29 | 28 | 29

IIR Filter 1D 19 | 32 | 32 | 30 |295(-- -- 18 | 175| -- --
Differential Equation 3| aa | aa | 37| 37 _ _ %6 | 255] - B
Solver
All-pole Lattice Filter | 37 | 60 | 60 | 51 [515| -- - | 35 |345| -- -
Elliptic Filter 75 [136 | 136 | 125 |116.5| -- -- | 72 -- --

5.5.2 Thelnfluence of Resources

To harvest the benefits provided by the“irregular DSP architecture, using an
effective code generation method to fully utilize system resources is obviousy
essential. However, in order to explore the instruction-level parallelism and reduce
accumulator/register spills, increasing the number of resources is a more direct way.
Hence, in the following we set our parameterized machine model to simulate target
architectures with different number of resources, and use the general method RSSA to
evaluate selected MDFGs. Scheduling results affected by different kinds of resources
will be studied on both eval uation metrics.

We first list some preliminaries. After transferring MDFGs to TDAGs using
RSSA, Table 5.5 lists the number of ALU instructions, the critical path length, and the
number of nodes in every TDAG. This information can be treated as lower bounds of

scheduling results. If the obtained schedule length is equal to or less than the critical

74

Table 5.5. Characteristics of selected TDAGs.

Benchmarks Number (.)f ALU Critical path of G Numbér of nodes

nodesin G; inG

Wave Digital Filter 4 6 14
Filter 4 7 11

IR Filter 2D 16 7 34
Forward-substitution 5 6 11
THCS 4 4 10

DFT 12 7 32
Floyd-Steinberg 17 12 38
Transmission Line 12 10 26
IIR Filter 1D 8 6 17
Differential Equation Solver 11 11 25
All-pole Lattice Filter 15 18 33
Elliptic Filter 34 19 65

path of the corresponding TDAG, it indicates that the shortest schedule is achieved.
Besides, when architecture has only one function unit, a schedule with length equal to
the number of ALU nodes is-also’ shortest,because all ALU instructions must be
executed in seria. On the other hand,-if -an-iteration consists of exactly the same
number of nodes as the TDAG, it.means that-no spill codes are inserted. In Tables
5.6~5.10 we use shaded values to represent a schedule with shortest length or without
any spill code. Moreover, when either the schedule length or the instruction count is
improved by additional resources, the improved result is shown as a bold value.

Table 5.6 shows results of different number of accumulators. From this table, the
instruction count decreases obviously when the target architecture contains more
accumulators, which represents that accumulator spills occur very often. If more ALU
results can reside in additional accumulators, spill codes will be reduced due to less
occurrences of accumulator spill. Furthermore, since fewer overwritten ALU results
are temporarily transferred to registers, occurrences of register spill also can be
reduced. As for the schedule length, because it is only dlightly shortened, increasing

the number of accumulators cannot explore the instruction-level parallelism.

75

Table 5.6. Experimental results, with target architectures contains different
number of accumulators.

1FU, 2 acc, 4reg, 2 mem 1FU, 3acc, 4 reg, 2 mem

RSVR RSF RST RSP RSVR RSF RST RSP

len| # |len| # [len| # |[len| # |len| # |len| # |[len| # |len| #
[1]] 6 |14 | 5 |13 |55|13|55|14| 6 |14 | 5 [13 |55| 13|55 14
[2]] 6 | 11 |55(105] 5 |105|/45| 11| 6 | 11 |55 (10.5| 4.5|105| 45| 11
[3]116 |37 |16 |37 |16 | 37|16 | 37|16 |34 |16 (34|16 | 34| 16 | 34
[4] 5|11 |55(105/ 5 |105| 5 | 11| 5 | 11 |55(105| 5 |105 5 | 11
[5]] 4 |10 4 (95| 4 |10| 4 |10] 4 |10| 4 (95| 4 | 10| 4 | 10
[6] | 13 | 32 (125| 30 | 13 |31.5|125| 32| 12 | 32 | 12 (285] 12 | 31 | 12 | 32
[7]1] 18 | 39 (17.5(39.5| 17 | 40 | 17 | 41 | 18 | 38 (17.5(38.,5| 17 |38.5| 17 | 39
8112|2912 (29|12 | 28|12 | 29|12 |27 |12 |27 |12 | 26| 12 | 27
[99] 8 |18 8 (175 - | - | - | -] 8 |17 | 8 [165| - | - | - | --
[10]] 13| 26 |11.5|255| - | - | - | - | 13|26 |115/ 25| - | - | - | --
[11]| 27 | 35| 16 |345| -- | -- | - | - | 17| 33| 16 |315| -- | - | - | --
[12]| 36|75 |34 | 72| - | - | - | -]35]|70|305/665 - | - | - | -
[1] Wave Digital Filter [7] Foyd-Steinberg
[2] Filter [8] Transmission Line

[3] Infinite Impulse Response Filter 2D
[4] Forward-substitution

[5] Toeplitz Hyperbolic Cholesky Solver
[6] Discrete Fourier Transform

[9] ‘Infinite Impulse Response Filter 1D
[10] Differential Equation Solver

[11] All-pole Lattice Filter

[22]Elliptic Filter

Table 5.7. Experimental results, with target architectures contains different
number of input registers.

1FU, 2 acc, 4 reg, 2 mem 1FU, 2 acc, 6 reg, 2 mem

RSVR RSF RST RSP RSVR RSF RST RSP

len| # [len| # |len| # |len| # |len| # |[len| # |len| # |len| #
[1]] 6 |14 | 5 |13 |55|13|55|14| 6 (14| 5 (13| 5 | 13| 5 | 14
[2]| 6 | 11 |55(105| 5 |105/45| 11| 5 | 11| 5 [105| 4 |105| 4 | 11
[3]]16 |37 |16 |37 |16 | 37|16 | 37|16 |37 |16 |37 |16 | 37| 16 | 37
[4| 5|11 |55(105| 5 |105/ 5 |11 | 5 |11 | 5 |105] 5 |105/ 5 | 11
[51] 4 |10 4 [95| 4 |10| 4 |10|] 4 |10| 4 [95| 4 | 10| 4 | 10
[6] | 13 | 32 (125 30 | 13 |31.5|12.5| 32 | 13 | 32 (12.5(28.5| 12 |30.5|12.5| 32
[7]] 18 | 39 (17.5(39.5| 17 | 40 | 17 | 41 | 18 | 39 (17.5(39.5| 17 |39.5| 17 | 40
8112|2912 (29|12 | 28|12 | 29|12 |29 (12|29 |12 | 28| 12| 29
[99] 8 |18 | 8 (175 - | - | - | - | 8 |18 | 8 (175 - | - | - | --
[10]] 13| 26 |11.5|255| - | - | - | - | 13|25 |12 |23 | - | - | - | -
[11]| 27 | 35| 16 |345| - | - | - | - | 1735|1633 | - | - | - | -
[12]| 36|75 |34 | 72| - | - | -] -]135]|73|305/695 - | - | - | -

76

Table 5.8. Experimental results, with target architectures contains different
number of function units.

1FU, 2 acc, 4 reg, 2 mem 2 FU, 2 acc, 4 reg, 2 mem

RSVR RSF RST RSP RSVR RSF RST RSP

len| # [len| # [len| # |len| # |len| # |len| # |len| # |len| #
[1]| 6 |24 5 |13 |55|13|55|14| 6 |14| 5 [13 [(55| 13| 5 | 14
[21| 6 | 11 | 55105 5 |105/45(11| 6 | 11 |55(105(45(|105| 35| 11
[3]116| 37|16 |37 |16 | 37|16 | 37| 12 |39 | 13 | 40* [12.5| 40* |12.5| 40*
[4] 5|21 (55105 5 |105| 5 |11 | 4 | 11| 4 |105/45|105| 4 | 11
[51| 4 |10| 4 |95 4 |10| 4 |10| 3 |10| 3 [95(3 | 10 |35| 10
[6] | 13| 32 [12.5] 30 | 13 |31.5|12.5| 32 | 12 | 34* |11.5| 32* | 13 | 35* | 12 | 34*
[7]]1 18 | 39 (17.5(39.5| 17 | 40 | 17 | 41 | 15 |41* |16.5/45.5%| 16 45.5*| 14 |42.5*
8112|2912 |29 |12 |28 |12 | 29| 8 | 28 |11.5(30.5% 9.5 | 29* |11.5[30.5*

9] 8 |18| 8 |175| - | - | - | --| 6 |18 | 7 [18 | - | - | - | --

[10]| 13| 26 |11.5(255| - | -- | -- | -- | 10 | 25 |11.5[26.5% -- | - | - | --

[11]| 17 [35| 16 |345| - | - | -- | -- | 16| 33 | 14 [355* - | -- | -- | --

[12]| 36 | 75|34 | 72| - | - | - | --]127|80*|29|80*| -- | - | - | --

[7] Wave Digital Filter [[7] Floyd-Steinberg

[8] Filter [8] Transmission Line

[9] Infinite Impulse Response Filter 2D [9]. Infinite Impulse Response Filter 1D

[10] Forward-substitution [10]
Differential Equation Solver

[11] Toeplitz Hyperbolic Cholesky Solver

Then, Table 5.7 shows results of different number of registers. These results
indicate that the instruction-level parallelism still cannot be explored by using more
registers. In addition, the instruction count also be improved dlightly, which means
register spills rarely occur in fact. Thus, if we only increase the number of registers,
scheduling results will be almost unchanged for both eval uation metrics.

In Table 5.8 we show results of different number of function units but the
number of accumulators remains two. That is, when the target architecture has two
function units, only one dedicated accumulator is capable to store destination
operands calculated from each function unit. From this table schedule lengths are
obviously shortened, because the second function unit is beneficial to explore

instruction-level parallelism. However, instruction counts increase in some MDFGs as

77

Table 5.9. Experimental results, with target architectures contains different
number of function units.

1FU, 2 acc, 4 reg, 2 mem 2 FU, 4 acc, 4 reg, 2 mem
RSVR RSF RST RSP RSVR RSF RST RSP
len| # [len| # |len| # |len| # |len| # |[len| # |len| # |len| #
[1]1] 6 [14| 5 |13 (55|13 |55(14| 6 |14 (45|13 |55| 13| 5 | 14
[2]] 6 | 11 |55|105(5 |105{45| 11| 6 | 11 | 55|105| 4.5 |105/ 35| 11
[3]]116 |37 |16 |37 |16 | 37|16 | 3711034 (10|34 | 9 |34 | 9 |34
[4] 5|11 |55[105/ 5 |105| 5 | 11| 4 (11| 4 |105| 4 |105] 4 | 11
(51| 4 (10| 4 |95(| 4 |10| 4 (10| 3 |10 3 |95| 3 (10| 3 | 10
[6] | 13 | 32 (125 30 | 13 |31.5|125/ 32| 10| 32| 9 (28 (95| 30| 10 | 32
[7]1] 18 | 39 |17.5|395| 17 | 40 | 17 | 41 | 13 | 38 | 14 |39.5| 13 [39.5|12.5| 38
8112|2912 (29|12 | 28|12 | 29| 8 | 26 (85| 26 (85| 25|85 | 26

99| 8 |18 8 (175 - | - | - | -] 6 |17 | 6 [165| -- | -- | -- | --
[10]| 13| 26 |11.5(255| -- | - | - | - |10 | 25| 10 |255| - | -- | - | --
[11]f 27 | 35| 16 |345| -- | -- | - | - | 16| 33| 13 |305| -- | - | - | --
[12]| 36| 75|34 (72| - | - |-].,.123|70]|24|68| - | - |- |-
[1] Wave Digita Filter [7] +Floyd-Steinberg

[2] Filter [8] Transmission Line

[3] Infinite Impulse Response Filter 2D [9] - Infinite Impulse Response Filter 1D
[4] Forward-substitution [10] Differential Equation Solver

[5] Toeplitz Hyperbolic Cholesky Solver [11] All=pole Lattice Filter

[6] Discrete Fourier Transform [12}EHiptic Filter

asterisked, which represents more spill codes are inserted. Apparently these additional
spill codes are mainly incurred from frequently occurred accumulator spills. If an
ALU result will be used later than next ALU instruction been executed, it must be
temporarily stored to avoid being overwritten. Thuse, we conclude that using more
function units only is not appropriate to explore instruction-level parallelism.
Similarly, Table 5.9 still shows results of different number of function units. This
time we increase the number of accumulators to four and evenly allocate them to each
function unit. Compared to Table 5.8, clearly that not only schedule lengths are
further shortened, but also spill codes are inserted infrequently. These results are
essentialy the combination of results shown in Tables 5.6 and 5.8. Using more

function units is beneficial to shorten schedule lengths, and adding additional

78

Table 5.10. Experimental results, with target architectures contains different
number of data memory banks.

1 FU, 3 acc, 6 reg, 2 mem 1FU, 3 acc, 6 reg, 3 mem
RSVR RSF RST RSP RSVR RSF RST RSP
len| # |len| # |[len| # [len| # |len| # |len| # |len| # |[len| #

[1]1] 6 (14| 5 |13 5 | 13| 5 (14| 4 |14 | 3 |127| 5 [133]| 4 | 14

[2]] 6 | 11 |55(|105/45(105] 4 |11 | 6 | 11 |53]10.3| 4 [10.3] 4 | 11

[3]] 16|34 |16 |34 |16 |34 |16|34]| 16|34 |16|34|16 |34 |16 | 34

4] 5 (11| 5 |105/ 5 |105] 5 (11| 5 |11 | 5 |103] 5 |10.3| 5 | 11

51| 4 |10 4 |95| 4 [10| 4 |10] 4 10| 4 |93]| 4 [10| 4 | 10

6] |12 32|12 |28 |12 |30 |12]| 32| 12 | 32 | 12 |26.7| 12 [30.3| 12 | 32

[7]1] 18 | 38 | 17 |38.5| 17 (385 17 | 39| 18 | 38 | 17 |38.3| 17 (38.3| 17 | 39

Bl |12 | 27|12 |27 |12 |26 |12 | 27|12 |27 | 12 | 27 | 12 [25.7| 12 | 27

9] 8 (17| 8 |165(- | -- | - | - | 8 |17 | 8 |16 | - | - | -- | -
[10]] 13 | 25 |11.5(225| - | - | - | - | 14| 26 (11.7(20.7| - | - | - | --
[11]| 27 | 33| 16 |315| - | - | - | - | 17|33 |157| 30| - | - | - | -
[12]| 35| 68 |305({ 65| - | - | - | -- | 35| 68 |35.7|64.3| - | -- | - | -
[1] Wave Digital Filter [7]» Floyd-Steinberg

[2] Filter [8] Transmission Line

[3] Infinite Impulse Response Filter 2D [9] «Infinite Impulse Response Filter 1D
[4] Forward-substitution [10] Differential Equation Solver

[5] Toeplitz Hyperbolic Cholesky Solver [41] All-pole Lattice Filter

[6] Discrete Fourier Transform [22] Elliptic Filter

accumulators can reduce occurrences of spill codes efficiently. Hence, if we want to
explore instruction-level parallelism, both numbers of function units and accumulators
must be increased.

Finally, in Table 5.10 we show results of increasing the number of data memory
banks. Both architectures consist of six input registers evenly allocated to each data
memory bank. From these results schedule lengths are hardly improved without
additional function units, and using more data memory banks seems helpful to reduce
instruction counts. The reason is that with the number of data memory banks
increasing, more independent memory accesses, as well as register transfers inserted
to resolve accumulator spills, can be executed smultaneously. This situation lets the

instruction-level parallelism between move operations be explored, which is

79

beneficial to reduce occurrences of register spills. However, implementing additional
data memory banks, associated with dedicated data buses, definitely requires heavy
hardware costs. Besides, recall that the TDAG is enlarged factor equal to the number
of data memory banks before using variable partition mechanisms proposed in RSF,
RST, and RSP. A larger TDAG also costs longer time doing code generation. Thus, we
do not recommend using more data memory banks to reduce the instruction count,

because the cost-performance is not worth.

5.5.3 Brief Summaries

After showing RSSA is effective compared to previous work under the Motorola
DSP56000 architecture, we present its effectiveness in some detail on both evaluation
metrics. As shown in Tables 5.8 and 5.9, when thetarget architectures consists of two
function units, RSSA can achieve schedule-engths:to their lower bounds in most
selected MDFGs. If there is only one function.unit,”RSSA still can obtain schedule
lengths almost equal to the number. of ALU ‘instructions, which indicates these
schedules cannot be shortened further. On the other hand, according to Tables
5.5~5.10, RSSA really generates quite few spill codes especialy when the target
architecture has more than four accumulators. This is because we prefer to transfer an
overwritten ALU result to a register, and insert spill codes only when required. In
addition, we compact spill codes with regular codes as far as possible, in order to
prevent lengthening the final schedule length. Whereas RSSA usually achieves
optimal results on both evaluation metrics, we conclude that it is quite effective.

Then, we summarize the influence of differing number of resources on the
scheduling result. From descriptions in subsection 5.5.2, adding more accumulators to
keep more ALU results for further using is the most efficient way to reduce spill

codes. According to our evaluation results, amost all spill codes can be eliminated if

80

the target architecture contains more than four accumulators. Increasing the number of
registers or data memory banksis also useful, but its improvement is not as obvious as
using more accumulators. Besides, implementing additional data memory banks and
associated data buses requires heavy hardware costs. Therefore, we think a target
architecture that contains two data memory banks and four registersis appropriate. As
for exploring the instruction-level parallelism, adding additional function units and
accumulators concurrently is certainly necessary. Based on evaluation results shown
in Table 5.9, RSSA generates the shortest schedules without too many spill codes in
most MDFGs, so two function units with four accumulators are actualy sufficient.
Using more than two function units no doubt can further shorten schedule lengths, but
the improvement will be clearly slight. Furthermore, we also find that the variable
partition mechanism proposed in.RSF is unsuitablefor one-dimensional MDFGs. This
is because loop-carried data dependences in one-dimensional MDFGs are usually with
distance one, and most memory accesses- Will_reference variables from the same data
memory bank after applying loop unfelding. Thus,’a memory access may easily fail to
be scheduled successfully in time, which will lengthen the schedule.

In the following, we describe the efficiency of RSSA and compare to RSSP.
Recall that both methods mainly contain following phases. the construction of graphs
MDFG, TDAG, and G, variable partition, two separate instruction scheduling phases,
the resolution of accumulator/register spills, and the initial schedule retiming. Among
these phases, resolving accumulator spills is the most time-consuming and the main
different phase between RSSP and RSSA. This phase is completed by analyzing the
TDAG topology with a relatively complex mechanism in RSSP, and by constantly
updating variables in RSSA. The mechanism used in RSSA is apparently more
efficient, general, and accurate. Other phases between two methods are very similar in

essence. Hence, we conclude that RSSA is efficient than RSSP,

81

Compared to related studies [9, 17], our RSSA still has advantages. Note that in
methods [9, 17] they do not contain procedures to generate uncompacted codes, and
schedule instructions using list scheduling similar asin RSSA. Thus, we omit steps of
constructing graphs MDFG and TDAG, and focus on discussing their complexities in
partitioning variables, alocating accumulators/registers, and resolving accumulator/
register spills. In method [17], it uses graph labeling to assign accumulators/registers
and variables simultaneously, and applies simulated annealing to solve the graph
labeling problem. The mechanism used to insert spill codes is not presented in detail,
although it is definitely required. However, because the simulated annealing is
time-consuming, it makes method [17] more complicated. Next, in method [9], it uses
graph coloring to partition variables and allocate accumulators/registers separately,
and gives a heuristic to solve the graph_coloring-problem. The mechanism used to
insert spill codes is till lacked.. Thus, clearly that-the method proposed in [9] is
efficient than the method propased in [17].-Finaly, in-our RSSA, variable partitioning
is very simple. Spill codes insertron.and physical’ accumulators/registers assignment

are also trivial, which means RSSA is efficient compared to both methods [9, 17].

82

Chapter 6. Energy-efficient Code Generation Methods

In addition to shorter schedule length and less instruction count, low power
consumption becomes another important constraint in the DSP design specification
[24-25]. In section 1.2 we mentioned that to increase the potential for a function unit
to reuse an operand is an appropriate way to reduce the power consumed by a
function unit. An instruction-level power analysis and some ideas which can be
exploited by software development tools have been also listed in subsection 2.4.4.
Therefore, the third study issue of this thesis is to design energy-efficient code
generation methods based on the operand sharing technique. At first we briefly
analyze RSSA from the viewpoint of low power consumption in section 6.1. Two
proposed energy-efficient code generation'methods based on the hypothetical machine
model is presented in sections 6.2 and 6.3. Finally, in section 6.4, some performance

evaluations are shown.

6.1 Brief Analyses of RSSA [58]

RSSA is an effective code generation method suited for DSPs with various
architectural features, and its design goal is to achieve shorter schedule length and less
spill codes. From the viewpoint of low power consumption, RSSA has satisfied three
positive features. First, to achieve the ingtruction-level parallelism, RSSA schedules
unpacked instructions as soon as possible without violating data dependencies and
resource constraints. This strategy leads to pack instructions as much as possible,
which can reduce the energy consumption in DSP especially with multiple data
memory banks. Second, with appropriate variable partition mechanisms, memory
accesses are separately scheduled at all data memory banks to explore potential higher

memory bandwidth. Third, during the TDAG construction, RSSA assumes unlimited

83

numbers of accumulatorg/registers and removes all possible unnecessary memory
accesses. Then, it prefers to use register transfers to resolve accumulator spills, and
inserts additional store/load variable instructions only when required. By using these
scheduling rules RSSA can apparently produce schedules with retrenched memory
accesses. This feature is beneficial in reducing power consumption as well as code
Size, because a memory access requires considerably more power to execute than an
ALU instruction. However, the potential for operand sharing are not successfully
explored because RSSA simply uses list scheduling to schedule ALU instruction.
Thus, in the following we will propose two energy-efficient methods extended from
RSSA, which will retain all above positive features and further consider the operand

sharing technique.

6.2 Rotation Scheduling with Operand Reutilizatron (RSOR) [58]
In this section we introduce thefirst proposed method named rotation scheduling
with operand reutilization (RSOR)..After presenting its scheduling steps in subsection

6.2.1, some comparisons of RSSA and RSOR are described in subsection 6.2.2.

6.2.1 Detailed Algorithms of RSOR

Based on the scheduling steps of RSSA described in section 5.2, we only have to
modify the mechanism used to schedule ALU instructions to consider the operand
sharing technique. RSSA simply uses the list scheduling to individually schedule
ALU instructions. In RSOR we define a sharing set to group ALU instructions with a
common operand. Then, the list scheduling is till applied, and ALU instructions in
the same sharing set will be restrictively scheduled to the same function unit at
consecutive time steps to achieve the operand sharing. For a given TDAG, we use the

following definition to describe the node grouping conditions for the sharing set.

84

t | FU, M; M, t | FU, M; M,
1] 4 15 1| 4 11
2196 11 13 2156 > 13
5 1 5 by
4 9 8 0 4] 9 8 15
5 16 10- 5 10
6 | 12 1 ™, 16| 12 1
71 14 “5 71 14
g | 17 8 |16 0
9| 19 3 18 1. - Lo 17 18
0] 2 20 | %4 g a0 19 3 5
operand reutilization (OPR) = 2 2
@ P (b)

Figure 6.2. Scheduling results of Figure 6.1. (8) RSSA, (b) RSOR.

Definition 6.1. For agiven TDAG G = (V, E, X, P), nodes vy...vi, 1V with type M/A
are grouped into a sharing set if they satisfy two conditions: (1) All nodes vi...vn
have the same predecessor v, T V (P(vy) = LIM/A); (2) There is no path between any
twonodesviandv;inGfor1£i,jE£Em.

For example, in the TDAG shown in Figure 6.1, nodes 4 and 6 are grouped into a
sharing set as they share the operand loaded by node 3. Nodes 14 and 16 are grouped
into another sharing set, as they share the operand loaded by node 13. Suppose that
the target architecture is the Motorola DSP56000; Figure 6.2 shows scheduling results

of Figure 6.1 using RSSA and RSOR, while nodes with common operand are grouped

85

1. G;=Construct MDFG,;
1.1. Partition variables to memory banks;
1.2. Unfold or tile G if necessary;
2. G;=Construct TDAG (G,);
3. S=Schedule al ingtructions except memory loads (Gy);
3.1. Group ALU instructionsinto sharing sets;
// additional step used in RSOR
3.2. Gyp = Construct DAG G, (Gy);
3.3. S=Schedulenodesin Gy (Gop);
/l nodesin the same sharing set are restrictively scheduled
3.4. S= Determine and solve accumulator spills (S, Ggp);
4. S= Schedule memory load instructions (S, Gy);
5. S=Reimetheinitial scheduling result (S, Gy);

Figure 6.3. The overal scheduling agorithm of RSOR.

and consecutively scheduled or not. From these two schedules we find that one more
operand reutilization is achieved in an iteration using RSOR. We call operand
reutilization (OPR) the fact that‘an operand is reused by two instructions executed
consecutively in the same function.unit [4]. Recall that the average power consumed
by the function unit is dramatically lewer-when-one operand remains unchanged. That
is, if a schedule has more OPRS, to execute this schedule will cost less power
consumption at function units. However, because instructions resided in the same
sharing set are restrictively scheduled to the same function unit at consecutive time
steps, using RSOR may obtain longer schedules. This feature indicates that OPR may
be a trade off for schedule length, which is similar to the LPLS method described in
subsection 2.4.4. Moreover, if there are more than one function units in the target
architecture, ALU instructions in the same sharing set are evenly distributed to all
function units to explore the instruction-level parallelism. Note that an ALU
instruction may reside in more than one sharing set, so after instruction scheduling not
all potential operand sharing can be achieved. The overall scheduling steps for RSOR
arelisted in Figure 6.3. The main difference between RSSA and RSOR are the sharing

set grouping and the mechanism used to schedule ALU instructions.

86

Table 6.1. Average current required for each instruction [20].

Instruction Current (mA) Instruction Current (mA)
Move 90 Mpy 160
Move Move 120 Mpy Move 170
Add 100 Mpy Move Move 180
Add Move 140
Add Move Move 150

6.2.2 Comparisons between RSSA and RSOR

In this subsection, we evaluate RSOR using several selected MDFGs and our
hypothetical machine model defined in section 5.1. Three scheduling results are
derived from RSOR with variable partition mechanisms proposed in RSVR, RSF, and
RST, and in the following we only list the best one of them. For a single iteration in
the repetitive pattern, we use evaluation metrics tneluding schedule length, instruction
count, and the number of OPRs.to0 compare RSOR and RSSA at the same time.
According to the instruction-level power-model presented in [45], a schedule with
shorter schedule length and less instruction count obviously indicates lower power
consumption. More OPRs represent more operands reused by two instructions
consecutively executed in the same function unit, which leads to less power
consumption at function units. Furthermore, in [20], authors list the average current
required to execute each instruction in Motorola DSP56000. Table 6.1 shows their
provided information, and we aso borrow it to approximately estimate the required
current for each schedule.

Table 6.2 lists the number of OPRs of a single iteration in the repetitive pattern
for selected MDFGs. From this table clearly that usng RSOR achieves more OPRs
than using RSSA, and performs better when the target architecture has more function
units. The reason is that some ALU instructions may essentially share a common

operand but not be grouped into a sharing set, because these instructions violate the

87

Table 6.2. The comparison between RSOR and RSSA (the number of OPRS).

1FU, 2acc, 4reg, 2mem | 2 FU, 4 acc, 4 reg, 2 mem
RSSA RSOR RSSA RSOR

Wave Digital Filter 0.5 0.5 0 0.5
Filter 0 0 0 0

IIR 2D 0 0 0 0
Forward-substitution 15 15 0.5 2
THCS 1 1 0 2
Discrete Fourier Transform 1 4 0 4
Floyd-Steinberg 9 9 6 9
Transmission Line 4 4 0 5
IIR 1D 05 3 0.5 3
Differentia Equation Solver 4 5 3 6
All-pole Lattice Filter 15 3 15 6
Elliptic Filter 4 9 2 11

second condition listed in Definition 6.1. Nodes 12 and 19 in Figure 6.1 are such an
example. When the target architecture_has_only. one function unit, due to data
dependencies, nodes 12 and =19.will not be schedule at consecutive time steps.
However, if there exists a second function-unit, we-can use it to separately execute
nodes 12 and 19 without interfering. with other instructions. Hence, the operand
sharing between these two nodes is also achieved.

Table 6.3 lists the schedule length, instruction count, and approximate current of
asingleiteration in Motorola DSP56000 architecture. It shows that compared to using
RSSA, using RSOR may generate schedules with, at most, 6% longer schedule length
and 7% greater instruction count. This is because ALU instructions in a sharing set are
restrictively scheduled to the same function unit at consecutive time steps, and some
instruction-level parallelism cannot be successfully explored. Meanwhile, when more
instructions are executed by the same function unit, accumulator spills may occur
more easily, due to the frequent use of some dedicated accumulators. As for the
approximate current, not in all cases using RSOR can be improved, especially when

the schedule length is increased. The main reason is that the total current of a schedule

88

Table 6.3. The comparison between RSOR and RSSA (under Motorola

DSP56000 architecture).
RSSA RSOR
length |ins. count| current | length |ins. count| current
Wave Digita Filter 5 13 750 5 13 770
Filter 5 10.5 655 5 10.5 655
IIR 2D 16 37 2435 16 37 2435
Forward-substitution 5 105 711 5 10.5 717
THCS 4 9.5 611 4 9.5 587
Discrete Fourier Transform | 125 30 1870 125 32 1756
Floyd-Steinberg 175 39 2440 175 39 2440
Transmission Line 12 28 1770 12 28 1770
IIR 1D 8 175 1201 8 19 1111
Differentia Equation Solver| 11.5 255 1580 12 24.5 1651
All-pole Lattice Filter 16 345 2280 17 34.5 2300
Elliptic Filter 34 72 5020 35 75 4827

isthe sum of current required by, al instructions. Atthough the power cost by function
units is reduced, the total current may still increase due to longer schedule length. In
summary, RSOR achieves mare OPRS-than RSSA and requires dightly longer
schedule length and more instruction.count in‘some cases. As long as the schedule
length is not increased, using RSOR usually can obtain a schedule with lower
approximate current. Further evaluations of RSOR and comparisons to other energy-

efficient instruction scheduling methods will be given in section 6.4.

6.3 Rotation Scheduling with Exploiting Operand Reutilization (RSER) [58]
Although increasing the potential for a function unit to reuse an operand can
obtain low-power schedules, common operands are not encountered very frequently
in real designs [29]. That is, if just operand sharing within an iteration are explored,
the power consumption will be reduced only dlightly due to less opportunities of
operand sharing. As mentioned in subsection 2.4.4, the retiming technique can be used

to transform the given loop to generate instructions with common operands hidden

89

inside the original MDFG. Hence, we propose the second method rotation scheduling
with exploiting operand realization (RSER), which is extended from RSOR and aimed
to further exploit potential operand sharing between different iterations. Subsection
6.3.1 contains the mechanism for reconstructing the origina MDFG. Detailed
scheduling steps of RSER are described in subsection 6.3.2. In subsection 6.3.3, we

list the difference among RSOR, RSER, and other related methods.

6.3.1 MDFG Reconstruction Mechanism
6.3.1.1 Finding Potential Operand Reutilization in Different Iterations

To generate instructions with common operands hidden inside the given MDFG,
first we have to find instructions sharing an operand in different iterations. Recall that
a variable in a loop indicates ansarray. For_a.given loop, assume that two different
elements of the same array are used as source operands of two ALU ingtructions x;
and y; in iteration i. Apparently-that x;-and.y;-do-not,have common operand. However,
there must exist another ALU instruction y; inviteration j, which references the same
element as ;. If we can move x and y; to the same iteration, an additional OPR can be
achieved. In the MDFG if different elements of the same array are referenced in an
iteration, we will find a node v, with type Sthat has multiple successors, v;, of type L
where all d(e;) are different. In RSER we group load variable instructions v; into an
exploitable sharing set, which means these instructions may reference the same
element of the same array after retiming. Node grouping conditions of the exploitable
sharing set are described in the following definition.
Definition 6.2. For agiven MDFG G = (V, E, X, d, P), nodes Vi...Vm1 V with typeL
are grouped into an exploitable sharing set if they satisfy two conditions: (1) All
nodes vs...Vi, have the same predecessor vy 1V (P(vy) = S); (2) For any two edges ;i
ande; T E d(e;)?! d(ey) for1£i,j £m.

%0

1
B _ C -
Lo/ o \(12 __ Multiplication P(v)

N Meaning
141 lD 1151 () Addition M |Multiplication
A% i3 fi —
B 2. C é Load constant A |Addition
@ @ L |Load variable
D Load varible S |Storevariable
AR
RN @ 11 Storevariable T |Register transfer
V6 N
<> Reister transfer C |Load constant
lA eg
Y. /0,1)
7I

Figure 6.4. The MDFG example.

For example, for the MDFG shown in Figure 6.4, nodes 8 and 9 are grouped into
an exploitable sharing set because they both connect to node 7 with different edge
delays. This case indicates that load variable instructions 8 and 9 reference to the
same array but different elements. If we can.apply the retiming technique to make
d(er) equal to d(ego), ALU instructions-12.and 13 will share a common operand
within an iteration. Therefore, for ‘every exploitable sharing set, we require an MDFG
reconstruction algorithm to make these instructions reference a common element as

far as possible. This algorithm will be introduced in detail in the next subsection.

6.3.1.2 MDFG Reconstruction Algorithm

Before describing the MDFG reconstruction algorithm, we list some features of
an MDFG. According to the MDFG construction steps, data memory is the only place
to store operands. That is, an instruction written in high-level language is directly
transferred to four nodes, which are used to load two source operands, execute, and
store result. Therefore, in an MDFG, a node with type M/A will have two predecessors
with type L/C and one successor with type S and at least one predecessor must be

load variable instruction. Besides, a non-zero delay edge, g;, can only exist between

91

(1) Input: MDFG G =(V’, E, X, d, P), exploitable sharing set S={v;...Vq};
(2) Output: rf(v), retimed MDFG G;;

(3) rf(v)=(0,...,0)," vi V; //inilizeretiming function of all nodes

(4) Assumethat v;...v,, have the same predecessor v, T V; /I P(v) =S

5) v; TV are successors of v; respectively; 1/ P(v;) = M/A

(6) s;1 Vare successors of v; respectively; 1/ P(s) =S

@) u; TV are predessors of v; respectively, u; t vi; // P(u;) = L/IC
(8 * v and u;; are two input operands of v; */

(9) check(ey) = F’," d(ey)?* (0,...,0); //e;T Econnectsv,and v,

(10) merge(v) = ‘F*, " d(es) * (0...., 0);

(11) While (not all d(e;;) areequal, " check(ey) == ‘F’)

(12 r = d(e,) such that check(e;) == ‘F’and d(e;) * (0,..., 0);

(13) /I select a non-zero delay vector asthe retiming baser
(14 rf(v)) = rf(v) + r; r(vy) = rf(vy) +r; /] set retiming function

(15) r(s;) = rf(s;) + r; rf(uy) = rf(u;) +r; // set retiming function

(16) G; =retime G using above retiming functions, // G, =(V, E, X, d;, P)

(17 While ($ el E suchthat d,(e) ==-r) // remove delay vector d,(e) = —r

(18) Assumethat e connectsnodesvsandv;; /I P(vy) =S P(v) =L
(19) Va1 Visthepredecessor of v, // P(v,) = M/A
(20) U1, Uy 1V are predecessorsof v,; // P(u;) = L/IC
(21) /* Uiy and v;,'are two input operands of v, */
(22) rf(vs) = rf(vs) + r; rf(v,) = rf(vy) £1;° /f set retiming function

(23 If (u; has successors v, otherthan'vy) /1 P(vy) = M/A, P(u;) =L
(24) Insert node v,; into V,"set P(vy,) ="L; . I/ split u;; to u; and vy
(25) Delete g;, from E; “+//'gj, connects u; and v,

(26) Insert edge g, into E; // 4, connects vy and v,

(27 rf(vy) = rf(vg) +r; /] set retiming function

(28) Else rf(u;) = rf(u;) +r; // set retiming function

(29) G, = retime G using above retiming functions;

(30) End while

(3D If ($avector ssuchthats- d.(e)3 0) // G, isrealizable
(32) G=G;; merge(v) =‘T’; Endif

(33) check(ey) =T

(34) End while // all d(e) are checked

(35) Insert vy into V; Insert e, into E;

(36) For (k=1; KEm, k++) /I mergev; with the same g;

(37) If (merge(v)) ==T")

(38) Delete v from V; Delete gy from E; // 644 connects v, and v
(39 Delete e, from E; Insert g into E; // 45 connects v, and v
(40) End if

(41) End for
(42) Return rf(v), G;

Figure 6.5. The MDFG reconstructing algorithm.

92

nodes v; and v; with type Sand L, respectively, which represents the loop-carried data
dependence of the given loop. After reconstructing the MDFG, above features also
must be satisfied in addition to guarantee the retimed MDFG isrealizable.

The proposed MDFG reconstruction agorithm, listed in Figure 6.5, contains
three main phases. node retiming (Lines 12~16), graph realization (Lines 17~32), and
graph modification (Lines 35~41). For a given MDFG G and an exploitable sharing
set S = {vi...Vi}, assume that v;...vy, have the same predecessor v,; our goal is to
make as many as possible d(e;i) equal using the retiming technique. In our design, we
simply select a non-zero delay vector d(ey) as the retiming base, which can transfer
d(e,) to a zero delay edge after retiming node vi. Then, to satisfy features of MDFG
described above, al nodes listed in Lines 14~15 must be concurrently retimed. For
example, in Figure 6.6(a), there‘exists a sharing set S = {6, 9} and an exploitable
sharing set S = {5, 15}. After retiming hodes4~10 with r = (0, 1) equal to d(es14), the
sharing set Sis extended to {6; 9, 16} as.shown in Figure 6.6(b), which indicates the
number of potential operand reutilizations is increased. This node retiming phase will
be applied iteratively until all d(e;) have been selected as the retiming base.

In the second phase, we check and guarantee the retimed MDFG G; is realizable.
As described in section 2.1, a realizable MDFG G must have a schedule vector, s,
such that s+ d 3 O for all loop-carried data dependencies d. However, because we
directly select a non-zero delay vector, r, as the retiming base in the previous phase,
two edges with opposite delay vectorsr and —r may exist in G; simultaneously. In this
case above redlizable condition can be satisfied, but G; still will not be successfully
executed. d;(ez11) and dr(ess) in Figure 6.6(b) are such an example. Although a vector
s=(1,0) makess-d3 Oforal dl G, G, isactualy illegal because iterations (i, j)
and (i, j + 1) will depend on each other. In order to resolve this case, we design a

mechanism to retime additional nodes backtracked from edge e with d,(e) = -r.

93

len oy 0,
L® (@

Figure 6.6. An example used to illustrate steps of RSER.

Meanwhile, if the backtracking steps reach a node with type L with multiple
successors, we split that node (Lines 23~28). Figure 6.6(c) shows the modified
realizable MDFG G; after splitting node 0 and retiming nodes 0~3. This phase will be

also iteratively applied until the retimed graph is realizable.

%

1. G; = Construct MDFG,;
1.1. Partition variables to memory banks;
1.2. Unfold or tile G; if necessary;
2. G,=Reconstruct G.; // applythealgorithm listed in Figure6.5
G, = Construct TDAG (G,);
4. S=Scheduleall instructions except memory loads (Gy);
4.1. GroupALU ingtructions into sharing sets;
// additional step used in RSOR and RSER
4.2. Gy, = Construct DAG Gy, (Gy);
4.3. S= Schedule nodesin Gy (Gop);
I/l nodesin the same sharing set are restrictively scheduled
4.4. S= Determine and solve accumulator spills (S, Gqp);
5. S= Schedule memory load instructions (S, Gy);
6. S= Retimetheinitia scheduling result (S, Gy);

Figure 6.7. The overall scheduling algorithm of RSER.

w

Finally, the third phase is used to merge nodes in an exploitable sharing set that
reference the same array element: In our_design we will merge them to an additional
node. The final graph G; after applying our MDFG reconstruction algorithm is shown

in Figure 6.6(d).

6.3.2 Detailed Algorithms of RSER

In the previous subsection we describe the proposed algorithm to increase the
number of potential OPRs. As shown in Figure 6.7, when we insert this algorithm into
RSOR, we will obtain our second method RSER. Figure 6.8(a)(b) shows the
corresponding TDAGs for Figure 6.6(a)(d). Suppose the target architecture is the
Motorola DSP56000, Figure 6.9(a)(b) shows the scheduling results of Figure 6.8(a)(b),
which are actually scheduling results of Figure 6.6(a) using RSOR and RSER,
respectively. From these schedules, we find that for a single iteration in the repetitive
pattern, using RSER achieves one more OPR with one-time step longer schedule
length. More instruction counts are obviously required using RSER, because the

original MDFG is reconstructed and some nodes are split. This feature indicates that

95

B\ /E
13
Ve
(2 20
JIK o
© o
l’B E lD
(71 100 7
(b)

t | FUu, M, M, t | FU, M, M,

1| s 1 1| 13 0 1

2159 0 5 2| 2 20 8

3| 13 -, 3] 6 18 12

4] 16 8., 14 444 91 7

5] 2 17 =8| FEHAED Y R “5 |16 11 10
.............. g8] 17

(b)
Figure 6.9. Scheduling results of Figure6.6(a). (a) RSOR, (b) RSOE.
in RSER, OPR is a trade off for schedule length as well as instruction count. In

section 6.4 we will describe further evaluations of RSER.

6.3.3 The Difference between Proposed M ethods and Other M ethods

In the following, we describe the difference among methods RSOR, RSER,
LPLS [4], power-conscious loop folding [24], and method proposed in [28], all are
designed based on the operand sharing technique. Among these methods, the retiming
technique is never applied in LPLS, which only uses a modified list scheduling to
consider the operand sharing. RSOR focus on achieving potential OPRs within an
iteration, and the retiming technique is used once to compact the schedule. Other three

methods RSER, power-conscious loop folding, and the method [28] all use the

96

retiming technique to generate instructions with common operands hidden inside the
MDFG. Power-conscious loop folding is a basic method. After finding instructions
sharing an operand in different iterations, the retiming technique is used to move them
to the same iteration. The method [28] contains a force-directed retiming mechanism
to determine which instruction must be retimed, and aim to make as many instructions
as possible take common operands as their inputs. Apparently, these two methods only
apply the retiming technique to achieve more OPRs. On the other hand, in our RSER,
the retiming technique is applied more than once for different purposes. First, after
determining exploitable sharing sets, it is used to gather instructions sharing common
operands. Note that before retiming a specific retiming base must be chosen. That is,
to remove more non-zero delay edges during MDFG reconstruction we may retime
the MDFG several times with different retiming bases. Then, to compact the initial
scheduling result, the retiming technique is-used once more to partial overlap the
execution time of successive iterations.-From.above description, we expect that using
RSER can produce schedules with'sherter lengths than using methods in [24, 28].
However, applying the retiming technique will generate corresponding prologue
and epilogue codes that must be executed separately before and after the iterative
patterns. If code sizes of the prologue and epilogue are too large, they will cost greater
overall execution time and more power consumption of the given loop. We have
proven that the overall schedule length is strongly dependent on which schedule
vector, as well as retiming base, been selected [41]. Therefore, to avoid generating too
many prologue and epilogue codes, we restrict that only two retiming bases, (0, 1) and
(1, 0), can be selected in the MDFG reconstruction algorithm. This restriction means
that in RSER the retiming technique is applied a most three times. Detailed
evaluations of RSOR, RSER, and other energy-efficient instruction scheduling

methods will be given in section 6.4.

97

Table 6.4. The number of OPRs obtained by different scheduling methods.

1FU, 2 acc, 4 reg, 2 mem 2 FU, 4 acc, 4 reg, 2 mem
LPLS | RSOR| Kim |RSER| LPLS | RSOR | Kim | RSER

Wave Digital Filter 0 0.5 1 1 0 0.5 0 1
Filter 0 0 0 0 0 0

[IR2D 0 0 4 4 0 0 4 4

forward-substitution| 1 15 2 2 2 2 1 2
THCS 1 1 1 2 2 0

DFT 3 4 3 7 3 4 3 7
Floyd-Steinberg 9 9 9 9 9 6
Transmission 4 4 4 5 5 4

[IR1D 2 3 4 4 2 3 3 4

Equation Solver 5 5 5 4 5 6 4 5
All-pole Lattice 3 3 2 6 6 2
Elliptic Filter 9 9 9 11 11 11

Finally, in section 5.4 we have presented that with minor modifications, our
hypothetical machine model and, RSSA can be apply to real DSP families with various
architectural features. Since in‘RSOR and RSER we apply the same mechanisms asin
RSSA to schedule instructions-and insert.spill-codes, both RSOR and RSER also can

suit real DSP families.

6.4 Performance Evaluations[58]

In this section, we evaluate RSOR and RSER using selected MDFGs and the
hypothetical machine model. LPLS [4] and Kim et al. [28] are also evaluated using
the variable partition mechanism presented in RSVR [30] for comparison, after
inserting necessary spill codes. Similar as in subsection 6.2.2, we still use evaluation
metrics including schedule length, instruction count, the number of OPRs, and
approximate current, and only show the best result derived by RSOR and RSER.

Table 6.4 lists the number of OPRs for a single iteration in the repetitive pattern.
Note that not all selected MDFGs contain exploitable sharing sets, so we only apply

RSER to MDFGs that have potential operand sharing in different iterations. From this

98

table, if the given MDFG has exploitable sharing sets, using RSER and Kim et al. [28]
can clearly produce schedules with more OPRs compared to using LPLS and RSOR.
That is, for a single iteration in the repetitive pattern, schedules generated by RSER
and Kim et al. [28] will cost lower power consumption at function units. In addition,
for an MDFG without exploitable sharing set, using RSOR still generates a similar
number of OPRsto LPLS and Kim et al. [28]. This result shows that all three methods
can successfully exploit potential operand sharing within an iteration. For comparison
between two different architectures, Table 6.4 shows that all methods, except Kim et
al. [28], perform better when the target architecture has more function units. This
situation indicates whether an MDFG is reconstructed or not, using more function
units is beneficial in achieving more OPRs. Thus, we conclude that when the number
of OPRs s taken as the evaluation metric, RSOR and RSER are at |east as effective as
the previous methods. Furthermere, if the-given loop contains potential operand
sharing in different iterations, applying the-retiming technique to exploit it is positive
for energy-efficient instruction scheduling.

Table 6.5 lists the schedule length, instruction count, and approximate current of
asingle iteration in Motorola DSP56000 architecture. From these results, we find that
RSOR and RSER achieve shorter schedules than LPLS and Kim et al. [28] in most
cases, because both our methods apply the retiming technique to effectively explore
the instruction-level parallelism between successive iterations. But the effectiveness
between RSOR and RSER is uncertain, and will depend on the topological difference
between the MDFGs before and after reconstruction. Hence, we conclude that RSOR
and RSER are more effective than previous methods when the schedule length is the
evaluation metric. On the other hand, in most cases using LPLS and Kim et al. [28]
will generate schedules with the least and most instructions, respectively. If a MDFG

contains exploitable sharing sets, applying RSER will require greater instruction

99

Table 6.5. The comparison among four methods (under Motorola DSP56000).

LPLS RSOR Kim RSER
length nstr current| length nstr current| length nstr current| length nstr current
count count count count
[1] 13 | 80 13 | 770 13 [80| 4 | 115] a0
[2] 11 920 10.5 | 655 10 760
[3] 20 37 | 2690 16 37 2435 | 18 42 | 2604 | 175 39 | 2428
[4] 10 802 5 105 | 717 15 922 5 125 | 717
[5] 10 712 4 9.5 587 10 712
[6] 14 30 | 1866 | 125 32 1756 | 15 34 | 1986 | 125 | 315 | 1691
[7] 20 39 1630 | 175 39 2440 | 19 39 1520
[8] 14 29 1940 12 28 1770 | 14 29 1930
[9] 10 18 | 1222 8 19 1111 10 23 | 1298 | 85 21 | 1118
[10]] 14 24 | 1776 12 24.5 | 1651 13 30 1816 | 11.5 | 27.5 | 1646
[11]] 21 35 | 2640 17 345 | 2300 | 17 39 | 2450
21| 40 | 77 |s162| 35 | 75 |4827| 36 | 73 | 4782

[1] Wave Digitd Filter
[2] Filter
[3] Infinite Impulse Response Filter 2D
[4] forward-substitution
[5] Toeplitz Hyperbolic CholeskySolver
[6] Discrete Fourier Transform

[7]1 Floyd-Steinberg
[8]#, Transmission Line
[9]. “Infinite Impulse Response Filter 1D
[10] Differential Equation Solver
[11] All-pole Lattice Filter
[12] Elliptic Filter

count than RSOR but still less than'Kim et al: [28]. Note that the number of ALU

instructions for a MDFG is fixed whichever scheduling method is applied. That is, a

schedule with more instruction counts represents more inserted spill codes, which are

usually extra memory accesses. Based on the instruction-level power model presented

in [45], to execute every instruction will cost the base cost, so a schedule with less

instruction count will benefit code size as well as power consumption. As for the

approximate current, in most cases RSOR and RSER outperform LPLS and Kim et al.

[28]. Obviously the main reason is using our methods can obtain shorter schedules.

For comparison between RSOR and RSER, RSER is usually better, even if the

number of memory accesses may increase after MDFG reconstruction. This is

because using RSER can further lower the power consumed at function units, and the

schedule length is only slightly increased.

100

Table 6.6. Definitions of variables used in the analytic model.

Variable Definition
N Number of memory modules
m L oop bound of the outer loop for atwo-dimensional nested loop
Loop bound for an one-dimensional loop
n L oop bound of theinner loop for atwo-dimensional nested loop

(s1,) | Schedule vector selected for retiming during instruction scheduling

Schedule length of an iteration in the repetitive pattern produced by list
scheduling method
length | Schedule length of an iteration in the repetitive pattern

list

prologue | Schedule length of the prologue generated during instruction scheduling

eplogue | Schedule length of the prologue generated during instruction scheduling

d Retiming depth obtained during instruction scheduling

half (k, N) | Schedule length of k original iterations under N memory modules

Schedule length of the prologue generated during MDFG reconstructing
after first retiming

Schedule length of the .epilogue generated during MDFG reconstructing
after first retiming

exdl Retiming depth obtained during MDFEG, reconstructing after first retiming

expl

exel

Schedule length of the prologue generated during MDFG reconstructing
after second retiming
Schedule length of the epilogue generated during MDFG reconstructing
after second retiming
exd2 Retiming depth obtained during MDFG reconstructing after second retiming

exp2

exe2

In the following, we focus on the entire retimed loop to compare the overall
schedule length. In chapter 3 we have introduced an analytic model to calculate the
overall schedule length of a retimed MDFG Formulas (A.1)~(A.5) can be directly
used to test methods RSOR and Kim et al. [28], and we extend it further to treat
RSER. Table 6.6 lists variables used in the extended analytic model. Note that we
restrict that only two retiming bases, (0, 1) and (1, 0), can be selected in the MDFG
reconstruction algorithm. That is, the original MDFG is retimed at most twice during
reconstructing, with two retiming bases been used in different sequences. In the
extended analytic model, we directly assume that every MDFG is retimed twice, and

design corresponded formulas to calculate the overall schedule length. If the given

101

MDFG is only retimed once, variables exp2, exe2, and exd2 can be simply set to zero.
Detailed derivations of new formulas are listed in appendix B.

Figures 6.10 and 6.11 show the overall schedule lengths of the entire retimed
loop when the target architecture has one or two function units, respectively. From
these figures, for most applications RSOR obtain shorter overall schedule lengths than
LPLS and Kim et a. [28]. If the given MDFG contains exploitable sharing sets, using
RSER may not produce shorter overall schedule lengths compared to RSOR, but still
outperforms LPLS and Kim et al. [28]. These results are the same as the eval uations
based on a single iteration in the repetitive pattern. That is, although the two proposed
methods, especially RSER, require longer time to run the prologue and epilogue, the
overall performance is still better because they can effectively explore the instruction-
level parallelism between successive iterations.

Finally, we summarize abeve.evaluations. The overall schedule lengths obtained
by RSOR and RSER are obviously shorter-than those of previous methods, although
RSER may require more time to run-corresponding prologue and epilogue codes. |If
the number of OPRs is the evaluation metricc RSOR and RSER are at least as
effective as LPLS and Kim et al. [28]. Recall that the average power consumption of
the function unit is clearly less when an operand remains unchanged, and the total
power consumption of a schedule equals to the sum of power consumed by all
instructions. Since proposed RSOR and RSER perform better on both evaluation
metrics schedule length and the number of OPRs, we conclude that they are
energy-efficient code generation methods. As for the instruction count, our proposed
methods are still very effective for the repetitive pattern due to fewer inserted spill
codes. But their corresponding prologue and epilogue codes have to be stored in
addition to the repetitive pattern, so our RSER will require much more memory space

to store the scheduling results compared to other related methods.

102

—o—— forward RSOR —>¢— forward_RSER

[——forward_LPLS —a&——forward_Kim

- - A- - DFT_Kim

- - X- - DFT_RSER

F-- @ - DFT_LPLS

- - ©- - DFT_RSOR

40

—6——WDF_RSOR —>»— WDF_RSER

—8&— WDF_LPLS —&— WDF Kim

- - A- - 'lIR2D_Kim

‘IIR2D_RSOR - - X- - '[IR2D_RSER

‘IIR2D_LPLS

-- 8- -
- - O -

55

50

¢ 9
(000T X) @[0A2 3000

n o wuw o
™M™ Mo N «

40

" o
mn o
SWI,,.Q,.
= el .
mw,R_ l,,o,,
X 655 R
NeB '
T EE u
= RR N
+m@
£
x £
29
a |
L,R,m
nnag
002
IIE
FEX
++*
[Te) o n o n
o™ ™ N N —
(000T x) 3100 30010
e O
e o
RY.O
n X
£
2B
r,d,d_
283
oo
+mo
@
23 E
L,R,K_
°
rrs
++._.
o 0 o n o n o o
Y] < < (3] o N N -

(000T x) 3040 3p00[0

0SX0S
GEX0L
08X0¢g
0EX09
G9XG2
[02,0)7
SZX0S
05X02
0EXoe
0EXST
STX0E
0ex0c
0TXST
STX8

(=}
X
loop sizeg

0SX0S
GEX0L
08X0g
0EX09
S9XGe
(0,2X014
GZX0S
05X02
0EXoe
0EXST
STX0E
0ex0c
0TXST

—&—|IR1D_Kim

16

n
n X
ml_
mmm
o o
828538
TT T
+mm
n X
£
29 ¢
oo o
2882
TT®T
++..-
n o n o n o n o n o
< < (32} (2] N N — —
(000T x) 3100 30010
N4 X
m 4 X
£
o]
4
,R,m,m_
9% &]
RUU
£EE
' 7
V‘Aix
n X
n X
2852 ‘
L,R,m,m_
99% %
RRUU A
==87
++*0 |
(000T X) 81040 >j00[0

324 400 529 625 729 900 1000

225

loop size 100

324 400 529 625 729 900 1000

225

loop size 100

Figure 6.10. Experimental results of DSP applications (1 function unit, overall

schedule length).

103

—&—— forward RSOR ——>— forward_RSER
‘DFT_LPLS

[—@—forward LPLS ——&—forward_Kim

‘DFT_RSER

- - A -
- X= -

*DFT_RSOR

- Q= -

35

—&— WDF_Kim
—— WDF_RSOR ——>—WDF_RSER

—&— WDF_LPLS

1IR2D_Kim

‘1IR2D_LPLS

D --m-

4X i
4xXxnm

A
X
u

-1IR2D_RSER

- = A -
- - - -

‘1IR2D_RSOR

-- 8 -
- O -

wn o m
000t X} 8pko 500

45
40

0 Q

o™ ™
(000T X

,
8
E)

K 8
[0A2 3200

0SX0S
SEXOL
08X0g
0EX09
G9XG2
(0,2X014
SZX0S
0Sx0¢
0EX0E
0EXST
STX0E
02x0e
OTXST

| IR | <
n 4« (4
| S N O,
n K. hS
z 3 “He e
E S5 s
K_.m m | K|
S [
TEE ms
= DN
. LD
"o
£
o x E
X
2§ 2
0 ng
O QO =
I I E
FFE R
++..-
0 o
o™ ™
| | ¢4
n o4
[8

- - @8- - Foyd LPLS
- - ©- - ‘Floyd RSOR

—— Filter_RSOR

- - A- - Foyd_Kim

—8&—Filter_LPLS —a&—Filter_Kim

(=) 0 Q wn o n

45
4
3
3
2
2
1

(000T X) 31040 >00[0

—<o——allpole RSOR - - @8- - elliptic_LPLS

- - ©- - dliptic RSOR

c_Kim

- - A- - ellipti

—A—1IR1D_Kim

30 1 —m—adllpole LPLS —a&—allpole Kim

—>»—IR1D_RSER

—0—1IR1D_RSOR

- - A- - equatiol
- - X- - ‘equation_R

25

serl

n_Kim

- - ©- - -equation_ RSOR

o n o
39 — —

(000T X) 81040 >00[0

14 - —&—IIR1D_LPLS

12 | - - ¥ - -equation LPLS

o o] ©
000T X) 8joAd >jooo

324 400 529 625 729 900 1000

225

loop size 100

324 400 529 625 729 900 1000

225

loop sizaoo

Figure 6.11. Experimental results of DSP applications (2 function units, overall

schedule length).

104

Chapter 7. Conclusions and Future Work

7.1 Conclusions

In this thesis we focus on proposing effective code generation method to
schedule uniform loops on DSP with multiple data memory banks. A hypothetical
machine model is also defined to simulate a scalable DSP architecture, in order to
deep study the influence of differing number of resources on the scheduling result.
Our research contains three main issues: variable partition mechanisms, effective
methods containing all code generation phases, and energy-efficient methods based on
the operand sharing technique. In each issue we proposed some effective methods,
and evaluate those using selected MDFGs and an analytic model. In the following we

give brief conclusions for our research:

(2) Variable partition mechanisms

In the first issue, we define three Simple mechani sms to partition variables based
on their array indices. After enlarging'the given MDFG using different techniques to
suit each variable partition mechanism, the multi-dimensional rotation scheduling is
applied to schedule instructions and three corresponded code generation methods RSF
RST, and RSP are proposed. Because variables are never repartitioned during
instruction scheduling, these three methods are apparently simpler and more efficient
compared to a similar study RSVR. In addition, the enlarged iteration used in our
methods gives a more global view of data dependencies, which is useful to explore the
instruction-level parallelism between successive iterations using the retiming
technique. We also define an analytic model and some formulas to calculate the
overall schedule length of a retimed loop. From evaluation results, our methods

achieve schedules with egqual even shorter lengths compared to those of RSVR, not

105

only for asingle iteration in the repetitive pattern but also for the entire retimed loop.
Three variable partition mechanisms defined in RSVR, RSF, and RST are used in our

subsequent several studies.

(2) Effective methods containing al code generation phases

For DSP with multiple data memory banks, the complete code generation process
must include five phases. Because these phases are extremely data dependent, to
consider more phases at a time will lead more effective results. In our second study
issue, we first focus on Motorola DSP56000 and propose method RSSP to cover all
code generation phases. In RSSP a TDAG is defined and transferred from the given
MDFG to remove possible unnecessary memory accesses. Then, the main feature of
RSSP is to predict the occurrence of accumulator-spills and generate corresponding
spill codes in advance. These: spill codes will be'scheduled in parallel with other
instructions, which is beneficial toigenerate-a-more compact and shorter schedule.
After generating an initial schedule; the retiming technique is also applied to fully
utilize resources. From evaluation results, RSSP obviously outperforms methods RSF,
RST, and RSP, because it schedules instructions based on the TDAG which contains
less instructions than the MDFG. Comparing to other methods designed for Motorola
DSP56000 our RSSP still generates schedules with shorter lengths, in both a single
iteration in the repetitive pattern and the entire retimed loop.

However, athough RSSP seems quire effective, it is designed dedicated to
Motorola DSP56000 and not scalable. Therefore, we further propose a general method
RSSA, which can suit various DSPs with different architectural features. In RSSA, in
addition to shorter schedule length, we take fewer spill codes as the second scheduling
goal due to itsimportance in DSP. Instructions are still scheduled based on the TDAG

to remove possible unnecessary memory accesses. But we no longer predict the

106

occurrences of accumulator spills in RSSA, because the predicting result becomes
inaccurate easily when the target architecture is not specific. During scheduling
instructions, several variables are dynamicaly updated to record the number of
resources been occupied at every time step. When an accumulator spill is detected by
checking those variables, we prefer to transfer the overwritten ALU result to an
available register and temporarily store it to data memory only when required. After
generating an initial schedule, the retiming technique is still applied in RSSA to
explore the instruction-level paralelism between successive iterations. Suppose the
target architecture equals to the Motorola DSP56000, RSSA usually achieves the
shortest schedule length and considerably fewer spill codes compared to other related
studies. We also define a hypothetical machine model to simulate architectures with
different number of resources. This parameterized.model is basically extended from
the Motorola DSP56000, but “can.be apply.to other, real DSP families with minor
modifications. After evaluating MDEGs.-using.RSSA on this hypothetical machine
model, the influence of differing”number of .resources on the scheduling results is
deep studied. From evaluation results, we conclude that adding more accumulators to
keep more ALU results for further using is the most efficient way to reduce spill codes.
Increasing the number of registers or data memory banks is also useful, but its
improvement is not as obvious as using more accumulators. As for achieving shorter
schedule length, adding additional function units and accumulators concurrently is
certainly necessary. Furthermore, we aso find that the variable partition mechanism
proposed in RSF is unsuitable for one-dimensional MDFGs. This is because most
memory accesses will reference variables from the same data memory bank after
applying loop unfolding, which may easily fail to be scheduled successfully in time

and lengthen the scheduling results.

107

(3) Energy-efficient code generation methods

Because a function unit will cost less power to execute an instruction when one
of its operand remains unchanged, the operand sharing is a useful technique in DSP
for low power design. In our third study issue in this thesis, we propose two energy-
efficient code generation methods RSOR and RSER, both based on the operand
sharing technique. RSOR is directly extended from RSSA and aimed to explore
potential operand sharing within an iteration. In RSOR we define a sharing set to
group ALU instructions with common operand, and restrictedly schedule instructions
in a sharing set to the same function unit at consecutive time steps to reuse operands.
However, in real designs common operands are not encountered very frequently, so
using RSOR only can reduce insignificant power consumption. But potential operand
sharing may be hidden inside the.original, MDFG-which can be generated after loop
transformations. Therefore, we propose our.second “energy-efficient method RSER,
which is extended from RSOR-and aimed-to-further explore operand sharing between
different iterations. In RSER an‘exploitable-sharing set is defined to group load
variable instructions that reference the same array element in different iterations. Then,
we design a MDFG reconstruction algorithm based on the retiming technique, and
apply the method RSOR to schedule the reconstructed MDFG. Hence, operand
sharing within an iteration and resided in different iterations can be both explored
using RSER. We also extend the analytic model defined in methods RSF and RST to
calculate the overall schedule length and number of OPRs for the entire retimed loop
after applying RSOR and RSER. From evaluation results, we find that both RSOR
and RSER can successfully explore operand sharing within an iteration. When the
given MDFG contains exploitable sharing sets, using RSER achieves schedules with
further more OPRs, which represents that exploiting the operand sharing in different

iterations is beneficial for energy-efficient instruction scheduling. On the other hand,

108

schedules generated by RSOR and RSER may have dlightly longer schedule lengths
for a single repetitive iteration compared to those of RSSA. The main reason is that
some ALU instructions are restrictedly scheduled to the same function unit, so the
instruction-level parallelism between them cannot be successfully explored. But for
the entire retimed loop, both RSOR and RSER still achieve shorter overall schedule
lengths compared to related studies, because they apply the retiming technique to fully
utilize resources as far as possible. Finally, as for the instruction count, our two
proposed methods insert quite fewer spill codes for a repetitive iteration, but RSER
will generate considerable prologue and epilogue codes. That is, if the instruction
count is taken as the evaluation metric, RSER will require much more memory space

to store scheduling results compared to related methods.

7.2 Future Work

Apart from above descriptions.there remain some promising issues for future
research. For the complete code. generation-processing, the real memory offset
assignment of variables and the address register allocation should be considered.
Based on the parallel move conditions listed in [10], a special addressing mode must
be satisfied when simultaneously executing multiple memory accesses. Moreover,
each memory access may be performed only if an address register is available that
points to the correct memory location. Because DSP usualy contains simpler
addressing modes compared to general -purpose microprocessor, these two phases are
especially important. However, for all methods proposed in this thesis, we never
consider these phases during scheduling process. Therefore, in the near future, we will
survey related methods and design our own mechanisms. After including these two
phases our code generation method will become more compl ete.

The second promising issue is about the code size reduction. In our methods, we

109

frequently use the retiming technigue to increase performances. Applying retiming to
schedule uniform loops is actually effective to reduce the schedule length, but the
main problem is the generation of prologue and epilogue. We have shown that in our
proposed methods the prologue and epilogue will not cost too much execution time to
degrade the performance. However, extra codes for prologue and epilogue require
considerable space to be stored in memory, especially in RSER because we apply the
retiming technique more than once. Authors of [59] propose a mechanism to avoid
storing prologue and epilogue codes. Their main ideais to claim that the execution of
prologue and epilogue can be simulated by conditionally executing the repetitive
iteration. Hence, only a repetitive iteration has to be stored, and additional instructions
are required to control the execution of the entire retimed loop. This idea can be used
in our methods RSSP, RSSA, and-RSOR. But in RSER it is unsuitable, because using
RSER will generate several pairs of prologueand epitogue, and not all of them can be
simulated by a single repetitive iteration.-Therefore; in the near future, we will survey
related methods and try to design .effective mechanisms to reduce the prologue and
epilogue codes. After reducing the required code size our code generation methods
will be more practical.

Finally, we can try to realize proposed methods and do some precise evaluations.
In this thesis we use analytic model to calculate the schedule length and instruction
count. As for the power consumption, information provided in [20] also only can
approximately estimate the required current. If our methods can be realized and tested
by more accurate tools, their effectiveness and efficiency will be evaluated more
precisely. Our code generation methods are al systematic and represented by definite
algorithms. Therefore, we believe that they can be integrated into real DSP compiler

and successfully executed.

110

References

[1]

[2]

(3]

[4]

(3]

[6]

[7]

[8]

[9]

C. Hsu and Y.L. Jeang, “Pipeline Scheduling Techniques in High-Level
Synthesis”, Proc. of 6" Annual IEEE International ASC Conference and
Exhibition, Rochester, pp. 396-403, 1993.

S.Y. Kung, VLSl Array Processors, Prentice Hall, Englewood, NJ, 1988.

V.K. Madisetti, VLS| Digital Signal Processors. An Introduction to Rapid
Prototyping and Design Synthesis, Butterworth-Heinemann, Boston, 1995.

E. Musoll and J. Cortadella, “Scheduling and Resource Binding for Low Power”,
Proc. of International Symposium on System Synthesis, pp. 104-109, April 1995.
K.S. Khouri, G Lakshminarayana, and N.K. Jha, “High-level Synthesis of Low-
power Control-flow Intensive Circuits’, |IEEE Transactions on Computer-aided
Design of Integrated Circuits and Systems, Vol. 18, No. 12, pp. 1715-1729, Dec.
1999.

Z. Wang and X.S. Hu, “PowerAware-Variable Partitioning and Instruction
Scheduling for Multiple Memory. Banks”;-Proc. of Design, Automation and Test
in Europe Conference and Exhibition, Vol. 1, pp. 312-317, Feb. 2004.

J. Eyre and J. Bier, “The Evolution of DSP Processors’, IEEE Sgnal Processing
Magazine, Vol. 17, Issue 2, pp. 43-51, March 2000.

P. Lapsley, J. Bier, A. Shoham, and E.A. Lee, DSP Processor Fundamentals:
Architectures and Features, Berkeley Design Technology, Inc. 1996.

J. Cho, Y. Paek, and D. Whalley, “Efficient Register and Memory Assignment for
Non-orthogonal Architectures via Graph Coloring and MST Algorithms”, Proc.

of ACM Joint Conference LCTES-SCOPES, pp. 130-138, June 2002.

[10] DSP56000/DSP56001 Digital Signal Processor User’s Manual, Motorola Inc.;

DSP56300 Family Manual, Motorola Inc.

[11] http://www.physics.otago.ac.nz/internal/EL EC401/A D SP2100/adsp2101.html

m

http://www.physics.otago.ac.nz/internal/ELEC401/ADSP2100/adsp2101.html

[12] http://www.chipcatal 0g.com/NEC/UPD77016.htm

[13] TMS320C6000 Technical Brief, Texas Instruments.

[14] Y.H. Lee and C. Chen, “Efficient Variable Partitioning and Scheduling Methods
of Multiple Memory Modules for DSP”, Proc. of 10™ Werkshop on Compiler
Techniques for High-Performance Computing, pp. 80-89, March 2004.

[15] M.A.R. Saghir, P. Chow, and C.G Lee, “Towards Better DSP Architectures and
Compilers”, Proc. of International Conference on Sgnal Processing Applications
and Technology, pp. 658-664, Oct. 1994.

[16] R. Leupers and D. Kotte, “Variable Partitioning for Dual Memory Bank DSPs’,
Proc. of International Conference on Acoustics, Speech, and Sgnal Processing,
Vol. 2, pp. 1121-1124, 2001.

[17] A. Sudarsanam and S. Malik, “Simultaneous Reference Allocation in Code
Generation for Dual Data-Memory Bank:ASIPs?, ACM Transactions on Design
Automation of Electronic Systems; \Vol.-5,-No. 2, pp. 242-264, April 2000.

[18] M.A.R. Saghir, P. Chow, and €.G Lee; “Exploiting Dual-memory Banks in
Digital Signal Processors”, Proc. of 7" International Conference on Architecture
Support for Programming Language and Operating Systems, pp. 234-243, 1996.

[19] Q. Zhuge, B. Xiao, and E.H.M. Sha, “Exploring Variable Partitioning for Dual
Data-memory Bank Processors”, Proc. of 34" |nternational Symposium on
Microarchitecture, pp. 45-52, Dec. 2001.

[20] W.T. Shiue, “Energy-efficient Backend Compiler Design for Embedded Systems”,
Proc. of 10" International Conference on Electrical and Electronic Technology,
Vol. 1, pp. 103-109, Aug. 2001.

[21] JM. Daveau, T. Thery, T. Lepley, and M. Santana, “A Retargetable Register
Allocation Framework for Embedded Processors’, Proc. of ACM S GPLAN/

S GBED, pp. 202-210, June 2004.

112

http://www.chipcatalog.com/NEC/UPD77016.htm

[22] B. Scholz and E. Eckstein, “Register Allocation for Irregular Architectures’, Proc.
of ACM Joint Conference LCTES-SCOPES, pp. 139-148, June 2002.

[23] X. Zhuang, T. Zhang, and S. Pande, “Hardware-managed Register Allocation for
Embedded Processors’, Proc. of ACM SSGPLAN/SGBED, pp. 192-201, June
2004.

[24] D. Kim and K. Choi, “Power-conscious High Level Synthesis using Loop
Folding”, Proc. of Design Automation Conference, pp. 441-445, June 1997.

[25] V. Tiwari, S. Maik. A. Wolfe, and M.T.C. Lee, “Instruction Level Power
Analysis and Optimization of Software”, Journal of VLS Sgnal Processing, Vol
13, Issue 2-3, pp. 223-238, Aug./Sep. 1996.

[26] R. Mehra and J. Rabaey, “Behavioral Level Power Estimation and Exploration”,
Proc. of International Workshop Low Power Design, pp. 255-270, Jan. 1994.

[27] E. Musoll and J. Cortadelta, “High-levelSynthesis Techniques for Reducing the
Activity of Functional Units’, Proc.-of Internatronal Symposium on Low Power
Design, pp. 99-104, April 1995.

[28] D. Kim, D. Shin, and K. Choi, “Pipelining with Common Operands for Power-
efficient Linear Systems”, |EEE Transactions on VLS Systems, Vol. 13, No. 9, pp.
1023-1034, Sep. 2005.

[29] E. Macii, M. Pedram, and F. Somenzi, “High-level Power Modeling, Estimation,
and Optimization”, IEEE Transactions on Computer-aided Design of Integrated
Circuits and Systems, Vol. 17, No. 11, pp. 1061-1079, Nov. 1998.

[30] Q. Zhuge, E.H.M. Sha, B. Xiao, and C. Chantrapornchai, “Efficient Variable
Partitioning and Scheduling for DSP Processors with Multiple Memory
Modules’, IEEE Transactions on Sgnal Processing, Vol. 52, No. 4, pp. 1090-
1099, April 2004.

[31] L.F. Chao and E.H.M. Sha, “Scheduling Data-flow Graphs via Retiming and

113

Unfolding”, IEEE Transactions on Parallel and Distributed Systems, Vol. 8, No.
12, pp. 1259-1267, Dec. 1997.

[32] M. Wolfe, High Performance Compilers for Parallel Computing, Addison-
Wesley, Redwood City, CA, USA, 1996.

[33] M.E. Wolf and M.S. Lam, “A Loop Transformation Theory and an Algorithm to
Maximize Parallelism”, IEEE Transactions on Parallel and Distributed Systems,
Vol. 2, No. 4, pp. 452-471, Oct. 1991.

[34] N.L. Passos and E.H.M. Sha, “Achieving Full Paralelism using Multi-
dimensional Retiming”, IEEE Transactions on Parallel and Distributed Systems,
Vol. 7, No. 11, pp. 1150-1163, Nov. 1996.

[35] N.L. Passos and E.H.M. Sha, “Scheduling of Uniform Multi-dimensional
Systems under Resource Constraints’, |IEEE Transactions on VLS Systems, Vol.
6, No. 4, pp. 719-730, Deg: 1998.

[36] Y.H. Lee and C. Chen, <An |Effective Variable Partitioning and Scheduling
Algorithm for DSP with Multiple Memory Modules’, Proc. of International
Computer Symposium, Dec. 2004.

[37] Y.H. Lee and C. Chen, “An Efficient Code Generation Algorithm for Non-
orthogonal DSP Architecture”, accepted and to appear to Journal of VLS Sgnal
Processing Systems.

[38] Y.H. Lee and C. Chen, “An Effective and Efficient Code Generation Algorithm
for Uniform Loops on Non-orthogonal DSP Architecture”, Journal of Systems
and Software, Vol. 80, Issue 3, pp. 410-428, March 2007.

[39] C.E. Leiserson and J.B. Saxe, “Retiming Synchronous Circuitry”, Algorithmica,
Vol. 6, No. 1, pp. 5-35, June 1991.

[40] L. Lamport, “The Parallel Execution of DO Loops”, Comm. ACM SSGPLAN, Vol.

17, No. 2, pp. 82-93, Feb. 1974.

114

[41] Y.H. Lee, M.L. Tsai, and C. Chen, “RPUSM: An Effective Instruction Scheduling
Method for Nested Loops’, Proc. of National Computer Symposium, pp.
C025-C036, Dec. 2001.

[42] YH. Lee and C. Chen, “A Two-level Scheduling Method: An Effective
Parallelizing Technique for Uniform Nested Loops on a DSP Multiprocessor”,
Journal of Systems and Software, Vol. 75, Issue 1-2, pp 155-170, Feb. 2005.

[43] L.F. Chao, A. LaPaugh, and E.H.M. Sha, “Rotation Scheduling: A Loop
Pipelining Algorithm”, IEEE Transactions on Computer Aided Design, Vol. 16,
No. 3, pp. 229-239, March 1997.

[44] C. Kessler and A. Bednarski, “Optimal Integrated Code Generation for Clustered
VLIW Architectures”, Proc. of ACM Joint conference LCTES SCOPES, pp.
102-111, June 2002.

[45] V. Tiwari, S. Malik, and A. Wolfe, “Power Anaysis of Embedded Software: A
First Step towards Software Power-Minimization”, IEEE Transactions on VLS
Systems, Vol. 2, No 4, pp. 437-445, Dec. 1994.

[46] M.T.C. Lee, V. Tiwari, S. Malik, and M. Fujita, “Power Analysis and
Minimization Techniques for Embedded DSP Software”, IEEE Transactions on
Very Large Scale Integration Systems, Vol. 5, No. 1, pp. 123-135, March 1997.

[47] W. Xu, A. Parikh, M. Kandemir, and M.J. Irwin, “Fine-grain Instruction
Scheduling for Low Energy”, Proc. of IEEE Wbrkshop on Sgnal Processing
Systems, pp. 258-263, Oct. 2002.

[48] KW. Choi and A. Chatterjee, “Efficient Instruction-level Optimization
Methodology for Low-power Embedded Systems”, Proc. of the 14™ | nternational
Symposium on Systems Synthesis, pp. 147-152, Oct. 2001.

[49] A. Parikh, M. Kandemir, N. Vijaykrishnan, and M.J. Irwin, “Energy-aware

Instruction Scheduling”, Proc. of the 7" International Conference on High

115

Performance Computing, pp. 335-344, 2000.

[50] A. Raghunathan and N.K. Jha, “SCALP: An Iterative Improvement based |ow-
power Data Path Synthesis System”, IEEE Transactions on Computer-aided
Design of Integrated Circuits and Systems, Vol. 16, No. 11, pp. 1260-1277, Nov.
1997.

[51] C.G Lyuh, T. Kim, and C.L. Liu, “An Integrated Data Path Optimization for Low
Power based on Network Flow Method”, Proc. of ACM/IEEE Design Automation
Conference, pp. 553-559, 2001.

[52] JM. Chang and M. Pedram, “Module Assignment for Low Power”, Proc. of
European Design Automation Conference, pp. 376-381, 1996.

[53] http://www.princeton.edu/~mescal/; http://embedded.eecs.berkeley.edu/mescal/

[54] http://www.arm.com/products/CPUs/families/©ptimoDE. html

[55] http://ipf-orc.sourceforge.net/

[56] http://www.tensilica.com/

[57] http://www.trimaran.org/

[58] Y.H. Lee and C. Chen, “Energy-efficient Code Generation Algorithms with
Operand Sharing for DSP Architecture with Multiple Data Memory Banks’,
submitted (revised) to Journal of Systems and Software.

[59] Q. Zhuge, B. Xiao, and E.H.M. Sha, “Code Size Reduction Technique and
Implementation for Software-pipelined DSP Applications”’, ACM Transactions on

Embedded Computing Systems, Vol. 2, No. 4, pp. 590-613, Nov. 2003.

116

http://www.princeton.edu/~mescal/
http://embedded.eecs.berkeley.edu/mescal/
http://www.arm.com/products/CPUs/families/OptimoDE.html
http://ipf-orc.sourceforge.net/
http://www.tensilica.com/
http://www.trimaran.org/

Appendix A. TheAnalytic Model for RSVR, RSF, RST, and

RSP

In this appendix we introduce the analytic model defined to calculate the overall
schedule length of a retimed one or two-dimensional MDFG [14, 36]. Nevertheless, it
can be easily extended to cover nested loop with depths greater than two. Table A.1,
the same as Table 3.3, lists variables used in our analytic model. The following
formulas are used to calculate overall schedule lengths after applying different
methods. Note that formula (A.5) for RST is only suited for the nested loop can be
tiled directly. If the nested loop needs to be skewed before tiling, its scheduling results
using RST is unacceptable and the calculation of overall schedule length becomes
very complicated. We suggest not using RST if the nested |oop cannot be tiled directly,

and corresponding formul as are omitted.

<« For RSVR, 1-dim MDFG, the overall schedule length =
length” (m- d) + prologue + epilogue (A.D)

Figure A.1(a) shows the original iteration space of a loop with depth one which
contains m iterations. When we apply the retiming technique, the retiming baser = 1
is aways feasible for a one-dimensional MDFG. Figure A.1(b) shows the modified
iteration space of Figure A.1(a) after applying RSVR with retiming depth d. From this
figure, clearly that d iterations are moved to prologue and epilogue, and the repetitive
pattern contains m-d iterations. Thus, formula (A.1) can be directly approved.

<« For RSF, 1-dim MDFG, the overall schedule length =
length” (¢gmyN{ —d) + prologue + epilogue + half((m mod N), N) (A2

When we apply RSF to schedule a given loop, we first need to unfold the

original MDFG with factor N. Therefore, for aloop with depth with depth one which

117

Table A.1. Variables defined in the analytic model.

Variable Definition

N Number of memory banks

L oop bound of the outer loop for atwo-dimensional nested loop
L oop bound for an one-dimensional |oop
n L oop bound of theinner loop for atwo-dimensional nested loop

m

prologue | Schedule length of the prologue part of aretimed loop

epilogue | Schedule length of the epilogue part of aretimed loop

Schedule length of asingle iteration in the repetitive pattern of a
retimed loop
list Schedule length of a single iteration produced by list scheduling

length

Retiming depth, the number of iterations that must be moved into the
prologue and epilogue

w Skew factor used to paral€lize the inner loop
half (k, N) | Schedule length of k original iterations under N memory banks

— 3
| R

d

m d m—d
iterations iterations iterations
N
I @ WK
L | \@ | (b)
mmod N @ N T — i\
terations Y Bt 7 \N
gm/N{ —d d
ém/N ¢ enlarged iterations enlarged iterations
enlarged iterations \!{ A
......... s /I
................................ i (c)
[[] origind iterations [] enlargediterations [] half

|:| prologue + epilogue |:| repetitive pattern |:| list

Figure A.1. Iteration spaces of aloop with depth one. (@) Original, (b)
applying RSVR, (c) applying RSF.

contains m iterations, we will obtain ¢gn/N(enlarged iterations and a half portion
with (m mod N) original iterations. Then, we apply the retiming technique for these
enlarged iterations with retiming depth d, and the modified iteration space is shown in

FigureA.1(c). Similar asformula (A.1), formula (A.2) is aso directly approved.

118

.

niterations
C——
miterations (a)
nmod N i
iterations YF————71""
é/N(
enlarged
iterations — T
m enlarged iterations
(c)
n
enlarged
" S iterations
~ I r 4

N

%
gmyN(enlarged iterations \‘s
n mod N iterations (d)

I
1
T

v

n-sd
> . .
iterations

(b)

€/N(-sd
-> enlarged
iterations

m - s,d enlarged iterations

n-sd

4-> enlarged

iterations

ém/ N (= s,d enlarged iterations

Figure A.2. Iteration spaces of aleepwith depth two. (a) Original, (b)
applying RSVR, (c) applying RSF, (d) applying RST.

length” (m— s,d)(n— s,d) + (prologue + epilogue) ~ d(ssm + N — 5,5, — 2ds;S,) +
list” s15d(d + 1)

As shown in Figure 2.3, two cases of modified iteration space will be generated

119

« For RSVR, 2-dim MDFG, the overall schedule length =

after applying the retiming technique using different schedule vectors for a nested
loop with depth two. In fact, Figure 2.3(b) is a special case of Figure 2.3(c), so in the
following we directly select schedule vector s = (s1, S) to retime a two-dimensional
MDFG. Figure A.2(a) shows the original iteration space of a loop with depth two
which contains m’ n iterations. After applying RSVR with retiming base (s, -s1),

which is orthogonal to s, and retiming depth d, the modified iteration space is shown

Figure A.2(b). From this figure, we can see the repetitive pattern contains (m —
sd)(n — sd) iterations, and d(sim + N — 15 — 2ds;S,) iterations are moved to
prologue and epilogue. The remaining s;s,d(d + 1) iterations will be required to be
executed using the list scheduling, because they are moved out of the nested loop.
Formula (A.3) still can be simply approved.
<« For RSF, 2-dim MDFG, the overall schedule length =

length = (M — sd)(en/N{ — s1d) + (prologue + epilogue) = d(ssm + S¢en/N{ —

1S - 205,Sy) + list ™ s18,d(d + 1) + half((n mod N), N) ~ m (A.4)

For a nested loop with depth two contains m’ n iterations, the inner loop will be

unfolded with factor N when we apply RSF to schedule it. After loop unfolding, we

will get m" ¢n/N{ enlarged iterations and m” (n mod N) iterations in the half portion,

as shown in Figure A.2(c). Then, these-enlarged iterations are applied the retiming
technique with schedule vecter (s;, S) and retiming depth d. The overal schedule
length of the retimed iterations can’bercalculated using formula (A.3). Therefore,
formula (A.4) isdirectly approved.
<« For RST, the overall schedulelength =

length * (gnyN{ — sd)(n — sid) + (prologue + epilogue) ~ d(S1amyN(+ SN —

S$1S - 2ds1S) + list” 15d(d + 1) + half((mmod N), N) * n (A.5)
When we apply RST to schedule a nested loop with depth two contains m' n
iterations, the modified iteration space is shown in Figure A.2(d). Similar as above,
formula (A.5) still can be simply approved.
<« For RSP, if wm + 1 £ w+ n, the overall schedule length =
length ™ w(gm- 1)/N{—d)(m—Nd—-N+ 1+ ((m—1) mod N)) +length” (Ww+n-—
mw)(¢gmyN(— d) + (prologue + epilogue) = (wm+ w + n— 2wNd) + list ™ dwN (d -
1) + 2wgm- D/Ng” & halfG,N) + 2w " 0™ half 6,N) + (W + n—)’
half ((mmod N), N) (A.6)

120

j j j
(1, n) (m, n) (w1, m) (wmtn, m) (wm+1, m) (wmtn, m)

1,1 (m, 1) (w+1,1) (w+n,1) (w+1,1) (w+n, 1))
| | |
@ (b) (c)
Figure A.3 Iteration spaces of aloop with depth two. (a) Original,
(b)(c) applying RSP,

<« For RSP, if wn + 1> w+ n, the overall schedulelength =

length ~ w(gn- w)/wN{— d)(&n/wi— Nd— N + 1 + ((¢gn/wi— 1) mod N)) + length *
(2w + ((w — w —) mod W) gmw- w- n)/w)(en/wN¢— d) + length (2(n mod w)
+ (W~ (MW — w — n) mod w))&mw- w- n)/w()(gn/wi/Ng- d) + (prologue +
epilogue) *~ (2we¢n/wi— 2wNd +2w + ((mMw =W — n) mod w) gmw- w- n)/wi+ 2(n
mod w) + (W — ((mw — w = n) mod w)) glnwe- w=- n)/w() + list” dwN (d - 1) +

o

2wen- w/wN{™ & half GN) H2WEZ EM T half (,N) + (2w o+ ((mw - w -
n) mod w) grmw- w- n)/wg) ““half ((en/w{ mod.N), N) + (2C + (w— ((mw —w —n)
mod W)) gmw- w- n)/w) ~ half ((&ywg mod N), N) (A7)

If we use RSP to schedule a nested loop, to calculate its overall schedule length

becomes much complex. As shown in Figure A.3, two modified iteration spaces will

be generated after parallelizing the inner loop, based on variables w, m, and n. After

paralelizing, we unfold the inner loop, and retime enlarged iterations using schedule

vector (1, 0). Note that if the inner loop doesn’t contain enough enlarged iterations for

retiming, we will simply use list scheduling to schedule it. Based on two modified

iteration spaces shown in Figure A.3, we conclude formulas (A.6) and (A.7) to

calculate the overall schedule length for a given two-dimensiona MDFG after

applying RSP.

121

Appendix B. TheAnalytic Model for RSOR and RSER

In this appendix we introduce the extended analytic model to calculate the
overall schedule length and the number of operand reutilizations of a retimed one or
two-dimensional MDFG for RSOR and RSER. Nevertheless, it also can be easily
extended to cover nested loop with depths greater than two. Table B.1, the same as
Table 6.6, lists variables used in the analytic model. After applying different methods
to schedule the given MDFG the following formulas are defined to calculate their
overall schedule length. Note that three scheduling results can be derived by RSOR
and RSER, which applies different variable partition mechanisms proposed in RSVR,
RSF, and RST. In the following, we use RSOR(RSVR) to represent using RSOR with
variable partition mechanism proposed in RSVR to schedule the given loop. The
variable partition mechanism proposed in RST is only available for multi-dimensional
MDFGs. Furthermore, formulas"defined for RSOR(RSVR) are also suitable for

method proposed in Kim et al. [30].

<« For RSOR(RSVR), 1-dim MDFG, the overall schedule length =
prologue + epilogue + length ™ (m—d) (B.1)
<« For RSOR(RSF), 1-dim MDFG, the overall schedule length =

prologue + epilogue + length © (¢gm/N{ —d) + half((mmod N), N) (B.2)

For a loop with depth one containing m iterations, Figure B.1 shows iteration
spaces before and after applying methods RSOR(RSVR) and RSOR(RSF). Figure B.1
is actually the same as Figure A.1. Thus, formulas (B.1) and (B.2) are equivalent to

formulas (A.1) and (A.2) and can be directly approved as described in appendix A.

122

Table B.1. Definitions of variables used in the analytic model.

Variable Definition
N Number of memory modules
m L oop bound of the outer loop for atwo-dimensional nested loop
Loop bound for an one-dimensional 1oop
n Loop bound of theinner loop for a two-dimensional nested loop
(s1,) | Schedule vector selected for retiming during instruction scheduling
lit Schedule length of an iteration in the repetitive pattern produced by list
scheduling method
length | Schedule length of an iteration in the repetitive pattern
prologue | Schedule length of the prologue generated during instruction scheduling
eplogue | Schedule length of the prologue generated during instruction scheduling
d Retiming depth obtained during instruction scheduling
half (k, N) | Schedule length of k original iterations under N memory modules
expl Schedyle Ia.qgt'h of the prologue generated during MDFG reconstructing
after first retiming
el Schedule length of the epilogue generated during MDFG reconstructing
after first retiming
exdl Retiming depth obtained during MDFG: reconstructing after first retiming
exp2 Schedule Iength gf the prologue generateéd during MDFG reconstructing
after second retiming
oxe2 Schedule length of ‘the:epilogue generated during MDFG reconstructing
after second retiming
exd2 Retiming depth obtained during MDFG reconstructing after second retiming

« For RSER(RSVR), 1-dim MDFG, the overall schedule length =

expl + exel + prologue + epilogue + length ” (m— exdl — d)

(B.3)

<« For RSER(RSF), 1-dim MDFG, the overall schedule length =

expl + exel + prologue + epilogue + length * (gmy/N{ — exdl — d) + half((m mod

N), N)

(B.4)

When we use RSER(RSVR) to schedule a loop with depth one containing m

iterations, th

e retiming technique will be applied twice to reconstruct the given MDFG

and compact theinitial scheduling result sequentially. As shown in Figure B.2(a), after

reconstruct

ing the MDFG, exdl iterations are moved into the expl and

123

' o
m v 1}
iterations o m-d
L iterations iterations
R
— 3 ‘A v
L o
mmod N 4 e _ i\
. . L U — \
Iterations \Qj
em/N(—d d
ém/N ¢ enlarged iterations enlarged iterations
enlarged iterations L .
L—d....... B 4
..................................... 0% ©
[[] origind iterations [[] enlargediterations [] half
[] prologue+epilogue [] repetitivepatern [[] list
|:| expl + exel |:| exp2 + exe2

Figure B.1. Iteration spaces of-aloop with depth one. (a) Original, (b)
applying RSOR(RSVR), (¢)-applying RSOR(RSF).

N .
/ wane o \
| 1A
exdl m— exdl m exdl — d d
iterations iterations iterations terations

@
mmod N @ s R : ,i .. i\
---------- LY PRRRES . \
iterations el [Y
exdl EYN(—exdl @VN(—exdl—d d
an/N ¢ enlarged enlarged enlarged enlarged
enlarged |terat|:ns iterations iterations iterations
A
e L - S ¢
(b)

Figure B.2. Iteration spaces of aloop with depth one. (a) Applying RSER(RSVR),
(b) applying RSER(RSF).

124

exel portions. The remaining m-exdl iterations will be further retimed with retiming
depth d, and their overall schedule length can be calculated using above formula (B.1).
On the other hand, to schedule a loop with depth one using RSER(RSF), the first step
isto move (mmod N) iterations to the half portion and unfold the given MDFG. Other
steps are actually the same as using RSER(RSVR), and the modified iteration space
after RSER(RSF) is shown in Figure B.2(b). Therefore, formulas (B.3) and (B.4) can
be simply approved.
<« For RSOR(RSVR), 2-dim MDFG, the overall schedule length =
(prologue + epilogue) * d(sim + N — 1S, — 2ds;%) + length” (M — sd)(n— s;d) +
list” s15d(d + 1) (B.5)
<« For RSOR(RSF), 2-dim MDFG, the overall schedule length =
(prologue + epilogue) = d(sim + S@/N(—.S1% — 2dsi1s) + length = (m -
Sd)(¢gn/N{ —sud) + list” s1$d(d + 1) +half((n mod N), N) *~ m (B.6)
<« For RSOR(RST), 2-dim MDFG, the'overall schedule length =
(prologue + epilogue) ~ d(sigmiN{ + SN = &S — 2ds1Sp) + length © (gmyN{ —
sd)(n—s1d) + list ™ s;5d(d + 1) + half((mmod N), N) * n (B.7)

For a loop with depth one which contains m’ n iterations, Figure B.3 shows
iteration spaces before and after applying methods RSOR(RSVR), RSOR(RSF), and
RSOR(RST). Figure B.3 is actually the same as Figure A.2. Thus, formulas (B.5)~
(B.7) are equivalent to formulas (A.3)~(A.5) and can be directly approved as
described in appendix A.

« For RSER (RSVR), 2-dim MDFG, retiming base (0, 1) — (1, 0), the overall
schedule length =
(expl +exel) " m+ (exp2 +exe2) "~ (n—exdl) + (prologue + epilogue) = d(sy(m—
exd2) + s(n—exdl) — 55, — 2ds;sy) + length © (m — exd2 — s,d)(n — exdl — s,d) +

list” sisd(d + 1) (B.8)

125

N
n iterations IR n-sd
iterations
| '
1
miterations (@ v (b)
m-— s,d iterations
nmod N i """""""""""""" |
iterations 1 &n/N(-s,d
“7==1-> enlarged
@/N(40 4 iterations
enlarged A
iterations =~ €———> e T
menlarged iterations v
(© m— s,d enlarged iterations
N n—s,d
Ined ~7F=7-> enlarged
.en arg E—-— s iterations
o % iterations '
< 7 iy il .. I
L S W PR, !
v AN v
gm/N(enlarged iterations \\A gM/N (— s,d enlarged iterations

nmod N iterations. (g

Figure B.3. Iteration spaces of aloop with depth two. (a) Original, (b) applying
RSOR(RSVR), (c) applying RSOR(RSF), (d) applying RSOR(RST).

For a nested loop with depth two which contains m’ n iterations, when we use

126

RSER(RSVR) to schedule it, the retiming technique is applied at most twice during
MDFG reconstructing with specific retiming bases. At first, we assume the MDFG is
retimed twice when it is reconstructed with retiming bases (0, 1) and (1, 0)
sequentially. As shown in Figure B.4(a), m” exdl iterations are moved into the expl
and exel portion, and the exp2 and exe2 portion contains (n—exdl)” exd2 iterations.
Then, (m-exd2)” (m-exdl) iterations, represented by the reconstructed MDFG, will be
further retimed with schedule vector (s;, s,), and their overall schedule length can be

calculated using formula (B.5). Hence, formula (B.8) is directly approved. When the

& 'i 73
exdl 5 > T
iterations \ n—exdl %
R, \ iterations < 1 4
\,
AL <3 Ve A, S
14 \i ; _*~7 . o \
n- exdl v & " P =
. . —_— _ _ _ _
iterations o exd? iterations \\/ m— exd2 Sgd n—exdl S:Ld
(a) m— exd2 iterations iterations iterations
............................... . -.. : & _- $ ""‘.““‘
- > T) exd?2 A
\ n % iterations)
0 N/ \
\ iterations -, N, /||, A % —s
\ RN A T S W
<3 O O A Ty S v 3
|| v I/\i T ——— // \
V] L’ ¢- |\ v, R : ‘; foae :l
exdl iterations , n—exd2iterations m-exdl—s,d n-exd2-sd
m — exd1 iterations ®) m— exd1 iterations iterations iterations

Figure B.4. Iteration spaces of aloop with depth two. (a) Applying RSER(RSVR),
formula (B.8), (b) applying RSER(RSVR), formula (B.9).

given MDFG is retimed only ‘enece using retiming base (0, 1), formula (B.8) is aso

available if variables exp2, exe2, and.exd2 are Set to zero.

<« For RSER (RSVR), 2-dim MDEG, retiming base (1, 0) — (0O, 1), the overall
schedule length =
(expl + exel) " n+ (exp2 + exe2) © (m— exdl) + (prologue + epilogue) ~ d(sy(m—
exdl) + s(n—exd2) — 15, — 2ds;sy) + length © (m — exdl — s,d)(n — exd2 — s,d) +

list” s15d(d + 1) (B.9)
When we apply RSER(RSVR) to schedule a nested oop with depth two contains

m’ n iterations, Figure B.4(b) shows the modified iteration space if the MDFG is
retimed twice with retiming bases (1, 0) and (0, 1) sequentialy during MDFG
reconstruction. In fact, these steps are very similar as those of Figure B.4(a), so
formula (B.9) can be easily approved according to descriptions above. When the
given MDFG is retimed only once using retiming base (1, 0), formula (B.8) is aso

available if variables exp2, exe2, and exd2 are set to zero.

127

<L

<<

For RSER (RSF), 2-dim MDFG, retiming base (0, 1) — (1, 0), the overall
schedule length =

(expl + exel) " m+ (exp2 + exe2) © (@n/N({ — exdl) + (prologue + epilogue) -
d(si(m — exd2) + s(g/N{ — exdl) — 1 - 2ds1S) + length © (m — exd2 —
Sd)(en/N{ —exdl—sid) +list” s.5d(d + 1) + half((n mod N), N) © m (B.10)
For RSER (RSF), 2-dim MDFG, retiming base (1, 0) — (0O, 1), the overall
schedule length =

(expl + exel) © en/N{ + (exp2 + exe2) © (m — exdl) + (prologue + epilogue)
d(si(m — exdl) + s(g/N{ — exd2) — s — 2ds1S) + length © (m — exdl —
Sd)(en/N{ —exd2—sd) + list” 55d(d + 1) + half((nmod N), N) © m (B.11)

For a two-dimensiona MDFG scheduled using RSER(RSF), Figure B.5 shows

two modified iteration spaces which correspond to difference sequences of applied

retiming bases during MDFG sreconstruction.. From this figure, after moving m’ (n

mod N) iterations into half portion and unfelding the MDFG, other steps are similar as

those of Figure B.4. Therefore, these two formulas-can be easily approved according

to formulas (B.8) and (B.9).

<L

<<

For RSER (RST), 2-dim MDFG, retiming base (0, 1) — (1, 0), the overall
schedule length =

(expl + exel) © @yN(+ (exp2 + exe2) ~ (n — exdl) + (prologue + epilogue) -
d(si(e@myN{ — exd2) + sp(n — exdl) — 51 — 2dsi) + length © (emyN{ — exd2 —

sd)(n—exdl — sd) + list” 55d(d + 1) + half((mmod N), N) * n (B.12)
For RSER (RST), 2-dim MDFG, retiming base (1, 0) — (0, 1), the overall

schedule length =

(expl + exel) " n+ (exp2 + exe2) * (¢gm/N{ — exdl) + (prologue + epilogue)

d(si(e@myN{ — exdl) + s(n — exd2) — 515, — 2dsip) + length © (emyN{ — exdl —
sd)(n—exd2 — 5d) + list” 55d(d + 1) + half((mmod N), N) * n (B.13)

128

m enlarged iterations
S —

exdl , |
nmodN [oy A
. R e enlérged
iterations . A ‘[
iterations
\
N I Ler §
én/N{ R = 5 . — ‘!{\\ s
enlarged @/N{-edljest &, £ ,[4
T ——— enlarged \'{ I ‘} i \il \\
menlarged iterations jterations — S m-exd2—sd Y
v .- I enleroed &n/N({—exdl - sd
exd2 enlarged iterations i . .g enlarged
v iterations . :
m— exd2 enlarged iterations iterations
@)
m— exd1 enlarged iterations ..
exd2 < — |
_n qu N AN e enréir"g'jéd Ry {: -
iterations iterationsh ‘
" A IN= [= 2. ‘\ S
en/ NL . R L7 \\ 7 \b Y 7
enlarged €n/N{—exd2 |||\ ; /[-
...... v ... 1
iterations &——> enlarged b P i Vv ‘34
menlarged iterations iterationg s, Vo n g m-exdl-sd .,
Vo 1 gn/N(—exd2 - s,d
exd1 enlargediterations \,/’ _enlar .ged enlarged
én/N(enlarged iterations Iterations iterations
(b)

Figure B.5. Iteration spaces of aloop with depthtwo. (a) Applying RSER(RSF),
formula (B.10), (b) applying RSER(RSF), formula (B.11).

For a two-dimensiona MDFG scheduled using RSER(RSF), Figure B.6 shows
two modified iteration spaces which correspond to difference sequences of applied
retiming bases during MDFG reconstruction. From this figure, after moving n” (m
mod N) iterations into half portion and unfolding the MDFG, other steps are similar as
those of Figure B.4. Therefore, these two formulas can be easily approved according

to formulas (B.8) and (B.9).

129

¢m/ N enlarged iterations
—

J— exdl g
___________ enlal’ged 7%
N . . N
i iterations
n ,\\ Jo-- = \\
enlarged : e~ le > S
. . n—exdl ! v
iterations fef——31_ | * 2 L it e I ’[:
Ny "l 2 I en larged I(i e b AR R ‘51 \\
v iterations "y aYN(—exd2—s,d ¥
gm/N(enlarged iterations v P : ayN(=2 n-—exdl - sd
v d2 enlarged iterations | enlarged larged
nmod N iterations &d< enargediteraions g iterations .en arg
ém/N(— exd2 enlarged iterations Iterations
@
n enlarged iterations .
Iy
... exd2<- M _/ \\ | |
“ s enl arged,h\ \“ \\ i
n i iterations } | M X
H bl y
H <~ IM e LS - A s
mlargaj :_‘ n— eXd2 \\ b : Lo N7 * z rd
iterations |€ B A v ol ,[%
i 1 <> enlarged <f ‘It S — ot v
v :' iterati oS - T Sl ".’ . A ‘a d \
ém/N(enlarged iterations v - eYN{-edl-sd v
v exdlenlarged.i erations |, enlarged n—exd2-sd
nmod N iterations 5 ;)
ém/ N - exd1 enlarged iterations

iterations €nlarged iterations
(b)
Figure B.6. Iteration spaces of a |oop with-depth.two. (a) Applying RSER(RST),
formula (B.12), (b) applying RSER(RST), formula (B.13).

130

