
國 立 交 通 大 學

資訊科學資訊科學資訊科學資訊科學與工程研究所與工程研究所與工程研究所與工程研究所

博博博博 士士士士 論論論論 文文文文

低內容交換失誤率之轉換搜尋緩衝器

與其非同步電路實作之探討

TLB with Low Miss Rate in Context Switching and

Study of Implementation of Asynchronous Circuit

研 究 生：鄭緯民

指導教授：陳昌居 教授

中中中中 華華華華 民民民民 國國國國 九九九九 十十十十 八八八八 年年年年 七七七七 月月月月

低內容交換失誤率之轉換搜尋緩衝器

與其非同步電路實作之探討

TLB with Low Miss Rate in Context Switching and

Study of Implementation of Asynchronous Circuit

研 究 生：鄭緯民 Student：Wei-Min Cheng

指導教授：陳昌居 Advisor：Chang-Jiu Chen

國 立 交 通 大 學

資 訊 科 學 與 工 程 研 究 所

博 士 論 文

A Thesis

Submitted to Institute of Computer Science and Engineering

College of Computer Science

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

in

Computer Science

July 2009

Hsinchu, Taiwan, Republic of China

中華民國九十八年七月

 i

低內容交換失誤率之轉換搜尋緩衝器低內容交換失誤率之轉換搜尋緩衝器低內容交換失誤率之轉換搜尋緩衝器低內容交換失誤率之轉換搜尋緩衝器

與其非同步電路實作之探討與其非同步電路實作之探討與其非同步電路實作之探討與其非同步電路實作之探討

研究生研究生研究生研究生：：：：鄭緯民鄭緯民鄭緯民鄭緯民 指導教授指導教授指導教授指導教授：：：：陳昌居陳昌居陳昌居陳昌居 教授教授教授教授

國立交通大學資訊學院資訊科學與工程研究所國立交通大學資訊學院資訊科學與工程研究所國立交通大學資訊學院資訊科學與工程研究所國立交通大學資訊學院資訊科學與工程研究所

摘摘摘摘 要要要要

嵌入式處理器廣泛運用在嵌入式系統或手持裝置中，因此低功率、可靠與扎

實就成為這類處理器最重要的課題。非同步電路應該是解決這類問題最好的解

答，因此，非同步電路非常適合用來實作這些處理器。

眾所周知，這些嵌入式處理器被用來執行許多不同的工作。近來，許多嵌入

式系統與手持式裝置開始執行非常複雜的作業系統，像是嵌入式 Linux 或

Windows
®
 mobile, 而為了支援現代作業系統的虛擬記憶體機制，支援虛擬位址

與實體位址間的轉換是必需的，這也被認為是影響整體記憶體系統效能的關鍵因

素之一。為了提高位址轉換的效能，幾乎所有近代處理器內都具備了轉換搜尋緩

衝器，因此，在我們的計畫中，我們提出了一個設計給嵌入式處理器具備低內容

轉換失誤率的轉換搜尋緩衝器架構。為了區隔不同的位址空間，我們採取了區隔

轉換搜尋緩衝器庫來取代每個轉換搜尋緩衝器項目的位址空間區隔標籤，並且使

用了簡單的預取機制來減少可能發生的強迫性失誤，除此之外，因為是設計給非

同步嵌入式處理器的轉換搜尋緩衝器，設計上所有的運作行為也都很簡單。

 ii

最後，我們以 Balsa 硬體描述語言實作該轉換搜尋緩衝器之控制器，因為實

作過程中我們巧妙的安排了通訊交換管道，實作過程中我們就可以比較容易以假

設的輸入樣本驗證正確性，儘管也許以這樣的方式驗證我們這個實作是可行的，

然而這種方法運用在我們目前進行中的非同步嵌入式處理器計畫既不可能也不

合理，因此我們提出建議了一個未來我們計畫進行中的軟硬體共同設計與交互驗

證的流程，最後，以 Balsa 工具產生了邏輯閘級的 netlist 也評估了實作所需等效

的邏輯閘個數，然而結果顯示如此方式實作成本並不低，等價邏輯閘數為 688,560,

我們也說明了還是依然以此高層次非同步硬體描述語言實作的原因，最重要的，

這對未來比較大的非同步設計而言是必需的。

 iii

TLB with Low Miss Rate in Context Switching and

Study of Implementation of Asynchronous Circuit

Student：：：：Wei-Min Cheng

Advisors：：：：Prof. Chang-Jiu Chen

Institute of Computer Science and Engineering

National Chiao Tung University

Abstract

Embedded processors are widely used in many embedded systems and

handheld devices. Hence, low power, reliability, and robustness have been

becoming the critical issues for these processors. Asynchronous circuits may be

one of the best solutions to overcome these problems. Thus it may be more

suitable to implement these processors with asynchronous circuits.

It is widely known that these embedded processors are used to execute

varieties of tasks. Recently, many new embedded systems and handheld devices

begin to execute very complex operating systems, such as embedded Linux or

Windows
®
 mobile. In order to support virtual memory mechanism of modern

operating systems, address translation from virtual address to physical address

should be supported. However, it is widely considered as the critical issue of

memory system performance. In order to improve the address translation

performance, the Translation Lookaside Buffer (TLB) is implemented inside

 iv

almost all contemporary processors. In this work, we propose an alternative

TLB architecture with low context switch miss rate for asynchronous embedded

processors. We adopted a heuristic TLB banking designs to replace per-entry

ASID to identify each address space. In addition, simple prefetching mechanism

is used to reduce some possible compulsory misses. Because the architecture is

designed for asynchronous embedded processors, all operations are very simple.

Finally, we implemented the TLB controller for the proposed TLB

architecture with Balsa HDL. Because we skillfully arrange the communication

channels, we can verify the implementation easier with assumed random pattern.

Though it’s possible to verify our implementation with such simple way, it’s

impossible and unreasonable to verify the whole asynchronous embedded

processor that we are currently working for. We also suggested a

hardware/software co-design and cross-verification flow for our future work.

Finally, the gate-level netlist was generated with Balsa tools, and the equivalent

gate count of the implementation was estimated. The result shows that the cost

of the implementation modeled with Balsa HDL is not cheap. The total

equivalent gate count is 688,560. However, we also describe why designing

asynchronous circuits with such high-level asynchronous HDL. It’s needed for

future larger design!

 v

Acknowledgement

從入學就讀博士班到現在，終於要離開交大了，多年來在這裡生活感觸很多，也很

感謝很多老師與身邊來來去去的許多人的幫助與陪伴，在交大真的有許多回憶，在我的

生命的歲月中彌足珍貴與重要，因此在這邊有很多感謝想說。

這些年最想感謝的是多年來一直照顧我幫助我的指導教授陳昌居教授，因為他的幫

助與照顧，讓我在這些年受益匪淺，也學到不少道理，擴張我的視野，大同大學資訊工

程學系鄭福炯教授與實驗室黃年畤學長，因為他們的引介，我才能夠瞭解除了傳統同步

電路的設計以外，還有很廣闊的非同步領域的天空，此外，多年來在實驗室也一直受到

黃年畤學長的照顧與協助，而且還能夠在學業以外，有更多活潑的室外休閒活動，讓我

不再是完全關在室內的「宅男」，當然，也是許多實驗室伙伴大家共同改變我，此外，

在交大資工系修習不少課程，因為系上教授殷殷指導，讓我學習到更多知識與技能，系

上老師親切的態度更讓我感動，像是每每遇到鍾崇斌教授，總能感受到他的噓寒問暖，

讓我真的很感謝，也感謝我的論文計畫書口試教授陳正教授與范倫達教授，陳正教授除

了過往在他的課堂上學到很多，對我的論文方向也給予了許多寶貴建議，至於范倫達教

授雖然未曾有機會修習到他的課程，但是這兩三年因為領域關係，實驗室學弟口試總能

遇到他，他也常能對我們實驗室研究有不少建議，對我的論文也提出珍貴意見，十分感

謝，此外，實驗室學弟張元騰、蔡宏岳更是給予許多支持與幫助，讓我計畫進行順利，

至為感謝，還有已經畢業的張繼文學弟，除了他跟我現在是工作上很要好且業務關係密

切的同事以外，他在有關TLB與MMU和現在有關ESL的研究上更是與我最好的合作伙伴，

也是讓我萬分感謝，此外，其他還有很多要感謝的實驗室伙伴，不管是畢業的或是還在

學的，真的，對於不管是曾給予我幫助的系上老師或是學弟妹與伙伴，真的有很多話想

說，心中萬千感受，實在千言萬語，難以言盡，只能對所有師長、同學與學弟妹在我心

中永遠感謝，謝謝大家。

 vi

Contents

摘 要 ...i

Abstract ..iii

Acknowledgement...v

Contents ..vi

List of Figures ...vii

List of Tables..ix

Chapter 1: Introduction ..1

1-1 Motivation ..1

1-2 Introduction to asynchronous circuits...2

1-3 Introduction to Translation Lookaside Buffer ..5

Chapter 2: Related Works ..12

2-1 Recent studies of TLB..12

2-2 Circuit design with asynchronous circuits ...24

2-3 Previous Asynchronous TLB or MMU Design..42

Chapter 3: Proposed TLB architecture for asynchronous embedded processor.46

3-1 Relationship between the TLB miss rate and sizes ..46

3-2 The proposed TLB architecture..49

3-3 Performance evaluation of the proposed architecture ..53

3-4 Discussions of the proposed architecture ...58

Chapter 4: Implementation the TLB Controller with Asynchronous Circuits....59

4-1 Interface..59

4-2 The Balsa Framework ..61

4-3 The Design with Balsa ...66

4-4 Implementation ..73

Chapter 5: Conclusions and Future Works...76

5-1 Conclusions ..76

5-2 Future Works..78

5-3 Verification Issue for future work..79

Reference ...82

 vii

List of Figures

Figure 1-1 Clock distribution domains and generators..…………………………………….....4

Figure 1-2 Conceptual virtual memory….…………………………………………..................8

Figure 1-3 Virtual address translation with TLB………………………………………………8

Figure 1-4 Page table structure of IA32e mode with 4KB page size…………………………..9

Figure 1-5 Virtual to physical address translation of Alpha AXP……..………………………9

Figure 1-6 Smart phones with Windows
®
 Mobile OS………………………………………..10

Figure 2-1 Structure of TLBs and cache memories of Intel
®
 Core i7………………………...13

Figure 2-2 IA32 linear address translation (4KB page)..14

Figure 2-3 IA32 linear address translation (4MB page)…………………............…………...14

Figure 2-4 Complete-subblock TLB with block factor 4……………………….…………….17

Figure 2-5 Promotion TLB structure & Banked promotion TLB structure…………………..18

Figure 2-6 MMC example with shadow region………………………………………………18

Figure 2-7 Reconfigurable partitioned TLB………………………………………………….19

Figure 2-8 Share tag design of TLB and cache memory……………………………………..19

Figure 2-9 Operations of “Recency Stack”…….……………………………………………..20

Figure 2-10 Memory translation table of TLB with “Recency prefetching”………………..21

Figure 2-11 TLB with “Distance Prefetching”…………………………………………….21

Figure 2-12 Schematic of generic TLB prefetching hardware……………………………….22

Figure 2-13 CPD and per-address page tables..………………………………………………23

Figure 2-14 TLB with per-entry ASID tag…………………………………………………...23

Figure 2-15 Isochronous fork…………………………………………………………………26

Figure 2-16 Classifications of asynchronous circuits………………………………………...26

Figure 2-17 The 4-phase protocol…………………………………………………………….27

Figure 2-18 The 2-phase protocol…………………………………………………………….28

Figure 2-19 Bundled-data signaling model..………………………………………………….28

Figure 2-20 Dual-rail data signaling model…………………………………………………..28

Figure 2-21 The Muller C-element: symbol & truth table……………………………………33

Figure 2-22 The Muller pipeline….…………………………………………………………..33

Figure 2-23 A three-stage 1-bit wide 4-phase dual-rail pipeline..……………………………34

Figure 2-24 Control circuit of micropipeline…..……………………………………..………34

Figure 2-25 Micropipeline architecture………………………………………………………35

Figure 2-26 Q element………………………………………………………….………....….35

Figure 2-27 The architecture of CFPP……………………………………………………..…36

Figure 2-28 Concept of GALS………………………………………………………………..37

Figure 2-29 Asynchronous pipelined 8051 architecture……………………………………...40

Figure 2-30 Transistor-level and gate-level of C element implementation……………….….40

 viii

Figure 2-31 Dual-rail OR gate symbol & gate-level implementation….…………………….41

Figure 2-32 1-bit dual-rail register……………………………………………………………41

Figure 2-33 Architecture of NCTUAC18 microcontroller core…………….…………..……41

Figure 2-34 Overview of Mayers and Martin’s asynchronous MMU……………………….44

Figure 2-35 Architecture of baseline asynchronous MMU….……………………………….44

Figure 2-36 Architecture of asynchronous MMU with performance architecture…….……..45

Figure 3-1 ITLB/DTLB miss rate for gcc with 4KB page……………………………………48

Figure 3-2 ITLB/DTLB miss rate for ijpeg with 4KB page………………………………….48

Figure 3-3 ITLB/DTLB miss rate for compress with different page sizes and TLB sizes....49

Figure 3-4 The proposed TLB architecture……………………………………………..……50

Figure 3-5 ITLB miss rates for SPEC95 benchmarks…………………………………...……55

Figure 3-6 DTLB miss rates for SPEC95 benchmarks……………………………………….56

Figure 4-1 Block diagram of the TLB interface……..……………………………………….61

Figure 4-2 The Balsa design flow…………………………………………………………….63

Figure 4-3 The NC2P element…………………………………………………………..……63

Figure 4-4 The S element……………………………………………………………………..64

Figure 4-5 The Fetch component……………………………………………………………..64

Figure 4-6 The Sequence component…………………………………………………….…...65

Figure 4-7 The Concurrent component……………………………………………………….65

Figure 4-8 Architecture of asynchronous TLB modeled with Balsa HDL…….……………..66

Figure 4-9 Handshaking component graph of CU…..………………………………………..72

Figure 4-10 Handshaking compoenet graph of PA Generator………………………………..73

Figure 4-11 Waveform of circuit simulation..………………………………………………..74

Figure 5-1 Simple VLSI design flow..………………………………………………………..80

Figure 5-2 Our asynchronous processor design flow………………………………………..81

 ix

List of Tables

Table 1-1 Comparisons of ARM996HS and ARM968E-S………………….…………………4

Table 4-1 Definitions of asynchronous TLB interface…..…………………………………...60

Table 4-2 Structure of each TLB entry……………………………………………………….69

Table 4-3 Structure of each TLB bank tag...………………………………………………….69

Table 4-4 Structure of 4-bit TLB command………………………………………………….71

Table 4-5 Data signal of TLB_hit channel..…………………………………………………..71

Table 4-6 Equivalent gate count….………………………………………………………..…74

 1

Chapter 1: Introduction

1-1 Motivation

Embedded processors and microcontrollers are widely used in varieties of different

embedded systems and handheld devices. Because of new complex applications today, these

processors are now required to execute new embedded operating systems. Thus it’s very

important to provide the capability to support virtual memory mechanism needed in modern

operating system. In order to provide fast address translation, the translation lookaside buffer

(TLB) should be provided inside these processors now. Furthermore, because of the

embedded system or handheld devices nature, simple and easy context switching model

should also be provided. In order to reduce the address translation penalty of context

switching, a well-designed TLB with low context switching miss ratio is needed for these

processors [1,2,3].

In addition, to keep those processors operating with high robustness and low power

consumption are the two most important issues. It is widely known that asynchronous circuit

is the best solution to address these two issues at the same time [4,5,6,7]. Thus embedded

processors and microcontrollers may be suitable to be implemented with asynchronous

circuits. However, it’s not very easy to implement the TLB that needed for modern operating

system for asynchronous processors. In our work, we proposed TLB architecture with low

context switching miss ratio that is suitable for embedded systems that runs only some tasks

and implement the TLB controllers with asynchronous circuits.

 2

1-2 Introduction to asynchronous circuits

Asynchronous chips improve computer performance

 by letting each circuit run as fast as it can!

By Ivan E. Sutherland and Jo Ebergen

"Scientific American", August 2002 [4]

It is widely known that synchronous circuits have some problems that have to be

carefully dealt with, such as clock skew, difficulty in clock distribution, worse case

performance, not modular, sensitive to variations in physical parameters (temperature, voltage,

and process), synchronization failure, and noise (EMI). All these problems derive from the

“clock” signal [4,5,6,7]! As the VLSI based systems become larger, more complex, and work

with higher clock rate, these problems also become more serious than ever before.

In addition, to reduce the power consumption has already become one of the most important

issues in large VLSI system design. It is widely known that the dynamic power dissipation

P∝ fcv
2
[8]. That means that the dynamic power consumption is in proportion to the number of

switching activities. In order to improve the circuits or system performance, the clock

frequency becomes higher and higher. Thus, the extra power wasted in the clock tree

distribution also becomes larger and larger. That’s very clear that clock signal consumes a

very large proportion power of the whole chip. For example, the clock tree distribution

network of DEC (Compaq) Alpha 21064 processor consumes about 40% power when it runs

at maximum speed [9]. Similarly, the Motorola MCORE micro-RISC processor consumes

36% power in clock tree distribution [10]. In fact, the clock distribution network should be

responsible for an increasing fraction of the dynamic power consumed by modern processors

and SoCs [11,12,13]. Thus, if the clock signal can be removed, the power consumption may

be reduced with very high possibility. In order to reduce the power consumption, lots of

different techniques are proposed and implemented, such as clock gating and dynamic voltage

and frequency scaling (DVFS)[14]. Furthermore, higher clock frequency may also cause the

temperature of the VLSI chips very high. It’s also harmful for embedded systems or handheld

 3

devices. We can say that all these problems cause nightmares for almost all VLSI-based

system developments today.

On the contrary, asynchronous circuits can easily reduce the power consumption via

removing the “clock” signals that spread the whole VLSI chip. Replaced by the handshaking

protocols, asynchronous circuits offer low active power and almost zero standby power

[4,5,6]. In fact, because of data-driven nature, the inactive components or parts of

asynchronous circuits can be automatically “shut-off.” Thus, asynchronous circuits can offer

very good power efficiency. For example, the most famous asynchronous ARM compatible

processors—the Amulet series processors [15,16,17,18] shows very good power efficiency

than its synchronous ARM processor counterparts. Another very famous example, Philips

asynchronous 80C51 microprocessor is 4 times power efficient than that of its synchronous

counterparts [19]. The most interesting of all is the latest ARM996HS processor that is the

first commercial-available synthesible 32-bit CPU built with clockless logic[7,20]. It

consumes about 2.8x less power than the clock-gated ARM968E-S core. Table 1-1 shows the

comparisons between ARM996HS and ARM968E-S [7]. The table also shows that

ARM996HS can operate correctly in varieties of operating environment. It can operate with

lower voltage in high temperature environment. Asynchronous circuits are much more robust

than synchronous circuits.

In fact, designing the “clock” system has been becoming the critical issue in large VLSI

system design today. For example, very complex “clocking architecture” is implemented in

the latest Intel
®
 45nm 8-core Xeon

®
 Enterprise processor announced in ISSCC2009 [21].

Figure 1-1 shows its clocking architecture. The design has totally 16 PLLs, 8 DLLs, and

independent clock domains for each cores and the uncore. What a complex design it is!

Unfortunately, such designs are very popular today. Since the first microprocessor, the Intel
®

4004, was announced in 1971, the VLSI technologies have had great improvement. To put

one billion transistors on a single chip have been becoming possible. How terrible it is to

design the “clock” system on such big system!

However, because of several complex historical and practical reasons, almost all systems

today are still implemented with fixed clock period based design. While synchronous design

 4

may introduce lots of problems with systems growing up larger and larger, asynchronous

design may overcome these problems via avoiding the use of clock signal. Furthermore, how

to accomplish IP reuse easier becomes one of the most important issues for SoC design.

Asynchronous circuits may be one of the best solutions to address this issue. Without the

influence of the “clock” signal, asynchronous circuits make “software OOP” style design for

hardware design possible. All things that the designers need to know are the handshaking

protocol interface [4,5,6]. It also makes each designed component or IP more reusable. With

growing up mobile device and embedded system markets, all these issues need to be seriously

considered. Thus, it’s time to implement these systems with asynchronous circuits.

Table 1-1: Comparisons of ARM996HS and ARM968E-S

 Frequency

[equiv. MHz]

Performance

[DMIPS]

Power

[mW/equiv. MHz]

Gate Count

[NAND2

equiv.]

ARM996HS 50

(worst, 1.08 V, 125ºC)

77

(nominal, 1.2 V, 25ºC)

54

(worst, 1.08 V, 125ºC)

83

(nominal, 1.2 V, 25ºC)

0.045

(nominal, 1.2 V, 25ºC)

89K

ARM968E-S 100 107 0.13

(nominal, 1.2 V, 25ºC)

88K

Figure 1-1: Clock distribution domains and generators

 5

1-3 Introduction to Translation Lookaside Buffer

In order to support larger memory requirements for modern applications, it’s important

for modern operating systems (OS) to provide the virtual memory mechanism. Conceptually,

with virtual memory, the movements of code and data of one program between main memory

and secondary storage can be automatically achieved, and a single complete and contiguous

“memory space” can be given for each program. Thus, only part of code and data of one

program needs to be placed in main memory. Programmers do not need to know anything on

how the code and data are arranged. Moreover, the program size can be even larger than the

real physical memory size. In fact, virtual address space are often much larger than real

physical memory space and size. Figure 1-2 shows the conceptual virtual memory. The virtual

memory is divided into lots of fixed size blocks called pages and each page has a specific

page number called Virtual Page Number (VPN). Similarly, the physical memory is also

divided into the same size page frames, and each of it has its own unique page frame number

called Physical Page Number (PPN). Via the memory mapping, each page of virtual memory

can be mapped to a page frame of physical memory or the secondary storage. With

appropriate hardware support, the virtual memory is carefully maintained by the OS [22].

As mentioned before, the OS is responsible to provide the mechanisms to map virtual

address to physical address. However, all these virtual address to physical address translations

are stored in main memory. To reduce the cost of address translations, the translation

lookaside buffers (TLBs) are widely implemented inside the processor [23,24,25,26,27,28].

Figure 1-3 depicts the basic design idea of TLB. Once the virtual address (VA) is sent to TLB,

it is compared with all the tag fields to find a matched VPN. If it is a hit, the corresponding

PPN will be sent out. The physical address therefore can be generated via the combination of

PPN and offset. Otherwise, if it is a miss, the page table traversal will be performed. The OS

will take care of the TLB miss handling.

But, the virtual memory mechanism varies with different processor architecture and OS

implementation. The page table organization dominates the page table traversal time that

 6

occupies most TLB miss handling time. Though some new architectures use some advanced

page table organizations to reduce the page table traversal time such as inverted page table

structure [22] such as PowerPC architecture[29], the forward-mapped hierarchical page table

structure are still widely used, such as Compaq/DEC Alpha AXP[28], the latest AMD64, and

Intel
®
64 [30,31,32] architectures. It costs several main memory accesses to fetch the correct

Page Table Entry (PTE) if any miss occurs. It even possibly needs to traverse 7 levels of

different page tables on processors with 64-bit addressing [33]. Figure 1-4 shows the page

table structure of IA32e mode with 4KB page size of Intel
®
64 architecture. If no any TLBs

and address caches are implemented inside these processors, traversals of four levels of

different tables should be completed to obtain correct PPN. Figure 1-5 shows the page table

structure of Compaq/DEC Alpha AXP [28]. It has three levels of page tables. That impacts

the overall system performance very seriously. Thus it’s important to reduce the TLB miss

rates for systems with such page table structure.

In addition, frequently happened context switching may cause some extra TLB misses.

Some research even shows that these misses play important role in TLB performance [1,2,3].

Thus most processors have implemented some kinds of address space identifier (ASID) to

distinguish each address space [25]. For example, MIPS R10000 processor has an 8-bit ASID

for each of its 64-entry TLB to allow context switches without having to invalidate all entries

[34]. It is also suggested to provide 8-bit ASID for SPARC architecture [35,36]. However,

some processors including the IA32 (x86) architecture which is the most popular processor

family today simply flush all the TLB entries when the context switching occurs [31,1].

Unfortunately, it’s even still the same for the latest IA32 processors. We’ll treat the model as

the worse case performance. Though lots of different research about TLB has been done, only

some notice the influence of context switching. That may be because it’s very hard to model

and estimate the context switching activities caused by the OS and it’s also hard to consider

this issue without considering the OS behavior first. In our work, we tried to provide an

alternative to address the context switching issue for TLB. To support the proposed

mechanism, the OS should be modified a little. In fact, because of architecture differences,

these kinds of modifications of OS for TLBs are needed for all architectures. We hope that

this simple mechanism can be implemented inside an asynchronous embedded processors or

microcontrollers that only run some tasks simultaneously.

 7

To estimate the performance of the proposed architecture, we did some simulations. All

the simulations were done by the modified SimpleScalar Version 3.0d tool suite [37] provided

by the SimpleScalar LLC with SPEC95. In addition to the performance of traditional

1024-entry fully-associative TLB with x86-style assumption, we also compare the

performance of 1024-entry fully-associative TLB with ASID and two different pre-fetching

mechanisms incorporate with our proposed design. The results show that our banked design

can work very well with sequential prefetching (SP, also called linear pre-fetching).

Our work is trying to realize TLB controllers for asynchronous embedded processors or

microcontrollers with low TLB miss rate caused by context switching. Though most

processors reduce the miss rate caused by context switching with ASID, our work provides an

alternative to address this issue. There are several reasons for the proposed architecture. These

embedded systems only execute some tasks at the same time. Thus, it really doesn’t need to

store too many ASIDs. That’s why no ASIDs TLB design of StrongARM SA-1100 processor

[2,3]. Don’t forget these processors are not designed for desktop purpose. Figure 1-6 shows

smart phones that execute Windows
®
 mobile OS. In fact, because we wish to implement such

TLB for asynchronous embedded processors or microcontrollers, less tag bits may be more

important than other issues. In addition, we also discuss why sequential prefetching is more

suitable for the proposed design. Moreover, we’ll try to realize this design on the

asynchronous processor which we currently work for. That would not be too hard to realize

the proposed mechanism on an asynchronous processor with same extra handshaking

protocols on bundled delay or self-timed design.

 8

Figure 1-2: Conceptual virtual memory

Figure 1-3: Virtual address translation with TLB

 9

Figure1-4: Page table structure of IA32e mode with 4KB page size

Figure 1-5: Virtual to physical address translation of Alpha AXP

 10

Figure 1-6: Smart phones with Windows
®
 Mobile OS

 11

1-4 Summary

As mentioned in previous section, new embedded systems or handheld devices now

begin to execute new modern operating systems. It therefore becomes more and more

important for these processors to provide efficient address translations. A well-designed TLB

now becomes one of the critical performance issues for these processors. In addition, because

embedded systems and handheld devices may operate in varieties of environments, robustness

and reliability are two of the most important issues to these processors. Asynchronous circuits

can easily address these issues. However, lack of address translation mechanism, most

asynchronous processors doesn’t support virtual memory directly. In order to support virtual

memory for asynchronous processors, asynchronous TLB controller should be implemented.

Thus, in this thesis, we propose a TLB architecture for future asynchronous embedded

processors, and modeled it with Balsa HDL. Followings are the main contributions of this

thesis.

� Plenty surveys of TLB studies

� Plenty surveys of asynchronous circuits, and detailed introductions of how to design

circuits with asynchronous circuits

� Studies of performance issue of TLB in context switching

� New alternative TLB architecture with low miss rate in context switching for

asynchronous embedded processors

� Studies of implementation of proposed TLB architecture with asynchronous circuits

� Confirming the possibility to design TLB controller for asynchronous processors

 12

Chapter 2: Related Works

 In this chapter, we’ll discuss the related works of both TLB design and

asynchronous systems or circuits design. Because only a few specific research on TLB design

for asynchronous processors, we’ll discuss them separately in this chapter. Finally, case

studies of asynchronous MMU or TLB design will be discussed.

2-1 Recent studies of TLB

As mentioned in Chapter 1, TLB plays an important role in the overall performance of

the processors that support virtual memory technique. Thus, lots of different research has

been done. Moreover, because of architecture and addressing mode differences, the real

implementation may have great differences. The design requirements may even vary from

different page modes or new addressing mode support for the same processor. However,

that’s quite interesting that the TLB designs of most real commercial processors are not too

complex. Most of them are not implemented with too complex algorithms or architectures.

The key issue of these designs is to reduce the TLB search time. Some related works of TLB

research will be described in the following paragraphs. These works will be classified into

traditional techniques, advanced techniques, and works of reducing TLB context switching

miss rate.

2-1-1 Traditional Techniques

Because TLB in fact is part of the memory hierarchy and can be considered as a special

designed cache memory to cache the page table entry, it can be directly perceived through the

senses that those traditional techniques to improve the cache performance can also be applied

to TLB. That also means the 3Cs misses [28] can be also suitable for the TLB. In fact, those

techniques are now widely used in commercial processors in different ways.

 13

In order to reduce the TLB miss rate, most processors increase the size (total entries) of

TLBs with fully or set associative. For example, recent AMD Opteron
TM

 processor has both

512-entry L2 instruction TLB (ITLB) and L2 data TLB (DTLB) [38] and the IBM POWER4

processor has a common 1024 entry TLB for each processor core [39]. Furthermore, some

processors even try to provide multi-level TLBs, such as 2-level ITLB/DTLB design on

recent AMD Opteron
TM

 processor [38] and each core (Nehalem architecture) of the latest

Intel
®
Core i7

®
 processor [31]. Figure 2-1 shows the TLB designs of the Intel

®
Core i7

®

processor. Each core of the processor has separated the Instruction and Data TLB with a

unified Second-level TLB (STLB). In addition, some processors begin to provide larger page

sizes to increase the TLB span, such as 2MB or even 4MB page size on all new Intel IA32

Processors after the Pentium
®
 Pro Processor [40]. The Intel IA64 architecture offers 4K to

256MB and 4GB page sizes [41]. The AMD64 architecture also provides 4KB, 2MB, 4MB,

and incredible maximum 1GB page sizes [42]. There are several advantages of larger page

sizes. First, because the page table entry can be reduced, it can save the page table sizes.

Second, it allows for larger physically addressed caches. Third, because each page can map

larger memory spaces, fewer page tables and TLB entries can be used. Finally, because the

level of page tables can be decreased, the fewer accesses to main memory are needed to

generate correct physical page number if TLB miss occurs. Figure 2-2 shows the page table

structure of IA32 mode with 4KB page size of IA32 architecture, and Figure 2-3 shows the

page table structure of IA32 mode with 4MB page size of IA32 architecture [31]. We can

easily find that with larger page size the levels of page tables can be decreased.

Figure 2-1: Structure of TLBs and cache memories of Intel
®
 Core i7

 14

Figure 2-2: IA32 Linear address translation (4-KByte page)

Figure 2-3: IA32 linear address translation (4-MByte page)

2-1-2 Advanced Techniques

As mentioned in previous paragraph, most contemporary processors now provide some

different page sizes from 4-KB size to incredible very large sizes. Some even allow these

pages with different sizes coexist simultaneously with some augmented page table entry

format. Certainly, it needs extra supports of OS. In fact, with small page size, the memory

space can be saved. That’s because with larger page sizes, memory spaces would be wasted

 15

due to the internal fragmentation. In addition, with small page size, the startup time of small

program would be shorter. However, to provide several page sizes, some commercial designs

put several TLBs inside the processor for each individual size. Some try to modify the TLB

entry format and therefore the TLB can be shared with different page sizes.

 In addition to what we mentioned in previous paragraph, several interesting

mechanisms are proposed to support superpaging. Several base pages with both virtual and

physical address alignment can be merged into a larger page called superpage at run time

[43,44,45,46]. With superpage mechanism, the internal fragmentation problem can be

resolved. However, to support a superpage, very complex OS and hardware interactions are

needed. Furthermore, the virtual and physical memory space aligned limitation seriously

impacts the usage of a superpage. Hence, some studies have focused on overcoming the

limitation by dynamically supporting the superpage mechanism. Talluri et al. described an

advanced method called the complete-subblock which allows a single TLB block to map to

multiple base pages without any special OS support [43,44]. In addition, they also described a

much smaller design called the partial-subblock which shares PPN and attribute fields across

base page mappings. Figure 2-4 shows a complete-subblock TLB block (entry) with factor 4.

Lee et al. proposed a novel banked-promotion TLB structure to support two page sizes

dynamically [47]. Four 4KB pages can be promoted to a 16KB superpage. To support such

mechanism, an interesting promotion TLB was designed. The heuristic promotion algorithm

can promote four consecutive entries from small-page TLB bank to large-page TLB bank.

Thus, the four 4KB TLB entries can be reused. Furthermore, in order to reduce the power

consumption and TLB reference latency, they even divided the TLB for 4KB page into two

banks [48]. Figure 2-5 shows the structures of their promotion TLB and banked-promotion

TLB. In addition, Swanson et al. presented a novel memory controller (MMC) which can

aggressively create superpages even from non-contiguous and unaligned regions of physical

memory space [49,50]. Figure 2-6 depicts this design. In this design, they suggested to use a

portion of unused physical memory address range to virtualized physical memory in their

proposed MMC. The shadow pages are “shadow” of accessed page that can be remapped to

real physical address by MMC. The TLB reach can be extended via a novel Memory

Controller TLB (MTLB). Thus the superpage can be aggressively created from

non-contiguous and nonaligned regions of physical memory. Park et al. proposed a way to

integrate both partial-subblock with MMC to improve TLB performance [51]. They also

 16

proposed a method called Variable-Size Subblock TLB (VS-TLB) which is an extension of

original subblock TLB to support multiple size subblock. Based on the original subblock TLB

design, they added subblock size field (SS) for each entry. With this extension, the total TLB

reach can be increased via its maximum subblock size. There is still much research about

improving TLB performance of superpaging.

Besides previous research, some different and interesting research can also be found.

Channon et al. presented the reconfigurable partitioned TLBs to improve the TLB

performance [52]. They claim that traditional split instruction and data TLB design is not

suitable for unpredictable memory reference pattern. Thus the reconfigurable partitioned TLB

can reduce misses between distinct reference types. The reconfigurable partitioned TLB can

dynamically adjust the position of the partition in real time. Figure 2-7 shows this design. In

addition, some research focus on the low power issue. Besides some architecture

improvements to reduce power consumption such as baking skills, some even try to redesign

the basic circuit element itself. For example, Juan presented low power CAM and SRAM

cells design that can be implemented [53]. They also studied the relationship of power

consumption and associativity of TLB. They concluded that small TLB with fully

set-associative and implemented with modified cell can save more power. Because TLB is

part of memory hierarchy, some research tries to integrate both TLB and cache memory.

Among all of these studies, Lee et al. proposed an interesting way to reduce the tag memory

of cache memory [54,55]. The design uses share tag memory of both TLB and cache memory.

They still use CAM as the tag memory for TLB. However, the cache memory shares the same

tag memory. The index tag memory of cache now only stores encoded index of an entry in

shared tag memory rather than the PPN. Thus, the total tag memory sizes can be reduced.

Figure 2-8 shows this design. In addition to these hardware efforts, lots of different software

efforts can be found. Instead of hardware managed TLB, software management TLBs are

widely used in lots of new RISC processors, such as SPARC, Alpha AXP, PA-RISC and

MIPS architectures [23,25]. In fact, there are still varieties of different studies of TLBs and

virtual memory.

Though lots of new TLB designs are proposed, just only a few studies focused on the

TLB entries prefetching/preloading. Saulsbury introduces an interesting mechanism, called

the Recency-based TLB Preloading (RP), to prefetch the TLB entry according to the

 17

“Recency” of the referenced pages [56]. The mechanism maintains the “Recency Stack” via

augmented translation table entry in memory and the TLB inside the processor according to

the recently referenced pages. Thus the next possible referenced page number can be

prefetched. Figure 2-9 (a) shows how the stack changes inside the processor if the TLB

reference is a hit. Because it’s a TLB hit, the recency of all translation table entries (TTE) of

the translation table will not be changed. Figure 2-9 (b) depicts how the “Recency Stacks” of

both TLB and translation page table change if the TLB reference is a miss. After the missed

TTE is moved to the top of TLB stack, the recency of both TLB entries and the translation

table entries will be changed according to the recency stack position. Finally, the TTE with

“recency ± 1” of missed TTE can be prefetched into the prefetch buffer inside the processor.

It should be noted that in real implementation all the TTE positions of “Recency Stack” are

maintained by the previous and next pointers of each TTE. Figure 2-10 shows the

implementation of the translation table in memory. However, the mechanism may increase the

memory traffic and the PTE should do some changes to store the stack pointers for the

link-list. To solve these possible problems, Kandiraju proposes a new prefetching technique,

called the Distance Prefetching (DP), according to the recently referenced pages ‘distance

(stride)’ [57]. The mechanism maintains a table to keep the track of differences between

successive address references and do prefetching according to the predicted distance. Figure

2-11 shows the implementation of TLB with DP technique. The paper also shows a generic

schematic prefetching hardware and compares other possible prefetching techniques

borrowing ideas from the cache prefetching techniques, such as Sequential Prefetching (SP),

Arbitrary Stride Prefetching (ASP) and the Markov Prefetching (MP). Figure 2-12 shows the

schematic of generic prefetching hardware. Because of the implementation costs, we’ll focus

on the studying of the SP and DP in our work.

Figure 2-4: Complete-subblock TLB with block factor 4

 18

Figure 2-5: Promotion TLB structure & Banked-promotion TLB structure

v
al

id

ac
ce

ss

d
ir
ty

re
ad

-o
n
ly

su
p
er

v
is

o
r

v
al

id

ac
ce

ss

d
ir
ty

Figure 2-6: MMC example with shadow region

 19

Figure 2-7: Reconfigurable partitioned TLB

Figure 2-8: Share tag design of TLB and cache memory

 20

(a)

(b)

Figure 2-9: Operations of “Recency Stack”

 21

Figure 2-10: Memory translation table of TLB with “Recency Prefetching”

Figure 2-11: TLB with “Distance Prefetching”

 22

Figure 2-12: Schematic of generic TLB prefetching hardware

2-1-3 Reducing TLB Miss Rate in Context Switching

As mentioned in previous sections, the TLB miss handling requiring several main

memory accesses and that impact the overall performance seriously. However, in traditional

design, the simplest way to deal with context switching (address space switching) for TLB is

to flush all the TLB entries. Thus, that’s even worse if the miss caused by TLB flushing of

context switching. After the flushing of the TLB, it needs lots of “learning time” to refill these

entries. However, only a few studies focus on this topic. Liedtke try to reduce the possibility

of TLB flushing of address-space switching via integrating the segmentation mechanism of

x86 [1]. Based on the L4, Wiggins and Heiser try to avoid reloading translation table base

register by using a pointer register that points to a caching page directory (CPD) [2,3]. The

basic idea of this implementation can be described as following sentences. The CPD contains

entries from a number of different address spaces and each of it is defined by its own page

table. Once the TLB miss occurs, the hardware only needs to reload the TLB via indexing to

the CPD that contains pointers to LPT (Leaf Page Table, an array of 256 entries PTEs) of

various address space. If it’s a miss, the current thread PD (page directory) should be indexed

by handler to find a valid entry. Then the entry should be copied into CPD. The handler

restarts the thread. Finally, the hardware can reload TLB. Now, only a valid page table entry

 23

should be found. Figure 2-13 depicted this basic idea. In fact, still lots of other research tries

to reduce the possibilities by modifying the OS or page table structures. Besides these

software solutions, the basic method supported by TLBs is to provide address space identifier

(ASID) for each entry to identify each address space. Figure 2-14 shows the TLB with

per-entry ASID tag.

Figure 2-13: CPD and per-address page tables

Figure 2-14: TLB with per-entry ASID tag

 24

2-2 Circuit design with asynchronous circuits

The technological trend is inevitable:

 In the coming decades, asynchronous design will become prevalent!

By Ivan E. Sutherland and Jo Ebergen

"Scientific American", August 2002 [4]

Asynchronous circuits have been studied since early 1950’s; however, synchronous

circuits have still dominated the mainstream of digital circuit design [4,6]. Recently, some

academic and commercial research shows that it’s worth to implement real-life systems with

asynchronous circuits. But, without the global synchronization signal called “clock”, it makes

asynchronous circuit design very difficult. In order to replace the “clock signal”, handshaking

protocols between each part of asynchronous circuits are needed. It therefore makes the

circuit costs of asynchronous circuits much higher than synchronous counterparts. In addition,

because of lack of tools and standardization of implementation and design models, there is

still not much research on it and that limits applications in commercial products. In fact, it’s

very hard to find commercial products that are implemented with asynchronous circuits. In

this section, we’ll discuss topics of asynchronous circuits from the classifications of

asynchronous circuits, handshaking protocols, research of asynchronous circuits, and case

study of implementation with asynchronous circuits.

2-2-1 Classifications of Asynchronous Circuits

We have discussed so many issues of asynchronous circuits, but you may ask what

asynchronous circuits are. In fact, it’s not very hard to answer this question. We can say that

asynchronous circuits are circuits without any global synchronization signal called “clock.”

Based on this assumption, asynchronous circuits can be classified into four classes depending

upon the delay model of gate and wire of the circuit. The four classes are Delay-Insensitive

(DI) circuits, Quasi-Delay-Insensitive (QDI) circuits, Speed-Independent (SI) circuits, and

Self-Timed (ST) Circuits [5,6].

 25

Delay-Insensitive (DI) circuits are the most robust and reliable circuits of all. These

classes or circuits permit arbitrary (unbounded but finite) delays on gates and wires. The basic

concept of DI circuits derives from Clark’s “Macromodular computer systems” proposed in

1967 [58]. However, because of its “arbitrary delays on gates and wires” nature, only a few

circuits belong to this class. Martin already proved it in 1990 [59]. Thus, enormous limitations

exist in designing DI circuits.

Because it’s too hard to implement pure DI circuits, Quasi-Delay-Insensitive (QDI)

circuits relieve a little in arbitrary delay on wires. QDI circuits are DI circuits with

isochronous forks. It means that all branches of a forked wire have exactly the same wire

delay [60]. Figure 2-15 shows the isochronous fork. In this example, the signal from A can

propagate to both B and C with the same wire delay. With this assumption, it permits DI class

circuits can be more practical. In fact, in order to meet DI and QDI constraints, the

implementation costs of these circuits may be higher. In addition, they should be carefully

implemented to avoid violations of the constraints. Thus, to implement such circuits are really

very difficult. However, because no extra delay assumptions, DI and QDI circuits may be

attractive for asynchronous VLSI circuit synthesis [60].

The concept of Speed-Independent (SI) circuits first appeared in 1959 proposed by

David Muller [59,60]. The class of circuits allows arbitrary (unbounded but finite) delays on

gates but assumes zero wire delays. The SI circuits can be modeled with Petri net [63].

Self-Timed (ST) circuits are popular in lots of asynchronous circuit implementations. It

is introduced by Seitz in 1980 [64]. The ST circuit is composed of a group of ST elements and

each of ST elements is inside of an “equipotential region.” The wire delays of the region are

negligible or well-bounded. The elements can be DI, QDI, SI, or circuits that can operate

correctly with some local timing assumptions. There’s no any timing assumption on

communications between regions. That also means that the communication belongs to DI. For

example, Chang et al. proposed a ST torus-network with 1-of-5 DI encoding in 2009 [65].

The implementation uses DI encoding communication between each parts of the whole

design.

 26

Figure 2-16 shows the relationship of these models of asynchronous circuits. If the

design contains both DI components and ST components, it should be an ST circuit.

Figure 2-15: Isochronous fork

Figure 2-16: Classifications of asynchronous circuits

2-2-2 Handshaking Protocols

Without a clock to govern its actions,

an asynchronous system must rely on local coordination circuits instead!

By Ivan E. Sutherland and Jo Ebergen

"Scientific American", August 2002 [4]

Without clock signal, asynchronous circuits rely on handshaking protocols to make sure

the correctness of the circuit operations [5,66,67]. The protocols can be divided into control

signaling and data encoding. A complete handshaking protocol is a combination of the control

signaling and data encoding. Figure 2-17 shows the 4-phase handshaking protocol. In this

protocol, only the rising edge is the valid active transition; thus it’s a level signaling or

return-to-zero protocol. On the contrary, in the 2-phase handshaking protocol, the falling and

 27

rising edge of request and acknowledge are active signals; thus it’s a transition signaling or

non-return-to-zero protocol. However, it makes the circuits, especially datapath circuits,

very complex and hard to implement. Figure 2-18 shows the 2-phase handshaking protocol. In

addition to control signaling, there are also choices for how to encode data (data signaling

protocol). The Bundled Data or called Single Rail refers to separate request and acknowledge

wires that bundles the data signals with them. Thus total n+2 wires are required to send n-bit

data. Figure 2-19 shows the bundled-data model. Besides bundled-data model, there are data

encoding methods for DI circuits. However, because of implementation issue, dual-rail

encoding is the most popular used DI data encoding scheme. To represent 1-bit data in

dual-rail encoding method, two physical wires are used. For example, a valid data, D is

represented by two physical data wires, d.0 and d.1. The following equation shows this

encoding scheme. (1) D = 0 ; (d.0,d.1) = (0,1) (2) D = 1 ; (d.0,d.1) = (1,0). In particular, (0,0)

represents a space which allows us to identify consecutive 0's or 1's. (1,1) state is not used.

Data transferring starts from the (0,0) state (called “null” or “empty” data). If a state is

changed from (d.0,d.1) = (0,0) to (0,l)/(1,0), which notices the arrival of valid data '0/l'. Thus

total 2*n wires are needed to transfer n-bit data. Figure 2-20 shows the dual-rail model.

Figure 2-17: The 4-phase protocol

 28

Figure 2-18: The 2-phase protocol

Figure 2-19: Bundled-data signaling model

Figure 2-20: Dual-rail data signaling model

2-2-3 Research of Asynchronous Circuits

Though it’s not very easy to conclude all studies of asynchronous circuits, we’ll discuss

 29

the asynchronous pipeline models first. That’s because most asynchronous systems are

designed or implemented based on these asynchronous pipeline models. David Muller

proposed his famous Muller C-element and Muller pipeline (aka Muller distributor) in 1959

[68,69]. A Muller pipeline is a naturally simple and elegant handshaking control model. The

simplest form of Muller pipeline mainly consists of C-elements and inverters. Figure 2-21

shows the schematic symbol and truth table of a two-input C-element. If both inputs are high

or low, the output will be high or low; otherwise, the previous value is kept. Figure 2-22

shows the original Muller pipeline model. To understand its behavior, let’s consider the ith

C-element Ci. In the initial state, all C-elements are initialized to 0. The handshaking may be

initialized. The ith C-element Ci can propagate a 1 from its previous stage the (i-1)th

C-element only if the next stage C-element (Ci+1) is 0. Thus, the signal can be propagated one

stage to one stage. It should be notice that the original single-rail model is based on

bundled-data model; thus the request signal must be propagated via a matching delay as

shown is Figure 6. In fact, the matching issue should be carefully handled on all bundled-data

model. The pipeline model can also be constructed as 4-phase dual-rail model as shown in

Figure 2-23 [66]. The model can be considered as two Muller pipelines connected in parallel

with a common acknowledge signal in per stage. We implemented a 4-phase dual-rail pipeline

based QDI 8-bit NCTUAC18 microcontroller core in 2009 [70].

Besides the Muller pipeline, there are also several models were proposed. The most

important of all is the micropipeline which was described by Ivan E. Sutherland in his famous

Turing Award “Micropipelines” lecture in 1989 [71]. The approach is based on a two-phase

bundled-data model with micropipeline as backbone control circuit. Figure 2-24 shows the

control circuit of a 4-stage micropipeline model. Without datapath, the micropipeline is a

string of Muller-C elements. At each stage, there are one request input signal, R(n), and one

output acknowledge signal, A(n). The request signal can propagate from left-most side, R(in)

to the right-most side, R(out). It’s the same as the direction of data flow. The data therefore

can flow from the left-most side to the right-most side stage by stage. After the data can be

received by the right-most side, the acknowledge signal should be returned from the

right-most side, A(out). The acknowledge signal, A(n), therefore can propagate back to the

left-most side, A(in), and clear the whole pipeline. Thus the pipeline can keep on operation.

Figure 2-25 depicts how to combine the control circuit of micropipeline with datapath. As the

most well-known asynchronous circuit design model, lots of different asynchronous systems

 30

have been implemented based on it. It can be used to implement many kinds of different

pipelined systems, even processors. For example, the NSR processor is a very simple 16-bit

micropipeline based microprocessor with very simple RISC instructions (less than 20

instructions) [72]. The Amulet1 is known as the first ARM compatible processor

implemented with asynchronous circuit [15,73]. It was implemented with 2-phase

micropipeline architecture.

There are also some different models proposed for asynchronous circuits design. Some

try to modify the original “micropipeline” architecture. For example, a new control circuit for

micropipeline was proposed by Choy et al. [74] and “Micronets” architecture tries to

decentralize the control to the functional units [75]. Furthermore, there have been still several

famous asynchronous processor implementation models proposed. Takashi Nanya et al.

showed their QDI 8-bit microprocessor model called “TITAC” which uses Martin’s

Q-element [60] as control circuitry [76]. Figure 2-26 shows the Martin’s Q element. With Q

element, the control path can be easily built. In addition, they proposed Autosweeping

Module (ASM) which is modified from Q element to replace Q element to gain better

performance. TITAC2 was proposed to show a new delay model called

scalable-delay-insensitive (SDI) [77]. The delay model modified original DI or QDI

unbounded gate and wire delay to bounded relative delay ratio between any two components.

There are also some works that try to model processor with asynchronous circuits. Martin et

al. at Caltech have already shown three generations of different asynchronous processor

model [78]. Chen et al. showed an asynchronous RISC processor model in 2002 [79]. In

addition, there are also several asynchronous superscalar processor models proposed, for

example the Kin architecture [80], Hades project [81], and the most famous of all the counter

flow pipeline (CFPP) [82]. The design of CFPP is quite different from traditional design

concept. Figure 2-27(a) shows the architecture of a 5-stage CFPP. The design separates the

instruction flow and result flow in a counter flow. In this Figure, the instruction is fetched,

decoded, and inserted into the instruction pipeline in stage F. At the same time, the source

operands needed for this instruction is also inserted into the result pipeline in stage R. Figure

2-27(b) describes the instruction and result bindings. Each binding is composed of register

name, valid bit, and data value. Because the instruction flow and data flow walk in counter

flow, the instruction can meet needed data in one of the stages. Once the needed operands can

be fetched, the instruction can be executed correctly. In addition, if the binding destination of

 31

the instruction matches one of the binding results, the binding result will be updated. Thus the

following instructions in the pipeline can obtain correct result value. It may be regarded as

special designed data forwarding. However, all these superscalar models are not very easy to

implement or just ideas that cannot be realized and certainly not very suitable to be

implemented for cores of embedded processors. In fact, because it’s very hard to guarantee

the instruction execution order in asynchronous design, only some research of asynchronous

superscalar processor are really in progress.

Another issue should be pointed out here. As mentioned before, Chen et al. implemented

a 4-phase dual-rail pipelined QDI processor [70]. However, in order to implement the QDI

processor, all dual-rail components should be constructed first. These components even

include all basic logic components. That’s lots of extra efforts for designing a processor.

Considering the synchronous circuit design, they can be easily implemented with lots of

pre-designed cells, components, or even large modules. In fact, it’s also a key to success.

Some researchers have been already trying to offer solutions for asynchronous circuit design.

Some try to provide basic building element. For example, Smith et al. proposed a new DI

digital system called NULL Convention Logic (NCL) [83]. With NCL, DI system can be built

easier. Some try to offer new pipeline/FIFO control. For example, a basic control circuits

for an asynchronous pipeline called Asynchronous Symmetric Persistent Pulse Protocol,

“asP*” was introduced by Molnar [84]. Sutherland and Fairbanks described GasP in 2001

[85]. There is still much different research involving new control circuits or offering new

asynchronous elements.

Besides the “pure” asynchronous implementation research, some research topics focus

on trying to find applications in other directions. Imaging on a large SoC, each components or

IPs may be designed by different teams or even different companies. Integrating them on a

single die may be a very difficult job. The most important reason is that these different

designs may be operate correctly in different clock frequency. Some research tries to wrap the

synchronous circuit with asynchronous wrapper. Thus, the whole system can communicate

with asynchronous channels, while each local circuit can operate in their local clock. Thus,

some Globally-Asynchronous Locally-Synchronous (GALS) methodologies are proposed.

The concept of GALS was proposed by Capiro in his PhD thesis in 1984 [86]. Figure 2-28

depicts this idea. In addition, some research focus on the interconnection networks with

 32

asynchronous circuits. In fact, MPSoCs or multicore processors have been becoming the

major trend of system or processor designs nowadays. Thus the design of interconnection

networks becomes the most important issue of all. However, lots of different problems may

arise in the network design and they should be carefully handled. It is widely known that most

of these problems can be resolved easily by asynchronous circuits. Hence, it’s really attractive

to replace these networks with asynchronous implementations. For example, Dally and Seitz

implemented the first torus topology based interconnection networked multiprocessors in

1986 [87]. They implemented the self-timed torus routing chip (TRC) which uses the

bundled-data encoding to perform cut-through routing in k-ary n-cube multiprocessor

interconnection networks. In 1997, Natvig presented a high-level simulation model of TRC

written in Verilog [88]. Chen et al. implemented self-Timed torus interconnect with 1-of-5

encoding in 2009 [65]. In fact, because of asynchronous nature, the routing paths with

different distances can operate in different speeds.

In addition, we have already pointed out that almost all commercial digital systems are

implemented with synchronous circuits. One very important reason is lack of suitable EDA

tools that can be used to implement asynchronous circuits directly. In fact, it’s also hard to

directly model your design in behavior or RTL model with traditional HDL directly. Thus,

most designs should be implemented in gate-level. In order to reduce the efforts in designing

asynchronous systems and circuits, specific HDLs for designing asynchronous systems and

circuits are needed. Tangram and Balsa HDLs are the most famous two of all related

frameworks. The Philips Research Laboratories started to develop the Tangram tool over 20

years ago [89]. Now the tool is offered by Handshake Solutions. In fact, the ARM 996HS was

also developed via it [7,20]. Handshake Solutions now provides Haste Design Language for

describing the behavior of asynchronous circuits. In addition, an integrated easy-to-use tool

suite called TiDE
TM

 (Timeless Design Environment) is also offered [90]. In fact, it’s the most

successful commercial EDA tools for asynchronous circuit design. However, Balsa is a

framework for providing an asynchronous HDL and synthesizing of asynchronous circuits

and systems. It’s an open source and free solution developed and offered by the University of

Manchester [91,92,93]. In fact, part of Amulet 3 was designed with Balsa [18]. In addition,

Chen et al. also proposed an asynchronous pipelined 8051 soft-core with Balsa [94,95]. Zhang

and Theodoropoulos modeled an asynchronous MIPS core with Balsa called SAMIPS [96].

An asynchronous MP3 decoder was also modeled by us with Balsa [97]. In addition, there are

 33

still several works in developing EDA tools for asynchronous circuits. In addition,

asynchronous research group in Caltech provides Communicating Hardware Processes (CHP)

and its synthesis tool as asynchronous circuit design tool [98]. The notation of CHP is

inspired by CSP. In fact, three generations of their asynchronous processors were designed

with CHP [76], including a very large MiniMIPS processor [99]. The most interesting of all is

SoCAD developed at Tatung University, Taipei, Taiwan [100]. They don’t develop any

special HDL for asynchronous circuit design. Instead of specific HDL, Data dependency

graphs (DDG) or Java language can be used to model the behavior of the design. Via several

translation processes proposed by Cheng, the DDG or Java models will be translated into

VHDL and mapped to lots of pre-defined cell-based designed asynchronous components.

With SoCAD, the goal of hardware/software codesign can easily be achieved. They also

modeled a very robust asynchronous Java Chip with it [101]. Unfortunately, though several

EDA tools for asynchronous circuit design can be found, it still has a very long way to go for

these tools.

Figure 2-21: The Muller C-element: symbol & truth table

Figure 2-22: The Muller pipeline

 34

Figure 2-23: A three-stage 1-bit wide 4-phase dual-rail pipeline

Figure 2-24: Control circuit of micropipeline

 35

R
E
G

L
O

G
IC

R
E
G

L
O

G
IC

R
E
G

L
O

G
IC

R
E
G

L
O

G
IC

C C

C C

R(in) A(1) R(2) A(3) R(out)

A(in) R(1) A(2) R(3) A(out)

DELAY

DELAYDELAY

DELAY

Figure 2-25: Micropipeline architecture

Figure 2-26: Q element

 36

(a)

(b)

Figure 2-27: The architecture of CFPP

 37

Figure 2-28: Concept of GALS

2-2-4 Case Study of Asynchronous Circuit Design

As mentioned in previous sections, it’s difficult to design and implement asynchronous

circuits directly. Most designs cannot be implemented via writing RTL of Verilog or VHDL.

In our group, some circuits are implemented with Balsa HDL, and some are implemented via

writing gate-level descriptions of Verilog HDL. In this section, the two methods will be

discussed.

It is widely known that it’s hard work to implement all designs with gate-level

descriptions. It’s not worth to implement all circuits with gate-level descriptions. With higher

level modeling, we can pay more attention on design itself. That’s the same for asynchronous

circuit design. Thus, we select Balsa framework as our tool. Because the details of Balsa HDL

and framework will be described in section 4.1, we’ll describe how to model a design with

Balsa. We’ll describe how to model a pipelined asynchronous 8051 core here [94,95]. The

first step, you must define your design model and the asynchronous communication channels

between each part of your design. Figure 2-29 shows the AsyncPA8051 model and its

interfaces and channels between each part of the model. Then, each part of the design can be

described with high-level Balsa descriptions. Following segment shows the top module of the

AsyncPA8051. It should be noted that components are connected with communication

channels.

 38

procedure PA8051_IFIDOF(output p0,p1,p2,p3 : byte) is

channel IF_2_ID_data : byte

channel IF_2_mem_addr : Address

channel ID_2_IF_addr : Address

…….

BalsaMemory_interface(IF_2_mem_addr,read,…)||

IF(mem_2_IF_data,ID_2_IF_addr,…) ||

ID_top(IF_2_ID_data,jmp,ID_data,…)||

PA8051_OF(ReadS, WriteSin, MEM_OF,…)||

RAM(maddr,wr,mem_in,mem_out,p0,p1,p2,p3)||

MEM_INTERFACE(MemIn,….)||

PA8051_EXE(src1, src2, src3,…)||

PA8051_WB(EXE_WB, …)||

Ram_Read_Arbitor(MEM_data,valid_face_2_arbitor,…)||

 end

end

However, the costs of asynchronous circuits generated by Balsa HDL are sometimes not

very cheap. In addition, the gate-level descriptions of bundled-data circuits generated by

Balsa cannot be optimized by your target EDA tools in order to keep the delay elements

inserted by Balsa. Furthermore, you should still pay attention on these matching delays. In

fact, that’s the most important issue in implementation of bundled-data circuits. Therefore, we

also try to implement some of our designs with Verilog gate-level descriptions. Following

example is used to describe how we implemented our design in Verilog gate-level

descriptions. The example is a 4-phase dual-rail pipelined based 8-bit QDI microcontroller

core called NCTUAC18 [70]. In order to implement circuits with dual-rail QDI model, all

basic dual-rail DI/QDI building cells and components should be constructed first. We

implemented all needed basic QDI dual-rail gates and constructed all building blocks with

these QDI dual-rail gates. The most important of all is the C-element. The generalized

transistor-level C-element implementation is shown in Figure 2-30 (a); however, to provide

synthesizable model for FPGA we also modeled it with gate-level design as shown in Figure

2-30 (b). In addition, we also implemented C-element with reset for pipeline latch. With

C-element, other basic dual-rail components can also be constructed easily, for example

dual-rail OR gate as shown in Figure 2-31.

 39

In addition, we developed our own QDI register set. Figure 2-32 shows a 1-bit dual-rail

register. When a valid codeword is sent to din.t and din.f, the two NOR gates can correctly

hold it. If the data item is written into the register, it issues acknowledgement to its previous

stage to inform the written operation done. Because of the dual-rail nature, we designed the

acknowledge signal simply through ORing two in/out signal of the two NOR gates. To read

data from the register, just send read request signal to it and thus the dual-rail data can be

correctly read out via dout.t and dout.f. Our register design does not deliver much higher cost

than traditional register for synchronous systems.

Because lack of synthesis tool the design cannot be written in RTL model. Thus, the

whole circuit should be carefully written in gate-level design. If the asynchronous design

should be implemented with CMOS VLSI, some components had better to be created with

full-custom design. For example, to implement efficient CMOS C-element, manually

designed C-element cell is needed. Besides modeling it with transistor-level as shown in

Figure 2-30(a), we also modeled it with gate-level as shown in Figure 2-30(b). Thus, it can be

synthesized with CAD tool. In addition, because of DI nature, all components should be

constructed carefully with DI model. Thus, the implementation cost is very high. The circuit

should be optimized manually. Then, the design can be implemented with the pre-constructed

components.

After all building blocks were constructed, the circuit control model should be decided.

In this example, the 4-phase dual-rail pipeline model as shown in Figure 2-23 was selected.

Finally, each execution stage should be designed and put into the pipeline. Figure 2-33 shows

the system block diagram of NCTUAC18 microcontroller core.

 40

Figure 2-29: Asynchronous pipelined 8051 architecture

or

(a)

(b)

Figure 2-30: (a) Generalized transistor-level C-element implementation

(b) Gate-level C-element implementation

 41

Figure 2-31: Dual-rail OR gate symbol and gate-level implementation

Figure 2-32: 1-bit dual-rail register

Figure 2-33: Architecture of NCTUAC18 microcontroller core

 42

2-3 Previous Asynchronous TLB or MMU Design

Though some asynchronous processors are proposed for the past years, most of these

processors are very simple. Thus, no very complex memory address translation mechanisms

were implemented inside these processors. Furthermore because of the complication, it’s

really very difficult for us to find TLB design inside commercial asynchronous processors. In

fact, even no what is called memory management unit by ARM is implemented inside the first

commercial licensable 32-bit asynchronous core, the ARM996HS [7,20]. Only what is called

enhanced memory protection unit (MPU) by ARM is implemented. That means that it only

supports hardware memory protection over software-designated regions. The processor has no

virtual memory supporting hardware. The research group of Caltech delivers three

generations of asynchronous processors [78]. The biggest one is the MiniMIPS that is an

MIPS R3000 compatible asynchronous processor [99]. We still cannot find TLB design inside

this processor [102]. In [102], they said, “The first prototype misses the TLB (address

translation mechanism) which we found much too complicated, the partial-word memory

operations, and some cache instructions.”

However, Myers and Martin described a simple memory management unit with CSP

specification [103] for an asynchronous processor [104]. Figure 2-34 shows the MMU that

they described. This MMU can generate 24-bit real address via concatenating 16-bit memory

address from the memory address (ma) bus and 8-bit address from one of the two segment

register, sr (Segment Read register) and sw (Segment Write register). Once the real address

can be generated, it will be placed on the real address (ra) bus. Thus the data can be

transferred from memory interface and microprocessor via 16-bit data bus. However, it should

be noted that the sr and sw can only be accessed via memory read/write to address 0xFFFF

and 0xFFFE respectively. The contents of segment register are transferred via low 8-bit of

data bus. The data bus therefore can transfer data between microprocessor and memory or the

two segment registers. In addition, the microprocessor initiates memory or the

two-segment-register read/write communication to MMU via MDl (memory data load) and

MDs (memory data store) control signals. Through comparisons of memory address, MMU

decide if it’s a memory or the two-segment-register read/write communication. If it’s a

memory read/write communication, the MMU can initiates MSl (memory storage load), or

 43

MSs (memory storage store) control signals to memory interface. In addition, the real address

will be placed on the ra bus. Thus, the load and store operations are roughly described in the

following descriptions.

MDs]]MSs;sw;:rab3[]

MDsdata;:swb2[]

MDsdata;:srb1 [

FFFE));(maFFFF)(maFFFE),(maFFFF),(ma

:b3b2,(b1,MDs[[]

MDl]MSl;sr;:rab3[]

MDlsw;:datab2[]

MDlsr;:datab1 [

FFFE));(maFFFF)(maFFFE),(maFFFF),(ma

:b3b2,(b1,MDl[[*

=→

=→

=→

=¬∧=¬==

=→

=→

=→

=→

=¬∧=¬==

=→

Though Myers and Martin modeled an asynchronous MMU, it’s really just a very

rudimentary design. The functionality of this design may be not suitable for most applications.

However, they still clearly demonstrated how to design asynchronous MMU with high-level

descriptions. In addition, they also demonstrated how to optimize the design and implemented

with the asynchronous circuits.

Weigel proposed two much more practical architectures of asynchronous MMU and

TLB [105]. With aid of original author of Balsa, he modeled the two architectures with Balsa

HDL carefully. The two architectures were designed to connect to a modified ARM

coprocessor interface. Figure 2-35 shows the baseline architecture of the MMU. In this

architecture, all components are activated in sequence. Because all operations are performed

sequentially in Baseline Architecture, he also proposed architecture called Performance

Architecture in order to improve the performance through speculative performing operations

in parallel and pipelining. Figure 2-36 shows the architecture of performance architecture.

However, in order to improve the translation performance, a TLB model was described in his

design. He described the TLB in three aspects. The behavior of entry organisation, the entry

lookup, and entry invalidation were all introduced in Balsa descriptions. The Balsa

descriptions of three aspects were all detailed listed. In fact, the TLB described only a very

basic design here. In addition, because of limitations of Balsa tool, Weigel suggested the real

 44

implementation of TLB may try to reference other asynchronous cache design.

Figure 2-34: Overview of Myers and Martin’s asynchronous MMU

Figure 2-35: Architecture of baseline asynchronous MMU

 45

Figure 2-36: Architecture of asynchronous MMU with performance architecture

 46

Chapter 3: Proposed TLB architecture for

asynchronous embedded processor

As mentioned in Section 1-3, OS support is an important new issue for designing

embedded systems or handheld devices. In order to support these modern embedded OSs,

providing virtual memory is becoming more and more important. A well-designed TLB will

become one of the critical issue in these embedded processor performance. It should be noted

that page table traversal is much more expensive in embedded system than that in desktop

system. However, in order to reduce the implementation costs, some designs including the

most popular general purpose IA32 family processors simply flush the TLB entries in context

switching (address space switching). It is widely known that per-entry ASID tag can reduce

such misses. But it may increase the overall costs in tag bits. That may be a bad idea for

asynchronous processor. In our work, we try to provide an alternative architecture via the

concept of banking TLB. This architecture therefore can be implemented in our future

asynchronous embedded processor core. In addition, we also hope that this architecture can

also be implied for IA32 processors. We’ll discuss this architecture in this chapter.

3-1 Relationship between the TLB miss rate and sizes

 It is widely known that the two most important issues for cache system performance

are lower miss rate and the miss penalty. It’s almost the same for the TLB performance. In

fact, because the miss rate has the greatest impact on TLB performance, most studies focus on

it. In this section, we consider the relationships among miss rates, page sizes and TLB sizes.

In order to study this topic, we have done simulations with different TLB configurations..

Let’s consider the relationship between the miss rates and TLB sizes with 4KB page size.

Figure 3-1 shows the relationship between TLB sizes and miss rates of running gcc. The two

results show that the miss rates would be lower if the TLB sizes can be increased. We can

also find that in order to obtain better performance for 4KB page the size should be at least 64

entries. However, that’s not always true for all applications. Let’s observe the result of ijpeg

 47

showing in Figure 3-2. It’s very clear that a 16-entry TLB is enough. It’s useless to increase

the number of TLB entries. In fact, it’s almost the same for some other benchmark programs,

such as vortex and li. However, the results vary from application to application.

Another solution to improve the performance of TLB is to extend the page size into

larger one. In fact, most modern processors provide multiple page sizes, such as 4KB, 2MB,

and 4MB on all new Intel

 IA32 series processors [31]. The advantages of larger page size

are not only obtaining better performance but saving the implementation cost with shorter

tags of virtual page number (VPN) and translations (physical page number, PPN) needed to

be stored. It is also a good method to reduce the cost on TLB implementation of processors

with larger addressing space, such as processors with 64-bit addressing capability. Certainly,

larger page size is suitable to be implemented for processor core of SoC or embedded systems.

Figure 3-3 shows the miss rate of compress for 4KB, 16KB, 32KB, 64KB, and 1MB page

sizes with different TLB sizes. Observing the results, we can easily find that the performance

of 1MB page size of TLB with only 8 entries can even outperform 4KB page size of TLB

with 256 entries. In fact, with the larger page size the larger working set can be covered. In

addition, we can also find that the performance of 32KB page size TLB with 32 entries is

good enough for compress. With prefetching mechanism, the performance would be even

better. However, according to the previous discussion, even with 4KB page size, the total

TLB entries needed may still vary from application to application. Sometimes, even 16-entry

TLB is good enough for 4KB page. In fact, the new proposed architecture can be

implemented to support different page size. Furthermore, the TLB size of each bank is also

configurable depending upon the system needs. It’s an implementation tradeoff!

 48

Figure 3-1: ITLB/DTLB miss rate for gcc with 4KB page

Figure 3-2: ITLB/DTLB miss rate for ijpeg with 4KB page

 49

Miss Rates

0.000000

0.000200

0.000400

0.000600

0.000800

0.001000

4KB-256 16KB-

256

32KB-32 64KB-32 1MB-8

ITLB Configuration

M
is

s
R

at
e

0.000000

0.001000

0.002000

0.003000

0.004000

0.005000

0.006000

0.007000

4KB-256 16KB-

256

32KB-32 64KB-32 1MB-8

DTLB Configuration

M
is

s
R

at
e

Figure 3-3: ITLB/DTLB miss rate for compress with different page sizes and TLB sizes

3-2 The proposed TLB architecture

This section describes in detail of the new TLB structure and mechanism we proposed

for embedded processors. The new novel design can be implemented not only in

contemporary processors but future high performance processors comprised with billion of

transistors. Furthermore, the mechanism is especially suitable to be implemented on

processors with larger addressing space than current processors with just 32-bit addressing

ability.

3-2-1 Overview

Figure 3-4 shows in detail the proposed TLB structure to reduce the miss rate in context

switching. According to the studies of previous section, we’ll assume the page size is 32-KB.

 50

However, it should be noted that the study is based on analysis on general desktop

requirements. In fact, it can be easily changed to adequate for different page sizes with little

configuration changes. Furthermore, we’ll have other new study for TLB to provide

superpages with page promotion mechanism.

Figure 3-4: The proposed TLB architecture

The proposed structure consists of the following parts – 32 TLB banks with group tags to

store the address translations, a multiplexer to select specific TLB banks, a prefetch buffer to

store the prefetching entries, and the prefetch & control logic to activate the prefetching

mechanism. Each TLB bank has 32 entries and it can be implemented with CAM (content

addressable memory) which is commonly used in the traditional TLB. Furthermore, each TLB

bank was implemented with fully associativity with the LRU entry replacement policy. That

means each bank can be easily implemented the same as traditional design. Thus there are

totally 1024 entries in this new design. However, we can easily find that other new processors

also try to increase the total entries of their TLB (TLB size) to reduce the possibilities of the

TLB misses, such as 1024-entry common TLB for each processor core of IBM POWER4

processor [37]. In addition to the 32 TLB banks, there are also 32 extra registers to store the

bank tag for each bank as shown in Figure 3-4. The register contains task tag to identify each

task, the current bit to identify the current task, the valid bit to validate a bank, and the LRU

 51

bits to replace the victim bank. It should be noted that the task tag can be any address space

identifier (ASID) which the processor itself provides or the PPN (Physical Page Number) of

the executing instruction when the context switching occurs on processors without any ASID

support (IA32 based processors). On processors without ASID support, the PPN of the

executing instruction when the context switching occurs from the PPN field (or last

translation) is used. Considering the worse IA32-style case, the PPN is selected; however, the

implementation with ASID provided by the processor itself can be more easily. The

discussion will be ignored in this paper. However, we still have to point out that we treat

ITLB and DTLB as a couple, and they share the same bank tag. That means they stores

translations for the same task in the same related bank.

Besides previous discussed parts, the remainder parts are designed for the entry

prefetching mechanism. The prefetch & control logic initiates when the TLB misses occurs.

When the lookup misses in the current TLB bank but hits in the prefetch buffer, the address

translation is generated from that hit entry and it will be inserted into the current TLB bank

that is the same as traditional TLB entry replacement. Then, the prefetch & control logic tries

to prefetch other entries into the prefetch buffer. If the lookup are missed in both current TLB

bank and the prefetch buffer, the traditional address translation mechanism is initiated to

generate the correct address translation and then the prefetch & control logic prefetches new

entries into the prefetch buffer depending upon the current address. The ‘Prefetch Logic’ can

be SP or DP described in [57].

3-2-2 OS Modification

In order to implement the mechanism, the OS is needed to do a little modification. In

addition to the page size issue, the OS is required to send ‘the clear TLB signal’ to the

processor only when page swapping with disks occurs or page frames release. If the signal is

received by the control logic, the control logic should flush all the TLB banks and the

prefetch buffer for the worse case example or the corresponding TLB bank and the prefetch

buffer for the general cases. Fortunately, it's not hard to realize. In fact, almost all modern

 52

processors, provide some ways to flush TLB entries, such as STA instruction with alternative

addresses on SPARC architecture [35,36]. In fact, even IA32 also begins to provide simple

way to protect important global entries. [31,32]

3-2-3 Mechanism of the proposed architecture

The proposed TLB structure is divided into 32 banks and once the virtual address is

generated from the CPU, the virtual page number (VPN, from the most significant bit to the

previous bit of the offset, for example [31:15] in 32-bit addressing environment with 32KB

page) is sent to the 32 banks and the prefetch buffer in parallel. Each bank and the prefetch

buffer work as the conventional TLB, and the PPN of the hit entries of each bank and prefetch

buffer are sent to a multiplexer. In addition, the select signals are obtained from ‘AND’ of the

current bit of group tags and hit signal of each TLB bank, and also the hit signal from the

prefetch buffer, to select the correct translation. If it’s a hit in current TLB bank, the current

TLB bank works as conventional TLB. The physical address can be simply generated by

combining the output PPN and the offset from the virtual address. If it’s a miss in current

TLB bank but a hit in prefetch buffer, the operations are the same as what mentioned in the

previous section. However, besides the simplest situation, all other conditions should be

carefully handled by the prefetch & control logic. The details will be described in the

following paragraphs.

1) No current bit set in all banks: The situation could be happened only when the first

instruction fetching after a context switching for ITLB, the system initialization, or swapping

pages with disks occurs. In this situation, no valid physical address can be provided via TLB

translation. The address should be generated in conventional way by the OS and MMU. After

the physical address or address space identifier (ASID) supported by the architecture is

generated, it is compared with the task field of bank tags. If any of it is hit with a valid bank

tag, the current bit of that bank tag is set, and then the current TLB bank performs as a

conventional TLB. On the contrary, if it's a miss, the prefetch & control logic should try to

select a victim bank with invalid bit and LRU bits from the bank tag and flush all its 32

entries (both related ITLB and DTLB). Then the current bit of this bank should be set and the

 53

LRU bits of all bank tags should be updated. Then the correct translation is stored into the

current ITLB bank entry, and the task tag of the current bank tag should be set. Moreover, it is

the generated PPN or ASID provided by the processor that is stored into the task tag field of

the current bank tag. Finally, the prefetch logic & control logic initiates the prefetching

mechanism that is the same as what mentioned in previous section.

2) One current bit found but no valid translation in both current bank and prefetch

buffer: If one current bit is found but no valid translation can be generated, that means the

TLB (ITLB or DTLB) reference of the current task is available before but the missed page has

not referenced yet. The operation of the current TLB bank just simply acts as a conventional

TLB, and no bank tag modification is needed. Then the prefetch mechanism is worked as

what mentioned in previous section.

3) Context switching: Once the context switching occurs, the MMU just needs to clear

the current bit of the bank tags and flush the prefetch buffer. No more other actions are

needed.

4) Page swapping with disk occurring or page frame releasing: If the page swapping

with disks or page frame releasing occurs, the modified OS that we already discussed sends

the ‘clear TLB signal’ to the MMU. Hence, the prefetch & control logic can clear the valid bit

of all bank tags on system without architecture supported ASID (x86) and flush the prefetch

buffer.

3-3 Performance evaluation of the proposed architecture

All of the simulations were done with modified SimpleScalar Version 3.0d tool suite

[37]. The SPEC95 benchmark programs were simulated to estimate the performance. We

assume that the context switching would happen after executing one million instructions, and

we also assume that the compared 1024-entry TLB is the worse case IA32 (x86)-style

example. In addition, we compared the miss rates of worse case style 1024-entry

 54

fully-associative TLB with the proposed TLB structure of 32 entries each bank with SP and

DP prefetching mechanism after correctly keeping the entries and 1024-entry full-associative

TLB with ASID of the same workload assumption with proposed TLB structure. We assume

that the SP can prefetch entries with VPN of +9 and -8. That means total 18 entries are

prefetched. Moreover, we also assume that the DP can prefetch total 16 entries with 64-row

distance table and each row has 2 predicted distance slots. Though we assume the DP with

only 16-entry prefetch buffer, the costs of DP is still higher than SP. That’s because the extra

distance table is required in the DP methodology. Figure 3-5 and 3-6 give the simulation

results of SPEC95 benchmark.

 55

Miss Rate of ITLB

0.000157

0.000002 0.000002 0.000001

0.001273

0.000004 0.000001 0.000001
0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

0.0014

1024-li DP-li ASID-li SP-li 1024-go DP-go ASID-go SP-go

li and go with different TLB Configurations

M
is

s
R

at
e

Miss Rate of ITLB

0.004305

0.003690

0.004305

0.001230

0.002782

0.002308
0.002143

0.002627

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

0.0040

0.0045

0.0050

1024-vortex DP-vortex ASID-vortex SP-vortex 1024-gcc DP-gcc ASID-gcc SP-gcc

vortex and gcc with different TLB Configurations

M
is

s
R

at
e

Miss Rate of ITLB

0.000260
0.000007 0.000002 0.000002

0.003476 0.003481

0.000614
0.000410

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

0.0040

1024-m88ksim DP-m88ksim ASID-m88ksim SP-m88ksim 1024-perl DP-perl ASID-perl SP-perl

m88ksim and perl with different TLB Configurations

M
is

s
R

at
e

Miss Rate of ITLB

0.024381 0.024380

0.013410

0.008127

0.001914
0.000091 0.000068 0.000023

0.0000

0.0050

0.0100

0.0150

0.0200

0.0250

0.0300

1024-ijpeg DP-ijpeg ASID-ijpeg SP-ijpeg 1024-compress DP-compress ASID-compress SP-compress

ijpeg and compress with different TLB Configurations

M
is

s
R

at
e

Figure 3-5: ITLB miss rates for SPEC95 benchmarks

 56

Miss Rate of DTLB

0.000996

0.000009 0.000006 0.000006

0.006577

0.000032 0.000017 0.000018
0.0000

0.0010

0.0020

0.0030

0.0040

0.0050

0.0060

0.0070

1024-li DP-li ASID-li SP-li 1024-go DP-go ASID-go SP-go

li and go with different TLB Configurations

M
is

s
R

at
e

Miss Rate of DTLB

0.012911 0.012911

0.010759

0.008607

0.007404

0.000326
0.001082

0.000300

0.0000

0.0020

0.0040

0.0060

0.0080

0.0100

0.0120

0.0140

1024-vortex DP-vortex ASID-vortex SP-vortex 1024-gcc DP-gcc ASID-gcc SP-gcc

vortex and gcc with different TLB Configurations

M
is

s
R

at
e

Miss Rate of DTLB

0.003446

0.001220

0.002463

0.001068

0.004733 0.004737

0.004060

0.002030

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

0.0040

0.0045

0.0050

1024-m88ksim DP-m88ksim ASID-m88ksim SP-m88ksim 1024-perl DP-perl ASID-perl SP-perl

m88ksim and perl with different TLB Configurations

M
is

s
R

at
e

Miss Rate of DTLB

0.089158 0.089158

0.050871 0.053495

0.003004
0.000165 0.000158 0.000108

0.0000

0.0100

0.0200

0.0300

0.0400

0.0500

0.0600

0.0700

0.0800

0.0900

0.1000

1024-ijpeg DP-ijpeg ASID-ijpeg SP-ijpeg 1024-compress DP-compress ASID-compress SP-compress

ijpeg and compress with different TLB Configurations

M
is

s
R

at
e

Figure 3-6: DTLB miss rates for SPEC95 benchmarks

Figure 3-5 and Figure 3-6 show the simulation results for ITLB and DTLB with

1024-entry conventional TLB, new TLB structures with DP and SP prefetching mechanism,

and 1024-entry conventional TLB with ASID respectively. Observing the simulation results,

we can find that our design can deliver better performance than conventional TLB structure if

correct TLB entries can be kept. Furthermore, we can also find that the proposed banked TLB

 57

with SP prefetching mechanism can deliver better performance than DP prefetching

mechanism and conventional TLB with ASID under multiprogramming environment.

Through observing the simulation results, we can also find that prefetching mechanism may

be sometimes more important than just increasing more entries. For example, both of the

DTLB performances of new TLB structures with SP and DP mechanism are better than

conventional TLB with ASID for gcc. However, in most cases, the performance of new TLB

structure with DP prefetching mechanism is still worse than conventional TLB with ASID.

That’s because after the context switching occurring the DP prefetching mechanism needs the

learning time to fill in the distance table. According to the simulation results, we strongly

suggest to use the simplest SP prefetching mechanism in our design.

Even so, we still have to point out several important issues. Firstly, it’s not really very

fair to assume the conventional fully associative TLB works as the worse case IA32

(x86)-style. That’s because only some older processors or embedded processors flush their

TLBs in context switching. Most modern high-performance processors incorporate their own

address space identifiers with TLB tags. These designs, including our methodology,

incorporated tags with ASID may have almost the same performance. However, our structure

can save some tag bits because of our banking method. As shown in Figure 2-13, it’s very

clear that the design of TLB entries with ASID tag needs more tag bits than our design. We

provide an alternative method to store the ASID. Secondly, it’s not a very nice model to

assume that context switching occurs after executing each one million instructions. In fact, it

may differ from different environments. Most OS defines its own time slice with several

milliseconds, and with different processors, the total instructions executed may have

enormous differences. In addition, the real situation depends upon real OS running situation.

In fact, we seriously consider developing a new generic simulator incorporated with Linux OS

to model more accurate real environment. Thirdly, though the page size we assume here is

32KB, it’s not very hard to change it to other sizes with some configurations change. In fact,

in this thesis we model our asynchronous TLB controller for 4KB page system. Finally,

though only a few studies about TLB entry prefetching, it still possible to provide more

heuristic prefetching mechanism for TLB entry prefetching. Furthermore, it may be also

possible to incorporate other prefetching mechanism with the proposed architecture.

 58

3-4 Discussions of the proposed architecture

The TLB misses cause serious performance degradation on modern processors. In

addition, the context switching under the multiprogramming OS may cause this problem even

more seriously. However, only some studies focus on the context switching issue. In our work,

we presented an alternative TLB mechanism to reduce the miss rate in context switching for

embedded processors or microcontrollers. We also discuss how OS should be modified to

support this mechanism. Furthermore, we also discuss how to implement TLB entry

prefetching mechanism in the proposed architecture. Finally, according to the simulation

results, we suggested just simply to use the sequential prefetching (SP) mechanism in this

design. Besides the proposed mechanism, we have already begun to find solution to integrate

the proposed structure to support superpaging with bank promotion methodology. To obtain

more accurate performance evaluation in real environment, the new simulation model and

simulator will be developed. In addition, we’ve already implemented asynchronous TLB

controller to support this mechanism in our current new RISC asynchronous processor project.

We’ll discuss the implementation in the next chapter. We believe that still lots of work should

be done in this field. The major features of the proposed TLB architecture are listed as

follows.

� An alternative way to reduce TLB misses in context switching with good

performance for (asynchronous) embedded processors

� Using banking mechanism to replace per-entry ASID tags

� Adopting prefetching mechanism to reduce compulsory misses

� Easy and simple architecture and operations

� Bank-based operations to replace per-entry based operations in context

switching

� Especially suitable for asynchronous embedded processors

 59

Chapter 4: Implementation the TLB

Controller with Asynchronous Circuits

Because there are no standard ways to implement asynchronous circuits, we’ll try to

design our TLB controllers with Balsa HDL which is a CSP-based asynchronous HDL, and

then the design will be synthesized by Balsa synthesis tool. Thus, the designed circuit can be

easily reused or modified. That’s why we implemented our design with Balsa HDL.

4-1 Interface

 In Section 2-2-4, we have clearly discussed our current asynchronous circuit and system

design philosophy. Based on the design philosophy, we’ll describe our design sequentially.

For an asynchronous circuit design, the design can be conceptually regarded as a black box.

Thus, the environment can communicate with it via communication channels. Because the

design is based on bundled-data model as shown in Figure 2-19, separate request and

acknowledge wires are bundled with data signals. Table 4-1 shows the interface of the

proposed TLB controller architecture with bundled-data protocol. As shown in Figure 2-19,

these signals can be conceptually divided into 8 communication channels. Because of

asynchronous nature, no clock signal is needed. In fact, it’s easy to put the design into any

design that accepts the same protocols! The 4-phase handshaking protocol is shown in Figure

2-17.

 60

Table 4-1: Definitions of asynchronous TLB interface

Port Name Direction Width Meaning

VA_req in 1 request signal

VA_data in 32 Virtual Address

VA_ack out 1 acknowledge signal

PTE_req in 1 request signal

PTE_data in 32 Page Table Entry

PTE_ack out 1 acknowledge signal

clr_TLB_req in 1 request signal

clr_TLB_data in 1 ‘1’: clr all TLB banks

clr_TLB_ack out 1 acknowledge signal

ASID_req in 1 request signal

ASID_data in 5 Address Space Identifier

ASID_ack out 1 acknowledge signal

CMW_req in 1 request signal

CMW_data in 1 ‘1’: Context Switching occurs

CMW_ack out 1 acknowledge signal

PA_req out 1 request signal

PA_data out 32 Physical Address

PA_ack in 1 acknowledge signal

PFE_req out 1 request signal

PFE_data out 1 ‘1’: Prefech an entry from page table

PFE_ack in 1 acknowledge signal

TLB_hit_req out 1 request signal

TLB_hit_data out 1 ‘1’: TLB hit; ‘0’: TLB miss

TLB_hit_ack in 1 acknowledge signal

 61

MUXSelect

VA

VPN

P
P
N

Offset

P
A

Prefetch Logic

Group

hit/miss

T
L
B

H
it/M

is
s

Prefetch
buffer

hit/miss

P
re
fe
tc
h
 E
n
try

TLB Miss

Prefetch Buffer

PTE
Request to the
Memory System

V
A

(p
u
sh

 c
h
an

n
el

)

C
L
R

(s
y
n
c.

 c
h
an

n
el

)

A
S
ID

(p
u
sh

 c
h
an

n
el

)

C
M

W

(s
y
n
c.

 c
h
an

n
el

)

P
T
E

(p
u
sh

 c
h
an

n
el

)

T
L
B

 h
it

(p
u
sh

 c
h
an

n
el

)

P
A

(p
u
sh

 c
h
an

n
el

)
Matched

Delay

V
A

_
ac

k

A
S
ID

_
ac

k

C
L
R
_
ac

k

C
M

W
_
ac

k

TLB_hit_req

PA_req

PTE_ack

Async.

FSM

o
u
tp

u
t
d
at

a

ty
p
e

rs
t

Figure 4-1: Block diagram of the TLB interface

4-2 The Balsa Framework

We have already pointed out that it’s not easy to implement asynchronous circuits

directly with gate-level and RTL descriptions of traditional HDL. In addition, with such

“fixed” descriptions, you cannot change the handshaking protocol that you have already

implemented. On the contrary, if you model your design with Balsa HDL or other

asynchronous HDL such as Haste description language [90], or Java and DDG of SoCAD

[100], the target handshaking protocol you wish to use can be decided during synthesis phase.

Your design therefore can be changed to any handshaking protocols which supported by your

asynchronous tool. You can put more efforts on your asynchronous algorithm and architecture

 62

design! That gives you more design and implementation flexibility. We select Balsa as our

tool not only because it’s the most popular open source solution, but also because it have been

already used in many successful design. In addition, the APT (Advanced Processor

Technologies) group of the University of Manchester can affords some needed supports for

users [106].

Figure 4-2 shows the Balsa design flow. The Balsa back-end can generate gate-level

netlists that can be imported into target CAD systems. Balsa now supports three commercial

EDA tools: Compass Design Automation tools from Avant, Xilinx FPGA design tools and

Cadence Design Framework II. It supports three back-end protocols for use with each

technology: bundled-data scheme using a 4-phase-broad/reduced-broad signaling protocol, a

delay-insensitive dual-rail encoding and a delay-insensitive 1-of-4 encoding. Thus it makes it

easy to design asynchronous circuits or systems for these three protocols with Balsa HDL.

To generate netlists for target CAD systems, the Balsa system make use of basic cells of

these target CAD systems, such as AND, OR, NOR, XOR, NADN, BUF, XNOR, INV, FD

(D-type flip-flop), FDC and FDCE of Xilinx FPGA technology. In addition, it also provides

specific cells needed for asynchronous circuit implementation. The most important of all is

the Muller C-element as described in Section 2.2. In addition to the C-element, it also

provides special designed cells. Figure 4-3 shows the NC2P element. Once the input i0 is

equal to 0, the output will be 1. When both inputs are 1, the output will be 0. Finally, if the

input i0 is 1 and i1 is 0, the output value will not be changed. With NC2P element, the

S-element which performs a series of handshaking can be constructed. Figure 4-4 shows the

S-element and its behavior. The S-element has 4 input that includes 2 request/acknowledge

handshake pairs – ‘Ar’/’Aa’ and ‘Br’/’Ba’.

With these basic cells, the Balsa system provides total 40 handshake components. We’ll

describe some of them here. Figure 4-5 shows the fetch component which is the most

common way to control a datapath from a control tree. It transfers input data to variable, from

variable to output channel, or from variable to variable. Figure 4-6 and Figure 4-7 are the

symbol of sequence and concurrent components. The sequence components output the control

signals in sequence, and the concurrent component outputs the control signals in parallel.

They can be used to activate a number of operations.

 63

Figure 4-2: The Balsa design flow

(a) (b)

(c)

Figure 4-3: The NC2P-element (a) symbol (b) true table (c) gate-level implementation

 64

(a) (b)

(c)

Figure 4-4: The S-element (a) symbol (b) gate-level implementation (c) handshaking

protocol

 (a) (b)

Figure 4-5: The Fetch component (a) handshake component (b) gate-level

implementation

 65

Figure 4-6: The Sequence component

Figure 4-7: The Concurrent component (a) handshake component

 66

4-3 The Design with Balsa

Prefetch

Control

LRU

Replacement

TLB Bank

(32*32 entries)

TLB Bank Tag

(32 entries)

TLB Memory

Control Unit

Prefetch

Buffer

(32 entries)

PA

Generator

Offset

PA

PPN

VA

PPN

prefetch_cmd

status

PTE

TLB_hit

ASID

VA

PPN

Figure 4-8: Architecture of asynchronous TLB modeled with Balsa HDL

The design of proposed architecture with Balsa will be described in this section.

Different from what described in Weigel’s work [105], we focus on modeling an advanced

TLB architecture while they focused on implementation of MMU. Thus, the TLB they

modeled is only simple architecture that supports lookup and flush functionality. In our work,

we implemented the advanced TLB architecture that we proposed. According to the interface

defined in Figure 4-1 and table 4-1, we carefully designed our proposed architecture. Figure

4-8 shows the architecture of the whole design. The design is divided into the following

parts — TLB Memory, Control Unit, Prefetch Control Unit, and Physical Address Generator.

The following Balsa descriptions show the top module definitions of the whole design. With

this definition, we can easily observe the communication channels that connect the design and

the environment. In fact, that’s what we defined in section 4.1.

 67

procedure TLB_CTRL_TOP(

--input channels

 input iCLR_TLB: bit;

 input iCMW: 1 bit;

 input iASID: 5 bits;

 input iVA: 32 bits;

 input iPTE: 32 bits;

--output channels

 output oPA: 32 bits;

 output oHIT: bit

) …

In order to implement the proposed architecture, the TLB controller algorithm was

designed carefully. It should be noted that because it’s an asynchronous implementation, the

data signals from the sender will not be cleared until the receiver replies the acknowledge

signal. That also means that the virtual address (VA) from the processor will be remained

until the controller returns the VA acknowledge to the processor. Thus, the proposed TLB

architecture can be implemented with the following algorithm.

 68

Asynchronous TLB controller algorithm:

if (‘clr_TLB channel’ is activated)

clear valid bits in all TLB banks ()

|| flush the prefetch buffer ()

else if (‘CMW channel’ is activated)

clear current bits ()

|| flush the prefetch buffer ()

else if (‘VA channel’ is activated)

if (no current bit is set in all TLB banks)

(activate ‘ASID channel’

|| activate ‘TLB_hit channel’) // TLB_hit_data = ‘0’, indicating TLB miss

; if (ASID is found in a TLB bank)

set current bit in this TLB bank ()

else // ASID is not found

(select a victim bank with invalid bit or according to LRU bits ()

; flush 32 entries in the victim bank ()

; set current bit, task tag, and valid bit

; update all LRU bits)

|| activate prefetch mechanism () // activate PTE channel multiple times

else if (TLB hit)

activate ‘PA channel’ || activate ‘TLB_hit channel’

else if (TLB miss)

if (prefetch buffer hits)

(put this entry into TLB bank() || activate ‘TLB_hit channel’ ||

 activate ‘PA channel’)

; activate ‘PTE channel’

else if (prefetch buffer miss)

activate ‘TLB hit channel’

; activate ‘PTE channel’

With Balsa HDL, designing the proposed TLB architecture can be simplified as

describing each part of the TLB architecture with Balsa HDL high-level descriptions. Each

part of the design will be described in detail in the following paragraphs.

TLB Memory:

There are total 32 TLB banks of the TLB memory architecture. Each of the TLB banks is

 69

composed of 32 entries. Because the real implementation of memory cells themselves should

be closely related to the process and should be additionally designed carefully, we only

modeled the TLB memory with Balsa data structure and simulated under the Balsa

environment with Balsa block memory. The data structure of TLB entry is defined as show in

table 4-2.

Table 4-2: Structure of each TLB entry

Field valid lru tag ppa

bit 35 34 33...17 16...0

In chapter 3, we have already discussed the proposed TLB architecture. In the proposed

architecture, each TLB bank has its associated TLB bank tag. Therefore, there are total 32

entries in the TLB bank tag. We defined total 4 fields for each entry. It should be noted that in

order to simplify the design, we only defined 5 bits to represent the ASID. In fact, in most

systems the width of ASID is 8 bits. In addition, we use the 5 bits to index the 32 banks. Thus

the data structure of each bank tag is defined as table 4-3.

Table 4-3: Structure of each TLB bank tag

Field ASID current valid lru

bit 7...3 2 1 0

With the previous definitions, the TLB entry and TLB bank TAG entry can be easily

described in the following Balsa descriptions. In fact, it’s really easily to describe TLB

memory model with Balsa HDL. Following Balsa descriptions depicts the data structures that

define the TLB entry and the TLB bank tag.

type TLB_ENTRY is record

 valid: bit;

 tag: 17 bits;

 ppa: 17 bits; --Physical Page Address

 lru_bit: bit

end

type TLB_BANK_TAG is record

 task_tag: 5 bits;

 cur_bit: bit;

 valid: bit;

 lru_bit: bit

end

 70

In addition, we also modeled all TLB bank control with Balsa HDL. Following Balsa

descriptions depict how we modeled the valid bit clear, LRU bit clear, and TLB entry search.

shared clr_all_valid is begin

 for ; i in 0..31 then

 tlb_bank[i].valid := 0

 end -- for loop

end

shared clr_all_lru_bit is begin

 for ; i in 0..31 then

 tlb_bank[i].lru_bit := 0

 end -- for loop

end

shared search_tlb_bank is begin

 if tlb_bank[0].valid = 1 and tlb_bank[0].tag = tmp_tag then tmp_hit := 1 ||

tmp_ppa := tlb_bank[0].ppa

 | tlb_bank[1].valid = 1 and tlb_bank[1].tag = tmp_tag then tmp_hit := 1 ||

tmp_ppa := tlb_bank[1].ppa

…

Control Unit

The control unit communicates with the environment through these handshake channels,

clr_TLB (pull channel), CMW (pull channel), TLB_hit (push_channel), and VA (pull

channel). Once one of these channels is activated, this control unit will adopt the

corresponding actions. It should be noted that in this implementation these pull channels can

not be activated simultaneously to avoid the occurrence of deadlock. The control unit will

issue control commands to the TLB memory when it is required to change the content of TLB

memory, check TLB hit or miss, or perform the entry replacement.

The 1-bit LRU (Least Recently Used) replacement policy is adopted by us to reduce the

overhead in hardware cost. Because there’s no global clock signal, we implemented our LRU

algorithm as follows. Initially, all LRU bit are all cleared. When TLB hit or replacement

occurs, the LRU bit at assigned entry is set. The entry with LRU bit equal to 0 is replaced first.

Once the LRU bits in all entries are set and replacement is needed, all LRU bits are cleared.

 71

The 4-bit data signal of the TLB command is defined as table 4-4.

Table 4-4: Structure of 4-bit TLB command

Field clr_valid clr_lru_bit search_va lru_replace

bit 3 2 1 0

clr_valid: clear all valid bits in current TLB bank

clr_lru_bit: clear all lru bits in current TLB bank

search_va: seach ppa in current TLB bank

lru_replace: perform LRU replacement in current TLB bank

Finally, only 1 bit data signal of TLB_hit channel to indicate the status of TLB. It is

defined as table 4-5.

Table 4-5: Data signal of TLB_hit channel

Field hit

bit 0

hit: indicate whether TLB hit or not

Prefetch Control Unit

To reduce the complexity, we implemented the simplest way of prefetch control unit.

Once an empty entry exists in the prefech buffer, the prefetch control unit will fetch a new

page table entry through the channel PTE. Then, the Prefetch Control Unit requires the

prefech buffer to store it.

We have described that the Balsa descriptions will be synthesized into handshaking

components netlists. Figure 4-9 shows the handshaking component graph of CU and prefetch

control unit. Observing this graph, all our Balsa descriptions were mapped into built-in

handshaking components of Balsa framework. These handshaking components then can be

used to synthesize into gate-level netlists depending on the selected target handshaking

protocol.

 72

Figure 4-9: Handshaking component graph of CU

 73

PA Generator

The PA Generator generates the physical address via concatenating the offset of virtual

memory and physical page number (PPN) generated by TLB. Finally, the generated physical

address is sent out through the PA handshake channel. In fact, it’s the simplest part of the

design. Figure 4-10 shows the handshaking components graph of the PA generator. In this

graph, we can easily find that it selects one of the hit PPN from prefetch buffer or TLB bank

output and combines it with the offset to generate the output PA.

Figure 4-10: Handshaking component graph of PA Generator

4-4 Implementation

Finally, the designed was verified manually with random pattern under Balsa

environment. Because only several channels should be verified, the design can be verified

easily. Thus, we verified the design via monitoring the communication channels. Figure 4-11

shows the waveform of these communication channels. However, it’s not a good and formal

way to verify the functionality. We’ll discuss this issue in the next chapter. The gate-level

 74

netlist was then generated with Balsa tools, and synthesized with Design Compiler with

TSMC 0.13 µm process. Table 4-6 shows the equivalent gate count (NAND gate).

Figure 4-11: Waveform of circuit simulation

Table 4-6: Equivalent gate count

 Equivalent Gate Count (NAND gate)

CU and Prefetch Control 1,441

TLB_Memory 687,119

Total 688,560

not include memory and matching delay elements

The costs are really high, in fact, far from our estimation. However, it’s possible. The

result in [97] that was synthesized with the same handshaking protocol also shows that the

costs of circuits generated by Balsa tool suite may not be very cheap. In that design, total

3,134,953 gates are used to implement Asynchronous MP3 decoder with Xilinx FPGA. That’s

because all Balsa descriptions will be translated into handshaking components, and the cost of

these components may be not too cheap.

However, we found that the costs of CU and prefetch control unit are only 1,441. That’s

because in our real implementation the CU and prefetch control parts only needs to handle the

input signals and send correspondence signals out. Unfortunately, the total equivalent gate

 75

count of control circuits of TLB bank and prefetch buffer are 687,119. That’s not only

because we have to design lots of different functionalities of TLB memory parts, but we also

found that besides the control circuits that we modeled to control the behavior of our design

the Balsa framework also adds lots of extra control circuits to control the memory models. We

had already tried to model our circuits with as many as possible shared components. It’s still

very expensive. Maybe these parts should be designed with gate-level directly.

We also estimated the costs of CU and prefetch control unit with 4-phase dual-rail

protocol. Though we expected that the costs may be doubled, it didn’t occur. The equivalent

gate count is 2,450. That’s really interesting. That’s because the dual-rail circuits may also be

possibly implemented in reasonable costs. However, it’s not reasonable to have any

“dual-rail” memories. Thus it’s not reasonable to implement any memory related components

with dual-rail protocol. That’s why we implemented our design with 4-phase bundled-data

protocol. Following items list the major features of the implemented Balsa model.

� Modeled with Balsa HDL, the TLB controller can be synthesized into handshaking

protocols supported by Balsa framework.

� Simple and clear interface definitions can make the design be used easier.

� Unambiguous separation of each part in real asynchronous design makes

verifications of the asynchronous TLB controller easier.

 76

Chapter 5: Conclusions and Future Works

In this thesis, we proposed a novel TLB architecture for asynchronous embedded

processors. In addition, we also modeled it with Balsa HDL which is a CSP-based

asynchronous HDL. We demonstrated how to transfer the proposed architecture into

asynchronous circuits. In this chapter, the conclusions and future works will be summarized.

5-1 Conclusions

The computing devices have enormous changing for the past decades. Only recent years,

the embedded systems and mobile devices have been becoming the major trend in computing

devices. For the past years, because early applications of these systems are simple, no extra

complex operating systems are needed. However, new embedded systems and mobile devices

have begun to support very complex operating systems, such as Windows
®
 Mobile and

embedded Linux. Google even tries to provide very powerful software stack platform based

on embedded Linux called Android [107]. All these new applications need very efficient

supporting for embedded operating systems. Traditional design needs specific microcontroller

or processor to execute OS, and other DSP or accelerator processor to boost computing

performance. Recently, some designs try to provide an alternative solution. These designs

integrate both general purpose processor and DSP or accelerator processor into a single

processor, such as cores of Blackfin [108] and TILE processors [109]. All these new trends

demonstrate the importance of OS in embedded systems or handheld devices. In order to

provide high performance address translation from virtual address to physical address of

modern OS, the high efficient TLB design is needed. The TLB misses cause serious

performance degradation on modern processors. In addition, the context switching under the

multiprogramming OS may cause this problem even more seriously. However, only some

studies focus on the context switching issue for embedded processors. In our work, we

presented an alternative TLB design to reduce the miss rate in context switching for

embedded processors.

 77

In addition, it is widely known that synchronous circuit has some disadvantages, such as

clock skew, higher power consumption, worse-case performance, and poor reusability.

However, asynchronous circuit can easily address these problems. In addition, asynchronous

circuit has higher reliability and robustness than its synchronous counterparts. In fact, all

these are all critical issues for embedded processors or microcontrollers. But it’s very hard to

implement digital systems with asynchronous circuits.

In our work, we implemented the proposed TLB controller for the proposed TLB

architecture with asynchronous circuits. We implemented our proposed TLB controller with

the 4-phase bundled-dada handshaking protocol. The bundled-data model was implemented

with Balsa HDL which is a CSP-based asynchronous HDL. With the Balsa HDL, we can

focus on the asynchronous architecture and algorithm designs without considering too much

on the handshaking protocol issues. In addition, because several target handshaking protocols

are supported by the Balsa tools, you don’t need to implement each HDL model for each

handshaking protocol. Thus, higher flexibility can be provided. Unfortunately, the synthesized

result shows that total equivalent gate count of the TLB controller without memory is 688,560.

That’s really not cheap. However, we also found that the CU and prefetch control parts are

not very expensive. It costs only 1,441 equivalent gates, but the TLB memory parts costs

687,119 equivalent gates. That’s not only because we modeled lots of functionalities for this

part but also lots of extra memory control circuitry is added by Balsa tool suite. However, we

still successfully demonstrated an advanced asynchronous TLB controller than other related

works. Thus, the following items are the main features of the proposed asynchronous TLB

controller.

� An alternative TLB architecture was proposed to reduce the miss rate in context

switching for the asynchronous embedded processor.

� Instead of per-entry ASID, TLB banking is used to separate different address

space.

� Simple TLB entry prefetching mechanism is used to reduce some possible

compulsory misses.

� Modeled with Balsa HDL, the TLB controller can be synthesized into handshaking

protocols supported by Balsa framework.

� Simple and clear interface definitions can make the designed be used easily.

 78

� Unambiguous separation of each part in real asynchronous design makes

verifications of the asynchronous TLB controller easier.

5-2 Future Works

 In this thesis, we propose an alternative TLB architecture to reduce miss rate in context

switching for asynchronous embedded processor. As mentioned in section 3-2, to estimate

miss rate more accuracy the simulator should be integrated with OS. Therefore, new simulator

model should be developed for further study. In addition, as mentioned in section 3-1, the

performance of TLB not only relies on miss rate but also miss penalty. That’s means the

execution time should be taken into consideration. However, because lack of information of

processor architecture and memory system, it’s not very easy to estimate it directly. The

design should be placed into a real processor.

 As mentioned before, most asynchronous processors today are very simple; thus, most of

them do not support virtual memory. In our work, we hope to provide a general asynchronous

TLB architecture that can be implemented in asynchronous processors. That’s why we

modeled our design with Balsa HDL. With high-level asynchronous HDL, the design can be

synthesized into all supported handshaking protocols by Balsa tool suite. However, the Balsa

tool suite cannot provide the real TLB memory; thus it should be implemented separately. In

this work, we only simply use latches to replace the real TLB memory for verification. It’s not

reasonable. Thus, this part should be carefully handled in our future work. In addition, as the

analysis in section 4-4, besides the functionalities we modeled to control behavior of the TLB

memory the extra circuitry added by Balsa tool suite is very huge. The part really should be

redesigned manually in the future.

 Finally, our goal is to design our own asynchronous RISC core with virtual memory

support for embedded systems or handheld devices. In fact, we hope to design

asynchronous-based SoC or MPSoC with our own asynchronous processor core. As

mentioned in section 2-2-3, there are some studies of asynchronous interconnections and

GALS. In fact, the clock issue has been becoming one of the most critical issues in large SoC

designs. As mentioned in section 1-2, ideally, asynchronous circuits may make software

“OOP”-style design on hardware possible. Imaging, without the global clock issue, designing

SoC might be a little like playing the LEGO
®
 bricks. Ideally, each asynchronous IPs can be

plugged in the design if they “talk” the same “handshake protocol.” That’s why we hope to

design our own asynchronous processor core. The design of asynchronous TLB is one of the

 79

critical parts of the asynchronous processor core. In order to verify our future processor core

more formally, we’ll suggest a new asynchronous processor design flow that can support not

only architecture exploration but also facilitate hardware/software co-design. We’ll discuss

this topic in the next section.

5-3 Verification Issue for future work

In traditional synchronous based design, the verification can be easier than that of

asynchronous ones. You can verify your design based on the “clock.” That means that you

can verify the status of the design based on the clock cycles. Figure 5-1 shows a very

simplified VLSI design flow. The design ideas are described in cycle-based functional

specification descriptions. Traditionally, the functional specification can be described with C

programming language. Thus, the cycle-based simulator can be used to prove the design ideas.

Then, the design will be implemented in RTL/gate-level design. To verify the implementation,

the two models will be verified via cycle-by-cycle cross-verification. Finally, the design can

be transferred into layout. Certainly, the cycle-based equivalence checking should be done

between RTL/gate-level design and layout. On the contrary, without the global clock, each

part of the design may work in its own speed and it’s not easy to make sure if the design

operates correctly in any specific time. It will be even worse that the operation times of the

same component may be also different depending upon the input. That’s especially on most

DI/QDI designs. You can be very sure what status should be of your design at 10
th
 cycle, but

how can you do the same thing on system without clock? Imaging in a 2-phase bundled data

design and given a specific time, how can you make sure the status should be? As mentioned

in section 2-2-2, in such systems each part of the design may begin to operate whether the

request or acknowledge signals are rising edge or falling edge. Verifications of different

models of asynchronous circuits may also be a good research topic.

We have already pointed out that lots of new issues should be carefully dealt with in

developing embedded processors. Because most of these problems can be resolved with

asynchronous circuits, that’s why we put lots of efforts in developing asynchronous

processors. In addition, because of some new application requirements, new features should

be supported by these processors. However, it’s important to do some architectural

explorations before these features can be supported. Thus, we’ll suggest a design flow that

can be used to design new asynchronous embedded processors from architectural exploration

to functional verification. Figure 5-2 shows our new design flow. We’ll introduce the use of

architecture description language (ADL). LISA will be selected as our design tool [110].

That’s not only because LISA is the most popular and successful ADL but also it’s a mixed

 80

structural and behavioral ADL. Thus, the design described with LISA can be used to generate

simple toolchains including (compiler), assembler, linker, and simulator. It can also be used to

generate RTL of Verilog HDL. Thus, hardware/software co-design can be easily achieved.

CoWare
®
 Inc. now provides a complete GUI IDE based LISA development environment

called CoWare
®
 Processor Designer [111]. With CoWare

®
 Processor Designer, it makes

LISA easy to learn and use. The first, the design specification should be implemented with

LISA descriptions manually. Then the CoWare
®
 Processor Designer can be used to generate

toolchains and simulator. It should be noted that in order to achieve the goal of

hardware/software co-design the application software can be developed simultaneously. In

addition, if the designed architecture is described in structural model, the RTL can also be

generated. Though the RTL model generated is not a very efficient implementation, it still can

be used as reference synchronous model for evaluation. In fact, after simulator and toolchains

can be generated, the performance of designed architecture can be roughly estimated. Then

the generated simulator can be used as golden model in order to do cross-verification with

new designed asynchronous processor. However, because it’s impossible to do clock-by-clock

cross-verification with asynchronous circuits, we suggest using the “instruction-based”

cross-verification. That means we can compare the execution results

instruction-by-instruction. With this design flow, we can develop our new asynchronous

embedded processor more effectively.

Figure 5-1: Simple VLSI design flow

 81

Figure 5-2: Our asynchronous processor design flow

 82

Reference

[1] J. Liedtke, “Improved Address-Space Switching on Pentium Processors by Transparently

Multiplexing User Adress Spaces,” GMD Technical Report, No. 933, German National

Research Center for Information Technology, Nov. 1995.

[2] A Wiggins, G Heiser, “Fast Address-Space Switching On The StrongArm SA-1100

Processor,” Technical Report, UNSW-CSE-TR-9906, The University of New South Wales,

Austrila, 1999.

[3] A Wiggins, G Heiser, “Fast Address-Space Switching On The StrongArm SA-1100

Processor,” in In Proceedings of the 5th Australasian Computer Architecture Conference

(ACAC), 2000, pp. 97 – 104.

[4] I. E. Sutherland and J. Ebergen, “Computers without Clocks,” Scientific American,

August 2002, pp. 62-69.

[5] A. Davis and S.M. Nowick, “An Introduction to Asynchronous Circuit Design,”

Technical Report, UUCS-97-013, Computer Science Department, University of Utah, Sep.

1997.

[6] S. Hauck, “Asynchronous design methodologies: an overview,” Proceedings of the IEEE,

Vol. 83, Issue 1, Jan. 1995, pp.69-93

[7] A. Bink and Mark de Clercq, “ARM996HS Synthesizable CPU with Clockless

Technology,” Information Quarterly, Vol. 5, No. 4, 2006, pp. 20-24.

[8] Neil H. E. Weste and K. Eshraghian, Principles of CMOS VLSI Design - A Systems

Perspective, 2ed. Addison-Wesley Publishing Co., 1993

[9] P. Gronowski, W. J. Bowhill, R. P. Preston, M. K. Gowan, R. L. Allmon,

High-Performance Microproessor Design, IEEE Journal of Solid-State Circuits, Vol. 33, No.

5, pp. 676-686, May 1998.

[10] D. R. Gonzales, Micro-RISC Architecture for the Wireless Market, IEEE Micro, Vol.

19, No. 4, pp. 30-37, July-August 1999.

[11] R. Y. Chen, N. Vijaykrishma, M. J. Irwin, “Clock Power Issues in System-on-a-Chip

Designs,” in Proceedings of the IEEE Computer Society Workshop on VLSI'99, 1999, pp. 48.

[12] D. Duarte, V. Narayanan, and M. J. Irwin, “Impact of Technology Scaling in the Clock

 83

System Power,” in Proceedings of the IEEE Computer Society Annual Symposium on VLSI,

2002, pp. 59.

[13] T. Mudge, “Power: A First-Class Architectural Design Constraint,” IEEE Computer,

Vol. 34, No. 4,pp. 52-58, April 2001.

[14] B. Zhai, D. Blaauw, D. Sylvester, and K. Flautner, “Theoretical and practical limits of

dynamic voltage scaling,” in Proceedings of the 41st annual Design Automation Conference,

pp. 868-873, 2004.

[15] J. V. Woods, P. Day, S. B. Furber, J. D. Garside, N. C. Paver, and S. Temple,

“AMULET1: an asynchronous ARM microprocessor,” IEEE Trans. Computers, Vol. 46,

April 1997, pp. 385-398.

[16] S. B. Furber, J. D. Garside, S. Temple, J. Liu, P. Day, N. C. Paver, “AMULET2e: an

asynchronous embedded controller,” in Third International Symposium on Advanced

Research in Asynchronous Circuits and Systems, April 1997, pp. 290 – 299.

[17] S. B. Furber, J. D. Garside, P. Riocreux, S. Temple, P. Day, J. Liu, and N. C. Paver,

“AMULET2e:An Asynchronous Embedded Controller,” Proceedings of the IEEE, Vol. 87,

Issue 2, Feb. 1999, pp. 243 – 256.

[18] S. B. Furber, D. A. Edwards and J. D. Garside, “AMULET3: a 100 MIPS Asynchronous

Embedded Processor”, in Proceedings of the International Conference on Computer Design,

2000, pp. 329-334.

[19] H. v. Gageldonk, D. Baumann, K. van Berkel, D. Gloor, A. Peeters, and G. Stegmann,

An asynchronous low-power 80c51 microcontroller, in Proc. International Symposium on

Advanced Research in Asynchronous Circuits and Systems, pp. 96–107, 1998.

[20] A. Bink and R. York, “ARM996HS: The First Licensable, Clockless 32-bit, Processor

Core,” IEEE Micro, Vol. 27, Issue 2, pp. 58-68, March-April, 2007.

[21] S. Rusu, S. Tam, H. Muljono, J. Stinson, D. Ayers, J. Chang, R. Varada, Ma. Ratta, S.

Kottapalli, “A 45nm 8-Core Enterprise Xeon
®
 Processor,” in IEEE International Solid-State

Circuits Conference, ISSCC, 2009.

[22] A. Silberschatz, P. Galvin,G. Gagne, Operating Systems Concepts, 7
th
 ed. John Wiley &

Sons, 2005.

 84

[23] B. Jacob and T. Mudge, “Virtual Memory: Issues of Implementation,” IEEE Computer,

Vol. 31, NO. 6, June 1998, pp.33-43.

[24] R. Case and A. Padegs. Architecture of the IBM System/370, McGraw-Hill Book

Company, New York , 1982.

[25] B. Jacob and T. Mudge, “Virtual Memory in Contemporary Microprocessors,” IEEE

MICRO, July 1998, pp. 60-75.

[26] D. W. Clark and J. S. Emer, “Performance of the VAX-11/780 Translation Buffer:

Simulation and Measurement,” ACM Trans. on Computer Systems. Vol. 3, 1985, pp. 31-62.

[27] Michael J. Flynn, Computer Architecture – Pipelined and Parallel Processor Design,

Jones and Bartlett Publishers, Boston, 1995.

[28] J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quantitative Approach,

3
rd
 ed, Morgan Kaufman, 2006.

[29] J. P. Shen, M. H. Lipasti, Modern Processor Design: Fundamentals of Superscalar

Processors, McGraw-Hill Professional, 2004.

[30] Advanced Micro Devices, Inc., AMD64 Technology- AMD64 Architecture

Programmer’s Manual Volume 2: system Programming, AMD, September 2006.

[31] Intel Corp.,Intel

64 and IA-32 Architectures: Software Developer’s Manual Vol. 3A:

System Programming Guide Part 1, Intel Corp., March 2009.

[32] Intel Corp.,TLBs, Paging-Structure Caches, and Their Invalidation: Application Note,

Intel Corp., 2008.

[33] M. Talluri, M. D. Hill, Y. A. Khalidi, “A new page table for 64-bit address spaces,”

ACM SIGOPS Operating Systems Review, Vol. 29, Issue 5, Dec. 1995, pp. 184 – 200.

[34] MIPS Technologies, Inc., MIPS R10000 Microprocessor User’s Manual, Ver. 2.0,

MIPS Technologies, Inc., 1996.

[35] SPARC International Inc., The SPARC Architecture Manual Version 8, SPARC

International Inc., 1992.

[36] D.L. Weaver and T. Germond, The SPARC Architecture Manual Version 9, SPARC

International Inc., 2000.

[37] Todd Austin, SimpleScalar LLC, http://www.simplescalar.com/ (2009/06)

 85

[38] Advanced Micro Devices, Inc., Software Optimization Guide for AMD Athlon
TM
 64 and

AMD OpteronTM Processors, AMD, September 2003.

[39] J. M. Tendler, J.S. Dodson, J.S. Fields Jr, H. Le, B. Sinharoy, POWER4 System

Microarchitecture, IBM J. RES. & DEV. 46, 2002.

[40] Intel
®
 Corp., Pentium

® Pro Family Developer’s Manual Vol. 3–Operating System

Writer’s Guide, Intel Corp., Dec. 1995.

[41] Intel Corp., Intel
®
 Itanium

®
 Architecture Software Developer’s Manual Vol. 2: System

Architecture Rev. 2.2, Intel Corp., Jan. 2006.

[42] Advanced Micro Devices, Inc., AMD64 Architecture Programmer’s Manual Vol. 2:

System Programming Rev. 3.14, Advanced Micro Devices, Inc., Sep. 2007.

[43] M. Talluri, Use of Superpages and Subblocking in the Address Translation Hierarchy ,

Ph.D. thesis, Dep. Of CS, University of Wisconsin at Madison, 1995.

[44] M. Talluri and M. Hill. “Surpassing the TLB Performance of Superpages with Less

Operating System Support,” in Proceedings of the Sixth Int’l Conference on Architectural

Support for Programming Languages and Operating Systems, 1994, pp.171–182.

[45] M. Talluri, Shing Kong, Mark D. Hill, and David A. Patterson. “Tradeoffs in

Supporting Two Page Sizes,” In Proceedings of the 19th Annual Int’l Symp. on Computer

Architecture, May 1992, pp.415-424.

[46] T. H. Romer, W. H. Ohlrich, A. R. Karlin, and B. N. Bershad, “Reducing TLB and

Memory Overhead Using Online Superpage Promotion,” in Proceedings of the 22nd Annual

Int’l Symp. on Computer Architecture, 1995, pp.176-187.

[47] Jung-Hoon Lee, Jang-Soo Lee, and Shin-Dug Kim, “A dynamic TLB management

structure to support different page sizes,” Proceedings of the Second IEEE Asia-Pacific

Conference on ASICs, 2000, pp. 299-302.

[48] Jung-Hoon Lee, Jang-Soo Lee, She-Woong Jeong, and Shin-Dug Kim, “A

Banked-Promotion TLB For High Performance and Low Power,” Proceedings of the 2001

International Conference on Computer Design, 2001, pp. 118-123.

[49] M. Swanson, L. Stoller, and J. Carter, “Increasing TLB Reach Using Superpages

Backed by Shadow Memory,” Proceedings of the 25th Annual International Symposium On

Computer Architecture, 1998, pp. 204-213.

 86

[50] Zhen Fang, Lixin Zhang, John B. Carter, Wilson C. Hsieh, and Sally A. Mckee,

“Reevaluating Online Superpage Promotion with Hardware Support,” in Proceedings of the

7th Int’l Symp. on High-Performance Computer Architecture, 2001, pp.63-72.

[51] C. H. Park, J. Chung, B. H. Seong, Y. Roh, and D. Park, “Boosting Superpage

Utilization with the Shadow Memory and the Partial-Subblock TLB,” in Proceedings of the

14th international conference on Supercomputing, 2000, pp. 187-195.

[52] David Channon and David Koch, “Performance Analysis of Re-configurable

Partitioned TLBs,” Proceedings of the 30th Hawaii International Conference on System

Sciences, 1995, Vol. 5, pp.168-177.

[53] T. Juan, T. Lang, J. J. Navarro, “Reducing TLB power requirements,” in International

Symposium on Low Power Electronics and Design, 1997, pp. 196-201.

[54] Y. Lee, T. Lee, S. An, and Y. Lee, “Indirectly-compared cache tag memory using a

share tag in a TLB,” IEE Electronics Letters, Vol. 33, No21, 1997, pp. 1764-1766.

[55]Y. Lee, T. Lee, S. An, and Y. Lee, “Shared tag for MMU and cache memory,” in

International Semiconductor Conference, CAS'97, Vol. 1, Oct. 1997, pp. 77-80.

[56] A. Saulsbury, F. Dahlgren, and P. Stenstrom, “Recency-Based TLB Preloading,”

Proceedings of the 27th International Symposium on Computer Architecture, 2000,

pp.117-127.

[57] G. B. Kandiraju and A. Sivasubramaniam, “Going Distance for TLB Prefetching: An

Application-driven Study,” in Proceedings of the 29th Annual International Symposium on

Computer Architecture, 2002.

[58] W. A. Clark, “Macromodular computer systems,” in Proceedings of the April 18-20,

1967, Spring Joint Computer Conference (AFIPS Joint Computer Conferences), April 18-20,

1967, pp. 335-336.

[59] A. J. Martin, “The limitations to delay-insensitivity in asynchronous circuits,” in

Proceedings of the sixth MIT conference on Advanced research in VLSI, 1990, pp. 263-178.

[60] A. J. Martin, Programming in VLSI: from communicating processes to delay-insensitive

circuits, University Of Texas At Austin Year Of Programming Series, Addison-Wesley

Longman Publishing Co., Inc., Boston, MA, USA, 1991.

[61] D. E. Muller and W. S. Bartky, “A theory of asynchronous circuits,” in Proceedings of

 87

an International Symposium on the Theory of Switching, The Annuals of Computation

Laboratory of Harvard University, Vol. 29, Part I, Harvard University Press, Cambridge,

1959, pp. 204-243.

[62] J. B. Dennis and S. S. Patil, “Speed Independent Asynchronous Circuits,” in

Proceedings of the Fourth Hawaii International Conference on System Sciences, 1971, pp.

55-58.

[63] D. Misunas, “Petri nets and Speed Independent Design,” Communications of the ACM,

Vol. 16, Issue 8, August 1973, pp.474-481.

[64] C. L. Seitz, System Timing Introduction to VLSI Systems Ch.7, Addison-Wesley Pub.

Co., 1980.

[65] Y. T. Chang, M. C. Huang, W. M. Cheng, H. Y. Tsai, C. J. Chen, F. C. Cheng,

“Self-Timed Torus Network with 1-of-5 Encoding,” in Proceedings of the 13th IEEE

International Symposium on Consumer Electronics, Kyoto, Japan, May 25-28, 2009.

[66] J. Sparsø and S. Furber, Principles of asynchronous circuit design – a systems

prospective, Kluwer Academic Publishers, London, 2001, pp. 11-25.

[67] Chris J. Myers, Asynchronous Circuit Design, John Wiley & Sons, Inc.,2003.

[68] D. Muller and W. Bartky, “A theory of asynchronous circuits,” in Proceedings of an

International Symposium on the Theory of Switching, April 1959, pp. 204-243.

[69] J. Gunawardena, “A generalized event structure for the Muller unfolding of a safe net,”

in Proceedings of the 4th International Conference on Concurrency Theory, June, 1993, pp.

278-292.

[70] C. J. Chen, W. M. Cheng, H. Y. Tsai, and J. C. Wu, “A Quasi-Delay-Insensitive

Microprocessor Core Implementation for Microcontrollers,” Journal of Information Science

and Engineering, Vol. 25, No. 2, March 2009, pp. 543-557.

[71] I.E. Sutherland, “Micropipelines,” Turing Award Lecture, Communications of the ACM,

Vol.32, Number 6, June 1989, pp 720-738.

[72] E. Brunvand, “The NSR Processor,” in Proceeding of the 26th Hawaii International

Conference on System Sciences, 1993, pp. 428-435.

[73] S. B. Furber, “Computing without Clocks: Micropipelining the ARM Processor,” in

Asynchronous Digital Circuit Design, Proceedings of the 1993 VIIth Banff High Order

 88

Workshop, Springer Verlag, January 1995, pp. 211-262.

[74] C. S. Choy, J. Butas, J. Povazanic, C.F. Chan, “A new control circuit for asynchronous

micropipelines,” IEEE Trans. Computers, Vol. 50, Sep. 2001, pp.992-997.

[75] D. K. Arvind, R.D. Mullins,V. E. F. Rebello, “Micronets: a model for decentralising

control in asynchronous processor architectures,” in Second Working Conference on

Asynchronous Design Methodologies, May 1995, pp.190-199.

[76] T. Nanya, Y. Ueno, H. Kagotani, M. Kuwako, and A. Takmura, “TITAC: Design of a

Quasi-Delay-Insensitive Microprocessor”, IEEE Design & Test of Computer, Summer 1994,

pp. 50-63.

[77] A. Takamura, M. Kuwako, M. Imai, T. Fujii, M. Ozawa, I. Fukasaku, Y. Ueno, and T.

Nanya, “TITAC-2: A 32-bit Asynchronous Microprocessor based on

Scalable-Delay-Insensitive Model,” in Proceedings of the International Conference on

Computer Design, Oct. 1997, pp. 288-294.

[78] Alain J. Martin, Mika Nyström, and Catherine G. Wong, “Three Generations of

Asynchronous Microprocessors,” IEEE Design & Test of Computers, Nov.-Dec. 2003, pp.

9-17.

[79] C. J. Chen, C. C. Shiu, and M. S. Wu, “The Design of Asynchronous Processor”, in

Proceedings of International Computer Symposium, 2002.

[80] R. Kol, and R. Ginosar, “Kin: a high performance asynchronous processor architecture,”

in Proceedings of the 12th International Conference on Supercomputing, July 1998, pp.

433-440.

[81] C. J. Elston, D. B. Christianson, P. A. Findlay, and G. B. Steven, “Hades—An

Asynchronous Superscalar Processor,” in IEE Colloquium on Design and Test of

Asynchronous Systems, 1996.

[82] Robert F. Sproull, Ivan E. Sutherland, and Charles E. Molnar, “The counterflow

pipeline processor architecture,” IEEE Design & Test of Computers, pp. 48-59, Fall 1994.

[83] S. C. Smith, R. F. Demara, J. S. Yuan, M. Hagedorn, and D. Ferguson,

“Delay-insensitive gate-level pipelining,” Integration, The VLSI Journal, Vol. 30, No. 2,

October 2001, pp. 103-131.

[84] C. E. Molnar, I. W. Jones, W. S. Coates, and J. K. Lexau, ”A FIFO ring performance

 89

experiment,” in Proceedings of the 3rd International Symposium on Advanced Research in

Asynchronous Circuits and Systems, 1997, pp. 279-289.

[85] I. Sutherland and S. Fairbanks, “GasP: A Minimal FIFO Control,” in Proceedings of the

7th International Symposium on Asynchronous Circuits and Systems, 11-14 March, 2001, pp.

46-53.

[86] D. M. Chapiro, Globally-asynchronous locally-synchronous systems, Ph.D. Thesis

Stanford Univ., CA. Dept. of Computer Science, 1984.

[87] W. J. Dally and C. L. Seitz, “The torus routing chip”, Distributed Computing, Vol. 1, pp.

187-196, 1986.

[88] Lasse Natvig, “High-level Architectural Simulation of the Torus Routing Chip,” in

IEEE International Verilog HDL Conference, 1997, pp. 48-55.

[89] K. V. Berkel, J. Kessels, M. Roncken, R. Saeijs, P. Schalij, “The VLSI-programming

language Tangram and its translation into handshake circuits,” in Proceedings of the

European Conference on Design Automation. EDAC, 25-28 Feb. 1991, pp. 384 – 389.

[90] http://www.handshakesolutions.com/ (2009/06)

[91] A. Bardsley, Implementing Balsa Handshake Circuits, Ph.D. thesis, Dep. of Computer

Science, Univ. of Manchester, 2000.

[92] A. Bardsley, D. A. Edwards, The Balsa Asynchronous Circuit Synthesis System, Dep. of

Computer Science, Univ. of Manchester, 2000.

[93] A. B. Doug Edwards, Balsa: A Turorial Guide version 3.4, Dep. of Computer Science,

Univ. of Manchester, 2004.

[94] C. J. Chen, W. M. Cheng, R. F. Tsai, H. Y. Tsai, T. C. Wang, “A Pipelined

Asynchronous 8051 Soft-core Implemented with Balsa,” in 9
th
 IEEE Asia Pacific

Conference on Circuits and Systems, Macao, China, Nov. 30 - Dec. 3, 2008, pp. 976-979.

[95] C. J. Chen, W. M. Cheng, T. C. Wang, Y. T. Chang, H. Y. Tsai, “Instruction Decoder

Implemented with Balsa for an Asynchronous Pipelined 8051 compatible Microcontroller,”

in International Computer Symposium, Taipei, Taiwan, 13-15 Nov., 2008.

[96] Q. Zhang and G. Theodoropoulos, “Modelling SAMIPS: a synthesisable asynchronous

MIPS processor,” in Proceedings of 37th Annual Simulation Symposium, 18-22 Apr, 2004,

pp. 205-212.

 90

[97] C. J. Chen, W. M. Cheng, H. W. Lo, Y. T. Chang, H. Y. Tsai, I. H. Hsieh, F. C. Cheng,

“An Asynchronous MP3 Decoder Implemented with Balsa,” in IEEE Regional Symposium

on Micro and Nano Electronics, 2009. (to appear)

[98] A. J. Martin, Synthesis of Asynchronous VLSI Circuits, Technical Report

[Caltech-CS-TR-93-28], California Institute of Technology, 1991.

[99] A. J. Martin, A. Lines, R. Manohar, M. Nyström, P. Penzes, R. Southworth, U.

Cummings and T. K. Lee, “The Design of an Asynchronous MIPS R3000 Microprocessor,”

in Proceedings of the 17th Conference on Advanced Research in VLSI, 1997, pp. 164.181.

[100] http://4c.cse.ttu.edu.tw/snipsnap/space/SoCAD (2009/06)

[101] F. C. Cheng, C. R. Wang, “Specification and design of a quasi-delay-insensitive Java

card microprocessor,” in Proceedings oh 13th International Conference on VLSI Design, 3-7

Jan. 2000. pp. 356-361.

[102] http://www.async.caltech.edu/mips.html (2009/06)

[103] C.A.R. Hoare, “Communicating Squential Processes,” Communications of the ACM,

Vol. 21, No. 8, 1978, pp. 666-677.

[104] C. Myers and A. Martin, “The design of an asynchronous memory management unit,”

Technical Report [Caltech-CS-TR-92-25], California Institute of Technology, 1992.

[105] F. Weigel, An Asynchronous ARM Compatible Memory Management Unit Design and

Implementation, M.S. Thesis, Dep. of Computer Science, Univ. of Manchester, 2002.

[106] http://intranet.cs.man.ac.uk/apt/projects/tools/balsa/ (2009/06)

[107] http://code.google.com/intl/zh-TW/android/ (2009/06)

[108]

http://www.analog.com/en/embedded-processing-dsp/blackfin/adsp-bf561/processors/produc

t.html (2009/06)

[109] http://www.tilera.com/products/processors.php (2009/06)

[110] A. Hoffmann, T. Kogel, A. Nohl, G. Braun, O. Schliebusch, O. Wahlen, A. Wieferink,

and H. Meyr, “A Novel Methodology for the Design of Application-Specific Instruction-Set

Processors (ASIPs) Using a Machine Description Language,” IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, Vol. 20, No. 11, Nov. 2001, pp.

1338-1354.

 91

[111] http://www.coware.com/products/processordesigner.php (2009/06)

