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學生：李宜軒                                  指導教授：陳  正 教授 
 

國立交通大學資訊工程學系博士班 
 

摘要 

隨著多媒體通訊日益劇增的需求，陸續發展出許多關於科學計算及數位訊號

處理的方法。這些應用程式以規則相依迴圈為主，計算複雜度很高，大部分時間

都是執行 ALU運算指令。數位訊號處理器 (digital signal processor, DSP) 是一種

為特殊目的設計的微處理器，通常包含多個獨立的資料記憶體模組 (multiple data 

memory banks)，並採用 heterogeneous register sets方式；而要有效利用這些架構

特性，顯然需要充分的編譯技術支援。為了提高數位訊號處理應用程式的執行效

能，在編譯過程中必須開發迴圈之間潛在的平行度，並盡量減少額外指令 (spill 

codes) 的產生。同時，由於攜帶型電子裝置的逐漸普及，功率消耗也成為另一

個重要的設計議題；若是能從高階合成 (high-level synthesis) 的觀點來考慮功率

消耗，通常能以較低的代價 (cost)，來有效降低功率消耗。 

在本論文中我們將針對包含多重資料記憶體模組的數位訊號處理器以及規

則相依迴圈，設計有效的指令排程法。對於這種系統架構，完整的編譯過程必須

涵蓋多個步驟，由於這些步驟彼此之間有複雜的資料相依性，同時考慮多個步驟

將有助於得到較佳的排程結果。本論文主要分為三個研究議題，首先我們設計三

個簡單的變數分割機制 (variable partition mechanism)，以及三個對應的指令排程

法 rotation scheduling with unfolding (RSF)、rotation scheduling with tiling (RST) 和

rotation scheduling with parallelization (RSP)，不考慮暫存器 (accumulator/register) 

的配置。第二個研究議題我們先針對Motorola DSP56000這顆數位訊號處理器的

架構特性，提出指令排程法 rotation scheduling with spill codes predicting (RSSP)，

涵蓋編譯過程的所有步驟。RSSP的特色是在實際排程指令之前事先預測暫存器
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滿溢 (accumulator spill) 發生的時機，並產生對應的 spill codes。接著我們提出指

令排程法 rotation scheduling with spill codes avoiding (RSSA)，它是 RSSP的延伸，

可以適用於多種特性類似的架構。RSSA同時將縮短排程長度和減少 spill codes

列為排程目標，也使用其他的機制解決 accumulator spill，不再預測其發生的時

機。除此之外，我們定義一個虛擬架構模組 (hypothetical machine model)，配合

RSSA深入探討不同系統資源數量改變時對排程結果造成的影響。最後在第三個

研究議題中我們進一步延伸 RSSA，利用運算元分享 (operand sharing) 的方式，

提出二個低功耗指令排程法 rotation scheduling with operand reutilization (RSOR) 

和 rotation scheduling with exploiting operand reutilization (RSER)。RSOR只在單

一迴圈元素 (iteration) 內令運算元重複使用。RSER 則是設計一個迴圈轉換 

(loop transformation) 機制，尋找在不同迴圈元素內指令共用運算元的情形，以增

加運算元重複使用的機會。 

在描述所有提出方法的特性之後，我們選擇數個數位訊號處理的應用程式來

評估執行效能，分別使用排程長度、指令個數以及運算元重複使用次數等三個標

準。另外我們也定義數學模組，用來計算迴圈轉換之後整體排程長度和運算元重

複使用次數。初步評估，所有提出的指令排程法都能達到預期的效能。 
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Abstract 

As the multimedia and communication flourishing, many scientific and digital 

signal processing applications are developed. These applications are iterative and 

data-dominated, which are usually represented by uniform loops and characterized by 

a predominance of arithmetic instructions. A digital signal processor (DSP) is a 

special-purpose microprocessor designed to achieve high performance in digital 

signal processing applications, and commonly employs architecture with irregular 

data paths, multiple data memory banks, and heterogeneous register sets. Sufficient 

compiler support is apparently important to harvest benefits of this architecture. To 

optimize the throughput of such digital signal processing applications, we need to 

explore the embedded parallelism of a loop and generate fewer spill codes. As the 

portable system market grows rapidly, power becomes another critical constraint in 

the design specification. If we consider low power design at high-level synthesis, we 

can obtain much more effective power reduction with less cost and effort. 

In this thesis we will focus on designing code generation methods to schedule 

uniform loops on DSP architecture with multiple data memory banks. The complete 

code generation process for this architecture must include several phases, and to 

consider more phases at the same time may lead more effective results due to their 

extremely data dependent. Our research contains three main issues. For this first issue 
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we design three efficient variable partition mechanisms and three corresponded 

methods rotation scheduling with unfolding (RSF), rotation scheduling with tiling 

(RST), and rotation scheduling with parallelization (RSP) without considering the 

accumulator/register assignment. In the second issue we first present method rotation 

scheduling with spill codes predicting (RSSP) focus on Motorola DSP5600 covering 

all code generation phases. The main feature of RSSP is to predict the occurrence of 

accumulator spills, and generate corresponding spill codes in advance. After that, we 

generalize RSSP to rotation scheduling with spill codes avoiding (RSSA), which can 

suit various DSPs with similar architectural features. The scheduling goal of RSSA is 

to achieve both shorter schedule length and fewer spill codes. Meanwhile, new 

mechanisms are designed for resolving accumulator spills instead of predicting their 

occurrences. Besides, we also evaluate RSSA on a defined hypothetical machine 

model, and deep study the influence of differing number of resources on the 

scheduling result. Finally, two energy-efficient code generation methods rotation 

scheduling with operand reutilization (RSOR) and rotation scheduling with exploiting 

operand reutilization (RSER) are proposed in our third issue. These two methods are 

extended from RSSA to further consider the operand sharing technique. In RSOR 

only the potential operand sharing within an original iteration is considered. In RSER 

we design a novel loop transformation mechanism to reconstruct the given loop, to 

find instructions with common operands hidden in different original iterations. 

In addition to present detailed principles of all proposed methods, we select some 

MDFGs to evaluate their performances based on metrics schedule length, instruction 

count, and the number of operand reutilizations. We also design analytic models for 

every proposed method, which can calculate the overall scheduling length and the 

number of operand reutilizations of a reconstructed loop. Preliminary evaluations 

show that all proposed methods can achieve desirable results. 
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Chapter1. Introduction 

1.1 The Practicability of DSP 

Most scientific and digital signal processing applications, such as fluid dynamics, 

weather forecasting, image processing, video compression, and speech recognition are 

iterative and usually represented by uniform nested loops [1-5]. All these applications 

belong to data-dominated category, which are characterized by a predominance of 

arithmetic instructions and an absence of control-flow within the data path [5]. A 

digital signal processor (DSP) is a special-purpose microprocessor that is designed 

and produced to better match DSP applications [3, 6-8]. Unlike general-purpose 

microprocessors, the DSP design is based on the Harvard architecture, and often 

includes several independent function units those are capable of operating in parallel 

[3, 7-8]. In order to meet ever-increasing demands for higher performance and 

stringent power requirement, such DSPs commonly employ architectures with 

irregular data paths, heterogeneous register sets, and multiple data memory banks [9]. 

For the data path, this architecture has multiple small register files dedicated to 

different sets of function unit instead of a large number of centralized homogeneous 

registers. In addition, because multiple data memory banks are connected through 

independent data buses, variables can be partitioned into separate banks and accessed 

simultaneously. These architectural features are supported by some embedded DSP 

families, such as Motorola DSP56000 [10], Analog Device ADSP2100 [11], NEC 

uPD77016 [12], and Texas Instruments TMS320C6000 [13]. 

Although parallel access, which is enabled by multi-bank memory, is useful to 

explore the potential of higher memory bandwidth, it gives rise to the problem of how 

to partition the variables into multiple data memory banks [6, 9, 14-20]. Similarly, 

using heterogeneous register sets can decrease the architectural complexity but 
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increase the difficulty of deciding which register set to use for a certain instruction [9, 

17, 21-23]. It is well known that compilation techniques for general-purpose 

microprocessor do not adapt well to the irregularities of DSP. Therefore, to harvest the 

benefits provided by DSPs with irregular architectural features, adequate compiler 

support is obviously essential [3, 8]. 

Many researches seek to design code generation methods for specific DSP 

architectures to fully use their features. The complete code generation process for 

DSP with multiple data memory banks must include five phases: intermediate 

representation, code compaction, instruction scheduling, memory bank assignment (or 

variable partition), and accumulator/register assignment [17]. These phases can be 

performed individually in various sequences because they are logically independent. 

Meanwhile, because they are extremely data dependent, considering more phases at 

the same time may lead more effective results. Since nested loops are the most time- 

critical section in such DSP applications, their execution time will dominate the entire 

computational performance. To optimize the execution rate of such applications we 

need to explore the embedded parallelism of a loop. Moreover, due to strict resource 

constraints of the DSP architecture, accumulator/register spills will supposedly occur 

very often compared to general-purpose microprocessor. If more spill codes are added, 

not only the schedule length may be lengthened, but also consumes more power to 

execute those additional instructions. That is, in addition to increase the instruction- 

level parallelism, how to avoid generating too many spill codes is also an important 

issue of designing the code generation method for DSP architecture. 

 

1.2 The Power Constraint of DSP 

Until 1980’s, throughput and latency are two important factors used to determine 

the quality of an embedded system. In 1990’s, as the portable system such as cellular 
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phone or portable electronic devices grows rapidly, power consumption becomes 

another important constraint in the design specification [24]. Because low power is 

now one of the major concerns in system design, this has forced to analyze and 

optimize power in all components of a system [25]. Most research to date on power 

minimization in DSPs is focused on hardware solution. However, if we consider low 

power design at higher levels of abstractions, we can apply various transformation 

techniques to system design with wider view and obtain much more effective power 

reduction with less cost and effort [24, 26]. 

High-level synthesis techniques for low power have mostly targeted data- 

dominated designs [5]. In a data-dominated application specific circuit such as DSP, it 

is the power consumed in the data path, including function units, registers, and 

interconnections, that accounts for a large fraction of the overall power budget [24]. 

Power consumption is mainly considered in the function units, among units that 

compose a data path [4, 27]. As shown in [4], authors present that function units 

account for over 80% of the total data path power, if the data path contains n function 

units, 4n registers, and 8n multiplexers. Authors of [24, 28] further show that if the 

overall system is divided into components including data path, clock, and controller, 

function units will contribute about 40%~60% power to the overall system. Therefore, 

if we can reduce power consumed by function units, the entire power consumption of 

the system can be reasonably decreased. 

In most cases, the power consumed by a resource mainly depends on the input 

switching activity induced by the data being stored or processed [29]. For a function 

unit, the power consumption will be reduced by reducing the switching activity 

involving its input signals [28]. Many researches on power minimization in high-level 

synthesis attempt to reduce the input activity of function units. Operand sharing is 

one of these techniques, which binds one identical function unit to more than two 
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instructions containing at least one common operand, and any instruction without a 

common operand does not intervene between these instructions [28]. As presented in 

[27], the average power consumption of a multiplication (or an addition) when one of 

its operands remains unchanged with respect to the previous instruction is 35% (or 

25%) less than when both operands change. Therefore, to increase the potential for a 

function unit to reuse an operand, the average power consumption of the function unit 

is dramatically lower. Operand sharing also assists in reducing the number of memory 

accesses, which tends to prevent the limited number of memory ports from increasing 

system latency. Furthermore, as shown in [28], because the power consumed by 

components other than function units are little increase or no increase at all after 

applying operand sharing, operand sharing is obviously an appropriate technique in 

low power design. 

 

1.3 Our Studies in this Thesis 

Many DSP applications usually contain repetitive groups of operations, which 

are easily represented by uniform loops and modeled by multi-dimensional data flow 

graph (MDFG) [2-3]. From above descriptions, clearly that the code generation plays 

an important role to harvest benefits provided by irregular DSP architectures. With 

appropriate instruction ordering sequences, we can obtain scheduling results with 

shorter schedule length, smaller codes size, or less power consumption. In this thesis 

we focus on designing code generation methods to schedule uniform loops on DSP 

with multiple data memory banks. Our three study issues are presented as follows. 

 

1.3.1 Variable Partition Mechanisms 

For the architecture with multiple data memory banks, the performance gain 

strongly depends on variable partition and instruction scheduling techniques. Hence, 
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our first issue is about variable partition. At first we analyze a related method rotation 

scheduling with variable repartitioning (RSVR) [30] in some detail. We claim that 

although RSVR is effective, it uses complex mechanisms to partition variables 

initially and repartition them during instruction scheduling. Note that a variable in 

MDFG indicates an array not just a single scalar. Therefore, we present three efficient 

variable partition mechanisms directly according to their array indices. After 

transforming the given MDFG by appropriate techniques such as unfolding [31], tiling 

[32], and unimodular transformations [33], we apply the multi-dimensional rotation 

scheduling [34-35] to schedule instructions. Three code generation methods named 

rotation scheduling with unfolding (RSF), rotation scheduling with tiling (RST), and 

rotation scheduling with parallelization (RSP) are proposed corresponded to different 

variable partition mechanisms [14, 36]. Without repartitioning variables during 

instruction scheduling, our three methods are obviously efficient compared to RSVR. 

Moreover, we also define an analytic model to calculate the overall schedule length of 

an entire retimed loop. Several MDFGs represented DSP applications are selected for 

performance evaluations. From evaluation results, our methods RSF, RST, and RSP 

can achieve effective results compared to RSVR, for both a single repetitive iteration 

and the entire retimed loop. Moreover, the enlarged graph gives a more global view of 

the data dependencies, which is beneficial for exploring the instruction-level 

parallelism between different iterations. As for the effectiveness among methods RSF, 

RST, and RSP, the answer will depend on the topology and loop-carried dependencies 

of the given nested loop. We also list comparisons among three proposed methods and 

suggest which method is suitable based on loop-carried dependencies the given 

MDFG has. Variable partition mechanisms proposed in RSVR and our three methods 

will be applied in subsequent several studies. 
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1.3.2 Code Generation Methods for DSP with Multiple Data Memory Banks 

In section 1.1 we have introduced that the complete code generation process for 

DSP with multiple data memory banks must include five phases. RSF, RST, and RSP 

have covered all except the accumulator/register assignment phase. Besides, above 

methods directly use data memory to store and reload operands, so many unnecessary 

memory accesses may be generated to degrade the performance. Since considering 

more phases in a code generation method may lead more effective results, we will 

design a new method to include accumulator/register assignment and further improve 

overall performance. The proposed method rotation scheduling with spill codes 

predicting (RSSP) is focus on Motorola DSP56000 [37]. Its main feature is to predict 

the occurrence of accumulator/register spills in advance, and schedule corresponding 

spill codes in parallel with other instructions. In addition, we also define a translated 

data acyclic graph (TDAG) constructed from the given MDFG, in order to remove 

possible unnecessary memory accesses. We still use selected MDFGs and the analytic 

model proposed above to evaluate RSSP. Apparently that RSSP outperforms all of 

RSF, RST, and RSP, because RSSP schedules instructions based on the TDAG which 

contains less instructions than the MDFG. Comparing to other related studies, RSSP 

still has advantages of shorter schedule length, for both a single repetitive iteration 

and the entire retimed loop. 

RSSP looks quite effective and efficient, but it is not scalable and specifically 

designed for Motorola DSP56000. Hence, we will generalize it to suit various DSPs 

with similar architectural features, and propose another method rotation scheduling 

with spill codes avoiding (RSSA) [38]. The scheduling goal of RSSA is to achieve 

shorter schedule length and fewer spill codes. In RSSA we design another mechanism 

to resolve accumulator spills instead of to predict their occurrences, because the 

predicting results become inaccurate easily when the target architecture is no longer 
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specific. Moreover, we also integrate these mechanisms into instruction scheduling 

phase to make RSSA more efficient. We evaluate RSSA according to two metrics 

schedule length and instruction count at the same time. Suppose the target architecture 

equals to the Motorola DSP56000, our RSSA usually achieves the shortest schedule 

length and considerably fewer spill codes compared to other related studies. The main 

reason is that RSSA can fully utilize system resources and insert spill codes only 

when required. On the other hand, in addition to design effective code generation 

method, increasing the number of resources is essentially a more direct way to 

achieve effective scheduling results. Hence, we also define a parameterized machine 

model to simulate architectures with different number of resources. After evaluating 

MDFGs using RSSA on this hypothetical machine model, the influence of differing 

number of resources on the scheduling results is further deep studied in this thesis. 

Finally, we describe that with minor modifications, our hypothetical machine model 

and RSSA is capable for applying to DSP families such as Motorola DSP56000 [10], 

Analog Device ADSP2100 [11], NEC uPD77016 [12], and Texas Instruments 

TMS320C6000 [13]. This indicates that the proposed machine model and code 

generation method have enough flexibility, which are suitable to DSPs with various 

architectural features. 

 

1.3.3 Energy-efficient Code Generation Methods 

As mentioned in section 1.2, low power consumption becomes another important 

constraint in the DSP design specification in addition to shorter schedule length and 

less spill codes. To increase the potential for a function unit to reuse an operand is an 

appropriate way, because the power consumed by function units will be dramatically 

lower. Therefore, in the third issue of this thesis, we will propose energy-efficient 

code generation methods based on the operand sharing technique. At first we analyze 
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RSSA in view of low power consumption. Then, rotation scheduling with operand 

reutilization (RSOR) is proposed by integrating the operand sharing technique into 

RSSA, where the original features of RSSA are all retained. In RSOR we add a 

mechanism to group ALU instructions sharing the same operand into a sharing set. 

Then, the same scheduling steps used in RSSA are applied, and instructions belong to 

a sharing set are restrictively scheduled at consecutive time steps to reuse operands. 

According to preliminary evaluations, because we restrict the execution sequence of 

some ALU instructions to achieve operand reusing, schedules generated by RSOR 

may be slightly longer and with more instruction count compared to RSSA. 

Unfortunately, common operands are not encountered very frequently in real designs, 

resulting in few opportunities of operand sharing, and hence insignificant power 

reduction [29]. Nevertheless, instructions with common operands may be hidden 

inside the original MDFG, which can be generated using some loop transformation 

techniques. Thus, we proposed another method rotation scheduling with exploiting 

operand reutilization (RSER), which is extended from RSOR and aimed to further 

explore potential operand sharing between different iterations. In RSER we define an 

exploitable sharing set to group load variable instructions reference the same array 

element in different iterations. An MDFG reconstruction algorithm is also designed 

based on the retiming [39] technique, to concentrate instructions in a same exploitable 

sharing set into the same iteration. Then, RSOR is applied to schedule the 

reconstructed MDFG, so operand sharing within an iteration and existing in different 

iterations can be both explored in RSER. Metrics including schedule length, 

instruction count, the number of operands been reused, and information provided 

from [20] are used to evaluate RSOR and RSER. Besides, we extend the analytic 

model defined before, to calculate the overall schedule length and the number of 

operands been reused for the entire retimed loop. From evaluation results, we find that 
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both RSOR and RSER can successfully explore operand sharing within an iteration. 

Using RSER further can achieve more number of operands been reused, which 

indicates that exploiting the operand sharing in different iterations is beneficial for 

energy-efficient instruction scheduling. On the other hand, because some ALU 

instructions are restrictively scheduled at consecutive time steps to achieve operand 

reusing, using RSOR and RSER may generate longer schedules for a single repetitive 

iteration. However, the overall schedule lengths obtained by RSOR and RSER are still 

better compared to related studies, because they can effectively explore the 

instruction-level parallelism between successive iterations. As for the instruction 

count, the proposed two methods require quite fewer spill codes for a repetitive 

iteration, but RSER will generate considerable prologue and epilogue codes. That is, 

if the instruction count is taken as the evaluation metric, RSER will perform poorly 

compared to related methods. 

 

1.4 Thesis Organization 

The remainder of this thesis is organized as follows. Chapter 2 surveys the 

fundamental background and related work. In chapter 3 we focus on variable partition 

mechanisms, and introduce three proposed methods RSF, RST, and RSP. Chapter 4 

contains an overview of the Motorola DSP56000 architecture, and principles and 

algorithms of proposed method RSSP are also included. In chapter 5, we present our 

hypothetical machine model and the general method RSSA, and describe their 

flexibilities to apply to other real DSP families. Two energy-efficient code generation 

methods RSOR and RSER extended from RSSA are introduced in chapter 6. Finally, 

in chapter 7 we list conclusions and plans for future work. 
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Chapter 2. Fundamental Background 

In this chapter, we first model the given problem and survey some fundamentals. 

Then, we introduce two basic techniques retiming and unimodular transformations 

widely used in instruction scheduling. After that, related work of our studies in this 

thesis is presented. 

 

2.1 Program Model [37-38] 

Because most scientific and digital signal processing applications usually contain 

repetitive groups of operations, they can be easily represented by uniform nested 

loops. A multi-dimensional data flow graph (MDFG) is commonly used to model 

uniform nested loops. We define the MDFG to be the same as in [37-38], which is 

slightly different from previous studies [14, 30]. 

Definition 2.1 A MDFG G = (V, E, X, d, P) is a node-weighted and edge-weighted 

direct graph, where V is the set of computation nodes; E ⊆ V × V is the edge set that 

defines the precedence relations; X(e) represents the variable accessed by an edge e; 

d(e) is a function from E to Zn representing the multi-dimensional delays between two 

nodes, where n is the number of dimensions; and P(v) represents the node type (see 

Figure 2.1(c)). 

Figure 2.1 shows an example of a nested loop and its corresponding MDFG. 

Nodes in the MDFG include ALU instructions (multiplications and additions), 

memory accesses (load/store variables and load constants), and register transfers. 

Note that an edge, e, that does not involve a memory access does not have a label X(e). 

An MDFG is realizable if there exists a schedule vector s, such that s•d ≥ 0, where d 

are loop-carried dependencies. A schedule vector s is the normal vector for a set of 

parallel equitemporal hyperplanes that define a sequence of execution [40]. An 
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iteration is equivalent to the execution of each node in V exactly once. The period 

during which all nodes in an iteration are executed, according to data dependencies 

and without resource constraints, is called a cycle period. It is also the maximum 

execution time among paths that have no delay, which will dominate the entire 

execution time of a nested loop. Note that many MDFGs can represent a single DSP 

application, depending on its representation by nested loops. 

 

2.2 Retiming Technique [39] 

Retiming is a popular technique that reassigns delays to enhance execution 

performance for a circuit. For a loop, retiming is a loop transformation technique that 

can be used to increase the throughput and improve the utilization of resources, by 

introducing partial overlap between the execution time of successive iterations. The 

Figure 2.1. The MDFG example. (a) Nested loop in C code, (b) corresponding 
MDFG, (c) node types. 

for i = 1 to m 
for j = 1 to n 

D[i, j] = B[i-1, j] × C[i-1, j-2] ; 
A[i, j] = D[i, j] × 0.5 ; 
B[i, j] = A[i, j] + 1 ; 
C[i, j] = A[i, j-1] + 2 ; 

  end 
end 

(a) 

(b) 

P(v) Meaning 

M Multiplication 

A Addition 

L Load variable 

S Store variable 

T Register transfer 

C Load constant 

(c) 
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retiming vector r(u), a function from V to Zn, represents the offset between the original 

iteration and that after retiming. A new MDFG Gr = (V, E, X, dr, P) is created after 

applying r, such that each iteration still has one execution of each node. Delay vectors 

will be changed accordingly to preserve the original data dependencies. Definitions 

and properties of retiming are shown below. 

Definition 2.2 Given any MDFG G = (V, E, X, d, P), retiming function r, and retimed 

MDFG Gr = (V, E, X, dr, P), we define the retimed delay vector for every edge, path, 

and cycle, respectively, by: 

(a) dr(e) = d(e) + r(u) – r(v) for every edge u →e v, u, v ∈ V and e ∈ E. 

(b) dr(p) = d(p) + r(u) – r(v) for every path u →p v, u, v ∈ V and p ∈ G. 

(c) dr(l) = d(l) for any cycle l ∈ G. 

Based on above definition, MDFGs G and Gr are logically equivalent, and the 

only difference between them is the delay vectors. Figure 2.2 shows an example of 

retiming technique. Figure 2.2(a) is the retimed MDFG of Figure 2.1(b), and Figure 

2.2(b)(c) list schedules before and after retiming respectively. A prologue is the 

Figure 2.2. Retiming example. (a) Retimed MDFG of Figure 2.1(a), (b) 
schedule before retiming, (c) schedule after retiming. 
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instruction set that must be executed to provide necessary data for the iterative 

process. An epilogue is the complementary set that will be executed to complete the 

process. If the nested loop contains sufficient iterations, the time required for prologue 

and epilogue are negligible. 

Because applying retiming technique will change delay vectors of a realizable 

MDFG G, we must guarantee the retimed MDFG Gr is still realizable. As mentioned 

in chapter 2.1, a realizable MDFG G must have a feasible schedule vector s. In [34], it 

indicates that if we retime MDFG G with a retiming base r orthogonal to s (s ⊥ r), the 

retimed MDFG Gr is definitely realizable. The feasible retiming base is not unique for 

a given MDFG, but in [34] it doesn’t propose how to select a best one. In our early 

study [41], we analyze the relationship between the selection of schedule vector and 

the change of iteration space in some detail. From analyzing results we find that the 

overall schedule length is strongly dependent on which feasible schedule vector been 

selected, especially for nested loops with depth greater than one. If an unsuitable 

schedule vector is used, the time required to execute prologue and epilogue will 

occupy considerable part of the overall schedule length. We take a nested loop with 

depth two as an example. Figure 2.3 shows two cases of modified iteration space after 

applying retiming technique using different retiming bases. In [41] we prove that the 

overall schedule length of case 1 is always shorter than or equal to that of case 2, 

Figure 2.3. (a) Original iteration space, (b)(c) changed iteration spaces. 

repetitive pattern prologue + epilogue list 

(s1, s2) 

(a) (c) 
m × n iterations case 1:  s = (1, 0) case 2:  s = (s1, s2) 

(b) 
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which implies that s = (1, 0) will be the best selection if it is feasible. Therefore, in 

[41] we propose a simple algorithm to select the best schedule vector for a given 

MDFG, which will achieve minimum overall schedule length after applying the 

retiming technique. We also list a formula to calculate the overall schedule length of a 

retimed nested loop. This formula will be used to evaluate code generation methods 

proposed in this thesis. 

 

2.3 Unimodular Transformations [33] 

Loop transformation is one of basic techniques for parallel compiler design. It 

changes the execution sequence of iterations to achieve higher degree of parallelism. 

Unimodular transformations technique unifies loop permutation, skewing, and 

reversal, and models them as elementary matrix transformations. All combinations of 

these loop transformations can simply be represented as products of the elementary 

transformation matrices. 

Although unimodular transformations technique is one of the most important 

techniques used to parallelize uniform nested loops, it doesn’t explain how to use its 

transformations. In [42] we propose a simple algorithm to parallelize the inner loop of 

a uniform nested loop with depth two. Note that the transformation matrix to 

parallelize a nested loop is not unique, and our algorithm can obtain one with 

minimum skew factor. For a given MDFG G, a new MDFG Gp is created after 

applying loop parallelization. G and Gp are still logically equivalent, and the only 

difference between them is the delay vectors, just like applying retiming technique. 

Some formulas are listed in [42] to calculate the overall schedule length of a 

parallelized nested loop with depth two. These formulas will be modified further to 

evaluate one of code generation method proposed in this thesis. 
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2.4 Related Work 

In this section we survey some related work of our studies. The content of this 

section is divided into four parts: retiming-based instruction scheduling methods, 

variable partition mechanisms, code generation methods for DSP architecture with 

multiple data memory banks, and energy-efficient code generation methods. Some 

related studies of each part are introduced in the following subsections. 

 

2.4.1 Retiming-based Instruction Scheduling Methods [34-35, 43] 

Since retiming technique is useful for generating compact schedules, many 

instruction scheduling methods are designed based on it to achieve shorter schedule 

length. Among them, rotation scheduling [43] and multi-dimensional rotation 

scheduling [34-35] are two effective methods used to schedule MDFG with one or 

more than one dimensions, respectively. Both these methods contain two main steps. 

First they simply generate an initial schedule using the list scheduling method under 

resource constraints. Then instructions scheduled at the first time step are moved to 

the prologue, and their copies originally resided in the next iteration are rescheduled 

without violating resource constraints and data dependencies. This step is usually 

called rotation phase. Corresponding to the given MDFG, the action of rotation is 

essentially equivalent to retime nodes scheduled at the first time step. For an one- 

dimensional MDFG nodes are always retimed with retiming vector r(u) = 1. As for 

multi-dimensional MDFG, it must select a feasible retiming base r as the retiming 

vector. After iteratively applying the rotation phase, a more compact schedule, also 

with higher throughput, can be obtained. Because these two instruction scheduling 

methods are really effective and efficient, in this thesis we choose them as the basis to 

design our own methods. 
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2.4.2 Variable Partition Mechanisms [15-16, 30] 

As mentioned in chapter 1, appropriately partition and allocate variables is 

facilitated to generate more compact schedule in DSP architecture with multiple data 

memory banks. If two variables may be accessed in parallel, they should be allocated 

to different data memory banks. Some researches focus on designing variable 

partition mechanisms which try to evenly distribute memory accesses and explore the 

potential of higher memory bandwidth. Authors of [15] construct an interference 

graph (IG) to represent the parallelism available in load instructions for every basic 

block, and then partition it to determine the allocation of global variables. Two 

different IG partition heuristics proposed in [15] are based on the same idea: variables 

will be given higher priority to be stored to different data memory banks if they may 

be accessed in parallel in a deeper loop. Strictly speaking this mechanism is not 

accurate enough, because the IG cannot exploit the potential parallelism of memory 

accesses that reference values produced in different iterations [16]. Therefore, authors 

of [16] propose another mechanism to recover this flaw by globally constructing the 

IG for entire functions, and use an integer linear programming approach instead of a 

heuristic to partition variables. 

Unlike above methods only focus on variable partition, rotation scheduling with 

variable repartitioning (RSVR) is designed to resolve both instruction scheduling and 

variable partition problems [30]. RSVR is modified from rotation scheduling, which 

considers multiple memory modules while generating a schedule. For a given MDFG, 

RSVR constructs a corresponding variable independence graph (VIG) to expose all 

parallel memory accesses. Basically the purpose of constructing VIG is similar as 

constructing IG in [15-16]. But in RSVR it uses more accurate information to assign 

edge weights of VIG, so it can achieve better variable partition results. After allocating 

variables, RSVR applies the same steps as rotation scheduling to schedule instructions. 
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Besides, when the schedule length cannot be improved in a rotation phase, RSVR will 

try to repartition variables to shorten the schedule length. In this thesis we will take 

variable partition as our first study issue. Detailed descriptions and our proposed 

mechanisms will be presented in chapter 3. 

 

2.4.3 Code Generation Methods for DSP with Multiple Data Memory Banks [9, 

17-23, 44] 

A complete code generation process for DSP with multiple data memory banks 

must include five phases: intermediate representation, code compaction, instruction 

scheduling, memory bank assignment (or variable partition), and accumulator/ 

register assignment [17]. These five phases can be performed in various sequences 

due to their logically independent, or be simultaneously considered because they are 

extreme data dependences. In previous subsection we have listed some methods focus 

on the variable partition phase. For heterogeneous register sets, authors of [21-23] 

present specific register allocation algorithms to fit their irregularity. In addition to 

RSVR introduced above, methods proposed in [18-19] also resolve both instruction 

scheduling and memory bank assignment problems without considering the limitation 

of accumulators/registers. Furthermore, methods [9, 17, 20, 44] contain all five phases, 

and all expect [44] select Motorola DSP56000 as the target architecture. We describe 

methods [9, 17] in some detail in the following. 

In the method proposed in [9], its main idea is applying the graph coloring 

approach to treat variable partition and accumulator/register assignment. For register/ 

accumulator assignment, authors of [9] specially decouple this phase into two steps. 

They first classify physical registers into a set of register classes, and allocate each 

temporary variable to one of the register classes. Next, the graph coloring algorithm is 

applied to assign each temporary variable a physical register within the register class 
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previously allocated to it. After generating compacted codes, a weighted undirected 

graph is constructed based on the sequence of variables referenced in these codes. 

Then, a maximum spanning tree (MST) of this graph is identified, and variables are 

assigned also using the graph coloring algorithm. Moreover, authors of this method 

also propose a heuristic to resolve graph coloring problem. We think the method 

proposed in [9] is efficient. But it does not present the mechanism to determine and 

resolve accumulator/register spills, which is definitely required. 

The method proposed in [17] is an example that simultaneously considers two 

code generation phases. The Motorola DSP56000 has heterogeneous register sets, so 

variables referenced from each data memory bank must be loaded in a restricted set of 

locations. Thus, authors of [17] claim that variable partition and accumulator/register 

assignment should be performed simultaneously to maximally explore available 

parallelism among move operations. After generating compacted codes, an undirected 

graph is constructed representing constrained conditions on the register and memory 

bank assignments. Then, an algorithm based on graph labeling is used to both 

memory bank and accumulator/register assignments. Similar as in [9], mechanisms 

used to insert spill codes are not present in [17]. In addition, authors of [17] suggest 

applying simulated annealing to resolve the graph labeling problem, which is a 

time-consuming algorithm and makes the entire method much more complicated. 

In this thesis, we will study compiler design issues for DSP architecture with 

multiple data memory banks and heterogeneous register sets. At first we will design a 

method particularly for Motorola DSP56000. Then, we extend it to a more general 

method suitable for various DSPs with similar architectural features. Furthermore, this 

general method is evaluated on various architectures to study the influence of 

differing number of resources on the scheduling result. Detailed descriptions and our 

proposed methods will be presented in chapters 4 and 5. 
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2.4.4 Energy-efficient Code Generation Methods [4, 20, 24-25, 28, 45-52] 

In section 1.2, we have introduced the importance of considering low power 

design at high-level synthesis. Authors of [45] use an experiment setup to physically 

measure the current being drawn by the CPU during the execution for three 

architecturally different processors. Based on physical measurements, they develop an 

instruction-level power analysis technique and an instruction-level power model. The 

power model consists of three main components: instruction base costs, effect of 

circuit state, and other inter-instruction effects. The base cost of an instruction is the 

cost associated with the basic processing required to execute the instruction. The 

circuit state overhead for a pair of consecutive instructions is used to deal with the 

switching activity changed between their circuit states. As for the power cost of other 

inter-instruction effects, it can occur in real programs due to prefetch buffer and write 

buffer stalls, pipeline stalls, and cache misses. For the DSP architecture, the effect of 

circuit state change is more marked in terms of power consumption, because its 

instruction control and data path constitute a larger portion of the silicon. Besides, this 

instruction-level power analysis technique also provides fundamental information that 

can guide the development of energy-efficient software. Several ideas in this regard 

motivated by this analysis are: reduction of memory accesses, energy cost driven code 

generation, and instruction reordering for low power. For the DSP with multiple data 

memory banks, instruction packing, parallel memory loads, and swapping operands 

for multiplications are other possible processor-specific optimizations [25]. Therefore, 

to reduce the power consumption from software is actually an appropriate way. 

A number of studies have investigated appropriate scheduling of instructions to 

reduce the circuit state overhead due to its significant impact on DSP architecture. 

Methods proposed in [20, 25, 46] are directly based on current measurement 

technique. They first record base costs of all instructions and circuit state overheads 
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for different instruction pairs. Then, a ready instruction, which will cost less power 

after being appended to the current schedule according to measured data, will be 

selected and scheduled first. Methods proposed in [47-49] attempt low-power 

schedules with similar mechanisms as previous three methods. But they gather base 

cost and circuit state overhead information using cycle-accurate simulators 

SimplePower and SimpleScalar, instead of experimental measurement. Apparently, 

using above methods can generate schedules with low circuit state overheads. 

However, the measured data are only dedicated for the selected processor, so these 

methods are obviously less general. 

On the other hand, there are lots of researches on power optimization in high- 

level synthesis by means of input activity reduction of function units. Authors of [50] 

reduce the switched capacitance of modules using an iterative improvement technique 

for scheduling and module allocating. Authors of [51-52] propose similar techniques, 

to reduce the power by preserving correlation of data inputs to function units through 

careful binding of instructions to function units. As for methods designed based on 

operand sharing technique, authors of [4] present list-scheduling algorithm for low 

power (LPLS), to reduce the activity of the function units by minimizing the switching 

activity of their input operands. LPLS obviously trades off latency for operand reuse, 

because instructions with common operands have to be scheduled consecutively and 

some instruction-level parallelism cannot be successfully explored. However, LPLS 

performs well only in the cases where common input operands can be identified, but it 

is not easy to find common input operands in real designs. Therefore, to increase the 

number of instructions with common operands, a high-level loop transformation 

technique power-conscious loop folding is presented in [24]. Its main idea is to find 

instructions sharing an operand in consecutive iterations. Then, a loop folding 

technique is applied to concentrate these instructions in the same iteration and execute 
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them consecutively. Alternatively, the method proposed in [28] contains a force- 

directed retiming to determine which instruction must be retimed. This technique aims 

to make as many instructions as possible take common operands as their inputs, and 

use a list scheduling to perform operand sharing under resource constraints. 

Comparing instruction scheduling methods listed above, methods designed based 

on operand sharing are apparently more practical. This is because these methods are 

not only machine-independent, but also do not require additional memory space to 

store measured information. In this thesis, we will focus on increasing the potential of 

operand sharing to design energy-efficient code generation methods. Detailed 

descriptions and proposed methods will be presented in chapter 6. 
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Chapter 3. Variable Partition Mechanisms 

In this chapter we present our first issue about variable partition mechanism. We 

target on DSP architecture with multiple data memory banks, and the goal is to evenly 

distribute memory accesses. At first we summarize some flaws of RSVR in section 

3.1. Three proposed variable partition mechanisms and corresponding instruction 

scheduling algorithms are introduced in section 3.2 and 3.3. In section 3.4 some 

performance evaluations are shown. 

 

3.1 Flaws of RSVR [14] 

As introduced in section 2.4.2, RSVR resolves both instruction scheduling and 

variable partition problems. It mainly consists of four phases: constructing VIG, 

partitioning VIG, generating the initial schedule, and repartitioning variables during 

applying rotation scheduling. From our observations, RSVR may contain three flaws 

as follows. First, the variable partition result is not always optimal, so RSVR will 

repartition variables during rotation phases. This repartitioning phase obviously 

increases the scheduling complexity of RSVR. Second, the VIG is constructed to 

expose parallel memory accesses for a loop, so the variable partition result is only 

well suited to that loop. When the given program contains more than one loop, it is 

difficult to find an appropriate variable partition result fitted for all loops. Third, the 

parallelism between ALU instructions may be restricted by memory accesses in 

special cases. Consider the MDFG fragment shown in Figure 3.1(a). Actually, nodes 4 

and 5 access different operands and can be executed in parallel. But in RSVR they 

will be scheduled in serial as shown in Figure 3.1(b), because they both access the 

same variable A. This case is similar as the column major problem in parallel 

processing system. Some operations are data independent, but must be executed in 
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serial due to unsuitable data allocation. In addition, since variable A is accessed many 

times compared with variable B, the memory bank stored A will become the schedule 

bottleneck. The reason caused above flaws is due to the variable partition mechanism. 

Thus, we will propose some mechanisms to partition variables more effectively. 

 

3.2 Rotation Scheduling with Unfolding (RSF) and Rotation Scheduling with 

Tiling (RST) [14] 

Note that a variable in MDFG indicates an array not just a single scalar. Unlike 

RSVR stores the entire array to a single data memory bank, we propose two 

mechanisms to partition array elements according to their rightmost indices and 

leftmost indices, respectively. For example, suppose there are N data memory banks, 

Figure 3.2 shows two variable partition results of MDFG in Figure 2.1(b). These two 

mechanisms are clearly more simple and efficient than that of used in RSVR, because 

they avoid the heavy overhead caused by constructing and partitioning the VIG. 

In addition to array variables, operands of ALU instructions may be constants in 

DSP applications. Intuitively these constants can be loaded using immediate load 

instructions. But in our studies we let constants be stored in data memory at specific 

locations in advance, and use load constant instead of immediate load. Essentially, the 

load constant is equivalent to the original load variable instruction, but will directly 

7 

B 

(1, 0) 

6 

0 1 

4 
A A 

2 3 

5 
A A 

(0, 1) (0, 2) 
(1, 1) 

A 
 Mul Add M1 M2 
1   0  
2   1  
3 4  2  
4   3 6 
5  5   
6   7  

(a) (b) 

Figure 3.1. (a) MDFG fragment, (b) scheduling result of RSVR. 
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load constants from specific address. We also assume that constants are stored in all 

data memory banks. This feature makes load constant instructions can be scheduled at 

any data memory bank to increase performance. 

After partitioning variable, we plan to apply the concept of multi-dimensional 

rotation scheduling to schedule instructions. However, it cannot be directly applied, 

and we illustrate the reason using the following example. Figure 3.3 lists two 

consecutive iterations of nested loop in Figure 2.1(a), and both instructions with mark 

“#” correspond to nodes 4~7 in Figure 2.1(b). If we partition variables based on their 

rightmost indices, operands accessed by two marked instructions will be resided in 

different data memory banks. That is, nodes 4 in consecutive iterations must be 

Figure 3.2. Variable partition results of MDFG in Figure 2.1(b). (a) Based on 
rightmost indices, (b) based on leftmost indices. 

A [1, 1] … A [1, n-N+1] 
…   

A [m, 1] … A [m, n-N+1] 
B [1, 1] … B [1, n-N+1] 
…   

B [m, 1] … B [m, n-N+1] 
C [1, 1] … C [1, n-N+1] 
…   

C [m, 1] … C [m, n-N+1] 
D [1, 1] … D [1, n-N+1] 
…   

D [m, 1] … D [m, n-N+1] 

A [1, N] … A [1, n] 
…   

A [m, N] … A [m, n] 
B [1, N] … B [1, n] 
…   

B [m, N] … B [m, n] 
C [1, N] … C [1, n] 
…   

C [m, N] … C [m, n] 
D [1, N] … D [1, n] 
…   

D [m, N] … D [m, n] 

… 

Memory Bank M1 Memory Bank MN 

A [1, 2] … A [1, n-N+2] 
…   

A [m, 2] … A [m, n-N+2] 
B [1, 2] … B [1, n-N+2] 
…   

B [m, 2] … B [m, n-N+2] 
C [1, 2] … C [1, n-N+2] 
…   

C [m, 2] … C [m, n-N+2] 
D [1, 2] … D [1, n-N+2] 
…   

D [m, 2] … D [m, n-N+2] 

Memory Bank M2 

A [1, 1] … A [m-N+1, 1] 
…   

A [1, n] … A [m-N+1, 1] 
B [1, 1] … B [m-N+1, 1] 
…   

B [1, n] … B [m-N+1, 1] 
C [1, 1] … C [m-N+1, 1] 
…   

C [1, n] … C [m-N+1, 1] 
D [1, 1] … D [m-N+1, 1] 
…   

D [1, n] … D [m-N+1, 1] 

A [N, 1] … A [m, 1] 
…   

A [N, n] … A [m, n] 
B [N, 1] … B [m, 1] 
…   

B [N, n] … B [m, n] 
C [N, 1] … C [m, 1] 
…   

C [N, n] … C [m, n] 
D [N, 1] … D [m, 1] 
…   

D [N, n] … D [m, n] 

… 

Memory Bank M1 Memory Bank MN 

A [2, 1] … A [m-N+2, 1] 
…   

A [2, n] … A [m-N+2, n] 
B [2, 1] … B [m-N+2, 1] 
…   

B [2, n] … B [m-N+2, n] 
C [2, 1] … C [m-N+2, 1] 
…   

C [2, n] … C [m-N+2, n] 
D [2, 1] … D [m-N+2, 1] 
…   

D [2, n] … D [m-N+2, n] 

Memory Bank M2 

(a) 

(b) 



 25 

 

 

 

 

 

 

 

 

 

scheduled to different data memory bank, and so are nodes 7. This situation makes 

traditional scheduling algorithms unusable. Partitioning variables based on their 

leftmost indices will also cause similar problem. 

Unfolding [31] (also called unrolling) and tiling [32] techniques can be used to 

resolve this problem. Their feasibilities are proven in Theorems 3.1 and 3.2 listed 

below. Note that not every nested loop can be tiled directly, so we need to skew [32] 

the nested loop before tiling if necessary. After unfolding or tiling the given nested 

loop, multi- dimensional rotation scheduling can be successfully applied to generate a 

compact schedule. Thus, based on two variable partition mechanisms, we propose 

instruction scheduling algorithms named rotation scheduling with unfolding (RSF) 

and rotation scheduling with tiling (RST) as listed in Figure 3.4 and 3.5, respectively. 

Suppose the target architecture consists of one function unit and two data memory 

banks. Figure 3.6 shows unfolded and tiled MDFGs of Figure 2.1(a), and scheduling 

results generated by different methods are shown in Figure 3.7. From this example, 

we find that using RSF and RST may obtain more compact schedules compared to 

using RSVR. Moreover, because RSF and RST never repartition variables during 

rotation phases, their scheduling complexities are obviously less than that of RSVR. 

Figure 3.3. Two consecutive iterations of nested loop in Figure 2.1(a). 

D[l, k] = B[l-1, k] × C[l-1, k-2] ; 
A[l, k] = D[l, k] × 0.5 ; (#) 
B[l, k] = A[l, k] + 1 ; 
C[l, k] = A[l, k-1] + 2 ; 

D[l, k+1] = B[l-1, k+1] × C[l-1, k-1] ; 
A[l, k+1] = D[l, k+1] × 0.5 ; (#) 
B[l, k+1] = A[l, k+1] + 1 ; 
C[l, k+1] = A[l, k] + 2 ; 

Figure 3.4. The entire scheduling steps of RSF. 

1. Gc = Construct MDFG; 
2. Partition variables to N memory banks according to rightmost indices; 
3. GN = unfold Gc with factor N; 
4. Select the retiming base r; 
5. S = schedule GN using list scheduling; 
6. S’ = compact S using multi-dimensional rotation scheduling; 
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Figure 3.5. The entire scheduling steps of RST. 

1. Gc = Construct MDFG; 
2. Partition variables to N memory banks according to leftmost indices; 
3. GN = tiled Gc with tile size N×1×…×1 (skewed the nested loop before tiling 

if necessary); 
4. Select the retiming base r; 
5. S = schedule GN using list scheduling; 
6. S’ = compact S using multi-dimensional rotation scheduling; 
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(1, 1) 
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B C 
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10 

B 
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(0, 2) 

11 

1 0 

2 
C B 
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4 

6 
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D 

A 

8 9 

5 

(0, 1) 

12 13 

A A 

14 15 
10 

B 
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(1, 2) 

27 

17 16 

18 
C B 

19 

20 

22 

D 

23 

D 

A 

24 25 

21 

(0, 1) 

28 29 

A A 

30 31 
26 

B 

(1, 0) 

(a) (b) 

Figure 3.6. (a) Unfolded MDFG of Figure 2.1(b), (b) tiled MDFG of Figure 2.1(b). 

 FU M1 M2 
1 13 5 3 
2  10 4 
3 6 0 15 
4  7 1 
5 2 8 11 
6 12 9  
7  14  

 FU M1 M2 
1 2 17 16 
2 18 3 5 
3  4 19 
4 6 21 20 
5 22 7 10 
6  8 23 
7 12 25 27 
8 29 14 24 
9  26 31 

10 28 11 9 
11 13 0 30 
12  15 1 

 FU M1 M2 
1 13 7 27 
2 19 8 0 
3 12 15 31 
4  14 1 
5 2 16 21 
6 18 5 26 
7  10 19 
8  17 20 
9 22 3 11 

10  4 23 
11 6 9 24 
12 28  25 
13   30 

(a) 

(b) 
(c) 

schedule length = 7 

schedule length = 6 
schedule length = 6.5 

Figure 3.7. Scheduling results of Figure 2.1(b). (a) RSVR, (b) RSF, (c) RST. 
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Theorem 3.1 Given a nested loop and its corresponding MDFG G. Variables are 

partitioned to N data memory banks based on their rightmost indices. After unfolding 

the innermost loop with factor N, every memory access in the unfolded MDFG GN 

can be scheduled to specific data memory bank. 

Proof: We use a nested loop with depth two as an example. Figure 3.8 shows the 

unfolded nested loop with factor N and two consecutive iterations in canonical form. 

In Figure 3.8(b), instructions with the same mark will correspond to the same nodes in 

GN. From Figure 3.2(a), clearly that operands accessed by instructions with the same 

mark are stored in the same data memory bank. Thus, every node in GN can be 

scheduled to specific data memory bank. Nested loop with depth more than two can 

be proven using the same way.  

Theorem 3.2 Given a nested loop and its corresponding MDFG G. Variables are 

partitioned to N data memory banks based on their leftmost indices. After tiling the 

nested loop with tile size N×1×…×1, every memory access in the transformed MDFG 

GN can be scheduled to specific data memory bank. 

Proof: We still use a nested loop with depth two as an example. Figure 3.9 shows the 

transformed nested loop with tile size N×1 and two consecutive iterations in canonical 

Figure 3.8. (a) Unfolded nested loop in canonical form, (b) two consecutive iterations. 

… 
A[l, Nk-N+1] = B[l+a, Nk-N+1+b] ⊗ C[l+c, 

Nk-N+1+d] ; (#) 
… 
A[l, Nk] = B[l+a, Nk+b] ⊗ C[l+c, Nk+d] ; (&) 
… 

… 
A[l, Nk+1] = B[l+a, Nk+1+b] ⊗  

C[l+c, Nk+1+d] ; (#) 
… 
A[l, Nk+N] = B[l+a, Nk+N+b] ⊗ 

C[l+c, Nk+N+d] ; (&) 
… 

(b) 

for  i = 1 to m 
  for  j = 1 to n/N 
    …                  + or × 
    A[i, Nj-N+1] = B[i+a, Nj-N+1+b] ⊗ 

C[i+c, Nj-N+1+d] ; 
    … 
    A[i, Nj] = B[i+a, Nj+b] ⊗ C[i+c, Nj+d] ; 
    … 
  end 
end (a) 



 28 

 

 

 

 

 

 

 

 

 

form. In Figure 3.9(b), instructions with the same mark will correspond to the same 

nodes in GN. From Figure 3.2(b), clearly that operands accessed by instructions with 

the same mark are stored in the same data memory bank. Hence, every node in GN can 

be scheduled to specific data memory bank. Nested loop with depth more than two 

can be proven using the same way.   

 

3.3 Rotation Scheduling with Parallelization (RSP) [36] 

Because loop unfolding and tiling techniques are applied in RSF and RST to fit 

variable partition results, their enlarged iterations are composed of several original 

iterations. If original iterations composed of an enlarged iteration are data independent, 

RSF and RST are actually effective. However, if critical paths of those original 

iterations are cascaded after applying unfolding or tiling, using RSF or RST will 

obtain schedules with very long schedule lengths. Therefore, we apply the unimodular 

transformations to parallelize the inner loop before unfolding, which can ensure that 

original iterations composed of an unfolded iteration will not depend on each other. 

This method is named rotation scheduling with parallelization (RSP). Since RSP 

avoids the drawback of RSF and RST, we believe it can achieve better results. 

Figure 3.9. (a) Tiled nested loop in canonical form, (b) two consecutive iterations. 

… 
A[Nl-N+1, k] = B[Nl-N+1+a, k+b] ⊗ 

C[Nl-N+1+c, k+d] ; (#) 
… 
A[Nl, k] = B[Nl+a, k+b] ⊗ C[Nl+c, k+d] ; (&) 
… 

… 
A[Nl+1, k] = B[Nl+1+a, k+b] ⊗ 

C[Nl+1+c, k+d] ; (#) 
… 
A[Nl+N, k] = B[Nk+N+a, k+b] ⊗ 

C[Nl+N+c, k+d] ; (&) 
… 

(b) 

(a) 

for  i = 1 to m/N 
  for  j = 1 to n 
    …                  + or × 
    A[Ni-N+1, j] = B[Ni-N+1+a, j+b] ⊗ 

C[Ni-N+1+c, j+d] ; 
    … 
    A[Ni, j] = B[Ni+a, j+b] ⊗ C[Ni+c, j+d] ; 
    … 
  end 
end 
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Figure 3.10 lists the entire scheduling steps of RSP. Note that RSP is designed 

only for nested loop with depth two, and the number of data memory banks must be 

odd or power of two. Nevertheless, it can be further extended to cover MDFG with 

higher dimensions. Figure 3.11 is the algorithm designed to parallelize the inner loop 

by unimodular transformations, which is slightly modified from the algorithm 

proposed in our early study [42]. Figure 3.12(a) contains the parallelized MDFG of 

Figure 2.1(b). Particular variable partition mechanism used in RSP is presented as 

follows. Although this mechanism seems irregular, it still partition variables according 

to array indices and is quite simple and efficient. 

Figure 3.10. The entire scheduling steps of RSP. 

1. Gc = Construct MDFG; 
2. Partition variables to N memory banks according to specific mechanism; 
3. Gp = parallelize Gc that the inner loop is parallelizable; 
4. GN = unfold Gp with factor N; 
5. Select the retiming base r = (0, 1); 
6. S = schedule GN using list scheduling; 
7. S’ = compact S using multi-dimensional rotation scheduling; 

Figure 3.11. Loop parallelization algorithm. 

1. Input: MDFG G = (V, E, X, d, t), N 
2. Output: MDFG G’ = (V, E, X, d’, t); 
3. G’ = G; w = 0; 
4. while (∃ (0, a) and (b, 0) in d’, for a, b > 0) 

w = 1; ∀ d’(e) ∈ d, d’(e) = 







11
01  × d’(e); 

5. if (∃ (b, -c) in d’, for b, c > 0) 

w = w +  bc )1( + ; ∀ d’(e) ∈ d, d’(e) = 
  








+ 1)1(

01
bc

 × d’(e); 

6. if (N is odd) 
if ((w mod N) = = 2) 

w = w + 1; ∀ d’(e) ∈ d, d’(e) = 







11
01  × d’(e); 

7. ∀ d’(e) ∈ d, d’(e) = 







01
10  × d’(e); 

8. Return G’ = (V, E, X, d’, t); 
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2 data memory banks N data memory banks (N is odd) 
Bank i: [m, 2k + i]   k ∈ Z Bank i: [m, kN + ((2 – 2m) mod N) + i]   k ∈ Z 
   
N data memory banks (N = 2n, n ≥ 2) 

Bank i: [m,
2

kN + ((
2

1 m− ) mod
2
N ) + i]   1 ≤ i ≤

2
N , m is odd, k ∈ Z 

Bank i: [m,
2

kN + ((
2

4 m− ) mod
2
N ) – i]   

2
N +1 ≤ i ≤ N, m is even, k ∈ Z 

 

With the similar reason of RSF and RST, the parallelized MDFG must be 

unfolded before applying multi-dimensional rotation scheduling. Moreover, schedule 

vector (1, 0) can be always selected for applying retiming technique in RSP, which is 

beneficial to achieve shorter overall schedule length of the retimed loop [41]. Suppose 

the target architecture consists of one multiplier, one adder, and three data memory 

banks. The unfolded MDFG of Figure 3.12 (a) is shown in Figure 3.13, and Figure 

3.12(b) is its scheduling result generated using RSP. Finally, because variables are 

never repartitioned during rotation phases, the scheduling complexity of RSP is also 

less than that of RSVR. 

C 

(3, 1) 

11 

0 1 

2 
B C 

3 

4 

6 

D 

7 

D 

A 

8 9 

5 

(1, 0) 

12 13 

A A 

14 15 
10 

B 

(1, 1) 

 Mul Add M1 M2 M3 
1 18  3 5 21 
2 34  4 19 37 
3 6  25 20 35 
4 22  7 27 36 
5 38 29 11 23 9 
6  13 43 41 39 
7  45 15 31 10 
8   8 24 47 
9  12 26 42 40 
10  28 14 0 1 
11 2 44 17 30 16 
12   32 33 46 

(b) 

schedule length = 4 

(a) 

Figure 3.12. (a) The parallelized MDFG of Figure 2.1(b), (b) scheduling result 
of Figure 2.1(b) using RSP. 
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3.4 Performance Evaluations 

3.4.1 Performance Studies of a Single Iteration 

In the following, we select several MDFGs represented DSP applications to 

evaluate methods including list scheduling, RSVR, RSF, RST, and RSP. The 

execution process for a retimed loop will consist of three parts: prologue, repetitive 

pattern, and epilogue. The prologue and epilogue are instruction sets that must be 

executed before and after the repetitive pattern. The repetitive pattern will be iterated 

many times and will dominate the entire computation performance of the given loop.  

Therefore, in this subsection we first focus on a single iteration in the repetitive 

pattern to compare different methods. Suppose that the system contains 1~2 function 

units and 2~4 data memory banks, and both ALU and memory access instructions 

take one time step to execute. Tables 3.1 and 3.2 list schedule lengths and retiming 

depths obtained from different methods for a single iteration in the repetitive pattern. 

Note that some schedule lengths in these tables are fractional. This is because the 

MDFG may be unfolded or tiled before being scheduled, and we show the average 

schedule length of an original iteration. 
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Figure 3.13. The unfolded MDFG of Figure 3.12(a). 
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2 data memory banks 3 data memory banks 4 data memory banks 
 

List RSVR RSF RST RSP List RSVR RSF RST RSP List RSVR RSF RST RSP 

[1] 9 6, 1 6, 0 6, 1 6, 0 9 6, 2 4, 1 4.3, 2 4, 1 9 4, 4 4, 1 4, 3 4, 1 

[2] 13 6, 2 6.5, 2 6.5, 2 6, 1 13 5, 3 4.3, 5 4.3, 3 4.3, 1 13 4, 3 4, 6 4, 4 4, 1 

[3] 27 25, 1 24, 1 24, 1 24, 1 21 17, 1 17, 1 17, 1 16.3, 1 21 16, 1 16, 1 16, 1 16.5, 1 

[4] 12 7, 2 7, 1 6.5, 2 6.5, 1 12 5, 4 5, 3 5, 4 5, 1 12 5, 6 5, 4 5, 5 5, 1 

[5] 7 5, 1 5, 1 5, 1 5, 1 7 5, 2 4, 1 4, 1 4, 1 7 4, 3 4, 1 4, 1 4, 1 

[6] 19 16, 1 17.5, 1 17, 0 16, 1 17 12, 2 14.3, 4 12.3, 1 12, 1 15 12, 2 13, 2 12, 1 12, 1 

[7] 31 24, 1 23.5, 1 22, 1 22, 1 31 18, 2 18, 2 17.3, 2 17.3, 1 31 17, 3 17, 3 17, 2 17, 1 

[8] 20 15, 1 15, 1 17, 2 15, 1 20 12, 2 12, 1 12, 4 12, 1 20 12, 3 12, 1 12, 5 12, 1 

[9] 14 12, 1 11.5, 1 ** ** 14 12, 1 10.7, 1 ** ** 13 11, 1 10.3, 1 ** ** 

[10] 20 19, 1 21, 1 ** ** 19 19, 0 20, 1 ** ** 19 19, 0 19.5, 1 ** ** 

[11] 37 32, 1 27, 1 ** ** 37 34, 1 25.7, 1 ** ** 37 35, 1 24.5, 1 ** ** 

[12] 50 49, 1 66, 0 ** ** 49 48, 1 65.7, 0 ** ** 49 49, 0 65.5, 0 ** ** 

Table 3.1. Experimental results (1 function unit)(schedule length, retiming depth). 

[1] Wave Digital Filter [7] Floyd-Steinberg 
[2] Filter [8] Transmission Line 
[3] Infinite Impulse Response Filter 2D [9] Infinite Impulse Response Filter 1D 
[4] Forward-substitution [10] Differential Equation Solver 
[5] Toeplitz Hyperbolic Cholesky Solver [11] All-pole Lattice Filter  
[6] Discrete Fourier Transform [12] Elliptic Filter 

2 data memory banks 3 data memory banks 4 data memory banks 
 

List RSVR RSF RST RSP List RSVR RSF RST RSP List RSVR RSF RST RSP 

[1] 9 6, 1 6, 0 6, 1 6, 0 9 6, 2 4, 0 4, 2 4, 0 9 4, 4 3, 0 3.5, 3 3.3, 1 

[2] 13 6, 2 6.5, 2 6.5, 2 6, 1 13 5, 3 4, 5 4.7, 3 4, 1 13 4, 3 3.5, 7 3, 4 3.3, 1 

[3] 27 25, 1 24, 1 24, 1 24, 1 20 17, 1 17, 1 17, 1 16, 1 21 13, 1 12.8, 1 12.8, 1 12, 1 

[4] 12 7, 2 7, 1 6.5, 2 6.5, 1 12 5, 4 5.3, 2 5.3, 3 4.3, 1 12 4, 6 4.3, 3 3.8, 6 3.3, 1 

[5] 7 5, 1 5, 1 5, 0 5, 0 7 5, 2 3.7, 1 3.3, 1 3.3, 1 7 3, 4 2.8, 2 2.8, 0 2.8, 1 

[6] 18 16, 1 17.5, 1 17, 0 16, 0 16 11, 2 12, 2 11, 1 10.7, 1 13 8, 2 12, 2 8, 1 8, 1 

[7] 28 21, 1 23, 1 22, 1 21, 1 28 14, 2 15.3, 2 16.3, 2 14, 1 28 11, 3 12.3, 4 12.5, 3 11, 1 

[8] 18 15, 1 15, 1 15, 2 15, 1 18 11, 2 10, 1 13.7, 4 10.3, 1 18 8, 3 7.8, 1 11.5, 5 7.5, 1 

[9] 14 12, 1 11.5, 1 ** ** 14 12, 1 10.7, 1 ** ** 13 11, 1 10.3, 1 ** ** 

[10] 19 18, 1 21, 1 ** ** 18 18, 0 20, 1 ** ** 18 18, 0 19.5, 1 ** ** 

[11] 36 33, 1 27, 1 ** ** 36 34, 1 25.7, 1 ** ** 36 35, 1 24.5, 1 ** ** 

[12] 48 47, 1 66, 0 ** ** 44 43, 1 65.7, 0 ** ** 43 43, 0 65.5, 0 ** ** 

Table 3.2. Experimental results (2 function units)(schedule length, retiming depth). 
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From these results, RSVR obviously outperforms list scheduling in all cases like 

evaluations shown in [30]. Three proposed methods RSF, RST, and RSP also achieve 

effective results, but not always better than that of RSVR. This is because the enlarged 

MDFG gives a more global view of the data dependencies, which is usually beneficial 

for compacting schedules. However, based on our variable partition mechanisms, 

most memory accesses in the same original iteration will be scheduled to the same 

data memory bank. If an iteration of RSF or RST is cascaded by original iterations, its 

results will be inferior to RSVR. Besides, if memory accesses will gather at some data 

memory banks in RSVR, our methods can obtain better results. As for RSP, it usually 

achieves similar schedule lengths to other methods for a single iteration in the 

repetitive pattern, but apparently gets smaller retiming depths. This is because an 

iteration in RSP is composed of independent original iterations and memory accesses 

will be evenly scheduled. Thus, schedules generated by list scheduling will be already 

very compact, which can decrease times applying rotation phases and retiming depth. 

 

3.4.2 Performance Studies of the Entire Retimed Loop [14, 36] 

In addition to the repetitive pattern, prologue and epilogue are also generated for 

a retimed loop as described in the previous subsection. Strictly speaking, prologue and 

epilogue are part of the overhead, not only for the execution time but also for the 

instruction count. Many previous studies have stated that the time required to run the 

prologue and epilogue are negligible if the given loop contains sufficient iterations. 

However, as shown in section 2.2, the prologue and epilogue may still constitute a 

considerable portion of the overall schedule length if an unsuitable schedule vector is 

selected. Thus, we design an analytic model to calculate the overall schedule length of 

a retimed one or two-dimensional MDFG. Nevertheless, this analytic model can be 

easily extended to cover nested loop with depths greater than two. 
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Table 3.3 lists variables used in our analytic model. For a one-dimensional loop 

the retiming base r = 1 is always feasible. Schedule vector (s1, s2) is selected for a 

two-dimensional nested loop, where s1 and s2 are both positive integers. Several 

formulas are defined to calculate the overall schedule length of a retimed loop. 

Detailed derivations of these formulas are listed in appendix A [14, 36]. 

Suppose the system contains one function unit and three data memory banks, 

Figures 3.14 and 3.15 show the overall schedule length calculated by above formulas. 

In view of the entire retimed loop, the overall schedule lengths of our methods 

perform similar to even outperform RSVR. Hence, our RSF, RST, and RSP are not 

only efficient but also as effective as RSVR. 

 

3.4.3 Comparisons among RSF, RST, and RSP [14] 

After evaluating RSF, RST, and RSP, we analyze the effectiveness among them. 

Actually the answer will depend on the topology and loop-carried dependencies of the 

nested loop. From formulas (A.6) and (A.7) listed in appendix A, we find that after 

Variable Definition 

N Number of memory banks 

m Loop bound of the outer loop for a two-dimensional nested loop 
Loop bound for an one-dimensional loop 

n Loop bound of the inner loop for a two-dimensional nested loop 

prologue Schedule length of the prologue part of a retimed loop 

epilogue Schedule length of the epilogue part of a retimed loop 

length Schedule length of a single iteration in the repetitive pattern of a 
retimed loop 

list Schedule length of a single iteration produced by list scheduling 

d Retiming depth, the number of iterations that must be moved into the 
prologue and epilogue 

w Skew factor used to parallelize the inner loop 

half (k, N) Schedule length of k original iterations under N memory banks 

Table 3.3. Variables defined in the analytic model. 
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applying RSP, prologue, epilogue, and half really occupy considerable portion of the 

overall schedule length. Recall that the prologue, epilogue, and half are part of the 

overhead. That is, although RSP performs as well as other methods from Figures 3.14 

and 3.15, it costs more overheads on both execution time and instruction count 

compared to RSF and RST, especially when the architecture contains more than two 

data memory banks. Therefore, we suggest using RSP only for the DSP architecture 

with two data memory banks. 

In the following, we conclude some principles of RSF, RST, and RSP. If the 

nested loop only contains dependencies with distances (1, 0, …, 0) but (0, ..., 0, 1), 

RSF should obtain better results because original iterations in a single unfolded 

iteration are data independent. On the contrary, using RST should be better if the 

nested loop only contains dependencies with distances (0, …, 0, 1) but (1, 0, …, 0), 

and this nested loop can be tiled directly. These two conclusions are made directly 

based on the principle of their variable partition mechanisms. Then, if the nested loop 

contains dependencies with distances (0, …, 0, 1) and (1, 0, …, 0), an enlarged 

iterations in neither RSF nor RST is combined with original iterations which are data 

independent. At this time RSP is suited when the architecture contains two data 

memory banks. As for architectures with more than two data memory banks, we 

suggest using list scheduling to schedule an iteration of RSF and RST separately and 

choose the shorter one. 

In parallel processing system, column major is one of common problems to 

prevent the parallelism. If the target DSP architecture contains multiple data memory 

banks and more than one function unit, the similar problem will also occur. When we 

design methods RSF, RST, and RSP, we simply assume the given nested loop is 

executed in row major sequence. After enlarging the given loop, the variable partition 

mechanism will be selected based on distances of loop-carried data dependencies. 
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From descriptions listed in above paragraph, our goal is to make original iterations in 

an enlarged iteration be data independent. That is, for elements of the same array 

variable which will be accessed in an enlarged iteration, we will separate them into 

different memory banks as far as possible. This mechanism works well when there is 

only one DSP core with one or more function units. However, we never consider the 

memory access sequence between different enlarged iterations. Therefore, if there are 

two or more DSP cores in the target architecture, the potential column major problem 

may still occur using our proposed methods. 
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Chapter 4. Effective Code Generation Method for Motorola 

DSP56000 

In this and next chapter, we will present our second issue about code generation 

methods for DSPs with multiple data memory banks and heterogeneous register sets. 

As mentioned in section 2.4.3, a complete code generation process for DSP with 

multiple data memory banks must include five phases: intermediate representation, 

code compaction, instruction scheduling, memory bank assignment (or variable 

partition), and register/accumulator assignment [17]. Our three methods RSF, RST, 

and RSP presented above directly use data memory to store temporary variables, so 

they have covered all except the accumulator/register assignment phase. In this 

chapter, we introduce a new method focus on Motorola DSP56000 to consider the 

accumulator/register assignment and further improve overall execution performance. 

Section 4.1 we briefly give an overview of the Motorola DSP56000. Section 4.2 lists 

our design motivations, and detailed steps of proposed method are described in 

section 4.3. Finally, in section 4.4 some performance evaluations are shown. 

 

4.1 Motorola DSP56000 Architecture [10] 

In our studies we target on the DSP architecture which consists of multiple data 

memory banks and heterogeneous register sets. Associated with each data memory 

bank is an independent set of address bus, data bus, and independent unit to calculate 

address. Motorola DSP56000/DSP56001 and DSP56300 family members are 

examples of this architecture, and are commonly used in practice and in previous 

researches. Many members belong to DSP56300 family, which have various memory 

sizes and peripheral interfaces. However, data ALU circuits of all members of 

DSP56300 family are the same, and are almost identical to those of DSP56000/ 
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DSP56001 as shown in Figure 4.1. The main difference is that all ALU instructions 

are completed in one clock cycle in DSP56000/DSP56001, and performed in two 

clock cycles in pipeline fashion in DSP56300 family. Therefore, in the following we 

briefly introduce the Motorola DSP56000 architecture, and design our code 

generation method based on it. 

As shown in Figure 4.2, the DSP56000 architectural units of interest are the data 

ALU, Address Generation Unit (AGU), and X/Y memory banks. The data ALU 

consists of four input registers called X0, X1, Y0, and Y1, and two accumulators, A and 

B. The source operands for all ALU instructions, except multiplication, must be 

registers or accumulators and the destination operand must always be an accumulator. 

Source operands of multiplication must always be input registers. Two buses XDB and 

YDB permit two input registers or accumulators to be read or written in conjunction 

during execution of an ALU instruction. Thus, up to two move operations (including 

Figure 4.1. Data ALU block diagram. (a) DSP56000/DSP56001, (b) DSP56300 family. 
(a) (b) 
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memory access, register transfer, and immediate load) and one data ALU instruction 

may be executed simultaneously in one cycle. 

Two independent move operations executed in the same cycle are called parallel 

moves. However, due to the nature of the DSP56000 architecture, not all pairs of 

move operations can be performed in parallel. Detailed parallel move conditions can 

be found in [10]. In our studies we especially consider the following conditions: (1) 

the two move operations reference data in different data memory banks; (2) the two 

destination registers are different; (3) the X/Y memory access loads into restricted 

locations X0/Y0, X1/Y1, A, or B. 

 

4.2 Design Motivations [37] 

In section 2.4.3 we have surveyed some code generation methods for DSP with 

multiple data memory banks. Among them, both methods proposed in [9, 17] focus on 

Motorola DSP56000 and consider all five phases of the code generation process. In 

the following we summarize them and introduce our design motivations. First, these 

two methods perform variable partition after code compaction, which means memory 

accesses are scheduled without information of memory bank assignment. However, in 

Figure 4.2. Motorola DSP56000 architecture. 
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the DSP56000 architecture, memory accesses involved in a parallel move must 

reference variables in different banks [10]. That is, memory accesses may be assumed 

to be executed in parallel, but in fact their reference variables are stored in the same 

data memory bank. In this situation, an extra cycle (spill code) will be required to 

access them separately. If spill codes occur frequently, the computational performance 

is clearly degraded. On the other hand, if variables are partitioned before code 

compaction, this kind of spill codes will not occur. In our design we will use the later 

mechanism to avoid the occurrence of spill codes. 

Apart from location conflict for parallel moves, spill codes also possibly occur in 

the accumulator/register assignment phase. In methods proposed in [9, 17], they store 

variables in unlimited symbolic accumulator/register during code compaction, and 

consider accumulator/register assignment at last. But in DSP numbers of accumulators 

and registers are usually strictly limited. When accumulator and register spills occur, 

spill codes are required and their spill costs may be more than one extra cycle. 

Therefore, we will design mechanisms to predict the occurrence of register and 

accumulator spills in advance and generate corresponding spill codes. Then, these 

spill codes can be scheduled in parallel with other instructions, which is beneficial to 

decrease the spill costs. 

 

4.3 Rotation Scheduling with Spill Codes Predicting (RSSP) [37] 

In this section we introduce code generation method named rotation scheduling 

with spill codes predicting (RSSP) proposed for Motorola DSP56000. As listed in 

Figure 4.3 RSSP contains six parts: MDFG construction, TDAG construction, TDAG 

modification, ALU instruction scheduling, other instruction scheduling, and initial 

schedule retiming. Detailed description of each part is presented as follows. 
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4.3.1 MDFG Construction 

In the first part we construct the MDFG from the high-level language using the 

same mechanism as in RSF, RST, and RSP. During the MDFG construction operands 

are stored in memory, and reloaded into registers only when they are required for use. 

This mechanism appears burdensome but is really used in some DSP compilers, 

because the number of registers is limited in DSP and memory is the only safe 

repository. In addition to constructing the MDFG, variables are also partitioned by 

four mechanisms proposed in RSVR, RSF, RST, and RSP in the first part. Constants 

are stored in both X and Y memory banks at specific locations in advance. 

 

4.3.2 TDAG Construction 

If all instructions in the MDFG are scheduled, apparently that accumulator and 

register spills will not occur. But scheduling according to this complicated MDFG 

will degrade the computational performance, because ALU results can be temporarily 

stored in accumulators or registers instead of directly written back to memory. Hence, 

in RSSP we define a translated data acyclic graph (TDAG) constructed from the 

1. Gc = Construct MDFG; 
1.1. Partition variables to X and Y memory banks; 
1.2. Unfold or tile Gc if necessary; 

2. Gt = Construct TDAG; 
3. Modify TDAG Gt; 

5.1. Gt = Insert register transfer nodes (Gt); 
5.2. (Gop, Gpr) = Construct DAG Gop and Gpr (Gt); 
5.3. Gop = Mark_Edge (Gop, Eop); 
5.4. Gop = Mark_Edge (Gop, Epr); 
5.5. Gop = Check_Cycle (Gop, Gt); 
5.6. Gt = Insert memory access nodes (Gop, Gt); 

4. S = Schedule ALU instructions (Gop); 
5. S = Schedule other instructions (S, Gt); 
6. S = Retime the initial scheduling result (S); 

Figure 4.3. The entire scheduling steps of RSSP. 
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original MDFG, which is aimed at removing possible unnecessary memory accesses. 

The formal definition of the TDAG is given below. 

Definition 4.1 A translated data acyclic graph (TDAG) G = (V, E, X, P) is a 

node-weighted and edge-weighted direct graph, where V is the set of computation 

nodes; E ⊆ V × V is the edge set that defines the precedence relations over the nodes 

in V; X(e) represents the variable accessed by an edge e; P(v) represents the type of 

node v (see Figure 2.1(c)). 

1. Input: Gc = (Vc, Ec, Xc, d, Pc); 
2. Output: Gt = (Vt, Et, Xt, Pt); 
3. Vt = Vc; Et = {e | e ∈ Ec, d(e) = (0,…, 0)}; 
4. Assume that vi, vj, vk, vl, vm, vn ∈ Vc, and their types are M, A, S, L, M, and A 

respectively; 
4.1. If (∃ a path vi → vk → vl → vm ∈ Gt)  // M → M 

Insert node vx into Vt (set Pt(vx) = T); Insert edge eix into Et; 
∀ elm ∈ Et  delete edges elm from Et, insert edges exm into Et; 
Delete node vl from Vt; Delete edge ekl from Et; 
If (∃ ekl ∈ Ec such that d(ekl) ≠ (0,…, 0)) ; // retain vk, eik 
Else  delete node vk from Vt, delete edge eik from Et; 

4.2. If (∃ a path vj → vk → vl → vm ∈ Gt)  // A → M 
Insert node vx into Vt (set Pt(vx) = T); Insert edge ejx into Et; 
∀ elm ∈ Et  delete edges elm from Et, insert edges exm into Et; 
Delete node vl from Vt; Delete edge ekl from Et; 
If (∃ ekl ∈ Ec such that d(ekl) ≠ (0,…, 0)) ; // retain vk, ejk 
Else  delete node vk from Vt, delete edge ejk from Et; 

4.3. If (∃ a path vi → vk → vl → vn ∈ Gt)  // M → A 
∀ eln ∈ Et  delete edges eln from Et, insert edges ein into Et; 
Delete node vl from Vt; Delete edge ekl from Et; 
If (∃ ekl ∈ Ec such that d(ekl) ≠ (0,…, 0)) ; // retain vk, eik 
Else  delete node vk from Vt, delete edge eik from Et; 

4.4. If (∃ a path vj → vk → vl → vn ∈ Gt)  // A → A 
∀ eln ∈ Et  delete edges eln from Et, insert edges ejn into Et; 
Delete node vl from Vt; Delete edge ekl from Et; 
If (∃ ekl ∈ Ec such that d(ekl) ≠ (0,…, 0)) ; // retain vk, ejk 
Else  delete node vk from Vt, delete edge ejk from Et; 

5. Xt(e) = Xc(e), if e is remained in Et; 
6. Pt(v) = Pc(v), if v is remained in Vt; 
7. Return Gt; 

Figure 4.4. The TDAG constructing algorithm. 
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Figure 4.4 shows the TDAG construction algorithm. For a given MDFG, the first 

step is to remove edges with non-zero delays. Then, for an ALU result written back 

and reloaded in the same iteration, it can be temporarily stored in an accumulator to 

remove the corresponding instructions with types S and L. If an ALU result will be 

used in latter iteration, its corresponding store variable instruction must be retained. In 

addition, in Motorola DSP56000 both source operands of a multiplication must 

always be registers. Hence, a register transfer instruction is added if necessary to 

ensure all source operands are stored in registers. Figure 4.5(a) shows two cases of 

removing memory accesses, and Figure 4.5(b) is the TDAG transferred from the 

MDFG shown in Figure 2.1(b). Note that during constructing TDAG we simply 

assume unlimited numbers of accumulators and registers. That is, the TDAG only 

contains absolutely necessary memory accesses, which is beneficial to decrease the 

instruction count. 

 

 

Figure 4.5. (a) Two cases of removing memory accesses, (b) TDAG of MDFG 
in Figure 2.1(b). 

C 

0 1 

2 
B C 

6 

D 

11 9 

5 

12 

13 

A 

14 

15 

10 

B 

16 

7 

A 

(a) (b) 

M/A 

S 

L 

A 

M/A 

A 

M/A 

A S 

M/A 

S 

L 

M

M/A 

M

T 

M/A 

M 

T S 



 46 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.3.3 TDAG Modification 

One of the main goals of RSSP is to avoid accumulator and register spills by 

predicting their occurrence in advance. In the third part of RSSP we analyze and 

modify the TDAG to resolve accumulator spills. Register spills will be dealt with in 

the fifth part later. 

Three main steps are required for this TDAG modification: insertion of register 

transfers, analysis of TDAG, and insertion of memory accesses. Recall that we assume 

unlimited number of accumulators when constructing the TDAG. Hence, an ALU 

instructions with types M/A may have many immediate successors with type A in the 

TDAG. As shown in Figure 4.6(a), the ALU result of vj is a source operand of all 

additions vj1 to vjm. In this case we add a register transfer vk if m > n, if the architecture 

only consists of one data ALU and n accumulators. Figure 4.6(b) contains the TDAG 

after inserting vk and the corresponding algorithm is listed in Figure 4.7. 

Figure 4.6. (a) A TDAG fragment, (b) after inserting the register transfer vk. 
(a) 

vj1 

vi 

vj2 vjm … 

P(vi) = M or A 

P(vji) = A, for 1 ≤ i ≤ m 
P(vk) = T 

(b) 

vj1 

vi 

vj2 vjm … 

vk 

Figure 4.7. The register transfer inserting algorithm. 

1. Input: G = (V, E, X, P), n; 
2. Output: Gt = (Vt, Et, Xt, Pt); 
3. Gt = G; 
4. Suppose that vi ∈ Vt and Pt(vi) = M or A; 
5. If (vi has more than n immediate successors v1,…, vm with type A) 

Delete edges ei1,…, eim from Et; 
Insert nodes vx into Vt (set Pt(vx) = T); 
Insert edges ex1,…, exm into Et; 

6. Return Gt; 
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Then, we analyze TDAG topologies too predict the occurrence of accumulator 

spill. Two intermediate DAGs Gop and Gpr, defined as follows, are constructed using 

algorithm listed in Figure 4.8. Initially we set S(e) = F for all edges in Gop and Gpr to 

indicate no accumulator spill will occur. After applying algorithms listed in Figures 

4.9 and 4.10, some edges in Gop will be set S(e) = T to represent the occurrence of 

accumulator spill. Figure 4.11 shows two Gop fragments with accumulator spills that 

will be checked by algorithms Mark_Edge and Check_Cycle, respectively. Note that 

Mark_Edge and Check_Cycle algorithms are designed based on our analyses of 

TDAG topologies. That is, they only suit the architecture consisting of data ALU and 

two accumulators, such as the DSP56000. 

1. Input: G = (V, E, X, P); 
2. Output: Gop = (Vop, Eop, S), Gpr = (Vop, Epr, S); 
3. Vop = {v | v ∈ V, P(v) = M or A}; 
4. Eop = {eij | eij ∈ E, vi, vj ∈ Vop}; 
5. Epr = {eij | eji ∈ Eop}; 
6. S(e) = {F | e ∈ Eop and Epr}; 
7. Return (Gop, Gpr); 

Figure 4.8. The Gop and Gpr constructing algorithm. 

1. Input: G = (V, E, S), Ei; 
2. Output: Gr = (Vr, Er, Sr); 
3. Gr = G; 
4. label(v) = N, ∀ v ∈ V; 
5. label(v) = S, ∀ v doesn’t have any immediate predecessor; 
6. While (∃ label(v) = = N) 

6.1. ∃ eij ∈ Ei, such that vi is the only immediate predecessor of vj 



 ==

=
otherwise    )(

)( if               
)(

i

i
j

vlabel
SvlabelV

vlabel  

6.2. ∃ eik, ejk ∈ Ei 
If (label(vi) = = N or label(vj) = = N) label(vk) = N; 
else if (label(vi) = = S or label(vj) = = S) label(vk) = H; 
else if (label(vi) = = V and label(vj) = = V) label(vk) = H; 
else label(vk) = G; Sr(ejk) = T; 

7. Return Gr; 

Figure 4.9. The Mark_Edge algorithm. 



 48 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Definition 4.2 A DAG Gop = (V, E, S) is a direct graph, where V is the node set 

representing ALU instructions; E ⊆ V × V is the edge set that defines the precedence 

relations over the nodes in V; S(e) is an edge mark that represents two nodes that must 

be scheduled at separate time steps or not. 

Definition 4.3 A DAG Gop, corresponds to an undirected DAG Gpr = (V, E, S) with 

the same topology and characteristics. 

Finally, for an edge in Gop with S(e) = T, two memory accesses with types S and 

L are inserted into the TDAG using algorithm listed in Figure 4.12. After completing 

steps 3.1~3.6 listed in Figure 4.3, we will get a modified TDAG which can be 

scheduled without any accumulator spill. 

1. Input: G = (V, E, S), Gt = (Vt, Et, Xt, Pt); 
2. Output: Gr = (Vr, Er, Sr); 
3. Gr = G; 
4. Delete edge e from E, such that S(e) = T; 
5. ∀ eij ∈ Et such that Pt(vj) = T 

∀ ejk ∈ Et, insert edge eik into E (set S(eik) = X); 
6. Remove edge direction in G; 
7. Level each node v ∈ V (level(v) indicates the longest path length from v to any root 

node; level(v) = 1 if v is a root node) 
8. If (∃ a cycle vi → vi+1 →…→ vk → vk+1 →…→ vj → vi in G) 

8.1. Suppose vi has the smallest level(v) value in this path; 
8.2. If ((level(vi) < level(vi+1) in path vi →…→ vk) and (level(vk) < level(vk+1) in 

path vk →…→ vi))  Sr(eji) = T; 
else Sr(eij) = T, ∀ level(v) = level(vi) in this path; 

9. Return Gr; 

Figure 4.10. The Check_Cycle algorithm. 

∀ i, P(vi) = M or A 
v1 v2 

v3 

v4 v5 

v6 

v7 S(e) = T 

v1 

v2 

v3 

v4 

S(e) = T 

Figure 4.11. Two Gop fragments with accumulator spill. 
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4.3.4 ALU Instruction Scheduling 

In the fourth part of RSSP, ALU instructions are scheduled considering the 

nature of Motorola DSP56000. We first list principles that a correct schedule must 

satisfy as follows, and propose scheduling rules based on these principles. For 

convenience, we only permit a variable or constant loaded from memory to be stored 

in a register. 

1. For an edge eij of a TDAG, if P(vi) = L/C/T and P(vj) = M/A, vj must be executed 

no later than the next two instruction (in the same memory bank as vi) with type 

L/C/T. 

2. For an edge eij of a TDAG, if P(vi) = M/A and P(vj) = S, vj must be executed no 

later than the next two instruction with type M/A. 

3. For an edge eij of a TDAG, if P(vi) = M/A and P(vj) = M/A, at most one ALU 

instruction can be executed between vi and vj. 

Basically, ALU instructions are scheduled using list scheduling based on Gop (V, 

E, S). Recall that the Motorola DSP56000 consists of one data ALU and two 

accumulators, and all instructions are completed in one time step. For an edge eij ∈ E, 

its edge mark S(eij) may be F, T, or X, which indicates different rules for scheduling vi 

and vj. Assume that vi ∈ V is scheduled at time step i, and the ALU result rti of vi is 

stored in accumulator acci. If S(eij) = F/X, vj must be scheduled at time step i+1 or i+2 

1. Input: G = (V, E, S), G1 = (V1, E1, X1, P1); 
2. Output: Gt = (Vt, Et, Xt, Pt); 
3. Gt = G1; 
4. ∀ eij ∈ E such that S(eij) = = T 

Delete edge eij from Et; 
Insert nodes vs, vl into Vt (set Pt(vs) = S, Pt(vl) = L); 
Insert edges eis, esl, elj into Et (set Xt(eis) = t, Xt(elj) = t, where t is a 
temporary variable); 

5. Return Gt; 

Figure 4.12. The memory access inserting algorithm. 
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to prevent rti being recovered before being used. Conversely, if S(eij) = T, vj can be 

scheduled at time step later than i+2, because rti will be transferred to register regi. In 

addition, if S(eij) = X and vj is scheduled at time step i+1, an idle time step is inserted 

between vi and vj for scheduling register transfer instruction further. Because we have 

already considered the occurrences of accumulator spill, all ALU instructions can be 

scheduled exactly according to the above three rules. These rules for scheduling ALU 

instructions are essentially equivalent to the third principle listed above. Figure 4.13 

(a) shows a TDAG example, and its scheduling result of the ALU instructions only is 

listed in Figure 4.13(b). 

 

4.3.5 Other Instruction Scheduling 

After scheduling ALU instructions, other instructions including memory accesses 

and register transfers are scheduled based on the modified TDAG. Meanwhile, we 

consider the limited number of registers during instruction scheduling, therefore no 

extra action is required to determine and deal with the occurrences of register spill. In 

RSSP, we use two variables reg_x(t) and reg_y(t) to record the number of registers 

Figure 4.13. Scheduling steps of RSSA. (a) An TDAG example, (b) ALU 
instructions only, (c) initial scheduling result, (d) retimed scheduling result. 

 ALU X Y reg_x reg_y 
1 5  1 2 2 
2 6 0 3 2 2 
3 7   2 2 
4 9 4 8 2 2 
5 2 10  2 1 

 ALU X Y reg_x reg_y 
1  0 1 1 1 
2 2 4 3 2 1 
3 5   2 1 
4 6   1 0 
5 7   1 0 
6 9  8 0 0 
7  10  0 0 

 

 ALU X Y 
1 2   
2 5   
3 6   
4 7   
5 9   
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been occupied at time step t for X and Y memory banks, respectively. When 

scheduling each instruction, these two variables are dynamically updated. Apparently, 

if we can generate a schedule where reg_x(t) and reg_y(t) do not exceed the limited 

number of registers for all time steps, register spills will not occur. 

For a correct schedule, an operand residing in an accumulator/register obviously 

cannot be overwritten before being used. Recall that all instructions are completed in 

one time step in Motorola DSP56000. That is, if a variable (or constant) is loaded 

from memory at time step i and used at time step j, it will occupy a register from time 

step i to j-1. Similarly, an ALU result will occupy a register from time step i to j–1 if it 

is transferred from an accumulator at time step i and used at time step j. We conclude 

scheduling rules for memory accesses and register transfers as follows. 

1. According to the execution sequence of ALU instructions, schedule their 

predecessors as soon as possible. 

2. Principles 1~2 listed in subsection 4.3.4 must be satisfied, and reg_x(t) and reg_y(t) 

cannot exceed the number of registers for any time step. 

3. If a variable is stored and loaded at consecutive time steps, these two memory 

accesses can be replaced by a single register transfer. 

4. If a memory access or register transfer cannot be scheduled successfully due to 

insufficient registers, a variable currently occupied a register must be overwritten 

and reloaded again when required. 

5. If an overwritten variable is not used after being transferred from the accumulator, 

the corresponding register transfer is replaced by a store variable instruction. 

Figure 4.13(c) shows the scheduling result of the TDAG in Figure 4.13(a). 

Finally, because we have already considered accumulator and register spills, an 

appropriate assignment of physical accumulators and registers will exist. 
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4.3.6 Initial Schedule Retiming 

After generating the initial scheduling result, we apply the multi-dimensional 

rotation scheduling to explore the instruction-level parallelism between different 

iterations. Retimed instructions in each rotation phase are originally rescheduled as 

soon as possible to reduce the schedule length. But in RSSP we redefine the 

rescheduling rules for retimed instructions, in order to guarantee that the number of 

registers used at all time steps will not exceed the limitation. Assume that the length 

of the initial schedule is len. In the following we present conditions so that a retimed 

instruction can be rescheduled at time step i. We will reschedule a retimed instruction 

at the earliest time step that satisfies all conditions listed below. Moreover, because 

constants are stored in both X and Y data memory banks in advance, a retimed load 

constant instruction can be rescheduled at any data memory bank to achieve higher 

performance. The retimed scheduling result of Figure 4.13(c) is shown in Figure 

4.13(d). 

1. A retimed instruction with type L/C must occupy a register from time step i to len, 

because this value or constant will be used for a later iteration. 

2. A retimed instruction with type T must occupy a register from time step i to len, 

because this ALU result will be used for a later iteration. In addition, the second 

principle listed in subsection 4.3.4 has to be satisfied. 

3. Rescheduling a retimed instruction with type S must satisfy the second principle 

listed in subsection 4.3.4. 

4. Rescheduling a retimed instruction with type M/A must satisfy the first or third 

principle listed in subsection 4.3.4. In addition, reg_x(t) and reg_y(t) are updated 

after rescheduling this ALU instruction. 
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4.4 Performance Evaluations [37] 

In the following, we select several MDFGs represented DSP applications to 

evaluate methods including Cho [9], Malik [17], Shiue [20], and RSSP. Because four 

variable partition mechanisms proposed in RSVR, RSF, RST, and RSP can be applied 

in RSSP, three scheduling results are derived from RSSP. Meanwhile, scheduling 

results obtained by RSVR [30], RSF [14], RST [14], and RSP [36] are used for 

comparison, after inserting necessary spill codes. Among these methods, Cho [9] and 

RSSP are scheduled based on TDAG, and others are scheduled based on MDFG. 

Suppose that the target architecture is the Motorola DSP56000, which consists of one 

data ALU, two data memory banks, two accumulators, and four registers. All ALU 

instructions and memory accesses can be completed in one time step. 

Similar as in chapter 3, we evaluate performances focus on both a single iteration 

in the repetitive pattern and the entire retimed loop. Table 4.1 lists schedule lengths 

obtained from different methods for a single iteration in the repetitive pattern. From 

these results, it is obvious that methods scheduled based on TDAG outperform 

methods scheduled based on MDFG. The direct reason is that we remove additional 

memory accesses during constructing the TDAG in advance, which decrease the 

RSSP 
 Cho Malik Shiue RSVR RSF RST RSP 

RSVR RSF RST RSP 

Wave Digital Filter 7 9 9 8 6 8.5 6 6 5 5.5 5.5 

Filter 8 13 13 9 11.5 9 6 6 5.5 5 4.5 

IIR Filter 2D 20 29 33 25 27.5 28 24.5 16 16 16 16 

forward-substitution 7 12 12 9 10 11.5 7.5 5 5.5 5 5 

THCS 6 8 8 6 6.5 5.5 5 4 4 4 4 

DFT 14 21 21 18 21 18.5 18 13 12.5 13 12.5 

Floyd-Steinberg 20 36 37 29 32.5 30.5 23.5 18 17.5 17 17 

Transmission Line 15 20 21 19 18 25 18 12 12 12 12 

Table 4.1. Experimental results for a single iteration in the repetitive pattern. 
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number of instructions actually been scheduled. Furthermore, both RSSP and Cho [9] 

are scheduled based on TDAG, and our RSSP can achieve shorter schedule lengths. 

This is because the retiming technique is applied in RSSP, in order to explore the 

potential instruction-level parallelism between different iterations. The effectiveness 

among four scheduling results derived from RSSP is very similar for most 

applications. This indicates that RSSP is sufficiently flexible and can achieve 

reasonable results using various variable partition mechanisms. 

For the entire retimed loop, formulas listed in appendix A can be directly used to 

calculate the overall schedule length for RSSP. Figures 4.14 and 4.15 show the overall 

schedule lengths of every application. For each application, we only sketch the best 

result among methods RSVR, RSF, RST, and RSP. Four scheduling results are derived 

from RSSP with different variable partition mechanisms, and we also only sketch the 

best one. As shown in these figures, basically these results are the same as the 

evaluations focused on a single iteration in the repetitive pattern. Meanwhile, as the 

size of nested loop increases, the difference in overall schedule lengths between all 

methods increases. That is, the proposed RSSP can save more execution time in larger 

problem sizes. 
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Figure 4.14. Overall schedule lengths of DSP applications. 
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Figure 4.15. Overall schedule lengths of DSP applications. 
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Chapter 5. Effective Generalized Code Generation Method 

According to descriptions in chapter 4, RSSP looks really effective and efficient, 

but it is not scalable and specifically designed for Motorola DSP56000. In this chapter, 

we want to extend it to a more general version, which is suitable for various DSPs 

with similar architectural features. For the generalized code generation method, in 

addition to achieving shorter schedule length, we take fewer spill codes as the second 

scheduling goal due to its importance for DSP with heterogeneous register sets. 

Furthermore, in order to deep study the influence of differing number of resources on 

the scheduling result, we also define a parameterized machine model to simulate 

architectures with different number of resources. In section 5.1 we present the 

hypothetical machine model, and lists design motivations in section 5.2. Section 5.3 

contains detailed steps of the generalized method. In section 5.4, we describe how to 

apply the proposed hypothetical machine model and code generation method to real 

DSP families. Finally, some performance evaluations are shown in section 5.5. 

 

5.1 Hypothetical Machine Model [38] 

As mentioned before, we need a parameterized architecture to model a scalable 

DSP with multiple data memory banks and heterogeneous register sets. Many 

parameterized architecture models have been developed to explore and investigate 

advanced compiler and architecture research [53-57]. Most of them are oriented 

towards EPIC (explicitly parallel instruction computing) or superscalar architectures, 

and support novel features such as prediction, control and data speculation, and 

memory hierarchy. However, none of them supports both architectural features we 

require, so here we define a hypothetical machine model in which more resources will 

be included. 
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Table 5.1 lists architectural features of some popular DSP families, especially for 

their data paths. Our parameterized machine model, defined as follows, is design to 

cover all these architectural features as far as possible. Assume that it contains N data 

memory banks (M1…MN), k function units (FU1…FUk), k×m accumulators 

(acc11…acc1m, …, acck1…acckm), and N×n registers (reg11…reg1n, …, regN1…regNn). 

All function units are identical and parallel executed, which can execute all ALU 

instructions including the multiplication. Source operands for all ALU instructions, 

except multiplication, must be registers or accumulators and destination operands (or 

ALU results) must always be accumulators. For the multiplication source operands 

must always be registers. This restriction is inherited from Motorola families. We 

assume that an instruction may require several time steps to complete in our 

hypothetical machine model. 

Due to the nature of the target architecture, many irregular DSPs have parallel 

conditions to define which instructions can be performed in parallel. In the following, 

we list parallel conditions in our hypothetical machine model: (1) up to N independent 

move operations and k ALU instructions can be executed simultaneously in one cycle; 

(2) the N move operations reference data in different data memory banks; (3) the Mi 

memory access load into restricted locations regi1…regin, or all accumulators; (4) the 

ALU result generated by FUi must be stored in accumulators acci1…accim; (5) 2k 

source operands must be read from different registers or accumulators. 

According to above descriptions, our hypothetical machine model is basically 

extended from Motorola DSP56000. However, with minor modifications, this model 

and the general code generation method can satisfy all architectural features listed in 

Table 5.1. We will further describe how to apply the machine model and general 

method to real DSP families in section 5.4. On the other hand, because our main 

purpose is to design code generation method, our hypothetical machine model is 
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Table 5.1. Architectural features of some popular DSPs. 

 data memory bank function unit register set 
DSP56000 
DSP56001 

DSP56300 
family 

* X/Y memory banks 
with independent data 
buses 

* 2 memory reads/ 
writes can be 
performed 
simultaneously 

* 4 24-bit reg. (X0, X1, 
Y0, Y1) for source 
operands 

* 2 56-bit acc. (A, B) 
for source/destination 
operands 

Motorola 

DSP56800 
family 

* 1 MAC 
* 3 16-bit reg. (X0, Y0, 

Y1) for source 
operands 

* 2 36-bit acc. (A, B) 
for source/destination 
operands 

Analog 
Device 

ADSP2100 
family 

* 1 memory bank 
* 2 memory reads can 

be performed 
simultaneously using 
independent buses * 1 ALU, 1 MAC, 1 

shifter 
* Parallel execute 

* ALU: 
- 4 16-bit reg. (AX0, 

AX1, AY0, AY1) for 
source operands 

- 1 16-bit reg. (AF/ 
AR) for source/ 
destination operand 

* MAC: 
- 4 16-bit reg. (MX0, 

MX1, MY0, MY1) 
for source operands 

- 1 40-bit reg. (MR) 
for source/destination 
operand 

NEC 
uPD7701x 

family 

* X/Y memory banks 
with independent data 
buses 

* 2 memory reads/ 
writes can be 
performed 
simultaneously 

* 1 ALU, 1 MAC, 1 
shifter 

* One unit executes at a 
time 

* 8 40-bit reg. (R0~R7) 
* Homogeneous 

TMS320C62x 
TMS320C67x 

family 

* 32 32-bit reg. (A0~ 
A15, B0~B15) 

* 2 register files 
* Homogeneous 

TI 

TMS320C64x 
family 

* 1 memory bank 
* 2 memory reads/ 

writes can be 
performed 
simultaneously using 
independent buses 

* 2 multipliers, 6 ALUs 
* Parallel execute * 64 32-bit reg. (A0~ 

A31, B0~B31) 
* 2 register files 
* Homogeneous 
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defined focus on the data path of the DSP architecture. If we want to study other 

issues on the DSP architecture later, it is not difficult to further extend our model for 

the target DSP to include necessary resources. 

 

5.2 Design Motivations [37] 

In RSSP we list two design motivations: performing variable partition before 

code compaction and predicting accumulator spills in advance. The former is retained 

in the general method because it certainly can avoid the occurrence of spill codes. On 

the other hand, when the target architecture is no longer specific, to predict 

accumulator spills by topological analysis of the TDAG becomes much more difficult 

and inaccurate. Therefore, in the general method we design another mechanism to 

resolve accumulator spills and not predict their occurrences. 

Next, we focus on the resolution of accumulator/register spills. When a register 

spill occurs, the overwritten variable must be stored back to memory and reloaded 

when required. As for an accumulator spill, in addition to memory, the overwritten 

ALU results also can be temporarily transferred to an available register before being 

used. Consider the example shown in Figure 5.1. Assume that the target architecture is 

the Motorola DSP56000, and Figure 5.1(c) lists the schedule obtained using method 

described in [17]. In this schedule we find that when an accumulator spill occurs at I3, 

the overwritten ALU results, m, must be stored back to memory because all variables 

residing in four registers will be accessed later. Later another memory access is added 

to reload m before I8. However, if instruction i13 is moved to I5 as shown in Figure 

5.1(d), m can be transferred to register Y0 instead of memory to eliminate one extra 

spill cost. From this example, we find that it is preferable to transfer an overwritten 

ALU results to a register when an accumulator spill occurs. In the general method we 

will follow this principle to determine and resolve accumulator spills. 
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In order to give an overwritten ALU results higher priority to be transferred to a 

register, registers must be unfilled as far as possible while dealing with accumulator 

spills. But in methods [9, 17, 20] registers will be occupied by resource operands 

when accumulator spills are resolved, which is unfavorable for inserting additional 

register transfers. Thus, in the general method we divide the instruction scheduling 

phase into two steps, and let ALU instructions be scheduled before memory accesses. 

This mechanism makes registers remain unfilled during resolving accumulator spills, 

which is able to store overwritten ALU results and reduce additional spill costs. 

Figure 5.1. An example of code compaction. (a) Uncompacted code, (b) compacted 
code, (c)(d) two scheduling results after resource assignment. 

MOVE a, reg0 (i0) 
MOVE b, reg1 (i1) 
MPY acc0, reg0, reg1 (i2) 
MOVE c, reg2 (i3) 
ADD acc1, acc0, reg2 (i4) 
MOVE d, reg3 (i5) 
ADD acc2, acc1, reg3 (i6) 
MOVE acc2, p (i7) 
MOVE e, reg4 (i8) 
ADD acc3, acc1, reg4 (i9) 
ADD acc4, acc3, reg3 (i10) 
MOVE acc4, r (i11) 
ADD acc5, acc3, reg0 (i12) 
MOVE f, reg5 (i13) 
ADD acc6, acc5, reg5 (i14) 
ADD acc7, acc0, acc6 (i15) 
MOVE acc7, t (i16) 

MOVE  X: a, reg0 Y: b, reg1 (I0) 
MPY acc0, reg0, reg1 X: c, reg2 Y: d, reg3 (I1) 
ADD acc1, acc0, reg2 X: e, reg4 Y: f, reg5 (I2) 
ADD acc2, acc1, reg3   (I3) 
ADD acc3, acc1, reg4 acc2, X: p  (I4) 
ADD acc4, acc3, reg3   (I5) 
ADD acc5, acc3, reg0  acc4, Y: r (I6) 
ADD acc6, acc5, reg4   (I7) 
ADD acc7, acc0, acc6   (I8) 
MOVE  acc7, X: t  (I9) 

MOVE  X: a, X0 Y: b, Y0 
MPY A, X0, Y0 X: c, X1 Y: d, Y1 
ADD B, A, X1 X: e, X1 Y: f, Y0 
MOVE  A, X: m 
ADD A, B, Y1 
ADD A, B, X1 A, X: p 
ADD B, A, Y1 
ADD B, A, X0  B, Y: r 
ADD A, B, Y0 
MOVE  X: m, X0 
ADD B, A, X0 
MOVE  B, X: t 

MOVE  X: a, X0 Y: b, Y0 
MPY A, X0, Y0 X: c, X1 Y: d, Y1 
ADD B, A, X1 X: e, X1  
MOVE   A, Y0 
ADD A, B, Y1 
ADD A, B, X1 A, X: p  
ADD B, A, Y1  Y: f, Y1 
ADD B, A, X0  B, Y: r 
ADD A, B, Y1 
ADD B, A, Y0 
MOVE  B, X: t 

(a) 

(b) 

(c) (d) 
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Finally, we consider the time that accumulator/register spills been resolved in the 

entire code generation process. In methods [9, 17] they both perform this action at last, 

which may lengthen the schedule length like the example shown in Figure 5.1(c). The 

reason is that added spill codes cannot be scheduled in parallel with other instructions. 

Besides, although in methods [9, 17] they do not present detailed mechanisms to 

determine accumulator/register spills and insert spill codes, they definitely require an 

independent step to do this action. If the target architecture contains strict resource 

constraints, this step may cost considerable time. Thus, in the general method we want 

to design efficient mechanisms to determine and resolve accumulator/register spills, 

and integrate them into the instruction scheduling and code compaction phases. That 

is, we consider resource constraints during instruction scheduling, and then no extra 

action is required to determine accumulator/register spills and insert spill codes. 

 

5.3 Rotation Scheduling with Spill Codes Avoiding (RSSA) [38] 

In this section we introduce code generation method rotation scheduling with 

spill codes avoiding (RSSA), which is generalized from RSSP to suit various DSPs 

with similar architectural features. For RSSA it can handle target architectures with 

various numbers of function units, accumulators, registers, and data memory banks. 

As listed in Figure 5.2, RSSA contains five parts including MDFG construction, 

TDAG construction, instruction scheduling (I), instruction scheduling (II), and initial 

schedule retiming. First two parts are directly inherited from RSSP, and we present 

last three parts in some detail as follows. 

 

5.3.1 Instruction Scheduling (I) 

For a given loop written in high-level language, a TDAG is constructed after 

completing first two parts of RSSA. In the first instruction scheduling part, our goal is  
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to schedule all instructions except memory loads and resolve corresponding register/ 

accumulator spills. Steps marked 3.1~3.3 in Figure 5.2 belong to the first instruction 

scheduling part. In these steps we define an intermediate DAG Gop which contains all 

nodes of the TDAG will be scheduled in this part. 

Definition 5.1 A DAG Gop = (V, E, X, P) is a direct graph, where V is the node set 

representing ALU instructions, register transfers, and store variables; E ⊆ V × V is the 

edge set that defines the precedence relations over nodes in V; X(e) represents the 

variable accessed by an edge e; P(v) represents the type of node v. 

Figure 5.3 shows another TDAG example and its corresponding Gop. Next, we 

basically schedule nodes in Gop using list scheduling method, assuming the number of 

accumulators/registers are unlimited. If an instruction vi requires c time steps to 

complete, the destination operand of vi will be ready at the next c time step. That is, 

for an edge eij ∈ Gop, if vi is scheduled at time step t, vj can be scheduled at time step 

t+c or later. Assume that all instructions are completed in one time step. Figure 5.4(a) 

shows the scheduling result of Gop in Figure 5.3(b) with only one function unit. 

In the following we describe how to determine and resolve accumulator/register 

spills in our RSSA. Our idea is to calculate the number of accumulators/registers used 

at every time step, and variables listed in Table 5.2 are defined for our mechanism.  

1. Gc = Construct MDFG; 
1.1. Partition variables to memory banks; 
1.2. Unfold or tile Gc if necessary; 

2. Gt = Construct TDAG (Gc); 
3. S = Schedule all instructions except memory loads (Gt); 

3.1. Gop = Construct DAG Gop (Gt); 
3.2. S = Schedule nodes in Gop (Gop); 
3.3. S = Determine and solve accumulator spills (S, Gop); 

4. S = Schedule memory load instructions (S, Gt); 
5. S = Retime the initial scheduling result (S, Gt); 

Figure 5.2. The entire scheduling steps of RSSA. 
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That is, if an ALU result is defined and used by instructions scheduled at time step i 

and j, respectively, it will occupy an accumulator from time steps i to j–1. Similarly, if 

an ALU result is transferred from an accumulator at time step i and used by the 

instruction scheduled at time step j, it will occupy a register from time steps i to j–1. 

Figure 5.4(a) also shows variables defined in Table 5.2 for that Gop scheduling result. 

Figure 5.3. The Gop example. (a) TDAG, (b) corresponding Gop. 
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M1: 0, 2, 4, 17, 23, 24 
M2: 6, 8, 10, 19, 21, 25 

t FU1 M1 M2 acc_1 reg_1 reg_2 acclist_1 reglist_1 reglist_2 
1 1   1 0 0    
2 3   2 0 0 1   
3 5 X3  2 1 0 1 X3  
4 7  X5 2 1 1 1 X3 X5 
5 9 X7  2 2 1 1 X3, X7 X5 
6 11   3 2 1 1, 9 X3, X7 X5 
7 12  X11 3 2 2 1, 9 X3, X7 X5, X11 
8 13   4 2 2 1, 9, 12 X3, X7 X5, X11 
9 16 17  3 2 2 1, 9 X3, X7 X5, X11 

10 20  21 2 2 2 9 X3, X7 X5, X11 
11 14 24  2 2 0 9 X3, X7  
12 15  19 3 0 0 9, 14   
13 18   2 0 0 9   
14 22 23  1 0 0    
15   25 0 0 0    

 Figure 5.4(a). Gop nodes only scheduling result of Figure 5.3(a), unlimited resource. 
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5.3.1.1 Mechanisms for Resolving Accumulator Spills 

As described in section 5.2, we first transfer all overwritten ALU results to 

registers, and temporarily store them to memory only when the number of registers is 

insufficient. Suppose that an accumulator spill occurs at time step t for accumulators 

accij. In this situation we must select a node v from acclist_i(t) and transfer the ALU 

result generated by v to a register. From all nodes in acclist_i(t), we want to transfer 

an ALU result rt that will release an accumulator with the longest time free of use. 

Next, an additional register transfer is scheduled at time step t and all variables 

defined in Table 5.2 are updated accordingly. Note that the transferred value rt will be 

ready at time step t+c if a register transfer instruction requires c time steps to 

complete. Therefore, if rt is used by an instruction u scheduled before time step t+c, 

additional time steps must be inserted to delay node u. These steps will be applied 

repeatedly until all accumulator spills are resolved. 

Suppose the target architecture is the Motorola DSP56000, we use the schedule 

in Figure 5.4(a) to illustrate above steps. In this schedule accumulator spills occur at 

time steps 5~8 and 11. At time step 5, after checking the content of uselist(u) for all 

nodes u in acclist_1(5), node 9 is selected to transfer its value. An additional register  

Variable Type Definition 
sch(v) integer the time step that Gop node v is scheduled 

uselist(v) integer list time steps that Gop nodes, which use node v, are scheduled 

acc_i(t) integer 
the number of accumulators accij, for j = 1…m, been 
occupied at time step t 

acclist_i(t) node list 
Gop nodes with types M or A whose generated ALU results 
reside in accumulators accij, for j = 1…m, at time step t, 
except the one that are scheduled in FUi at time step t 

reg_i(t) integer 
the number of registers regij, for j = 1…n, been occupied at 
time step t 

reglist_i(t) node list 
Gop nodes with type T whose transferred ALU results reside 
in registers regij, for j = 1…n, at time step t 

Table 5.2. Variables defined for solving accumulator/register spills. 
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transfer, X9, is scheduled at memory bank M2 at time step 5, because reg_1(5) is 

smaller than reg_2(5). Another register transfer, X1, is also scheduled at M1 at time 

step 7. Figure 5.4(b) shows the modified schedule without any accumulator spill. 

 

5.3.1.2 Mechanisms for Resolving Register Spills 

After resolving accumulator spills, we still use variables defined in Table 5.2 to 

deal with register spills. Note that registers regij are dedicated for use for referencing 

data from Mi, so register spills occurring at each memory bank have to be resolved 

separately. Suppose that a register spill occurs at time step t for register regij. In this 

case we must select a node v from reglist_i(t) to temporarily store. From all nodes in 

reglist_i(t), we store a value that will be used at latest to release a register with the 

longest time interval. Assume that the selected value rt will be used at time steps p < t 

and q > t. Then, rt is stored later than time step p and reloaded earlier than time step 

q–c, if a load variable instruction requires c time steps to complete. If rt is not yet 

used, the added store variable instruction can replace the corresponded register 

transfer. Moreover, an inserted memory access may not be successfully scheduled due 

Figure 5.4(b). Gop nodes only scheduling result of Figure 5.3(a), with unlimited 
number of input registers. 

t FU1 M1 M2 acc_1 reg_1 reg_2 acclist_1 reglist_1 reglist_2 
1 1   1 0 0    
2 3   2 0 0 1   
3 5 X3  2 1 0 1 X3  
4 7  X5 2 1 1 1 X3 X5 
5 9 X7  2 2 1 1 X3, X7 X5 
6 11  X9 2 2 2 1 X3, X7 X5, X9 
7 12  X11 2 2 3 1 X3, X7 X5, X9, X11 
8 13 X1  2 3 3 12 X1, X3, X7 X5, X9, X11 
9 16 17  1 3 3  X1, X3, X7 X5, X9, X11 

10 20  21 1 2 3  X3, X7 X5, X9, X11 
11 14 24  1 2 1  X3, X7 X9 
12 15  19 2 0 1 14  X9 
13 18   1 0 1   X9 
14 22 23  1 0 0    
15   25 0 0 0    

 



 67 

 

 

 

 

 

 

 

 

 

to insufficient time steps. In this case we insert an extra time step to schedule this 

instruction individually as late as possible. Similarly, we update variables defined in 

Table 5.2 accordingly, and repeat these steps until all register spills are resolved. 

We use the schedule shown in Figure 5.4(b) to illustrate above steps. Suppose the 

target architecture is still the Motorola DSP56000, register spills occur at time steps 

7~8 at M1 and time steps 6~9 at M2. At time step 7, after checking the content of 

uselist(u) for all nodes u in reglist_1(7), node X3 is selected. Additional S3 and L3 are 

scheduled at time steps 6 and 9 respectively, because this value is used by nodes 12 

and 15. S9 and L9 are also inserted at time steps 5 and 12, respectively. In this case 

S9 can directly replace instruction X9 because X9 is not yet used at time step 5. 

Figure 5.4(c) shows the scheduling result without any accumulator/register spill. 

 

5.3.2 Instruction Scheduling (II) 

So far, we have obtained a schedule that contains all nodes in the TDAG except 

those with types L/C. In the second instruction scheduling part of RSSA, remaining 

memory loads will be inserted to complete the initial scheduling result. We list rules 

basically inherited from RSSP to schedule memory loads and avoid generating  

t FU1 M1 M2 acc_1 reg_1 reg_2 acclist_1 reglist_1 reglist_2 
1 1   1 0 0    
2 3   2 0 0 1   
3 5 X3  2 1 0 1 X3  
4 7  X5 2 1 1 1 X3 X5 
5 9 X7  2 2 1 1 X3, X7 X5 
6 11  S9 2 2 1 1 X3, X7 X5 
7 12 S3 X11 2 1 2 1 X7 X5, X11 
8 13 X1  2 2 2 12 X1, X7 X5, X11 
9 16 17  1 2 2  X1, X7 X5, X11 

10 20 L3 21 1 2 2  L3, X7 X5, X11 
11 14 24  1 2 0  L3, X7  
12 15  19 2 0 0 14   
13 18  L9 1 0 1   L9 
14 22 23  1 0 0    
15   25 0 0 0    

 Figure 5.4(c). Gop nodes only scheduling result of Figure 5.3(a), without 
accumulator spills. 
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register spills below. Their main feature is to consider the limited number of registers 

during scheduling, so that no extra action is required to deal with register spills. 

1. According to the execution sequence of ALU instructions, schedule their 

predecessors as soon as possible. 

2. A variable or constant loaded into a register cannot be replaced before being used, 

and reg_i(t) cannot exceed the number of registers at any time step. 

3. If a memory load instruction cannot be scheduled successfully due to insufficient 

registers, a variable currently residing in a register is selected for storing and 

reloading using the mechanism described in subsection 5.3.1.2. 

4. For previous rule, if the selected variable is not transferred from an accumulator, 

the additional store variable instruction is unnecessary. 

5. If a memory load instruction cannot be scheduled successfully due to insufficient 

time steps, an additional time step is inserted to schedule this instruction 

individually as late as possible as in subsection 5.3.1.2. 

Figure 5.4(d) shows the scheduling result of TDAG in Figure 5.3(a). Finally, 

because we have considered accumulator/register spills already, an appropriate 

physical accumulators/registers assignment certainly exists. 

Figure 5.4(d). The initial scheduling result of Gt of Figure 5.3(a). 

t FU1 M1 M2 acc_1 reg_1 reg_2 acclist_1 reglist_1 reglist_2 
1  0 C1 0 1 1  0 C1 
2 1 2 6 1 2 1  0, 2 6 
3 3 4 8 2 2 2 1 0, 4 6, 8 
4 5 X3  2 1 2 1 X3 6, 8 
5 7 C2 X5 2 2 2 1 C2, X3 8, X5 
6 9 X7 10 2 2 2 1 X3, X7 10, X5 
7 11  S9 2 2 1 1 X3, X7 X5 
8 12 S3 X11 2 1 2 1 X7 X5, X11 
9 13 X1  2 2 2 12 X1, X7 X5, X11 

10 16 17  1 2 2  X1, X7 X5, X11 
11 20 L3 21 1 2 2  L3, X7 X5, X11 
12 14 24  1 2 0  L3, X7  
13 15  19 2 0 0 14   
14 18  L9 1 0 1   L9 
15 22 23  1 0 0    
16   25 0 0 0    
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5.3.3 Initial Schedule Retiming 

In the last part of RSSA, we still apply the multi-dimensional rotation scheduling 

to explore potential instruction-level parallelism between different iterations. 

Variables defined in Table 5.2 are dynamically updated during rotation phases to 

determine at which time step a retimed instruction can be rescheduled. We first 

describe after rescheduling an instruction at time step t, the time interval that its 

corresponding value must reside in an accumulator or register. Assume that the length 

of the initial schedule is len. If the retimed instruction is of type L/C/T, its referenced 

value rt must occupy a register from time step t to len because this value will be used 

for the later iteration. Similarly, the ALU result rt of the retimed ALU instruction must 

occupy an accumulator from time step t to len. Note that the value rt is ready at time 

step t+c if the rescheduled instruction requires c time steps to complete. Then, for a 

retimed instruction, we reschedule it at the earliest time step that satisfies precedence 

relations, gets all ready source operands, and will not cause any accumulator/register 

spill. Meanwhile, variables defined in Table 5.2 are also updated after rescheduling an 

ALU instruction, because some resources will be released by its predecessors. In 

addition, a load constant can be rescheduled for any memory bank to achieve higher 

performance, because we store constants in all memory banks in advance. The final 

retimed scheduling result of Figure 5.4(d) is shown in Figure 5.4(e). 

 

5.4 Applying to Real DSP Families 

In this section, we present how to apply the hypothetical machine model and 

RSSA, with some modifications, to various real DSP families with architectural 

features listed in Table 5.1. We divide the description into three parts including data 

memory bank, function unit, and register set. 
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5.4.1 Data Memory Bank 

For the data memory bank, the original definition of the hypothetical machine 

model and RSSA can satisfy Motorola DSP56000/DSP56001, DSP56300, and NEC 

uPD7701x families. Other architectures contain of only one data memory bank, so the 

variable partition step is unnecessary if we apply RSSA to them. However, these 

architectures still permit parallel memory accesses, with special bus exchange unit or 

independent buses. In this case we have to modify the first parallel condition of our 

machine model to allow more than N move operations to be executed in one cycle. 

For members of TI TMS320C6x families, because two memory reads/writes can be 

performed simultaneously, we simply treat these architectures with two virtual data 

memory banks and apply the original RSSA. But for Motorola DSP56800 and NEC 

ADSP2100 families only two memory reads can be executed in parallel, an additional 

condition will be required in instruction scheduling phases to satisfy this restriction. 

 

5.4.2 Function Unit 

For the function unit, the original definition of the hypothetical machine model 

and RSSA directly satisfies all Motorola families. NEC uPD7701x family members 

t FU1 M1 M2 acc_1 reg_1 reg_2 acclist_1 reglist_1 reglist_2 
1 3 4 8 2 2 2 1 0, 4 6, 8 
2 5 X3  2 1 2 1 X3 6, 8 
3 7 C2 X5 2 2 2 1 C2, X3 8, X5 
4 9 X7 10 2 2 2 1 X3, X7 10, X5 
5 11  S9 2 2 1 1 X3, X7 X5 
6 12 S3 X11 2 1 2 1 X7 X5, X11 
7 13 X1  2 2 2 12 X1, X7 X5, X11 
8 16 17  1 2 2  X1, X7 X5, X11 
9 20 L3 21 1 2 2  L3, X7 X5, X11 

10 14 24 C1 1 2 1  L3, X7 C1 
11 15 0 19 2 1 1 14 0 C1 
12 18 2 L9 1 2 2  0, 2 C1, L9 
13 22 23 6 1 2 2  0, 2 6, C1 
14 1  25 1 2 1 1 0, 2 6 

Figure 5.4(e). The retimed scheduling result of Gt of Figure 5.3(a). 
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although contain three function units with different types, these function units must be 

executed exclusively. In this case we can treat these architectures contain a single 

function unit. Then, one instruction is scheduled at a time using the original RSSA, 

and allocated to the function unit that is suitable to execute. For members of TI and 

Analog Device families, they all consist of multiple function units which can be 

executed in parallel, but each function unit only can execute a restricted instruction set. 

That is, we must add some additional conditions in instruction scheduling phases in 

RSSA, to check only instructions that can be allocated to different function units are 

scheduled in parallel. 

 

5.4.3 Register Set 

As for the register, the original definition of the hypothetical machine model and 

RSSA directly satisfies all Motorola families. Because the functionality of registers 

AF/AR and MR in Analog Device ADSP2100 family is the same as accumulators in 

Motorola families, our machine model and RSSA basically suit these Analog Device 

members. From architectural features of ADSP2100 family, in RSSA we will use 

variables acc_ALU(t), acc_MAC(t), and reg_1(t) to record the number of registers 

used at time step t. However, because in these architectures source operands of ALU 

and MAC must be stored in different register sets, a single reg_1(t) variable cannot 

represent the usage of these registers. In this case we actually need two variables 

reg_ALU(t) and reg_MAC(t) to separately record the number of occupied registers for 

two register sets. Then, original scheduling rules and variable modifying mechanisms 

defined in RSSA can be directly applied. On the other hand, members in NEC and TI 

families contain a homogeneous register set, which indicates all registers are identical 

and used to store both source and destination operands. In our hypothetical machine 

model we originally define the heterogeneous register sets. Nevertheless, if we merge 
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all accumulators and registers into a single register file, it can simulate the 

architecture with a homogeneous register set. Meanwhile, since all registers are 

identical, in RSSA we only need variables reg_i(t) to record the total number of 

registers occupied by all source and destination operands at time step t, and variables 

acc_i(t), as well as variables acclist_i(t), are no longer required. Mechanisms 

designed for updating variables reg_i(t) and reglist_i(t) can be inherited from the 

original RSSA. For NEC uPD7701x family members only a single reg_1(t) is 

necessary. For members of TI families, because they further divide homogeneous 

registers into two independent register files, we have to use two variables reg_A(t) 

and reg_B(t) for each register file. 

From above descriptions, with minor modifications, our hypothetical machine 

model and RSSA is capable for simulating all architectural features listed in Table 5.1. 

Therefore, we conclude that the proposed machine model and RSSA have enough 

flexibility, which can apply to real DSP families with various architectural features. 

 

5.5 Performance Evaluations [38] 

5.5.1 Comparison with Previous Work 

At first we set the target architecture equivalent to the Motorola DSP56000, and 

select several MDFGs represented DSP applications to evaluate methods including 

Cho [9], Malik [17], Shiue [20], and RSSA. Similar as in chapter 4, four scheduling 

results are derived from RSSA with different variable partition mechanisms, and 

RSVR [30], RSF [14], RST [14], and RSP [36] are used for comparison after inserting 

necessary spill codes. For a single iteration in the repetitive pattern, we use two 

metrics including schedule length and instruction count to evaluate performance at the 

same time. Shorter schedule length basically indicates shorter execution time for both 

a single iteration and the entire retimed loop. On the other hand, less instruction count  
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indicates not only less power consumption, but also less memory space required to 

store (smaller code size). Table 5.3 lists schedule lengths for a single iteration in the 

repetitive pattern for selected MDFGs. In this table we can see that RSSA usually 

achieves the shortest schedule lengths compared to other methods. The main reason is 

the usage of retiming technique, which reassigns instructions in consecutive iterations 

to explore potential instruction-level parallelism. As more compact codes are obtained, 

system resources are fully utilized and schedule lengths are shortened. 

Table 5.4 lists the instruction counts for a single iteration in the repetitive pattern. 

From this table we find that RSSA and Cho [9] generate much less instruction counts, 

because they use accumulators and registers to store temporary variables. Other 

methods directly let temporary variables write back to memory and reload when 

required, so many memory accesses are really unnecessary. Therefore, instruction 

counts generated by RSSA and Cho [9] can be kept relatively low. In subsection 5.5.3 

we will further describe the effectiveness of RSSA on both evaluation metrics. 

Table 5.3. Schedule lengths obtained by different code generation algorithms. 
RSSA  Cho Malik Shiue RSVR RSF RST RSP 

RSVR RSF RST RSP 
Wave Digital Filter 7 9 9 8 6 8.5 6 6 5 5.5 5.5 

Filter 8 13 13 9 11.5 9 6 6 5.5 5 4.5 
IIR Filter 2D 20 29 33 25 27.5 28 24.5 16 16 16 16 

forward-substitution 7 12 12 9 10 11.5 7.5 5 5.5 5 5 
THCS 6 8 8 6 6.5 5.5 5 4 4 4 4 
DFT 14 21 21 18 21 18.5 18 13 12.5 13 12.5 

Floyd-Steinberg 20 36 37 29 32.5 30.5 23.5 18 17.5 17 17 
Transmission Line 15 20 21 19 18 25 18 12 12 12 12 

IIR Filter 1D 11 15 15 11 14 -- -- 8 8 -- -- 
Differential Equation 

Solver 
16 20 21 18 21.5 -- -- 13 11.5 -- -- 

All-pole Lattice Filter 21 37 37 35 28 -- -- 17 16 -- -- 
Elliptic Filter 42 62 66 56 69 -- -- 36 34 -- -- 
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5.5.2 The Influence of Resources 

To harvest the benefits provided by the irregular DSP architecture, using an 

effective code generation method to fully utilize system resources is obviously 

essential. However, in order to explore the instruction-level parallelism and reduce 

accumulator/register spills, increasing the number of resources is a more direct way. 

Hence, in the following we set our parameterized machine model to simulate target 

architectures with different number of resources, and use the general method RSSA to 

evaluate selected MDFGs. Scheduling results affected by different kinds of resources 

will be studied on both evaluation metrics. 

We first list some preliminaries. After transferring MDFGs to TDAGs using 

RSSA, Table 5.5 lists the number of ALU instructions, the critical path length, and the 

number of nodes in every TDAG. This information can be treated as lower bounds of 

scheduling results. If the obtained schedule length is equal to or less than the critical  

RSSA  Cho Malik Shiue RSVR RSF RST RSP 
RSVR RSF RST RSP 

Wave Digital Filter 13 16 16 16 15.5 16 16 14 13 13 14 
Filter 11 16 16 16 16 16 16 11 10.5 10.5 11 

IIR Filter 2D 37 64 68 64 64 64 64 37 37 37 37 
forward-substitution 11 20 20 18 17.5 18 18 11 10.5 10.5 11 

THCS 10 16 16 14 14.5 14 14 10 9.5 10 10 
DFT 29 48 49 44 44 44 45.5 32 30 31.5 32 

Floyd-Steinberg 39 68 70 59 59 59.5 59 39 39.5 40 41 
Transmission Line 28 48 48 42 42 42 42 29 29 28 29 

IIR Filter 1D 19 32 32 30 29.5 -- -- 18 17.5 -- -- 
Differential Equation 

Solver 
23 44 44 37 37 -- -- 26 25.5 -- -- 

All-pole Lattice Filter 37 60 60 51 51.5 -- -- 35 34.5 -- -- 
Elliptic Filter 75 136 136 125 116.5 -- -- 75 72 -- -- 

 

Table 5.4. Number of operations really executed in an iteration obtained by 
different code generation algorithms. 
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path of the corresponding TDAG, it indicates that the shortest schedule is achieved. 

Besides, when architecture has only one function unit, a schedule with length equal to 

the number of ALU nodes is also shortest, because all ALU instructions must be 

executed in serial. On the other hand, if an iteration consists of exactly the same 

number of nodes as the TDAG, it means that no spill codes are inserted. In Tables 

5.6~5.10 we use shaded values to represent a schedule with shortest length or without 

any spill code. Moreover, when either the schedule length or the instruction count is 

improved by additional resources, the improved result is shown as a bold value. 

Table 5.6 shows results of different number of accumulators. From this table, the 

instruction count decreases obviously when the target architecture contains more 

accumulators, which represents that accumulator spills occur very often. If more ALU 

results can reside in additional accumulators, spill codes will be reduced due to less 

occurrences of accumulator spill. Furthermore, since fewer overwritten ALU results 

are temporarily transferred to registers, occurrences of register spill also can be 

reduced. As for the schedule length, because it is only slightly shortened, increasing 

the number of accumulators cannot explore the instruction-level parallelism. 

Benchmarks 
Number of ALU 

nodes in Gt 
Critical path of Gt 

Number of nodes 
in Gt 

Wave Digital Filter 4 6 14 
Filter 4 7 11 

IIR Filter 2D 16 7 34 
Forward-substitution 5 6 11 

THCS 4 4 10 
DFT 12 7 32 

Floyd-Steinberg 17 12 38 
Transmission Line 12 10 26 

IIR Filter 1D 8 6 17 
Differential Equation Solver 11 11 25 

All-pole Lattice Filter 15 18 33 
Elliptic Filter 34 19 65 

Table 5.5. Characteristics of selected TDAGs. 
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Table 5.6. Experimental results, with target architectures contains different 
number of accumulators. 

[1] Wave Digital Filter [7] Floyd-Steinberg 
[2] Filter [8] Transmission Line 
[3] Infinite Impulse Response Filter 2D [9] Infinite Impulse Response Filter 1D 
[4] Forward-substitution [10] Differential Equation Solver 
[5] Toeplitz Hyperbolic Cholesky Solver [11] All-pole Lattice Filter  
[6] Discrete Fourier Transform [12] Elliptic Filter 

1 FU, 2 acc, 4 reg, 2 mem 1 FU, 3 acc, 4 reg, 2 mem 
RSVR RSF RST RSP RSVR RSF RST RSP  

len # len # len # len # len # len # len # len # 
[1] 6 14 5 13 5.5 13 5.5 14 6 14 5 13 5.5 13 5.5 14 
[2] 6 11 5.5 10.5 5 10.5 4.5 11 6 11 5.5 10.5 4.5 10.5 4.5 11 
[3] 16 37 16 37 16 37 16 37 16 34 16 34 16 34 16 34 
[4] 5 11 5.5 10.5 5 10.5 5 11 5 11 5.5 10.5 5 10.5 5 11 
[5] 4 10 4 9.5 4 10 4 10 4 10 4 9.5 4 10 4 10 
[6] 13 32 12.5 30 13 31.5 12.5 32 12 32 12 28.5 12 31 12 32 
[7] 18 39 17.5 39.5 17 40 17 41 18 38 17.5 38.5 17 38.5 17 39 
[8] 12 29 12 29 12 28 12 29 12 27 12 27 12 26 12 27 
[9] 8 18 8 17.5 -- -- -- -- 8 17 8 16.5 -- -- -- -- 

[10] 13 26 11.5 25.5 -- -- -- -- 13 26 11.5 25 -- -- -- -- 
[11] 17 35 16 34.5 -- -- -- -- 17 33 16 31.5 -- -- -- -- 
[12] 36 75 34 72 -- -- -- -- 35 70 30.5 66.5 -- -- -- -- 

Table 5.7. Experimental results, with target architectures contains different 
number of input registers. 

1 FU, 2 acc, 4 reg, 2 mem 1 FU, 2 acc, 6 reg, 2 mem 
RSVR RSF RST RSP RSVR RSF RST RSP  

len # len # len # len # len # len # len # len # 
[1] 6 14 5 13 5.5 13 5.5 14 6 14 5 13 5 13 5 14 
[2] 6 11 5.5 10.5 5 10.5 4.5 11 5 11 5 10.5 4 10.5 4 11 
[3] 16 37 16 37 16 37 16 37 16 37 16 37 16 37 16 37 
[4] 5 11 5.5 10.5 5 10.5 5 11 5 11 5 10.5 5 10.5 5 11 
[5] 4 10 4 9.5 4 10 4 10 4 10 4 9.5 4 10 4 10 
[6] 13 32 12.5 30 13 31.5 12.5 32 13 32 12.5 28.5 12 30.5 12.5 32 
[7] 18 39 17.5 39.5 17 40 17 41 18 39 17.5 39.5 17 39.5 17 40 
[8] 12 29 12 29 12 28 12 29 12 29 12 29 12 28 12 29 
[9] 8 18 8 17.5 -- -- -- -- 8 18 8 17.5 -- -- -- -- 

[10] 13 26 11.5 25.5 -- -- -- -- 13 25 12 23 -- -- -- -- 
[11] 17 35 16 34.5 -- -- -- -- 17 35 16 33 -- -- -- -- 
[12] 36 75 34 72 -- -- -- -- 35 73 30.5 69.5 -- -- -- -- 
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Then, Table 5.7 shows results of different number of registers. These results 

indicate that the instruction-level parallelism still cannot be explored by using more 

registers. In addition, the instruction count also be improved slightly, which means 

register spills rarely occur in fact. Thus, if we only increase the number of registers, 

scheduling results will be almost unchanged for both evaluation metrics. 

In Table 5.8 we show results of different number of function units but the 

number of accumulators remains two. That is, when the target architecture has two 

function units, only one dedicated accumulator is capable to store destination 

operands calculated from each function unit. From this table schedule lengths are 

obviously shortened, because the second function unit is beneficial to explore 

instruction-level parallelism. However, instruction counts increase in some MDFGs as  

Table 5.8. Experimental results, with target architectures contains different 
number of function units. 

[7] Wave Digital Filter [7] Floyd-Steinberg 
[8] Filter [8] Transmission Line 
[9] Infinite Impulse Response Filter 2D [9] Infinite Impulse Response Filter 1D 
[10] Forward-substitution [10]

 Differential Equation Solver 
[11] Toeplitz Hyperbolic Cholesky Solver

1 FU, 2 acc, 4 reg, 2 mem 2 FU, 2 acc, 4 reg, 2 mem 
RSVR RSF RST RSP RSVR RSF RST RSP  

len # len # len # len # len # len # len # len # 
[1] 6 14 5 13 5.5 13 5.5 14 6 14 5 13 5.5 13 5 14 
[2] 6 11 5.5 10.5 5 10.5 4.5 11 6 11 5.5 10.5 4.5 10.5 3.5 11 
[3] 16 37 16 37 16 37 16 37 12 39* 13 40* 12.5 40* 12.5 40* 
[4] 5 11 5.5 10.5 5 10.5 5 11 4 11 4 10.5 4.5 10.5 4 11 
[5] 4 10 4 9.5 4 10 4 10 3 10 3 9.5 3 10 3.5 10 
[6] 13 32 12.5 30 13 31.5 12.5 32 12 34* 11.5 32* 13 35* 12 34* 
[7] 18 39 17.5 39.5 17 40 17 41 15 41* 16.5 45.5* 16 45.5* 14 42.5*
[8] 12 29 12 29 12 28 12 29 8 28 11.5 30.5* 9.5 29* 11.5 30.5*
[9] 8 18 8 17.5 -- -- -- -- 6 18 7 18* -- -- -- -- 

[10] 13 26 11.5 25.5 -- -- -- -- 10 25 11.5 26.5* -- -- -- -- 
[11] 17 35 16 34.5 -- -- -- -- 16 33 14 35.5* -- -- -- -- 
[12] 36 75 34 72 -- -- -- -- 27 80* 29 80* -- -- -- -- 
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asterisked, which represents more spill codes are inserted. Apparently these additional 

spill codes are mainly incurred from frequently occurred accumulator spills. If an 

ALU result will be used later than next ALU instruction been executed, it must be 

temporarily stored to avoid being overwritten. Thuse, we conclude that using more 

function units only is not appropriate to explore instruction-level parallelism. 

Similarly, Table 5.9 still shows results of different number of function units. This 

time we increase the number of accumulators to four and evenly allocate them to each 

function unit. Compared to Table 5.8, clearly that not only schedule lengths are 

further shortened, but also spill codes are inserted infrequently. These results are 

essentially the combination of results shown in Tables 5.6 and 5.8. Using more 

function units is beneficial to shorten schedule lengths, and adding additional 

Table 5.9. Experimental results, with target architectures contains different 
number of function units. 

1 FU, 2 acc, 4 reg, 2 mem 2 FU, 4 acc, 4 reg, 2 mem 
RSVR RSF RST RSP RSVR RSF RST RSP  

len # len # len # len # len # len # len # len # 
[1] 6 14 5 13 5.5 13 5.5 14 6 14 4.5 13 5.5 13 5 14 
[2] 6 11 5.5 10.5 5 10.5 4.5 11 6 11 5.5 10.5 4.5 10.5 3.5 11 
[3] 16 37 16 37 16 37 16 37 10 34 10 34 9 34 9 34 
[4] 5 11 5.5 10.5 5 10.5 5 11 4 11 4 10.5 4 10.5 4 11 
[5] 4 10 4 9.5 4 10 4 10 3 10 3 9.5 3 10 3 10 
[6] 13 32 12.5 30 13 31.5 12.5 32 10 32 9 28 9.5 30 10 32 
[7] 18 39 17.5 39.5 17 40 17 41 13 38 14 39.5 13 39.5 12.5 38 
[8] 12 29 12 29 12 28 12 29 8 26 8.5 26 8.5 25 8.5 26 
[9] 8 18 8 17.5 -- -- -- -- 6 17 6 16.5 -- -- -- -- 

[10] 13 26 11.5 25.5 -- -- -- -- 10 25 10 25.5 -- -- -- -- 
[11] 17 35 16 34.5 -- -- -- -- 16 33 13 30.5 -- -- -- -- 
[12] 36 75 34 72 -- -- -- -- 23 70 24 68 -- -- -- -- 
[1] Wave Digital Filter [7] Floyd-Steinberg 
[2] Filter [8] Transmission Line 
[3] Infinite Impulse Response Filter 2D [9] Infinite Impulse Response Filter 1D 
[4] Forward-substitution [10] Differential Equation Solver 
[5] Toeplitz Hyperbolic Cholesky Solver [11] All-pole Lattice Filter  
[6] Discrete Fourier Transform [12] Elliptic Filter 



 79 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

accumulators can reduce occurrences of spill codes efficiently. Hence, if we want to 

explore instruction-level parallelism, both numbers of function units and accumulators 

must be increased. 

Finally, in Table 5.10 we show results of increasing the number of data memory 

banks. Both architectures consist of six input registers evenly allocated to each data 

memory bank. From these results schedule lengths are hardly improved without 

additional function units, and using more data memory banks seems helpful to reduce 

instruction counts. The reason is that with the number of data memory banks 

increasing, more independent memory accesses, as well as register transfers inserted 

to resolve accumulator spills, can be executed simultaneously. This situation lets the 

instruction-level parallelism between move operations be explored, which is 

Table 5.10. Experimental results, with target architectures contains different 
number of data memory banks. 

1 FU, 3 acc, 6 reg, 2 mem 1 FU, 3 acc, 6 reg, 3 mem 
RSVR RSF RST RSP RSVR RSF RST RSP  

len # len # len # len # len # len # len # len # 
[1] 6 14 5 13 5 13 5 14 4 14 3 12.7 5 13.3 4 14 
[2] 6 11 5.5 10.5 4.5 10.5 4 11 6 11 5.3 10.3 4 10.3 4 11 
[3] 16 34 16 34 16 34 16 34 16 34 16 34 16 34 16 34 
[4] 5 11 5 10.5 5 10.5 5 11 5 11 5 10.3 5 10.3 5 11 
[5] 4 10 4 9.5 4 10 4 10 4 10 4 9.3 4 10 4 10 
[6] 12 32 12 28 12 30 12 32 12 32 12 26.7 12 30.3 12 32 
[7] 18 38 17 38.5 17 38.5 17 39 18 38 17 38.3 17 38.3 17 39 
[8] 12 27 12 27 12 26 12 27 12 27 12 27 12 25.7 12 27 
[9] 8 17 8 16.5 -- -- -- -- 8 17 8 16 -- -- -- -- 

[10] 13 25 11.5 22.5 -- -- -- -- 14 26 11.7 21.7 -- -- -- -- 
[11] 17 33 16 31.5 -- -- -- -- 17 33 15.7 30 -- -- -- -- 
[12] 35 68 30.5 65 -- -- -- -- 35 68 35.7 64.3 -- -- -- -- 
[1] Wave Digital Filter [7] Floyd-Steinberg 
[2] Filter [8] Transmission Line 
[3] Infinite Impulse Response Filter 2D [9] Infinite Impulse Response Filter 1D 
[4] Forward-substitution [10] Differential Equation Solver 
[5] Toeplitz Hyperbolic Cholesky Solver [11] All-pole Lattice Filter 
[6] Discrete Fourier Transform [12] Elliptic Filter 
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beneficial to reduce occurrences of register spills. However, implementing additional 

data memory banks, associated with dedicated data buses, definitely requires heavy 

hardware costs. Besides, recall that the TDAG is enlarged factor equal to the number 

of data memory banks before using variable partition mechanisms proposed in RSF, 

RST, and RSP. A larger TDAG also costs longer time doing code generation. Thus, we 

do not recommend using more data memory banks to reduce the instruction count, 

because the cost-performance is not worth. 

 

5.5.3 Brief Summaries 

After showing RSSA is effective compared to previous work under the Motorola 

DSP56000 architecture, we present its effectiveness in some detail on both evaluation 

metrics. As shown in Tables 5.8 and 5.9, when the target architectures consists of two 

function units, RSSA can achieve schedule lengths to their lower bounds in most 

selected MDFGs. If there is only one function unit, RSSA still can obtain schedule 

lengths almost equal to the number of ALU instructions, which indicates these 

schedules cannot be shortened further. On the other hand, according to Tables 

5.5~5.10, RSSA really generates quite few spill codes especially when the target 

architecture has more than four accumulators. This is because we prefer to transfer an 

overwritten ALU result to a register, and insert spill codes only when required. In 

addition, we compact spill codes with regular codes as far as possible, in order to 

prevent lengthening the final schedule length. Whereas RSSA usually achieves 

optimal results on both evaluation metrics, we conclude that it is quite effective. 

Then, we summarize the influence of differing number of resources on the 

scheduling result. From descriptions in subsection 5.5.2, adding more accumulators to 

keep more ALU results for further using is the most efficient way to reduce spill 

codes. According to our evaluation results, almost all spill codes can be eliminated if 
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the target architecture contains more than four accumulators. Increasing the number of 

registers or data memory banks is also useful, but its improvement is not as obvious as 

using more accumulators. Besides, implementing additional data memory banks and 

associated data buses requires heavy hardware costs. Therefore, we think a target 

architecture that contains two data memory banks and four registers is appropriate. As 

for exploring the instruction-level parallelism, adding additional function units and 

accumulators concurrently is certainly necessary. Based on evaluation results shown 

in Table 5.9, RSSA generates the shortest schedules without too many spill codes in 

most MDFGs, so two function units with four accumulators are actually sufficient. 

Using more than two function units no doubt can further shorten schedule lengths, but 

the improvement will be clearly slight. Furthermore, we also find that the variable 

partition mechanism proposed in RSF is unsuitable for one-dimensional MDFGs. This 

is because loop-carried data dependences in one-dimensional MDFGs are usually with 

distance one, and most memory accesses will reference variables from the same data 

memory bank after applying loop unfolding. Thus, a memory access may easily fail to 

be scheduled successfully in time, which will lengthen the schedule. 

In the following, we describe the efficiency of RSSA and compare to RSSP. 

Recall that both methods mainly contain following phases: the construction of graphs 

MDFG, TDAG, and Gop, variable partition, two separate instruction scheduling phases, 

the resolution of accumulator/register spills, and the initial schedule retiming. Among 

these phases, resolving accumulator spills is the most time-consuming and the main 

different phase between RSSP and RSSA. This phase is completed by analyzing the 

TDAG topology with a relatively complex mechanism in RSSP, and by constantly 

updating variables in RSSA. The mechanism used in RSSA is apparently more 

efficient, general, and accurate. Other phases between two methods are very similar in 

essence. Hence, we conclude that RSSA is efficient than RSSP. 
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Compared to related studies [9, 17], our RSSA still has advantages. Note that in 

methods [9, 17] they do not contain procedures to generate uncompacted codes, and 

schedule instructions using list scheduling similar as in RSSA. Thus, we omit steps of 

constructing graphs MDFG and TDAG, and focus on discussing their complexities in 

partitioning variables, allocating accumulators/registers, and resolving accumulator/ 

register spills. In method [17], it uses graph labeling to assign accumulators/registers 

and variables simultaneously, and applies simulated annealing to solve the graph 

labeling problem. The mechanism used to insert spill codes is not presented in detail, 

although it is definitely required. However, because the simulated annealing is 

time-consuming, it makes method [17] more complicated. Next, in method [9], it uses 

graph coloring to partition variables and allocate accumulators/registers separately, 

and gives a heuristic to solve the graph coloring problem. The mechanism used to 

insert spill codes is still lacked. Thus, clearly that the method proposed in [9] is 

efficient than the method proposed in [17]. Finally, in our RSSA, variable partitioning 

is very simple. Spill codes insertion and physical accumulators/registers assignment 

are also trivial, which means RSSA is efficient compared to both methods [9, 17]. 
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Chapter 6. Energy-efficient Code Generation Methods 

In addition to shorter schedule length and less instruction count, low power 

consumption becomes another important constraint in the DSP design specification 

[24-25]. In section 1.2 we mentioned that to increase the potential for a function unit 

to reuse an operand is an appropriate way to reduce the power consumed by a 

function unit. An instruction-level power analysis and some ideas which can be 

exploited by software development tools have been also listed in subsection 2.4.4. 

Therefore, the third study issue of this thesis is to design energy-efficient code 

generation methods based on the operand sharing technique. At first we briefly 

analyze RSSA from the viewpoint of low power consumption in section 6.1. Two 

proposed energy-efficient code generation methods based on the hypothetical machine 

model is presented in sections 6.2 and 6.3. Finally, in section 6.4, some performance 

evaluations are shown. 

 

6.1 Brief Analyses of RSSA [58] 

RSSA is an effective code generation method suited for DSPs with various 

architectural features, and its design goal is to achieve shorter schedule length and less 

spill codes. From the viewpoint of low power consumption, RSSA has satisfied three 

positive features. First, to achieve the instruction-level parallelism, RSSA schedules 

unpacked instructions as soon as possible without violating data dependencies and 

resource constraints. This strategy leads to pack instructions as much as possible, 

which can reduce the energy consumption in DSP especially with multiple data 

memory banks. Second, with appropriate variable partition mechanisms, memory 

accesses are separately scheduled at all data memory banks to explore potential higher 

memory bandwidth. Third, during the TDAG construction, RSSA assumes unlimited 
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numbers of accumulators/registers and removes all possible unnecessary memory 

accesses. Then, it prefers to use register transfers to resolve accumulator spills, and 

inserts additional store/load variable instructions only when required. By using these 

scheduling rules RSSA can apparently produce schedules with retrenched memory 

accesses. This feature is beneficial in reducing power consumption as well as code 

size, because a memory access requires considerably more power to execute than an 

ALU instruction. However, the potential for operand sharing are not successfully 

explored because RSSA simply uses list scheduling to schedule ALU instruction. 

Thus, in the following we will propose two energy-efficient methods extended from 

RSSA, which will retain all above positive features and further consider the operand 

sharing technique. 

 

6.2 Rotation Scheduling with Operand Reutilization (RSOR) [58] 

In this section we introduce the first proposed method named rotation scheduling 

with operand reutilization (RSOR). After presenting its scheduling steps in subsection 

6.2.1, some comparisons of RSSA and RSOR are described in subsection 6.2.2. 

 

6.2.1 Detailed Algorithms of RSOR 

Based on the scheduling steps of RSSA described in section 5.2, we only have to 

modify the mechanism used to schedule ALU instructions to consider the operand 

sharing technique. RSSA simply uses the list scheduling to individually schedule 

ALU instructions. In RSOR we define a sharing set to group ALU instructions with a 

common operand. Then, the list scheduling is still applied, and ALU instructions in 

the same sharing set will be restrictively scheduled to the same function unit at 

consecutive time steps to achieve the operand sharing. For a given TDAG, we use the 

following definition to describe the node grouping conditions for the sharing set. 
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Definition 6.1. For a given TDAG G = (V, E, X, P), nodes v1…vm ∈ V with type M/A 

are grouped into a sharing set if they satisfy two conditions: (1) All nodes v1…vm 

have the same predecessor vu ∈ V (P(vu) = L/M/A); (2) There is no path between any 

two nodes vi and vj in G for 1 ≤ i, j ≤ m. 

For example, in the TDAG shown in Figure 6.1, nodes 4 and 6 are grouped into a 

sharing set as they share the operand loaded by node 3. Nodes 14 and 16 are grouped 

into another sharing set, as they share the operand loaded by node 13. Suppose that 

the target architecture is the Motorola DSP56000; Figure 6.2 shows scheduling results 

of Figure 6.1 using RSSA and RSOR, while nodes with common operand are grouped  
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Figure 6.1. An example of TDAG and sharing sets. 

Figure 6.2. Scheduling results of Figure 6.1. (a) RSSA, (b) RSOR. 

(b) 

t FU1 M1 M2 
1 4 15  
2 6 11 13 
3 7   
4 9 8 0 
5 16 10  
6 12 1  
7 14  5 
8 17   
9 19 3 18 
10 2  20 

t FU1 M1 M2 
1 4 11  
2 6  13 
3 7   
4 9 8 15 
5  10  
6 12 1  
7 14   
8 16  0 
9 17  18 
10 19 3 5 
11 2  20 

operand reutilization (OPR) 
(a) 
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and consecutively scheduled or not. From these two schedules we find that one more 

operand reutilization is achieved in an iteration using RSOR. We call operand 

reutilization (OPR) the fact that an operand is reused by two instructions executed 

consecutively in the same function unit [4]. Recall that the average power consumed 

by the function unit is dramatically lower when one operand remains unchanged. That 

is, if a schedule has more OPRs, to execute this schedule will cost less power 

consumption at function units. However, because instructions resided in the same 

sharing set are restrictively scheduled to the same function unit at consecutive time 

steps, using RSOR may obtain longer schedules. This feature indicates that OPR may 

be a trade off for schedule length, which is similar to the LPLS method described in 

subsection 2.4.4. Moreover, if there are more than one function units in the target 

architecture, ALU instructions in the same sharing set are evenly distributed to all 

function units to explore the instruction-level parallelism. Note that an ALU 

instruction may reside in more than one sharing set, so after instruction scheduling not 

all potential operand sharing can be achieved. The overall scheduling steps for RSOR 

are listed in Figure 6.3. The main difference between RSSA and RSOR are the sharing 

set grouping and the mechanism used to schedule ALU instructions. 

1. Gc = Construct MDFG; 
1.1. Partition variables to memory banks; 
1.2. Unfold or tile Gc if necessary; 

2. Gt = Construct TDAG (Gc); 
3. S = Schedule all instructions except memory loads (Gt); 

3.1. Group ALU instructions into sharing sets; 
// additional step used in RSOR 

3.2. Gop = Construct DAG Gop (Gt); 
3.3. S = Schedule nodes in Gop (Gop); 

// nodes in the same sharing set are restrictively scheduled 
3.4. S = Determine and solve accumulator spills (S, Gop); 

4. S = Schedule memory load instructions (S, Gt); 
5. S = Retime the initial scheduling result (S, Gt); 

Figure 6.3. The overall scheduling algorithm of RSOR. 
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6.2.2 Comparisons between RSSA and RSOR 

In this subsection, we evaluate RSOR using several selected MDFGs and our 

hypothetical machine model defined in section 5.1. Three scheduling results are 

derived from RSOR with variable partition mechanisms proposed in RSVR, RSF, and 

RST, and in the following we only list the best one of them. For a single iteration in 

the repetitive pattern, we use evaluation metrics including schedule length, instruction 

count, and the number of OPRs to compare RSOR and RSSA at the same time. 

According to the instruction-level power model presented in [45], a schedule with 

shorter schedule length and less instruction count obviously indicates lower power 

consumption. More OPRs represent more operands reused by two instructions 

consecutively executed in the same function unit, which leads to less power 

consumption at function units. Furthermore, in [20], authors list the average current 

required to execute each instruction in Motorola DSP56000. Table 6.1 shows their 

provided information, and we also borrow it to approximately estimate the required 

current for each schedule. 

Table 6.2 lists the number of OPRs of a single iteration in the repetitive pattern 

for selected MDFGs. From this table clearly that using RSOR achieves more OPRs 

than using RSSA, and performs better when the target architecture has more function 

units. The reason is that some ALU instructions may essentially share a common 

operand but not be grouped into a sharing set, because these instructions violate the 

Instruction Current (mA) Instruction Current (mA) 

Move 90 Mpy 160 

Move Move 120 Mpy Move 170 

Add  100 Mpy Move Move 180 

Add Move 140   

Add Move Move 150   

 

Table 6.1. Average current required for each instruction [20]. 
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second condition listed in Definition 6.1. Nodes 12 and 19 in Figure 6.1 are such an 

example. When the target architecture has only one function unit, due to data 

dependencies, nodes 12 and 19 will not be schedule at consecutive time steps. 

However, if there exists a second function unit, we can use it to separately execute 

nodes 12 and 19 without interfering with other instructions. Hence, the operand 

sharing between these two nodes is also achieved. 

Table 6.3 lists the schedule length, instruction count, and approximate current of 

a single iteration in Motorola DSP56000 architecture. It shows that compared to using 

RSSA, using RSOR may generate schedules with, at most, 6% longer schedule length 

and 7% greater instruction count. This is because ALU instructions in a sharing set are 

restrictively scheduled to the same function unit at consecutive time steps, and some 

instruction-level parallelism cannot be successfully explored. Meanwhile, when more 

instructions are executed by the same function unit, accumulator spills may occur 

more easily, due to the frequent use of some dedicated accumulators. As for the 

approximate current, not in all cases using RSOR can be improved, especially when 

the schedule length is increased. The main reason is that the total current of a schedule 

1 FU, 2 acc, 4 reg, 2 mem 2 FU, 4 acc, 4 reg, 2 mem 
 

RSSA RSOR RSSA RSOR 
Wave Digital Filter 0.5 0.5 0 0.5 

Filter 0 0 0 0 
IIR 2D 0 0 0 0 

Forward-substitution 1.5 1.5 0.5 2 
THCS 1 1 0 2 

Discrete Fourier Transform 1 4 0 4 
Floyd-Steinberg 9 9 6 9 

Transmission Line 4 4 0 5 
IIR 1D 0.5 3 0.5 3 

Differential Equation Solver 4 5 3 6 
All-pole Lattice Filter 1.5 3 1.5 6 

Elliptic Filter 4 9 2 11 
 

Table 6.2. The comparison between RSOR and RSSA (the number of OPRs). 
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is the sum of current required by all instructions. Although the power cost by function 

units is reduced, the total current may still increase due to longer schedule length. In 

summary, RSOR achieves more OPRs than RSSA and requires slightly longer 

schedule length and more instruction count in some cases. As long as the schedule 

length is not increased, using RSOR usually can obtain a schedule with lower 

approximate current. Further evaluations of RSOR and comparisons to other energy- 

efficient instruction scheduling methods will be given in section 6.4. 

 

6.3 Rotation Scheduling with Exploiting Operand Reutilization (RSER) [58] 

Although increasing the potential for a function unit to reuse an operand can 

obtain low-power schedules, common operands are not encountered very frequently 

in real designs [29]. That is, if just operand sharing within an iteration are explored, 

the power consumption will be reduced only slightly due to less opportunities of 

operand sharing. As mentioned in subsection 2.4.4, the retiming technique can be used 

to transform the given loop to generate instructions with common operands hidden 

Table 6.3. The comparison between RSOR and RSSA (under Motorola 
DSP56000 architecture). 

RSSA RSOR 
 

length ins. count current length ins. count current 
Wave Digital Filter 5 13 750 5 13 770 

Filter 5 10.5 655 5 10.5 655 
IIR 2D 16 37 2435 16 37 2435 

Forward-substitution 5 10.5 711 5 10.5 717 
THCS 4 9.5 611 4 9.5 587 

Discrete Fourier Transform 12.5 30 1870 12.5 32 1756 
Floyd-Steinberg 17.5 39 2440 17.5 39 2440 

Transmission Line 12 28 1770 12 28 1770 
IIR 1D 8 17.5 1201 8 19 1111 

Differential Equation Solver 11.5 25.5 1580 12 24.5 1651 
All-pole Lattice Filter 16 34.5 2280 17 34.5 2300 

Elliptic Filter 34 72 5020 35 75 4827 
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inside the original MDFG. Hence, we propose the second method rotation scheduling 

with exploiting operand realization (RSER), which is extended from RSOR and aimed 

to further exploit potential operand sharing between different iterations. Subsection 

6.3.1 contains the mechanism for reconstructing the original MDFG. Detailed 

scheduling steps of RSER are described in subsection 6.3.2. In subsection 6.3.3, we 

list the difference among RSOR, RSER, and other related methods. 

 

6.3.1 MDFG Reconstruction Mechanism 

6.3.1.1 Finding Potential Operand Reutilization in Different Iterations 

To generate instructions with common operands hidden inside the given MDFG, 

first we have to find instructions sharing an operand in different iterations. Recall that 

a variable in a loop indicates an array. For a given loop, assume that two different 

elements of the same array are used as source operands of two ALU instructions xi 

and yi in iteration i. Apparently that xi and yi do not have common operand. However, 

there must exist another ALU instruction yj in iteration j, which references the same 

element as xi. If we can move xi and yj to the same iteration, an additional OPR can be 

achieved. In the MDFG, if different elements of the same array are referenced in an 

iteration, we will find a node vu with type S that has multiple successors, vi, of type L 

where all d(eui) are different. In RSER we group load variable instructions vi into an 

exploitable sharing set, which means these instructions may reference the same 

element of the same array after retiming. Node grouping conditions of the exploitable 

sharing set are described in the following definition. 

Definition 6.2. For a given MDFG G = (V, E, X, d, P), nodes v1…vm ∈ V with type L 

are grouped into an exploitable sharing set if they satisfy two conditions: (1) All 

nodes v1…vm have the same predecessor vu ∈ V (P(vu) = S); (2) For any two edges eui 

and euj ∈ E, d(eui) ≠ d(euj) for 1 ≤ i, j ≤ m. 



 91 

 

 

 

 

 

 

 

 

 

For example, for the MDFG shown in Figure 6.4, nodes 8 and 9 are grouped into 

an exploitable sharing set because they both connect to node 7 with different edge 

delays. This case indicates that load variable instructions 8 and 9 reference to the 

same array but different elements. If we can apply the retiming technique to make 

d(e79) equal to d(e89), ALU instructions 12 and 13 will share a common operand 

within an iteration. Therefore, for every exploitable sharing set, we require an MDFG 

reconstruction algorithm to make these instructions reference a common element as 

far as possible. This algorithm will be introduced in detail in the next subsection. 

 

6.3.1.2 MDFG Reconstruction Algorithm 

Before describing the MDFG reconstruction algorithm, we list some features of 

an MDFG. According to the MDFG construction steps, data memory is the only place 

to store operands. That is, an instruction written in high-level language is directly 

transferred to four nodes, which are used to load two source operands, execute, and 

store result. Therefore, in an MDFG, a node with type M/A will have two predecessors 

with type L/C and one successor with type S, and at least one predecessor must be 

load variable instruction. Besides, a non-zero delay edge, eij, can only exist between  
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Addition

Load constant 

Load variable 

Store variable 
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L Load variable 

S Store variable 

T Register transfer 

C Load constant 

Figure 6.4. The MDFG example. 
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(1) Input: MDFG G = (V’, E, X, d, P), exploitable sharing set S = {v1…vm}; 
(2) Output: rf(v), retimed MDFG Gr; 
(3) rf(v) = (0,…, 0), ∀ v ∈ V;  // inilize retiming function of all nodes 
(4) Assume that v1…vm have the same predecessor vu ∈ V;  // P(vu) = S 
(5)   vij ∈ V are successors of vi respectively;  // P(vij) = M/A 
(6)   sij ∈ V are successors of vij respectively;  // P(sij) = S 
(7)   uij ∈ V are predessors of vij respectively, uij ≠ vi;  // P(uij) = L/C 
(8)                        /* vi and uij are two input operands of vij */ 
(9) check(eui) = ‘F’, ∀ d(eui) ≠ (0,…, 0);  // eui ∈ E connects vu and vi 
(10) merge(vi) = ‘F’, ∀ d(eui) ≠ (0,…, 0); 
(11) While (not all d(eui) are equal, ∀ check(eui) = = ‘F’) 
(12)   r = d(eui) such that check(eui) = = ‘F’ and d(eui) ≠ (0,…, 0); 
(13)                        // select a non-zero delay vector as the retiming base r 
(14)   rf(vi) = rf(vi) + r; rf(vij) = rf(vij) + r;  // set retiming function 
(15)   rf(sij) = rf(sij) + r; rf(uij) = rf(uij) + r;  // set retiming function 
(16)   Gr = retime G using above retiming functions;  // Gr = (V, E, X, dr, P) 
(17)   While (∃ e ∈ E such that dr(e) = = –r)  // remove delay vector dr(e) = –r 
(18)   Assume that e connects nodes vs and vl;  // P(vs) = S, P(vl) = L 
(19)   va ∈ V is the predecessor of vs;  // P(va) = M/A 
(20)   ul1, ul2 ∈ V are predecessors of va;  // P(uli) = L/C 
(21)                               /* ul1 and ul2 are two input operands of va */ 
(22)   rf(vs) = rf(vs) + r; rf(va) = rf(va) + r;  // set retiming function 
(23)   If (uli has successors vai other than va)  // P(vai) = M/A, P(uli) = L 
(24)   Insert node vxi into V, set P(vxi) = L;  // split uli to uli and vxi 
(25)   Delete elia from E;  // elia connects uli and va 
(26)   Insert edge exia into E;  // exia connects vxi and va 
(27)   rf(vxi) = rf(vxi) + r;  // set retiming function 
(28)   Else  rf(uli) = rf(uli) + r;  // set retiming function 
(29)   Gr = retime G using above retiming functions; 
(30)   End while 
(31)   If (∃ a vector s such that s•dr(e) ≥ 0)  // Gr is realizable 
(32)   G = Gr; merge(vi) = ‘T’;  End if 
(33)   check(eui) = ‘T’; 
(34) End while  // all d(eui) are checked 
(35) Insert vx into V; Insert eux into E; 
(36) For (k = 1; k ≤ m, k++)  // merge vi with the same eui 
(37)   If (merge(vi) = = ‘T’) 
(38)   Delete vk from V; Delete ekkj from E;  // ekkj connects vk and vkj 
(39)   Delete euk from E; Insert exkj into E;  // exkj connects vx and vkj 
(40)   End if 
(41) End for 
(42) Return  rf(v), Gr; 

Figure 6.5. The MDFG reconstructing algorithm. 
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nodes vi and vj with type S and L, respectively, which represents the loop-carried data 

dependence of the given loop. After reconstructing the MDFG, above features also 

must be satisfied in addition to guarantee the retimed MDFG is realizable. 

The proposed MDFG reconstruction algorithm, listed in Figure 6.5, contains 

three main phases: node retiming (Lines 12~16), graph realization (Lines 17~32), and 

graph modification (Lines 35~41). For a given MDFG G and an exploitable sharing 

set S = {v1…vm}, assume that v1…vm have the same predecessor vu; our goal is to 

make as many as possible d(eui) equal using the retiming technique. In our design, we 

simply select a non-zero delay vector d(eui) as the retiming base, which can transfer 

d(eui) to a zero delay edge after retiming node vi. Then, to satisfy features of MDFG 

described above, all nodes listed in Lines 14~15 must be concurrently retimed. For 

example, in Figure 6.6(a), there exists a sharing set S = {6, 9} and an exploitable 

sharing set S’ = {5, 15}. After retiming nodes 4~10 with r = (0, 1) equal to d(e514), the 

sharing set S is extended to {6, 9, 16} as shown in Figure 6.6(b), which indicates the 

number of potential operand reutilizations is increased. This node retiming phase will 

be applied iteratively until all d(eui) have been selected as the retiming base. 

In the second phase, we check and guarantee the retimed MDFG Gr is realizable. 

As described in section 2.1, a realizable MDFG G must have a schedule vector, s, 

such that s•d ≥ 0 for all loop-carried data dependencies d. However, because we 

directly select a non-zero delay vector, r, as the retiming base in the previous phase, 

two edges with opposite delay vectors r and –r may exist in Gr simultaneously. In this 

case above realizable condition can be satisfied, but Gr still will not be successfully 

executed. dr(e711) and dr(e34) in Figure 6.6(b) are such an example. Although a vector 

s = (1, 0) makes s · d ≥ 0 for all d ∈ Gr, Gr is actually illegal because iterations (i, j) 

and (i, j + 1) will depend on each other. In order to resolve this case, we design a 

mechanism to retime additional nodes backtracked from edge e with dr(e) = –r.  
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Meanwhile, if the backtracking steps reach a node with type L with multiple 

successors, we split that node (Lines 23~28). Figure 6.6(c) shows the modified 

realizable MDFG Gr after splitting node 0 and retiming nodes 0~3. This phase will be 

also iteratively applied until the retimed graph is realizable. 

Figure 6.6. An example used to illustrate steps of RSER. 

(a) 

8 

E 

2 

1 0 

D 

3 

A 

4 

6 

A 
5 

9 
C 

C 

7 

B 

10 

D 

11 12 

13 

14 

15 

E 
B 

16 

17 

D 

C 

C 

(1, 0) 

(0, 1) 

8 

E 

2 

1 0 

D 

3 

A 

4 

6 

A 
5 

9 
C 

C 

7 

B 

10 

D 

11 12 

13 

14 

15 

E 
B 

16 

17 

D 

C 

C 

(1, 0) 

(0, 1) (0, 1) 

(0, -1) 

(b) 

8 

E 

2 

1 0 

D 

3 

A 

4 

6 

A 
5 

9 
C 

C 

7 

B 

10 

D 

11 12 

13 

14 

15 

E 
B 

16 

17 

D 

C 

C 

(1, -1) 

(0, 1) 

18 

(1, 0) 
(0, 1) 

(c) 

8 

E 

2 

1 0 

D 

3 

A 

4 

6 
A 

9 

C 

C 

7 

B 

10 

D 

11 12 

13 

14 

19 

E 
B 

16 

17 

D 

C 

C 

(1, -1) 

(0, 1) 

18 

(1, 0) 

(0, 1) 

(d) 



 95 

 

 

 

 

 

 

 

 

 

 

Finally, the third phase is used to merge nodes in an exploitable sharing set that 

reference the same array element. In our design we will merge them to an additional 

node. The final graph Gr after applying our MDFG reconstruction algorithm is shown 

in Figure 6.6(d). 

 

6.3.2 Detailed Algorithms of RSER 

In the previous subsection we describe the proposed algorithm to increase the 

number of potential OPRs. As shown in Figure 6.7, when we insert this algorithm into 

RSOR, we will obtain our second method RSER. Figure 6.8(a)(b) shows the 

corresponding TDAGs for Figure 6.6(a)(d). Suppose the target architecture is the 

Motorola DSP56000, Figure 6.9(a)(b) shows the scheduling results of Figure 6.8(a)(b), 

which are actually scheduling results of Figure 6.6(a) using RSOR and RSER, 

respectively. From these schedules, we find that for a single iteration in the repetitive 

pattern, using RSER achieves one more OPR with one-time step longer schedule 

length. More instruction counts are obviously required using RSER, because the 

original MDFG is reconstructed and some nodes are split. This feature indicates that  

1. Gc = Construct MDFG; 
1.1. Partition variables to memory banks; 
1.2. Unfold or tile Gc if necessary; 

2. Gc = Reconstruct Gc;  // apply the algorithm listed in Figure 6.5 
3. Gt = Construct TDAG (Gc); 
4. S = Schedule all instructions except memory loads (Gt); 

4.1. Group ALU instructions into sharing sets; 
// additional step used in RSOR and RSER 

4.2. Gop = Construct DAG Gop (Gt); 
4.3. S = Schedule nodes in Gop (Gop); 

// nodes in the same sharing set are restrictively scheduled 
4.4. S = Determine and solve accumulator spills (S, Gop); 

5. S = Schedule memory load instructions (S, Gt); 
6. S = Retime the initial scheduling result (S, Gt); 

Figure 6.7. The overall scheduling algorithm of RSER. 
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in RSER, OPR is a trade off for schedule length as well as instruction count. In 

section 6.4 we will describe further evaluations of RSER. 

 

6.3.3 The Difference between Proposed Methods and Other Methods 

In the following, we describe the difference among methods RSOR, RSER, 

LPLS [4], power-conscious loop folding [24], and method proposed in [28], all are 

designed based on the operand sharing technique. Among these methods, the retiming 

technique is never applied in LPLS, which only uses a modified list scheduling to 

consider the operand sharing. RSOR focus on achieving potential OPRs within an 

iteration, and the retiming technique is used once to compact the schedule. Other three 

methods RSER, power-conscious loop folding, and the method [28] all use the 

Figure 6.8. The corresponding TDAG of (a) Figure 6.6(a), (b) Figure 6.6(d). 
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retiming technique to generate instructions with common operands hidden inside the 

MDFG. Power-conscious loop folding is a basic method. After finding instructions 

sharing an operand in different iterations, the retiming technique is used to move them 

to the same iteration. The method [28] contains a force-directed retiming mechanism 

to determine which instruction must be retimed, and aim to make as many instructions 

as possible take common operands as their inputs. Apparently, these two methods only 

apply the retiming technique to achieve more OPRs. On the other hand, in our RSER, 

the retiming technique is applied more than once for different purposes. First, after 

determining exploitable sharing sets, it is used to gather instructions sharing common 

operands. Note that before retiming a specific retiming base must be chosen. That is, 

to remove more non-zero delay edges during MDFG reconstruction we may retime 

the MDFG several times with different retiming bases. Then, to compact the initial 

scheduling result, the retiming technique is used once more to partial overlap the 

execution time of successive iterations. From above description, we expect that using 

RSER can produce schedules with shorter lengths than using methods in [24, 28]. 

However, applying the retiming technique will generate corresponding prologue 

and epilogue codes that must be executed separately before and after the iterative 

patterns. If code sizes of the prologue and epilogue are too large, they will cost greater 

overall execution time and more power consumption of the given loop. We have 

proven that the overall schedule length is strongly dependent on which schedule 

vector, as well as retiming base, been selected [41]. Therefore, to avoid generating too 

many prologue and epilogue codes, we restrict that only two retiming bases, (0, 1) and 

(1, 0), can be selected in the MDFG reconstruction algorithm. This restriction means 

that in RSER the retiming technique is applied at most three times. Detailed 

evaluations of RSOR, RSER, and other energy-efficient instruction scheduling 

methods will be given in section 6.4. 
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Finally, in section 5.4 we have presented that with minor modifications, our 

hypothetical machine model and RSSA can be apply to real DSP families with various 

architectural features. Since in RSOR and RSER we apply the same mechanisms as in 

RSSA to schedule instructions and insert spill codes, both RSOR and RSER also can 

suit real DSP families. 

 

6.4 Performance Evaluations [58] 

In this section, we evaluate RSOR and RSER using selected MDFGs and the 

hypothetical machine model. LPLS [4] and Kim et al. [28] are also evaluated using 

the variable partition mechanism presented in RSVR [30] for comparison, after 

inserting necessary spill codes. Similar as in subsection 6.2.2, we still use evaluation 

metrics including schedule length, instruction count, the number of OPRs, and 

approximate current, and only show the best result derived by RSOR and RSER. 

Table 6.4 lists the number of OPRs for a single iteration in the repetitive pattern. 

Note that not all selected MDFGs contain exploitable sharing sets, so we only apply 

RSER to MDFGs that have potential operand sharing in different iterations. From this 

1 FU, 2 acc, 4 reg, 2 mem 2 FU, 4 acc, 4 reg, 2 mem 
 

LPLS RSOR Kim RSER LPLS RSOR Kim RSER 
Wave Digital Filter 0 0.5 1 1 0 0.5 0 1 

Filter 0 0 0  0 0 0  
IIR2D 0 0 4 4 0 0 4 4 

forward-substitution 1 1.5 2 2 2 2 1 2 
THCS 1 1 1  2 2 0  
DFT 3 4 3 7 3 4 3 7 

Floyd-Steinberg 9 9 9  9 9 6  
Transmission 4 4 4  5 5 4  

IIR1D 2 3 4 4 2 3 3 4 
Equation Solver 5 5 5 4 5 6 4 5 
All-pole Lattice 3 3 2  6 6 2  
Elliptic Filter 9 9 9  11 11 11  

Table 6.4. The number of OPRs obtained by different scheduling methods. 
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table, if the given MDFG has exploitable sharing sets, using RSER and Kim et al. [28] 

can clearly produce schedules with more OPRs compared to using LPLS and RSOR. 

That is, for a single iteration in the repetitive pattern, schedules generated by RSER 

and Kim et al. [28] will cost lower power consumption at function units. In addition, 

for an MDFG without exploitable sharing set, using RSOR still generates a similar 

number of OPRs to LPLS and Kim et al. [28]. This result shows that all three methods 

can successfully exploit potential operand sharing within an iteration. For comparison 

between two different architectures, Table 6.4 shows that all methods, except Kim et 

al. [28], perform better when the target architecture has more function units. This 

situation indicates whether an MDFG is reconstructed or not, using more function 

units is beneficial in achieving more OPRs. Thus, we conclude that when the number 

of OPRs is taken as the evaluation metric, RSOR and RSER are at least as effective as 

the previous methods. Furthermore, if the given loop contains potential operand 

sharing in different iterations, applying the retiming technique to exploit it is positive 

for energy-efficient instruction scheduling. 

Table 6.5 lists the schedule length, instruction count, and approximate current of 

a single iteration in Motorola DSP56000 architecture. From these results, we find that 

RSOR and RSER achieve shorter schedules than LPLS and Kim et al. [28] in most 

cases, because both our methods apply the retiming technique to effectively explore 

the instruction-level parallelism between successive iterations. But the effectiveness 

between RSOR and RSER is uncertain, and will depend on the topological difference 

between the MDFGs before and after reconstruction. Hence, we conclude that RSOR 

and RSER are more effective than previous methods when the schedule length is the 

evaluation metric. On the other hand, in most cases using LPLS and Kim et al. [28] 

will generate schedules with the least and most instructions, respectively. If a MDFG 

contains exploitable sharing sets, applying RSER will require greater instruction  
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count than RSOR but still less than Kim et al. [28]. Note that the number of ALU 

instructions for a MDFG is fixed whichever scheduling method is applied. That is, a 

schedule with more instruction counts represents more inserted spill codes, which are 

usually extra memory accesses. Based on the instruction-level power model presented 

in [45], to execute every instruction will cost the base cost, so a schedule with less 

instruction count will benefit code size as well as power consumption. As for the 

approximate current, in most cases RSOR and RSER outperform LPLS and Kim et al. 

[28]. Obviously the main reason is using our methods can obtain shorter schedules. 

For comparison between RSOR and RSER, RSER is usually better, even if the 

number of memory accesses may increase after MDFG reconstruction. This is 

because using RSER can further lower the power consumed at function units, and the 

schedule length is only slightly increased. 

LPLS RSOR Kim RSER 
 

length 
instr. 
count 

current length 
instr. 
count 

current length 
instr. 
count 

current length 
instr. 
count 

current 

[1] 6 13 820 5 13 770 6 13 830 4 11.5 640 

[2] 8 11 920 5 10.5 655 6 10 760    

[3] 20 37 2690 16 37 2435 18 42 2604 17.5 39 2428 

[4] 7 10 802 5 10.5 717 7 15 922 5 12.5 717 

[5] 6 10 712 4 9.5 587 6 10 712    

[6] 14 30 1866 12.5 32 1756 15 34 1986 12.5 31.5 1691 

[7] 20 39 1630 17.5 39 2440 19 39 1520    

[8] 14 29 1940 12 28 1770 14 29 1930    

[9] 10 18 1222 8 19 1111 10 23 1298 8.5 21 1118 

[10] 14 24 1776 12 24.5 1651 13 30 1816 11.5 27.5 1646 

[11] 21 35 2640 17 34.5 2300 17 39 2450    

[12] 40 77 5162 35 75 4827 36 73 4782    

[1] Wave Digital Filter [7] Floyd-Steinberg 
[2] Filter [8] Transmission Line 
[3] Infinite Impulse Response Filter 2D [9] Infinite Impulse Response Filter 1D 
[4] forward-substitution [10] Differential Equation Solver 
[5] Toeplitz Hyperbolic Cholesky Solver [11] All-pole Lattice Filter 
[6] Discrete Fourier Transform [12] Elliptic Filter 

Table 6.5. The comparison among four methods (under Motorola DSP56000). 
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In the following, we focus on the entire retimed loop to compare the overall 

schedule length. In chapter 3 we have introduced an analytic model to calculate the 

overall schedule length of a retimed MDFG. Formulas (A.1)~(A.5) can be directly 

used to test methods RSOR and Kim et al. [28], and we extend it further to treat 

RSER. Table 6.6 lists variables used in the extended analytic model. Note that we 

restrict that only two retiming bases, (0, 1) and (1, 0), can be selected in the MDFG 

reconstruction algorithm. That is, the original MDFG is retimed at most twice during 

reconstructing, with two retiming bases been used in different sequences. In the 

extended analytic model, we directly assume that every MDFG is retimed twice, and 

design corresponded formulas to calculate the overall schedule length. If the given 

Variable Definition 

N Number of memory modules 

m 
Loop bound of the outer loop for a two-dimensional nested loop 
Loop bound for an one-dimensional loop 

n Loop bound of the inner loop for a two-dimensional nested loop 

(s1, s2) Schedule vector selected for retiming during instruction scheduling 

list Schedule length of an iteration in the repetitive pattern produced by list 
scheduling method 

length Schedule length of an iteration in the repetitive pattern 

prologue Schedule length of the prologue generated during instruction scheduling 

eplogue Schedule length of the prologue generated during instruction scheduling 

d Retiming depth obtained during instruction scheduling 

half (k, N) Schedule length of k original iterations under N memory modules 

exp1 Schedule length of the prologue generated during MDFG reconstructing 
after first retiming 

exe1 Schedule length of the epilogue generated during MDFG reconstructing 
after first retiming 

exd1 Retiming depth obtained during MDFG reconstructing after first retiming 

exp2 Schedule length of the prologue generated during MDFG reconstructing 
after second retiming 

exe2 Schedule length of the epilogue generated during MDFG reconstructing 
after second retiming 

exd2 Retiming depth obtained during MDFG reconstructing after second retiming 

Table 6.6. Definitions of variables used in the analytic model. 
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MDFG is only retimed once, variables exp2, exe2, and exd2 can be simply set to zero. 

Detailed derivations of new formulas are listed in appendix B. 

Figures 6.10 and 6.11 show the overall schedule lengths of the entire retimed 

loop when the target architecture has one or two function units, respectively. From 

these figures, for most applications RSOR obtain shorter overall schedule lengths than 

LPLS and Kim et al. [28]. If the given MDFG contains exploitable sharing sets, using 

RSER may not produce shorter overall schedule lengths compared to RSOR, but still 

outperforms LPLS and Kim et al. [28]. These results are the same as the evaluations 

based on a single iteration in the repetitive pattern. That is, although the two proposed 

methods, especially RSER, require longer time to run the prologue and epilogue, the 

overall performance is still better because they can effectively explore the instruction- 

level parallelism between successive iterations. 

Finally, we summarize above evaluations. The overall schedule lengths obtained 

by RSOR and RSER are obviously shorter than those of previous methods, although 

RSER may require more time to run corresponding prologue and epilogue codes. If 

the number of OPRs is the evaluation metric, RSOR and RSER are at least as 

effective as LPLS and Kim et al. [28]. Recall that the average power consumption of 

the function unit is clearly less when an operand remains unchanged, and the total 

power consumption of a schedule equals to the sum of power consumed by all 

instructions. Since proposed RSOR and RSER perform better on both evaluation 

metrics schedule length and the number of OPRs, we conclude that they are 

energy-efficient code generation methods. As for the instruction count, our proposed 

methods are still very effective for the repetitive pattern due to fewer inserted spill 

codes. But their corresponding prologue and epilogue codes have to be stored in 

addition to the repetitive pattern, so our RSER will require much more memory space 

to store the scheduling results compared to other related methods. 
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Figure 6.10. Experimental results of DSP applications (1 function unit, overall 
schedule length). 
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Figure 6.11. Experimental results of DSP applications (2 function units, overall 

schedule length). 
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Chapter 7. Conclusions and Future Work 

7.1 Conclusions 

In this thesis we focus on proposing effective code generation method to 

schedule uniform loops on DSP with multiple data memory banks. A hypothetical 

machine model is also defined to simulate a scalable DSP architecture, in order to 

deep study the influence of differing number of resources on the scheduling result. 

Our research contains three main issues: variable partition mechanisms, effective 

methods containing all code generation phases, and energy-efficient methods based on 

the operand sharing technique. In each issue we proposed some effective methods, 

and evaluate those using selected MDFGs and an analytic model. In the following we 

give brief conclusions for our research. 

 

(1) Variable partition mechanisms 

In the first issue, we define three simple mechanisms to partition variables based 

on their array indices. After enlarging the given MDFG using different techniques to 

suit each variable partition mechanism, the multi-dimensional rotation scheduling is 

applied to schedule instructions and three corresponded code generation methods RSF, 

RST, and RSP are proposed. Because variables are never repartitioned during 

instruction scheduling, these three methods are apparently simpler and more efficient 

compared to a similar study RSVR. In addition, the enlarged iteration used in our 

methods gives a more global view of data dependencies, which is useful to explore the 

instruction-level parallelism between successive iterations using the retiming 

technique. We also define an analytic model and some formulas to calculate the 

overall schedule length of a retimed loop. From evaluation results, our methods 

achieve schedules with equal even shorter lengths compared to those of RSVR, not 
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only for a single iteration in the repetitive pattern but also for the entire retimed loop. 

Three variable partition mechanisms defined in RSVR, RSF, and RST are used in our 

subsequent several studies. 

 

(2) Effective methods containing all code generation phases 

For DSP with multiple data memory banks, the complete code generation process 

must include five phases. Because these phases are extremely data dependent, to 

consider more phases at a time will lead more effective results. In our second study 

issue, we first focus on Motorola DSP56000 and propose method RSSP to cover all 

code generation phases. In RSSP a TDAG is defined and transferred from the given 

MDFG to remove possible unnecessary memory accesses. Then, the main feature of 

RSSP is to predict the occurrence of accumulator spills and generate corresponding 

spill codes in advance. These spill codes will be scheduled in parallel with other 

instructions, which is beneficial to generate a more compact and shorter schedule. 

After generating an initial schedule, the retiming technique is also applied to fully 

utilize resources. From evaluation results, RSSP obviously outperforms methods RSF, 

RST, and RSP, because it schedules instructions based on the TDAG which contains 

less instructions than the MDFG. Comparing to other methods designed for Motorola 

DSP56000 our RSSP still generates schedules with shorter lengths, in both a single 

iteration in the repetitive pattern and the entire retimed loop. 

However, although RSSP seems quire effective, it is designed dedicated to 

Motorola DSP56000 and not scalable. Therefore, we further propose a general method 

RSSA, which can suit various DSPs with different architectural features. In RSSA, in 

addition to shorter schedule length, we take fewer spill codes as the second scheduling 

goal due to its importance in DSP. Instructions are still scheduled based on the TDAG 

to remove possible unnecessary memory accesses. But we no longer predict the 
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occurrences of accumulator spills in RSSA, because the predicting result becomes 

inaccurate easily when the target architecture is not specific. During scheduling 

instructions, several variables are dynamically updated to record the number of 

resources been occupied at every time step. When an accumulator spill is detected by 

checking those variables, we prefer to transfer the overwritten ALU result to an 

available register and temporarily store it to data memory only when required. After 

generating an initial schedule, the retiming technique is still applied in RSSA to 

explore the instruction-level parallelism between successive iterations. Suppose the 

target architecture equals to the Motorola DSP56000, RSSA usually achieves the 

shortest schedule length and considerably fewer spill codes compared to other related 

studies. We also define a hypothetical machine model to simulate architectures with 

different number of resources. This parameterized model is basically extended from 

the Motorola DSP56000, but can be apply to other real DSP families with minor 

modifications. After evaluating MDFGs using RSSA on this hypothetical machine 

model, the influence of differing number of resources on the scheduling results is 

deep studied. From evaluation results, we conclude that adding more accumulators to 

keep more ALU results for further using is the most efficient way to reduce spill codes. 

Increasing the number of registers or data memory banks is also useful, but its 

improvement is not as obvious as using more accumulators. As for achieving shorter 

schedule length, adding additional function units and accumulators concurrently is 

certainly necessary. Furthermore, we also find that the variable partition mechanism 

proposed in RSF is unsuitable for one-dimensional MDFGs. This is because most 

memory accesses will reference variables from the same data memory bank after 

applying loop unfolding, which may easily fail to be scheduled successfully in time 

and lengthen the scheduling results. 
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(3) Energy-efficient code generation methods 

Because a function unit will cost less power to execute an instruction when one 

of its operand remains unchanged, the operand sharing is a useful technique in DSP 

for low power design. In our third study issue in this thesis, we propose two energy- 

efficient code generation methods RSOR and RSER, both based on the operand 

sharing technique. RSOR is directly extended from RSSA and aimed to explore 

potential operand sharing within an iteration. In RSOR we define a sharing set to 

group ALU instructions with common operand, and restrictedly schedule instructions 

in a sharing set to the same function unit at consecutive time steps to reuse operands. 

However, in real designs common operands are not encountered very frequently, so 

using RSOR only can reduce insignificant power consumption. But potential operand 

sharing may be hidden inside the original MDFG, which can be generated after loop 

transformations. Therefore, we propose our second energy-efficient method RSER, 

which is extended from RSOR and aimed to further explore operand sharing between 

different iterations. In RSER an exploitable sharing set is defined to group load 

variable instructions that reference the same array element in different iterations. Then, 

we design a MDFG reconstruction algorithm based on the retiming technique, and 

apply the method RSOR to schedule the reconstructed MDFG. Hence, operand 

sharing within an iteration and resided in different iterations can be both explored 

using RSER. We also extend the analytic model defined in methods RSF and RST to 

calculate the overall schedule length and number of OPRs for the entire retimed loop 

after applying RSOR and RSER. From evaluation results, we find that both RSOR 

and RSER can successfully explore operand sharing within an iteration. When the 

given MDFG contains exploitable sharing sets, using RSER achieves schedules with 

further more OPRs, which represents that exploiting the operand sharing in different 

iterations is beneficial for energy-efficient instruction scheduling. On the other hand, 
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schedules generated by RSOR and RSER may have slightly longer schedule lengths 

for a single repetitive iteration compared to those of RSSA. The main reason is that 

some ALU instructions are restrictedly scheduled to the same function unit, so the 

instruction-level parallelism between them cannot be successfully explored. But for 

the entire retimed loop, both RSOR and RSER still achieve shorter overall schedule 

lengths compared to related studies, because they apply the retiming technique to fully 

utilize resources as far as possible. Finally, as for the instruction count, our two 

proposed methods insert quite fewer spill codes for a repetitive iteration, but RSER 

will generate considerable prologue and epilogue codes. That is, if the instruction 

count is taken as the evaluation metric, RSER will require much more memory space 

to store scheduling results compared to related methods. 

 

7.2 Future Work 

Apart from above descriptions there remain some promising issues for future 

research. For the complete code generation processing, the real memory offset 

assignment of variables and the address register allocation should be considered. 

Based on the parallel move conditions listed in [10], a special addressing mode must 

be satisfied when simultaneously executing multiple memory accesses. Moreover, 

each memory access may be performed only if an address register is available that 

points to the correct memory location. Because DSP usually contains simpler 

addressing modes compared to general-purpose microprocessor, these two phases are 

especially important. However, for all methods proposed in this thesis, we never 

consider these phases during scheduling process. Therefore, in the near future, we will 

survey related methods and design our own mechanisms. After including these two 

phases our code generation method will become more complete. 

The second promising issue is about the code size reduction. In our methods, we 
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frequently use the retiming technique to increase performances. Applying retiming to 

schedule uniform loops is actually effective to reduce the schedule length, but the 

main problem is the generation of prologue and epilogue. We have shown that in our 

proposed methods the prologue and epilogue will not cost too much execution time to 

degrade the performance. However, extra codes for prologue and epilogue require 

considerable space to be stored in memory, especially in RSER because we apply the 

retiming technique more than once. Authors of [59] propose a mechanism to avoid 

storing prologue and epilogue codes. Their main idea is to claim that the execution of 

prologue and epilogue can be simulated by conditionally executing the repetitive 

iteration. Hence, only a repetitive iteration has to be stored, and additional instructions 

are required to control the execution of the entire retimed loop. This idea can be used 

in our methods RSSP, RSSA, and RSOR. But in RSER it is unsuitable, because using 

RSER will generate several pairs of prologue and epilogue, and not all of them can be 

simulated by a single repetitive iteration. Therefore, in the near future, we will survey 

related methods and try to design effective mechanisms to reduce the prologue and 

epilogue codes. After reducing the required code size our code generation methods 

will be more practical. 

Finally, we can try to realize proposed methods and do some precise evaluations. 

In this thesis we use analytic model to calculate the schedule length and instruction 

count. As for the power consumption, information provided in [20] also only can 

approximately estimate the required current. If our methods can be realized and tested 

by more accurate tools, their effectiveness and efficiency will be evaluated more 

precisely. Our code generation methods are all systematic and represented by definite 

algorithms. Therefore, we believe that they can be integrated into real DSP compiler 

and successfully executed. 
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Appendix A. The Analytic Model for RSVR, RSF, RST, and 

RSP 

In this appendix we introduce the analytic model defined to calculate the overall 

schedule length of a retimed one or two-dimensional MDFG [14, 36]. Nevertheless, it 

can be easily extended to cover nested loop with depths greater than two. Table A.1, 

the same as Table 3.3, lists variables used in our analytic model. The following 

formulas are used to calculate overall schedule lengths after applying different 

methods. Note that formula (A.5) for RST is only suited for the nested loop can be 

tiled directly. If the nested loop needs to be skewed before tiling, its scheduling results 

using RST is unacceptable and the calculation of overall schedule length becomes 

very complicated. We suggest not using RST if the nested loop cannot be tiled directly, 

and corresponding formulas are omitted. 

 

« For RSVR, 1-dim MDFG, the overall schedule length = 

length × (m – d) + prologue + epilogue                              (A.1) 

Figure A.1(a) shows the original iteration space of a loop with depth one which 

contains m iterations. When we apply the retiming technique, the retiming base r = 1 

is always feasible for a one-dimensional MDFG. Figure A.1(b) shows the modified 

iteration space of Figure A.1(a) after applying RSVR with retiming depth d. From this 

figure, clearly that d iterations are moved to prologue and epilogue, and the repetitive 

pattern contains m–d iterations. Thus, formula (A.1) can be directly approved. 

« For RSF, 1-dim MDFG, the overall schedule length = 

length × (  Nm  – d) + prologue + epilogue + half((m mod N), N)        (A.2) 

When we apply RSF to schedule a given loop, we first need to unfold the 

original MDFG with factor N. Therefore, for a loop with depth with depth one which  
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contains m iterations, we will obtain  Nm  enlarged iterations and a half portion 

with (m mod N) original iterations. Then, we apply the retiming technique for these 

enlarged iterations with retiming depth d, and the modified iteration space is shown in 

Figure A.1(c). Similar as formula (A.1), formula (A.2) is also directly approved. 

Variable Definition 

N Number of memory banks 

m Loop bound of the outer loop for a two-dimensional nested loop 
Loop bound for an one-dimensional loop 

n Loop bound of the inner loop for a two-dimensional nested loop 

prologue Schedule length of the prologue part of a retimed loop 

epilogue Schedule length of the epilogue part of a retimed loop 

length Schedule length of a single iteration in the repetitive pattern of a 
retimed loop 

list Schedule length of a single iteration produced by list scheduling 

d Retiming depth, the number of iterations that must be moved into the 
prologue and epilogue 

w Skew factor used to parallelize the inner loop 

half (k, N) Schedule length of k original iterations under N memory banks 

Table A.1. Variables defined in the analytic model. 

Figure A.1. Iteration spaces of a loop with depth one. (a) Original, (b) 
applying RSVR, (c) applying RSF. 
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« For RSVR, 2-dim MDFG, the overall schedule length = 

length × (m – s2d)(n – s1d) + (prologue + epilogue) × d(s1m + s2n – s1s2 – 2ds1s2) + 

list × s1s2d(d + 1)                                                (A.3) 

As shown in Figure 2.3, two cases of modified iteration space will be generated 

after applying the retiming technique using different schedule vectors for a nested 

loop with depth two. In fact, Figure 2.3(b) is a special case of Figure 2.3(c), so in the 

following we directly select schedule vector s = (s1, s2) to retime a two-dimensional 

MDFG. Figure A.2(a) shows the original iteration space of a loop with depth two 

which contains m×n iterations. After applying RSVR with retiming base (s2, -s1), 

which is orthogonal to s, and retiming depth d, the modified iteration space is shown 

Figure A.2. Iteration spaces of a loop with depth two. (a) Original, (b) 
applying RSVR, (c) applying RSF, (d) applying RST. 
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Figure A.2(b). From this figure, we can see the repetitive pattern contains (m – 

s2d)(n – s1d) iterations, and d(s1m + s2n – s1s2 – 2ds1s2) iterations are moved to 

prologue and epilogue. The remaining s1s2d(d + 1) iterations will be required to be 

executed using the list scheduling, because they are moved out of the nested loop. 

Formula (A.3) still can be simply approved. 

« For RSF, 2-dim MDFG, the overall schedule length = 

length × (m – s2d)(  Nn  – s1d) + (prologue + epilogue) × d(s1m + s2  Nn  – 

s1s2 – 2ds1s2) + list × s1s2d(d + 1) + half((n mod N), N) × m              (A.4) 

For a nested loop with depth two contains m×n iterations, the inner loop will be 

unfolded with factor N when we apply RSF to schedule it. After loop unfolding, we 

will get m×  Nn  enlarged iterations and m×(n mod N) iterations in the half portion, 

as shown in Figure A.2(c). Then, these enlarged iterations are applied the retiming 

technique with schedule vector (s1, s2) and retiming depth d. The overall schedule 

length of the retimed iterations can be calculated using formula (A.3). Therefore, 

formula (A.4) is directly approved. 

« For RST, the overall schedule length = 

length × (  Nm  – s2d)(n – s1d) + (prologue + epilogue) × d(s1  Nm  + s2n – 

s1s2 – 2ds1s2) + list × s1s2d(d + 1) + half((m mod N), N) × n              (A.5) 

When we apply RST to schedule a nested loop with depth two contains m×n 

iterations, the modified iteration space is shown in Figure A.2(d). Similar as above, 

formula (A.5) still can be simply approved. 

« For RSP, if wm + 1 ≤ w + n, the overall schedule length = 

length × w(  Nm )1( − – d)(m – Nd – N + 1 + ((m – 1) mod N)) + length × (w + n – 

mw)(  Nm – d) + (prologue + epilogue) × (wm + w + n – 2wNd) + list × dwN (d – 

1) + 2w  Nm )1( − × ),(1

1
NihalfN

i∑ −

=
 + 2w × ),(mod)1(

1
NihalfNm

i∑ −

=
 + (w + n – mw) × 

half ((m mod N), N)                                             (A.6) 
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« For RSP, if wm + 1 > w + n, the overall schedule length = 

length × w(  wNwn )( − – d)(  wn – Nd – N + 1 + ((  wn – 1) mod N)) + length × 

(2w + ((mw – w – n) mod w)  wnwmw )( −− )(  wNn – d) + length × (2(n mod w) 

+ (w – ((mw – w – n) mod w))  wnwmw )( −− )(   Nwn – d) + (prologue + 

epilogue) × (2w  wn – 2wNd + 2w + ((mw – w – n) mod w)  wnwmw )( −− + 2(n 

mod w) + (w – ((mw – w – n) mod w))  wnwmw )( −− ) + list × dwN (d – 1) + 

2w  wNwn )( − × ),(1

1
NihalfN

i∑ −

=
 + 2w ×   ),(mod)1(

1
NihalfNwn

i∑ −

=
 + (2w + ((mw – w – 

n) mod w)  wnwmw )( −− ) × half ((  wn  mod N), N) + (2C + (w – ((mw – w – n) 

mod w))  wnwmw )( −− ) × half ((  wn  mod N), N)                   (A.7) 

If we use RSP to schedule a nested loop, to calculate its overall schedule length 

becomes much complex. As shown in Figure A.3, two modified iteration spaces will 

be generated after parallelizing the inner loop, based on variables w, m, and n. After 

parallelizing, we unfold the inner loop, and retime enlarged iterations using schedule 

vector (1, 0). Note that if the inner loop doesn’t contain enough enlarged iterations for 

retiming, we will simply use list scheduling to schedule it. Based on two modified 

iteration spaces shown in Figure A.3, we conclude formulas (A.6) and (A.7) to 

calculate the overall schedule length for a given two-dimensional MDFG after 

applying RSP. 
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Figure A.3 Iteration spaces of a loop with depth two. (a) Original, 
(b)(c) applying RSP. 
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Appendix B. The Analytic Model for RSOR and RSER 

In this appendix we introduce the extended analytic model to calculate the 

overall schedule length and the number of operand reutilizations of a retimed one or 

two-dimensional MDFG for RSOR and RSER. Nevertheless, it also can be easily 

extended to cover nested loop with depths greater than two. Table B.1, the same as 

Table 6.6, lists variables used in the analytic model. After applying different methods 

to schedule the given MDFG, the following formulas are defined to calculate their 

overall schedule length. Note that three scheduling results can be derived by RSOR 

and RSER, which applies different variable partition mechanisms proposed in RSVR, 

RSF, and RST. In the following, we use RSOR(RSVR) to represent using RSOR with 

variable partition mechanism proposed in RSVR to schedule the given loop. The 

variable partition mechanism proposed in RST is only available for multi-dimensional 

MDFGs. Furthermore, formulas defined for RSOR(RSVR) are also suitable for 

method proposed in Kim et al. [30]. 

 

« For RSOR(RSVR), 1-dim MDFG, the overall schedule length = 

prologue + epilogue + length × (m – d)                              (B.1) 

« For RSOR(RSF), 1-dim MDFG, the overall schedule length = 

prologue + epilogue + length × (  Nm  – d) + half((m mod N), N)        (B.2) 

For a loop with depth one containing m iterations, Figure B.1 shows iteration 

spaces before and after applying methods RSOR(RSVR) and RSOR(RSF). Figure B.1 

is actually the same as Figure A.1. Thus, formulas (B.1) and (B.2) are equivalent to 

formulas (A.1) and (A.2) and can be directly approved as described in appendix A. 
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« For RSER(RSVR), 1-dim MDFG, the overall schedule length = 

exp1 + exe1 + prologue + epilogue + length × (m – exd1 – d)             (B.3) 

« For RSER(RSF), 1-dim MDFG, the overall schedule length = 

exp1 + exe1 + prologue + epilogue + length × (  Nm  – exd1 – d) + half((m mod 

N), N)                                                         (B.4) 

When we use RSER(RSVR) to schedule a loop with depth one containing m 

iterations, the retiming technique will be applied twice to reconstruct the given MDFG 

and compact the initial scheduling result sequentially. As shown in Figure B.2(a), after 

reconstructing the MDFG, exd1 iterations are moved into the exp1 and 

Variable Definition 

N Number of memory modules 

m 
Loop bound of the outer loop for a two-dimensional nested loop 
Loop bound for an one-dimensional loop 

n Loop bound of the inner loop for a two-dimensional nested loop 

(s1, s2) Schedule vector selected for retiming during instruction scheduling 

list Schedule length of an iteration in the repetitive pattern produced by list 
scheduling method 

length Schedule length of an iteration in the repetitive pattern 

prologue Schedule length of the prologue generated during instruction scheduling 

eplogue Schedule length of the prologue generated during instruction scheduling 

d Retiming depth obtained during instruction scheduling 

half (k, N) Schedule length of k original iterations under N memory modules 

exp1 Schedule length of the prologue generated during MDFG reconstructing 
after first retiming 

exe1 Schedule length of the epilogue generated during MDFG reconstructing 
after first retiming 

exd1 Retiming depth obtained during MDFG reconstructing after first retiming 

exp2 Schedule length of the prologue generated during MDFG reconstructing 
after second retiming 

exe2 Schedule length of the epilogue generated during MDFG reconstructing 
after second retiming 

exd2 Retiming depth obtained during MDFG reconstructing after second retiming 

Table B.1. Definitions of variables used in the analytic model. 
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Figure B.1. Iteration spaces of a loop with depth one. (a) Original, (b) 
applying RSOR(RSVR), (c) applying RSOR(RSF). 
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Figure B.2. Iteration spaces of a loop with depth one. (a) Applying RSER(RSVR), 
(b) applying RSER(RSF). 
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exe1 portions. The remaining m–exd1 iterations will be further retimed with retiming 

depth d, and their overall schedule length can be calculated using above formula (B.1). 

On the other hand, to schedule a loop with depth one using RSER(RSF), the first step 

is to move (m mod N) iterations to the half portion and unfold the given MDFG. Other 

steps are actually the same as using RSER(RSVR), and the modified iteration space 

after RSER(RSF) is shown in Figure B.2(b). Therefore, formulas (B.3) and (B.4) can 

be simply approved. 

« For RSOR(RSVR), 2-dim MDFG, the overall schedule length = 

(prologue + epilogue) × d(s1m + s2n – s1s2 – 2ds1s2) + length × (m – s2d)(n – s1d) + 

list × s1s2d(d + 1)                                                (B.5) 

« For RSOR(RSF), 2-dim MDFG, the overall schedule length = 

(prologue + epilogue) × d(s1m + s2  Nn  – s1s2 – 2ds1s2) + length × (m – 

s2d)(  Nn  – s1d) + list × s1s2d(d + 1) + half((n mod N), N) × m          (B.6) 

« For RSOR(RST), 2-dim MDFG, the overall schedule length = 

(prologue + epilogue) × d(s1  Nm  + s2n – s1s2 – 2ds1s2) + length × (  Nm  – 

s2d)(n – s1d) + list × s1s2d(d + 1) + half((m mod N), N) × n               (B.7) 

For a loop with depth one which contains m×n iterations, Figure B.3 shows 

iteration spaces before and after applying methods RSOR(RSVR), RSOR(RSF), and 

RSOR(RST). Figure B.3 is actually the same as Figure A.2. Thus, formulas (B.5)~ 

(B.7) are equivalent to formulas (A.3)~(A.5) and can be directly approved as 

described in appendix A. 

« For RSER (RSVR), 2-dim MDFG, retiming base (0, 1) → (1, 0), the overall 

schedule length = 

(exp1 + exe1) × m + (exp2 + exe2) × (n – exd1) + (prologue + epilogue) × d(s1(m – 

exd2) + s2(n – exd1) – s1s2 – 2ds1s2) + length × (m – exd2 – s2d)(n – exd1 – s1d) + 

list × s1s2d(d + 1)                                                (B.8) 
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For a nested loop with depth two which contains m×n iterations, when we use 

RSER(RSVR) to schedule it, the retiming technique is applied at most twice during 

MDFG reconstructing with specific retiming bases. At first, we assume the MDFG is 

retimed twice when it is reconstructed with retiming bases (0, 1) and (1, 0) 

sequentially. As shown in Figure B.4(a), m×exd1 iterations are moved into the exp1 

and exe1 portion, and the exp2 and exe2 portion contains (n–exd1)×exd2 iterations. 

Then, (m–exd2)×(m–exd1) iterations, represented by the reconstructed MDFG, will be 

further retimed with schedule vector (s1, s2), and their overall schedule length can be 

calculated using formula (B.5). Hence, formula (B.8) is directly approved. When the 

Figure B.3. Iteration spaces of a loop with depth two. (a) Original, (b) applying 
RSOR(RSVR), (c) applying RSOR(RSF), (d) applying RSOR(RST). 
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given MDFG is retimed only once using retiming base (0, 1), formula (B.8) is also 

available if variables exp2, exe2, and exd2 are set to zero. 

« For RSER (RSVR), 2-dim MDFG, retiming base (1, 0) → (0, 1), the overall 

schedule length = 

(exp1 + exe1) × n + (exp2 + exe2) × (m – exd1) + (prologue + epilogue) × d(s1(m – 

exd1) + s2(n – exd2) – s1s2 – 2ds1s2) + length × (m – exd1 – s2d)(n – exd2 – s1d) + 

list × s1s2d(d + 1)                                                (B.9) 

When we apply RSER(RSVR) to schedule a nested loop with depth two contains 

m×n iterations, Figure B.4(b) shows the modified iteration space if the MDFG is 

retimed twice with retiming bases (1, 0) and (0, 1) sequentially during MDFG 

reconstruction. In fact, these steps are very similar as those of Figure B.4(a), so 

formula (B.9) can be easily approved according to descriptions above. When the 

given MDFG is retimed only once using retiming base (1, 0), formula (B.8) is also 

available if variables exp2, exe2, and exd2 are set to zero. 

Figure B.4. Iteration spaces of a loop with depth two. (a) Applying RSER(RSVR), 
formula (B.8), (b) applying RSER(RSVR), formula (B.9). 
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« For RSER (RSF), 2-dim MDFG, retiming base (0, 1) → (1, 0), the overall 

schedule length = 

(exp1 + exe1) × m + (exp2 + exe2) × (  Nn  – exd1) + (prologue + epilogue) × 

d(s1(m – exd2) + s2(  Nn  – exd1) – s1s2 – 2ds1s2) + length × (m – exd2 – 

s2d)(  Nn  – exd1 – s1d) + list × s1s2d(d + 1) + half((n mod N), N) × m    (B.10) 

« For RSER (RSF), 2-dim MDFG, retiming base (1, 0) → (0, 1), the overall 

schedule length = 

(exp1 + exe1) ×  Nn  + (exp2 + exe2) × (m – exd1) + (prologue + epilogue) × 

d(s1(m – exd1) + s2(  Nn  – exd2) – s1s2 – 2ds1s2) + length × (m – exd1 – 

s2d)(  Nn  – exd2 – s1d) + list × s1s2d(d + 1) + half((n mod N), N) × m    (B.11) 

For a two-dimensional MDFG scheduled using RSER(RSF), Figure B.5 shows 

two modified iteration spaces which correspond to difference sequences of applied 

retiming bases during MDFG reconstruction. From this figure, after moving m×(n 

mod N) iterations into half portion and unfolding the MDFG, other steps are similar as 

those of Figure B.4. Therefore, these two formulas can be easily approved according 

to formulas (B.8) and (B.9). 

« For RSER (RST), 2-dim MDFG, retiming base (0, 1) → (1, 0), the overall 

schedule length = 

(exp1 + exe1) ×  Nm  + (exp2 + exe2) × (n – exd1) + (prologue + epilogue) × 

d(s1(  Nm  – exd2) + s2(n – exd1) – s1s2 – 2ds1s2) + length × (  Nm  – exd2 – 

s2d)(n – exd1 – s1d) + list × s1s2d(d + 1) + half((m mod N), N) × n        (B.12) 

« For RSER (RST), 2-dim MDFG, retiming base (1, 0) → (0, 1), the overall 

schedule length = 

(exp1 + exe1) × n + (exp2 + exe2) × (  Nm  – exd1) + (prologue + epilogue) × 

d(s1(  Nm  – exd1) + s2(n – exd2) – s1s2 – 2ds1s2) + length × (  Nm  – exd1 – 

s2d)(n – exd2 – s1d) + list × s1s2d(d + 1) + half((m mod N), N) × n        (B.13) 
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For a two-dimensional MDFG scheduled using RSER(RSF), Figure B.6 shows 

two modified iteration spaces which correspond to difference sequences of applied 

retiming bases during MDFG reconstruction. From this figure, after moving n×(m 

mod N) iterations into half portion and unfolding the MDFG, other steps are similar as 

those of Figure B.4. Therefore, these two formulas can be easily approved according 

to formulas (B.8) and (B.9). 
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Figure B.5. Iteration spaces of a loop with depth two. (a) Applying RSER(RSF), 
formula (B.10), (b) applying RSER(RSF), formula (B.11). 
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Figure B.6. Iteration spaces of a loop with depth two. (a) Applying RSER(RST), 
formula (B.12), (b) applying RSER(RST), formula (B.13). 
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