

國 立 交 通 大 ㈻

㈾訊工程㈻系

博 士 論 文

在數位訊號處理器架構下有效指令排程法之研究

A Study on Effective Instruction Scheduling Methods for DSP Architecture

研 究 生：李宜軒

指導教授：陳 正 教授

中 華 民 國 九 十 六 年 六 月

在數位訊號處理器架構下有效指令排程法之研究

A Study on Effective Instruction Scheduling Methods for DSP Architecture

研 究 生：李宜軒 Student：Yi-Hsuan Lee

指導教授：陳 正 Advisor：Cheng Chen

國 立 交 通 大 學
資 訊 工 程 學 系
博 士 論 文

A Thesis

Submitted to Department of Computer Science

College of Computer Science

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

in

Computer Science

June 2007

Hsinchu, Taiwan, Republic of China

中華民國九十六年六月

 i

在數位訊號處理器架構下有效指令排程法之研究

學生：李宜軒 指導教授：陳 正 教授

國立交通大學資訊工程學系博士班

摘要

隨著多媒體通訊日益劇增的需求，陸續發展出許多關於科學計算及數位訊號

處理的方法。這些應用程式以規則相依迴圈為主，計算複雜度很高，大部分時間

都是執行 ALU運算指令。數位訊號處理器 (digital signal processor, DSP) 是一種

為特殊目的設計的微處理器，通常包含多個獨立的資料記憶體模組 (multiple data

memory banks)，並採用 heterogeneous register sets方式；而要有效利用這些架構

特性，顯然需要充分的編譯技術支援。為了提高數位訊號處理應用程式的執行效

能，在編譯過程中必須開發迴圈之間潛在的平行度，並盡量減少額外指令 (spill

codes) 的產生。同時，由於攜帶型電子裝置的逐漸普及，功率消耗也成為另一

個重要的設計議題；若是能從高階合成 (high-level synthesis) 的觀點來考慮功率

消耗，通常能以較低的代價 (cost)，來有效降低功率消耗。

在本論文中我們將針對包含多重資料記憶體模組的數位訊號處理器以及規

則相依迴圈，設計有效的指令排程法。對於這種系統架構，完整的編譯過程必須

涵蓋多個步驟，由於這些步驟彼此之間有複雜的資料相依性，同時考慮多個步驟

將有助於得到較佳的排程結果。本論文主要分為三個研究議題，首先我們設計三

個簡單的變數分割機制 (variable partition mechanism)，以及三個對應的指令排程

法 rotation scheduling with unfolding (RSF)、rotation scheduling with tiling (RST) 和

rotation scheduling with parallelization (RSP)，不考慮暫存器 (accumulator/register)

的配置。第二個研究議題我們先針對Motorola DSP56000這顆數位訊號處理器的

架構特性，提出指令排程法 rotation scheduling with spill codes predicting (RSSP)，

涵蓋編譯過程的所有步驟。RSSP的特色是在實際排程指令之前事先預測暫存器

 ii

滿溢 (accumulator spill) 發生的時機，並產生對應的 spill codes。接著我們提出指

令排程法 rotation scheduling with spill codes avoiding (RSSA)，它是 RSSP的延伸，

可以適用於多種特性類似的架構。RSSA同時將縮短排程長度和減少 spill codes

列為排程目標，也使用其他的機制解決 accumulator spill，不再預測其發生的時

機。除此之外，我們定義一個虛擬架構模組 (hypothetical machine model)，配合

RSSA深入探討不同系統資源數量改變時對排程結果造成的影響。最後在第三個

研究議題中我們進一步延伸 RSSA，利用運算元分享 (operand sharing) 的方式，

提出二個低功耗指令排程法 rotation scheduling with operand reutilization (RSOR)

和 rotation scheduling with exploiting operand reutilization (RSER)。RSOR只在單

一迴圈元素 (iteration) 內令運算元重複使用。RSER 則是設計一個迴圈轉換

(loop transformation) 機制，尋找在不同迴圈元素內指令共用運算元的情形，以增

加運算元重複使用的機會。

在描述所有提出方法的特性之後，我們選擇數個數位訊號處理的應用程式來

評估執行效能，分別使用排程長度、指令個數以及運算元重複使用次數等三個標

準。另外我們也定義數學模組，用來計算迴圈轉換之後整體排程長度和運算元重

複使用次數。初步評估，所有提出的指令排程法都能達到預期的效能。

 iii

A Study on Effective Instruction Scheduling Methods for

DSP Architecture

Student: Yi-Hsuan Lee Advisor: Prof. Cheng Chen

Department of Computer Science, National Chiao Tung University

Abstract

As the multimedia and communication flourishing, many scientific and digital

signal processing applications are developed. These applications are iterative and

data-dominated, which are usually represented by uniform loops and characterized by

a predominance of arithmetic instructions. A digital signal processor (DSP) is a

special-purpose microprocessor designed to achieve high performance in digital

signal processing applications, and commonly employs architecture with irregular

data paths, multiple data memory banks, and heterogeneous register sets. Sufficient

compiler support is apparently important to harvest benefits of this architecture. To

optimize the throughput of such digital signal processing applications, we need to

explore the embedded parallelism of a loop and generate fewer spill codes. As the

portable system market grows rapidly, power becomes another critical constraint in

the design specification. If we consider low power design at high-level synthesis, we

can obtain much more effective power reduction with less cost and effort.

In this thesis we will focus on designing code generation methods to schedule

uniform loops on DSP architecture with multiple data memory banks. The complete

code generation process for this architecture must include several phases, and to

consider more phases at the same time may lead more effective results due to their

extremely data dependent. Our research contains three main issues. For this first issue

 iv

we design three efficient variable partition mechanisms and three corresponded

methods rotation scheduling with unfolding (RSF), rotation scheduling with tiling

(RST), and rotation scheduling with parallelization (RSP) without considering the

accumulator/register assignment. In the second issue we first present method rotation

scheduling with spill codes predicting (RSSP) focus on Motorola DSP5600 covering

all code generation phases. The main feature of RSSP is to predict the occurrence of

accumulator spills, and generate corresponding spill codes in advance. After that, we

generalize RSSP to rotation scheduling with spill codes avoiding (RSSA), which can

suit various DSPs with similar architectural features. The scheduling goal of RSSA is

to achieve both shorter schedule length and fewer spill codes. Meanwhile, new

mechanisms are designed for resolving accumulator spills instead of predicting their

occurrences. Besides, we also evaluate RSSA on a defined hypothetical machine

model, and deep study the influence of differing number of resources on the

scheduling result. Finally, two energy-efficient code generation methods rotation

scheduling with operand reutilization (RSOR) and rotation scheduling with exploiting

operand reutilization (RSER) are proposed in our third issue. These two methods are

extended from RSSA to further consider the operand sharing technique. In RSOR

only the potential operand sharing within an original iteration is considered. In RSER

we design a novel loop transformation mechanism to reconstruct the given loop, to

find instructions with common operands hidden in different original iterations.

In addition to present detailed principles of all proposed methods, we select some

MDFGs to evaluate their performances based on metrics schedule length, instruction

count, and the number of operand reutilizations. We also design analytic models for

every proposed method, which can calculate the overall scheduling length and the

number of operand reutilizations of a reconstructed loop. Preliminary evaluations

show that all proposed methods can achieve desirable results.

 v

Acknowledgements

I would like to express my sincere thanks to my advisor, Prof. Cheng Chen, for

his supervision and advice. I appreciate the other members of my thesis committee for

their time, support, and valuable comments.

There are many friends whom I wish to thank. My thanks to Dr. Der-Lin Pean,

senior Lan-Mao Chung, senior Jiang-Long Wu, Ming-Lung Tsai, and Yi-Siou Lin for

their encouragement during my initial process of doctor’s degree. I also thank many

delightful fellows, I feel happy and relaxed because of your presence. They help me in

different ways during my stay at National Chiao Tung University.

Finally, I am grateful to my dearest family. Without their support, I can not finish

this thesis. This thesis is dedicated to them.

 vi

Contents

Chinese Abstract…………………………………………………………………..….i

English Abstract……………………………………………………………………..iii

Acknowledgements………………………………………………..………………….v

Contents…………………………………………………………………………….vi

List of Tables…………………………………………………………………………ix

List of Figures…………………………………………………………………….….xi

1 Introduction……………………………………………………………………….1

1.1 The Practicability of DSP………………………………………………………...1

1.2 The Power Constraint of DSP…………………………………………………….2

1.3 Our Studies in this Thesis………………………………………………………...4

1.3.1 Variable Partition Mechanisms…………………………………………………4

1.3.2 Code Generation Methods for DSP with Multiple Data Memory Banks………6

1.3.3 Energy-efficient Code Generation Methods……………………………………7

1.4 Thesis Organization………………………………………………..……………..9

2 Fundamental Background………………………………………………………10

2.1 Program Model………………………………………………………………….10

2.2 Retiming Technique……………………………………………………………..11

2.3 Unimodular Transformations……………………………………………………14

2.4 Related Work……………………………………………………………………15

2.4.1 Retiming-based Instruction Scheduling Methods……………………………..15

2.4.2 Variable Partition Mechanisms………………………………………………..16

2.4.3 Code Generation Methods for DSP with Multiple Data Memory Banks……..17

2.4.4 Energy-efficient Code Generation Methods…………………………………..19

3 Variable Partition Mechanisms…………………………………………………22

 vii

3.1 Flaws of RSVR………………………………………………………………….22

3.2 Rotation Scheduling with Unfolding (RSF) and Rotation Scheduling with Tiling

(RST)……………………………………………………………………………23

3.3 Rotation Scheduling with Parallelization (RSP)………………………………...28

3.4 Performance Evaluations………………………………………………………..31

3.4.1 Performance Studies of a Single Iteration……………………………………..31

3.4.2 Performance Studies of the Entire Retimed Loop…………………………….33

3.4.3 Comparisons among RSF, RST, and RSP……………………………………..34

4 Effective Code Generation Method for Motorola DSP56000…………………39

4.1 Motorola DSP56000 Architecture………………………………………………39

4.2 Design Motivations……………………………………………………………...41

4.3 Rotation Scheduling with Spill Codes Predicting (RSSP)……………………...42

4.3.1 MDFG Construction…………………………………………………………..43

4.3.2 TDAG Construction…………………………………………………………...43

4.3.3 TDAG Modification…………………………………………………………...46

4.3.4 ALU Instruction Scheduling…………………………………………………..49

4.3.5 Other Instruction Scheduling………………………………………………….50

4.3.6 Initial Schedule Retiming……………………………………………………..52

4.4 Performance Evaluations………………………………………………………..53

5 Effective Generalized Code Generation Method………………………………57

5.1 Hypothetical Machine Model…………………………………………………...57

5.2 Design Motivations……………………………………………………………...60

5.3 Rotation Scheduling with Spill Codes Avoiding (RSSA)……………………….62

5.3.1 Instruction Scheduling (I)……………………………………………………..62

5.3.2 Instruction Scheduling (II)…………………………………………………….67

5.3.3 Initial Schedule Retiming……………………………………………………..69

 viii

5.4 Applying to Real DSP Families…………………………………………………69

5.4.1 Data Memory Bank…………………………………………………………….70

5.4.2 Function Unit…………………………………………………………………...70

5.4.3 Register Set…………………………………………………………………….71

5.5 Performance Evaluations………………………………………………………..72

5.5.1 Comparison with Previous Work……………………………………………...72

5.5.2 The Influence of Resources…………………………………………………...74

5.5.3 Brief Summaries………………………………………………………………80

6 Energy-efficient Code Generation Methods…………….……………………...83

6.1 Brief Analyses of RSSA………………………………………………………...83

6.2 Rotation Scheduling with Operand Reutilization (RSOR)……………………...84

6.2.1 Detailed Algorithms of RSOR………………………………………………...84

6.2.2 Comparisons between RSSA and RSOR……………………………………...87

6.3 Rotation Scheduling with Exploiting Operand Reutilization (RSER)………….89

6.3.1 MDFG Reconstruction Mechanism…………………………………………...90

6.3.2 Detailed Algorithms of RSER…………………………………………………95

6.3.3 The Difference between Proposed Methods and Other Methods……………..96

6.4 Performance Evaluations………………………………………………………..98

7 Conclusions and Future Work…………………………………………………105

7.1 Conclusions…………………………………………………………………….105

7.2 Future Work……………………………………………………………………109

Reference………………………………………………………………………...…111

Appendix A The Analytic Model for RSVR, RSF, RST, and RSP…………......117

Appendix B The Analytic Model for RSOR and RSER……………………......122

Author’s Publication List…………………………………………………………131

Vita………………………………………………………………………………….133

 ix

List of Tables

Table 3.1 Experimental results (1 function unit)(schedule length, retiming depth)..32

Table 3.2 Experimental results (2 function unit)(schedule length, retiming depth)..32

Table 3.3 Variables defined in the analytic model………………………………….34

Table 4.1 Experimental results for a single iteration in the repetitive pattern……...53

Table 5.1 Architectural features of some popular DSPs…………………………...59

Table 5.2 Variables defined for solving accumulator/register spills……………….65

Table 5.3 Schedule lengths obtained by different code generation algorithms…….73

Table 5.4 Number of operations really executed in an iteration obtained by different

code generation algorithms……………………………………………...74

Table 5.5 Characteristics of selected TDAGs……………………………………...75

Table 5.6 Experimental results, with target architectures contains different number

of accumulators………………………………………………………….76

Table 5.7 Experimental results, with target architectures contains different number

of registers……………………………………………………………….76

Table 5.8 Experimental results, with target architectures contains different number

of function units………………………………………………………….77

Table 5.9 Experimental results, with target architectures contains different number

of function units………………………………………………………….78

Table 5.10 Experimental results, with target architectures contains different number

of data memory banks…………………………………………………...79

Table 6.1 Average current required for each instruction [20]……………………87

Table 6.2 The comparison between RSOR and RSSA (the number of OPRs)…….88

Table 6.3 The comparison between RSOR and RSSA (under Motorola DSP56000

architecture)……………………………………………………………...89

 x

Table 6.4 The number of OPRs obtained by different scheduling methods……......98

Table 6.5 The comparison among four methods (under Motorola DSP56000)…100

Table 6.6 Definitions of variables used in the analytic model……………………102

Table A.1 Variables defined in the analytic model………………………………...118

Table B.1 Definitions of variables used in the analytic model……………………123

 xi

Lists of Figures
Figure 2.1 The MDFG example. (a) Nested loops in C code, (b) corresponding

MDFG, (c) node types……………………………………….…………11

Figure 2.2 Retiming example. (a) Retimed MDFG of Figure 2.1(a), (b) schedule

before retiming, (c) schedule after retiming…………………………...12

Figure 2.3 (a) Original iteration space, (b)(c) changed iteration spaces…………..13

Figure 3.1 (a) MDFG fragment, (b) scheduling result of RSVR………………….23

Figure 3.2 Variable partition results of MDFG in Figure 2.1(b). (a) Based on

rightmost indices, (b) based on leftmost indices……………………....24

Figure 3.3 Two consecutive iterations of nested loop in Figure 2.1(a)…………....25

Figure 3.4 The entire scheduling steps of RSF…………………………………....25

Figure 3.5 The entire scheduling steps of RST…………………………………....26

Figure 3.6 (a) Unfolding MDFG of Figure 2.1(b), (b) tiled MDFG of Figure

2.1(b)…………………………………………………………………...26

Figure 3.7 Scheduling results of Figure 2.1(b). (a) RSVR, (b) RSF, (c) RST….…26

Figure 3.8 (a) Unfolded nested loop in canonical form, (b) two consecutive

iterations……………………………………………………………….27

Figure 3.9 (a) Tiled nested loop in canonical form, (b) two consecutive iterations 28

Figure 3.10 The entire scheduling steps of RSP……………………………………29

Figure 3.11 Loop parallelization algorithm………………………………………...29

Figure 3.12 (a) The parallelized MDFG of Figure 2.1(b), (b) scheduling result of

Figure 2.1(b) using RSP……………………………………………….30

Figure 3.13 The unfolded MDFG of Figure 3.12(b)………………………………..31

Figure 3.14 Overall schedule lengths of DSP applications (1 function unit, 2 memory

banks)…………………………………………………………………..35

 xii

Figure 3.15 Overall schedule lengths of DSP applications (1 function unit, 2 memory

banks)…………………………………………………………………..36

Figure 4.1 Data ALU block diagram. (a) DSP56000/DSP56001, (b) DSP56300

family…………………………………………………………………..40

Figure 4.2 Motorola DSP56000 architecture……………………………………...41

Figure 4.3 The entire scheduling steps of RSSP…………………………………..43

Figure 4.4 The TDAG constructing algorithm…………………………………….44

Figure 4.5 (a) Two cases of removing memory accesses, (b) TDAG of MDFG in

Figure 2.1(b)…………………………………………………………...45

Figure 4.6 (a) A TDAG fragment, (b) after inserting the register transfer vk……...46

Figure 4.7 The register transfer inserting algorithm………………………………46

Figure 4.8 The Gop and Gpr constructing algorithm……………………………….47

Figure 4.9 The Mark_Edge algorithm……………………………………………..47

Figure 4.10 The Check_Cycle algorithm…………………………………………...48

Figure 4.11 Two Gop fragments with accumulator spill…………………………….48

Figure 4.12 The memory access inserting algorithm……………………………….49

Figure 4.13 Scheduling steps of RSSA. (a) An TDAG example, (b) ALU instruction

only, (c) initial scheduling result, (d) retimed scheduling result………50

Figure 4.14 Overall schedule lengths of DSP applications…………………………55

Figure 4.15 Overall schedule lengths of DSP applications…………………………56

Figure 5.1 An example of code compaction. (a) Uncompacted code, (b) compacted

code, (c)(d) two scheduling results after resource assignment………...61

Figure 5.2 The entire scheduling steps of RSSA………………………………….63

Figure 5.3 The Gop example. (a) TDAG, (b) corresponding Gop…………………..64

Figure 5.4(a) Gop nodes only scheduling result of Figure 5.3(a), unlimited resource 64

Figure 5.4(b) Gop nodes only scheduling result of Figure 5.3(a), with unlimited

 xiii

number of registers…………………………………………………….66

Figure 5.4(c) Gop nodes only scheduling result of Figure 5.3(a), without accumulator

spills……………………………………………………………………67

Figure 5.4(d) The initial scheduling result of Gt of Figure 5.3(a)……………………68

Figure 5.4(e) The retimed scheduling result of Gt of Figure 5.3(a)………………….70

Figure 6.1 An example of TDAG and sharing sets………………………………..85

Figure 6.2 Scheduling results of Figure 6.1. (a) RSSA, (b) RSOR……………….85

Figure 6.3 The overall scheduling algorithm of RSOR…………………………...86

Figure 6.4 The MDFG example…………………………………………………...91

Figure 6.5 The MDFG reconstructing algorithm………………………………….92

Figure 6.6 An example used to illustrate steps of RSER………………………….94

Figure 6.7 The overall scheduling algorithm of RSER……………………………95

Figure 6.8 The corresponding TDAG of (a) Figure 6.6(a), (b) Figure 6.6(d)……..96

Figure 6.9 Scheduling results of Figure 6.6(a). (a) RSOR, (b) RSER…………….96

Figure 6.10 Experimental results of DSP applications (1 function unit, overall

schedule length)………………………………………………………103

Figure 6.11 Experimental results of DSP applications (2 function unit, overall

schedule length)………………………………………………………104

Figure A.1 Iteration spaces of a loop with depth one. (a) Original, (b) applying

RSVR, (c) applying RSF……………………………………………..118

Figure A.2 Iteration spaces of a loop with depth two. (a) Original, (b) applying

RSVR, (c) applying RSF, (d) applying RST………………………….119

Figure A.3 Iteration spaces of a loop with depth two. (a) Original, (b)(c) applying

RSP…………………………………………………………………...121

Figure B.1 Iteration spaces of a loop with depth one. (a) Original, (b) applying

RSOR(RSVR), (c) applying RSOR(RSF)……………………………124

 xiv

Figure B.2 Iteration spaces of a loop with depth one. (a) Original, (b) applying

RSER(RSVR), (c) applying RSER(RSF)…………………………….124

Figure B.3 Iteration spaces of a loop with depth two. (a) Original, (b) applying

RSOR(RSVR), (c) applying RSOR(RSF), (d) applying RSOR (RST)126

Figure B.4 Iteration spaces of a loop with depth two. (a) Applying RSER(RSVR),

formula (B.8), (b) applying RSER(RSVR), formula (B.9)…………..127

Figure B.5 Iteration spaces of a loop with depth two. (a) Applying RSER(RSF),

formula (B.10), (b) applying RSER(RSF), formula (B.11)…………..129

Figure B.6 Iteration spaces of a loop with depth two. (a) Applying RSER(RST),

formula (B.12), (b) applying RSER(RST), formula (B.13)…………..130

 1

Chapter1. Introduction

1.1 The Practicability of DSP

Most scientific and digital signal processing applications, such as fluid dynamics,

weather forecasting, image processing, video compression, and speech recognition are

iterative and usually represented by uniform nested loops [1-5]. All these applications

belong to data-dominated category, which are characterized by a predominance of

arithmetic instructions and an absence of control-flow within the data path [5]. A

digital signal processor (DSP) is a special-purpose microprocessor that is designed

and produced to better match DSP applications [3, 6-8]. Unlike general-purpose

microprocessors, the DSP design is based on the Harvard architecture, and often

includes several independent function units those are capable of operating in parallel

[3, 7-8]. In order to meet ever-increasing demands for higher performance and

stringent power requirement, such DSPs commonly employ architectures with

irregular data paths, heterogeneous register sets, and multiple data memory banks [9].

For the data path, this architecture has multiple small register files dedicated to

different sets of function unit instead of a large number of centralized homogeneous

registers. In addition, because multiple data memory banks are connected through

independent data buses, variables can be partitioned into separate banks and accessed

simultaneously. These architectural features are supported by some embedded DSP

families, such as Motorola DSP56000 [10], Analog Device ADSP2100 [11], NEC

uPD77016 [12], and Texas Instruments TMS320C6000 [13].

Although parallel access, which is enabled by multi-bank memory, is useful to

explore the potential of higher memory bandwidth, it gives rise to the problem of how

to partition the variables into multiple data memory banks [6, 9, 14-20]. Similarly,

using heterogeneous register sets can decrease the architectural complexity but

 2

increase the difficulty of deciding which register set to use for a certain instruction [9,

17, 21-23]. It is well known that compilation techniques for general-purpose

microprocessor do not adapt well to the irregularities of DSP. Therefore, to harvest the

benefits provided by DSPs with irregular architectural features, adequate compiler

support is obviously essential [3, 8].

Many researches seek to design code generation methods for specific DSP

architectures to fully use their features. The complete code generation process for

DSP with multiple data memory banks must include five phases: intermediate

representation, code compaction, instruction scheduling, memory bank assignment (or

variable partition), and accumulator/register assignment [17]. These phases can be

performed individually in various sequences because they are logically independent.

Meanwhile, because they are extremely data dependent, considering more phases at

the same time may lead more effective results. Since nested loops are the most time-

critical section in such DSP applications, their execution time will dominate the entire

computational performance. To optimize the execution rate of such applications we

need to explore the embedded parallelism of a loop. Moreover, due to strict resource

constraints of the DSP architecture, accumulator/register spills will supposedly occur

very often compared to general-purpose microprocessor. If more spill codes are added,

not only the schedule length may be lengthened, but also consumes more power to

execute those additional instructions. That is, in addition to increase the instruction-

level parallelism, how to avoid generating too many spill codes is also an important

issue of designing the code generation method for DSP architecture.

1.2 The Power Constraint of DSP

Until 1980’s, throughput and latency are two important factors used to determine

the quality of an embedded system. In 1990’s, as the portable system such as cellular

 3

phone or portable electronic devices grows rapidly, power consumption becomes

another important constraint in the design specification [24]. Because low power is

now one of the major concerns in system design, this has forced to analyze and

optimize power in all components of a system [25]. Most research to date on power

minimization in DSPs is focused on hardware solution. However, if we consider low

power design at higher levels of abstractions, we can apply various transformation

techniques to system design with wider view and obtain much more effective power

reduction with less cost and effort [24, 26].

High-level synthesis techniques for low power have mostly targeted data-

dominated designs [5]. In a data-dominated application specific circuit such as DSP, it

is the power consumed in the data path, including function units, registers, and

interconnections, that accounts for a large fraction of the overall power budget [24].

Power consumption is mainly considered in the function units, among units that

compose a data path [4, 27]. As shown in [4], authors present that function units

account for over 80% of the total data path power, if the data path contains n function

units, 4n registers, and 8n multiplexers. Authors of [24, 28] further show that if the

overall system is divided into components including data path, clock, and controller,

function units will contribute about 40%~60% power to the overall system. Therefore,

if we can reduce power consumed by function units, the entire power consumption of

the system can be reasonably decreased.

In most cases, the power consumed by a resource mainly depends on the input

switching activity induced by the data being stored or processed [29]. For a function

unit, the power consumption will be reduced by reducing the switching activity

involving its input signals [28]. Many researches on power minimization in high-level

synthesis attempt to reduce the input activity of function units. Operand sharing is

one of these techniques, which binds one identical function unit to more than two

 4

instructions containing at least one common operand, and any instruction without a

common operand does not intervene between these instructions [28]. As presented in

[27], the average power consumption of a multiplication (or an addition) when one of

its operands remains unchanged with respect to the previous instruction is 35% (or

25%) less than when both operands change. Therefore, to increase the potential for a

function unit to reuse an operand, the average power consumption of the function unit

is dramatically lower. Operand sharing also assists in reducing the number of memory

accesses, which tends to prevent the limited number of memory ports from increasing

system latency. Furthermore, as shown in [28], because the power consumed by

components other than function units are little increase or no increase at all after

applying operand sharing, operand sharing is obviously an appropriate technique in

low power design.

1.3 Our Studies in this Thesis

Many DSP applications usually contain repetitive groups of operations, which

are easily represented by uniform loops and modeled by multi-dimensional data flow

graph (MDFG) [2-3]. From above descriptions, clearly that the code generation plays

an important role to harvest benefits provided by irregular DSP architectures. With

appropriate instruction ordering sequences, we can obtain scheduling results with

shorter schedule length, smaller codes size, or less power consumption. In this thesis

we focus on designing code generation methods to schedule uniform loops on DSP

with multiple data memory banks. Our three study issues are presented as follows.

1.3.1 Variable Partition Mechanisms

For the architecture with multiple data memory banks, the performance gain

strongly depends on variable partition and instruction scheduling techniques. Hence,

 5

our first issue is about variable partition. At first we analyze a related method rotation

scheduling with variable repartitioning (RSVR) [30] in some detail. We claim that

although RSVR is effective, it uses complex mechanisms to partition variables

initially and repartition them during instruction scheduling. Note that a variable in

MDFG indicates an array not just a single scalar. Therefore, we present three efficient

variable partition mechanisms directly according to their array indices. After

transforming the given MDFG by appropriate techniques such as unfolding [31], tiling

[32], and unimodular transformations [33], we apply the multi-dimensional rotation

scheduling [34-35] to schedule instructions. Three code generation methods named

rotation scheduling with unfolding (RSF), rotation scheduling with tiling (RST), and

rotation scheduling with parallelization (RSP) are proposed corresponded to different

variable partition mechanisms [14, 36]. Without repartitioning variables during

instruction scheduling, our three methods are obviously efficient compared to RSVR.

Moreover, we also define an analytic model to calculate the overall schedule length of

an entire retimed loop. Several MDFGs represented DSP applications are selected for

performance evaluations. From evaluation results, our methods RSF, RST, and RSP

can achieve effective results compared to RSVR, for both a single repetitive iteration

and the entire retimed loop. Moreover, the enlarged graph gives a more global view of

the data dependencies, which is beneficial for exploring the instruction-level

parallelism between different iterations. As for the effectiveness among methods RSF,

RST, and RSP, the answer will depend on the topology and loop-carried dependencies

of the given nested loop. We also list comparisons among three proposed methods and

suggest which method is suitable based on loop-carried dependencies the given

MDFG has. Variable partition mechanisms proposed in RSVR and our three methods

will be applied in subsequent several studies.

 6

1.3.2 Code Generation Methods for DSP with Multiple Data Memory Banks

In section 1.1 we have introduced that the complete code generation process for

DSP with multiple data memory banks must include five phases. RSF, RST, and RSP

have covered all except the accumulator/register assignment phase. Besides, above

methods directly use data memory to store and reload operands, so many unnecessary

memory accesses may be generated to degrade the performance. Since considering

more phases in a code generation method may lead more effective results, we will

design a new method to include accumulator/register assignment and further improve

overall performance. The proposed method rotation scheduling with spill codes

predicting (RSSP) is focus on Motorola DSP56000 [37]. Its main feature is to predict

the occurrence of accumulator/register spills in advance, and schedule corresponding

spill codes in parallel with other instructions. In addition, we also define a translated

data acyclic graph (TDAG) constructed from the given MDFG, in order to remove

possible unnecessary memory accesses. We still use selected MDFGs and the analytic

model proposed above to evaluate RSSP. Apparently that RSSP outperforms all of

RSF, RST, and RSP, because RSSP schedules instructions based on the TDAG which

contains less instructions than the MDFG. Comparing to other related studies, RSSP

still has advantages of shorter schedule length, for both a single repetitive iteration

and the entire retimed loop.

RSSP looks quite effective and efficient, but it is not scalable and specifically

designed for Motorola DSP56000. Hence, we will generalize it to suit various DSPs

with similar architectural features, and propose another method rotation scheduling

with spill codes avoiding (RSSA) [38]. The scheduling goal of RSSA is to achieve

shorter schedule length and fewer spill codes. In RSSA we design another mechanism

to resolve accumulator spills instead of to predict their occurrences, because the

predicting results become inaccurate easily when the target architecture is no longer

 7

specific. Moreover, we also integrate these mechanisms into instruction scheduling

phase to make RSSA more efficient. We evaluate RSSA according to two metrics

schedule length and instruction count at the same time. Suppose the target architecture

equals to the Motorola DSP56000, our RSSA usually achieves the shortest schedule

length and considerably fewer spill codes compared to other related studies. The main

reason is that RSSA can fully utilize system resources and insert spill codes only

when required. On the other hand, in addition to design effective code generation

method, increasing the number of resources is essentially a more direct way to

achieve effective scheduling results. Hence, we also define a parameterized machine

model to simulate architectures with different number of resources. After evaluating

MDFGs using RSSA on this hypothetical machine model, the influence of differing

number of resources on the scheduling results is further deep studied in this thesis.

Finally, we describe that with minor modifications, our hypothetical machine model

and RSSA is capable for applying to DSP families such as Motorola DSP56000 [10],

Analog Device ADSP2100 [11], NEC uPD77016 [12], and Texas Instruments

TMS320C6000 [13]. This indicates that the proposed machine model and code

generation method have enough flexibility, which are suitable to DSPs with various

architectural features.

1.3.3 Energy-efficient Code Generation Methods

As mentioned in section 1.2, low power consumption becomes another important

constraint in the DSP design specification in addition to shorter schedule length and

less spill codes. To increase the potential for a function unit to reuse an operand is an

appropriate way, because the power consumed by function units will be dramatically

lower. Therefore, in the third issue of this thesis, we will propose energy-efficient

code generation methods based on the operand sharing technique. At first we analyze

 8

RSSA in view of low power consumption. Then, rotation scheduling with operand

reutilization (RSOR) is proposed by integrating the operand sharing technique into

RSSA, where the original features of RSSA are all retained. In RSOR we add a

mechanism to group ALU instructions sharing the same operand into a sharing set.

Then, the same scheduling steps used in RSSA are applied, and instructions belong to

a sharing set are restrictively scheduled at consecutive time steps to reuse operands.

According to preliminary evaluations, because we restrict the execution sequence of

some ALU instructions to achieve operand reusing, schedules generated by RSOR

may be slightly longer and with more instruction count compared to RSSA.

Unfortunately, common operands are not encountered very frequently in real designs,

resulting in few opportunities of operand sharing, and hence insignificant power

reduction [29]. Nevertheless, instructions with common operands may be hidden

inside the original MDFG, which can be generated using some loop transformation

techniques. Thus, we proposed another method rotation scheduling with exploiting

operand reutilization (RSER), which is extended from RSOR and aimed to further

explore potential operand sharing between different iterations. In RSER we define an

exploitable sharing set to group load variable instructions reference the same array

element in different iterations. An MDFG reconstruction algorithm is also designed

based on the retiming [39] technique, to concentrate instructions in a same exploitable

sharing set into the same iteration. Then, RSOR is applied to schedule the

reconstructed MDFG, so operand sharing within an iteration and existing in different

iterations can be both explored in RSER. Metrics including schedule length,

instruction count, the number of operands been reused, and information provided

from [20] are used to evaluate RSOR and RSER. Besides, we extend the analytic

model defined before, to calculate the overall schedule length and the number of

operands been reused for the entire retimed loop. From evaluation results, we find that

 9

both RSOR and RSER can successfully explore operand sharing within an iteration.

Using RSER further can achieve more number of operands been reused, which

indicates that exploiting the operand sharing in different iterations is beneficial for

energy-efficient instruction scheduling. On the other hand, because some ALU

instructions are restrictively scheduled at consecutive time steps to achieve operand

reusing, using RSOR and RSER may generate longer schedules for a single repetitive

iteration. However, the overall schedule lengths obtained by RSOR and RSER are still

better compared to related studies, because they can effectively explore the

instruction-level parallelism between successive iterations. As for the instruction

count, the proposed two methods require quite fewer spill codes for a repetitive

iteration, but RSER will generate considerable prologue and epilogue codes. That is,

if the instruction count is taken as the evaluation metric, RSER will perform poorly

compared to related methods.

1.4 Thesis Organization

The remainder of this thesis is organized as follows. Chapter 2 surveys the

fundamental background and related work. In chapter 3 we focus on variable partition

mechanisms, and introduce three proposed methods RSF, RST, and RSP. Chapter 4

contains an overview of the Motorola DSP56000 architecture, and principles and

algorithms of proposed method RSSP are also included. In chapter 5, we present our

hypothetical machine model and the general method RSSA, and describe their

flexibilities to apply to other real DSP families. Two energy-efficient code generation

methods RSOR and RSER extended from RSSA are introduced in chapter 6. Finally,

in chapter 7 we list conclusions and plans for future work.

 10

Chapter 2. Fundamental Background

In this chapter, we first model the given problem and survey some fundamentals.

Then, we introduce two basic techniques retiming and unimodular transformations

widely used in instruction scheduling. After that, related work of our studies in this

thesis is presented.

2.1 Program Model [37-38]

Because most scientific and digital signal processing applications usually contain

repetitive groups of operations, they can be easily represented by uniform nested

loops. A multi-dimensional data flow graph (MDFG) is commonly used to model

uniform nested loops. We define the MDFG to be the same as in [37-38], which is

slightly different from previous studies [14, 30].

Definition 2.1 A MDFG G = (V, E, X, d, P) is a node-weighted and edge-weighted

direct graph, where V is the set of computation nodes; E ⊆ V × V is the edge set that

defines the precedence relations; X(e) represents the variable accessed by an edge e;

d(e) is a function from E to Zn representing the multi-dimensional delays between two

nodes, where n is the number of dimensions; and P(v) represents the node type (see

Figure 2.1(c)).

Figure 2.1 shows an example of a nested loop and its corresponding MDFG.

Nodes in the MDFG include ALU instructions (multiplications and additions),

memory accesses (load/store variables and load constants), and register transfers.

Note that an edge, e, that does not involve a memory access does not have a label X(e).

An MDFG is realizable if there exists a schedule vector s, such that s•d ≥ 0, where d

are loop-carried dependencies. A schedule vector s is the normal vector for a set of

parallel equitemporal hyperplanes that define a sequence of execution [40]. An

 11

iteration is equivalent to the execution of each node in V exactly once. The period

during which all nodes in an iteration are executed, according to data dependencies

and without resource constraints, is called a cycle period. It is also the maximum

execution time among paths that have no delay, which will dominate the entire

execution time of a nested loop. Note that many MDFGs can represent a single DSP

application, depending on its representation by nested loops.

2.2 Retiming Technique [39]

Retiming is a popular technique that reassigns delays to enhance execution

performance for a circuit. For a loop, retiming is a loop transformation technique that

can be used to increase the throughput and improve the utilization of resources, by

introducing partial overlap between the execution time of successive iterations. The

Figure 2.1. The MDFG example. (a) Nested loop in C code, (b) corresponding
MDFG, (c) node types.

for i = 1 to m
for j = 1 to n

D[i, j] = B[i-1, j] × C[i-1, j-2] ;
A[i, j] = D[i, j] × 0.5 ;
B[i, j] = A[i, j] + 1 ;
C[i, j] = A[i, j-1] + 2 ;

 end
end

(a)

(b)

P(v) Meaning

M Multiplication

A Addition

L Load variable

S Store variable

T Register transfer

C Load constant

(c)

Multiplication

Addition

Load constant

Load variable

Store variable

Register transfer

C

(1, 2)

11

0 1

2
B C

3

4

6

D

7

D

A

8 9

5

(0, 1)

12 13

A A

14 15
10

B

(1, 0)

 12

retiming vector r(u), a function from V to Zn, represents the offset between the original

iteration and that after retiming. A new MDFG Gr = (V, E, X, dr, P) is created after

applying r, such that each iteration still has one execution of each node. Delay vectors

will be changed accordingly to preserve the original data dependencies. Definitions

and properties of retiming are shown below.

Definition 2.2 Given any MDFG G = (V, E, X, d, P), retiming function r, and retimed

MDFG Gr = (V, E, X, dr, P), we define the retimed delay vector for every edge, path,

and cycle, respectively, by:

(a) dr(e) = d(e) + r(u) – r(v) for every edge u →e v, u, v ∈ V and e ∈ E.

(b) dr(p) = d(p) + r(u) – r(v) for every path u →p v, u, v ∈ V and p ∈ G.

(c) dr(l) = d(l) for any cycle l ∈ G.

Based on above definition, MDFGs G and Gr are logically equivalent, and the

only difference between them is the delay vectors. Figure 2.2 shows an example of

retiming technique. Figure 2.2(a) is the retimed MDFG of Figure 2.1(b), and Figure

2.2(b)(c) list schedules before and after retiming respectively. A prologue is the

Figure 2.2. Retiming example. (a) Retimed MDFG of Figure 2.1(a), (b)
schedule before retiming, (c) schedule after retiming.

C

(0, 3)

11

0 1

2
B C

3

4

6

D

7

D

A

8 9

5

(-1, 2)

12 13

A A

14 15
10

B

(0, 1)

(1, -1)

(1, -1)

(1, -1)

 ALU M1 M2
1 0 1
2 2 9 11
3 13 5 3
4 10 4
5 6 15
6 7
7 8
8 12
9 14

 ALU M1 M2
p 0 1
p 2 9 11
1 13 5 3
2 10 4
3 6 0 15
4 7 1
5 2 8 11
6 12 9
7 14
e 13 5 3
e 10 4
e 6 15
e 7
e 8
e 12
e 14

(a)

(b)

prologue

repetitive pattern

epilogue (c)
r(0) = r(1) = r(2) = (1, -1)
r(9) = r(11) = (1, -1)

 13

instruction set that must be executed to provide necessary data for the iterative

process. An epilogue is the complementary set that will be executed to complete the

process. If the nested loop contains sufficient iterations, the time required for prologue

and epilogue are negligible.

Because applying retiming technique will change delay vectors of a realizable

MDFG G, we must guarantee the retimed MDFG Gr is still realizable. As mentioned

in chapter 2.1, a realizable MDFG G must have a feasible schedule vector s. In [34], it

indicates that if we retime MDFG G with a retiming base r orthogonal to s (s ⊥ r), the

retimed MDFG Gr is definitely realizable. The feasible retiming base is not unique for

a given MDFG, but in [34] it doesn’t propose how to select a best one. In our early

study [41], we analyze the relationship between the selection of schedule vector and

the change of iteration space in some detail. From analyzing results we find that the

overall schedule length is strongly dependent on which feasible schedule vector been

selected, especially for nested loops with depth greater than one. If an unsuitable

schedule vector is used, the time required to execute prologue and epilogue will

occupy considerable part of the overall schedule length. We take a nested loop with

depth two as an example. Figure 2.3 shows two cases of modified iteration space after

applying retiming technique using different retiming bases. In [41] we prove that the

overall schedule length of case 1 is always shorter than or equal to that of case 2,

Figure 2.3. (a) Original iteration space, (b)(c) changed iteration spaces.

repetitive pattern prologue + epilogue list

(s1, s2)

(a) (c)
m × n iterations case 1: s = (1, 0) case 2: s = (s1, s2)

(b)

 14

which implies that s = (1, 0) will be the best selection if it is feasible. Therefore, in

[41] we propose a simple algorithm to select the best schedule vector for a given

MDFG, which will achieve minimum overall schedule length after applying the

retiming technique. We also list a formula to calculate the overall schedule length of a

retimed nested loop. This formula will be used to evaluate code generation methods

proposed in this thesis.

2.3 Unimodular Transformations [33]

Loop transformation is one of basic techniques for parallel compiler design. It

changes the execution sequence of iterations to achieve higher degree of parallelism.

Unimodular transformations technique unifies loop permutation, skewing, and

reversal, and models them as elementary matrix transformations. All combinations of

these loop transformations can simply be represented as products of the elementary

transformation matrices.

Although unimodular transformations technique is one of the most important

techniques used to parallelize uniform nested loops, it doesn’t explain how to use its

transformations. In [42] we propose a simple algorithm to parallelize the inner loop of

a uniform nested loop with depth two. Note that the transformation matrix to

parallelize a nested loop is not unique, and our algorithm can obtain one with

minimum skew factor. For a given MDFG G, a new MDFG Gp is created after

applying loop parallelization. G and Gp are still logically equivalent, and the only

difference between them is the delay vectors, just like applying retiming technique.

Some formulas are listed in [42] to calculate the overall schedule length of a

parallelized nested loop with depth two. These formulas will be modified further to

evaluate one of code generation method proposed in this thesis.

 15

2.4 Related Work

In this section we survey some related work of our studies. The content of this

section is divided into four parts: retiming-based instruction scheduling methods,

variable partition mechanisms, code generation methods for DSP architecture with

multiple data memory banks, and energy-efficient code generation methods. Some

related studies of each part are introduced in the following subsections.

2.4.1 Retiming-based Instruction Scheduling Methods [34-35, 43]

Since retiming technique is useful for generating compact schedules, many

instruction scheduling methods are designed based on it to achieve shorter schedule

length. Among them, rotation scheduling [43] and multi-dimensional rotation

scheduling [34-35] are two effective methods used to schedule MDFG with one or

more than one dimensions, respectively. Both these methods contain two main steps.

First they simply generate an initial schedule using the list scheduling method under

resource constraints. Then instructions scheduled at the first time step are moved to

the prologue, and their copies originally resided in the next iteration are rescheduled

without violating resource constraints and data dependencies. This step is usually

called rotation phase. Corresponding to the given MDFG, the action of rotation is

essentially equivalent to retime nodes scheduled at the first time step. For an one-

dimensional MDFG nodes are always retimed with retiming vector r(u) = 1. As for

multi-dimensional MDFG, it must select a feasible retiming base r as the retiming

vector. After iteratively applying the rotation phase, a more compact schedule, also

with higher throughput, can be obtained. Because these two instruction scheduling

methods are really effective and efficient, in this thesis we choose them as the basis to

design our own methods.

 16

2.4.2 Variable Partition Mechanisms [15-16, 30]

As mentioned in chapter 1, appropriately partition and allocate variables is

facilitated to generate more compact schedule in DSP architecture with multiple data

memory banks. If two variables may be accessed in parallel, they should be allocated

to different data memory banks. Some researches focus on designing variable

partition mechanisms which try to evenly distribute memory accesses and explore the

potential of higher memory bandwidth. Authors of [15] construct an interference

graph (IG) to represent the parallelism available in load instructions for every basic

block, and then partition it to determine the allocation of global variables. Two

different IG partition heuristics proposed in [15] are based on the same idea: variables

will be given higher priority to be stored to different data memory banks if they may

be accessed in parallel in a deeper loop. Strictly speaking this mechanism is not

accurate enough, because the IG cannot exploit the potential parallelism of memory

accesses that reference values produced in different iterations [16]. Therefore, authors

of [16] propose another mechanism to recover this flaw by globally constructing the

IG for entire functions, and use an integer linear programming approach instead of a

heuristic to partition variables.

Unlike above methods only focus on variable partition, rotation scheduling with

variable repartitioning (RSVR) is designed to resolve both instruction scheduling and

variable partition problems [30]. RSVR is modified from rotation scheduling, which

considers multiple memory modules while generating a schedule. For a given MDFG,

RSVR constructs a corresponding variable independence graph (VIG) to expose all

parallel memory accesses. Basically the purpose of constructing VIG is similar as

constructing IG in [15-16]. But in RSVR it uses more accurate information to assign

edge weights of VIG, so it can achieve better variable partition results. After allocating

variables, RSVR applies the same steps as rotation scheduling to schedule instructions.

 17

Besides, when the schedule length cannot be improved in a rotation phase, RSVR will

try to repartition variables to shorten the schedule length. In this thesis we will take

variable partition as our first study issue. Detailed descriptions and our proposed

mechanisms will be presented in chapter 3.

2.4.3 Code Generation Methods for DSP with Multiple Data Memory Banks [9,

17-23, 44]

A complete code generation process for DSP with multiple data memory banks

must include five phases: intermediate representation, code compaction, instruction

scheduling, memory bank assignment (or variable partition), and accumulator/

register assignment [17]. These five phases can be performed in various sequences

due to their logically independent, or be simultaneously considered because they are

extreme data dependences. In previous subsection we have listed some methods focus

on the variable partition phase. For heterogeneous register sets, authors of [21-23]

present specific register allocation algorithms to fit their irregularity. In addition to

RSVR introduced above, methods proposed in [18-19] also resolve both instruction

scheduling and memory bank assignment problems without considering the limitation

of accumulators/registers. Furthermore, methods [9, 17, 20, 44] contain all five phases,

and all expect [44] select Motorola DSP56000 as the target architecture. We describe

methods [9, 17] in some detail in the following.

In the method proposed in [9], its main idea is applying the graph coloring

approach to treat variable partition and accumulator/register assignment. For register/

accumulator assignment, authors of [9] specially decouple this phase into two steps.

They first classify physical registers into a set of register classes, and allocate each

temporary variable to one of the register classes. Next, the graph coloring algorithm is

applied to assign each temporary variable a physical register within the register class

 18

previously allocated to it. After generating compacted codes, a weighted undirected

graph is constructed based on the sequence of variables referenced in these codes.

Then, a maximum spanning tree (MST) of this graph is identified, and variables are

assigned also using the graph coloring algorithm. Moreover, authors of this method

also propose a heuristic to resolve graph coloring problem. We think the method

proposed in [9] is efficient. But it does not present the mechanism to determine and

resolve accumulator/register spills, which is definitely required.

The method proposed in [17] is an example that simultaneously considers two

code generation phases. The Motorola DSP56000 has heterogeneous register sets, so

variables referenced from each data memory bank must be loaded in a restricted set of

locations. Thus, authors of [17] claim that variable partition and accumulator/register

assignment should be performed simultaneously to maximally explore available

parallelism among move operations. After generating compacted codes, an undirected

graph is constructed representing constrained conditions on the register and memory

bank assignments. Then, an algorithm based on graph labeling is used to both

memory bank and accumulator/register assignments. Similar as in [9], mechanisms

used to insert spill codes are not present in [17]. In addition, authors of [17] suggest

applying simulated annealing to resolve the graph labeling problem, which is a

time-consuming algorithm and makes the entire method much more complicated.

In this thesis, we will study compiler design issues for DSP architecture with

multiple data memory banks and heterogeneous register sets. At first we will design a

method particularly for Motorola DSP56000. Then, we extend it to a more general

method suitable for various DSPs with similar architectural features. Furthermore, this

general method is evaluated on various architectures to study the influence of

differing number of resources on the scheduling result. Detailed descriptions and our

proposed methods will be presented in chapters 4 and 5.

 19

2.4.4 Energy-efficient Code Generation Methods [4, 20, 24-25, 28, 45-52]

In section 1.2, we have introduced the importance of considering low power

design at high-level synthesis. Authors of [45] use an experiment setup to physically

measure the current being drawn by the CPU during the execution for three

architecturally different processors. Based on physical measurements, they develop an

instruction-level power analysis technique and an instruction-level power model. The

power model consists of three main components: instruction base costs, effect of

circuit state, and other inter-instruction effects. The base cost of an instruction is the

cost associated with the basic processing required to execute the instruction. The

circuit state overhead for a pair of consecutive instructions is used to deal with the

switching activity changed between their circuit states. As for the power cost of other

inter-instruction effects, it can occur in real programs due to prefetch buffer and write

buffer stalls, pipeline stalls, and cache misses. For the DSP architecture, the effect of

circuit state change is more marked in terms of power consumption, because its

instruction control and data path constitute a larger portion of the silicon. Besides, this

instruction-level power analysis technique also provides fundamental information that

can guide the development of energy-efficient software. Several ideas in this regard

motivated by this analysis are: reduction of memory accesses, energy cost driven code

generation, and instruction reordering for low power. For the DSP with multiple data

memory banks, instruction packing, parallel memory loads, and swapping operands

for multiplications are other possible processor-specific optimizations [25]. Therefore,

to reduce the power consumption from software is actually an appropriate way.

A number of studies have investigated appropriate scheduling of instructions to

reduce the circuit state overhead due to its significant impact on DSP architecture.

Methods proposed in [20, 25, 46] are directly based on current measurement

technique. They first record base costs of all instructions and circuit state overheads

 20

for different instruction pairs. Then, a ready instruction, which will cost less power

after being appended to the current schedule according to measured data, will be

selected and scheduled first. Methods proposed in [47-49] attempt low-power

schedules with similar mechanisms as previous three methods. But they gather base

cost and circuit state overhead information using cycle-accurate simulators

SimplePower and SimpleScalar, instead of experimental measurement. Apparently,

using above methods can generate schedules with low circuit state overheads.

However, the measured data are only dedicated for the selected processor, so these

methods are obviously less general.

On the other hand, there are lots of researches on power optimization in high-

level synthesis by means of input activity reduction of function units. Authors of [50]

reduce the switched capacitance of modules using an iterative improvement technique

for scheduling and module allocating. Authors of [51-52] propose similar techniques,

to reduce the power by preserving correlation of data inputs to function units through

careful binding of instructions to function units. As for methods designed based on

operand sharing technique, authors of [4] present list-scheduling algorithm for low

power (LPLS), to reduce the activity of the function units by minimizing the switching

activity of their input operands. LPLS obviously trades off latency for operand reuse,

because instructions with common operands have to be scheduled consecutively and

some instruction-level parallelism cannot be successfully explored. However, LPLS

performs well only in the cases where common input operands can be identified, but it

is not easy to find common input operands in real designs. Therefore, to increase the

number of instructions with common operands, a high-level loop transformation

technique power-conscious loop folding is presented in [24]. Its main idea is to find

instructions sharing an operand in consecutive iterations. Then, a loop folding

technique is applied to concentrate these instructions in the same iteration and execute

 21

them consecutively. Alternatively, the method proposed in [28] contains a force-

directed retiming to determine which instruction must be retimed. This technique aims

to make as many instructions as possible take common operands as their inputs, and

use a list scheduling to perform operand sharing under resource constraints.

Comparing instruction scheduling methods listed above, methods designed based

on operand sharing are apparently more practical. This is because these methods are

not only machine-independent, but also do not require additional memory space to

store measured information. In this thesis, we will focus on increasing the potential of

operand sharing to design energy-efficient code generation methods. Detailed

descriptions and proposed methods will be presented in chapter 6.

 22

Chapter 3. Variable Partition Mechanisms

In this chapter we present our first issue about variable partition mechanism. We

target on DSP architecture with multiple data memory banks, and the goal is to evenly

distribute memory accesses. At first we summarize some flaws of RSVR in section

3.1. Three proposed variable partition mechanisms and corresponding instruction

scheduling algorithms are introduced in section 3.2 and 3.3. In section 3.4 some

performance evaluations are shown.

3.1 Flaws of RSVR [14]

As introduced in section 2.4.2, RSVR resolves both instruction scheduling and

variable partition problems. It mainly consists of four phases: constructing VIG,

partitioning VIG, generating the initial schedule, and repartitioning variables during

applying rotation scheduling. From our observations, RSVR may contain three flaws

as follows. First, the variable partition result is not always optimal, so RSVR will

repartition variables during rotation phases. This repartitioning phase obviously

increases the scheduling complexity of RSVR. Second, the VIG is constructed to

expose parallel memory accesses for a loop, so the variable partition result is only

well suited to that loop. When the given program contains more than one loop, it is

difficult to find an appropriate variable partition result fitted for all loops. Third, the

parallelism between ALU instructions may be restricted by memory accesses in

special cases. Consider the MDFG fragment shown in Figure 3.1(a). Actually, nodes 4

and 5 access different operands and can be executed in parallel. But in RSVR they

will be scheduled in serial as shown in Figure 3.1(b), because they both access the

same variable A. This case is similar as the column major problem in parallel

processing system. Some operations are data independent, but must be executed in

 23

serial due to unsuitable data allocation. In addition, since variable A is accessed many

times compared with variable B, the memory bank stored A will become the schedule

bottleneck. The reason caused above flaws is due to the variable partition mechanism.

Thus, we will propose some mechanisms to partition variables more effectively.

3.2 Rotation Scheduling with Unfolding (RSF) and Rotation Scheduling with

Tiling (RST) [14]

Note that a variable in MDFG indicates an array not just a single scalar. Unlike

RSVR stores the entire array to a single data memory bank, we propose two

mechanisms to partition array elements according to their rightmost indices and

leftmost indices, respectively. For example, suppose there are N data memory banks,

Figure 3.2 shows two variable partition results of MDFG in Figure 2.1(b). These two

mechanisms are clearly more simple and efficient than that of used in RSVR, because

they avoid the heavy overhead caused by constructing and partitioning the VIG.

In addition to array variables, operands of ALU instructions may be constants in

DSP applications. Intuitively these constants can be loaded using immediate load

instructions. But in our studies we let constants be stored in data memory at specific

locations in advance, and use load constant instead of immediate load. Essentially, the

load constant is equivalent to the original load variable instruction, but will directly

7

B

(1, 0)

6

0 1

4
A A

2 3

5
A A

(0, 1) (0, 2)
(1, 1)

A
 Mul Add M1 M2
1 0
2 1
3 4 2
4 3 6
5 5
6 7

(a) (b)

Figure 3.1. (a) MDFG fragment, (b) scheduling result of RSVR.

 24

load constants from specific address. We also assume that constants are stored in all

data memory banks. This feature makes load constant instructions can be scheduled at

any data memory bank to increase performance.

After partitioning variable, we plan to apply the concept of multi-dimensional

rotation scheduling to schedule instructions. However, it cannot be directly applied,

and we illustrate the reason using the following example. Figure 3.3 lists two

consecutive iterations of nested loop in Figure 2.1(a), and both instructions with mark

“#” correspond to nodes 4~7 in Figure 2.1(b). If we partition variables based on their

rightmost indices, operands accessed by two marked instructions will be resided in

different data memory banks. That is, nodes 4 in consecutive iterations must be

Figure 3.2. Variable partition results of MDFG in Figure 2.1(b). (a) Based on
rightmost indices, (b) based on leftmost indices.

A [1, 1] … A [1, n-N+1]
…

A [m, 1] … A [m, n-N+1]
B [1, 1] … B [1, n-N+1]
…

B [m, 1] … B [m, n-N+1]
C [1, 1] … C [1, n-N+1]
…

C [m, 1] … C [m, n-N+1]
D [1, 1] … D [1, n-N+1]
…

D [m, 1] … D [m, n-N+1]

A [1, N] … A [1, n]
…

A [m, N] … A [m, n]
B [1, N] … B [1, n]
…

B [m, N] … B [m, n]
C [1, N] … C [1, n]
…

C [m, N] … C [m, n]
D [1, N] … D [1, n]
…

D [m, N] … D [m, n]

…

Memory Bank M1 Memory Bank MN

A [1, 2] … A [1, n-N+2]
…

A [m, 2] … A [m, n-N+2]
B [1, 2] … B [1, n-N+2]
…

B [m, 2] … B [m, n-N+2]
C [1, 2] … C [1, n-N+2]
…

C [m, 2] … C [m, n-N+2]
D [1, 2] … D [1, n-N+2]
…

D [m, 2] … D [m, n-N+2]

Memory Bank M2

A [1, 1] … A [m-N+1, 1]
…

A [1, n] … A [m-N+1, 1]
B [1, 1] … B [m-N+1, 1]
…

B [1, n] … B [m-N+1, 1]
C [1, 1] … C [m-N+1, 1]
…

C [1, n] … C [m-N+1, 1]
D [1, 1] … D [m-N+1, 1]
…

D [1, n] … D [m-N+1, 1]

A [N, 1] … A [m, 1]
…

A [N, n] … A [m, n]
B [N, 1] … B [m, 1]
…

B [N, n] … B [m, n]
C [N, 1] … C [m, 1]
…

C [N, n] … C [m, n]
D [N, 1] … D [m, 1]
…

D [N, n] … D [m, n]

…

Memory Bank M1 Memory Bank MN

A [2, 1] … A [m-N+2, 1]
…

A [2, n] … A [m-N+2, n]
B [2, 1] … B [m-N+2, 1]
…

B [2, n] … B [m-N+2, n]
C [2, 1] … C [m-N+2, 1]
…

C [2, n] … C [m-N+2, n]
D [2, 1] … D [m-N+2, 1]
…

D [2, n] … D [m-N+2, n]

Memory Bank M2

(a)

(b)

 25

scheduled to different data memory bank, and so are nodes 7. This situation makes

traditional scheduling algorithms unusable. Partitioning variables based on their

leftmost indices will also cause similar problem.

Unfolding [31] (also called unrolling) and tiling [32] techniques can be used to

resolve this problem. Their feasibilities are proven in Theorems 3.1 and 3.2 listed

below. Note that not every nested loop can be tiled directly, so we need to skew [32]

the nested loop before tiling if necessary. After unfolding or tiling the given nested

loop, multi- dimensional rotation scheduling can be successfully applied to generate a

compact schedule. Thus, based on two variable partition mechanisms, we propose

instruction scheduling algorithms named rotation scheduling with unfolding (RSF)

and rotation scheduling with tiling (RST) as listed in Figure 3.4 and 3.5, respectively.

Suppose the target architecture consists of one function unit and two data memory

banks. Figure 3.6 shows unfolded and tiled MDFGs of Figure 2.1(a), and scheduling

results generated by different methods are shown in Figure 3.7. From this example,

we find that using RSF and RST may obtain more compact schedules compared to

using RSVR. Moreover, because RSF and RST never repartition variables during

rotation phases, their scheduling complexities are obviously less than that of RSVR.

Figure 3.3. Two consecutive iterations of nested loop in Figure 2.1(a).

D[l, k] = B[l-1, k] × C[l-1, k-2] ;
A[l, k] = D[l, k] × 0.5 ; (#)
B[l, k] = A[l, k] + 1 ;
C[l, k] = A[l, k-1] + 2 ;

D[l, k+1] = B[l-1, k+1] × C[l-1, k-1] ;
A[l, k+1] = D[l, k+1] × 0.5 ; (#)
B[l, k+1] = A[l, k+1] + 1 ;
C[l, k+1] = A[l, k] + 2 ;

Figure 3.4. The entire scheduling steps of RSF.

1. Gc = Construct MDFG;
2. Partition variables to N memory banks according to rightmost indices;
3. GN = unfold Gc with factor N;
4. Select the retiming base r;
5. S = schedule GN using list scheduling;
6. S’ = compact S using multi-dimensional rotation scheduling;

 26

Figure 3.5. The entire scheduling steps of RST.

1. Gc = Construct MDFG;
2. Partition variables to N memory banks according to leftmost indices;
3. GN = tiled Gc with tile size N×1×…×1 (skewed the nested loop before tiling

if necessary);
4. Select the retiming base r;
5. S = schedule GN using list scheduling;
6. S’ = compact S using multi-dimensional rotation scheduling;

C

(1, 1)

11

0 1

2
B C

3

4

6

D

7

D

A

8 9

5

(0, 1)

12 13

A A

14 15
10

B

(1, 0)

C

(1, 1)

27

16 17

18
B C

19

20

22

D

23

D

A

24 25

21

28 29

A A

30 31
26

B

(1, 0)

C

(0, 2)

11

1 0

2
C B

3

4

6

D

7

D

A

8 9

5

(0, 1)

12 13

A A

14 15
10

B

C

(1, 2)

27

17 16

18
C B

19

20

22

D

23

D

A

24 25

21

(0, 1)

28 29

A A

30 31
26

B

(1, 0)

(a) (b)

Figure 3.6. (a) Unfolded MDFG of Figure 2.1(b), (b) tiled MDFG of Figure 2.1(b).

 FU M1 M2
1 13 5 3
2 10 4
3 6 0 15
4 7 1
5 2 8 11
6 12 9
7 14

 FU M1 M2
1 2 17 16
2 18 3 5
3 4 19
4 6 21 20
5 22 7 10
6 8 23
7 12 25 27
8 29 14 24
9 26 31

10 28 11 9
11 13 0 30
12 15 1

 FU M1 M2
1 13 7 27
2 19 8 0
3 12 15 31
4 14 1
5 2 16 21
6 18 5 26
7 10 19
8 17 20
9 22 3 11

10 4 23
11 6 9 24
12 28 25
13 30

(a)

(b)
(c)

schedule length = 7

schedule length = 6
schedule length = 6.5

Figure 3.7. Scheduling results of Figure 2.1(b). (a) RSVR, (b) RSF, (c) RST.

 27

Theorem 3.1 Given a nested loop and its corresponding MDFG G. Variables are

partitioned to N data memory banks based on their rightmost indices. After unfolding

the innermost loop with factor N, every memory access in the unfolded MDFG GN

can be scheduled to specific data memory bank.

Proof: We use a nested loop with depth two as an example. Figure 3.8 shows the

unfolded nested loop with factor N and two consecutive iterations in canonical form.

In Figure 3.8(b), instructions with the same mark will correspond to the same nodes in

GN. From Figure 3.2(a), clearly that operands accessed by instructions with the same

mark are stored in the same data memory bank. Thus, every node in GN can be

scheduled to specific data memory bank. Nested loop with depth more than two can

be proven using the same way.

Theorem 3.2 Given a nested loop and its corresponding MDFG G. Variables are

partitioned to N data memory banks based on their leftmost indices. After tiling the

nested loop with tile size N×1×…×1, every memory access in the transformed MDFG

GN can be scheduled to specific data memory bank.

Proof: We still use a nested loop with depth two as an example. Figure 3.9 shows the

transformed nested loop with tile size N×1 and two consecutive iterations in canonical

Figure 3.8. (a) Unfolded nested loop in canonical form, (b) two consecutive iterations.

…
A[l, Nk-N+1] = B[l+a, Nk-N+1+b] ⊗ C[l+c,

Nk-N+1+d] ; (#)
…
A[l, Nk] = B[l+a, Nk+b] ⊗ C[l+c, Nk+d] ; (&)
…

…
A[l, Nk+1] = B[l+a, Nk+1+b] ⊗

C[l+c, Nk+1+d] ; (#)
…
A[l, Nk+N] = B[l+a, Nk+N+b] ⊗

C[l+c, Nk+N+d] ; (&)
…

(b)

for i = 1 to m
 for j = 1 to n/N
 … + or ×
 A[i, Nj-N+1] = B[i+a, Nj-N+1+b] ⊗

C[i+c, Nj-N+1+d] ;
 …
 A[i, Nj] = B[i+a, Nj+b] ⊗ C[i+c, Nj+d] ;
 …
 end
end (a)

 28

form. In Figure 3.9(b), instructions with the same mark will correspond to the same

nodes in GN. From Figure 3.2(b), clearly that operands accessed by instructions with

the same mark are stored in the same data memory bank. Hence, every node in GN can

be scheduled to specific data memory bank. Nested loop with depth more than two

can be proven using the same way.

3.3 Rotation Scheduling with Parallelization (RSP) [36]

Because loop unfolding and tiling techniques are applied in RSF and RST to fit

variable partition results, their enlarged iterations are composed of several original

iterations. If original iterations composed of an enlarged iteration are data independent,

RSF and RST are actually effective. However, if critical paths of those original

iterations are cascaded after applying unfolding or tiling, using RSF or RST will

obtain schedules with very long schedule lengths. Therefore, we apply the unimodular

transformations to parallelize the inner loop before unfolding, which can ensure that

original iterations composed of an unfolded iteration will not depend on each other.

This method is named rotation scheduling with parallelization (RSP). Since RSP

avoids the drawback of RSF and RST, we believe it can achieve better results.

Figure 3.9. (a) Tiled nested loop in canonical form, (b) two consecutive iterations.

…
A[Nl-N+1, k] = B[Nl-N+1+a, k+b] ⊗

C[Nl-N+1+c, k+d] ; (#)
…
A[Nl, k] = B[Nl+a, k+b] ⊗ C[Nl+c, k+d] ; (&)
…

…
A[Nl+1, k] = B[Nl+1+a, k+b] ⊗

C[Nl+1+c, k+d] ; (#)
…
A[Nl+N, k] = B[Nk+N+a, k+b] ⊗

C[Nl+N+c, k+d] ; (&)
…

(b)

(a)

for i = 1 to m/N
 for j = 1 to n
 … + or ×
 A[Ni-N+1, j] = B[Ni-N+1+a, j+b] ⊗

C[Ni-N+1+c, j+d] ;
 …
 A[Ni, j] = B[Ni+a, j+b] ⊗ C[Ni+c, j+d] ;
 …
 end
end

 29

Figure 3.10 lists the entire scheduling steps of RSP. Note that RSP is designed

only for nested loop with depth two, and the number of data memory banks must be

odd or power of two. Nevertheless, it can be further extended to cover MDFG with

higher dimensions. Figure 3.11 is the algorithm designed to parallelize the inner loop

by unimodular transformations, which is slightly modified from the algorithm

proposed in our early study [42]. Figure 3.12(a) contains the parallelized MDFG of

Figure 2.1(b). Particular variable partition mechanism used in RSP is presented as

follows. Although this mechanism seems irregular, it still partition variables according

to array indices and is quite simple and efficient.

Figure 3.10. The entire scheduling steps of RSP.

1. Gc = Construct MDFG;
2. Partition variables to N memory banks according to specific mechanism;
3. Gp = parallelize Gc that the inner loop is parallelizable;
4. GN = unfold Gp with factor N;
5. Select the retiming base r = (0, 1);
6. S = schedule GN using list scheduling;
7. S’ = compact S using multi-dimensional rotation scheduling;

Figure 3.11. Loop parallelization algorithm.

1. Input: MDFG G = (V, E, X, d, t), N
2. Output: MDFG G’ = (V, E, X, d’, t);
3. G’ = G; w = 0;
4. while (∃ (0, a) and (b, 0) in d’, for a, b > 0)

w = 1; ∀ d’(e) ∈ d, d’(e) = 







11
01 × d’(e);

5. if (∃ (b, -c) in d’, for b, c > 0)

w = w +  bc)1(+ ; ∀ d’(e) ∈ d, d’(e) =
  








+ 1)1(

01
bc

 × d’(e);

6. if (N is odd)
if ((w mod N) = = 2)

w = w + 1; ∀ d’(e) ∈ d, d’(e) = 







11
01 × d’(e);

7. ∀ d’(e) ∈ d, d’(e) = 







01
10 × d’(e);

8. Return G’ = (V, E, X, d’, t);

 30

2 data memory banks N data memory banks (N is odd)
Bank i: [m, 2k + i] k ∈ Z Bank i: [m, kN + ((2 – 2m) mod N) + i] k ∈ Z

N data memory banks (N = 2n, n ≥ 2)

Bank i: [m,
2

kN + ((
2

1 m−) mod
2
N) + i] 1 ≤ i ≤

2
N , m is odd, k ∈ Z

Bank i: [m,
2

kN + ((
2

4 m−) mod
2
N) – i]

2
N +1 ≤ i ≤ N, m is even, k ∈ Z

With the similar reason of RSF and RST, the parallelized MDFG must be

unfolded before applying multi-dimensional rotation scheduling. Moreover, schedule

vector (1, 0) can be always selected for applying retiming technique in RSP, which is

beneficial to achieve shorter overall schedule length of the retimed loop [41]. Suppose

the target architecture consists of one multiplier, one adder, and three data memory

banks. The unfolded MDFG of Figure 3.12 (a) is shown in Figure 3.13, and Figure

3.12(b) is its scheduling result generated using RSP. Finally, because variables are

never repartitioned during rotation phases, the scheduling complexity of RSP is also

less than that of RSVR.

C

(3, 1)

11

0 1

2
B C

3

4

6

D

7

D

A

8 9

5

(1, 0)

12 13

A A

14 15
10

B

(1, 1)

 Mul Add M1 M2 M3
1 18 3 5 21
2 34 4 19 37
3 6 25 20 35
4 22 7 27 36
5 38 29 11 23 9
6 13 43 41 39
7 45 15 31 10
8 8 24 47
9 12 26 42 40
10 28 14 0 1
11 2 44 17 30 16
12 32 33 46

(b)

schedule length = 4

(a)

Figure 3.12. (a) The parallelized MDFG of Figure 2.1(b), (b) scheduling result
of Figure 2.1(b) using RSP.

 31

3.4 Performance Evaluations

3.4.1 Performance Studies of a Single Iteration

In the following, we select several MDFGs represented DSP applications to

evaluate methods including list scheduling, RSVR, RSF, RST, and RSP. The

execution process for a retimed loop will consist of three parts: prologue, repetitive

pattern, and epilogue. The prologue and epilogue are instruction sets that must be

executed before and after the repetitive pattern. The repetitive pattern will be iterated

many times and will dominate the entire computation performance of the given loop.

Therefore, in this subsection we first focus on a single iteration in the repetitive

pattern to compare different methods. Suppose that the system contains 1~2 function

units and 2~4 data memory banks, and both ALU and memory access instructions

take one time step to execute. Tables 3.1 and 3.2 list schedule lengths and retiming

depths obtained from different methods for a single iteration in the repetitive pattern.

Note that some schedule lengths in these tables are fractional. This is because the

MDFG may be unfolded or tiled before being scheduled, and we show the average

schedule length of an original iteration.

C

(3, 0)

11

0 1

2
B C

3

4

6

D

7

D

A

8 9

5

(1, 0)

12 13

A A

14 15
10

B

(1, 0)

C

(3, 0)

27

16 17

16
B C

19

20

22

D

23

D

A

24 25

21

(1, 0)

28 29

A A

30 31
26

B

(1, 0)

C

(3, 1)

43

32 33

34
B C

35

36

38

D

39

D

A

40 41

37

(1, 0)

44 45

A A

46 47
42

B

(1, 1)

Figure 3.13. The unfolded MDFG of Figure 3.12(a).

 32

2 data memory banks 3 data memory banks 4 data memory banks

List RSVR RSF RST RSP List RSVR RSF RST RSP List RSVR RSF RST RSP

[1] 9 6, 1 6, 0 6, 1 6, 0 9 6, 2 4, 1 4.3, 2 4, 1 9 4, 4 4, 1 4, 3 4, 1

[2] 13 6, 2 6.5, 2 6.5, 2 6, 1 13 5, 3 4.3, 5 4.3, 3 4.3, 1 13 4, 3 4, 6 4, 4 4, 1

[3] 27 25, 1 24, 1 24, 1 24, 1 21 17, 1 17, 1 17, 1 16.3, 1 21 16, 1 16, 1 16, 1 16.5, 1

[4] 12 7, 2 7, 1 6.5, 2 6.5, 1 12 5, 4 5, 3 5, 4 5, 1 12 5, 6 5, 4 5, 5 5, 1

[5] 7 5, 1 5, 1 5, 1 5, 1 7 5, 2 4, 1 4, 1 4, 1 7 4, 3 4, 1 4, 1 4, 1

[6] 19 16, 1 17.5, 1 17, 0 16, 1 17 12, 2 14.3, 4 12.3, 1 12, 1 15 12, 2 13, 2 12, 1 12, 1

[7] 31 24, 1 23.5, 1 22, 1 22, 1 31 18, 2 18, 2 17.3, 2 17.3, 1 31 17, 3 17, 3 17, 2 17, 1

[8] 20 15, 1 15, 1 17, 2 15, 1 20 12, 2 12, 1 12, 4 12, 1 20 12, 3 12, 1 12, 5 12, 1

[9] 14 12, 1 11.5, 1 ** ** 14 12, 1 10.7, 1 ** ** 13 11, 1 10.3, 1 ** **

[10] 20 19, 1 21, 1 ** ** 19 19, 0 20, 1 ** ** 19 19, 0 19.5, 1 ** **

[11] 37 32, 1 27, 1 ** ** 37 34, 1 25.7, 1 ** ** 37 35, 1 24.5, 1 ** **

[12] 50 49, 1 66, 0 ** ** 49 48, 1 65.7, 0 ** ** 49 49, 0 65.5, 0 ** **

Table 3.1. Experimental results (1 function unit)(schedule length, retiming depth).

[1] Wave Digital Filter [7] Floyd-Steinberg
[2] Filter [8] Transmission Line
[3] Infinite Impulse Response Filter 2D [9] Infinite Impulse Response Filter 1D
[4] Forward-substitution [10] Differential Equation Solver
[5] Toeplitz Hyperbolic Cholesky Solver [11] All-pole Lattice Filter
[6] Discrete Fourier Transform [12] Elliptic Filter

2 data memory banks 3 data memory banks 4 data memory banks

List RSVR RSF RST RSP List RSVR RSF RST RSP List RSVR RSF RST RSP

[1] 9 6, 1 6, 0 6, 1 6, 0 9 6, 2 4, 0 4, 2 4, 0 9 4, 4 3, 0 3.5, 3 3.3, 1

[2] 13 6, 2 6.5, 2 6.5, 2 6, 1 13 5, 3 4, 5 4.7, 3 4, 1 13 4, 3 3.5, 7 3, 4 3.3, 1

[3] 27 25, 1 24, 1 24, 1 24, 1 20 17, 1 17, 1 17, 1 16, 1 21 13, 1 12.8, 1 12.8, 1 12, 1

[4] 12 7, 2 7, 1 6.5, 2 6.5, 1 12 5, 4 5.3, 2 5.3, 3 4.3, 1 12 4, 6 4.3, 3 3.8, 6 3.3, 1

[5] 7 5, 1 5, 1 5, 0 5, 0 7 5, 2 3.7, 1 3.3, 1 3.3, 1 7 3, 4 2.8, 2 2.8, 0 2.8, 1

[6] 18 16, 1 17.5, 1 17, 0 16, 0 16 11, 2 12, 2 11, 1 10.7, 1 13 8, 2 12, 2 8, 1 8, 1

[7] 28 21, 1 23, 1 22, 1 21, 1 28 14, 2 15.3, 2 16.3, 2 14, 1 28 11, 3 12.3, 4 12.5, 3 11, 1

[8] 18 15, 1 15, 1 15, 2 15, 1 18 11, 2 10, 1 13.7, 4 10.3, 1 18 8, 3 7.8, 1 11.5, 5 7.5, 1

[9] 14 12, 1 11.5, 1 ** ** 14 12, 1 10.7, 1 ** ** 13 11, 1 10.3, 1 ** **

[10] 19 18, 1 21, 1 ** ** 18 18, 0 20, 1 ** ** 18 18, 0 19.5, 1 ** **

[11] 36 33, 1 27, 1 ** ** 36 34, 1 25.7, 1 ** ** 36 35, 1 24.5, 1 ** **

[12] 48 47, 1 66, 0 ** ** 44 43, 1 65.7, 0 ** ** 43 43, 0 65.5, 0 ** **

Table 3.2. Experimental results (2 function units)(schedule length, retiming depth).

 33

From these results, RSVR obviously outperforms list scheduling in all cases like

evaluations shown in [30]. Three proposed methods RSF, RST, and RSP also achieve

effective results, but not always better than that of RSVR. This is because the enlarged

MDFG gives a more global view of the data dependencies, which is usually beneficial

for compacting schedules. However, based on our variable partition mechanisms,

most memory accesses in the same original iteration will be scheduled to the same

data memory bank. If an iteration of RSF or RST is cascaded by original iterations, its

results will be inferior to RSVR. Besides, if memory accesses will gather at some data

memory banks in RSVR, our methods can obtain better results. As for RSP, it usually

achieves similar schedule lengths to other methods for a single iteration in the

repetitive pattern, but apparently gets smaller retiming depths. This is because an

iteration in RSP is composed of independent original iterations and memory accesses

will be evenly scheduled. Thus, schedules generated by list scheduling will be already

very compact, which can decrease times applying rotation phases and retiming depth.

3.4.2 Performance Studies of the Entire Retimed Loop [14, 36]

In addition to the repetitive pattern, prologue and epilogue are also generated for

a retimed loop as described in the previous subsection. Strictly speaking, prologue and

epilogue are part of the overhead, not only for the execution time but also for the

instruction count. Many previous studies have stated that the time required to run the

prologue and epilogue are negligible if the given loop contains sufficient iterations.

However, as shown in section 2.2, the prologue and epilogue may still constitute a

considerable portion of the overall schedule length if an unsuitable schedule vector is

selected. Thus, we design an analytic model to calculate the overall schedule length of

a retimed one or two-dimensional MDFG. Nevertheless, this analytic model can be

easily extended to cover nested loop with depths greater than two.

 34

Table 3.3 lists variables used in our analytic model. For a one-dimensional loop

the retiming base r = 1 is always feasible. Schedule vector (s1, s2) is selected for a

two-dimensional nested loop, where s1 and s2 are both positive integers. Several

formulas are defined to calculate the overall schedule length of a retimed loop.

Detailed derivations of these formulas are listed in appendix A [14, 36].

Suppose the system contains one function unit and three data memory banks,

Figures 3.14 and 3.15 show the overall schedule length calculated by above formulas.

In view of the entire retimed loop, the overall schedule lengths of our methods

perform similar to even outperform RSVR. Hence, our RSF, RST, and RSP are not

only efficient but also as effective as RSVR.

3.4.3 Comparisons among RSF, RST, and RSP [14]

After evaluating RSF, RST, and RSP, we analyze the effectiveness among them.

Actually the answer will depend on the topology and loop-carried dependencies of the

nested loop. From formulas (A.6) and (A.7) listed in appendix A, we find that after

Variable Definition

N Number of memory banks

m Loop bound of the outer loop for a two-dimensional nested loop
Loop bound for an one-dimensional loop

n Loop bound of the inner loop for a two-dimensional nested loop

prologue Schedule length of the prologue part of a retimed loop

epilogue Schedule length of the epilogue part of a retimed loop

length Schedule length of a single iteration in the repetitive pattern of a
retimed loop

list Schedule length of a single iteration produced by list scheduling

d Retiming depth, the number of iterations that must be moved into the
prologue and epilogue

w Skew factor used to parallelize the inner loop

half (k, N) Schedule length of k original iterations under N memory banks

Table 3.3. Variables defined in the analytic model.

 35

0

3

6

9

12

15

18

21

24

10x10 8x15 15x10 20x20 30x15 15x30 30x30 20x50 50x25 40x40 25x65 60x30 30x80 70x35 50x50Loop size

Ex
ec

ut
io

n
cy

cl
es

 (x
10

00
)

List RSVR
RSF RST
RSP

0
3
6
9

12
15
18
21
24
27
30
33

10x10 8x15 15x10 20x20 30x15 15x30 30x30 20x50 50x25 40x40 25x65 60x30 30x80 70x35 50x50Loop size

Ex
ec

ut
io

n
cy

cl
es

 (x
10

00
) List RSVR

RSF RST
RSP

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70

10x10 8x15 15x10 20x20 30x15 15x30 30x30 20x50 50x25 40x40 25x65 60x30 30x80 70x35 50x50Loop size

Ex
ec

ut
io

n
cy

cl
es

 (x
10

00
)

List RSVR
RSF RST
RSP

0
3
6
9

12
15
18
21
24
27
30

10x10 8x15 15x10 20x20 30x15 15x30 30x30 20x50 50x25 40x40 25x65 60x30 30x80 70x35 50x50Loop size

Ex
ec

ut
io

n
cy

cl
es

 (x
10

00
)

List RSVR
RSF RST
RSP

Figure 3.14. Overall schedule lengths of DSP applications (1 function unit,
2 memory banks).

WDF

Filter

IIR2D

forward

 36

0

2

4

6

8

10

12

14

16

18

10x10 8x15 15x10 20x20 30x15 15x30 30x30 20x50 50x25 40x40 25x65 60x30 30x80 70x35 50x50Loop size

Ex
ec

ut
io

n
cy

cl
es

 (x
10

00
)

List RSVR
RSF RST
RSP

0
5

10
15
20
25
30
35
40
45
50

10x10 8x15 15x10 20x20 30x15 15x30 30x30 20x50 50x25 40x40 25x65 60x30 30x80 70x35 50x50Loop size

Ex
ec

ut
io

n
cy

cl
es

 (x
10

00
)

List RSVR
RSF RST
RSP

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80

10x10 8x15 15x10 20x20 30x15 15x30 30x30 20x50 50x25 40x40 25x65 60x30 30x80 70x35 50x50Loop size

Ex
ec

ut
io

n
cy

cl
es

 (x
10

00
)

List RSVR

RSF RSP

0
5

10
15
20
25
30
35
40
45
50

10x10 8x15 15x10 20x20 30x15 15x30 30x30 20x50 50x25 40x40 25x65 60x30 30x80 70x35 50x50Loop size

Ex
ec

ut
io

n
cy

cl
es

 (x
10

00
)

List RSVR
RSF RST
RSP

Figure 3.15. Overall schedule lengths of DSP applications (1 function unit,
2 memory banks).

DFT

Floyd

xmission

THCS

 37

applying RSP, prologue, epilogue, and half really occupy considerable portion of the

overall schedule length. Recall that the prologue, epilogue, and half are part of the

overhead. That is, although RSP performs as well as other methods from Figures 3.14

and 3.15, it costs more overheads on both execution time and instruction count

compared to RSF and RST, especially when the architecture contains more than two

data memory banks. Therefore, we suggest using RSP only for the DSP architecture

with two data memory banks.

In the following, we conclude some principles of RSF, RST, and RSP. If the

nested loop only contains dependencies with distances (1, 0, …, 0) but (0, ..., 0, 1),

RSF should obtain better results because original iterations in a single unfolded

iteration are data independent. On the contrary, using RST should be better if the

nested loop only contains dependencies with distances (0, …, 0, 1) but (1, 0, …, 0),

and this nested loop can be tiled directly. These two conclusions are made directly

based on the principle of their variable partition mechanisms. Then, if the nested loop

contains dependencies with distances (0, …, 0, 1) and (1, 0, …, 0), an enlarged

iterations in neither RSF nor RST is combined with original iterations which are data

independent. At this time RSP is suited when the architecture contains two data

memory banks. As for architectures with more than two data memory banks, we

suggest using list scheduling to schedule an iteration of RSF and RST separately and

choose the shorter one.

In parallel processing system, column major is one of common problems to

prevent the parallelism. If the target DSP architecture contains multiple data memory

banks and more than one function unit, the similar problem will also occur. When we

design methods RSF, RST, and RSP, we simply assume the given nested loop is

executed in row major sequence. After enlarging the given loop, the variable partition

mechanism will be selected based on distances of loop-carried data dependencies.

 38

From descriptions listed in above paragraph, our goal is to make original iterations in

an enlarged iteration be data independent. That is, for elements of the same array

variable which will be accessed in an enlarged iteration, we will separate them into

different memory banks as far as possible. This mechanism works well when there is

only one DSP core with one or more function units. However, we never consider the

memory access sequence between different enlarged iterations. Therefore, if there are

two or more DSP cores in the target architecture, the potential column major problem

may still occur using our proposed methods.

 39

Chapter 4. Effective Code Generation Method for Motorola

DSP56000

In this and next chapter, we will present our second issue about code generation

methods for DSPs with multiple data memory banks and heterogeneous register sets.

As mentioned in section 2.4.3, a complete code generation process for DSP with

multiple data memory banks must include five phases: intermediate representation,

code compaction, instruction scheduling, memory bank assignment (or variable

partition), and register/accumulator assignment [17]. Our three methods RSF, RST,

and RSP presented above directly use data memory to store temporary variables, so

they have covered all except the accumulator/register assignment phase. In this

chapter, we introduce a new method focus on Motorola DSP56000 to consider the

accumulator/register assignment and further improve overall execution performance.

Section 4.1 we briefly give an overview of the Motorola DSP56000. Section 4.2 lists

our design motivations, and detailed steps of proposed method are described in

section 4.3. Finally, in section 4.4 some performance evaluations are shown.

4.1 Motorola DSP56000 Architecture [10]

In our studies we target on the DSP architecture which consists of multiple data

memory banks and heterogeneous register sets. Associated with each data memory

bank is an independent set of address bus, data bus, and independent unit to calculate

address. Motorola DSP56000/DSP56001 and DSP56300 family members are

examples of this architecture, and are commonly used in practice and in previous

researches. Many members belong to DSP56300 family, which have various memory

sizes and peripheral interfaces. However, data ALU circuits of all members of

DSP56300 family are the same, and are almost identical to those of DSP56000/

 40

DSP56001 as shown in Figure 4.1. The main difference is that all ALU instructions

are completed in one clock cycle in DSP56000/DSP56001, and performed in two

clock cycles in pipeline fashion in DSP56300 family. Therefore, in the following we

briefly introduce the Motorola DSP56000 architecture, and design our code

generation method based on it.

As shown in Figure 4.2, the DSP56000 architectural units of interest are the data

ALU, Address Generation Unit (AGU), and X/Y memory banks. The data ALU

consists of four input registers called X0, X1, Y0, and Y1, and two accumulators, A and

B. The source operands for all ALU instructions, except multiplication, must be

registers or accumulators and the destination operand must always be an accumulator.

Source operands of multiplication must always be input registers. Two buses XDB and

YDB permit two input registers or accumulators to be read or written in conjunction

during execution of an ALU instruction. Thus, up to two move operations (including

Figure 4.1. Data ALU block diagram. (a) DSP56000/DSP56001, (b) DSP56300 family.
(a) (b)

 41

memory access, register transfer, and immediate load) and one data ALU instruction

may be executed simultaneously in one cycle.

Two independent move operations executed in the same cycle are called parallel

moves. However, due to the nature of the DSP56000 architecture, not all pairs of

move operations can be performed in parallel. Detailed parallel move conditions can

be found in [10]. In our studies we especially consider the following conditions: (1)

the two move operations reference data in different data memory banks; (2) the two

destination registers are different; (3) the X/Y memory access loads into restricted

locations X0/Y0, X1/Y1, A, or B.

4.2 Design Motivations [37]

In section 2.4.3 we have surveyed some code generation methods for DSP with

multiple data memory banks. Among them, both methods proposed in [9, 17] focus on

Motorola DSP56000 and consider all five phases of the code generation process. In

the following we summarize them and introduce our design motivations. First, these

two methods perform variable partition after code compaction, which means memory

accesses are scheduled without information of memory bank assignment. However, in

Figure 4.2. Motorola DSP56000 architecture.

 42

the DSP56000 architecture, memory accesses involved in a parallel move must

reference variables in different banks [10]. That is, memory accesses may be assumed

to be executed in parallel, but in fact their reference variables are stored in the same

data memory bank. In this situation, an extra cycle (spill code) will be required to

access them separately. If spill codes occur frequently, the computational performance

is clearly degraded. On the other hand, if variables are partitioned before code

compaction, this kind of spill codes will not occur. In our design we will use the later

mechanism to avoid the occurrence of spill codes.

Apart from location conflict for parallel moves, spill codes also possibly occur in

the accumulator/register assignment phase. In methods proposed in [9, 17], they store

variables in unlimited symbolic accumulator/register during code compaction, and

consider accumulator/register assignment at last. But in DSP numbers of accumulators

and registers are usually strictly limited. When accumulator and register spills occur,

spill codes are required and their spill costs may be more than one extra cycle.

Therefore, we will design mechanisms to predict the occurrence of register and

accumulator spills in advance and generate corresponding spill codes. Then, these

spill codes can be scheduled in parallel with other instructions, which is beneficial to

decrease the spill costs.

4.3 Rotation Scheduling with Spill Codes Predicting (RSSP) [37]

In this section we introduce code generation method named rotation scheduling

with spill codes predicting (RSSP) proposed for Motorola DSP56000. As listed in

Figure 4.3 RSSP contains six parts: MDFG construction, TDAG construction, TDAG

modification, ALU instruction scheduling, other instruction scheduling, and initial

schedule retiming. Detailed description of each part is presented as follows.

 43

4.3.1 MDFG Construction

In the first part we construct the MDFG from the high-level language using the

same mechanism as in RSF, RST, and RSP. During the MDFG construction operands

are stored in memory, and reloaded into registers only when they are required for use.

This mechanism appears burdensome but is really used in some DSP compilers,

because the number of registers is limited in DSP and memory is the only safe

repository. In addition to constructing the MDFG, variables are also partitioned by

four mechanisms proposed in RSVR, RSF, RST, and RSP in the first part. Constants

are stored in both X and Y memory banks at specific locations in advance.

4.3.2 TDAG Construction

If all instructions in the MDFG are scheduled, apparently that accumulator and

register spills will not occur. But scheduling according to this complicated MDFG

will degrade the computational performance, because ALU results can be temporarily

stored in accumulators or registers instead of directly written back to memory. Hence,

in RSSP we define a translated data acyclic graph (TDAG) constructed from the

1. Gc = Construct MDFG;
1.1. Partition variables to X and Y memory banks;
1.2. Unfold or tile Gc if necessary;

2. Gt = Construct TDAG;
3. Modify TDAG Gt;

5.1. Gt = Insert register transfer nodes (Gt);
5.2. (Gop, Gpr) = Construct DAG Gop and Gpr (Gt);
5.3. Gop = Mark_Edge (Gop, Eop);
5.4. Gop = Mark_Edge (Gop, Epr);
5.5. Gop = Check_Cycle (Gop, Gt);
5.6. Gt = Insert memory access nodes (Gop, Gt);

4. S = Schedule ALU instructions (Gop);
5. S = Schedule other instructions (S, Gt);
6. S = Retime the initial scheduling result (S);

Figure 4.3. The entire scheduling steps of RSSP.

 44

original MDFG, which is aimed at removing possible unnecessary memory accesses.

The formal definition of the TDAG is given below.

Definition 4.1 A translated data acyclic graph (TDAG) G = (V, E, X, P) is a

node-weighted and edge-weighted direct graph, where V is the set of computation

nodes; E ⊆ V × V is the edge set that defines the precedence relations over the nodes

in V; X(e) represents the variable accessed by an edge e; P(v) represents the type of

node v (see Figure 2.1(c)).

1. Input: Gc = (Vc, Ec, Xc, d, Pc);
2. Output: Gt = (Vt, Et, Xt, Pt);
3. Vt = Vc; Et = {e | e ∈ Ec, d(e) = (0,…, 0)};
4. Assume that vi, vj, vk, vl, vm, vn ∈ Vc, and their types are M, A, S, L, M, and A

respectively;
4.1. If (∃ a path vi → vk → vl → vm ∈ Gt) // M → M

Insert node vx into Vt (set Pt(vx) = T); Insert edge eix into Et;
∀ elm ∈ Et delete edges elm from Et, insert edges exm into Et;
Delete node vl from Vt; Delete edge ekl from Et;
If (∃ ekl ∈ Ec such that d(ekl) ≠ (0,…, 0)) ; // retain vk, eik
Else delete node vk from Vt, delete edge eik from Et;

4.2. If (∃ a path vj → vk → vl → vm ∈ Gt) // A → M
Insert node vx into Vt (set Pt(vx) = T); Insert edge ejx into Et;
∀ elm ∈ Et delete edges elm from Et, insert edges exm into Et;
Delete node vl from Vt; Delete edge ekl from Et;
If (∃ ekl ∈ Ec such that d(ekl) ≠ (0,…, 0)) ; // retain vk, ejk
Else delete node vk from Vt, delete edge ejk from Et;

4.3. If (∃ a path vi → vk → vl → vn ∈ Gt) // M → A
∀ eln ∈ Et delete edges eln from Et, insert edges ein into Et;
Delete node vl from Vt; Delete edge ekl from Et;
If (∃ ekl ∈ Ec such that d(ekl) ≠ (0,…, 0)) ; // retain vk, eik
Else delete node vk from Vt, delete edge eik from Et;

4.4. If (∃ a path vj → vk → vl → vn ∈ Gt) // A → A
∀ eln ∈ Et delete edges eln from Et, insert edges ejn into Et;
Delete node vl from Vt; Delete edge ekl from Et;
If (∃ ekl ∈ Ec such that d(ekl) ≠ (0,…, 0)) ; // retain vk, ejk
Else delete node vk from Vt, delete edge ejk from Et;

5. Xt(e) = Xc(e), if e is remained in Et;
6. Pt(v) = Pc(v), if v is remained in Vt;
7. Return Gt;

Figure 4.4. The TDAG constructing algorithm.

 45

Figure 4.4 shows the TDAG construction algorithm. For a given MDFG, the first

step is to remove edges with non-zero delays. Then, for an ALU result written back

and reloaded in the same iteration, it can be temporarily stored in an accumulator to

remove the corresponding instructions with types S and L. If an ALU result will be

used in latter iteration, its corresponding store variable instruction must be retained. In

addition, in Motorola DSP56000 both source operands of a multiplication must

always be registers. Hence, a register transfer instruction is added if necessary to

ensure all source operands are stored in registers. Figure 4.5(a) shows two cases of

removing memory accesses, and Figure 4.5(b) is the TDAG transferred from the

MDFG shown in Figure 2.1(b). Note that during constructing TDAG we simply

assume unlimited numbers of accumulators and registers. That is, the TDAG only

contains absolutely necessary memory accesses, which is beneficial to decrease the

instruction count.

Figure 4.5. (a) Two cases of removing memory accesses, (b) TDAG of MDFG
in Figure 2.1(b).

C

0 1

2
B C

6

D

11 9

5

12

13

A

14

15

10

B

16

7

A

(a) (b)

M/A

S

L

A

M/A

A

M/A

A S

M/A

S

L

M

M/A

M

T

M/A

M

T S

 46

4.3.3 TDAG Modification

One of the main goals of RSSP is to avoid accumulator and register spills by

predicting their occurrence in advance. In the third part of RSSP we analyze and

modify the TDAG to resolve accumulator spills. Register spills will be dealt with in

the fifth part later.

Three main steps are required for this TDAG modification: insertion of register

transfers, analysis of TDAG, and insertion of memory accesses. Recall that we assume

unlimited number of accumulators when constructing the TDAG. Hence, an ALU

instructions with types M/A may have many immediate successors with type A in the

TDAG. As shown in Figure 4.6(a), the ALU result of vj is a source operand of all

additions vj1 to vjm. In this case we add a register transfer vk if m > n, if the architecture

only consists of one data ALU and n accumulators. Figure 4.6(b) contains the TDAG

after inserting vk and the corresponding algorithm is listed in Figure 4.7.

Figure 4.6. (a) A TDAG fragment, (b) after inserting the register transfer vk.
(a)

vj1

vi

vj2 vjm …

P(vi) = M or A

P(vji) = A, for 1 ≤ i ≤ m
P(vk) = T

(b)

vj1

vi

vj2 vjm …

vk

Figure 4.7. The register transfer inserting algorithm.

1. Input: G = (V, E, X, P), n;
2. Output: Gt = (Vt, Et, Xt, Pt);
3. Gt = G;
4. Suppose that vi ∈ Vt and Pt(vi) = M or A;
5. If (vi has more than n immediate successors v1,…, vm with type A)

Delete edges ei1,…, eim from Et;
Insert nodes vx into Vt (set Pt(vx) = T);
Insert edges ex1,…, exm into Et;

6. Return Gt;

 47

Then, we analyze TDAG topologies too predict the occurrence of accumulator

spill. Two intermediate DAGs Gop and Gpr, defined as follows, are constructed using

algorithm listed in Figure 4.8. Initially we set S(e) = F for all edges in Gop and Gpr to

indicate no accumulator spill will occur. After applying algorithms listed in Figures

4.9 and 4.10, some edges in Gop will be set S(e) = T to represent the occurrence of

accumulator spill. Figure 4.11 shows two Gop fragments with accumulator spills that

will be checked by algorithms Mark_Edge and Check_Cycle, respectively. Note that

Mark_Edge and Check_Cycle algorithms are designed based on our analyses of

TDAG topologies. That is, they only suit the architecture consisting of data ALU and

two accumulators, such as the DSP56000.

1. Input: G = (V, E, X, P);
2. Output: Gop = (Vop, Eop, S), Gpr = (Vop, Epr, S);
3. Vop = {v | v ∈ V, P(v) = M or A};
4. Eop = {eij | eij ∈ E, vi, vj ∈ Vop};
5. Epr = {eij | eji ∈ Eop};
6. S(e) = {F | e ∈ Eop and Epr};
7. Return (Gop, Gpr);

Figure 4.8. The Gop and Gpr constructing algorithm.

1. Input: G = (V, E, S), Ei;
2. Output: Gr = (Vr, Er, Sr);
3. Gr = G;
4. label(v) = N, ∀ v ∈ V;
5. label(v) = S, ∀ v doesn’t have any immediate predecessor;
6. While (∃ label(v) = = N)

6.1. ∃ eij ∈ Ei, such that vi is the only immediate predecessor of vj



 ==

=
otherwise)(

)(if
)(

i

i
j

vlabel
SvlabelV

vlabel

6.2. ∃ eik, ejk ∈ Ei
If (label(vi) = = N or label(vj) = = N) label(vk) = N;
else if (label(vi) = = S or label(vj) = = S) label(vk) = H;
else if (label(vi) = = V and label(vj) = = V) label(vk) = H;
else label(vk) = G; Sr(ejk) = T;

7. Return Gr;

Figure 4.9. The Mark_Edge algorithm.

 48

Definition 4.2 A DAG Gop = (V, E, S) is a direct graph, where V is the node set

representing ALU instructions; E ⊆ V × V is the edge set that defines the precedence

relations over the nodes in V; S(e) is an edge mark that represents two nodes that must

be scheduled at separate time steps or not.

Definition 4.3 A DAG Gop, corresponds to an undirected DAG Gpr = (V, E, S) with

the same topology and characteristics.

Finally, for an edge in Gop with S(e) = T, two memory accesses with types S and

L are inserted into the TDAG using algorithm listed in Figure 4.12. After completing

steps 3.1~3.6 listed in Figure 4.3, we will get a modified TDAG which can be

scheduled without any accumulator spill.

1. Input: G = (V, E, S), Gt = (Vt, Et, Xt, Pt);
2. Output: Gr = (Vr, Er, Sr);
3. Gr = G;
4. Delete edge e from E, such that S(e) = T;
5. ∀ eij ∈ Et such that Pt(vj) = T

∀ ejk ∈ Et, insert edge eik into E (set S(eik) = X);
6. Remove edge direction in G;
7. Level each node v ∈ V (level(v) indicates the longest path length from v to any root

node; level(v) = 1 if v is a root node)
8. If (∃ a cycle vi → vi+1 →…→ vk → vk+1 →…→ vj → vi in G)

8.1. Suppose vi has the smallest level(v) value in this path;
8.2. If ((level(vi) < level(vi+1) in path vi →…→ vk) and (level(vk) < level(vk+1) in

path vk →…→ vi)) Sr(eji) = T;
else Sr(eij) = T, ∀ level(v) = level(vi) in this path;

9. Return Gr;

Figure 4.10. The Check_Cycle algorithm.

∀ i, P(vi) = M or A
v1 v2

v3

v4 v5

v6

v7 S(e) = T

v1

v2

v3

v4

S(e) = T

Figure 4.11. Two Gop fragments with accumulator spill.

 49

4.3.4 ALU Instruction Scheduling

In the fourth part of RSSP, ALU instructions are scheduled considering the

nature of Motorola DSP56000. We first list principles that a correct schedule must

satisfy as follows, and propose scheduling rules based on these principles. For

convenience, we only permit a variable or constant loaded from memory to be stored

in a register.

1. For an edge eij of a TDAG, if P(vi) = L/C/T and P(vj) = M/A, vj must be executed

no later than the next two instruction (in the same memory bank as vi) with type

L/C/T.

2. For an edge eij of a TDAG, if P(vi) = M/A and P(vj) = S, vj must be executed no

later than the next two instruction with type M/A.

3. For an edge eij of a TDAG, if P(vi) = M/A and P(vj) = M/A, at most one ALU

instruction can be executed between vi and vj.

Basically, ALU instructions are scheduled using list scheduling based on Gop (V,

E, S). Recall that the Motorola DSP56000 consists of one data ALU and two

accumulators, and all instructions are completed in one time step. For an edge eij ∈ E,

its edge mark S(eij) may be F, T, or X, which indicates different rules for scheduling vi

and vj. Assume that vi ∈ V is scheduled at time step i, and the ALU result rti of vi is

stored in accumulator acci. If S(eij) = F/X, vj must be scheduled at time step i+1 or i+2

1. Input: G = (V, E, S), G1 = (V1, E1, X1, P1);
2. Output: Gt = (Vt, Et, Xt, Pt);
3. Gt = G1;
4. ∀ eij ∈ E such that S(eij) = = T

Delete edge eij from Et;
Insert nodes vs, vl into Vt (set Pt(vs) = S, Pt(vl) = L);
Insert edges eis, esl, elj into Et (set Xt(eis) = t, Xt(elj) = t, where t is a
temporary variable);

5. Return Gt;

Figure 4.12. The memory access inserting algorithm.

 50

to prevent rti being recovered before being used. Conversely, if S(eij) = T, vj can be

scheduled at time step later than i+2, because rti will be transferred to register regi. In

addition, if S(eij) = X and vj is scheduled at time step i+1, an idle time step is inserted

between vi and vj for scheduling register transfer instruction further. Because we have

already considered the occurrences of accumulator spill, all ALU instructions can be

scheduled exactly according to the above three rules. These rules for scheduling ALU

instructions are essentially equivalent to the third principle listed above. Figure 4.13

(a) shows a TDAG example, and its scheduling result of the ALU instructions only is

listed in Figure 4.13(b).

4.3.5 Other Instruction Scheduling

After scheduling ALU instructions, other instructions including memory accesses

and register transfers are scheduled based on the modified TDAG. Meanwhile, we

consider the limited number of registers during instruction scheduling, therefore no

extra action is required to determine and deal with the occurrences of register spill. In

RSSP, we use two variables reg_x(t) and reg_y(t) to record the number of registers

Figure 4.13. Scheduling steps of RSSA. (a) An TDAG example, (b) ALU
instructions only, (c) initial scheduling result, (d) retimed scheduling result.

 ALU X Y reg_x reg_y
1 5 1 2 2
2 6 0 3 2 2
3 7 2 2
4 9 4 8 2 2
5 2 10 2 1

 ALU X Y reg_x reg_y
1 0 1 1 1
2 2 4 3 2 1
3 5 2 1
4 6 1 0
5 7 1 0
6 9 8 0 0
7 10 0 0

 ALU X Y
1 2
2 5
3 6
4 7
5 9

(b)

(a)

(c)

0

2
D

7

1

9

10

D

4 3

6

C

8

C

5

C

D

(d)

 51

been occupied at time step t for X and Y memory banks, respectively. When

scheduling each instruction, these two variables are dynamically updated. Apparently,

if we can generate a schedule where reg_x(t) and reg_y(t) do not exceed the limited

number of registers for all time steps, register spills will not occur.

For a correct schedule, an operand residing in an accumulator/register obviously

cannot be overwritten before being used. Recall that all instructions are completed in

one time step in Motorola DSP56000. That is, if a variable (or constant) is loaded

from memory at time step i and used at time step j, it will occupy a register from time

step i to j-1. Similarly, an ALU result will occupy a register from time step i to j–1 if it

is transferred from an accumulator at time step i and used at time step j. We conclude

scheduling rules for memory accesses and register transfers as follows.

1. According to the execution sequence of ALU instructions, schedule their

predecessors as soon as possible.

2. Principles 1~2 listed in subsection 4.3.4 must be satisfied, and reg_x(t) and reg_y(t)

cannot exceed the number of registers for any time step.

3. If a variable is stored and loaded at consecutive time steps, these two memory

accesses can be replaced by a single register transfer.

4. If a memory access or register transfer cannot be scheduled successfully due to

insufficient registers, a variable currently occupied a register must be overwritten

and reloaded again when required.

5. If an overwritten variable is not used after being transferred from the accumulator,

the corresponding register transfer is replaced by a store variable instruction.

Figure 4.13(c) shows the scheduling result of the TDAG in Figure 4.13(a).

Finally, because we have already considered accumulator and register spills, an

appropriate assignment of physical accumulators and registers will exist.

 52

4.3.6 Initial Schedule Retiming

After generating the initial scheduling result, we apply the multi-dimensional

rotation scheduling to explore the instruction-level parallelism between different

iterations. Retimed instructions in each rotation phase are originally rescheduled as

soon as possible to reduce the schedule length. But in RSSP we redefine the

rescheduling rules for retimed instructions, in order to guarantee that the number of

registers used at all time steps will not exceed the limitation. Assume that the length

of the initial schedule is len. In the following we present conditions so that a retimed

instruction can be rescheduled at time step i. We will reschedule a retimed instruction

at the earliest time step that satisfies all conditions listed below. Moreover, because

constants are stored in both X and Y data memory banks in advance, a retimed load

constant instruction can be rescheduled at any data memory bank to achieve higher

performance. The retimed scheduling result of Figure 4.13(c) is shown in Figure

4.13(d).

1. A retimed instruction with type L/C must occupy a register from time step i to len,

because this value or constant will be used for a later iteration.

2. A retimed instruction with type T must occupy a register from time step i to len,

because this ALU result will be used for a later iteration. In addition, the second

principle listed in subsection 4.3.4 has to be satisfied.

3. Rescheduling a retimed instruction with type S must satisfy the second principle

listed in subsection 4.3.4.

4. Rescheduling a retimed instruction with type M/A must satisfy the first or third

principle listed in subsection 4.3.4. In addition, reg_x(t) and reg_y(t) are updated

after rescheduling this ALU instruction.

 53

4.4 Performance Evaluations [37]

In the following, we select several MDFGs represented DSP applications to

evaluate methods including Cho [9], Malik [17], Shiue [20], and RSSP. Because four

variable partition mechanisms proposed in RSVR, RSF, RST, and RSP can be applied

in RSSP, three scheduling results are derived from RSSP. Meanwhile, scheduling

results obtained by RSVR [30], RSF [14], RST [14], and RSP [36] are used for

comparison, after inserting necessary spill codes. Among these methods, Cho [9] and

RSSP are scheduled based on TDAG, and others are scheduled based on MDFG.

Suppose that the target architecture is the Motorola DSP56000, which consists of one

data ALU, two data memory banks, two accumulators, and four registers. All ALU

instructions and memory accesses can be completed in one time step.

Similar as in chapter 3, we evaluate performances focus on both a single iteration

in the repetitive pattern and the entire retimed loop. Table 4.1 lists schedule lengths

obtained from different methods for a single iteration in the repetitive pattern. From

these results, it is obvious that methods scheduled based on TDAG outperform

methods scheduled based on MDFG. The direct reason is that we remove additional

memory accesses during constructing the TDAG in advance, which decrease the

RSSP
 Cho Malik Shiue RSVR RSF RST RSP

RSVR RSF RST RSP

Wave Digital Filter 7 9 9 8 6 8.5 6 6 5 5.5 5.5

Filter 8 13 13 9 11.5 9 6 6 5.5 5 4.5

IIR Filter 2D 20 29 33 25 27.5 28 24.5 16 16 16 16

forward-substitution 7 12 12 9 10 11.5 7.5 5 5.5 5 5

THCS 6 8 8 6 6.5 5.5 5 4 4 4 4

DFT 14 21 21 18 21 18.5 18 13 12.5 13 12.5

Floyd-Steinberg 20 36 37 29 32.5 30.5 23.5 18 17.5 17 17

Transmission Line 15 20 21 19 18 25 18 12 12 12 12

Table 4.1. Experimental results for a single iteration in the repetitive pattern.

 54

number of instructions actually been scheduled. Furthermore, both RSSP and Cho [9]

are scheduled based on TDAG, and our RSSP can achieve shorter schedule lengths.

This is because the retiming technique is applied in RSSP, in order to explore the

potential instruction-level parallelism between different iterations. The effectiveness

among four scheduling results derived from RSSP is very similar for most

applications. This indicates that RSSP is sufficiently flexible and can achieve

reasonable results using various variable partition mechanisms.

For the entire retimed loop, formulas listed in appendix A can be directly used to

calculate the overall schedule length for RSSP. Figures 4.14 and 4.15 show the overall

schedule lengths of every application. For each application, we only sketch the best

result among methods RSVR, RSF, RST, and RSP. Four scheduling results are derived

from RSSP with different variable partition mechanisms, and we also only sketch the

best one. As shown in these figures, basically these results are the same as the

evaluations focused on a single iteration in the repetitive pattern. Meanwhile, as the

size of nested loop increases, the difference in overall schedule lengths between all

methods increases. That is, the proposed RSSP can save more execution time in larger

problem sizes.

 55

0
2
4
6
8

10
12
14
16
18
20
22
24

10x10 8x15 15x10 20x20 30x15 15x30 30x30 20x50 50x25 40x40 25x65 60x30 30x80 70x35 50x50Loop sizes

Ex
ec

ut
io

n
tim

e
(1

00
0

cy
cl

es
) Cho Malik&Shiue

RSSP RSF

0
3
6
9

12
15
18
21
24
27
30
33

10x10 8x15 15x10 20x20 30x15 15x30 30x30 20x50 50x25 40x40 25x65 60x30 30x80 70x35 50x50Loop sizes

Ex
ec

ut
io

n
tim

e
(1

00
0

cy
cl

es
) Cho Malik&Shiue

RSSP RST

0
7

14
21
28
35
42
49
56
63
70
77
84

10x10 8x15 15x10 20x20 30x15 15x30 30x30 20x50 50x25 40x40 25x65 60x30 30x80 70x35 50x50Loop sizes

Ex
ec

ut
io

n
tim

e
(1

00
0

cy
cl

es
)

Cho Malik
Shiue RSSP
RSVR

0
3
6
9

12
15
18
21
24
27
30
33

10x10 8x15 15x10 20x20 30x15 15x30 30x30 20x50 50x25 40x40 25x65 60x30 30x80 70x35 50x50Loop sizes

Ex
ec

ut
io

n
tim

e
(1

00
0

cy
cl

es
)

Cho Malik

Shiue RSSP

RSVR

WDF

Filter

IIR2D

forward

Figure 4.14. Overall schedule lengths of DSP applications.

 56

0
2
4
6
8

10
12
14
16
18
20
22

10x10 8x15 15x10 20x20 30x15 15x30 30x30 20x50 50x25 40x40 25x65 60x30 30x80 70x35 50x50Loop sizes

Ex
ec

ut
io

n
tim

e
(1

00
0

cy
cl

es
)

Cho Malik&Shiue

RSSP RST

0
5

10
15
20
25
30
35
40
45
50
55

10x10 8x15 15x10 20x20 30x15 15x30 30x30 20x50 50x25 40x40 25x65 60x30 30x80 70x35 50x50Loop sizes

Ex
ec

ut
io

n
tim

e
(1

00
0

cy
cl

es
)

Cho Malik

Shiue RSSP

RSVR

0
8

16
24
32
40
48
56
64
72
80
88
96

10x10 8x15 15x10 20x20 30x15 15x30 30x30 20x50 50x25 40x40 25x65 60x30 30x80 70x35 50x50Loop sizes

Ex
ec

ut
io

n
tim

e
(1

00
0

cy
cl

es
) Cho Malik

Shiue RSSP

RSVR

0
5

10
15
20
25
30
35
40
45
50
55

10x10 8x15 15x10 20x20 30x15 15x30 30x30 20x50 50x25 40x40 25x65 60x30 30x80 70x35 50x50Loop sizes

Ex
ec

ut
io

n
tim

e
(1

00
0

cy
cl

es
)

Cho Malik
Shiue RSSP
RSF

THCS

DFT

Floyd

xmission

Figure 4.15. Overall schedule lengths of DSP applications.

 57

Chapter 5. Effective Generalized Code Generation Method

According to descriptions in chapter 4, RSSP looks really effective and efficient,

but it is not scalable and specifically designed for Motorola DSP56000. In this chapter,

we want to extend it to a more general version, which is suitable for various DSPs

with similar architectural features. For the generalized code generation method, in

addition to achieving shorter schedule length, we take fewer spill codes as the second

scheduling goal due to its importance for DSP with heterogeneous register sets.

Furthermore, in order to deep study the influence of differing number of resources on

the scheduling result, we also define a parameterized machine model to simulate

architectures with different number of resources. In section 5.1 we present the

hypothetical machine model, and lists design motivations in section 5.2. Section 5.3

contains detailed steps of the generalized method. In section 5.4, we describe how to

apply the proposed hypothetical machine model and code generation method to real

DSP families. Finally, some performance evaluations are shown in section 5.5.

5.1 Hypothetical Machine Model [38]

As mentioned before, we need a parameterized architecture to model a scalable

DSP with multiple data memory banks and heterogeneous register sets. Many

parameterized architecture models have been developed to explore and investigate

advanced compiler and architecture research [53-57]. Most of them are oriented

towards EPIC (explicitly parallel instruction computing) or superscalar architectures,

and support novel features such as prediction, control and data speculation, and

memory hierarchy. However, none of them supports both architectural features we

require, so here we define a hypothetical machine model in which more resources will

be included.

 58

Table 5.1 lists architectural features of some popular DSP families, especially for

their data paths. Our parameterized machine model, defined as follows, is design to

cover all these architectural features as far as possible. Assume that it contains N data

memory banks (M1…MN), k function units (FU1…FUk), k×m accumulators

(acc11…acc1m, …, acck1…acckm), and N×n registers (reg11…reg1n, …, regN1…regNn).

All function units are identical and parallel executed, which can execute all ALU

instructions including the multiplication. Source operands for all ALU instructions,

except multiplication, must be registers or accumulators and destination operands (or

ALU results) must always be accumulators. For the multiplication source operands

must always be registers. This restriction is inherited from Motorola families. We

assume that an instruction may require several time steps to complete in our

hypothetical machine model.

Due to the nature of the target architecture, many irregular DSPs have parallel

conditions to define which instructions can be performed in parallel. In the following,

we list parallel conditions in our hypothetical machine model: (1) up to N independent

move operations and k ALU instructions can be executed simultaneously in one cycle;

(2) the N move operations reference data in different data memory banks; (3) the Mi

memory access load into restricted locations regi1…regin, or all accumulators; (4) the

ALU result generated by FUi must be stored in accumulators acci1…accim; (5) 2k

source operands must be read from different registers or accumulators.

According to above descriptions, our hypothetical machine model is basically

extended from Motorola DSP56000. However, with minor modifications, this model

and the general code generation method can satisfy all architectural features listed in

Table 5.1. We will further describe how to apply the machine model and general

method to real DSP families in section 5.4. On the other hand, because our main

purpose is to design code generation method, our hypothetical machine model is

 59

Table 5.1. Architectural features of some popular DSPs.

 data memory bank function unit register set
DSP56000
DSP56001

DSP56300
family

* X/Y memory banks
with independent data
buses

* 2 memory reads/
writes can be
performed
simultaneously

* 4 24-bit reg. (X0, X1,
Y0, Y1) for source
operands

* 2 56-bit acc. (A, B)
for source/destination
operands

Motorola

DSP56800
family

* 1 MAC
* 3 16-bit reg. (X0, Y0,

Y1) for source
operands

* 2 36-bit acc. (A, B)
for source/destination
operands

Analog
Device

ADSP2100
family

* 1 memory bank
* 2 memory reads can

be performed
simultaneously using
independent buses * 1 ALU, 1 MAC, 1

shifter
* Parallel execute

* ALU:
- 4 16-bit reg. (AX0,

AX1, AY0, AY1) for
source operands

- 1 16-bit reg. (AF/
AR) for source/
destination operand

* MAC:
- 4 16-bit reg. (MX0,

MX1, MY0, MY1)
for source operands

- 1 40-bit reg. (MR)
for source/destination
operand

NEC
uPD7701x

family

* X/Y memory banks
with independent data
buses

* 2 memory reads/
writes can be
performed
simultaneously

* 1 ALU, 1 MAC, 1
shifter

* One unit executes at a
time

* 8 40-bit reg. (R0~R7)
* Homogeneous

TMS320C62x
TMS320C67x

family

* 32 32-bit reg. (A0~
A15, B0~B15)

* 2 register files
* Homogeneous

TI

TMS320C64x
family

* 1 memory bank
* 2 memory reads/

writes can be
performed
simultaneously using
independent buses

* 2 multipliers, 6 ALUs
* Parallel execute * 64 32-bit reg. (A0~

A31, B0~B31)
* 2 register files
* Homogeneous

 60

defined focus on the data path of the DSP architecture. If we want to study other

issues on the DSP architecture later, it is not difficult to further extend our model for

the target DSP to include necessary resources.

5.2 Design Motivations [37]

In RSSP we list two design motivations: performing variable partition before

code compaction and predicting accumulator spills in advance. The former is retained

in the general method because it certainly can avoid the occurrence of spill codes. On

the other hand, when the target architecture is no longer specific, to predict

accumulator spills by topological analysis of the TDAG becomes much more difficult

and inaccurate. Therefore, in the general method we design another mechanism to

resolve accumulator spills and not predict their occurrences.

Next, we focus on the resolution of accumulator/register spills. When a register

spill occurs, the overwritten variable must be stored back to memory and reloaded

when required. As for an accumulator spill, in addition to memory, the overwritten

ALU results also can be temporarily transferred to an available register before being

used. Consider the example shown in Figure 5.1. Assume that the target architecture is

the Motorola DSP56000, and Figure 5.1(c) lists the schedule obtained using method

described in [17]. In this schedule we find that when an accumulator spill occurs at I3,

the overwritten ALU results, m, must be stored back to memory because all variables

residing in four registers will be accessed later. Later another memory access is added

to reload m before I8. However, if instruction i13 is moved to I5 as shown in Figure

5.1(d), m can be transferred to register Y0 instead of memory to eliminate one extra

spill cost. From this example, we find that it is preferable to transfer an overwritten

ALU results to a register when an accumulator spill occurs. In the general method we

will follow this principle to determine and resolve accumulator spills.

 61

In order to give an overwritten ALU results higher priority to be transferred to a

register, registers must be unfilled as far as possible while dealing with accumulator

spills. But in methods [9, 17, 20] registers will be occupied by resource operands

when accumulator spills are resolved, which is unfavorable for inserting additional

register transfers. Thus, in the general method we divide the instruction scheduling

phase into two steps, and let ALU instructions be scheduled before memory accesses.

This mechanism makes registers remain unfilled during resolving accumulator spills,

which is able to store overwritten ALU results and reduce additional spill costs.

Figure 5.1. An example of code compaction. (a) Uncompacted code, (b) compacted
code, (c)(d) two scheduling results after resource assignment.

MOVE a, reg0 (i0)
MOVE b, reg1 (i1)
MPY acc0, reg0, reg1 (i2)
MOVE c, reg2 (i3)
ADD acc1, acc0, reg2 (i4)
MOVE d, reg3 (i5)
ADD acc2, acc1, reg3 (i6)
MOVE acc2, p (i7)
MOVE e, reg4 (i8)
ADD acc3, acc1, reg4 (i9)
ADD acc4, acc3, reg3 (i10)
MOVE acc4, r (i11)
ADD acc5, acc3, reg0 (i12)
MOVE f, reg5 (i13)
ADD acc6, acc5, reg5 (i14)
ADD acc7, acc0, acc6 (i15)
MOVE acc7, t (i16)

MOVE X: a, reg0 Y: b, reg1 (I0)
MPY acc0, reg0, reg1 X: c, reg2 Y: d, reg3 (I1)
ADD acc1, acc0, reg2 X: e, reg4 Y: f, reg5 (I2)
ADD acc2, acc1, reg3 (I3)
ADD acc3, acc1, reg4 acc2, X: p (I4)
ADD acc4, acc3, reg3 (I5)
ADD acc5, acc3, reg0 acc4, Y: r (I6)
ADD acc6, acc5, reg4 (I7)
ADD acc7, acc0, acc6 (I8)
MOVE acc7, X: t (I9)

MOVE X: a, X0 Y: b, Y0
MPY A, X0, Y0 X: c, X1 Y: d, Y1
ADD B, A, X1 X: e, X1 Y: f, Y0
MOVE A, X: m
ADD A, B, Y1
ADD A, B, X1 A, X: p
ADD B, A, Y1
ADD B, A, X0 B, Y: r
ADD A, B, Y0
MOVE X: m, X0
ADD B, A, X0
MOVE B, X: t

MOVE X: a, X0 Y: b, Y0
MPY A, X0, Y0 X: c, X1 Y: d, Y1
ADD B, A, X1 X: e, X1
MOVE A, Y0
ADD A, B, Y1
ADD A, B, X1 A, X: p
ADD B, A, Y1 Y: f, Y1
ADD B, A, X0 B, Y: r
ADD A, B, Y1
ADD B, A, Y0
MOVE B, X: t

(a)

(b)

(c) (d)

 62

Finally, we consider the time that accumulator/register spills been resolved in the

entire code generation process. In methods [9, 17] they both perform this action at last,

which may lengthen the schedule length like the example shown in Figure 5.1(c). The

reason is that added spill codes cannot be scheduled in parallel with other instructions.

Besides, although in methods [9, 17] they do not present detailed mechanisms to

determine accumulator/register spills and insert spill codes, they definitely require an

independent step to do this action. If the target architecture contains strict resource

constraints, this step may cost considerable time. Thus, in the general method we want

to design efficient mechanisms to determine and resolve accumulator/register spills,

and integrate them into the instruction scheduling and code compaction phases. That

is, we consider resource constraints during instruction scheduling, and then no extra

action is required to determine accumulator/register spills and insert spill codes.

5.3 Rotation Scheduling with Spill Codes Avoiding (RSSA) [38]

In this section we introduce code generation method rotation scheduling with

spill codes avoiding (RSSA), which is generalized from RSSP to suit various DSPs

with similar architectural features. For RSSA it can handle target architectures with

various numbers of function units, accumulators, registers, and data memory banks.

As listed in Figure 5.2, RSSA contains five parts including MDFG construction,

TDAG construction, instruction scheduling (I), instruction scheduling (II), and initial

schedule retiming. First two parts are directly inherited from RSSP, and we present

last three parts in some detail as follows.

5.3.1 Instruction Scheduling (I)

For a given loop written in high-level language, a TDAG is constructed after

completing first two parts of RSSA. In the first instruction scheduling part, our goal is

 63

to schedule all instructions except memory loads and resolve corresponding register/

accumulator spills. Steps marked 3.1~3.3 in Figure 5.2 belong to the first instruction

scheduling part. In these steps we define an intermediate DAG Gop which contains all

nodes of the TDAG will be scheduled in this part.

Definition 5.1 A DAG Gop = (V, E, X, P) is a direct graph, where V is the node set

representing ALU instructions, register transfers, and store variables; E ⊆ V × V is the

edge set that defines the precedence relations over nodes in V; X(e) represents the

variable accessed by an edge e; P(v) represents the type of node v.

Figure 5.3 shows another TDAG example and its corresponding Gop. Next, we

basically schedule nodes in Gop using list scheduling method, assuming the number of

accumulators/registers are unlimited. If an instruction vi requires c time steps to

complete, the destination operand of vi will be ready at the next c time step. That is,

for an edge eij ∈ Gop, if vi is scheduled at time step t, vj can be scheduled at time step

t+c or later. Assume that all instructions are completed in one time step. Figure 5.4(a)

shows the scheduling result of Gop in Figure 5.3(b) with only one function unit.

In the following we describe how to determine and resolve accumulator/register

spills in our RSSA. Our idea is to calculate the number of accumulators/registers used

at every time step, and variables listed in Table 5.2 are defined for our mechanism.

1. Gc = Construct MDFG;
1.1. Partition variables to memory banks;
1.2. Unfold or tile Gc if necessary;

2. Gt = Construct TDAG (Gc);
3. S = Schedule all instructions except memory loads (Gt);

3.1. Gop = Construct DAG Gop (Gt);
3.2. S = Schedule nodes in Gop (Gop);
3.3. S = Determine and solve accumulator spills (S, Gop);

4. S = Schedule memory load instructions (S, Gt);
5. S = Retime the initial scheduling result (S, Gt);

Figure 5.2. The entire scheduling steps of RSSA.

 64

That is, if an ALU result is defined and used by instructions scheduled at time step i

and j, respectively, it will occupy an accumulator from time steps i to j–1. Similarly, if

an ALU result is transferred from an accumulator at time step i and used by the

instruction scheduled at time step j, it will occupy a register from time steps i to j–1.

Figure 5.4(a) also shows variables defined in Table 5.2 for that Gop scheduling result.

Figure 5.3. The Gop example. (a) TDAG, (b) corresponding Gop.

(a) (b)

16

1

3

X3

12

5

0 C1

4 2

X5

13

A

A C E

C

17

A

24

20 21

F

10

C2

7

6

11

9

8

X7 X11

14 15

18

B

B F D

19

D

B

25

22

E

23

16

1

3

X3

12

5

X5

13
C

17

A

24

20 21

F

7 11

9

X7 X11

14 15

18 19

D

B

25

22

E

23

M1: 0, 2, 4, 17, 23, 24
M2: 6, 8, 10, 19, 21, 25

t FU1 M1 M2 acc_1 reg_1 reg_2 acclist_1 reglist_1 reglist_2
1 1 1 0 0
2 3 2 0 0 1
3 5 X3 2 1 0 1 X3
4 7 X5 2 1 1 1 X3 X5
5 9 X7 2 2 1 1 X3, X7 X5
6 11 3 2 1 1, 9 X3, X7 X5
7 12 X11 3 2 2 1, 9 X3, X7 X5, X11
8 13 4 2 2 1, 9, 12 X3, X7 X5, X11
9 16 17 3 2 2 1, 9 X3, X7 X5, X11

10 20 21 2 2 2 9 X3, X7 X5, X11
11 14 24 2 2 0 9 X3, X7
12 15 19 3 0 0 9, 14
13 18 2 0 0 9
14 22 23 1 0 0
15 25 0 0 0

 Figure 5.4(a). Gop nodes only scheduling result of Figure 5.3(a), unlimited resource.

 65

5.3.1.1 Mechanisms for Resolving Accumulator Spills

As described in section 5.2, we first transfer all overwritten ALU results to

registers, and temporarily store them to memory only when the number of registers is

insufficient. Suppose that an accumulator spill occurs at time step t for accumulators

accij. In this situation we must select a node v from acclist_i(t) and transfer the ALU

result generated by v to a register. From all nodes in acclist_i(t), we want to transfer

an ALU result rt that will release an accumulator with the longest time free of use.

Next, an additional register transfer is scheduled at time step t and all variables

defined in Table 5.2 are updated accordingly. Note that the transferred value rt will be

ready at time step t+c if a register transfer instruction requires c time steps to

complete. Therefore, if rt is used by an instruction u scheduled before time step t+c,

additional time steps must be inserted to delay node u. These steps will be applied

repeatedly until all accumulator spills are resolved.

Suppose the target architecture is the Motorola DSP56000, we use the schedule

in Figure 5.4(a) to illustrate above steps. In this schedule accumulator spills occur at

time steps 5~8 and 11. At time step 5, after checking the content of uselist(u) for all

nodes u in acclist_1(5), node 9 is selected to transfer its value. An additional register

Variable Type Definition
sch(v) integer the time step that Gop node v is scheduled

uselist(v) integer list time steps that Gop nodes, which use node v, are scheduled

acc_i(t) integer
the number of accumulators accij, for j = 1…m, been
occupied at time step t

acclist_i(t) node list
Gop nodes with types M or A whose generated ALU results
reside in accumulators accij, for j = 1…m, at time step t,
except the one that are scheduled in FUi at time step t

reg_i(t) integer
the number of registers regij, for j = 1…n, been occupied at
time step t

reglist_i(t) node list
Gop nodes with type T whose transferred ALU results reside
in registers regij, for j = 1…n, at time step t

Table 5.2. Variables defined for solving accumulator/register spills.

 66

transfer, X9, is scheduled at memory bank M2 at time step 5, because reg_1(5) is

smaller than reg_2(5). Another register transfer, X1, is also scheduled at M1 at time

step 7. Figure 5.4(b) shows the modified schedule without any accumulator spill.

5.3.1.2 Mechanisms for Resolving Register Spills

After resolving accumulator spills, we still use variables defined in Table 5.2 to

deal with register spills. Note that registers regij are dedicated for use for referencing

data from Mi, so register spills occurring at each memory bank have to be resolved

separately. Suppose that a register spill occurs at time step t for register regij. In this

case we must select a node v from reglist_i(t) to temporarily store. From all nodes in

reglist_i(t), we store a value that will be used at latest to release a register with the

longest time interval. Assume that the selected value rt will be used at time steps p < t

and q > t. Then, rt is stored later than time step p and reloaded earlier than time step

q–c, if a load variable instruction requires c time steps to complete. If rt is not yet

used, the added store variable instruction can replace the corresponded register

transfer. Moreover, an inserted memory access may not be successfully scheduled due

Figure 5.4(b). Gop nodes only scheduling result of Figure 5.3(a), with unlimited
number of input registers.

t FU1 M1 M2 acc_1 reg_1 reg_2 acclist_1 reglist_1 reglist_2
1 1 1 0 0
2 3 2 0 0 1
3 5 X3 2 1 0 1 X3
4 7 X5 2 1 1 1 X3 X5
5 9 X7 2 2 1 1 X3, X7 X5
6 11 X9 2 2 2 1 X3, X7 X5, X9
7 12 X11 2 2 3 1 X3, X7 X5, X9, X11
8 13 X1 2 3 3 12 X1, X3, X7 X5, X9, X11
9 16 17 1 3 3 X1, X3, X7 X5, X9, X11

10 20 21 1 2 3 X3, X7 X5, X9, X11
11 14 24 1 2 1 X3, X7 X9
12 15 19 2 0 1 14 X9
13 18 1 0 1 X9
14 22 23 1 0 0
15 25 0 0 0

 67

to insufficient time steps. In this case we insert an extra time step to schedule this

instruction individually as late as possible. Similarly, we update variables defined in

Table 5.2 accordingly, and repeat these steps until all register spills are resolved.

We use the schedule shown in Figure 5.4(b) to illustrate above steps. Suppose the

target architecture is still the Motorola DSP56000, register spills occur at time steps

7~8 at M1 and time steps 6~9 at M2. At time step 7, after checking the content of

uselist(u) for all nodes u in reglist_1(7), node X3 is selected. Additional S3 and L3 are

scheduled at time steps 6 and 9 respectively, because this value is used by nodes 12

and 15. S9 and L9 are also inserted at time steps 5 and 12, respectively. In this case

S9 can directly replace instruction X9 because X9 is not yet used at time step 5.

Figure 5.4(c) shows the scheduling result without any accumulator/register spill.

5.3.2 Instruction Scheduling (II)

So far, we have obtained a schedule that contains all nodes in the TDAG except

those with types L/C. In the second instruction scheduling part of RSSA, remaining

memory loads will be inserted to complete the initial scheduling result. We list rules

basically inherited from RSSP to schedule memory loads and avoid generating

t FU1 M1 M2 acc_1 reg_1 reg_2 acclist_1 reglist_1 reglist_2
1 1 1 0 0
2 3 2 0 0 1
3 5 X3 2 1 0 1 X3
4 7 X5 2 1 1 1 X3 X5
5 9 X7 2 2 1 1 X3, X7 X5
6 11 S9 2 2 1 1 X3, X7 X5
7 12 S3 X11 2 1 2 1 X7 X5, X11
8 13 X1 2 2 2 12 X1, X7 X5, X11
9 16 17 1 2 2 X1, X7 X5, X11

10 20 L3 21 1 2 2 L3, X7 X5, X11
11 14 24 1 2 0 L3, X7
12 15 19 2 0 0 14
13 18 L9 1 0 1 L9
14 22 23 1 0 0
15 25 0 0 0

 Figure 5.4(c). Gop nodes only scheduling result of Figure 5.3(a), without
accumulator spills.

 68

register spills below. Their main feature is to consider the limited number of registers

during scheduling, so that no extra action is required to deal with register spills.

1. According to the execution sequence of ALU instructions, schedule their

predecessors as soon as possible.

2. A variable or constant loaded into a register cannot be replaced before being used,

and reg_i(t) cannot exceed the number of registers at any time step.

3. If a memory load instruction cannot be scheduled successfully due to insufficient

registers, a variable currently residing in a register is selected for storing and

reloading using the mechanism described in subsection 5.3.1.2.

4. For previous rule, if the selected variable is not transferred from an accumulator,

the additional store variable instruction is unnecessary.

5. If a memory load instruction cannot be scheduled successfully due to insufficient

time steps, an additional time step is inserted to schedule this instruction

individually as late as possible as in subsection 5.3.1.2.

Figure 5.4(d) shows the scheduling result of TDAG in Figure 5.3(a). Finally,

because we have considered accumulator/register spills already, an appropriate

physical accumulators/registers assignment certainly exists.

Figure 5.4(d). The initial scheduling result of Gt of Figure 5.3(a).

t FU1 M1 M2 acc_1 reg_1 reg_2 acclist_1 reglist_1 reglist_2
1 0 C1 0 1 1 0 C1
2 1 2 6 1 2 1 0, 2 6
3 3 4 8 2 2 2 1 0, 4 6, 8
4 5 X3 2 1 2 1 X3 6, 8
5 7 C2 X5 2 2 2 1 C2, X3 8, X5
6 9 X7 10 2 2 2 1 X3, X7 10, X5
7 11 S9 2 2 1 1 X3, X7 X5
8 12 S3 X11 2 1 2 1 X7 X5, X11
9 13 X1 2 2 2 12 X1, X7 X5, X11

10 16 17 1 2 2 X1, X7 X5, X11
11 20 L3 21 1 2 2 L3, X7 X5, X11
12 14 24 1 2 0 L3, X7
13 15 19 2 0 0 14
14 18 L9 1 0 1 L9
15 22 23 1 0 0
16 25 0 0 0

 69

5.3.3 Initial Schedule Retiming

In the last part of RSSA, we still apply the multi-dimensional rotation scheduling

to explore potential instruction-level parallelism between different iterations.

Variables defined in Table 5.2 are dynamically updated during rotation phases to

determine at which time step a retimed instruction can be rescheduled. We first

describe after rescheduling an instruction at time step t, the time interval that its

corresponding value must reside in an accumulator or register. Assume that the length

of the initial schedule is len. If the retimed instruction is of type L/C/T, its referenced

value rt must occupy a register from time step t to len because this value will be used

for the later iteration. Similarly, the ALU result rt of the retimed ALU instruction must

occupy an accumulator from time step t to len. Note that the value rt is ready at time

step t+c if the rescheduled instruction requires c time steps to complete. Then, for a

retimed instruction, we reschedule it at the earliest time step that satisfies precedence

relations, gets all ready source operands, and will not cause any accumulator/register

spill. Meanwhile, variables defined in Table 5.2 are also updated after rescheduling an

ALU instruction, because some resources will be released by its predecessors. In

addition, a load constant can be rescheduled for any memory bank to achieve higher

performance, because we store constants in all memory banks in advance. The final

retimed scheduling result of Figure 5.4(d) is shown in Figure 5.4(e).

5.4 Applying to Real DSP Families

In this section, we present how to apply the hypothetical machine model and

RSSA, with some modifications, to various real DSP families with architectural

features listed in Table 5.1. We divide the description into three parts including data

memory bank, function unit, and register set.

 70

5.4.1 Data Memory Bank

For the data memory bank, the original definition of the hypothetical machine

model and RSSA can satisfy Motorola DSP56000/DSP56001, DSP56300, and NEC

uPD7701x families. Other architectures contain of only one data memory bank, so the

variable partition step is unnecessary if we apply RSSA to them. However, these

architectures still permit parallel memory accesses, with special bus exchange unit or

independent buses. In this case we have to modify the first parallel condition of our

machine model to allow more than N move operations to be executed in one cycle.

For members of TI TMS320C6x families, because two memory reads/writes can be

performed simultaneously, we simply treat these architectures with two virtual data

memory banks and apply the original RSSA. But for Motorola DSP56800 and NEC

ADSP2100 families only two memory reads can be executed in parallel, an additional

condition will be required in instruction scheduling phases to satisfy this restriction.

5.4.2 Function Unit

For the function unit, the original definition of the hypothetical machine model

and RSSA directly satisfies all Motorola families. NEC uPD7701x family members

t FU1 M1 M2 acc_1 reg_1 reg_2 acclist_1 reglist_1 reglist_2
1 3 4 8 2 2 2 1 0, 4 6, 8
2 5 X3 2 1 2 1 X3 6, 8
3 7 C2 X5 2 2 2 1 C2, X3 8, X5
4 9 X7 10 2 2 2 1 X3, X7 10, X5
5 11 S9 2 2 1 1 X3, X7 X5
6 12 S3 X11 2 1 2 1 X7 X5, X11
7 13 X1 2 2 2 12 X1, X7 X5, X11
8 16 17 1 2 2 X1, X7 X5, X11
9 20 L3 21 1 2 2 L3, X7 X5, X11

10 14 24 C1 1 2 1 L3, X7 C1
11 15 0 19 2 1 1 14 0 C1
12 18 2 L9 1 2 2 0, 2 C1, L9
13 22 23 6 1 2 2 0, 2 6, C1
14 1 25 1 2 1 1 0, 2 6

Figure 5.4(e). The retimed scheduling result of Gt of Figure 5.3(a).

 71

although contain three function units with different types, these function units must be

executed exclusively. In this case we can treat these architectures contain a single

function unit. Then, one instruction is scheduled at a time using the original RSSA,

and allocated to the function unit that is suitable to execute. For members of TI and

Analog Device families, they all consist of multiple function units which can be

executed in parallel, but each function unit only can execute a restricted instruction set.

That is, we must add some additional conditions in instruction scheduling phases in

RSSA, to check only instructions that can be allocated to different function units are

scheduled in parallel.

5.4.3 Register Set

As for the register, the original definition of the hypothetical machine model and

RSSA directly satisfies all Motorola families. Because the functionality of registers

AF/AR and MR in Analog Device ADSP2100 family is the same as accumulators in

Motorola families, our machine model and RSSA basically suit these Analog Device

members. From architectural features of ADSP2100 family, in RSSA we will use

variables acc_ALU(t), acc_MAC(t), and reg_1(t) to record the number of registers

used at time step t. However, because in these architectures source operands of ALU

and MAC must be stored in different register sets, a single reg_1(t) variable cannot

represent the usage of these registers. In this case we actually need two variables

reg_ALU(t) and reg_MAC(t) to separately record the number of occupied registers for

two register sets. Then, original scheduling rules and variable modifying mechanisms

defined in RSSA can be directly applied. On the other hand, members in NEC and TI

families contain a homogeneous register set, which indicates all registers are identical

and used to store both source and destination operands. In our hypothetical machine

model we originally define the heterogeneous register sets. Nevertheless, if we merge

 72

all accumulators and registers into a single register file, it can simulate the

architecture with a homogeneous register set. Meanwhile, since all registers are

identical, in RSSA we only need variables reg_i(t) to record the total number of

registers occupied by all source and destination operands at time step t, and variables

acc_i(t), as well as variables acclist_i(t), are no longer required. Mechanisms

designed for updating variables reg_i(t) and reglist_i(t) can be inherited from the

original RSSA. For NEC uPD7701x family members only a single reg_1(t) is

necessary. For members of TI families, because they further divide homogeneous

registers into two independent register files, we have to use two variables reg_A(t)

and reg_B(t) for each register file.

From above descriptions, with minor modifications, our hypothetical machine

model and RSSA is capable for simulating all architectural features listed in Table 5.1.

Therefore, we conclude that the proposed machine model and RSSA have enough

flexibility, which can apply to real DSP families with various architectural features.

5.5 Performance Evaluations [38]

5.5.1 Comparison with Previous Work

At first we set the target architecture equivalent to the Motorola DSP56000, and

select several MDFGs represented DSP applications to evaluate methods including

Cho [9], Malik [17], Shiue [20], and RSSA. Similar as in chapter 4, four scheduling

results are derived from RSSA with different variable partition mechanisms, and

RSVR [30], RSF [14], RST [14], and RSP [36] are used for comparison after inserting

necessary spill codes. For a single iteration in the repetitive pattern, we use two

metrics including schedule length and instruction count to evaluate performance at the

same time. Shorter schedule length basically indicates shorter execution time for both

a single iteration and the entire retimed loop. On the other hand, less instruction count

 73

indicates not only less power consumption, but also less memory space required to

store (smaller code size). Table 5.3 lists schedule lengths for a single iteration in the

repetitive pattern for selected MDFGs. In this table we can see that RSSA usually

achieves the shortest schedule lengths compared to other methods. The main reason is

the usage of retiming technique, which reassigns instructions in consecutive iterations

to explore potential instruction-level parallelism. As more compact codes are obtained,

system resources are fully utilized and schedule lengths are shortened.

Table 5.4 lists the instruction counts for a single iteration in the repetitive pattern.

From this table we find that RSSA and Cho [9] generate much less instruction counts,

because they use accumulators and registers to store temporary variables. Other

methods directly let temporary variables write back to memory and reload when

required, so many memory accesses are really unnecessary. Therefore, instruction

counts generated by RSSA and Cho [9] can be kept relatively low. In subsection 5.5.3

we will further describe the effectiveness of RSSA on both evaluation metrics.

Table 5.3. Schedule lengths obtained by different code generation algorithms.
RSSA Cho Malik Shiue RSVR RSF RST RSP

RSVR RSF RST RSP
Wave Digital Filter 7 9 9 8 6 8.5 6 6 5 5.5 5.5

Filter 8 13 13 9 11.5 9 6 6 5.5 5 4.5
IIR Filter 2D 20 29 33 25 27.5 28 24.5 16 16 16 16

forward-substitution 7 12 12 9 10 11.5 7.5 5 5.5 5 5
THCS 6 8 8 6 6.5 5.5 5 4 4 4 4
DFT 14 21 21 18 21 18.5 18 13 12.5 13 12.5

Floyd-Steinberg 20 36 37 29 32.5 30.5 23.5 18 17.5 17 17
Transmission Line 15 20 21 19 18 25 18 12 12 12 12

IIR Filter 1D 11 15 15 11 14 -- -- 8 8 -- --
Differential Equation

Solver
16 20 21 18 21.5 -- -- 13 11.5 -- --

All-pole Lattice Filter 21 37 37 35 28 -- -- 17 16 -- --
Elliptic Filter 42 62 66 56 69 -- -- 36 34 -- --

 74

5.5.2 The Influence of Resources

To harvest the benefits provided by the irregular DSP architecture, using an

effective code generation method to fully utilize system resources is obviously

essential. However, in order to explore the instruction-level parallelism and reduce

accumulator/register spills, increasing the number of resources is a more direct way.

Hence, in the following we set our parameterized machine model to simulate target

architectures with different number of resources, and use the general method RSSA to

evaluate selected MDFGs. Scheduling results affected by different kinds of resources

will be studied on both evaluation metrics.

We first list some preliminaries. After transferring MDFGs to TDAGs using

RSSA, Table 5.5 lists the number of ALU instructions, the critical path length, and the

number of nodes in every TDAG. This information can be treated as lower bounds of

scheduling results. If the obtained schedule length is equal to or less than the critical

RSSA Cho Malik Shiue RSVR RSF RST RSP
RSVR RSF RST RSP

Wave Digital Filter 13 16 16 16 15.5 16 16 14 13 13 14
Filter 11 16 16 16 16 16 16 11 10.5 10.5 11

IIR Filter 2D 37 64 68 64 64 64 64 37 37 37 37
forward-substitution 11 20 20 18 17.5 18 18 11 10.5 10.5 11

THCS 10 16 16 14 14.5 14 14 10 9.5 10 10
DFT 29 48 49 44 44 44 45.5 32 30 31.5 32

Floyd-Steinberg 39 68 70 59 59 59.5 59 39 39.5 40 41
Transmission Line 28 48 48 42 42 42 42 29 29 28 29

IIR Filter 1D 19 32 32 30 29.5 -- -- 18 17.5 -- --
Differential Equation

Solver
23 44 44 37 37 -- -- 26 25.5 -- --

All-pole Lattice Filter 37 60 60 51 51.5 -- -- 35 34.5 -- --
Elliptic Filter 75 136 136 125 116.5 -- -- 75 72 -- --

Table 5.4. Number of operations really executed in an iteration obtained by
different code generation algorithms.

 75

path of the corresponding TDAG, it indicates that the shortest schedule is achieved.

Besides, when architecture has only one function unit, a schedule with length equal to

the number of ALU nodes is also shortest, because all ALU instructions must be

executed in serial. On the other hand, if an iteration consists of exactly the same

number of nodes as the TDAG, it means that no spill codes are inserted. In Tables

5.6~5.10 we use shaded values to represent a schedule with shortest length or without

any spill code. Moreover, when either the schedule length or the instruction count is

improved by additional resources, the improved result is shown as a bold value.

Table 5.6 shows results of different number of accumulators. From this table, the

instruction count decreases obviously when the target architecture contains more

accumulators, which represents that accumulator spills occur very often. If more ALU

results can reside in additional accumulators, spill codes will be reduced due to less

occurrences of accumulator spill. Furthermore, since fewer overwritten ALU results

are temporarily transferred to registers, occurrences of register spill also can be

reduced. As for the schedule length, because it is only slightly shortened, increasing

the number of accumulators cannot explore the instruction-level parallelism.

Benchmarks
Number of ALU

nodes in Gt
Critical path of Gt

Number of nodes
in Gt

Wave Digital Filter 4 6 14
Filter 4 7 11

IIR Filter 2D 16 7 34
Forward-substitution 5 6 11

THCS 4 4 10
DFT 12 7 32

Floyd-Steinberg 17 12 38
Transmission Line 12 10 26

IIR Filter 1D 8 6 17
Differential Equation Solver 11 11 25

All-pole Lattice Filter 15 18 33
Elliptic Filter 34 19 65

Table 5.5. Characteristics of selected TDAGs.

 76

Table 5.6. Experimental results, with target architectures contains different
number of accumulators.

[1] Wave Digital Filter [7] Floyd-Steinberg
[2] Filter [8] Transmission Line
[3] Infinite Impulse Response Filter 2D [9] Infinite Impulse Response Filter 1D
[4] Forward-substitution [10] Differential Equation Solver
[5] Toeplitz Hyperbolic Cholesky Solver [11] All-pole Lattice Filter
[6] Discrete Fourier Transform [12] Elliptic Filter

1 FU, 2 acc, 4 reg, 2 mem 1 FU, 3 acc, 4 reg, 2 mem
RSVR RSF RST RSP RSVR RSF RST RSP

len # len # len # len # len # len # len # len #
[1] 6 14 5 13 5.5 13 5.5 14 6 14 5 13 5.5 13 5.5 14
[2] 6 11 5.5 10.5 5 10.5 4.5 11 6 11 5.5 10.5 4.5 10.5 4.5 11
[3] 16 37 16 37 16 37 16 37 16 34 16 34 16 34 16 34
[4] 5 11 5.5 10.5 5 10.5 5 11 5 11 5.5 10.5 5 10.5 5 11
[5] 4 10 4 9.5 4 10 4 10 4 10 4 9.5 4 10 4 10
[6] 13 32 12.5 30 13 31.5 12.5 32 12 32 12 28.5 12 31 12 32
[7] 18 39 17.5 39.5 17 40 17 41 18 38 17.5 38.5 17 38.5 17 39
[8] 12 29 12 29 12 28 12 29 12 27 12 27 12 26 12 27
[9] 8 18 8 17.5 -- -- -- -- 8 17 8 16.5 -- -- -- --

[10] 13 26 11.5 25.5 -- -- -- -- 13 26 11.5 25 -- -- -- --
[11] 17 35 16 34.5 -- -- -- -- 17 33 16 31.5 -- -- -- --
[12] 36 75 34 72 -- -- -- -- 35 70 30.5 66.5 -- -- -- --

Table 5.7. Experimental results, with target architectures contains different
number of input registers.

1 FU, 2 acc, 4 reg, 2 mem 1 FU, 2 acc, 6 reg, 2 mem
RSVR RSF RST RSP RSVR RSF RST RSP

len # len # len # len # len # len # len # len #
[1] 6 14 5 13 5.5 13 5.5 14 6 14 5 13 5 13 5 14
[2] 6 11 5.5 10.5 5 10.5 4.5 11 5 11 5 10.5 4 10.5 4 11
[3] 16 37 16 37 16 37 16 37 16 37 16 37 16 37 16 37
[4] 5 11 5.5 10.5 5 10.5 5 11 5 11 5 10.5 5 10.5 5 11
[5] 4 10 4 9.5 4 10 4 10 4 10 4 9.5 4 10 4 10
[6] 13 32 12.5 30 13 31.5 12.5 32 13 32 12.5 28.5 12 30.5 12.5 32
[7] 18 39 17.5 39.5 17 40 17 41 18 39 17.5 39.5 17 39.5 17 40
[8] 12 29 12 29 12 28 12 29 12 29 12 29 12 28 12 29
[9] 8 18 8 17.5 -- -- -- -- 8 18 8 17.5 -- -- -- --

[10] 13 26 11.5 25.5 -- -- -- -- 13 25 12 23 -- -- -- --
[11] 17 35 16 34.5 -- -- -- -- 17 35 16 33 -- -- -- --
[12] 36 75 34 72 -- -- -- -- 35 73 30.5 69.5 -- -- -- --

 77

Then, Table 5.7 shows results of different number of registers. These results

indicate that the instruction-level parallelism still cannot be explored by using more

registers. In addition, the instruction count also be improved slightly, which means

register spills rarely occur in fact. Thus, if we only increase the number of registers,

scheduling results will be almost unchanged for both evaluation metrics.

In Table 5.8 we show results of different number of function units but the

number of accumulators remains two. That is, when the target architecture has two

function units, only one dedicated accumulator is capable to store destination

operands calculated from each function unit. From this table schedule lengths are

obviously shortened, because the second function unit is beneficial to explore

instruction-level parallelism. However, instruction counts increase in some MDFGs as

Table 5.8. Experimental results, with target architectures contains different
number of function units.

[7] Wave Digital Filter [7] Floyd-Steinberg
[8] Filter [8] Transmission Line
[9] Infinite Impulse Response Filter 2D [9] Infinite Impulse Response Filter 1D
[10] Forward-substitution [10]

 Differential Equation Solver
[11] Toeplitz Hyperbolic Cholesky Solver

1 FU, 2 acc, 4 reg, 2 mem 2 FU, 2 acc, 4 reg, 2 mem
RSVR RSF RST RSP RSVR RSF RST RSP

len # len # len # len # len # len # len # len #
[1] 6 14 5 13 5.5 13 5.5 14 6 14 5 13 5.5 13 5 14
[2] 6 11 5.5 10.5 5 10.5 4.5 11 6 11 5.5 10.5 4.5 10.5 3.5 11
[3] 16 37 16 37 16 37 16 37 12 39* 13 40* 12.5 40* 12.5 40*
[4] 5 11 5.5 10.5 5 10.5 5 11 4 11 4 10.5 4.5 10.5 4 11
[5] 4 10 4 9.5 4 10 4 10 3 10 3 9.5 3 10 3.5 10
[6] 13 32 12.5 30 13 31.5 12.5 32 12 34* 11.5 32* 13 35* 12 34*
[7] 18 39 17.5 39.5 17 40 17 41 15 41* 16.5 45.5* 16 45.5* 14 42.5*
[8] 12 29 12 29 12 28 12 29 8 28 11.5 30.5* 9.5 29* 11.5 30.5*
[9] 8 18 8 17.5 -- -- -- -- 6 18 7 18* -- -- -- --

[10] 13 26 11.5 25.5 -- -- -- -- 10 25 11.5 26.5* -- -- -- --
[11] 17 35 16 34.5 -- -- -- -- 16 33 14 35.5* -- -- -- --
[12] 36 75 34 72 -- -- -- -- 27 80* 29 80* -- -- -- --

 78

asterisked, which represents more spill codes are inserted. Apparently these additional

spill codes are mainly incurred from frequently occurred accumulator spills. If an

ALU result will be used later than next ALU instruction been executed, it must be

temporarily stored to avoid being overwritten. Thuse, we conclude that using more

function units only is not appropriate to explore instruction-level parallelism.

Similarly, Table 5.9 still shows results of different number of function units. This

time we increase the number of accumulators to four and evenly allocate them to each

function unit. Compared to Table 5.8, clearly that not only schedule lengths are

further shortened, but also spill codes are inserted infrequently. These results are

essentially the combination of results shown in Tables 5.6 and 5.8. Using more

function units is beneficial to shorten schedule lengths, and adding additional

Table 5.9. Experimental results, with target architectures contains different
number of function units.

1 FU, 2 acc, 4 reg, 2 mem 2 FU, 4 acc, 4 reg, 2 mem
RSVR RSF RST RSP RSVR RSF RST RSP

len # len # len # len # len # len # len # len #
[1] 6 14 5 13 5.5 13 5.5 14 6 14 4.5 13 5.5 13 5 14
[2] 6 11 5.5 10.5 5 10.5 4.5 11 6 11 5.5 10.5 4.5 10.5 3.5 11
[3] 16 37 16 37 16 37 16 37 10 34 10 34 9 34 9 34
[4] 5 11 5.5 10.5 5 10.5 5 11 4 11 4 10.5 4 10.5 4 11
[5] 4 10 4 9.5 4 10 4 10 3 10 3 9.5 3 10 3 10
[6] 13 32 12.5 30 13 31.5 12.5 32 10 32 9 28 9.5 30 10 32
[7] 18 39 17.5 39.5 17 40 17 41 13 38 14 39.5 13 39.5 12.5 38
[8] 12 29 12 29 12 28 12 29 8 26 8.5 26 8.5 25 8.5 26
[9] 8 18 8 17.5 -- -- -- -- 6 17 6 16.5 -- -- -- --

[10] 13 26 11.5 25.5 -- -- -- -- 10 25 10 25.5 -- -- -- --
[11] 17 35 16 34.5 -- -- -- -- 16 33 13 30.5 -- -- -- --
[12] 36 75 34 72 -- -- -- -- 23 70 24 68 -- -- -- --
[1] Wave Digital Filter [7] Floyd-Steinberg
[2] Filter [8] Transmission Line
[3] Infinite Impulse Response Filter 2D [9] Infinite Impulse Response Filter 1D
[4] Forward-substitution [10] Differential Equation Solver
[5] Toeplitz Hyperbolic Cholesky Solver [11] All-pole Lattice Filter
[6] Discrete Fourier Transform [12] Elliptic Filter

 79

accumulators can reduce occurrences of spill codes efficiently. Hence, if we want to

explore instruction-level parallelism, both numbers of function units and accumulators

must be increased.

Finally, in Table 5.10 we show results of increasing the number of data memory

banks. Both architectures consist of six input registers evenly allocated to each data

memory bank. From these results schedule lengths are hardly improved without

additional function units, and using more data memory banks seems helpful to reduce

instruction counts. The reason is that with the number of data memory banks

increasing, more independent memory accesses, as well as register transfers inserted

to resolve accumulator spills, can be executed simultaneously. This situation lets the

instruction-level parallelism between move operations be explored, which is

Table 5.10. Experimental results, with target architectures contains different
number of data memory banks.

1 FU, 3 acc, 6 reg, 2 mem 1 FU, 3 acc, 6 reg, 3 mem
RSVR RSF RST RSP RSVR RSF RST RSP

len # len # len # len # len # len # len # len #
[1] 6 14 5 13 5 13 5 14 4 14 3 12.7 5 13.3 4 14
[2] 6 11 5.5 10.5 4.5 10.5 4 11 6 11 5.3 10.3 4 10.3 4 11
[3] 16 34 16 34 16 34 16 34 16 34 16 34 16 34 16 34
[4] 5 11 5 10.5 5 10.5 5 11 5 11 5 10.3 5 10.3 5 11
[5] 4 10 4 9.5 4 10 4 10 4 10 4 9.3 4 10 4 10
[6] 12 32 12 28 12 30 12 32 12 32 12 26.7 12 30.3 12 32
[7] 18 38 17 38.5 17 38.5 17 39 18 38 17 38.3 17 38.3 17 39
[8] 12 27 12 27 12 26 12 27 12 27 12 27 12 25.7 12 27
[9] 8 17 8 16.5 -- -- -- -- 8 17 8 16 -- -- -- --

[10] 13 25 11.5 22.5 -- -- -- -- 14 26 11.7 21.7 -- -- -- --
[11] 17 33 16 31.5 -- -- -- -- 17 33 15.7 30 -- -- -- --
[12] 35 68 30.5 65 -- -- -- -- 35 68 35.7 64.3 -- -- -- --
[1] Wave Digital Filter [7] Floyd-Steinberg
[2] Filter [8] Transmission Line
[3] Infinite Impulse Response Filter 2D [9] Infinite Impulse Response Filter 1D
[4] Forward-substitution [10] Differential Equation Solver
[5] Toeplitz Hyperbolic Cholesky Solver [11] All-pole Lattice Filter
[6] Discrete Fourier Transform [12] Elliptic Filter

 80

beneficial to reduce occurrences of register spills. However, implementing additional

data memory banks, associated with dedicated data buses, definitely requires heavy

hardware costs. Besides, recall that the TDAG is enlarged factor equal to the number

of data memory banks before using variable partition mechanisms proposed in RSF,

RST, and RSP. A larger TDAG also costs longer time doing code generation. Thus, we

do not recommend using more data memory banks to reduce the instruction count,

because the cost-performance is not worth.

5.5.3 Brief Summaries

After showing RSSA is effective compared to previous work under the Motorola

DSP56000 architecture, we present its effectiveness in some detail on both evaluation

metrics. As shown in Tables 5.8 and 5.9, when the target architectures consists of two

function units, RSSA can achieve schedule lengths to their lower bounds in most

selected MDFGs. If there is only one function unit, RSSA still can obtain schedule

lengths almost equal to the number of ALU instructions, which indicates these

schedules cannot be shortened further. On the other hand, according to Tables

5.5~5.10, RSSA really generates quite few spill codes especially when the target

architecture has more than four accumulators. This is because we prefer to transfer an

overwritten ALU result to a register, and insert spill codes only when required. In

addition, we compact spill codes with regular codes as far as possible, in order to

prevent lengthening the final schedule length. Whereas RSSA usually achieves

optimal results on both evaluation metrics, we conclude that it is quite effective.

Then, we summarize the influence of differing number of resources on the

scheduling result. From descriptions in subsection 5.5.2, adding more accumulators to

keep more ALU results for further using is the most efficient way to reduce spill

codes. According to our evaluation results, almost all spill codes can be eliminated if

 81

the target architecture contains more than four accumulators. Increasing the number of

registers or data memory banks is also useful, but its improvement is not as obvious as

using more accumulators. Besides, implementing additional data memory banks and

associated data buses requires heavy hardware costs. Therefore, we think a target

architecture that contains two data memory banks and four registers is appropriate. As

for exploring the instruction-level parallelism, adding additional function units and

accumulators concurrently is certainly necessary. Based on evaluation results shown

in Table 5.9, RSSA generates the shortest schedules without too many spill codes in

most MDFGs, so two function units with four accumulators are actually sufficient.

Using more than two function units no doubt can further shorten schedule lengths, but

the improvement will be clearly slight. Furthermore, we also find that the variable

partition mechanism proposed in RSF is unsuitable for one-dimensional MDFGs. This

is because loop-carried data dependences in one-dimensional MDFGs are usually with

distance one, and most memory accesses will reference variables from the same data

memory bank after applying loop unfolding. Thus, a memory access may easily fail to

be scheduled successfully in time, which will lengthen the schedule.

In the following, we describe the efficiency of RSSA and compare to RSSP.

Recall that both methods mainly contain following phases: the construction of graphs

MDFG, TDAG, and Gop, variable partition, two separate instruction scheduling phases,

the resolution of accumulator/register spills, and the initial schedule retiming. Among

these phases, resolving accumulator spills is the most time-consuming and the main

different phase between RSSP and RSSA. This phase is completed by analyzing the

TDAG topology with a relatively complex mechanism in RSSP, and by constantly

updating variables in RSSA. The mechanism used in RSSA is apparently more

efficient, general, and accurate. Other phases between two methods are very similar in

essence. Hence, we conclude that RSSA is efficient than RSSP.

 82

Compared to related studies [9, 17], our RSSA still has advantages. Note that in

methods [9, 17] they do not contain procedures to generate uncompacted codes, and

schedule instructions using list scheduling similar as in RSSA. Thus, we omit steps of

constructing graphs MDFG and TDAG, and focus on discussing their complexities in

partitioning variables, allocating accumulators/registers, and resolving accumulator/

register spills. In method [17], it uses graph labeling to assign accumulators/registers

and variables simultaneously, and applies simulated annealing to solve the graph

labeling problem. The mechanism used to insert spill codes is not presented in detail,

although it is definitely required. However, because the simulated annealing is

time-consuming, it makes method [17] more complicated. Next, in method [9], it uses

graph coloring to partition variables and allocate accumulators/registers separately,

and gives a heuristic to solve the graph coloring problem. The mechanism used to

insert spill codes is still lacked. Thus, clearly that the method proposed in [9] is

efficient than the method proposed in [17]. Finally, in our RSSA, variable partitioning

is very simple. Spill codes insertion and physical accumulators/registers assignment

are also trivial, which means RSSA is efficient compared to both methods [9, 17].

 83

Chapter 6. Energy-efficient Code Generation Methods

In addition to shorter schedule length and less instruction count, low power

consumption becomes another important constraint in the DSP design specification

[24-25]. In section 1.2 we mentioned that to increase the potential for a function unit

to reuse an operand is an appropriate way to reduce the power consumed by a

function unit. An instruction-level power analysis and some ideas which can be

exploited by software development tools have been also listed in subsection 2.4.4.

Therefore, the third study issue of this thesis is to design energy-efficient code

generation methods based on the operand sharing technique. At first we briefly

analyze RSSA from the viewpoint of low power consumption in section 6.1. Two

proposed energy-efficient code generation methods based on the hypothetical machine

model is presented in sections 6.2 and 6.3. Finally, in section 6.4, some performance

evaluations are shown.

6.1 Brief Analyses of RSSA [58]

RSSA is an effective code generation method suited for DSPs with various

architectural features, and its design goal is to achieve shorter schedule length and less

spill codes. From the viewpoint of low power consumption, RSSA has satisfied three

positive features. First, to achieve the instruction-level parallelism, RSSA schedules

unpacked instructions as soon as possible without violating data dependencies and

resource constraints. This strategy leads to pack instructions as much as possible,

which can reduce the energy consumption in DSP especially with multiple data

memory banks. Second, with appropriate variable partition mechanisms, memory

accesses are separately scheduled at all data memory banks to explore potential higher

memory bandwidth. Third, during the TDAG construction, RSSA assumes unlimited

 84

numbers of accumulators/registers and removes all possible unnecessary memory

accesses. Then, it prefers to use register transfers to resolve accumulator spills, and

inserts additional store/load variable instructions only when required. By using these

scheduling rules RSSA can apparently produce schedules with retrenched memory

accesses. This feature is beneficial in reducing power consumption as well as code

size, because a memory access requires considerably more power to execute than an

ALU instruction. However, the potential for operand sharing are not successfully

explored because RSSA simply uses list scheduling to schedule ALU instruction.

Thus, in the following we will propose two energy-efficient methods extended from

RSSA, which will retain all above positive features and further consider the operand

sharing technique.

6.2 Rotation Scheduling with Operand Reutilization (RSOR) [58]

In this section we introduce the first proposed method named rotation scheduling

with operand reutilization (RSOR). After presenting its scheduling steps in subsection

6.2.1, some comparisons of RSSA and RSOR are described in subsection 6.2.2.

6.2.1 Detailed Algorithms of RSOR

Based on the scheduling steps of RSSA described in section 5.2, we only have to

modify the mechanism used to schedule ALU instructions to consider the operand

sharing technique. RSSA simply uses the list scheduling to individually schedule

ALU instructions. In RSOR we define a sharing set to group ALU instructions with a

common operand. Then, the list scheduling is still applied, and ALU instructions in

the same sharing set will be restrictively scheduled to the same function unit at

consecutive time steps to achieve the operand sharing. For a given TDAG, we use the

following definition to describe the node grouping conditions for the sharing set.

 85

Definition 6.1. For a given TDAG G = (V, E, X, P), nodes v1…vm ∈ V with type M/A

are grouped into a sharing set if they satisfy two conditions: (1) All nodes v1…vm

have the same predecessor vu ∈ V (P(vu) = L/M/A); (2) There is no path between any

two nodes vi and vj in G for 1 ≤ i, j ≤ m.

For example, in the TDAG shown in Figure 6.1, nodes 4 and 6 are grouped into a

sharing set as they share the operand loaded by node 3. Nodes 14 and 16 are grouped

into another sharing set, as they share the operand loaded by node 13. Suppose that

the target architecture is the Motorola DSP56000; Figure 6.2 shows scheduling results

of Figure 6.1 using RSSA and RSOR, while nodes with common operand are grouped

2

10

1

4

3

6

C C
5

7

9 8

C

12

11

14

13

16

C C
15

17

19 18

C

20

D

D

sharing sets

Figure 6.1. An example of TDAG and sharing sets.

Figure 6.2. Scheduling results of Figure 6.1. (a) RSSA, (b) RSOR.

(b)

t FU1 M1 M2
1 4 15
2 6 11 13
3 7
4 9 8 0
5 16 10
6 12 1
7 14 5
8 17
9 19 3 18
10 2 20

t FU1 M1 M2
1 4 11
2 6 13
3 7
4 9 8 15
5 10
6 12 1
7 14
8 16 0
9 17 18
10 19 3 5
11 2 20

operand reutilization (OPR)
(a)

 86

and consecutively scheduled or not. From these two schedules we find that one more

operand reutilization is achieved in an iteration using RSOR. We call operand

reutilization (OPR) the fact that an operand is reused by two instructions executed

consecutively in the same function unit [4]. Recall that the average power consumed

by the function unit is dramatically lower when one operand remains unchanged. That

is, if a schedule has more OPRs, to execute this schedule will cost less power

consumption at function units. However, because instructions resided in the same

sharing set are restrictively scheduled to the same function unit at consecutive time

steps, using RSOR may obtain longer schedules. This feature indicates that OPR may

be a trade off for schedule length, which is similar to the LPLS method described in

subsection 2.4.4. Moreover, if there are more than one function units in the target

architecture, ALU instructions in the same sharing set are evenly distributed to all

function units to explore the instruction-level parallelism. Note that an ALU

instruction may reside in more than one sharing set, so after instruction scheduling not

all potential operand sharing can be achieved. The overall scheduling steps for RSOR

are listed in Figure 6.3. The main difference between RSSA and RSOR are the sharing

set grouping and the mechanism used to schedule ALU instructions.

1. Gc = Construct MDFG;
1.1. Partition variables to memory banks;
1.2. Unfold or tile Gc if necessary;

2. Gt = Construct TDAG (Gc);
3. S = Schedule all instructions except memory loads (Gt);

3.1. Group ALU instructions into sharing sets;
// additional step used in RSOR

3.2. Gop = Construct DAG Gop (Gt);
3.3. S = Schedule nodes in Gop (Gop);

// nodes in the same sharing set are restrictively scheduled
3.4. S = Determine and solve accumulator spills (S, Gop);

4. S = Schedule memory load instructions (S, Gt);
5. S = Retime the initial scheduling result (S, Gt);

Figure 6.3. The overall scheduling algorithm of RSOR.

 87

6.2.2 Comparisons between RSSA and RSOR

In this subsection, we evaluate RSOR using several selected MDFGs and our

hypothetical machine model defined in section 5.1. Three scheduling results are

derived from RSOR with variable partition mechanisms proposed in RSVR, RSF, and

RST, and in the following we only list the best one of them. For a single iteration in

the repetitive pattern, we use evaluation metrics including schedule length, instruction

count, and the number of OPRs to compare RSOR and RSSA at the same time.

According to the instruction-level power model presented in [45], a schedule with

shorter schedule length and less instruction count obviously indicates lower power

consumption. More OPRs represent more operands reused by two instructions

consecutively executed in the same function unit, which leads to less power

consumption at function units. Furthermore, in [20], authors list the average current

required to execute each instruction in Motorola DSP56000. Table 6.1 shows their

provided information, and we also borrow it to approximately estimate the required

current for each schedule.

Table 6.2 lists the number of OPRs of a single iteration in the repetitive pattern

for selected MDFGs. From this table clearly that using RSOR achieves more OPRs

than using RSSA, and performs better when the target architecture has more function

units. The reason is that some ALU instructions may essentially share a common

operand but not be grouped into a sharing set, because these instructions violate the

Instruction Current (mA) Instruction Current (mA)

Move 90 Mpy 160

Move Move 120 Mpy Move 170

Add 100 Mpy Move Move 180

Add Move 140

Add Move Move 150

Table 6.1. Average current required for each instruction [20].

 88

second condition listed in Definition 6.1. Nodes 12 and 19 in Figure 6.1 are such an

example. When the target architecture has only one function unit, due to data

dependencies, nodes 12 and 19 will not be schedule at consecutive time steps.

However, if there exists a second function unit, we can use it to separately execute

nodes 12 and 19 without interfering with other instructions. Hence, the operand

sharing between these two nodes is also achieved.

Table 6.3 lists the schedule length, instruction count, and approximate current of

a single iteration in Motorola DSP56000 architecture. It shows that compared to using

RSSA, using RSOR may generate schedules with, at most, 6% longer schedule length

and 7% greater instruction count. This is because ALU instructions in a sharing set are

restrictively scheduled to the same function unit at consecutive time steps, and some

instruction-level parallelism cannot be successfully explored. Meanwhile, when more

instructions are executed by the same function unit, accumulator spills may occur

more easily, due to the frequent use of some dedicated accumulators. As for the

approximate current, not in all cases using RSOR can be improved, especially when

the schedule length is increased. The main reason is that the total current of a schedule

1 FU, 2 acc, 4 reg, 2 mem 2 FU, 4 acc, 4 reg, 2 mem

RSSA RSOR RSSA RSOR
Wave Digital Filter 0.5 0.5 0 0.5

Filter 0 0 0 0
IIR 2D 0 0 0 0

Forward-substitution 1.5 1.5 0.5 2
THCS 1 1 0 2

Discrete Fourier Transform 1 4 0 4
Floyd-Steinberg 9 9 6 9

Transmission Line 4 4 0 5
IIR 1D 0.5 3 0.5 3

Differential Equation Solver 4 5 3 6
All-pole Lattice Filter 1.5 3 1.5 6

Elliptic Filter 4 9 2 11

Table 6.2. The comparison between RSOR and RSSA (the number of OPRs).

 89

is the sum of current required by all instructions. Although the power cost by function

units is reduced, the total current may still increase due to longer schedule length. In

summary, RSOR achieves more OPRs than RSSA and requires slightly longer

schedule length and more instruction count in some cases. As long as the schedule

length is not increased, using RSOR usually can obtain a schedule with lower

approximate current. Further evaluations of RSOR and comparisons to other energy-

efficient instruction scheduling methods will be given in section 6.4.

6.3 Rotation Scheduling with Exploiting Operand Reutilization (RSER) [58]

Although increasing the potential for a function unit to reuse an operand can

obtain low-power schedules, common operands are not encountered very frequently

in real designs [29]. That is, if just operand sharing within an iteration are explored,

the power consumption will be reduced only slightly due to less opportunities of

operand sharing. As mentioned in subsection 2.4.4, the retiming technique can be used

to transform the given loop to generate instructions with common operands hidden

Table 6.3. The comparison between RSOR and RSSA (under Motorola
DSP56000 architecture).

RSSA RSOR

length ins. count current length ins. count current
Wave Digital Filter 5 13 750 5 13 770

Filter 5 10.5 655 5 10.5 655
IIR 2D 16 37 2435 16 37 2435

Forward-substitution 5 10.5 711 5 10.5 717
THCS 4 9.5 611 4 9.5 587

Discrete Fourier Transform 12.5 30 1870 12.5 32 1756
Floyd-Steinberg 17.5 39 2440 17.5 39 2440

Transmission Line 12 28 1770 12 28 1770
IIR 1D 8 17.5 1201 8 19 1111

Differential Equation Solver 11.5 25.5 1580 12 24.5 1651
All-pole Lattice Filter 16 34.5 2280 17 34.5 2300

Elliptic Filter 34 72 5020 35 75 4827

 90

inside the original MDFG. Hence, we propose the second method rotation scheduling

with exploiting operand realization (RSER), which is extended from RSOR and aimed

to further exploit potential operand sharing between different iterations. Subsection

6.3.1 contains the mechanism for reconstructing the original MDFG. Detailed

scheduling steps of RSER are described in subsection 6.3.2. In subsection 6.3.3, we

list the difference among RSOR, RSER, and other related methods.

6.3.1 MDFG Reconstruction Mechanism

6.3.1.1 Finding Potential Operand Reutilization in Different Iterations

To generate instructions with common operands hidden inside the given MDFG,

first we have to find instructions sharing an operand in different iterations. Recall that

a variable in a loop indicates an array. For a given loop, assume that two different

elements of the same array are used as source operands of two ALU instructions xi

and yi in iteration i. Apparently that xi and yi do not have common operand. However,

there must exist another ALU instruction yj in iteration j, which references the same

element as xi. If we can move xi and yj to the same iteration, an additional OPR can be

achieved. In the MDFG, if different elements of the same array are referenced in an

iteration, we will find a node vu with type S that has multiple successors, vi, of type L

where all d(eui) are different. In RSER we group load variable instructions vi into an

exploitable sharing set, which means these instructions may reference the same

element of the same array after retiming. Node grouping conditions of the exploitable

sharing set are described in the following definition.

Definition 6.2. For a given MDFG G = (V, E, X, d, P), nodes v1…vm ∈ V with type L

are grouped into an exploitable sharing set if they satisfy two conditions: (1) All

nodes v1…vm have the same predecessor vu ∈ V (P(vu) = S); (2) For any two edges eui

and euj ∈ E, d(eui) ≠ d(euj) for 1 ≤ i, j ≤ m.

 91

For example, for the MDFG shown in Figure 6.4, nodes 8 and 9 are grouped into

an exploitable sharing set because they both connect to node 7 with different edge

delays. This case indicates that load variable instructions 8 and 9 reference to the

same array but different elements. If we can apply the retiming technique to make

d(e79) equal to d(e89), ALU instructions 12 and 13 will share a common operand

within an iteration. Therefore, for every exploitable sharing set, we require an MDFG

reconstruction algorithm to make these instructions reference a common element as

far as possible. This algorithm will be introduced in detail in the next subsection.

6.3.1.2 MDFG Reconstruction Algorithm

Before describing the MDFG reconstruction algorithm, we list some features of

an MDFG. According to the MDFG construction steps, data memory is the only place

to store operands. That is, an instruction written in high-level language is directly

transferred to four nodes, which are used to load two source operands, execute, and

store result. Therefore, in an MDFG, a node with type M/A will have two predecessors

with type L/C and one successor with type S, and at least one predecessor must be

load variable instruction. Besides, a non-zero delay edge, eij, can only exist between

C

(1, 2)

11

0 1

2
B C

3

4

6

D

7

D

A

8 9

5

(0, 1)

12 13

A A

14 15
10

B

(1, 0) Multiplication

Addition

Load constant

Load variable

Store variable

Register transfer

P(v) Meaning

M Multiplication

A Addition

L Load variable

S Store variable

T Register transfer

C Load constant

Figure 6.4. The MDFG example.

 92

(1) Input: MDFG G = (V’, E, X, d, P), exploitable sharing set S = {v1…vm};
(2) Output: rf(v), retimed MDFG Gr;
(3) rf(v) = (0,…, 0), ∀ v ∈ V; // inilize retiming function of all nodes
(4) Assume that v1…vm have the same predecessor vu ∈ V; // P(vu) = S
(5) vij ∈ V are successors of vi respectively; // P(vij) = M/A
(6) sij ∈ V are successors of vij respectively; // P(sij) = S
(7) uij ∈ V are predessors of vij respectively, uij ≠ vi; // P(uij) = L/C
(8) /* vi and uij are two input operands of vij */
(9) check(eui) = ‘F’, ∀ d(eui) ≠ (0,…, 0); // eui ∈ E connects vu and vi
(10) merge(vi) = ‘F’, ∀ d(eui) ≠ (0,…, 0);
(11) While (not all d(eui) are equal, ∀ check(eui) = = ‘F’)
(12) r = d(eui) such that check(eui) = = ‘F’ and d(eui) ≠ (0,…, 0);
(13) // select a non-zero delay vector as the retiming base r
(14) rf(vi) = rf(vi) + r; rf(vij) = rf(vij) + r; // set retiming function
(15) rf(sij) = rf(sij) + r; rf(uij) = rf(uij) + r; // set retiming function
(16) Gr = retime G using above retiming functions; // Gr = (V, E, X, dr, P)
(17) While (∃ e ∈ E such that dr(e) = = –r) // remove delay vector dr(e) = –r
(18) Assume that e connects nodes vs and vl; // P(vs) = S, P(vl) = L
(19) va ∈ V is the predecessor of vs; // P(va) = M/A
(20) ul1, ul2 ∈ V are predecessors of va; // P(uli) = L/C
(21) /* ul1 and ul2 are two input operands of va */
(22) rf(vs) = rf(vs) + r; rf(va) = rf(va) + r; // set retiming function
(23) If (uli has successors vai other than va) // P(vai) = M/A, P(uli) = L
(24) Insert node vxi into V, set P(vxi) = L; // split uli to uli and vxi
(25) Delete elia from E; // elia connects uli and va
(26) Insert edge exia into E; // exia connects vxi and va
(27) rf(vxi) = rf(vxi) + r; // set retiming function
(28) Else rf(uli) = rf(uli) + r; // set retiming function
(29) Gr = retime G using above retiming functions;
(30) End while
(31) If (∃ a vector s such that s•dr(e) ≥ 0) // Gr is realizable
(32) G = Gr; merge(vi) = ‘T’; End if
(33) check(eui) = ‘T’;
(34) End while // all d(eui) are checked
(35) Insert vx into V; Insert eux into E;
(36) For (k = 1; k ≤ m, k++) // merge vi with the same eui
(37) If (merge(vi) = = ‘T’)
(38) Delete vk from V; Delete ekkj from E; // ekkj connects vk and vkj
(39) Delete euk from E; Insert exkj into E; // exkj connects vx and vkj
(40) End if
(41) End for
(42) Return rf(v), Gr;

Figure 6.5. The MDFG reconstructing algorithm.

 93

nodes vi and vj with type S and L, respectively, which represents the loop-carried data

dependence of the given loop. After reconstructing the MDFG, above features also

must be satisfied in addition to guarantee the retimed MDFG is realizable.

The proposed MDFG reconstruction algorithm, listed in Figure 6.5, contains

three main phases: node retiming (Lines 12~16), graph realization (Lines 17~32), and

graph modification (Lines 35~41). For a given MDFG G and an exploitable sharing

set S = {v1…vm}, assume that v1…vm have the same predecessor vu; our goal is to

make as many as possible d(eui) equal using the retiming technique. In our design, we

simply select a non-zero delay vector d(eui) as the retiming base, which can transfer

d(eui) to a zero delay edge after retiming node vi. Then, to satisfy features of MDFG

described above, all nodes listed in Lines 14~15 must be concurrently retimed. For

example, in Figure 6.6(a), there exists a sharing set S = {6, 9} and an exploitable

sharing set S’ = {5, 15}. After retiming nodes 4~10 with r = (0, 1) equal to d(e514), the

sharing set S is extended to {6, 9, 16} as shown in Figure 6.6(b), which indicates the

number of potential operand reutilizations is increased. This node retiming phase will

be applied iteratively until all d(eui) have been selected as the retiming base.

In the second phase, we check and guarantee the retimed MDFG Gr is realizable.

As described in section 2.1, a realizable MDFG G must have a schedule vector, s,

such that s•d ≥ 0 for all loop-carried data dependencies d. However, because we

directly select a non-zero delay vector, r, as the retiming base in the previous phase,

two edges with opposite delay vectors r and –r may exist in Gr simultaneously. In this

case above realizable condition can be satisfied, but Gr still will not be successfully

executed. dr(e711) and dr(e34) in Figure 6.6(b) are such an example. Although a vector

s = (1, 0) makes s · d ≥ 0 for all d ∈ Gr, Gr is actually illegal because iterations (i, j)

and (i, j + 1) will depend on each other. In order to resolve this case, we design a

mechanism to retime additional nodes backtracked from edge e with dr(e) = –r.

 94

Meanwhile, if the backtracking steps reach a node with type L with multiple

successors, we split that node (Lines 23~28). Figure 6.6(c) shows the modified

realizable MDFG Gr after splitting node 0 and retiming nodes 0~3. This phase will be

also iteratively applied until the retimed graph is realizable.

Figure 6.6. An example used to illustrate steps of RSER.

(a)

8

E

2

1 0

D

3

A

4

6

A
5

9
C

C

7

B

10

D

11 12

13

14

15

E
B

16

17

D

C

C

(1, 0)

(0, 1)

8

E

2

1 0

D

3

A

4

6

A
5

9
C

C

7

B

10

D

11 12

13

14

15

E
B

16

17

D

C

C

(1, 0)

(0, 1) (0, 1)

(0, -1)

(b)

8

E

2

1 0

D

3

A

4

6

A
5

9
C

C

7

B

10

D

11 12

13

14

15

E
B

16

17

D

C

C

(1, -1)

(0, 1)

18

(1, 0)
(0, 1)

(c)

8

E

2

1 0

D

3

A

4

6
A

9

C

C

7

B

10

D

11 12

13

14

19

E
B

16

17

D

C

C

(1, -1)

(0, 1)

18

(1, 0)

(0, 1)

(d)

 95

Finally, the third phase is used to merge nodes in an exploitable sharing set that

reference the same array element. In our design we will merge them to an additional

node. The final graph Gr after applying our MDFG reconstruction algorithm is shown

in Figure 6.6(d).

6.3.2 Detailed Algorithms of RSER

In the previous subsection we describe the proposed algorithm to increase the

number of potential OPRs. As shown in Figure 6.7, when we insert this algorithm into

RSOR, we will obtain our second method RSER. Figure 6.8(a)(b) shows the

corresponding TDAGs for Figure 6.6(a)(d). Suppose the target architecture is the

Motorola DSP56000, Figure 6.9(a)(b) shows the scheduling results of Figure 6.8(a)(b),

which are actually scheduling results of Figure 6.6(a) using RSOR and RSER,

respectively. From these schedules, we find that for a single iteration in the repetitive

pattern, using RSER achieves one more OPR with one-time step longer schedule

length. More instruction counts are obviously required using RSER, because the

original MDFG is reconstructed and some nodes are split. This feature indicates that

1. Gc = Construct MDFG;
1.1. Partition variables to memory banks;
1.2. Unfold or tile Gc if necessary;

2. Gc = Reconstruct Gc; // apply the algorithm listed in Figure 6.5
3. Gt = Construct TDAG (Gc);
4. S = Schedule all instructions except memory loads (Gt);

4.1. Group ALU instructions into sharing sets;
// additional step used in RSOR and RSER

4.2. Gop = Construct DAG Gop (Gt);
4.3. S = Schedule nodes in Gop (Gop);

// nodes in the same sharing set are restrictively scheduled
4.4. S = Determine and solve accumulator spills (S, Gop);

5. S = Schedule memory load instructions (S, Gt);
6. S = Retime the initial scheduling result (S, Gt);

Figure 6.7. The overall scheduling algorithm of RSER.

 96

in RSER, OPR is a trade off for schedule length as well as instruction count. In

section 6.4 we will describe further evaluations of RSER.

6.3.3 The Difference between Proposed Methods and Other Methods

In the following, we describe the difference among methods RSOR, RSER,

LPLS [4], power-conscious loop folding [24], and method proposed in [28], all are

designed based on the operand sharing technique. Among these methods, the retiming

technique is never applied in LPLS, which only uses a modified list scheduling to

consider the operand sharing. RSOR focus on achieving potential OPRs within an

iteration, and the retiming technique is used once to compact the schedule. Other three

methods RSER, power-conscious loop folding, and the method [28] all use the

Figure 6.8. The corresponding TDAG of (a) Figure 6.6(a), (b) Figure 6.6(d).

0

8

16

D

1

2

6 9

5
C C

13

14

C

17

D

D

20

0

8

1

2 18

6

7

B

D

9

10

E

16

17

D

11

13

E

12

B

D

(a) (b)

Figure 6.9. Scheduling results of Figure 6.6(a). (a) RSOR, (b) RSOE.

(b)

t FU1 M1 M2
1 6 1
2 9 0 5
3 13
4 16 8 14
5 2 17

t FU1 M1 M2
1 13 0 1
2 2 20 8
3 6 18 12
4 9 7
5 16 11 10
6 17

(a) operand reutilization

 97

retiming technique to generate instructions with common operands hidden inside the

MDFG. Power-conscious loop folding is a basic method. After finding instructions

sharing an operand in different iterations, the retiming technique is used to move them

to the same iteration. The method [28] contains a force-directed retiming mechanism

to determine which instruction must be retimed, and aim to make as many instructions

as possible take common operands as their inputs. Apparently, these two methods only

apply the retiming technique to achieve more OPRs. On the other hand, in our RSER,

the retiming technique is applied more than once for different purposes. First, after

determining exploitable sharing sets, it is used to gather instructions sharing common

operands. Note that before retiming a specific retiming base must be chosen. That is,

to remove more non-zero delay edges during MDFG reconstruction we may retime

the MDFG several times with different retiming bases. Then, to compact the initial

scheduling result, the retiming technique is used once more to partial overlap the

execution time of successive iterations. From above description, we expect that using

RSER can produce schedules with shorter lengths than using methods in [24, 28].

However, applying the retiming technique will generate corresponding prologue

and epilogue codes that must be executed separately before and after the iterative

patterns. If code sizes of the prologue and epilogue are too large, they will cost greater

overall execution time and more power consumption of the given loop. We have

proven that the overall schedule length is strongly dependent on which schedule

vector, as well as retiming base, been selected [41]. Therefore, to avoid generating too

many prologue and epilogue codes, we restrict that only two retiming bases, (0, 1) and

(1, 0), can be selected in the MDFG reconstruction algorithm. This restriction means

that in RSER the retiming technique is applied at most three times. Detailed

evaluations of RSOR, RSER, and other energy-efficient instruction scheduling

methods will be given in section 6.4.

 98

Finally, in section 5.4 we have presented that with minor modifications, our

hypothetical machine model and RSSA can be apply to real DSP families with various

architectural features. Since in RSOR and RSER we apply the same mechanisms as in

RSSA to schedule instructions and insert spill codes, both RSOR and RSER also can

suit real DSP families.

6.4 Performance Evaluations [58]

In this section, we evaluate RSOR and RSER using selected MDFGs and the

hypothetical machine model. LPLS [4] and Kim et al. [28] are also evaluated using

the variable partition mechanism presented in RSVR [30] for comparison, after

inserting necessary spill codes. Similar as in subsection 6.2.2, we still use evaluation

metrics including schedule length, instruction count, the number of OPRs, and

approximate current, and only show the best result derived by RSOR and RSER.

Table 6.4 lists the number of OPRs for a single iteration in the repetitive pattern.

Note that not all selected MDFGs contain exploitable sharing sets, so we only apply

RSER to MDFGs that have potential operand sharing in different iterations. From this

1 FU, 2 acc, 4 reg, 2 mem 2 FU, 4 acc, 4 reg, 2 mem

LPLS RSOR Kim RSER LPLS RSOR Kim RSER
Wave Digital Filter 0 0.5 1 1 0 0.5 0 1

Filter 0 0 0 0 0 0
IIR2D 0 0 4 4 0 0 4 4

forward-substitution 1 1.5 2 2 2 2 1 2
THCS 1 1 1 2 2 0
DFT 3 4 3 7 3 4 3 7

Floyd-Steinberg 9 9 9 9 9 6
Transmission 4 4 4 5 5 4

IIR1D 2 3 4 4 2 3 3 4
Equation Solver 5 5 5 4 5 6 4 5
All-pole Lattice 3 3 2 6 6 2
Elliptic Filter 9 9 9 11 11 11

Table 6.4. The number of OPRs obtained by different scheduling methods.

 99

table, if the given MDFG has exploitable sharing sets, using RSER and Kim et al. [28]

can clearly produce schedules with more OPRs compared to using LPLS and RSOR.

That is, for a single iteration in the repetitive pattern, schedules generated by RSER

and Kim et al. [28] will cost lower power consumption at function units. In addition,

for an MDFG without exploitable sharing set, using RSOR still generates a similar

number of OPRs to LPLS and Kim et al. [28]. This result shows that all three methods

can successfully exploit potential operand sharing within an iteration. For comparison

between two different architectures, Table 6.4 shows that all methods, except Kim et

al. [28], perform better when the target architecture has more function units. This

situation indicates whether an MDFG is reconstructed or not, using more function

units is beneficial in achieving more OPRs. Thus, we conclude that when the number

of OPRs is taken as the evaluation metric, RSOR and RSER are at least as effective as

the previous methods. Furthermore, if the given loop contains potential operand

sharing in different iterations, applying the retiming technique to exploit it is positive

for energy-efficient instruction scheduling.

Table 6.5 lists the schedule length, instruction count, and approximate current of

a single iteration in Motorola DSP56000 architecture. From these results, we find that

RSOR and RSER achieve shorter schedules than LPLS and Kim et al. [28] in most

cases, because both our methods apply the retiming technique to effectively explore

the instruction-level parallelism between successive iterations. But the effectiveness

between RSOR and RSER is uncertain, and will depend on the topological difference

between the MDFGs before and after reconstruction. Hence, we conclude that RSOR

and RSER are more effective than previous methods when the schedule length is the

evaluation metric. On the other hand, in most cases using LPLS and Kim et al. [28]

will generate schedules with the least and most instructions, respectively. If a MDFG

contains exploitable sharing sets, applying RSER will require greater instruction

 100

count than RSOR but still less than Kim et al. [28]. Note that the number of ALU

instructions for a MDFG is fixed whichever scheduling method is applied. That is, a

schedule with more instruction counts represents more inserted spill codes, which are

usually extra memory accesses. Based on the instruction-level power model presented

in [45], to execute every instruction will cost the base cost, so a schedule with less

instruction count will benefit code size as well as power consumption. As for the

approximate current, in most cases RSOR and RSER outperform LPLS and Kim et al.

[28]. Obviously the main reason is using our methods can obtain shorter schedules.

For comparison between RSOR and RSER, RSER is usually better, even if the

number of memory accesses may increase after MDFG reconstruction. This is

because using RSER can further lower the power consumed at function units, and the

schedule length is only slightly increased.

LPLS RSOR Kim RSER

length
instr.
count

current length
instr.
count

current length
instr.
count

current length
instr.
count

current

[1] 6 13 820 5 13 770 6 13 830 4 11.5 640

[2] 8 11 920 5 10.5 655 6 10 760

[3] 20 37 2690 16 37 2435 18 42 2604 17.5 39 2428

[4] 7 10 802 5 10.5 717 7 15 922 5 12.5 717

[5] 6 10 712 4 9.5 587 6 10 712

[6] 14 30 1866 12.5 32 1756 15 34 1986 12.5 31.5 1691

[7] 20 39 1630 17.5 39 2440 19 39 1520

[8] 14 29 1940 12 28 1770 14 29 1930

[9] 10 18 1222 8 19 1111 10 23 1298 8.5 21 1118

[10] 14 24 1776 12 24.5 1651 13 30 1816 11.5 27.5 1646

[11] 21 35 2640 17 34.5 2300 17 39 2450

[12] 40 77 5162 35 75 4827 36 73 4782

[1] Wave Digital Filter [7] Floyd-Steinberg
[2] Filter [8] Transmission Line
[3] Infinite Impulse Response Filter 2D [9] Infinite Impulse Response Filter 1D
[4] forward-substitution [10] Differential Equation Solver
[5] Toeplitz Hyperbolic Cholesky Solver [11] All-pole Lattice Filter
[6] Discrete Fourier Transform [12] Elliptic Filter

Table 6.5. The comparison among four methods (under Motorola DSP56000).

 101

In the following, we focus on the entire retimed loop to compare the overall

schedule length. In chapter 3 we have introduced an analytic model to calculate the

overall schedule length of a retimed MDFG. Formulas (A.1)~(A.5) can be directly

used to test methods RSOR and Kim et al. [28], and we extend it further to treat

RSER. Table 6.6 lists variables used in the extended analytic model. Note that we

restrict that only two retiming bases, (0, 1) and (1, 0), can be selected in the MDFG

reconstruction algorithm. That is, the original MDFG is retimed at most twice during

reconstructing, with two retiming bases been used in different sequences. In the

extended analytic model, we directly assume that every MDFG is retimed twice, and

design corresponded formulas to calculate the overall schedule length. If the given

Variable Definition

N Number of memory modules

m
Loop bound of the outer loop for a two-dimensional nested loop
Loop bound for an one-dimensional loop

n Loop bound of the inner loop for a two-dimensional nested loop

(s1, s2) Schedule vector selected for retiming during instruction scheduling

list Schedule length of an iteration in the repetitive pattern produced by list
scheduling method

length Schedule length of an iteration in the repetitive pattern

prologue Schedule length of the prologue generated during instruction scheduling

eplogue Schedule length of the prologue generated during instruction scheduling

d Retiming depth obtained during instruction scheduling

half (k, N) Schedule length of k original iterations under N memory modules

exp1 Schedule length of the prologue generated during MDFG reconstructing
after first retiming

exe1 Schedule length of the epilogue generated during MDFG reconstructing
after first retiming

exd1 Retiming depth obtained during MDFG reconstructing after first retiming

exp2 Schedule length of the prologue generated during MDFG reconstructing
after second retiming

exe2 Schedule length of the epilogue generated during MDFG reconstructing
after second retiming

exd2 Retiming depth obtained during MDFG reconstructing after second retiming

Table 6.6. Definitions of variables used in the analytic model.

 102

MDFG is only retimed once, variables exp2, exe2, and exd2 can be simply set to zero.

Detailed derivations of new formulas are listed in appendix B.

Figures 6.10 and 6.11 show the overall schedule lengths of the entire retimed

loop when the target architecture has one or two function units, respectively. From

these figures, for most applications RSOR obtain shorter overall schedule lengths than

LPLS and Kim et al. [28]. If the given MDFG contains exploitable sharing sets, using

RSER may not produce shorter overall schedule lengths compared to RSOR, but still

outperforms LPLS and Kim et al. [28]. These results are the same as the evaluations

based on a single iteration in the repetitive pattern. That is, although the two proposed

methods, especially RSER, require longer time to run the prologue and epilogue, the

overall performance is still better because they can effectively explore the instruction-

level parallelism between successive iterations.

Finally, we summarize above evaluations. The overall schedule lengths obtained

by RSOR and RSER are obviously shorter than those of previous methods, although

RSER may require more time to run corresponding prologue and epilogue codes. If

the number of OPRs is the evaluation metric, RSOR and RSER are at least as

effective as LPLS and Kim et al. [28]. Recall that the average power consumption of

the function unit is clearly less when an operand remains unchanged, and the total

power consumption of a schedule equals to the sum of power consumed by all

instructions. Since proposed RSOR and RSER perform better on both evaluation

metrics schedule length and the number of OPRs, we conclude that they are

energy-efficient code generation methods. As for the instruction count, our proposed

methods are still very effective for the repetitive pattern due to fewer inserted spill

codes. But their corresponding prologue and epilogue codes have to be stored in

addition to the repetitive pattern, so our RSER will require much more memory space

to store the scheduling results compared to other related methods.

 103

0

5

10

15

20

25

30

35

40

45

50

55

10
x1

0

8x
15

15
x1

0

20
x2

0

30
x1

5

15
x3

0

30
x3

0

20
x5

0

50
x2

5

40
x4

0

25
x6

5

60
x3

0

30
x8

0

70
x3

5

50
x5

0

loop size

cl
oc

k
cy

cl
e

(x
 1

00
0)

WDF_LPLS WDF_Kim
WDF_RSOR WDF_RSER
IIR2D_LPLS IIR2D_Kim
IIR2D_RSOR IIR2D_RSER

0

5

10

15

20

25

30

35

40

10
x1

0

8x
15

15
x1

0

20
x2

0

30
x1

5

15
x3

0

30
x3

0

20
x5

0

50
x2

5

40
x4

0

25
x6

5

60
x3

0

30
x8

0

70
x3

5

50
x5

0

loop size

cl
oc

k
cy

cl
e

(x
 1

00
0)

forward_LPLS forward_Kim
forward_RSOR forward_RSER
DFT_LPLS DFT_Kim
DFT_RSOR DFT_RSER

0

5

10

15

20

25

30

35

40

45

50

55

10
x1

0

8x
15

15
x1

0

20
x2

0

30
x1

5

15
x3

0

30
x3

0

20
x5

0

50
x2

5

40
x4

0

25
x6

5

60
x3

0

30
x8

0

70
x3

5

50
x5

0

loop size

cl
oc

k
cy

cl
e

(x
 1

00
0)

Filter_LPLS Filter_Kim
Filter_RSOR Floyd_LPLS
Floyd_Kim Floyd_RSOR

0

5

10

15

20

25

30

35

40

10
x1

0

8x
15

15
x1

0

20
x2

0

30
x1

5

15
x3

0

30
x3

0

20
x5

0

50
x2

5

40
x4

0

25
x6

5

60
x3

0

30
x8

0

70
x3

5

50
x5

0

loop size

cl
oc

k
cy

cl
e

(x
 1

00
0)

THCS_LPLS THCS_Kim
THCS_RSOR ximission_LPLS
ximission_Kim ximission_RSOR

0

2

4

6

8

10

12

14

16

100 225 324 400 529 625 729 900 1000loop size

cl
oc

k
cy

cl
e

(x
 1

00
0)

IIR1D_LPLS IIR1D_Kim
IIR1D_RSOR IIR1D_RSER
equation_LPLS equation_Kim
equation_RSOR equation_RSER

0

5

10

15

20

25

30

35

40

45

100 225 324 400 529 625 729 900 1000loop size

cl
oc

k
cy

cl
e

(x
 1

00
0)

allpole_LPLS allpole_Kim
allpole_RSOR elliptic_LPLS
elliptic_Kim elliptic_RSOR

Figure 6.10. Experimental results of DSP applications (1 function unit, overall
schedule length).

 104

0

5

10

15

20

25

30

35

40

45

10
x1

0

8x
15

15
x1

0

20
x2

0

30
x1

5

15
x3

0

30
x3

0

20
x5

0

50
x2

5

40
x4

0

25
x6

5

60
x3

0

30
x8

0

70
x3

5

50
x5

0

loop size

cl
oc

k
cy

cl
e

(x
 1

00
0)

WDF_LPLS WDF_Kim
WDF_RSOR WDF_RSER
IIR2D_LPLS IIR2D_Kim
IIR2D_RSOR IIR2D_RSER

0

5

10

15

20

25

30

35

10
x1

0

8x
15

15
x1

0

20
x2

0

30
x1

5

15
x3

0

30
x3

0

20
x5

0

50
x2

5

40
x4

0

25
x6

5

60
x3

0

30
x8

0

70
x3

5

50
x5

0

loop size

cl
oc

k
cy

cl
e

(x
 1

00
0)

forward_LPLS forward_Kim
forward_RSOR forward_RSER
DFT_LPLS DFT_Kim
DFT_RSOR DFT_RSER

0

5

10

15

20

25

30

35

40

45

10
x1

0

8x
15

15
x1

0

20
x2

0

30
x1

5

15
x3

0

30
x3

0

20
x5

0

50
x2

5

40
x4

0

25
x6

5

60
x3

0

30
x8

0

70
x3

5

50
x5

0

loop size

cl
oc

k
cy

cl
e

(x
 1

00
0)

Filter_LPLS Filter_Kim
Filter_RSOR Floyd_LPLS

Floyd_Kim Floyd_RSOR

0

5

10

15

20

25

30

35

10
x1

0

8x
15

15
x1

0

20
x2

0

30
x1

5

15
x3

0

30
x3

0

20
x5

0

50
x2

5

40
x4

0

25
x6

5

60
x3

0

30
x8

0

70
x3

5

50
x5

0

loop size

cl
oc

k
cy

cl
e

(x
 1

00
0)

THCS_LPLS THCS_Kim
THCS_RSOR ximission_LPLS
ximission_Kim ximission_RSOR

0

2

4

6

8

10

12

14

100 225 324 400 529 625 729 900 1000loop size

cl
oc

k
cy

cl
e

(x
 1

00
0)

IIR1D_LPLS IIR1D_Kim
IIR1D_RSOR IIR1D_RSER
equation_LPLS equation_Kim
equation_RSOR equation_RSER

0

5

10

15

20

25

30

100 225 324 400 529 625 729 900 1000loop size

cl
oc

k
cy

cl
e

(x
 1

00
0)

allpole_LPLS allpole_Kim

allpole_RSOR elliptic_LPLS

elliptic_Kim elliptic_RSOR

Figure 6.11. Experimental results of DSP applications (2 function units, overall

schedule length).

 105

Chapter 7. Conclusions and Future Work

7.1 Conclusions

In this thesis we focus on proposing effective code generation method to

schedule uniform loops on DSP with multiple data memory banks. A hypothetical

machine model is also defined to simulate a scalable DSP architecture, in order to

deep study the influence of differing number of resources on the scheduling result.

Our research contains three main issues: variable partition mechanisms, effective

methods containing all code generation phases, and energy-efficient methods based on

the operand sharing technique. In each issue we proposed some effective methods,

and evaluate those using selected MDFGs and an analytic model. In the following we

give brief conclusions for our research.

(1) Variable partition mechanisms

In the first issue, we define three simple mechanisms to partition variables based

on their array indices. After enlarging the given MDFG using different techniques to

suit each variable partition mechanism, the multi-dimensional rotation scheduling is

applied to schedule instructions and three corresponded code generation methods RSF,

RST, and RSP are proposed. Because variables are never repartitioned during

instruction scheduling, these three methods are apparently simpler and more efficient

compared to a similar study RSVR. In addition, the enlarged iteration used in our

methods gives a more global view of data dependencies, which is useful to explore the

instruction-level parallelism between successive iterations using the retiming

technique. We also define an analytic model and some formulas to calculate the

overall schedule length of a retimed loop. From evaluation results, our methods

achieve schedules with equal even shorter lengths compared to those of RSVR, not

 106

only for a single iteration in the repetitive pattern but also for the entire retimed loop.

Three variable partition mechanisms defined in RSVR, RSF, and RST are used in our

subsequent several studies.

(2) Effective methods containing all code generation phases

For DSP with multiple data memory banks, the complete code generation process

must include five phases. Because these phases are extremely data dependent, to

consider more phases at a time will lead more effective results. In our second study

issue, we first focus on Motorola DSP56000 and propose method RSSP to cover all

code generation phases. In RSSP a TDAG is defined and transferred from the given

MDFG to remove possible unnecessary memory accesses. Then, the main feature of

RSSP is to predict the occurrence of accumulator spills and generate corresponding

spill codes in advance. These spill codes will be scheduled in parallel with other

instructions, which is beneficial to generate a more compact and shorter schedule.

After generating an initial schedule, the retiming technique is also applied to fully

utilize resources. From evaluation results, RSSP obviously outperforms methods RSF,

RST, and RSP, because it schedules instructions based on the TDAG which contains

less instructions than the MDFG. Comparing to other methods designed for Motorola

DSP56000 our RSSP still generates schedules with shorter lengths, in both a single

iteration in the repetitive pattern and the entire retimed loop.

However, although RSSP seems quire effective, it is designed dedicated to

Motorola DSP56000 and not scalable. Therefore, we further propose a general method

RSSA, which can suit various DSPs with different architectural features. In RSSA, in

addition to shorter schedule length, we take fewer spill codes as the second scheduling

goal due to its importance in DSP. Instructions are still scheduled based on the TDAG

to remove possible unnecessary memory accesses. But we no longer predict the

 107

occurrences of accumulator spills in RSSA, because the predicting result becomes

inaccurate easily when the target architecture is not specific. During scheduling

instructions, several variables are dynamically updated to record the number of

resources been occupied at every time step. When an accumulator spill is detected by

checking those variables, we prefer to transfer the overwritten ALU result to an

available register and temporarily store it to data memory only when required. After

generating an initial schedule, the retiming technique is still applied in RSSA to

explore the instruction-level parallelism between successive iterations. Suppose the

target architecture equals to the Motorola DSP56000, RSSA usually achieves the

shortest schedule length and considerably fewer spill codes compared to other related

studies. We also define a hypothetical machine model to simulate architectures with

different number of resources. This parameterized model is basically extended from

the Motorola DSP56000, but can be apply to other real DSP families with minor

modifications. After evaluating MDFGs using RSSA on this hypothetical machine

model, the influence of differing number of resources on the scheduling results is

deep studied. From evaluation results, we conclude that adding more accumulators to

keep more ALU results for further using is the most efficient way to reduce spill codes.

Increasing the number of registers or data memory banks is also useful, but its

improvement is not as obvious as using more accumulators. As for achieving shorter

schedule length, adding additional function units and accumulators concurrently is

certainly necessary. Furthermore, we also find that the variable partition mechanism

proposed in RSF is unsuitable for one-dimensional MDFGs. This is because most

memory accesses will reference variables from the same data memory bank after

applying loop unfolding, which may easily fail to be scheduled successfully in time

and lengthen the scheduling results.

 108

(3) Energy-efficient code generation methods

Because a function unit will cost less power to execute an instruction when one

of its operand remains unchanged, the operand sharing is a useful technique in DSP

for low power design. In our third study issue in this thesis, we propose two energy-

efficient code generation methods RSOR and RSER, both based on the operand

sharing technique. RSOR is directly extended from RSSA and aimed to explore

potential operand sharing within an iteration. In RSOR we define a sharing set to

group ALU instructions with common operand, and restrictedly schedule instructions

in a sharing set to the same function unit at consecutive time steps to reuse operands.

However, in real designs common operands are not encountered very frequently, so

using RSOR only can reduce insignificant power consumption. But potential operand

sharing may be hidden inside the original MDFG, which can be generated after loop

transformations. Therefore, we propose our second energy-efficient method RSER,

which is extended from RSOR and aimed to further explore operand sharing between

different iterations. In RSER an exploitable sharing set is defined to group load

variable instructions that reference the same array element in different iterations. Then,

we design a MDFG reconstruction algorithm based on the retiming technique, and

apply the method RSOR to schedule the reconstructed MDFG. Hence, operand

sharing within an iteration and resided in different iterations can be both explored

using RSER. We also extend the analytic model defined in methods RSF and RST to

calculate the overall schedule length and number of OPRs for the entire retimed loop

after applying RSOR and RSER. From evaluation results, we find that both RSOR

and RSER can successfully explore operand sharing within an iteration. When the

given MDFG contains exploitable sharing sets, using RSER achieves schedules with

further more OPRs, which represents that exploiting the operand sharing in different

iterations is beneficial for energy-efficient instruction scheduling. On the other hand,

 109

schedules generated by RSOR and RSER may have slightly longer schedule lengths

for a single repetitive iteration compared to those of RSSA. The main reason is that

some ALU instructions are restrictedly scheduled to the same function unit, so the

instruction-level parallelism between them cannot be successfully explored. But for

the entire retimed loop, both RSOR and RSER still achieve shorter overall schedule

lengths compared to related studies, because they apply the retiming technique to fully

utilize resources as far as possible. Finally, as for the instruction count, our two

proposed methods insert quite fewer spill codes for a repetitive iteration, but RSER

will generate considerable prologue and epilogue codes. That is, if the instruction

count is taken as the evaluation metric, RSER will require much more memory space

to store scheduling results compared to related methods.

7.2 Future Work

Apart from above descriptions there remain some promising issues for future

research. For the complete code generation processing, the real memory offset

assignment of variables and the address register allocation should be considered.

Based on the parallel move conditions listed in [10], a special addressing mode must

be satisfied when simultaneously executing multiple memory accesses. Moreover,

each memory access may be performed only if an address register is available that

points to the correct memory location. Because DSP usually contains simpler

addressing modes compared to general-purpose microprocessor, these two phases are

especially important. However, for all methods proposed in this thesis, we never

consider these phases during scheduling process. Therefore, in the near future, we will

survey related methods and design our own mechanisms. After including these two

phases our code generation method will become more complete.

The second promising issue is about the code size reduction. In our methods, we

 110

frequently use the retiming technique to increase performances. Applying retiming to

schedule uniform loops is actually effective to reduce the schedule length, but the

main problem is the generation of prologue and epilogue. We have shown that in our

proposed methods the prologue and epilogue will not cost too much execution time to

degrade the performance. However, extra codes for prologue and epilogue require

considerable space to be stored in memory, especially in RSER because we apply the

retiming technique more than once. Authors of [59] propose a mechanism to avoid

storing prologue and epilogue codes. Their main idea is to claim that the execution of

prologue and epilogue can be simulated by conditionally executing the repetitive

iteration. Hence, only a repetitive iteration has to be stored, and additional instructions

are required to control the execution of the entire retimed loop. This idea can be used

in our methods RSSP, RSSA, and RSOR. But in RSER it is unsuitable, because using

RSER will generate several pairs of prologue and epilogue, and not all of them can be

simulated by a single repetitive iteration. Therefore, in the near future, we will survey

related methods and try to design effective mechanisms to reduce the prologue and

epilogue codes. After reducing the required code size our code generation methods

will be more practical.

Finally, we can try to realize proposed methods and do some precise evaluations.

In this thesis we use analytic model to calculate the schedule length and instruction

count. As for the power consumption, information provided in [20] also only can

approximately estimate the required current. If our methods can be realized and tested

by more accurate tools, their effectiveness and efficiency will be evaluated more

precisely. Our code generation methods are all systematic and represented by definite

algorithms. Therefore, we believe that they can be integrated into real DSP compiler

and successfully executed.

 111

References

[1] C. Hsu and Y.L. Jeang, “Pipeline Scheduling Techniques in High-Level

Synthesis”, Proc. of 6th Annual IEEE International ASIC Conference and

Exhibition, Rochester, pp. 396-403, 1993.

[2] S.Y. Kung, VLSI Array Processors, Prentice Hall, Englewood, NJ, 1988.

[3] V.K. Madisetti, VLSI Digital Signal Processors: An Introduction to Rapid

Prototyping and Design Synthesis, Butterworth-Heinemann, Boston, 1995.

[4] E. Musoll and J. Cortadella, “Scheduling and Resource Binding for Low Power”,

Proc. of International Symposium on System Synthesis, pp. 104-109, April 1995.

[5] K.S. Khouri, G. Lakshminarayana, and N.K. Jha, “High-level Synthesis of Low-

power Control-flow Intensive Circuits”, IEEE Transactions on Computer-aided

Design of Integrated Circuits and Systems, Vol. 18, No. 12, pp. 1715-1729, Dec.

1999.

[6] Z. Wang and X.S. Hu, “Power Aware Variable Partitioning and Instruction

Scheduling for Multiple Memory Banks”, Proc. of Design, Automation and Test

in Europe Conference and Exhibition, Vol. 1, pp. 312-317, Feb. 2004.

[7] J. Eyre and J. Bier, “The Evolution of DSP Processors”, IEEE Signal Processing

Magazine, Vol. 17, Issue 2, pp. 43-51, March 2000.

[8] P. Lapsley, J. Bier, A. Shoham, and E.A. Lee, DSP Processor Fundamentals:

Architectures and Features, Berkeley Design Technology, Inc. 1996.

[9] J. Cho, Y. Paek, and D. Whalley, “Efficient Register and Memory Assignment for

Non-orthogonal Architectures via Graph Coloring and MST Algorithms”, Proc.

of ACM Joint Conference LCTES-SCOPES, pp. 130-138, June 2002.

[10] DSP56000/DSP56001 Digital Signal Processor User’s Manual, Motorola Inc.;

DSP56300 Family Manual, Motorola Inc.

[11] http://www.physics.otago.ac.nz/internal/ELEC401/ADSP2100/adsp2101.html

http://www.physics.otago.ac.nz/internal/ELEC401/ADSP2100/adsp2101.html

 112

[12] http://www.chipcatalog.com/NEC/UPD77016.htm

[13] TMS320C6000 Technical Brief, Texas Instruments.

[14] Y.H. Lee and C. Chen, “Efficient Variable Partitioning and Scheduling Methods

of Multiple Memory Modules for DSP”, Proc. of 10th Workshop on Compiler

Techniques for High-Performance Computing, pp. 80-89, March 2004.

[15] M.A.R. Saghir, P. Chow, and C.G. Lee, “Towards Better DSP Architectures and

Compilers”, Proc. of International Conference on Signal Processing Applications

and Technology, pp. 658-664, Oct. 1994.

[16] R. Leupers and D. Kotte, “Variable Partitioning for Dual Memory Bank DSPs”,

Proc. of International Conference on Acoustics, Speech, and Signal Processing,

Vol. 2, pp. 1121-1124, 2001.

[17] A. Sudarsanam and S. Malik, “Simultaneous Reference Allocation in Code

Generation for Dual Data Memory Bank ASIPs”, ACM Transactions on Design

Automation of Electronic Systems, Vol. 5, No. 2, pp. 242-264, April 2000.

[18] M.A.R. Saghir, P. Chow, and C.G. Lee, “Exploiting Dual-memory Banks in

Digital Signal Processors”, Proc. of 7th International Conference on Architecture

Support for Programming Language and Operating Systems, pp. 234-243, 1996.

[19] Q. Zhuge, B. Xiao, and E.H.M. Sha, “Exploring Variable Partitioning for Dual

Data-memory Bank Processors”, Proc. of 34th International Symposium on

Microarchitecture, pp. 45-52, Dec. 2001.

[20] W.T. Shiue, “Energy-efficient Backend Compiler Design for Embedded Systems”,

Proc. of 10th International Conference on Electrical and Electronic Technology,

Vol. 1, pp. 103-109, Aug. 2001.

[21] J.M. Daveau, T. Thery, T. Lepley, and M. Santana, “A Retargetable Register

Allocation Framework for Embedded Processors”, Proc. of ACM SIGPLAN/

SIGBED, pp. 202-210, June 2004.

http://www.chipcatalog.com/NEC/UPD77016.htm

 113

[22] B. Scholz and E. Eckstein, “Register Allocation for Irregular Architectures”, Proc.

of ACM Joint Conference LCTES-SCOPES, pp. 139-148, June 2002.

[23] X. Zhuang, T. Zhang, and S. Pande, “Hardware-managed Register Allocation for

Embedded Processors”, Proc. of ACM SIGPLAN/SIGBED, pp. 192-201, June

2004.

[24] D. Kim and K. Choi, “Power-conscious High Level Synthesis using Loop

Folding”, Proc. of Design Automation Conference, pp. 441-445, June 1997.

[25] V. Tiwari, S. Malik. A. Wolfe, and M.T.C. Lee, “Instruction Level Power

Analysis and Optimization of Software”, Journal of VLSI Signal Processing, Vol

13, Issue 2-3, pp. 223-238, Aug./Sep. 1996.

[26] R. Mehra and J. Rabaey, “Behavioral Level Power Estimation and Exploration”,

Proc. of International Workshop Low Power Design, pp. 255-270, Jan. 1994.

[27] E. Musoll and J. Cortadella, “High-level Synthesis Techniques for Reducing the

Activity of Functional Units”, Proc. of International Symposium on Low Power

Design, pp. 99-104, April 1995.

[28] D. Kim, D. Shin, and K. Choi, “Pipelining with Common Operands for Power-

efficient Linear Systems”, IEEE Transactions on VLSI Systems, Vol. 13, No. 9, pp.

1023-1034, Sep. 2005.

[29] E. Macii, M. Pedram, and F. Somenzi, “High-level Power Modeling, Estimation,

and Optimization”, IEEE Transactions on Computer-aided Design of Integrated

Circuits and Systems, Vol. 17, No. 11, pp. 1061-1079, Nov. 1998.

[30] Q. Zhuge, E.H.M. Sha, B. Xiao, and C. Chantrapornchai, “Efficient Variable

Partitioning and Scheduling for DSP Processors with Multiple Memory

Modules”, IEEE Transactions on Signal Processing, Vol. 52, No. 4, pp. 1090-

1099, April 2004.

[31] L.F. Chao and E.H.M. Sha, “Scheduling Data-flow Graphs via Retiming and

 114

Unfolding”, IEEE Transactions on Parallel and Distributed Systems, Vol. 8, No.

12, pp. 1259-1267, Dec. 1997.

[32] M. Wolfe, High Performance Compilers for Parallel Computing, Addison-

Wesley, Redwood City, CA, USA, 1996.

[33] M.E. Wolf and M.S. Lam, “A Loop Transformation Theory and an Algorithm to

Maximize Parallelism”, IEEE Transactions on Parallel and Distributed Systems,

Vol. 2, No. 4, pp. 452-471, Oct. 1991.

[34] N.L. Passos and E.H.M. Sha, “Achieving Full Parallelism using Multi-

dimensional Retiming”, IEEE Transactions on Parallel and Distributed Systems,

Vol. 7, No. 11, pp. 1150-1163, Nov. 1996.

[35] N.L. Passos and E.H.M. Sha, “Scheduling of Uniform Multi-dimensional

Systems under Resource Constraints”, IEEE Transactions on VLSI Systems, Vol.

6, No. 4, pp. 719-730, Dec. 1998.

[36] Y.H. Lee and C. Chen, “An Effective Variable Partitioning and Scheduling

Algorithm for DSP with Multiple Memory Modules”, Proc. of International

Computer Symposium, Dec. 2004.

[37] Y.H. Lee and C. Chen, “An Efficient Code Generation Algorithm for Non-

orthogonal DSP Architecture”, accepted and to appear to Journal of VLSI Signal

Processing Systems.

[38] Y.H. Lee and C. Chen, “An Effective and Efficient Code Generation Algorithm

for Uniform Loops on Non-orthogonal DSP Architecture”, Journal of Systems

and Software, Vol. 80, Issue 3, pp. 410-428, March 2007.

[39] C.E. Leiserson and J.B. Saxe, “Retiming Synchronous Circuitry”, Algorithmica,

Vol. 6, No. 1, pp. 5-35, June 1991.

[40] L. Lamport, “The Parallel Execution of DO Loops”, Comm. ACM SIGPLAN, Vol.

17, No. 2, pp. 82-93, Feb. 1974.

 115

[41] Y.H. Lee, M.L. Tsai, and C. Chen, “RPUSM: An Effective Instruction Scheduling

Method for Nested Loops”, Proc. of National Computer Symposium, pp.

C025-C036, Dec. 2001.

[42] Y.H. Lee and C. Chen, “A Two-level Scheduling Method: An Effective

Parallelizing Technique for Uniform Nested Loops on a DSP Multiprocessor”,

Journal of Systems and Software, Vol. 75, Issue 1-2, pp 155-170, Feb. 2005.

[43] L.F. Chao, A. LaPaugh, and E.H.M. Sha, “Rotation Scheduling: A Loop

Pipelining Algorithm”, IEEE Transactions on Computer Aided Design, Vol. 16,

No. 3, pp. 229-239, March 1997.

[44] C. Kessler and A. Bednarski, “Optimal Integrated Code Generation for Clustered

VLIW Architectures”, Proc. of ACM Joint conference LCTES-SCOPES, pp.

102-111, June 2002.

[45] V. Tiwari, S. Malik, and A. Wolfe, “Power Analysis of Embedded Software: A

First Step towards Software Power Minimization”, IEEE Transactions on VLSI

Systems, Vol. 2, No 4, pp. 437-445, Dec. 1994.

[46] M.T.C. Lee, V. Tiwari, S. Malik, and M. Fujita, “Power Analysis and

Minimization Techniques for Embedded DSP Software”, IEEE Transactions on

Very Large Scale Integration Systems, Vol. 5, No. 1, pp. 123-135, March 1997.

[47] W. Xu, A. Parikh, M. Kandemir, and M.J. Irwin, “Fine-grain Instruction

Scheduling for Low Energy”, Proc. of IEEE Workshop on Signal Processing

Systems, pp. 258-263, Oct. 2002.

[48] K.W. Choi and A. Chatterjee, “Efficient Instruction-level Optimization

Methodology for Low-power Embedded Systems”, Proc. of the 14th International

Symposium on Systems Synthesis, pp. 147-152, Oct. 2001.

[49] A. Parikh, M. Kandemir, N. Vijaykrishnan, and M.J. Irwin, “Energy-aware

Instruction Scheduling”, Proc. of the 7th International Conference on High

 116

Performance Computing, pp. 335-344, 2000.

[50] A. Raghunathan and N.K. Jha, “SCALP: An Iterative Improvement based low-

power Data Path Synthesis System”, IEEE Transactions on Computer-aided

Design of Integrated Circuits and Systems, Vol. 16, No. 11, pp. 1260-1277, Nov.

1997.

[51] C.G. Lyuh, T. Kim, and C.L. Liu, “An Integrated Data Path Optimization for Low

Power based on Network Flow Method”, Proc. of ACM/IEEE Design Automation

Conference, pp. 553-559, 2001.

[52] J.M. Chang and M. Pedram, “Module Assignment for Low Power”, Proc. of

European Design Automation Conference, pp. 376-381, 1996.

[53] http://www.princeton.edu/~mescal/; http://embedded.eecs.berkeley.edu/mescal/

[54] http://www.arm.com/products/CPUs/families/OptimoDE.html

[55] http://ipf-orc.sourceforge.net/

[56] http://www.tensilica.com/

[57] http://www.trimaran.org/

[58] Y.H. Lee and C. Chen, “Energy-efficient Code Generation Algorithms with

Operand Sharing for DSP Architecture with Multiple Data Memory Banks”,

submitted (revised) to Journal of Systems and Software.

[59] Q. Zhuge, B. Xiao, and E.H.M. Sha, “Code Size Reduction Technique and

Implementation for Software-pipelined DSP Applications”, ACM Transactions on

Embedded Computing Systems, Vol. 2, No. 4, pp. 590-613, Nov. 2003.

http://www.princeton.edu/~mescal/
http://embedded.eecs.berkeley.edu/mescal/
http://www.arm.com/products/CPUs/families/OptimoDE.html
http://ipf-orc.sourceforge.net/
http://www.tensilica.com/
http://www.trimaran.org/

 117

Appendix A. The Analytic Model for RSVR, RSF, RST, and

RSP

In this appendix we introduce the analytic model defined to calculate the overall

schedule length of a retimed one or two-dimensional MDFG [14, 36]. Nevertheless, it

can be easily extended to cover nested loop with depths greater than two. Table A.1,

the same as Table 3.3, lists variables used in our analytic model. The following

formulas are used to calculate overall schedule lengths after applying different

methods. Note that formula (A.5) for RST is only suited for the nested loop can be

tiled directly. If the nested loop needs to be skewed before tiling, its scheduling results

using RST is unacceptable and the calculation of overall schedule length becomes

very complicated. We suggest not using RST if the nested loop cannot be tiled directly,

and corresponding formulas are omitted.

« For RSVR, 1-dim MDFG, the overall schedule length =

length × (m – d) + prologue + epilogue (A.1)

Figure A.1(a) shows the original iteration space of a loop with depth one which

contains m iterations. When we apply the retiming technique, the retiming base r = 1

is always feasible for a one-dimensional MDFG. Figure A.1(b) shows the modified

iteration space of Figure A.1(a) after applying RSVR with retiming depth d. From this

figure, clearly that d iterations are moved to prologue and epilogue, and the repetitive

pattern contains m–d iterations. Thus, formula (A.1) can be directly approved.

« For RSF, 1-dim MDFG, the overall schedule length =

length × ( Nm – d) + prologue + epilogue + half((m mod N), N) (A.2)

When we apply RSF to schedule a given loop, we first need to unfold the

original MDFG with factor N. Therefore, for a loop with depth with depth one which

 118

contains m iterations, we will obtain  Nm enlarged iterations and a half portion

with (m mod N) original iterations. Then, we apply the retiming technique for these

enlarged iterations with retiming depth d, and the modified iteration space is shown in

Figure A.1(c). Similar as formula (A.1), formula (A.2) is also directly approved.

Variable Definition

N Number of memory banks

m Loop bound of the outer loop for a two-dimensional nested loop
Loop bound for an one-dimensional loop

n Loop bound of the inner loop for a two-dimensional nested loop

prologue Schedule length of the prologue part of a retimed loop

epilogue Schedule length of the epilogue part of a retimed loop

length Schedule length of a single iteration in the repetitive pattern of a
retimed loop

list Schedule length of a single iteration produced by list scheduling

d Retiming depth, the number of iterations that must be moved into the
prologue and epilogue

w Skew factor used to parallelize the inner loop

half (k, N) Schedule length of k original iterations under N memory banks

Table A.1. Variables defined in the analytic model.

Figure A.1. Iteration spaces of a loop with depth one. (a) Original, (b)
applying RSVR, (c) applying RSF.

m
iterations

d
iterations

m – d
iterations

m mod N
iterations

 Nm
enlarged iterations

d
enlarged iterations

 Nm – d
enlarged iterations

(a)
(b)

(c)

original iterations enlarged iterations half

prologue + epilogue repetitive pattern list

 119

« For RSVR, 2-dim MDFG, the overall schedule length =

length × (m – s2d)(n – s1d) + (prologue + epilogue) × d(s1m + s2n – s1s2 – 2ds1s2) +

list × s1s2d(d + 1) (A.3)

As shown in Figure 2.3, two cases of modified iteration space will be generated

after applying the retiming technique using different schedule vectors for a nested

loop with depth two. In fact, Figure 2.3(b) is a special case of Figure 2.3(c), so in the

following we directly select schedule vector s = (s1, s2) to retime a two-dimensional

MDFG. Figure A.2(a) shows the original iteration space of a loop with depth two

which contains m×n iterations. After applying RSVR with retiming base (s2, -s1),

which is orthogonal to s, and retiming depth d, the modified iteration space is shown

Figure A.2. Iteration spaces of a loop with depth two. (a) Original, (b)
applying RSVR, (c) applying RSF, (d) applying RST.

(a) m iterations

n iterations n – s1d
iterations

m – s2d iterations
(b)

(c)

(d)

m enlarged iterations

 Nn
enlarged
iterations

n mod N
iterations  Nn – s1d

enlarged
iterations

m – s2d enlarged iterations

n – s1d
enlarged
iterations

 Nm – s2d enlarged iterations

n
enlarged
iterations

 Nm enlarged iterations

n mod N iterations

 120

Figure A.2(b). From this figure, we can see the repetitive pattern contains (m –

s2d)(n – s1d) iterations, and d(s1m + s2n – s1s2 – 2ds1s2) iterations are moved to

prologue and epilogue. The remaining s1s2d(d + 1) iterations will be required to be

executed using the list scheduling, because they are moved out of the nested loop.

Formula (A.3) still can be simply approved.

« For RSF, 2-dim MDFG, the overall schedule length =

length × (m – s2d)( Nn – s1d) + (prologue + epilogue) × d(s1m + s2  Nn –

s1s2 – 2ds1s2) + list × s1s2d(d + 1) + half((n mod N), N) × m (A.4)

For a nested loop with depth two contains m×n iterations, the inner loop will be

unfolded with factor N when we apply RSF to schedule it. After loop unfolding, we

will get m×  Nn enlarged iterations and m×(n mod N) iterations in the half portion,

as shown in Figure A.2(c). Then, these enlarged iterations are applied the retiming

technique with schedule vector (s1, s2) and retiming depth d. The overall schedule

length of the retimed iterations can be calculated using formula (A.3). Therefore,

formula (A.4) is directly approved.

« For RST, the overall schedule length =

length × ( Nm – s2d)(n – s1d) + (prologue + epilogue) × d(s1  Nm + s2n –

s1s2 – 2ds1s2) + list × s1s2d(d + 1) + half((m mod N), N) × n (A.5)

When we apply RST to schedule a nested loop with depth two contains m×n

iterations, the modified iteration space is shown in Figure A.2(d). Similar as above,

formula (A.5) still can be simply approved.

« For RSP, if wm + 1 ≤ w + n, the overall schedule length =

length × w( Nm)1(− – d)(m – Nd – N + 1 + ((m – 1) mod N)) + length × (w + n –

mw)( Nm – d) + (prologue + epilogue) × (wm + w + n – 2wNd) + list × dwN (d –

1) + 2w  Nm)1(− ×),(1

1
NihalfN

i∑ −

=
 + 2w ×),(mod)1(

1
NihalfNm

i∑ −

=
 + (w + n – mw) ×

half ((m mod N), N) (A.6)

 121

« For RSP, if wm + 1 > w + n, the overall schedule length =

length × w( wNwn)(− – d)( wn – Nd – N + 1 + (( wn – 1) mod N)) + length ×

(2w + ((mw – w – n) mod w)  wnwmw)(−−)( wNn – d) + length × (2(n mod w)

+ (w – ((mw – w – n) mod w))  wnwmw)(−−)(  Nwn – d) + (prologue +

epilogue) × (2w  wn – 2wNd + 2w + ((mw – w – n) mod w)  wnwmw)(−− + 2(n

mod w) + (w – ((mw – w – n) mod w))  wnwmw)(−−) + list × dwN (d – 1) +

2w  wNwn)(− ×),(1

1
NihalfN

i∑ −

=
 + 2w ×  ),(mod)1(

1
NihalfNwn

i∑ −

=
 + (2w + ((mw – w –

n) mod w)  wnwmw)(−−) × half (( wn mod N), N) + (2C + (w – ((mw – w – n)

mod w))  wnwmw)(−−) × half (( wn mod N), N) (A.7)

If we use RSP to schedule a nested loop, to calculate its overall schedule length

becomes much complex. As shown in Figure A.3, two modified iteration spaces will

be generated after parallelizing the inner loop, based on variables w, m, and n. After

parallelizing, we unfold the inner loop, and retime enlarged iterations using schedule

vector (1, 0). Note that if the inner loop doesn’t contain enough enlarged iterations for

retiming, we will simply use list scheduling to schedule it. Based on two modified

iteration spaces shown in Figure A.3, we conclude formulas (A.6) and (A.7) to

calculate the overall schedule length for a given two-dimensional MDFG after

applying RSP.

i

j
(1, n)

(1, 1) (m, 1)

(m, n)

i

j

(w+1, 1)

(wm+1, m)

(w+n, 1)

(wm+n, m)

i

j

(w+1, 1) (w+n, 1)

(wm+1, m) (wm+n, m)

(a) (b) (c)

Figure A.3 Iteration spaces of a loop with depth two. (a) Original,
(b)(c) applying RSP.

 122

Appendix B. The Analytic Model for RSOR and RSER

In this appendix we introduce the extended analytic model to calculate the

overall schedule length and the number of operand reutilizations of a retimed one or

two-dimensional MDFG for RSOR and RSER. Nevertheless, it also can be easily

extended to cover nested loop with depths greater than two. Table B.1, the same as

Table 6.6, lists variables used in the analytic model. After applying different methods

to schedule the given MDFG, the following formulas are defined to calculate their

overall schedule length. Note that three scheduling results can be derived by RSOR

and RSER, which applies different variable partition mechanisms proposed in RSVR,

RSF, and RST. In the following, we use RSOR(RSVR) to represent using RSOR with

variable partition mechanism proposed in RSVR to schedule the given loop. The

variable partition mechanism proposed in RST is only available for multi-dimensional

MDFGs. Furthermore, formulas defined for RSOR(RSVR) are also suitable for

method proposed in Kim et al. [30].

« For RSOR(RSVR), 1-dim MDFG, the overall schedule length =

prologue + epilogue + length × (m – d) (B.1)

« For RSOR(RSF), 1-dim MDFG, the overall schedule length =

prologue + epilogue + length × ( Nm – d) + half((m mod N), N) (B.2)

For a loop with depth one containing m iterations, Figure B.1 shows iteration

spaces before and after applying methods RSOR(RSVR) and RSOR(RSF). Figure B.1

is actually the same as Figure A.1. Thus, formulas (B.1) and (B.2) are equivalent to

formulas (A.1) and (A.2) and can be directly approved as described in appendix A.

 123

« For RSER(RSVR), 1-dim MDFG, the overall schedule length =

exp1 + exe1 + prologue + epilogue + length × (m – exd1 – d) (B.3)

« For RSER(RSF), 1-dim MDFG, the overall schedule length =

exp1 + exe1 + prologue + epilogue + length × ( Nm – exd1 – d) + half((m mod

N), N) (B.4)

When we use RSER(RSVR) to schedule a loop with depth one containing m

iterations, the retiming technique will be applied twice to reconstruct the given MDFG

and compact the initial scheduling result sequentially. As shown in Figure B.2(a), after

reconstructing the MDFG, exd1 iterations are moved into the exp1 and

Variable Definition

N Number of memory modules

m
Loop bound of the outer loop for a two-dimensional nested loop
Loop bound for an one-dimensional loop

n Loop bound of the inner loop for a two-dimensional nested loop

(s1, s2) Schedule vector selected for retiming during instruction scheduling

list Schedule length of an iteration in the repetitive pattern produced by list
scheduling method

length Schedule length of an iteration in the repetitive pattern

prologue Schedule length of the prologue generated during instruction scheduling

eplogue Schedule length of the prologue generated during instruction scheduling

d Retiming depth obtained during instruction scheduling

half (k, N) Schedule length of k original iterations under N memory modules

exp1 Schedule length of the prologue generated during MDFG reconstructing
after first retiming

exe1 Schedule length of the epilogue generated during MDFG reconstructing
after first retiming

exd1 Retiming depth obtained during MDFG reconstructing after first retiming

exp2 Schedule length of the prologue generated during MDFG reconstructing
after second retiming

exe2 Schedule length of the epilogue generated during MDFG reconstructing
after second retiming

exd2 Retiming depth obtained during MDFG reconstructing after second retiming

Table B.1. Definitions of variables used in the analytic model.

 124

Figure B.1. Iteration spaces of a loop with depth one. (a) Original, (b)
applying RSOR(RSVR), (c) applying RSOR(RSF).

m
iterations

d
iterations

m – d
iterations

m mod N
iterations

 Nm
enlarged iterations

d
enlarged iterations

 Nm – d
enlarged iterations

(a)
(b)

(c)

original iterations enlarged iterations half

prologue + epilogue repetitive pattern list

exp1 + exe1 exp2 + exe2

Figure B.2. Iteration spaces of a loop with depth one. (a) Applying RSER(RSVR),
(b) applying RSER(RSF).

(a)

(b)

exd1
iterations

m – exd1
iterations

d
iterations

m – exd1 – d
iterations

m mod N
iterations

 Nm
enlarged
iterations

exd1
enlarged
iterations

 Nm – exd1
enlarged
iterations

d
enlarged
iterations

 Nm – exd1 – d
enlarged
iterations

 125

exe1 portions. The remaining m–exd1 iterations will be further retimed with retiming

depth d, and their overall schedule length can be calculated using above formula (B.1).

On the other hand, to schedule a loop with depth one using RSER(RSF), the first step

is to move (m mod N) iterations to the half portion and unfold the given MDFG. Other

steps are actually the same as using RSER(RSVR), and the modified iteration space

after RSER(RSF) is shown in Figure B.2(b). Therefore, formulas (B.3) and (B.4) can

be simply approved.

« For RSOR(RSVR), 2-dim MDFG, the overall schedule length =

(prologue + epilogue) × d(s1m + s2n – s1s2 – 2ds1s2) + length × (m – s2d)(n – s1d) +

list × s1s2d(d + 1) (B.5)

« For RSOR(RSF), 2-dim MDFG, the overall schedule length =

(prologue + epilogue) × d(s1m + s2  Nn – s1s2 – 2ds1s2) + length × (m –

s2d)( Nn – s1d) + list × s1s2d(d + 1) + half((n mod N), N) × m (B.6)

« For RSOR(RST), 2-dim MDFG, the overall schedule length =

(prologue + epilogue) × d(s1  Nm + s2n – s1s2 – 2ds1s2) + length × ( Nm –

s2d)(n – s1d) + list × s1s2d(d + 1) + half((m mod N), N) × n (B.7)

For a loop with depth one which contains m×n iterations, Figure B.3 shows

iteration spaces before and after applying methods RSOR(RSVR), RSOR(RSF), and

RSOR(RST). Figure B.3 is actually the same as Figure A.2. Thus, formulas (B.5)~

(B.7) are equivalent to formulas (A.3)~(A.5) and can be directly approved as

described in appendix A.

« For RSER (RSVR), 2-dim MDFG, retiming base (0, 1) → (1, 0), the overall

schedule length =

(exp1 + exe1) × m + (exp2 + exe2) × (n – exd1) + (prologue + epilogue) × d(s1(m –

exd2) + s2(n – exd1) – s1s2 – 2ds1s2) + length × (m – exd2 – s2d)(n – exd1 – s1d) +

list × s1s2d(d + 1) (B.8)

 126

For a nested loop with depth two which contains m×n iterations, when we use

RSER(RSVR) to schedule it, the retiming technique is applied at most twice during

MDFG reconstructing with specific retiming bases. At first, we assume the MDFG is

retimed twice when it is reconstructed with retiming bases (0, 1) and (1, 0)

sequentially. As shown in Figure B.4(a), m×exd1 iterations are moved into the exp1

and exe1 portion, and the exp2 and exe2 portion contains (n–exd1)×exd2 iterations.

Then, (m–exd2)×(m–exd1) iterations, represented by the reconstructed MDFG, will be

further retimed with schedule vector (s1, s2), and their overall schedule length can be

calculated using formula (B.5). Hence, formula (B.8) is directly approved. When the

Figure B.3. Iteration spaces of a loop with depth two. (a) Original, (b) applying
RSOR(RSVR), (c) applying RSOR(RSF), (d) applying RSOR(RST).

(a) m iterations

n iterations n – s1d
iterations

m – s2d iterations
(b)

(c)

(d)

m enlarged iterations

 Nn
enlarged
iterations

n mod N
iterations  Nn – s1d

enlarged
iterations

m – s2d enlarged iterations

n – s1d
enlarged
iterations

 Nm – s2d enlarged iterations

n
enlarged
iterations

 Nm enlarged iterations

n mod N iterations

 127

given MDFG is retimed only once using retiming base (0, 1), formula (B.8) is also

available if variables exp2, exe2, and exd2 are set to zero.

« For RSER (RSVR), 2-dim MDFG, retiming base (1, 0) → (0, 1), the overall

schedule length =

(exp1 + exe1) × n + (exp2 + exe2) × (m – exd1) + (prologue + epilogue) × d(s1(m –

exd1) + s2(n – exd2) – s1s2 – 2ds1s2) + length × (m – exd1 – s2d)(n – exd2 – s1d) +

list × s1s2d(d + 1) (B.9)

When we apply RSER(RSVR) to schedule a nested loop with depth two contains

m×n iterations, Figure B.4(b) shows the modified iteration space if the MDFG is

retimed twice with retiming bases (1, 0) and (0, 1) sequentially during MDFG

reconstruction. In fact, these steps are very similar as those of Figure B.4(a), so

formula (B.9) can be easily approved according to descriptions above. When the

given MDFG is retimed only once using retiming base (1, 0), formula (B.8) is also

available if variables exp2, exe2, and exd2 are set to zero.

Figure B.4. Iteration spaces of a loop with depth two. (a) Applying RSER(RSVR),
formula (B.8), (b) applying RSER(RSVR), formula (B.9).

(a)

(b)

m iterations

n – exd1
iterations

exd1
iterations n – exd1

iterations

exd2 iterations

m – exd2 iterations
n – exd1 – s1d

iterations
m – exd2 – s2d

iterations

n
iterations

exd1 iterations
m – exd1 iterations

n – exd2 – s1d
iterations

m – exd1 – s2d
iterations m – exd1 iterations

n – exd2 iterations

exd2
iterations

 128

« For RSER (RSF), 2-dim MDFG, retiming base (0, 1) → (1, 0), the overall

schedule length =

(exp1 + exe1) × m + (exp2 + exe2) × ( Nn – exd1) + (prologue + epilogue) ×

d(s1(m – exd2) + s2( Nn – exd1) – s1s2 – 2ds1s2) + length × (m – exd2 –

s2d)( Nn – exd1 – s1d) + list × s1s2d(d + 1) + half((n mod N), N) × m (B.10)

« For RSER (RSF), 2-dim MDFG, retiming base (1, 0) → (0, 1), the overall

schedule length =

(exp1 + exe1) ×  Nn + (exp2 + exe2) × (m – exd1) + (prologue + epilogue) ×

d(s1(m – exd1) + s2( Nn – exd2) – s1s2 – 2ds1s2) + length × (m – exd1 –

s2d)( Nn – exd2 – s1d) + list × s1s2d(d + 1) + half((n mod N), N) × m (B.11)

For a two-dimensional MDFG scheduled using RSER(RSF), Figure B.5 shows

two modified iteration spaces which correspond to difference sequences of applied

retiming bases during MDFG reconstruction. From this figure, after moving m×(n

mod N) iterations into half portion and unfolding the MDFG, other steps are similar as

those of Figure B.4. Therefore, these two formulas can be easily approved according

to formulas (B.8) and (B.9).

« For RSER (RST), 2-dim MDFG, retiming base (0, 1) → (1, 0), the overall

schedule length =

(exp1 + exe1) ×  Nm + (exp2 + exe2) × (n – exd1) + (prologue + epilogue) ×

d(s1( Nm – exd2) + s2(n – exd1) – s1s2 – 2ds1s2) + length × ( Nm – exd2 –

s2d)(n – exd1 – s1d) + list × s1s2d(d + 1) + half((m mod N), N) × n (B.12)

« For RSER (RST), 2-dim MDFG, retiming base (1, 0) → (0, 1), the overall

schedule length =

(exp1 + exe1) × n + (exp2 + exe2) × ( Nm – exd1) + (prologue + epilogue) ×

d(s1( Nm – exd1) + s2(n – exd2) – s1s2 – 2ds1s2) + length × ( Nm – exd1 –

s2d)(n – exd2 – s1d) + list × s1s2d(d + 1) + half((m mod N), N) × n (B.13)

 129

For a two-dimensional MDFG scheduled using RSER(RSF), Figure B.6 shows

two modified iteration spaces which correspond to difference sequences of applied

retiming bases during MDFG reconstruction. From this figure, after moving n×(m

mod N) iterations into half portion and unfolding the MDFG, other steps are similar as

those of Figure B.4. Therefore, these two formulas can be easily approved according

to formulas (B.8) and (B.9).

m enlarged iterations

 Nn
enlarged
iterations

n mod N
iterations

 Nn – exd1 – s1d
enlarged
iterations

m – exd2 – s2d
enlarged
iterations

m enlarged iterations
exd1

enlarged
iterations

 Nn – exd1
enlarged
iterations

exd2 enlarged iterations

m – exd2 enlarged iterations

(a)

(b)

m enlarged iterations

 Nn
enlarged
iterations

n mod N
iterations

exd1 enlarged iterations

 Nn enlarged iterations

m – exd1 enlarged iterations

 Nn – exd2
enlarged
iterations

exd2
enlarged
iterations

 Nn – exd2 – s1d
enlarged
iterations

m – exd1 – s2d
enlarged
iterations

Figure B.5. Iteration spaces of a loop with depth two. (a) Applying RSER(RSF),
formula (B.10), (b) applying RSER(RSF), formula (B.11).

 130

Figure B.6. Iteration spaces of a loop with depth two. (a) Applying RSER(RST),
formula (B.12), (b) applying RSER(RST), formula (B.13).

(a)

(b)

n – exd1 – s1d
enlarged
iterations

 Nm – exd2 – s2d
enlarged
iterations

 Nm enlarged iterations
exd1

enlarged
iterations

n – exd1
enlarged
iterations

exd2 enlarged iterations

 Nm – exd2 enlarged iterations

n
enlarged
iterations

 Nm enlarged iterations

n mod N iterations

n – exd2 – s1d
enlarged iterations

 Nm – exd1 – s2d
enlarged
iterations

n
enlarged
iterations

 Nm enlarged iterations

n mod N iterations
exd1 enlarged iterations

n enlarged iterations

 Nm – exd1 enlarged iterations

n – exd2
enlarged
iterations

exd2
enlarged
iterations

