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1. Introduction

In transport theory, we encounter nonsymmetric algebraic Riccati equations of the form

XCX − XD − AX + B = 0 (1)

(see [13]), where A, B, C,D ∈ Rn×n are given by

A = Δ − eqT , B = eeT , C = qqT , D = Γ − qeT ,
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with Δ=diag(δ1, δ2, . . . , δn),Γ =diag(γ1, γ2, . . . , γn), e=(1, 1, . . . , 1)T , q = (q1, q2, . . . , qn)
T . Here

qi = ci

2wi

, (2)

with

0 < wn < · · · < w2 < w1 < 1, ci > 0 (i = 1, 2, . . . , n),
n∑

i=1

ci = 1,

and

δi = 1

cwi(1 + α)
, γi = 1

cwi(1 − α)
, (3)

where 0 < c � 1, 0� α < 1. For descriptions on how these equations arise in transport theory, see

[13] and references cited therein.

For any matrices A, B ∈ Rm×n, we write A� B(A > B) if aij � bij(aij > bij) for all i, j. We can then

define positive matrices, nonnegative matrices, etc. The existence of positive solutions of (1) has been

shown in [12,13]. However, only the minimal positive solution is physically meaningful. More general

nonsymmetric algebraic Riccati equations have been studied in [6,7,9,11]. In particular, the existence

of positive solutions is proved for the wider class in [6,7] using elementary matrix theory.

Due to the special structures of the equation (1), its minimal positive solution can be found by

iterative methods with O(n2) complexity each iteration, see [1,2,4,12,14]. The case (α, c) = (0, 1) is

themost difficult to handle, and has been solved efficiently by using a shift technique in [4]. If (α, c) /=
(0, 1), the fixed-point iterations in [1,2,14] are linearly convergent. Thesemethods are very simple and

requires only 4n2 flops each iteration. The methods in [4,15] are more complicated. Those methods

are quadratically convergent, but requiremore computations each iteration. Generally speaking, those

methods should be used when (α, c) is relatively close to (0, 1). Otherwise, the fixed-point iterations

in [1,2,14] are usually adequate, and even more efficient. In this paper we further study the methods

in [1,2,14]. We show that the NBGS method in [1] is the best one among these methods. In particular,

we show that the NBGS method is twice as fast as the NBJ method in [1].

2. Preliminaries

It is shown in [14] that the minimal positive solution X∗ of (1) has the form

X∗ = T ◦ (u∗(v∗)T ).
Here ◦ is the Hadamard product, T = [tij] with tij = 1/(δi + γj), and (u∗, v∗) is the minimal positive

solution of the vector equations{
u = u ◦ (Pv) + e,

v = v ◦ (Qu) + e,
(4)

where P = [pij] and Q = [qij] are n × n positive matrices given by

pij = qj

δi + γj

, qij = qj

δj + γi

.

Four simple iterative methods have been proposed for finding the minimal solution (u∗, v∗). Each of

them starts with (u(0), v(0)) = (0, 0). The simplest of them is the simple iteration (SI){
u(k+1) = u(k) ◦

(
Pv(k)

)
+ e,

v(k+1) = v(k) ◦ (Qu(k)) + e.
(5)

It is shown in [14] that the sequence
{(

u(k), v(k)
)}

is strictly and monotonically increasing, and

converges to (u∗, v∗). Later a modified simple iteration (MSI) is proposed in [2]:⎧⎨
⎩u(k+1) = u(k) ◦

(
Pv(k)

)
+ e,

v(k+1) = v(k) ◦
(
Qu(k+1)

)
+ e,

(6)
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It is shown in [2] that the sequence
{(

u(k), v(k)
)}

is strictly andmonotonically increasing, andconverges

to (u∗, v∗). Recently, two more methods are proposed in [1]. They are the nonlinear block Jacobi (NBJ)

method⎧⎨
⎩u(k+1) = u(k+1) ◦

(
Pv(k)

)
+ e,

v(k+1) = v(k+1) ◦
(
Qu(k)

)
+ e,

(7)

and the nonlinear block Gauss–Seidel (NBGS) method⎧⎨
⎩
u(k+1) = u(k+1) ◦

(
Pv(k)

)
+ e,

v(k+1) = v(k+1) ◦
(
Qu(k+1)

)
+ e.

(8)

It is shown in [1] that the sequence
{(

u(k), v(k)
)}

from either NBJ or NBGS is strictly andmonotonically

increasing, and converges to (u∗, v∗).
When there is a need to distinguish

(
u(k), v(k)

)
from SI, MSI, NBJ, or NBGS, they will be denoted by(

u
(k)
S , v

(k)
S

)
,
(
u
(k)
M , v

(k)
M

)
,
(
u
(k)
J , v

(k)
J

)
,
(
u
(k)
G , v

(k)
G

)
, respectively.

The following result has been proved in [5].

Theorem 1. For each k � 0,

0� u
(k)
S � u

(k)
J � u

(k)
G , 0� v

(k)
S � v

(k)
J � v

(k)
G .

It is easy to show that strict inequalities hold in Theorem 1 for k � 2. The next result is given in [2].

Theorem 2. For each k � 0,

u
(k)
S � u

(k)
M , v

(k)
S � v

(k)
M .

Moreover, strict inequalities hold for k � 3.

It is easy toshowbyexample that there isnosimilar comparisonresult for
(
u
(k)
M , v

(k)
M

)
and

(
u
(k)
J , v

(k)
J

)
.

However, it is easy to prove the following comparison result for
(
u
(k)
M , v

(k)
M

)
and

(
u
(k)
G , v

(k)
G

)
.

Theorem 3. For each k � 0,

u
(k)
M � u

(k)
G , v

(k)
M � v

(k)
G .

Moreover, strict inequalities hold for k � 2.

Proof. Wehaveu
(0)
M = u

(0)
G = 0andv

(0)
M = v

(0)
G = 0. It is easily seen thatu

(1)
M = u

(1)
G = eandv

(1)
M = e.

By (4), u∗ = u∗ ◦ (Pv∗) + e and v∗ ◦ (e − Qu∗) = e. So u∗ > e and 0 < e − Qu∗ < e − Qe < e. It

follows that v
(1)
G > e. Now assume u

(k)
M � u

(k)
G and v

(k)
M � v

(k)
G (k � 1). Then

u
(k+1)
G = u

(k+1)
G ◦

(
Pv

(k)
G

)
+ e > u

(k)
G ◦

(
Pv

(k)
G

)
+ e� u

(k)
M ◦

(
Pv

(k)
M

)
+ e = u

(k+1)
M ,

v
(k+1)
G = v

(k+1)
G ◦

(
Qu

(k+1)
G

)
+ e > v

(k)
G ◦

(
Qu

(k+1)
G

)
+ e� v

(k)
M ◦

(
Qu

(k+1)
M

)
+ e = v

(k+1)
M .

We have thus proved the result by induction. �

Although strict inequalities hold in Theorems 1–3 after a few iterations, the asymptotic rates of

convergence could still be the same for these methods. Thus a careful convergence rate analysis is

needed.
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3. Convergence rate analysis

Let

w(k) =
[
u(k)

v(k)

]
, w∗ =

[
u∗
v∗

]
.

Then each of the iterations (5)–(8) can be written as

w(k+1) = F(w(k)),

where F is a mapping from R2n into itself and w∗ is a fixed point of F . We let

d(k) = w∗ − w(k),

and will find the matrix L(k) in the error relation

d(k+1) = L(k)d(k) (9)

for each of the four iterations. The Fréchet derivative of the mapping F at w∗ will then be given by

F ′(w∗) = lim
k→∞ L(k).

The derivative will be denoted by F ′
S(w

∗), F ′
M(w∗), F ′

J (w
∗), and F ′

G(w
∗) for SI, MSI, NBJ and NBGS,

respectively.

For SI, we have

u∗ − u(k+1) = (u∗ ◦ (Pv∗) + e) −
(
u(k) ◦

(
Pv(k)

)
+ e

)
=

(
Pv(k)

)
◦

(
u∗ − u(k)

)
+ u∗ ◦

(
P

(
v∗ − v(k)

))
, (10)

and similarly

v∗ − v(k+1) = v∗ ◦
(
Q

(
u∗ − u(k)

))
+

(
Qu(k)

)
◦

(
v∗ − v(k)

)
.

Thus (9) holds with

L(k) =
⎡
⎣diag

(
Pv(k)

)
diag (u∗) P

diag (v∗)Q diag
(
Qu(k)

)
⎤
⎦ ,

and we have

F ′
S(w

∗) =
[
diag(Pv∗) diag(u∗)P
diag(v∗)Q diag(Qu∗)

]
.

For MSI, the mapping F is given by

F
[
u(k)

v(k)

]
=

⎡
⎣ u(k) ◦

(
Pv(k)

)
+ e

v(k) ◦
(
Q

(
u(k) ◦

(
Pv(k)

)
+ e

))
+ e

⎤
⎦ .

So the expression for u∗ − u(k+1) is still given by (10). But we now have

v∗ − v(k+1) = v∗ ◦ (Qu∗) − v(k) ◦
(
Q

(
u(k) ◦

(
Pv(k)

)
+ e

))
= v∗ ◦ (Qu∗) − v(k) ◦ (Qu∗)

+ v(k) ◦ (
Q

(
u∗ ◦ (

Pv∗) + e
)) − v(k) ◦

(
Q

(
u(k) ◦

(
Pv(k)

)
+ e

))
= (Qu∗) ◦

(
v∗ − v(k)

)
+ v(k) ◦

(
Q

((
Pv(k)

)
◦

(
u∗ − u(k)

)
+ u∗ ◦

(
P

(
v∗ − v(k)

))))
.
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Thus (9) holds with

L(k) =
⎡
⎣ diag

(
Pv(k)

)
diag(u∗)P

diag
(
v(k)

)
Qdiag

(
Pv(k)

)
diag(Qu∗) + diag

(
v(k)

)
Qdiag(u∗)P

⎤
⎦ ,

and we have

F ′
M(w∗) =

[
diag(Pv∗) diag(u∗)P

diag(v∗)Qdiag(Pv∗) diag(Qu∗) + diag(v∗)Qdiag(u∗)P
]
.

For NBJ, the mapping F is given by

F
[
u(k)

v(k)

]
=

⎡
⎣e

/(
e − Pv(k)

)
e

/(
e − Qu(k)

)
⎤
⎦ ,

where / is componentwise division. It is easy to find that (9) holds with

L(k) =
⎡
⎣ 0 diag

(
u∗ ◦ u(k+1)

)
P

diag
(
v∗ ◦ v(k+1)

)
Q 0

⎤
⎦ .

Thus

F ′
J (w

∗) =
[

0 diag(u∗ ◦ u∗)P
diag(v∗ ◦ v∗)Q 0

]
.

For NBGS, the mapping F is given by

F
[
u(k)

v(k)

]
=

⎡
⎣ e

/(
e − Pv(k)

)
e

/(
e − Q

(
e

/(
e − Pv(k)

)))
⎤
⎦ .

We find that (9) holds with

L(k) =
⎡
⎣0 diag

(
u∗ ◦ u(k+1)

)
P

0 diag
(
v∗ ◦ v(k+1)

)
Qdiag

(
u∗ ◦ u(k+1)

)
P

⎤
⎦ ,

and that

F ′
G(w

∗) =
[
0 diag(u∗ ◦ u∗)P
0 diag(v∗ ◦ v∗)Qdiag(u∗ ◦ u∗)P

]
.

We now prove the following result about the rate of convergence.

Theorem 4. For each of the iterations (5)–(8), we have

lim sup
k→∞

k
√

‖d(k)‖ = ρ(F ′(w∗)),

where ‖ · ‖ is any matrix norm and ρ(·) denotes the spectral radius.
Proof. For each iterative method we have for all k � 0

0� L(k) � L(k+1) � F ′(w∗).
Thus

d(k) = L(k−1) · · · L(1)L(0)d(0) �(F ′(w∗))kd(0).

So

lim sup
k→∞

k
√

‖d(k)‖ � lim sup
k→∞

k
√

‖(F ′(w∗))k‖ = ρ(F ′(w∗)).
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Also, for any k � l � 0

d(k) �
(
L(l)

)k−l (
L(0)

)l
d(0).

Note that
(
L(0)

)l
d(0) =

(
L(0)

)l
w∗ > 0. We can then prove that

lim sup
k→∞

k
√

‖d(k)‖ � ρ(F ′(w∗)),

as in the proof of [10, Theorem 3.2]. �

The above convergence rate analysis reveals the following interesting result.

Theorem 5. In terms of asymptotic rate of convergence, theNBGSmethod is twice as fast as theNBJmethod.

Proof. Note that

(F ′
J (w

∗))2 =
[
diag(u∗ ◦ u∗)Pdiag(v∗ ◦ v∗)Q 0

0 diag(v∗ ◦ v∗)Qdiag(u∗ ◦ u∗)P
]
.

So

(ρ(F ′
J (w

∗)))2 = ρ(diag(v∗ ◦ v∗)Qdiag(u∗ ◦ u∗)P) = ρ(F ′
G(w

∗)), (11)

as required. �

Remark. The above theorem explains the numerical results for NBJ and NBGS presented in Tables 1

and 2 in [1], where the number of iterations required for NBGS is roughly half of that for NBJ.

The Riccati equation (1) contains two parameters c and α, 0 < c � 1 and 0� α < 1. We now

examine the effect of theseparameters on the rate of convergence,with ci,wi(i = 1, . . . , n)unchanged.

Theorem 6. For each of the methods SI, MSI, NBJ, and NBGS, if c and α are changed such that c(1 + α)
and c(1 − α) are decreasing with at least one of them strictly, then ρ(F ′(w∗)) is strictly decreasing.

Proof. Under the assumption, the matrices P and Q are strictly decreasing. Using induction, we see

easily from the SI method that u∗ and v∗ are also decreasing. We then see from (4) that at least one

component of u∗ or v∗ is strictly decreasing. Note that F ′(w∗) is an irreducible nonnegativematrix for

SI, MSI, and NBJ, and that the (2, 2) block of F ′(w∗) is an irreducible nonnegative matrix for NBGS. It

follows from the Perron–Frobenius theory [3,16] that ρ(F ′(w∗)) is strictly decreasing. �

Remark. In Table 1 of [1] the number of iterations required for SI, NBJ, NBGS are reported for (α, c) =
(10−6, 1 − 10−6), (0.001, 0.999), (0.005, 0.995), (0.1, 0.9), (0.5, 0.5) (in this order). The results there

show that the number of iterations decreases significantly for each method as (α, c) changes. This is

explained (at least partially) by Theorem 6 since both c(1 + α) and c(1 − α) decrease significantly as

(α, c) changes. Similarly, Theorem 6 explains the numerical results given in Tables 3.1 and 3.2 of [2]

for SI and MSI, where (α, c) takes the values (10−8, 1 − 10−6), (0.001, 0.999), (0.01, 0.99), (0.5, 0.5),
(0.85, 0.1).

Our main purpose in what follows is to show that NBGS is strictly faster than MSI (in terms

of asymptotic rate of convergence) when (α, c) /= (0, 1) and that the convergence of NBGS is still

sublinear when (α, c) = (0, 1).
Let

K = I − F ′
S(w

∗) =
[
I − diag(Pv∗) −diag(u∗)P
−diag(v∗)Q I − diag(Qu∗)

]
,



C.-H. Guo, W.-W. Lin / Linear Algebra and its Applications 432 (2010) 283–291 289

where I is an identity matrix of proper dimension. By definition, K is a nonsingular M-matrix if

ρ(F ′
S(w

∗)) < 1 and is a singular M-matrix if ρ(F ′
S(w

∗)) = 1.

Lemma 7. K is a nonsingular M-matrix if (α, c) /= (0, 1), and is a singular M-matrix if (α, c) = (0, 1).

Proof. The minimal positive solution X∗ of (1) can be obtained by the fixed-point iteration

�Xk+1 + Xk+1Γ = XkCXk + B + eqTXk + Xkqe
T , k = 0, 1, . . . ,

with X0 = 0. Let the sequences {u(k)} and {v(k)} be obtained by (5). Then we have [14]

Xk = T ◦ (u(k)
(
v(k)

)T
), u(k+1) = Xkq + e, v(k+1) = XT

k q + e.

It follows that Xk converges to X∗ linearly if and only ifw(k) converges tow∗ linearly, which is the same

as ρ(F ′
S(w

∗)) < 1 by Theorem 4. On the other hand, by [10, Theorems 3.2 and 3.3] Xk converges to X∗
linearly if and only if the matrixMS in [10] is a nonsingularM-matrix. By [6, Propositions 3.4 and 4.9]

and [8, Theorem 2.5], thematrixMS in [10] is a nonsingularM-matrix if and only if (α, c) /= (0, 1). We

have thusproved thatρ(F ′
S(w

∗)) < 1when (α, c) /= (0, 1)andρ(F ′
S(w

∗)) = 1when (α, c) = (0, 1).
�

We now consider four different regular splittings [16] of the matrix K: K = Mi − Ni, i = 1, 2, 3, 4,

where

M1 =
[
I 0

0 I

]
, N1 =

[
diag(Pv∗) diag(u∗)P
diag(v∗)Q diag(Qu∗)

]
,

M2 =
[

I 0

−diag(v∗)Q I

]
, N2 =

[
diag(Pv∗) diag(u∗)P

0 diag(Qu∗)
]
,

M3 =
[
I − diag(Pv∗) 0

0 I − diag(Qu∗)
]
, N3 =

[
0 diag(u∗)P

diag(v∗)Q 0

]
,

M4 =
[
I − diag(Pv∗) 0

−diag(v∗)Q I − diag(Qu∗)
]
, N4 =

[
0 diag(u∗)P
0 0

]
.

Lemma 8. F ′
S(w

∗) = M
−1
1 N1,F ′

M(w∗) = M
−1
2 N2,F ′

J (w
∗) = M

−1
3 N3,F ′

G(w
∗) = M

−1
4 N4.

Proof. We prove the last equality. The others can be proved more easily. Using the formula

[
A 0

C B

]−1

=
[

A−1 0

−B−1CA−1 B−1

]
,

and noting that by (4)

(I − diag(Pv∗))−1 = diag(u∗), (I − diag(Qu∗))−1 = diag(v∗),

we obtain

M
−1
4 =

[
diag(u∗) 0

diag(v∗ ◦ v∗)Qdiag(u∗) diag(v∗)
]
.

A direct computation then gives M
−1
4 N4 = F ′

G(w
∗). �

Theorem 9. If (α, c) = (0, 1), then

ρ(F ′
S(w

∗)) = ρ(F ′
M(w∗)) = ρ(F ′

J (w
∗)) = ρ(F ′

G(w
∗)) = 1. (12)
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If (α, c) /= (0, 1), then

ρ(F ′
G(w

∗)) < ρ(F ′
M(w∗)) < ρ(F ′

S(w
∗)) < 1,

ρ(F ′
G(w

∗)) < ρ(F ′
J (w

∗)) < ρ(F ′
S(w

∗)) < 1.

Proof. Recall that the Fréchet derivatives are all nonnegative matrices. In view of Lemmas 7 and 8, we

have as in the proof of [10, Theorem 3.3] that (12) holds if (α, c) = (0, 1) and that

ρ(F ′
G(w

∗)) � ρ(F ′
M(w∗)) � ρ(F ′

S(w
∗)) < 1,

ρ(F ′
G(w

∗)) � ρ(F ′
J (w

∗)) � ρ(F ′
S(w

∗)) < 1

if (α, c) /= (0, 1). When (α, c) /= (0, 1), by the theory of nonnegative matrices we know that [16,

Theorem 3.29]

ρ(M−1
i Ni) = ρ(K−1Ni)

1 + ρ(K−1Ni)
. (13)

Since 0� K−1N4 � K−1N2, K
−1N2 > 0, and K−1N4 /= K−1N2, we have ρ(K−1N4) < ρ(K−1N2) by

the Perron–Frobenius theory. So ρ(M−1
4 N4) < ρ(M−1

2 N2) by (13), which is the same as ρ(F ′
G(w

∗)) <
ρ(F ′

M(w∗)). Similarly, we can prove ρ(F ′
M(w∗)) < ρ(F ′

S(w
∗)) and ρ(F ′

G(w
∗)) < ρ(F ′

J (w
∗))

< ρ(F ′
S(w

∗)). Note that ρ(F ′
G(w

∗)) < ρ(F ′
J (w

∗)) also follows from (11) directly. �

4. Conclusion

In this paper we have further studied four fixed-point iterations for finding the minimal positive

solution of the equation (1), which involves a pair of parameters (α, c) with 0� α < 1 and 0 < c � 1.

Thesemethodsareall easy touse, andhave thesame lowcomplexityeach iteration.Wehaveshownthat

the NBGSmethod in [1] is faster than the other three in terms of asymptotic rate of convergence when

(α, c) /= (0, 1). Existing results and a new result in this paper together show that the NBGS method

also provides better approximation after every iteration. We have also shown that the convergence

of the NBGS method is still sublinear when (α, c) = (0, 1). So one should use the methods in [4,15]

when (α, c) is close to (0, 1), and use the NBGS method otherwise.
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