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摘摘摘摘  要要要要 

嵌入式處理器廣泛運用在嵌入式系統或手持裝置中，因此低功率、可靠與扎

實就成為這類處理器最重要的課題。非同步電路應該是解決這類問題最好的解

答，因此，非同步電路非常適合用來實作這些處理器。 

 

眾所周知，這些嵌入式處理器被用來執行許多不同的工作。近來，許多嵌入

式系統與手持式裝置開始執行非常複雜的作業系統，像是嵌入式 Linux 或

Windows
®
 mobile, 而為了支援現代作業系統的虛擬記憶體機制，支援虛擬位址

與實體位址間的轉換是必需的，這也被認為是影響整體記憶體系統效能的關鍵因

素之一。為了提高位址轉換的效能，幾乎所有近代處理器內都具備了轉換搜尋緩

衝器，因此，在我們的計畫中，我們提出了一個設計給嵌入式處理器具備低內容

轉換失誤率的轉換搜尋緩衝器架構。為了區隔不同的位址空間，我們採取了區隔

轉換搜尋緩衝器庫來取代每個轉換搜尋緩衝器項目的位址空間區隔標籤，並且使

用了簡單的預取機制來減少可能發生的強迫性失誤，除此之外，因為是設計給非

同步嵌入式處理器的轉換搜尋緩衝器，設計上所有的運作行為也都很簡單。 
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最後，我們以 Balsa 硬體描述語言實作該轉換搜尋緩衝器之控制器，因為實

作過程中我們巧妙的安排了通訊交換管道，實作過程中我們就可以比較容易以假

設的輸入樣本驗證正確性，儘管也許以這樣的方式驗證我們這個實作是可行的，

然而這種方法運用在我們目前進行中的非同步嵌入式處理器計畫既不可能也不

合理，因此我們提出建議了一個未來我們計畫進行中的軟硬體共同設計與交互驗

證的流程，最後，以 Balsa 工具產生了邏輯閘級的 netlist 也評估了實作所需等效

的邏輯閘個數，然而結果顯示如此方式實作成本並不低，等價邏輯閘數為 688,560, 

我們也說明了還是依然以此高層次非同步硬體描述語言實作的原因，最重要的，

這對未來比較大的非同步設計而言是必需的。 
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Abstract 
 

Embedded processors are widely used in many embedded systems and 

handheld devices. Hence, low power, reliability, and robustness have been 

becoming the critical issues for these processors. Asynchronous circuits may be 

one of the best solutions to overcome these problems. Thus it may be more 

suitable to implement these processors with asynchronous circuits. 

 

It is widely known that these embedded processors are used to execute 

varieties of tasks. Recently, many new embedded systems and handheld devices 

begin to execute very complex operating systems, such as embedded Linux or 

Windows
®
 mobile. In order to support virtual memory mechanism of modern 

operating systems, address translation from virtual address to physical address 

should be supported. However, it is widely considered as the critical issue of 

memory system performance. In order to improve the address translation 

performance, the Translation Lookaside Buffer (TLB) is implemented inside 
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almost all contemporary processors. In this work, we propose an alternative 

TLB architecture with low context switch miss rate for asynchronous embedded 

processors. We adopted a heuristic TLB banking designs to replace per-entry 

ASID to identify each address space. In addition, simple prefetching mechanism 

is used to reduce some possible compulsory misses. Because the architecture is 

designed for asynchronous embedded processors, all operations are very simple.  

 

Finally, we implemented the TLB controller for the proposed TLB 

architecture with Balsa HDL. Because we skillfully arrange the communication 

channels, we can verify the implementation easier with assumed random pattern. 

Though it’s possible to verify our implementation with such simple way, it’s 

impossible and unreasonable to verify the whole asynchronous embedded 

processor that we are currently working for. We also suggested a 

hardware/software co-design and cross-verification flow for our future work. 

Finally, the gate-level netlist was generated with Balsa tools, and the equivalent 

gate count of the implementation was estimated. The result shows that the cost 

of the implementation modeled with Balsa HDL is not cheap. The total 

equivalent gate count is 688,560. However, we also describe why designing 

asynchronous circuits with such high-level asynchronous HDL. It’s needed for 

future larger design!  
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Chapter 1: Introduction 

1-1 Motivation  

Embedded processors and microcontrollers are widely used in varieties of different 

embedded systems and handheld devices. Because of new complex applications today, these 

processors are now required to execute new embedded operating systems. Thus it’s very 

important to provide the capability to support virtual memory mechanism needed in modern 

operating system. In order to provide fast address translation, the translation lookaside buffer 

(TLB) should be provided inside these processors now. Furthermore, because of the 

embedded system or handheld devices nature, simple and easy context switching model 

should also be provided. In order to reduce the address translation penalty of context 

switching, a well-designed TLB with low context switching miss ratio is needed for these 

processors [1,2,3]. 

 

In addition, to keep those processors operating with high robustness and low power 

consumption are the two most important issues. It is widely known that asynchronous circuit 

is the best solution to address these two issues at the same time [4,5,6,7]. Thus embedded 

processors and microcontrollers may be suitable to be implemented with asynchronous 

circuits. However, it’s not very easy to implement the TLB that needed for modern operating 

system for asynchronous processors. In our work, we proposed TLB architecture with low 

context switching miss ratio that is suitable for embedded systems that runs only some tasks 

and implement the TLB controllers with asynchronous circuits. 
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1-2 Introduction to asynchronous circuits 

Asynchronous chips improve computer performance 

        by letting each circuit run as fast as it can! 

 

By Ivan E. Sutherland and Jo Ebergen  

"Scientific American", August 2002 [4] 

 

It is widely known that synchronous circuits have some problems that have to be 

carefully dealt with, such as clock skew, difficulty in clock distribution, worse case 

performance, not modular, sensitive to variations in physical parameters (temperature, voltage, 

and process), synchronization failure, and noise (EMI). All these problems derive from the 

“clock” signal [4,5,6,7]! As the VLSI based systems become larger, more complex, and work 

with higher clock rate, these problems also become more serious than ever before.  

 

In addition, to reduce the power consumption has already become one of the most important 

issues in large VLSI system design. It is widely known that the dynamic power dissipation 

P∝ fcv
2
[8]. That means that the dynamic power consumption is in proportion to the number of 

switching activities. In order to improve the circuits or system performance, the clock 

frequency becomes higher and higher. Thus, the extra power wasted in the clock tree 

distribution also becomes larger and larger. That’s very clear that clock signal consumes a 

very large proportion power of the whole chip. For example, the clock tree distribution 

network of DEC (Compaq) Alpha 21064 processor consumes about 40% power when it runs 

at maximum speed [9]. Similarly, the Motorola MCORE micro-RISC processor consumes 

36% power in clock tree distribution [10]. In fact, the clock distribution network should be 

responsible for an increasing fraction of the dynamic power consumed by modern processors 

and SoCs [11,12,13]. Thus, if the clock signal can be removed, the power consumption may 

be reduced with very high possibility. In order to reduce the power consumption, lots of 

different techniques are proposed and implemented, such as clock gating and dynamic voltage 

and frequency scaling (DVFS)[14]. Furthermore, higher clock frequency may also cause the 

temperature of the VLSI chips very high. It’s also harmful for embedded systems or handheld 
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devices. We can say that all these problems cause nightmares for almost all VLSI-based 

system developments today.  

 

On the contrary, asynchronous circuits can easily reduce the power consumption via 

removing the “clock” signals that spread the whole VLSI chip. Replaced by the handshaking 

protocols, asynchronous circuits offer low active power and almost zero standby power 

[4,5,6]. In fact, because of data-driven nature, the inactive components or parts of 

asynchronous circuits can be automatically “shut-off.” Thus, asynchronous circuits can offer 

very good power efficiency. For example, the most famous asynchronous ARM compatible 

processors—the Amulet series processors [15,16,17,18] shows very good power efficiency 

than its synchronous ARM processor counterparts. Another very famous example, Philips 

asynchronous 80C51 microprocessor is 4 times power efficient than that of its synchronous 

counterparts [19]. The most interesting of all is the latest ARM996HS processor that is the 

first commercial-available synthesible 32-bit CPU built with clockless logic[7,20]. It 

consumes about 2.8x less power than the clock-gated ARM968E-S core. Table 1-1 shows the 

comparisons between ARM996HS and ARM968E-S [7]. The table also shows that 

ARM996HS can operate correctly in varieties of operating environment. It can operate with 

lower voltage in high temperature environment. Asynchronous circuits are much more robust 

than synchronous circuits. 

 

In fact, designing the “clock” system has been becoming the critical issue in large VLSI 

system design today. For example, very complex “clocking architecture” is implemented in 

the latest Intel
®
 45nm 8-core Xeon

®
 Enterprise processor announced in ISSCC2009 [21]. 

Figure 1-1 shows its clocking architecture. The design has totally 16 PLLs, 8 DLLs, and 

independent clock domains for each cores and the uncore. What a complex design it is! 

Unfortunately, such designs are very popular today. Since the first microprocessor, the Intel
®
 

4004, was announced in 1971, the VLSI technologies have had great improvement. To put 

one billion transistors on a single chip have been becoming possible. How terrible it is to 

design the “clock” system on such big system! 

 

However, because of several complex historical and practical reasons, almost all systems 

today are still implemented with fixed clock period based design. While synchronous design 
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may introduce lots of problems with systems growing up larger and larger, asynchronous 

design may overcome these problems via avoiding the use of clock signal. Furthermore, how 

to accomplish IP reuse easier becomes one of the most important issues for SoC design. 

Asynchronous circuits may be one of the best solutions to address this issue. Without the 

influence of the “clock” signal, asynchronous circuits make “software OOP” style design for 

hardware design possible. All things that the designers need to know are the handshaking 

protocol interface [4,5,6]. It also makes each designed component or IP more reusable. With 

growing up mobile device and embedded system markets, all these issues need to be seriously 

considered. Thus, it’s time to implement these systems with asynchronous circuits. 

 

Table 1-1: Comparisons of ARM996HS and ARM968E-S 

 Frequency 

[equiv. MHz] 

Performance 

[DMIPS] 

Power 

[mW/equiv. MHz] 

Gate Count 

[NAND2 

equiv.] 

ARM996HS 50 

(worst, 1.08 V, 125ºC) 

77 

(nominal, 1.2 V, 25ºC) 

54 

(worst, 1.08 V, 125ºC) 

83 

(nominal, 1.2 V, 25ºC) 

0.045 

(nominal, 1.2 V, 25ºC) 

89K 

ARM968E-S 100 107 0.13 

(nominal, 1.2 V, 25ºC) 

88K 

 

 

Figure 1-1: Clock distribution domains and generators 
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1-3 Introduction to Translation Lookaside Buffer 

In order to support larger memory requirements for modern applications, it’s important 

for modern operating systems (OS) to provide the virtual memory mechanism. Conceptually, 

with virtual memory, the movements of code and data of one program between main memory 

and secondary storage can be automatically achieved, and a single complete and contiguous 

“memory space” can be given for each program. Thus, only part of code and data of one 

program needs to be placed in main memory. Programmers do not need to know anything on 

how the code and data are arranged. Moreover, the program size can be even larger than the 

real physical memory size. In fact, virtual address space are often much larger than real 

physical memory space and size. Figure 1-2 shows the conceptual virtual memory. The virtual 

memory is divided into lots of fixed size blocks called pages and each page has a specific 

page number called Virtual Page Number (VPN). Similarly, the physical memory is also 

divided into the same size page frames, and each of it has its own unique page frame number 

called Physical Page Number (PPN). Via the memory mapping, each page of virtual memory 

can be mapped to a page frame of physical memory or the secondary storage. With 

appropriate hardware support, the virtual memory is carefully maintained by the OS [22]. 

 

As mentioned before, the OS is responsible to provide the mechanisms to map virtual 

address to physical address. However, all these virtual address to physical address translations 

are stored in main memory. To reduce the cost of address translations, the translation 

lookaside buffers (TLBs) are widely implemented inside the processor [23,24,25,26,27,28]. 

Figure 1-3 depicts the basic design idea of TLB. Once the virtual address (VA) is sent to TLB, 

it is compared with all the tag fields to find a matched VPN. If it is a hit, the corresponding 

PPN will be sent out. The physical address therefore can be generated via the combination of 

PPN and offset. Otherwise, if it is a miss, the page table traversal will be performed. The OS 

will take care of the TLB miss handling. 

 

But, the virtual memory mechanism varies with different processor architecture and OS 

implementation. The page table organization dominates the page table traversal time that 



 6

occupies most TLB miss handling time. Though some new architectures use some advanced 

page table organizations to reduce the page table traversal time such as inverted page table 

structure [22] such as PowerPC architecture[29], the forward-mapped hierarchical page table 

structure are still widely used, such as Compaq/DEC Alpha AXP[28], the latest AMD64, and 

Intel
®
64 [30,31,32] architectures. It costs several main memory accesses to fetch the correct 

Page Table Entry (PTE) if any miss occurs. It even possibly needs to traverse 7 levels of 

different page tables on processors with 64-bit addressing [33]. Figure 1-4 shows the page 

table structure of IA32e mode with 4KB page size of Intel
®
64 architecture. If no any TLBs 

and address caches are implemented inside these processors, traversals of four levels of 

different tables should be completed to obtain correct PPN. Figure 1-5 shows the page table 

structure of Compaq/DEC Alpha AXP [28]. It has three levels of page tables. That impacts 

the overall system performance very seriously. Thus it’s important to reduce the TLB miss 

rates for systems with such page table structure.  

 

In addition, frequently happened context switching may cause some extra TLB misses. 

Some research even shows that these misses play important role in TLB performance [1,2,3]. 

Thus most processors have implemented some kinds of address space identifier (ASID) to 

distinguish each address space [25]. For example, MIPS R10000 processor has an 8-bit ASID 

for each of its 64-entry TLB to allow context switches without having to invalidate all entries 

[34]. It is also suggested to provide 8-bit ASID for SPARC architecture [35,36]. However, 

some processors including the IA32 (x86) architecture which is the most popular processor 

family today simply flush all the TLB entries when the context switching occurs [31,1]. 

Unfortunately, it’s even still the same for the latest IA32 processors. We’ll treat the model as 

the worse case performance. Though lots of different research about TLB has been done, only 

some notice the influence of context switching. That may be because it’s very hard to model 

and estimate the context switching activities caused by the OS and it’s also hard to consider 

this issue without considering the OS behavior first. In our work, we tried to provide an 

alternative to address the context switching issue for TLB. To support the proposed 

mechanism, the OS should be modified a little. In fact, because of architecture differences, 

these kinds of modifications of OS for TLBs are needed for all architectures. We hope that 

this simple mechanism can be implemented inside an asynchronous embedded processors or 

microcontrollers that only run some tasks simultaneously. 
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To estimate the performance of the proposed architecture, we did some simulations. All 

the simulations were done by the modified SimpleScalar Version 3.0d tool suite [37] provided 

by the SimpleScalar LLC with SPEC95. In addition to the performance of traditional 

1024-entry fully-associative TLB with x86-style assumption, we also compare the 

performance of 1024-entry fully-associative TLB with ASID and two different pre-fetching 

mechanisms incorporate with our proposed design. The results show that our banked design 

can work very well with sequential prefetching (SP, also called linear pre-fetching). 

 

Our work is trying to realize TLB controllers for asynchronous embedded processors or 

microcontrollers with low TLB miss rate caused by context switching. Though most 

processors reduce the miss rate caused by context switching with ASID, our work provides an 

alternative to address this issue. There are several reasons for the proposed architecture. These 

embedded systems only execute some tasks at the same time. Thus, it really doesn’t need to 

store too many ASIDs. That’s why no ASIDs TLB design of StrongARM SA-1100 processor 

[2,3]. Don’t forget these processors are not designed for desktop purpose. Figure 1-6 shows 

smart phones that execute Windows
®
 mobile OS. In fact, because we wish to implement such 

TLB for asynchronous embedded processors or microcontrollers, less tag bits may be more 

important than other issues. In addition, we also discuss why sequential prefetching is more 

suitable for the proposed design. Moreover, we’ll try to realize this design on the 

asynchronous processor which we currently work for. That would not be too hard to realize 

the proposed mechanism on an asynchronous processor with same extra handshaking 

protocols on bundled delay or self-timed design. 
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Figure 1-2: Conceptual virtual memory 

 

 

Figure 1-3: Virtual address translation with TLB 
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Figure1-4: Page table structure of IA32e mode with 4KB page size  

 

 

Figure 1-5: Virtual to physical address translation of Alpha AXP 
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Figure 1-6: Smart phones with Windows
®
 Mobile OS 
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1-4 Summary 

 
As mentioned in previous section, new embedded systems or handheld devices now 

begin to execute new modern operating systems. It therefore becomes more and more 

important for these processors to provide efficient address translations. A well-designed TLB 

now becomes one of the critical performance issues for these processors. In addition, because 

embedded systems and handheld devices may operate in varieties of environments, robustness 

and reliability are two of the most important issues to these processors. Asynchronous circuits 

can easily address these issues. However, lack of address translation mechanism, most 

asynchronous processors doesn’t support virtual memory directly. In order to support virtual 

memory for asynchronous processors, asynchronous TLB controller should be implemented. 

Thus, in this thesis, we propose a TLB architecture for future asynchronous embedded 

processors, and modeled it with Balsa HDL. Followings are the main contributions of this 

thesis. 

� Plenty surveys of TLB studies 

� Plenty surveys of asynchronous circuits, and detailed introductions of how to design 

circuits with asynchronous circuits 

� Studies of performance issue of TLB in context switching 

� New alternative TLB architecture with low miss rate in context switching for 

asynchronous embedded processors 

� Studies of implementation of proposed TLB architecture with asynchronous circuits 

� Confirming the possibility to design TLB controller for asynchronous processors 
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Chapter 2: Related Works 

 
 In this chapter, we’ll discuss the related works of both TLB design and 

asynchronous systems or circuits design. Because only a few specific research on TLB design 

for asynchronous processors, we’ll discuss them separately in this chapter. Finally, case 

studies of asynchronous MMU or TLB design will be discussed. 

 

2-1 Recent studies of TLB 

As mentioned in Chapter 1, TLB plays an important role in the overall performance of 

the processors that support virtual memory technique. Thus, lots of different research has 

been done. Moreover, because of architecture and addressing mode differences, the real 

implementation may have great differences. The design requirements may even vary from 

different page modes or new addressing mode support for the same processor. However, 

that’s quite interesting that the TLB designs of most real commercial processors are not too 

complex. Most of them are not implemented with too complex algorithms or architectures. 

The key issue of these designs is to reduce the TLB search time. Some related works of TLB 

research will be described in the following paragraphs. These works will be classified into 

traditional techniques, advanced techniques, and works of reducing TLB context switching 

miss rate.  

 

2-1-1 Traditional Techniques 

Because TLB in fact is part of the memory hierarchy and can be considered as a special 

designed cache memory to cache the page table entry, it can be directly perceived through the 

senses that those traditional techniques to improve the cache performance can also be applied 

to TLB. That also means the 3Cs misses [28] can be also suitable for the TLB. In fact, those 

techniques are now widely used in commercial processors in different ways. 
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In order to reduce the TLB miss rate, most processors increase the size (total entries) of 

TLBs with fully or set associative. For example, recent AMD Opteron
TM

 processor has both 

512-entry L2 instruction TLB (ITLB) and L2 data TLB (DTLB) [38] and the IBM POWER4 

processor has a common 1024 entry TLB for each processor core [39]. Furthermore, some 

processors even try to provide multi-level TLBs, such as 2-level ITLB/DTLB design on 

recent AMD Opteron
TM

 processor [38] and each core (Nehalem architecture) of the latest 

Intel
®
Core i7

®
 processor [31]. Figure 2-1 shows the TLB designs of the Intel

®
Core i7

®
 

processor. Each core of the processor has separated the Instruction and Data TLB with a 

unified Second-level TLB (STLB). In addition, some processors begin to provide larger page 

sizes to increase the TLB span, such as 2MB or even 4MB page size on all new Intel IA32 

Processors after the Pentium
®
 Pro Processor [40]. The Intel IA64 architecture offers 4K to 

256MB and 4GB page sizes [41]. The AMD64 architecture also provides 4KB, 2MB, 4MB, 

and incredible maximum 1GB page sizes [42]. There are several advantages of larger page 

sizes. First, because the page table entry can be reduced, it can save the page table sizes. 

Second, it allows for larger physically addressed caches. Third, because each page can map 

larger memory spaces, fewer page tables and TLB entries can be used. Finally, because the 

level of page tables can be decreased, the fewer accesses to main memory are needed to 

generate correct physical page number if TLB miss occurs. Figure 2-2 shows the page table 

structure of IA32 mode with 4KB page size of IA32 architecture, and Figure 2-3 shows the 

page table structure of IA32 mode with 4MB page size of IA32 architecture [31]. We can 

easily find that with larger page size the levels of page tables can be decreased. 

 

 

Figure 2-1: Structure of TLBs and cache memories of Intel
®
 Core i7 
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Figure 2-2: IA32 Linear address translation (4-KByte page) 

 

 

Figure 2-3: IA32 linear address translation (4-MByte page) 

 

2-1-2 Advanced Techniques 

As mentioned in previous paragraph, most contemporary processors now provide some 

different page sizes from 4-KB size to incredible very large sizes. Some even allow these 

pages with different sizes coexist simultaneously with some augmented page table entry 

format. Certainly, it needs extra supports of OS. In fact, with small page size, the memory 

space can be saved. That’s because with larger page sizes, memory spaces would be wasted 
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due to the internal fragmentation. In addition, with small page size, the startup time of small 

program would be shorter. However, to provide several page sizes, some commercial designs 

put several TLBs inside the processor for each individual size. Some try to modify the TLB 

entry format and therefore the TLB can be shared with different page sizes.  

 

 In addition to what we mentioned in previous paragraph, several interesting 

mechanisms are proposed to support superpaging. Several base pages with both virtual and 

physical address alignment can be merged into a larger page called superpage at run time 

[43,44,45,46]. With superpage mechanism, the internal fragmentation problem can be 

resolved. However, to support a superpage, very complex OS and hardware interactions are 

needed. Furthermore, the virtual and physical memory space aligned limitation seriously 

impacts the usage of a superpage. Hence, some studies have focused on overcoming the 

limitation by dynamically supporting the superpage mechanism. Talluri et al. described an 

advanced method called the complete-subblock which allows a single TLB block to map to 

multiple base pages without any special OS support [43,44]. In addition, they also described a 

much smaller design called the partial-subblock which shares PPN and attribute fields across 

base page mappings. Figure 2-4 shows a complete-subblock TLB block (entry) with factor 4. 

Lee et al. proposed a novel banked-promotion TLB structure to support two page sizes 

dynamically [47]. Four 4KB pages can be promoted to a 16KB superpage. To support such 

mechanism, an interesting promotion TLB was designed. The heuristic promotion algorithm 

can promote four consecutive entries from small-page TLB bank to large-page TLB bank. 

Thus, the four 4KB TLB entries can be reused. Furthermore, in order to reduce the power 

consumption and TLB reference latency, they even divided the TLB for 4KB page into two 

banks [48]. Figure 2-5 shows the structures of their promotion TLB and banked-promotion 

TLB. In addition, Swanson et al. presented a novel memory controller (MMC) which can 

aggressively create superpages even from non-contiguous and unaligned regions of physical 

memory space [49,50]. Figure 2-6 depicts this design. In this design, they suggested to use a 

portion of unused physical memory address range to virtualized physical memory in their 

proposed MMC. The shadow pages are “shadow” of accessed page that can be remapped to 

real physical address by MMC. The TLB reach can be extended via a novel Memory 

Controller TLB (MTLB). Thus the superpage can be aggressively created from 

non-contiguous and nonaligned regions of physical memory. Park et al. proposed a way to 

integrate both partial-subblock with MMC to improve TLB performance [51]. They also 
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proposed a method called Variable-Size Subblock TLB (VS-TLB) which is an extension of 

original subblock TLB to support multiple size subblock. Based on the original subblock TLB 

design, they added subblock size field (SS) for each entry. With this extension, the total TLB 

reach can be increased via its maximum subblock size. There is still much research about 

improving TLB performance of superpaging. 

 

Besides previous research, some different and interesting research can also be found. 

Channon et al. presented the reconfigurable partitioned TLBs to improve the TLB 

performance [52]. They claim that traditional split instruction and data TLB design is not 

suitable for unpredictable memory reference pattern. Thus the reconfigurable partitioned TLB 

can reduce misses between distinct reference types. The reconfigurable partitioned TLB can 

dynamically adjust the position of the partition in real time. Figure 2-7 shows this design. In 

addition, some research focus on the low power issue. Besides some architecture 

improvements to reduce power consumption such as baking skills, some even try to redesign 

the basic circuit element itself. For example, Juan presented low power CAM and SRAM 

cells design that can be implemented [53]. They also studied the relationship of power 

consumption and associativity of TLB. They concluded that small TLB with fully 

set-associative and implemented with modified cell can save more power. Because TLB is 

part of memory hierarchy, some research tries to integrate both TLB and cache memory. 

Among all of these studies, Lee et al. proposed an interesting way to reduce the tag memory 

of cache memory [54,55]. The design uses share tag memory of both TLB and cache memory. 

They still use CAM as the tag memory for TLB. However, the cache memory shares the same 

tag memory. The index tag memory of cache now only stores encoded index of an entry in 

shared tag memory rather than the PPN. Thus, the total tag memory sizes can be reduced. 

Figure 2-8 shows this design. In addition to these hardware efforts, lots of different software 

efforts can be found. Instead of hardware managed TLB, software management TLBs are 

widely used in lots of new RISC processors, such as SPARC, Alpha AXP, PA-RISC and 

MIPS architectures [23,25]. In fact, there are still varieties of different studies of TLBs and 

virtual memory. 

 

Though lots of new TLB designs are proposed, just only a few studies focused on the 

TLB entries prefetching/preloading. Saulsbury introduces an interesting mechanism, called 

the Recency-based TLB Preloading (RP), to prefetch the TLB entry according to the 
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“Recency” of the referenced pages [56]. The mechanism maintains the “Recency Stack” via 

augmented translation table entry in memory and the TLB inside the processor according to 

the recently referenced pages. Thus the next possible referenced page number can be 

prefetched. Figure 2-9 (a) shows how the stack changes inside the processor if the TLB 

reference is a hit. Because it’s a TLB hit, the recency of all translation table entries (TTE) of 

the translation table will not be changed. Figure 2-9 (b) depicts how the “Recency Stacks” of 

both TLB and translation page table change if the TLB reference is a miss. After the missed 

TTE is moved to the top of TLB stack, the recency of both TLB entries and the translation 

table entries will be changed according to the recency stack position. Finally, the TTE with 

“recency ± 1” of missed TTE can be prefetched into the prefetch buffer inside the processor. 

It should be noted that in real implementation all the TTE positions of “Recency Stack” are 

maintained by the previous and next pointers of each TTE. Figure 2-10 shows the 

implementation of the translation table in memory. However, the mechanism may increase the 

memory traffic and the PTE should do some changes to store the stack pointers for the 

link-list. To solve these possible problems, Kandiraju proposes a new prefetching technique, 

called the Distance Prefetching (DP), according to the recently referenced pages ‘distance 

(stride)’ [57]. The mechanism maintains a table to keep the track of differences between 

successive address references and do prefetching according to the predicted distance. Figure 

2-11 shows the implementation of TLB with DP technique. The paper also shows a generic 

schematic prefetching hardware and compares other possible prefetching techniques 

borrowing ideas from the cache prefetching techniques, such as Sequential Prefetching (SP), 

Arbitrary Stride Prefetching (ASP) and the Markov Prefetching (MP). Figure 2-12 shows the 

schematic of generic prefetching hardware. Because of the implementation costs, we’ll focus 

on the studying of the SP and DP in our work. 

 

 

Figure 2-4: Complete-subblock TLB with block factor 4 
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Figure 2-5: Promotion TLB structure & Banked-promotion TLB structure 
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Figure 2-6: MMC example with shadow region 
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Figure 2-7: Reconfigurable partitioned TLB 

 

 

 

Figure 2-8: Share tag design of TLB and cache memory 
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(a)  

 

           

(b) 

Figure 2-9: Operations of “Recency Stack” 
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Figure 2-10: Memory translation table of TLB with “Recency Prefetching” 

 

 

 

Figure 2-11: TLB with “Distance Prefetching” 
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Figure 2-12: Schematic of generic TLB prefetching hardware 

 

 

2-1-3 Reducing TLB Miss Rate in Context Switching 

As mentioned in previous sections, the TLB miss handling requiring several main 

memory accesses and that impact the overall performance seriously. However, in traditional 

design, the simplest way to deal with context switching (address space switching) for TLB is 

to flush all the TLB entries. Thus, that’s even worse if the miss caused by TLB flushing of 

context switching. After the flushing of the TLB, it needs lots of “learning time” to refill these 

entries. However, only a few studies focus on this topic. Liedtke try to reduce the possibility 

of TLB flushing of address-space switching via integrating the segmentation mechanism of 

x86 [1]. Based on the L4, Wiggins and Heiser try to avoid reloading translation table base 

register by using a pointer register that points to a caching page directory (CPD) [2,3]. The 

basic idea of this implementation can be described as following sentences. The CPD contains 

entries from a number of different address spaces and each of it is defined by its own page 

table. Once the TLB miss occurs, the hardware only needs to reload the TLB via indexing to 

the CPD that contains pointers to LPT (Leaf Page Table, an array of 256 entries PTEs) of 

various address space. If it’s a miss, the current thread PD (page directory) should be indexed 

by handler to find a valid entry. Then the entry should be copied into CPD. The handler 

restarts the thread. Finally, the hardware can reload TLB. Now, only a valid page table entry 
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should be found. Figure 2-13 depicted this basic idea. In fact, still lots of other research tries 

to reduce the possibilities by modifying the OS or page table structures. Besides these 

software solutions, the basic method supported by TLBs is to provide address space identifier 

(ASID) for each entry to identify each address space. Figure 2-14 shows the TLB with 

per-entry ASID tag. 

 

Figure 2-13: CPD and per-address page tables 

 

 

Figure 2-14: TLB with per-entry ASID tag 
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2-2 Circuit design with asynchronous circuits 

The technological trend is inevitable: 

 In the coming decades, asynchronous design will become prevalent! 

By Ivan E. Sutherland and Jo Ebergen  

"Scientific American", August 2002 [4] 

 

Asynchronous circuits have been studied since early 1950’s; however, synchronous 

circuits have still dominated the mainstream of digital circuit design [4,6]. Recently, some 

academic and commercial research shows that it’s worth to implement real-life systems with 

asynchronous circuits. But, without the global synchronization signal called “clock”, it makes 

asynchronous circuit design very difficult. In order to replace the “clock signal”, handshaking 

protocols between each part of asynchronous circuits are needed. It therefore makes the 

circuit costs of asynchronous circuits much higher than synchronous counterparts. In addition, 

because of lack of tools and standardization of implementation and design models, there is 

still not much research on it and that limits applications in commercial products. In fact, it’s 

very hard to find commercial products that are implemented with asynchronous circuits. In 

this section, we’ll discuss topics of asynchronous circuits from the classifications of 

asynchronous circuits, handshaking protocols, research of asynchronous circuits, and case 

study of implementation with asynchronous circuits. 

 

2-2-1 Classifications of Asynchronous Circuits 

We have discussed so many issues of asynchronous circuits, but you may ask what 

asynchronous circuits are. In fact, it’s not very hard to answer this question. We can say that 

asynchronous circuits are circuits without any global synchronization signal called “clock.” 

Based on this assumption, asynchronous circuits can be classified into four classes depending 

upon the delay model of gate and wire of the circuit. The four classes are Delay-Insensitive 

(DI) circuits, Quasi-Delay-Insensitive (QDI) circuits, Speed-Independent (SI) circuits, and 

Self-Timed (ST) Circuits [5,6]. 
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Delay-Insensitive (DI) circuits are the most robust and reliable circuits of all. These 

classes or circuits permit arbitrary (unbounded but finite) delays on gates and wires. The basic 

concept of DI circuits derives from Clark’s “Macromodular computer systems” proposed in 

1967 [58]. However, because of its “arbitrary delays on gates and wires” nature, only a few 

circuits belong to this class. Martin already proved it in 1990 [59]. Thus, enormous limitations 

exist in designing DI circuits. 

 

Because it’s too hard to implement pure DI circuits, Quasi-Delay-Insensitive (QDI) 

circuits relieve a little in arbitrary delay on wires. QDI circuits are DI circuits with 

isochronous forks. It means that all branches of a forked wire have exactly the same wire 

delay [60]. Figure 2-15 shows the isochronous fork. In this example, the signal from A can 

propagate to both B and C with the same wire delay. With this assumption, it permits DI class 

circuits can be more practical. In fact, in order to meet DI and QDI constraints, the 

implementation costs of these circuits may be higher. In addition, they should be carefully 

implemented to avoid violations of the constraints. Thus, to implement such circuits are really 

very difficult. However, because no extra delay assumptions, DI and QDI circuits may be 

attractive for asynchronous VLSI circuit synthesis [60].  

 

The concept of Speed-Independent (SI) circuits first appeared in 1959 proposed by 

David Muller [59,60]. The class of circuits allows arbitrary (unbounded but finite) delays on 

gates but assumes zero wire delays. The SI circuits can be modeled with Petri net [63]. 

 

Self-Timed (ST) circuits are popular in lots of asynchronous circuit implementations. It 

is introduced by Seitz in 1980 [64]. The ST circuit is composed of a group of ST elements and 

each of ST elements is inside of an “equipotential region.” The wire delays of the region are 

negligible or well-bounded. The elements can be DI, QDI, SI, or circuits that can operate 

correctly with some local timing assumptions. There’s no any timing assumption on 

communications between regions. That also means that the communication belongs to DI. For 

example, Chang et al. proposed a ST torus-network with 1-of-5 DI encoding in 2009 [65]. 

The implementation uses DI encoding communication between each parts of the whole 

design. 
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Figure 2-16 shows the relationship of these models of asynchronous circuits. If the 

design contains both DI components and ST components, it should be an ST circuit.  

 

 

Figure 2-15: Isochronous fork 

 

 

Figure 2-16: Classifications of asynchronous circuits 

 

2-2-2 Handshaking Protocols 

Without a clock to govern its actions,  

an asynchronous system must rely on local coordination circuits instead! 

By Ivan E. Sutherland and Jo Ebergen  

"Scientific American", August 2002 [4] 

 

Without clock signal, asynchronous circuits rely on handshaking protocols to make sure 

the correctness of the circuit operations [5,66,67]. The protocols can be divided into control 

signaling and data encoding. A complete handshaking protocol is a combination of the control 

signaling and data encoding. Figure 2-17 shows the 4-phase handshaking protocol. In this 

protocol, only the rising edge is the valid active transition; thus it’s a level signaling or 

return-to-zero protocol. On the contrary, in the 2-phase handshaking protocol, the falling and 
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rising edge of request and acknowledge are active signals; thus it’s a transition signaling or 

non-return-to-zero protocol. However, it makes the circuits, especially datapath circuits,  

very complex and hard to implement. Figure 2-18 shows the 2-phase handshaking protocol. In 

addition to control signaling, there are also choices for how to encode data (data signaling 

protocol). The Bundled Data or called Single Rail refers to separate request and acknowledge 

wires that bundles the data signals with them. Thus total n+2 wires are required to send n-bit 

data. Figure 2-19 shows the bundled-data model. Besides bundled-data model, there are data 

encoding methods for DI circuits. However, because of implementation issue, dual-rail 

encoding is the most popular used DI data encoding scheme. To represent 1-bit data in 

dual-rail encoding method, two physical wires are used. For example, a valid data, D is 

represented by two physical data wires, d.0 and d.1. The following equation shows this 

encoding scheme. (1) D = 0 ; (d.0,d.1) = (0,1) (2) D = 1 ; (d.0,d.1) = (1,0). In particular, (0,0) 

represents a space which allows us to identify consecutive 0's or 1's. (1,1) state is not used. 

Data transferring starts from the (0,0) state (called “null” or “empty” data). If a state is 

changed from (d.0,d.1) = (0,0) to (0,l)/(1,0), which notices the arrival of valid data '0/l'. Thus 

total 2*n wires are needed to transfer n-bit data. Figure 2-20 shows the dual-rail model. 

 

 

Figure 2-17: The 4-phase protocol 
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Figure 2-18: The 2-phase protocol 

 

 

Figure 2-19: Bundled-data signaling model 

 

 

Figure 2-20: Dual-rail data signaling model 

 

 

2-2-3 Research of Asynchronous Circuits 

Though it’s not very easy to conclude all studies of asynchronous circuits, we’ll discuss 
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the asynchronous pipeline models first. That’s because most asynchronous systems are 

designed or implemented based on these asynchronous pipeline models. David Muller 

proposed his famous Muller C-element and Muller pipeline (aka Muller distributor) in 1959 

[68,69]. A Muller pipeline is a naturally simple and elegant handshaking control model. The 

simplest form of Muller pipeline mainly consists of C-elements and inverters. Figure 2-21 

shows the schematic symbol and truth table of a two-input C-element. If both inputs are high 

or low, the output will be high or low; otherwise, the previous value is kept. Figure 2-22 

shows the original Muller pipeline model. To understand its behavior, let’s consider the ith 

C-element Ci. In the initial state, all C-elements are initialized to 0. The handshaking may be 

initialized. The ith C-element Ci can propagate a 1 from its previous stage the (i-1)th 

C-element only if the next stage C-element (Ci+1) is 0. Thus, the signal can be propagated one 

stage to one stage. It should be notice that the original single-rail model is based on 

bundled-data model; thus the request signal must be propagated via a matching delay as 

shown is Figure 6. In fact, the matching issue should be carefully handled on all bundled-data 

model. The pipeline model can also be constructed as 4-phase dual-rail model as shown in 

Figure 2-23 [66]. The model can be considered as two Muller pipelines connected in parallel 

with a common acknowledge signal in per stage. We implemented a 4-phase dual-rail pipeline 

based QDI 8-bit NCTUAC18 microcontroller core in 2009 [70]. 

 

Besides the Muller pipeline, there are also several models were proposed. The most 

important of all is the micropipeline which was described by Ivan E. Sutherland in his famous 

Turing Award “Micropipelines” lecture in 1989 [71]. The approach is based on a two-phase 

bundled-data model with micropipeline as backbone control circuit. Figure 2-24 shows the 

control circuit of a 4-stage micropipeline model. Without datapath, the micropipeline is a 

string of Muller-C elements. At each stage, there are one request input signal, R(n), and one 

output acknowledge signal, A(n). The request signal can propagate from left-most side, R(in) 

to the right-most side, R(out). It’s the same as the direction of data flow. The data therefore 

can flow from the left-most side to the right-most side stage by stage. After the data can be 

received by the right-most side, the acknowledge signal should be returned from the 

right-most side, A(out). The acknowledge signal, A(n), therefore can propagate back to the 

left-most side, A(in), and clear the whole pipeline. Thus the pipeline can keep on operation. 

Figure 2-25 depicts how to combine the control circuit of micropipeline with datapath. As the 

most well-known asynchronous circuit design model, lots of different asynchronous systems 
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have been implemented based on it. It can be used to implement many kinds of different 

pipelined systems, even processors. For example, the NSR processor is a very simple 16-bit 

micropipeline based microprocessor with very simple RISC instructions (less than 20 

instructions) [72]. The Amulet1 is known as the first ARM compatible processor 

implemented with asynchronous circuit [15,73]. It was implemented with 2-phase 

micropipeline architecture.  

 

There are also some different models proposed for asynchronous circuits design. Some 

try to modify the original “micropipeline” architecture. For example, a new control circuit for 

micropipeline was proposed by Choy et al. [74] and “Micronets” architecture tries to 

decentralize the control to the functional units [75]. Furthermore, there have been still several 

famous asynchronous processor implementation models proposed. Takashi Nanya et al. 

showed their QDI 8-bit microprocessor model called “TITAC” which uses Martin’s 

Q-element [60] as control circuitry [76]. Figure 2-26 shows the Martin’s Q element. With Q 

element, the control path can be easily built. In addition, they proposed Autosweeping 

Module (ASM) which is modified from Q element to replace Q element to gain better 

performance. TITAC2 was proposed to show a new delay model called 

scalable-delay-insensitive (SDI) [77]. The delay model modified original DI or QDI 

unbounded gate and wire delay to bounded relative delay ratio between any two components. 

There are also some works that try to model processor with asynchronous circuits. Martin et 

al. at Caltech have already shown three generations of different asynchronous processor 

model [78]. Chen et al. showed an asynchronous RISC processor model in 2002 [79]. In 

addition, there are also several asynchronous superscalar processor models proposed, for 

example the Kin architecture [80], Hades project [81], and the most famous of all the counter 

flow pipeline (CFPP) [82]. The design of CFPP is quite different from traditional design 

concept. Figure 2-27(a) shows the architecture of a 5-stage CFPP. The design separates the 

instruction flow and result flow in a counter flow. In this Figure, the instruction is fetched, 

decoded, and inserted into the instruction pipeline in stage F. At the same time, the source 

operands needed for this instruction is also inserted into the result pipeline in stage R. Figure 

2-27(b) describes the instruction and result bindings. Each binding is composed of register 

name, valid bit, and data value. Because the instruction flow and data flow walk in counter 

flow, the instruction can meet needed data in one of the stages. Once the needed operands can 

be fetched, the instruction can be executed correctly. In addition, if the binding destination of 
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the instruction matches one of the binding results, the binding result will be updated. Thus the 

following instructions in the pipeline can obtain correct result value. It may be regarded as 

special designed data forwarding. However, all these superscalar models are not very easy to 

implement or just ideas that cannot be realized and certainly not very suitable to be 

implemented for cores of embedded processors. In fact, because it’s very hard to guarantee 

the instruction execution order in asynchronous design, only some research of asynchronous 

superscalar processor are really in progress. 

 

Another issue should be pointed out here. As mentioned before, Chen et al. implemented 

a 4-phase dual-rail pipelined QDI processor [70]. However, in order to implement the QDI 

processor, all dual-rail components should be constructed first. These components even 

include all basic logic components. That’s lots of extra efforts for designing a processor. 

Considering the synchronous circuit design, they can be easily implemented with lots of 

pre-designed cells, components, or even large modules. In fact, it’s also a key to success. 

Some researchers have been already trying to offer solutions for asynchronous circuit design. 

Some try to provide basic building element. For example, Smith et al. proposed a new DI 

digital system called NULL Convention Logic (NCL) [83]. With NCL, DI system can be built 

easier.  Some try to offer new pipeline/FIFO control. For example, a basic control circuits 

for an asynchronous pipeline called Asynchronous Symmetric Persistent Pulse Protocol, 

“asP*” was introduced by Molnar [84]. Sutherland and Fairbanks described GasP in 2001 

[85]. There is still much different research involving new control circuits or offering new 

asynchronous elements. 

 

Besides the “pure” asynchronous implementation research, some research topics focus 

on trying to find applications in other directions. Imaging on a large SoC, each components or 

IPs may be designed by different teams or even different companies. Integrating them on a 

single die may be a very difficult job. The most important reason is that these different 

designs may be operate correctly in different clock frequency. Some research tries to wrap the 

synchronous circuit with asynchronous wrapper. Thus, the whole system can communicate 

with asynchronous channels, while each local circuit can operate in their local clock. Thus, 

some Globally-Asynchronous Locally-Synchronous (GALS) methodologies are proposed. 

The concept of GALS was proposed by Capiro in his PhD thesis in 1984 [86]. Figure 2-28 

depicts this idea. In addition, some research focus on the interconnection networks with 
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asynchronous circuits. In fact, MPSoCs or multicore processors have been becoming the 

major trend of system or processor designs nowadays. Thus the design of interconnection 

networks becomes the most important issue of all. However, lots of different problems may 

arise in the network design and they should be carefully handled. It is widely known that most 

of these problems can be resolved easily by asynchronous circuits. Hence, it’s really attractive 

to replace these networks with asynchronous implementations. For example, Dally and Seitz 

implemented the first torus topology based interconnection networked multiprocessors in 

1986 [87]. They implemented the self-timed torus routing chip (TRC) which uses the 

bundled-data encoding to perform cut-through routing in k-ary n-cube multiprocessor 

interconnection networks. In 1997, Natvig presented a high-level simulation model of TRC 

written in Verilog [88]. Chen et al. implemented self-Timed torus interconnect with 1-of-5 

encoding in 2009 [65]. In fact, because of asynchronous nature, the routing paths with 

different distances can operate in different speeds. 

 

In addition, we have already pointed out that almost all commercial digital systems are 

implemented with synchronous circuits. One very important reason is lack of suitable EDA 

tools that can be used to implement asynchronous circuits directly. In fact, it’s also hard to 

directly model your design in behavior or RTL model with traditional HDL directly. Thus, 

most designs should be implemented in gate-level. In order to reduce the efforts in designing 

asynchronous systems and circuits, specific HDLs for designing asynchronous systems and 

circuits are needed. Tangram and Balsa HDLs are the most famous two of all related 

frameworks. The Philips Research Laboratories started to develop the Tangram tool over 20 

years ago [89]. Now the tool is offered by Handshake Solutions. In fact, the ARM 996HS was 

also developed via it [7,20]. Handshake Solutions now provides Haste Design Language for 

describing the behavior of asynchronous circuits. In addition, an integrated easy-to-use tool 

suite called TiDE
TM

 (Timeless Design Environment) is also offered [90]. In fact, it’s the most 

successful commercial EDA tools for asynchronous circuit design. However, Balsa is a 

framework for providing an asynchronous HDL and synthesizing of asynchronous circuits 

and systems. It’s an open source and free solution developed and offered by the University of 

Manchester [91,92,93]. In fact, part of Amulet 3 was designed with Balsa [18]. In addition, 

Chen et al. also proposed an asynchronous pipelined 8051 soft-core with Balsa [94,95]. Zhang 

and Theodoropoulos modeled an asynchronous MIPS core with Balsa called SAMIPS [96]. 

An asynchronous MP3 decoder was also modeled by us with Balsa [97]. In addition, there are 
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still several works in developing EDA tools for asynchronous circuits. In addition, 

asynchronous research group in Caltech provides Communicating Hardware Processes (CHP) 

and its synthesis tool as asynchronous circuit design tool [98]. The notation of CHP is 

inspired by CSP. In fact, three generations of their asynchronous processors were designed 

with CHP [76], including a very large MiniMIPS processor [99]. The most interesting of all is 

SoCAD developed at Tatung University, Taipei, Taiwan [100]. They don’t develop any 

special HDL for asynchronous circuit design. Instead of specific HDL, Data dependency 

graphs (DDG) or Java language can be used to model the behavior of the design. Via several 

translation processes proposed by Cheng, the DDG or Java models will be translated into 

VHDL and mapped to lots of pre-defined cell-based designed asynchronous components. 

With SoCAD, the goal of hardware/software codesign can easily be achieved. They also 

modeled a very robust asynchronous Java Chip with it [101]. Unfortunately, though several 

EDA tools for asynchronous circuit design can be found, it still has a very long way to go for 

these tools. 

 

 

 

Figure 2-21: The Muller C-element: symbol & truth table 

 

 

Figure 2-22: The Muller pipeline 
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Figure 2-23: A three-stage 1-bit wide 4-phase dual-rail pipeline 

 

 

Figure 2-24: Control circuit of micropipeline 
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Figure 2-25: Micropipeline architecture 

 

 

Figure 2-26: Q element 
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(a) 

 

(b) 

Figure 2-27: The architecture of CFPP 
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Figure 2-28: Concept of GALS 

 

 

 

2-2-4 Case Study of Asynchronous Circuit Design 

As mentioned in previous sections, it’s difficult to design and implement asynchronous 

circuits directly. Most designs cannot be implemented via writing RTL of Verilog or VHDL. 

In our group, some circuits are implemented with Balsa HDL, and some are implemented via 

writing gate-level descriptions of Verilog HDL. In this section, the two methods will be 

discussed.  

 

It is widely known that it’s hard work to implement all designs with gate-level 

descriptions. It’s not worth to implement all circuits with gate-level descriptions. With higher 

level modeling, we can pay more attention on design itself. That’s the same for asynchronous 

circuit design. Thus, we select Balsa framework as our tool. Because the details of Balsa HDL 

and framework will be described in section 4.1, we’ll describe how to model a design with 

Balsa. We’ll describe how to model a pipelined asynchronous 8051 core here [94,95]. The 

first step, you must define your design model and the asynchronous communication channels 

between each part of your design. Figure 2-29 shows the AsyncPA8051 model and its 

interfaces and channels between each part of the model. Then, each part of the design can be 

described with high-level Balsa descriptions. Following segment shows the top module of the 

AsyncPA8051. It should be noted that components are connected with communication 

channels. 
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procedure PA8051_IFIDOF(output p0,p1,p2,p3 : byte) is 

 

channel IF_2_ID_data : byte 

channel IF_2_mem_addr : Address 

channel ID_2_IF_addr : Address 

……. 

 

BalsaMemory_interface(IF_2_mem_addr,read,…)|| 

IF(mem_2_IF_data,ID_2_IF_addr,…) || 

ID_top(IF_2_ID_data,jmp,ID_data,…)|| 

PA8051_OF(ReadS, WriteSin, MEM_OF,…)|| 

RAM(maddr,wr,mem_in,mem_out,p0,p1,p2,p3)|| 

MEM_INTERFACE(MemIn,….)|| 

PA8051_EXE(src1, src2, src3,…)|| 

PA8051_WB(EXE_WB, …)|| 

Ram_Read_Arbitor(MEM_data,valid_face_2_arbitor,…)|| 

 end 

end 

 

However, the costs of asynchronous circuits generated by Balsa HDL are sometimes not 

very cheap. In addition, the gate-level descriptions of bundled-data circuits generated by 

Balsa cannot be optimized by your target EDA tools in order to keep the delay elements 

inserted by Balsa. Furthermore, you should still pay attention on these matching delays. In 

fact, that’s the most important issue in implementation of bundled-data circuits. Therefore, we 

also try to implement some of our designs with Verilog gate-level descriptions. Following 

example is used to describe how we implemented our design in Verilog gate-level 

descriptions. The example is a 4-phase dual-rail pipelined based 8-bit QDI microcontroller 

core called NCTUAC18 [70]. In order to implement circuits with dual-rail QDI model, all 

basic dual-rail DI/QDI building cells and components should be constructed first. We 

implemented all needed basic QDI dual-rail gates and constructed all building blocks with 

these QDI dual-rail gates. The most important of all is the C-element. The generalized 

transistor-level C-element implementation is shown in Figure 2-30 (a); however, to provide 

synthesizable model for FPGA we also modeled it with gate-level design as shown in Figure 

2-30 (b). In addition, we also implemented C-element with reset for pipeline latch. With 

C-element, other basic dual-rail components can also be constructed easily, for example 

dual-rail OR gate as shown in Figure 2-31.  
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In addition, we developed our own QDI register set. Figure 2-32 shows a 1-bit dual-rail 

register. When a valid codeword is sent to din.t and din.f, the two NOR gates can correctly 

hold it. If the data item is written into the register, it issues acknowledgement to its previous 

stage to inform the written operation done. Because of the dual-rail nature, we designed the 

acknowledge signal simply through ORing two in/out signal of the two NOR gates. To read 

data from the register, just send read request signal to it and thus the dual-rail data can be 

correctly read out via dout.t and dout.f. Our register design does not deliver much higher cost 

than traditional register for synchronous systems. 

 

Because lack of synthesis tool the design cannot be written in RTL model. Thus, the 

whole circuit should be carefully written in gate-level design. If the asynchronous design 

should be implemented with CMOS VLSI, some components had better to be created with 

full-custom design. For example, to implement efficient CMOS C-element, manually 

designed C-element cell is needed. Besides modeling it with transistor-level as shown in 

Figure 2-30(a), we also modeled it with gate-level as shown in Figure 2-30(b). Thus, it can be 

synthesized with CAD tool. In addition, because of DI nature, all components should be 

constructed carefully with DI model. Thus, the implementation cost is very high. The circuit 

should be optimized manually. Then, the design can be implemented with the pre-constructed 

components. 

 

After all building blocks were constructed, the circuit control model should be decided. 

In this example, the 4-phase dual-rail pipeline model as shown in Figure 2-23 was selected. 

Finally, each execution stage should be designed and put into the pipeline. Figure 2-33 shows 

the system block diagram of NCTUAC18 microcontroller core. 
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Figure 2-29: Asynchronous pipelined 8051 architecture 

 

               

or   

(a) 

  

(b) 

Figure 2-30: (a) Generalized transistor-level C-element implementation  

(b) Gate-level C-element implementation 
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Figure 2-31: Dual-rail OR gate symbol and gate-level implementation 

 

  

Figure 2-32: 1-bit dual-rail register 

 

 

Figure 2-33: Architecture of NCTUAC18 microcontroller core 
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2-3 Previous Asynchronous TLB or MMU Design 

Though some asynchronous processors are proposed for the past years, most of these 

processors are very simple. Thus, no very complex memory address translation mechanisms 

were implemented inside these processors. Furthermore because of the complication, it’s 

really very difficult for us to find TLB design inside commercial asynchronous processors. In 

fact, even no what is called memory management unit by ARM is implemented inside the first 

commercial licensable 32-bit asynchronous core, the ARM996HS [7,20]. Only what is called 

enhanced memory protection unit (MPU) by ARM is implemented. That means that it only 

supports hardware memory protection over software-designated regions. The processor has no 

virtual memory supporting hardware. The research group of Caltech delivers three 

generations of asynchronous processors [78]. The biggest one is the MiniMIPS that is an 

MIPS R3000 compatible asynchronous processor [99]. We still cannot find TLB design inside 

this processor [102]. In [102], they said, “The first prototype misses the TLB (address 

translation mechanism) which we found much too complicated, the partial-word memory 

operations, and some cache instructions.”  

 

However, Myers and Martin described a simple memory management unit with CSP 

specification [103] for an asynchronous processor [104]. Figure 2-34 shows the MMU that 

they described. This MMU can generate 24-bit real address via concatenating 16-bit memory 

address from the memory address (ma) bus and 8-bit address from one of the two segment 

register, sr (Segment Read register) and sw (Segment Write register). Once the real address 

can be generated, it will be placed on the real address (ra) bus. Thus the data can be 

transferred from memory interface and microprocessor via 16-bit data bus. However, it should 

be noted that the sr and sw can only be accessed via memory read/write to address 0xFFFF 

and 0xFFFE respectively. The contents of segment register are transferred via low 8-bit of 

data bus. The data bus therefore can transfer data between microprocessor and memory or the 

two segment registers. In addition, the microprocessor initiates memory or the 

two-segment-register read/write communication to MMU via MDl (memory data load) and 

MDs (memory data store) control signals.  Through comparisons of memory address, MMU 

decide if it’s a memory or the two-segment-register read/write communication. If it’s a 

memory read/write communication, the MMU can initiates MSl (memory storage load), or 
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MSs (memory storage store) control signals to memory interface. In addition, the real address 

will be placed on the ra bus. Thus, the load and store operations are roughly described in the 

following descriptions.  

MDs]]MSs;sw;:rab3[] 

MDsdata;:swb2[] 

MDsdata;:srb1  [

FFFE));(maFFFF)(maFFFE),(maFFFF),(ma

:b3b2,(b1,MDs[[]   

MDl]MSl;sr;:rab3[] 

MDlsw;:datab2[] 

MDlsr;:datab1  [

FFFE));(maFFFF)(maFFFE),(maFFFF),(ma

:b3b2,(b1,MDl[[*

=→

=→

=→

=¬∧=¬==

=→

=→

=→

=→

=¬∧=¬==

=→

 

 

Though Myers and Martin modeled an asynchronous MMU, it’s really just a very 

rudimentary design. The functionality of this design may be not suitable for most applications. 

However, they still clearly demonstrated how to design asynchronous MMU with high-level 

descriptions. In addition, they also demonstrated how to optimize the design and implemented 

with the asynchronous circuits. 

 

Weigel proposed two much more practical architectures of asynchronous MMU and 

TLB [105]. With aid of original author of Balsa, he modeled the two architectures with Balsa 

HDL carefully. The two architectures were designed to connect to a modified ARM 

coprocessor interface. Figure 2-35 shows the baseline architecture of the MMU. In this 

architecture, all components are activated in sequence. Because all operations are performed 

sequentially in Baseline Architecture, he also proposed architecture called Performance 

Architecture in order to improve the performance through speculative performing operations 

in parallel and pipelining. Figure 2-36 shows the architecture of performance architecture. 

However, in order to improve the translation performance, a TLB model was described in his 

design. He described the TLB in three aspects. The behavior of entry organisation, the entry 

lookup, and entry invalidation were all introduced in Balsa descriptions. The Balsa 

descriptions of three aspects were all detailed listed. In fact, the TLB described only a very 

basic design here. In addition, because of limitations of Balsa tool, Weigel suggested the real 
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implementation of TLB may try to reference other asynchronous cache design. 

 

 

Figure 2-34: Overview of Myers and Martin’s asynchronous MMU 

 

 

 

Figure 2-35: Architecture of baseline asynchronous MMU 

 



 45

 

Figure 2-36: Architecture of asynchronous MMU with performance architecture 
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Chapter 3: Proposed TLB architecture for 

asynchronous embedded processor 

 
As mentioned in Section 1-3, OS support is an important new issue for designing 

embedded systems or handheld devices. In order to support these modern embedded OSs, 

providing virtual memory is becoming more and more important. A well-designed TLB will 

become one of the critical issue in these embedded processor performance. It should be noted 

that page table traversal is much more expensive in embedded system than that in desktop 

system. However, in order to reduce the implementation costs, some designs including the 

most popular general purpose IA32 family processors simply flush the TLB entries in context 

switching (address space switching). It is widely known that per-entry ASID tag can reduce 

such misses. But it may increase the overall costs in tag bits. That may be a bad idea for 

asynchronous processor. In our work, we try to provide an alternative architecture via the 

concept of banking TLB. This architecture therefore can be implemented in our future 

asynchronous embedded processor core. In addition, we also hope that this architecture can 

also be implied for IA32 processors. We’ll discuss this architecture in this chapter. 

 

3-1 Relationship between the TLB miss rate and sizes 

  It is widely known that the two most important issues for cache system performance 

are lower miss rate and the miss penalty. It’s almost the same for the TLB performance. In 

fact, because the miss rate has the greatest impact on TLB performance, most studies focus on 

it. In this section, we consider the relationships among miss rates, page sizes and TLB sizes. 

In order to study this topic, we have done simulations with different TLB configurations.. 

 

Let’s consider the relationship between the miss rates and TLB sizes with 4KB page size. 

Figure 3-1 shows the relationship between TLB sizes and miss rates of running gcc. The two 

results show that the miss rates would be lower if the TLB sizes can be increased. We can 

also find that in order to obtain better performance for 4KB page the size should be at least 64 

entries. However, that’s not always true for all applications. Let’s observe the result of ijpeg 
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showing in Figure 3-2. It’s very clear that a 16-entry TLB is enough. It’s useless to increase 

the number of TLB entries. In fact, it’s almost the same for some other benchmark programs, 

such as vortex and li. However, the results vary from application to application. 

 

Another solution to improve the performance of TLB is to extend the page size into 

larger one. In fact, most modern processors provide multiple page sizes, such as 4KB, 2MB, 

and 4MB on all new Intel

 IA32 series processors [31]. The advantages of larger page size 

are not only obtaining better performance but saving the implementation cost with shorter 

tags of virtual page number (VPN) and translations (physical page number, PPN) needed to 

be stored. It is also a good method to reduce the cost on TLB implementation of processors 

with larger addressing space, such as processors with 64-bit addressing capability. Certainly, 

larger page size is suitable to be implemented for processor core of SoC or embedded systems. 

Figure 3-3 shows the miss rate of compress for 4KB, 16KB, 32KB, 64KB, and 1MB page 

sizes with different TLB sizes. Observing the results, we can easily find that the performance 

of 1MB page size of TLB with only 8 entries can even outperform 4KB page size of TLB 

with 256 entries. In fact, with the larger page size the larger working set can be covered. In 

addition, we can also find that the performance of 32KB page size TLB with 32 entries is 

good enough for compress. With prefetching mechanism, the performance would be even 

better. However, according to the previous discussion, even with 4KB page size, the total 

TLB entries needed may still vary from application to application. Sometimes, even 16-entry 

TLB is good enough for 4KB page. In fact, the new proposed architecture can be 

implemented to support different page size. Furthermore, the TLB size of each bank is also 

configurable depending upon the system needs. It’s an implementation tradeoff! 

 

 

 

 



 48

 

Figure 3-1: ITLB/DTLB miss rate for gcc with 4KB page 

 

 

 

Figure 3-2: ITLB/DTLB miss rate for ijpeg with 4KB page 
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Figure 3-3: ITLB/DTLB miss rate for compress with different page sizes and TLB sizes 

 

 

3-2 The proposed TLB architecture 

This section describes in detail of the new TLB structure and mechanism we proposed 

for embedded processors. The new novel design can be implemented not only in 

contemporary processors but future high performance processors comprised with billion of 

transistors. Furthermore, the mechanism is especially suitable to be implemented on 

processors with larger addressing space than current processors with just 32-bit addressing 

ability. 

 

 

3-2-1 Overview 

Figure 3-4 shows in detail the proposed TLB structure to reduce the miss rate in context 

switching. According to the studies of previous section, we’ll assume the page size is 32-KB. 
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However, it should be noted that the study is based on analysis on general desktop 

requirements. In fact, it can be easily changed to adequate for different page sizes with little 

configuration changes. Furthermore, we’ll have other new study for TLB to provide 

superpages with page promotion mechanism. 

 

Figure 3-4: The proposed TLB architecture 

 

The proposed structure consists of the following parts – 32 TLB banks with group tags to 

store the address translations, a multiplexer to select specific TLB banks, a prefetch buffer to 

store the prefetching entries, and the prefetch & control logic to activate the prefetching 

mechanism. Each TLB bank has 32 entries and it can be implemented with CAM (content 

addressable memory) which is commonly used in the traditional TLB. Furthermore, each TLB 

bank was implemented with fully associativity with the LRU entry replacement policy. That 

means each bank can be easily implemented the same as traditional design. Thus there are 

totally 1024 entries in this new design. However, we can easily find that other new processors 

also try to increase the total entries of their TLB (TLB size) to reduce the possibilities of the 

TLB misses, such as 1024-entry common TLB for each processor core of IBM POWER4 

processor [37]. In addition to the 32 TLB banks, there are also 32 extra registers to store the 

bank tag for each bank as shown in Figure 3-4. The register contains task tag to identify each 

task, the current bit to identify the current task, the valid bit to validate a bank, and the LRU 
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bits to replace the victim bank. It should be noted that the task tag can be any address space 

identifier (ASID) which the processor itself provides or the PPN (Physical Page Number) of 

the executing instruction when the context switching occurs on processors without any ASID 

support (IA32 based processors). On processors without ASID support, the PPN of the 

executing instruction when the context switching occurs from the PPN field (or last 

translation) is used. Considering the worse IA32-style case, the PPN is selected; however, the 

implementation with ASID provided by the processor itself can be more easily. The 

discussion will be ignored in this paper. However, we still have to point out that we treat 

ITLB and DTLB as a couple, and they share the same bank tag. That means they stores 

translations for the same task in the same related bank.  

 

Besides previous discussed parts, the remainder parts are designed for the entry 

prefetching mechanism. The prefetch & control logic initiates when the TLB misses occurs. 

When the lookup misses in the current TLB bank but hits in the prefetch buffer, the address 

translation is generated from that hit entry and it will be inserted into the current TLB bank 

that is the same as traditional TLB entry replacement. Then, the prefetch & control logic tries 

to prefetch other entries into the prefetch buffer. If the lookup are missed in both current TLB 

bank and the prefetch buffer, the traditional address translation mechanism is initiated to 

generate the correct address translation and then the prefetch & control logic prefetches new 

entries into the prefetch buffer depending upon the current address. The ‘Prefetch Logic’ can 

be SP or DP described in [57]. 

 

 

3-2-2 OS Modification 

In order to implement the mechanism, the OS is needed to do a little modification. In 

addition to the page size issue, the OS is required to send ‘the clear TLB signal’ to the 

processor only when page swapping with disks occurs or page frames release. If the signal is 

received by the control logic, the control logic should flush all the TLB banks and the 

prefetch buffer for the worse case example or the corresponding TLB bank and the prefetch 

buffer for the general cases. Fortunately, it's not hard to realize. In fact, almost all modern 
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processors, provide some ways to flush TLB entries, such as STA instruction with alternative 

addresses on SPARC architecture [35,36]. In fact, even IA32 also begins to provide simple 

way to protect important global entries. [31,32] 

 

3-2-3 Mechanism of the proposed architecture 

The proposed TLB structure is divided into 32 banks and once the virtual address is 

generated from the CPU, the virtual page number (VPN, from the most significant bit to the 

previous bit of the offset, for example [31:15] in 32-bit addressing environment with 32KB 

page) is sent to the 32 banks and the prefetch buffer in parallel. Each bank and the prefetch 

buffer work as the conventional TLB, and the PPN of the hit entries of each bank and prefetch 

buffer are sent to a multiplexer. In addition, the select signals are obtained from ‘AND’ of the 

current bit of group tags and hit signal of each TLB bank, and also the hit signal from the 

prefetch buffer, to select the correct translation. If it’s a hit in current TLB bank, the current 

TLB bank works as conventional TLB. The physical address can be simply generated by 

combining the output PPN and the offset from the virtual address. If it’s a miss in current 

TLB bank but a hit in prefetch buffer, the operations are the same as what mentioned in the 

previous section. However, besides the simplest situation, all other conditions should be 

carefully handled by the prefetch & control logic. The details will be described in the 

following paragraphs. 

 

1) No current bit set in all banks: The situation could be happened only when the first 

instruction fetching after a context switching for ITLB, the system initialization, or swapping 

pages with disks occurs. In this situation, no valid physical address can be provided via TLB 

translation. The address should be generated in conventional way by the OS and MMU. After 

the physical address or address space identifier (ASID) supported by the architecture is 

generated, it is compared with the task field of bank tags. If any of it is hit with a valid bank 

tag, the current bit of that bank tag is set, and then the current TLB bank performs as a 

conventional TLB. On the contrary, if it's a miss, the prefetch & control logic should try to 

select a victim bank with invalid bit and LRU bits from the bank tag and flush all its 32 

entries (both related ITLB and DTLB). Then the current bit of this bank should be set and the 
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LRU bits of all bank tags should be updated. Then the correct translation is stored into the 

current ITLB bank entry, and the task tag of the current bank tag should be set. Moreover, it is 

the generated PPN or ASID provided by the processor that is stored into the task tag field of 

the current bank tag. Finally, the prefetch logic & control logic initiates the prefetching 

mechanism that is the same as what mentioned in previous section. 

 

2) One current bit found but no valid translation in both current bank and prefetch 

buffer: If one current bit is found but no valid translation can be generated, that means the 

TLB (ITLB or DTLB) reference of the current task is available before but the missed page has 

not referenced yet. The operation of the current TLB bank just simply acts as a conventional 

TLB, and no bank tag modification is needed. Then the prefetch mechanism is worked as 

what mentioned in previous section. 

 

3) Context switching: Once the context switching occurs, the MMU just needs to clear 

the current bit of the bank tags and flush the prefetch buffer. No more other actions are 

needed. 

 

4) Page swapping with disk occurring or page frame releasing: If the page swapping 

with disks or page frame releasing occurs, the modified OS that we already discussed sends 

the ‘clear TLB signal’ to the MMU. Hence, the prefetch & control logic can clear the valid bit 

of all bank tags on system without architecture supported ASID (x86) and flush the prefetch 

buffer. 

 

3-3 Performance evaluation of the proposed architecture 

All of the simulations were done with modified SimpleScalar Version 3.0d tool suite 

[37]. The SPEC95 benchmark programs were simulated to estimate the performance. We 

assume that the context switching would happen after executing one million instructions, and 

we also assume that the compared 1024-entry TLB is the worse case IA32 (x86)-style 

example. In addition, we compared the miss rates of worse case style 1024-entry 
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fully-associative TLB with the proposed TLB structure of 32 entries each bank with SP and 

DP prefetching mechanism after correctly keeping the entries and 1024-entry full-associative 

TLB with ASID of the same workload assumption with proposed TLB structure. We assume 

that the SP can prefetch entries with VPN of +9 and -8. That means total 18 entries are 

prefetched. Moreover, we also assume that the DP can prefetch total 16 entries with 64-row 

distance table and each row has 2 predicted distance slots. Though we assume the DP with 

only 16-entry prefetch buffer, the costs of DP is still higher than SP. That’s because the extra 

distance table is required in the DP methodology. Figure 3-5 and 3-6 give the simulation 

results of SPEC95 benchmark. 
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Figure 3-5: ITLB miss rates for SPEC95 benchmarks 
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Figure 3-6: DTLB miss rates for SPEC95 benchmarks 

 

Figure 3-5 and Figure 3-6 show the simulation results for ITLB and DTLB with 

1024-entry conventional TLB, new TLB structures with DP and SP prefetching mechanism, 

and 1024-entry conventional TLB with ASID respectively. Observing the simulation results, 

we can find that our design can deliver better performance than conventional TLB structure if 

correct TLB entries can be kept. Furthermore, we can also find that the proposed banked TLB 
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with SP prefetching mechanism can deliver better performance than DP prefetching 

mechanism and conventional TLB with ASID under multiprogramming environment. 

Through observing the simulation results, we can also find that prefetching mechanism may 

be sometimes more important than just increasing more entries. For example, both of the 

DTLB performances of new TLB structures with SP and DP mechanism are better than 

conventional TLB with ASID for gcc. However, in most cases, the performance of new TLB 

structure with DP prefetching mechanism is still worse than conventional TLB with ASID. 

That’s because after the context switching occurring the DP prefetching mechanism needs the 

learning time to fill in the distance table. According to the simulation results, we strongly 

suggest to use the simplest SP prefetching mechanism in our design. 

 

Even so, we still have to point out several important issues. Firstly, it’s not really very 

fair to assume the conventional fully associative TLB works as the worse case IA32 

(x86)-style. That’s because only some older processors or embedded processors flush their 

TLBs in context switching. Most modern high-performance processors incorporate their own 

address space identifiers with TLB tags. These designs, including our methodology, 

incorporated tags with ASID may have almost the same performance. However, our structure 

can save some tag bits because of our banking method. As shown in Figure 2-13, it’s very 

clear that the design of TLB entries with ASID tag needs more tag bits than our design. We 

provide an alternative method to store the ASID. Secondly, it’s not a very nice model to 

assume that context switching occurs after executing each one million instructions. In fact, it 

may differ from different environments. Most OS defines its own time slice with several 

milliseconds, and with different processors, the total instructions executed may have 

enormous differences. In addition, the real situation depends upon real OS running situation. 

In fact, we seriously consider developing a new generic simulator incorporated with Linux OS 

to model more accurate real environment. Thirdly, though the page size we assume here is 

32KB, it’s not very hard to change it to other sizes with some configurations change. In fact, 

in this thesis we model our asynchronous TLB controller for 4KB page system. Finally, 

though only a few studies about TLB entry prefetching, it still possible to provide more 

heuristic prefetching mechanism for TLB entry prefetching. Furthermore, it may be also 

possible to incorporate other prefetching mechanism with the proposed architecture. 
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3-4 Discussions of the proposed architecture 

The TLB misses cause serious performance degradation on modern processors. In 

addition, the context switching under the multiprogramming OS may cause this problem even 

more seriously. However, only some studies focus on the context switching issue. In our work, 

we presented an alternative TLB mechanism to reduce the miss rate in context switching for 

embedded processors or microcontrollers. We also discuss how OS should be modified to 

support this mechanism. Furthermore, we also discuss how to implement TLB entry 

prefetching mechanism in the proposed architecture. Finally, according to the simulation 

results, we suggested just simply to use the sequential prefetching (SP) mechanism in this 

design. Besides the proposed mechanism, we have already begun to find solution to integrate 

the proposed structure to support superpaging with bank promotion methodology. To obtain 

more accurate performance evaluation in real environment, the new simulation model and 

simulator will be developed. In addition, we’ve already implemented asynchronous TLB 

controller to support this mechanism in our current new RISC asynchronous processor project. 

We’ll discuss the implementation in the next chapter. We believe that still lots of work should 

be done in this field. The major features of the proposed TLB architecture are listed as 

follows. 

� An alternative way to reduce TLB misses in context switching with good 

performance for (asynchronous) embedded processors 

� Using banking mechanism to replace per-entry ASID tags 

� Adopting prefetching mechanism to reduce compulsory misses 

� Easy and simple architecture and operations 

� Bank-based operations to replace per-entry based operations in context 

switching 

� Especially suitable for asynchronous embedded processors 



 59

Chapter 4: Implementation the TLB 

Controller with Asynchronous Circuits 
 

Because there are no standard ways to implement asynchronous circuits, we’ll try to 

design our TLB controllers with Balsa HDL which is a CSP-based asynchronous HDL, and 

then the design will be synthesized by Balsa synthesis tool. Thus, the designed circuit can be 

easily reused or modified. That’s why we implemented our design with Balsa HDL. 

 

4-1 Interface 

 In Section 2-2-4, we have clearly discussed our current asynchronous circuit and system 

design philosophy. Based on the design philosophy, we’ll describe our design sequentially. 

For an asynchronous circuit design, the design can be conceptually regarded as a black box. 

Thus, the environment can communicate with it via communication channels. Because the 

design is based on bundled-data model as shown in Figure 2-19, separate request and 

acknowledge wires are bundled with data signals. Table 4-1 shows the interface of the 

proposed TLB controller architecture with bundled-data protocol. As shown in Figure 2-19, 

these signals can be conceptually divided into 8 communication channels. Because of 

asynchronous nature, no clock signal is needed. In fact, it’s easy to put the design into any 

design that accepts the same protocols! The 4-phase handshaking protocol is shown in Figure 

2-17. 
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Table 4-1: Definitions of asynchronous TLB interface 

Port Name Direction Width Meaning 

VA_req in 1 request signal  

VA_data in 32 Virtual Address 

VA_ack out 1 acknowledge signal 

PTE_req in 1 request signal 

PTE_data in 32 Page Table Entry 

PTE_ack out 1 acknowledge signal 

clr_TLB_req in 1 request signal 

clr_TLB_data in 1 ‘1’: clr all TLB banks 

clr_TLB_ack out 1 acknowledge signal 

ASID_req in 1 request signal 

ASID_data in 5 Address Space Identifier 

ASID_ack out 1 acknowledge signal 

CMW_req in 1 request signal 

CMW_data in 1 ‘1’: Context Switching occurs 

CMW_ack out 1 acknowledge signal 

PA_req out 1 request signal 

PA_data out 32 Physical Address 

PA_ack in 1 acknowledge signal 

PFE_req out 1 request signal 

PFE_data out 1 ‘1’: Prefech an entry from page table 

PFE_ack in 1 acknowledge signal 

TLB_hit_req out 1 request signal 

TLB_hit_data out 1 ‘1’: TLB hit; ‘0’: TLB miss 

TLB_hit_ack in 1 acknowledge signal 
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Figure 4-1: Block diagram of the TLB interface 

 

4-2 The Balsa Framework 

We have already pointed out that it’s not easy to implement asynchronous circuits 

directly with gate-level and RTL descriptions of traditional HDL. In addition, with such 

“fixed” descriptions, you cannot change the handshaking protocol that you have already 

implemented. On the contrary, if you model your design with Balsa HDL or other 

asynchronous HDL such as Haste description language [90], or Java and DDG of SoCAD 

[100], the target handshaking protocol you wish to use can be decided during synthesis phase. 

Your design therefore can be changed to any handshaking protocols which supported by your 

asynchronous tool. You can put more efforts on your asynchronous algorithm and architecture 
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design! That gives you more design and implementation flexibility. We select Balsa as our 

tool not only because it’s the most popular open source solution, but also because it have been 

already used in many successful design. In addition, the APT (Advanced Processor 

Technologies) group of the University of Manchester can affords some needed supports for 

users [106].  

 

Figure 4-2 shows the Balsa design flow. The Balsa back-end can generate gate-level 

netlists that can be imported into target CAD systems. Balsa now supports three commercial 

EDA tools: Compass Design Automation tools from Avant, Xilinx FPGA design tools and 

Cadence Design Framework II. It supports three back-end protocols for use with each 

technology: bundled-data scheme using a 4-phase-broad/reduced-broad signaling protocol, a 

delay-insensitive dual-rail encoding and a delay-insensitive 1-of-4 encoding. Thus it makes it 

easy to design asynchronous circuits or systems for these three protocols with Balsa HDL.  

 

To generate netlists for target CAD systems, the Balsa system make use of basic cells of 

these target CAD systems, such as AND, OR, NOR, XOR, NADN, BUF, XNOR, INV, FD 

(D-type flip-flop), FDC and FDCE of Xilinx FPGA technology. In addition, it also provides 

specific cells needed for asynchronous circuit implementation. The most important of all is 

the Muller C-element as described in Section 2.2. In addition to the C-element, it also 

provides special designed cells. Figure 4-3 shows the NC2P element. Once the input i0 is 

equal to 0, the output will be 1. When both inputs are 1, the output will be 0. Finally, if the 

input i0 is 1 and i1 is 0, the output value will not be changed. With NC2P element, the 

S-element which performs a series of handshaking can be constructed. Figure 4-4 shows the 

S-element and its behavior. The S-element has 4 input that includes 2 request/acknowledge 

handshake pairs – ‘Ar’/’Aa’ and ‘Br’/’Ba’.  

 

With these basic cells, the Balsa system provides total 40 handshake components. We’ll 

describe some of them here. Figure 4-5 shows the fetch component which is the most 

common way to control a datapath from a control tree. It transfers input data to variable, from 

variable to output channel, or from variable to variable. Figure 4-6 and Figure 4-7 are the 

symbol of sequence and concurrent components. The sequence components output the control 

signals in sequence, and the concurrent component outputs the control signals in parallel. 

They can be used to activate a number of operations.   
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Figure 4-2: The Balsa design flow 

 

 

 

(a)       (b) 

 

 

(c) 

Figure 4-3: The NC2P-element (a) symbol (b) true table (c) gate-level implementation 
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(a)        (b) 

 

(c) 

 

Figure 4-4: The S-element (a) symbol (b) gate-level implementation (c) handshaking 

protocol 

 

 

 

 

     (a)          (b) 

Figure 4-5: The Fetch component (a) handshake component (b) gate-level 

implementation 
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Figure 4-6: The Sequence component 

 

 

 

 

 

Figure 4-7: The Concurrent component (a) handshake component 
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4-3 The Design with Balsa 
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Figure 4-8: Architecture of asynchronous TLB modeled with Balsa HDL 

 

The design of proposed architecture with Balsa will be described in this section. 

Different from what described in Weigel’s work [105], we focus on modeling an advanced 

TLB architecture while they focused on implementation of MMU. Thus, the TLB they 

modeled is only simple architecture that supports lookup and flush functionality. In our work, 

we implemented the advanced TLB architecture that we proposed. According to the interface 

defined in Figure 4-1 and table 4-1, we carefully designed our proposed architecture. Figure 

4-8 shows the architecture of the whole design. The design is divided into the following 

parts — TLB Memory, Control Unit, Prefetch Control Unit, and Physical Address Generator. 

The following Balsa descriptions show the top module definitions of the whole design. With 

this definition, we can easily observe the communication channels that connect the design and 

the environment. In fact, that’s what we defined in section 4.1. 
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procedure TLB_CTRL_TOP(  

--input channels 

  input iCLR_TLB: bit; 

  input iCMW: 1 bit; 

  input iASID: 5 bits; 

  input iVA: 32 bits;  

  input iPTE: 32 bits; 

--output channels 

  output oPA: 32 bits; 

  output oHIT:  bit 

) … 

 

In order to implement the proposed architecture, the TLB controller algorithm was 

designed carefully. It should be noted that because it’s an asynchronous implementation, the 

data signals from the sender will not be cleared until the receiver replies the acknowledge 

signal. That also means that the virtual address (VA) from the processor will be remained 

until the controller returns the VA acknowledge to the processor. Thus, the proposed TLB 

architecture can be implemented with the following algorithm. 
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Asynchronous TLB controller algorithm: 

 

if  (‘clr_TLB channel’ is activated) 

clear valid bits in all TLB banks () 

|| flush the prefetch buffer () 

else if (‘CMW channel’ is activated) 

clear current bits () 

|| flush the prefetch buffer () 

else if (‘VA channel’ is activated) 

if (no current bit is set in all TLB banks) 

(activate ‘ASID channel’ 

|| activate ‘TLB_hit channel’)        // TLB_hit_data = ‘0’, indicating TLB miss 

; if (ASID is found in a TLB bank) 

set current bit in this TLB bank () 

else                            // ASID is not found 

(select a victim bank with invalid bit or according to LRU bits () 

; flush 32 entries in the victim bank () 

; set current bit, task tag, and valid bit 

; update all LRU bits) 

|| activate prefetch mechanism ()  // activate PTE channel multiple times 

else if (TLB hit) 

activate ‘PA channel’ || activate ‘TLB_hit channel’ 

else if (TLB miss) 

if (prefetch buffer hits) 

(put this entry into TLB bank() || activate ‘TLB_hit channel’ || 

 activate ‘PA channel’) 

; activate ‘PTE channel’ 

else if (prefetch buffer miss) 

activate ‘TLB hit channel’ 

; activate ‘PTE channel’ 

 

With Balsa HDL, designing the proposed TLB architecture can be simplified as 

describing each part of the TLB architecture with Balsa HDL high-level descriptions. Each 

part of the design will be described in detail in the following paragraphs. 

 

TLB Memory: 

 

There are total 32 TLB banks of the TLB memory architecture. Each of the TLB banks is 
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composed of 32 entries. Because the real implementation of memory cells themselves should 

be closely related to the process and should be additionally designed carefully, we only 

modeled the TLB memory with Balsa data structure and simulated under the Balsa 

environment with Balsa block memory. The data structure of TLB entry is defined as show in 

table 4-2. 

Table 4-2: Structure of each TLB entry 

Field valid lru tag ppa 

bit 35 34 33...17 16...0 

 

In chapter 3, we have already discussed the proposed TLB architecture. In the proposed 

architecture, each TLB bank has its associated TLB bank tag. Therefore, there are total 32 

entries in the TLB bank tag. We defined total 4 fields for each entry. It should be noted that in 

order to simplify the design, we only defined 5 bits to represent the ASID. In fact, in most 

systems the width of ASID is 8 bits. In addition, we use the 5 bits to index the 32 banks. Thus 

the data structure of each bank tag is defined as table 4-3. 

 

Table 4-3: Structure of each TLB bank tag 

Field ASID current valid lru 

bit 7...3 2 1 0 

 

With the previous definitions, the TLB entry and TLB bank TAG entry can be easily 

described in the following Balsa descriptions. In fact, it’s really easily to describe TLB 

memory model with Balsa HDL. Following Balsa descriptions depicts the data structures that 

define the TLB entry and the TLB bank tag.  

 

type TLB_ENTRY is record 

  valid: bit; 

  tag: 17 bits; 

  ppa: 17 bits;     --Physical Page Address 

  lru_bit: bit 

end 

 

type TLB_BANK_TAG is record 

  task_tag: 5 bits; 

  cur_bit: bit; 

  valid: bit; 

  lru_bit: bit 

end 
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In addition, we also modeled all TLB bank control with Balsa HDL. Following Balsa 

descriptions depict how we modeled the valid bit clear, LRU bit clear, and TLB entry search. 

 

shared clr_all_valid is begin 

 for ; i  in 0..31 then 

   tlb_bank[i].valid := 0  

 end -- for loop 

end 

 

shared clr_all_lru_bit is begin 

 for ; i in 0..31 then 

   tlb_bank[i].lru_bit := 0  

 end -- for loop 

end 

 

shared search_tlb_bank is begin 

 if tlb_bank[0].valid =  1 and tlb_bank[0].tag  = tmp_tag then tmp_hit := 1 || 

tmp_ppa := tlb_bank[0].ppa  

 |  tlb_bank[1].valid =  1 and tlb_bank[1].tag  = tmp_tag then tmp_hit := 1 || 

tmp_ppa := tlb_bank[1].ppa 

… 

 

 

Control Unit 

 

The control unit communicates with the environment through these handshake channels, 

clr_TLB (pull channel), CMW (pull channel), TLB_hit (push_channel), and VA (pull 

channel). Once one of these channels is activated, this control unit will adopt the 

corresponding actions. It should be noted that in this implementation these pull channels can 

not be activated simultaneously to avoid the occurrence of deadlock. The control unit will 

issue control commands to the TLB memory when it is required to change the content of TLB 

memory, check TLB hit or miss, or perform the entry replacement.  

 

The 1-bit LRU (Least Recently Used) replacement policy is adopted by us to reduce the 

overhead in hardware cost. Because there’s no global clock signal, we implemented our LRU 

algorithm as follows. Initially, all LRU bit are all cleared. When TLB hit or replacement 

occurs, the LRU bit at assigned entry is set. The entry with LRU bit equal to 0 is replaced first. 

Once the LRU bits in all entries are set and replacement is needed, all LRU bits are cleared. 
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The 4-bit data signal of the TLB command is defined as table 4-4. 

 

Table 4-4: Structure of 4-bit TLB command 

Field clr_valid clr_lru_bit search_va lru_replace 

bit 3 2 1 0 

clr_valid: clear all valid bits in current TLB bank 

clr_lru_bit: clear all lru bits in current TLB bank 

search_va: seach ppa in current TLB bank 

lru_replace: perform LRU replacement in current TLB bank 

 

Finally, only 1 bit data signal of TLB_hit channel to indicate the status of TLB. It is 

defined as table 4-5. 

 

Table 4-5: Data signal of TLB_hit channel 

Field hit 

bit 0 

hit: indicate whether TLB hit or not 

 

Prefetch Control Unit 

 

To reduce the complexity, we implemented the simplest way of prefetch control unit. 

Once an empty entry exists in the prefech buffer, the prefetch control unit will fetch a new 

page table entry through the channel PTE. Then, the Prefetch Control Unit requires the 

prefech buffer to store it. 

 

We have described that the Balsa descriptions will be synthesized into handshaking 

components netlists. Figure 4-9 shows the handshaking component graph of CU and prefetch 

control unit. Observing this graph, all our Balsa descriptions were mapped into built-in 

handshaking components of Balsa framework. These handshaking components then can be 

used to synthesize into gate-level netlists depending on the selected target handshaking 

protocol.
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Figure 4-9: Handshaking component graph of CU
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PA Generator 

 

The PA Generator generates the physical address via concatenating the offset of virtual 

memory and physical page number (PPN) generated by TLB. Finally, the generated physical 

address is sent out through the PA handshake channel. In fact, it’s the simplest part of the 

design. Figure 4-10 shows the handshaking components graph of the PA generator. In this 

graph, we can easily find that it selects one of the hit PPN from prefetch buffer or TLB bank 

output and combines it with the offset to generate the output PA. 

 

 
Figure 4-10: Handshaking component graph of PA Generator 

 

 

4-4 Implementation 

Finally, the designed was verified manually with random pattern under Balsa 

environment. Because only several channels should be verified, the design can be verified 

easily. Thus, we verified the design via monitoring the communication channels. Figure 4-11 

shows the waveform of these communication channels. However, it’s not a good and formal 

way to verify the functionality. We’ll discuss this issue in the next chapter. The gate-level 
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netlist was then generated with Balsa tools, and synthesized with Design Compiler with 

TSMC 0.13 µm process. Table 4-6 shows the equivalent gate count (NAND gate). 

 

 

Figure 4-11: Waveform of circuit simulation 

 

 

Table 4-6: Equivalent gate count 

 Equivalent Gate Count (NAND gate) 

CU and Prefetch Control 1,441 

TLB_Memory 687,119 

Total 688,560 

not include memory and matching delay elements 

 

The costs are really high, in fact, far from our estimation. However, it’s possible. The 

result in [97] that was synthesized with the same handshaking protocol also shows that the 

costs of circuits generated by Balsa tool suite may not be very cheap. In that design, total 

3,134,953 gates are used to implement Asynchronous MP3 decoder with Xilinx FPGA. That’s 

because all Balsa descriptions will be translated into handshaking components, and the cost of 

these components may be not too cheap. 

 

However, we found that the costs of CU and prefetch control unit are only 1,441. That’s 

because in our real implementation the CU and prefetch control parts only needs to handle the 

input signals and send correspondence signals out. Unfortunately, the total equivalent gate 
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count of control circuits of TLB bank and prefetch buffer are 687,119. That’s not only 

because we have to design lots of different functionalities of TLB memory parts, but we also 

found that besides the control circuits that we modeled to control the behavior of our design 

the Balsa framework also adds lots of extra control circuits to control the memory models. We 

had already tried to model our circuits with as many as possible shared components. It’s still 

very expensive. Maybe these parts should be designed with gate-level directly. 

 

We also estimated the costs of CU and prefetch control unit with 4-phase dual-rail 

protocol. Though we expected that the costs may be doubled, it didn’t occur. The equivalent 

gate count is 2,450. That’s really interesting. That’s because the dual-rail circuits may also be 

possibly implemented in reasonable costs. However, it’s not reasonable to have any 

“dual-rail” memories. Thus it’s not reasonable to implement any memory related components 

with dual-rail protocol. That’s why we implemented our design with 4-phase bundled-data 

protocol. Following items list the major features of the implemented Balsa model. 

 

� Modeled with Balsa HDL, the TLB controller can be synthesized into handshaking 

protocols supported by Balsa framework. 

� Simple and clear interface definitions can make the design be used easier. 

� Unambiguous separation of each part in real asynchronous design makes 

verifications of the asynchronous TLB controller easier. 
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Chapter 5: Conclusions and Future Works 
 

In this thesis, we proposed a novel TLB architecture for asynchronous embedded 

processors. In addition, we also modeled it with Balsa HDL which is a CSP-based 

asynchronous HDL. We demonstrated how to transfer the proposed architecture into 

asynchronous circuits. In this chapter, the conclusions and future works will be summarized. 

 

5-1 Conclusions 

The computing devices have enormous changing for the past decades. Only recent years, 

the embedded systems and mobile devices have been becoming the major trend in computing 

devices. For the past years, because early applications of these systems are simple, no extra 

complex operating systems are needed. However, new embedded systems and mobile devices 

have begun to support very complex operating systems, such as Windows
®
 Mobile and 

embedded Linux. Google even tries to provide very powerful software stack platform based 

on embedded Linux called Android [107]. All these new applications need very efficient 

supporting for embedded operating systems. Traditional design needs specific microcontroller 

or processor to execute OS, and other DSP or accelerator processor to boost computing 

performance. Recently, some designs try to provide an alternative solution. These designs 

integrate both general purpose processor and DSP or accelerator processor into a single 

processor, such as cores of Blackfin [108] and TILE processors [109]. All these new trends 

demonstrate the importance of OS in embedded systems or handheld devices. In order to 

provide high performance address translation from virtual address to physical address of 

modern OS, the high efficient TLB design is needed. The TLB misses cause serious 

performance degradation on modern processors. In addition, the context switching under the 

multiprogramming OS may cause this problem even more seriously. However, only some 

studies focus on the context switching issue for embedded processors. In our work, we 

presented an alternative TLB design to reduce the miss rate in context switching for 

embedded processors.  
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In addition, it is widely known that synchronous circuit has some disadvantages, such as 

clock skew, higher power consumption, worse-case performance, and poor reusability. 

However, asynchronous circuit can easily address these problems. In addition, asynchronous 

circuit has higher reliability and robustness than its synchronous counterparts. In fact, all 

these are all critical issues for embedded processors or microcontrollers. But it’s very hard to 

implement digital systems with asynchronous circuits.  

 

In our work, we implemented the proposed TLB controller for the proposed TLB 

architecture with asynchronous circuits. We implemented our proposed TLB controller with 

the 4-phase bundled-dada handshaking protocol. The bundled-data model was implemented 

with Balsa HDL which is a CSP-based asynchronous HDL. With the Balsa HDL, we can 

focus on the asynchronous architecture and algorithm designs without considering too much 

on the handshaking protocol issues. In addition, because several target handshaking protocols 

are supported by the Balsa tools, you don’t need to implement each HDL model for each 

handshaking protocol. Thus, higher flexibility can be provided. Unfortunately, the synthesized 

result shows that total equivalent gate count of the TLB controller without memory is 688,560. 

That’s really not cheap. However, we also found that the CU and prefetch control parts are 

not very expensive. It costs only 1,441 equivalent gates, but the TLB memory parts costs 

687,119 equivalent gates. That’s not only because we modeled lots of functionalities for this 

part but also lots of extra memory control circuitry is added by Balsa tool suite. However, we 

still successfully demonstrated an advanced asynchronous TLB controller than other related 

works. Thus, the following items are the main features of the proposed asynchronous TLB 

controller. 

� An alternative TLB architecture was proposed to reduce the miss rate in context 

switching for the asynchronous embedded processor. 

� Instead of per-entry ASID, TLB banking is used to separate different address 

space. 

� Simple TLB entry prefetching mechanism is used to reduce some possible 

compulsory misses. 

� Modeled with Balsa HDL, the TLB controller can be synthesized into handshaking 

protocols supported by Balsa framework. 

� Simple and clear interface definitions can make the designed be used easily. 
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� Unambiguous separation of each part in real asynchronous design makes 

verifications of the asynchronous TLB controller easier. 

 

5-2 Future Works 

 In this thesis, we propose an alternative TLB architecture to reduce miss rate in context 

switching for asynchronous embedded processor. As mentioned in section 3-2, to estimate 

miss rate more accuracy the simulator should be integrated with OS. Therefore, new simulator 

model should be developed for further study. In addition, as mentioned in section 3-1, the 

performance of TLB not only relies on miss rate but also miss penalty. That’s means the 

execution time should be taken into consideration. However, because lack of information of 

processor architecture and memory system, it’s not very easy to estimate it directly. The 

design should be placed into a real processor. 

 

 As mentioned before, most asynchronous processors today are very simple; thus, most of 

them do not support virtual memory. In our work, we hope to provide a general asynchronous 

TLB architecture that can be implemented in asynchronous processors. That’s why we 

modeled our design with Balsa HDL. With high-level asynchronous HDL, the design can be 

synthesized into all supported handshaking protocols by Balsa tool suite. However, the Balsa 

tool suite cannot provide the real TLB memory; thus it should be implemented separately. In 

this work, we only simply use latches to replace the real TLB memory for verification. It’s not 

reasonable. Thus, this part should be carefully handled in our future work. In addition, as the 

analysis in section 4-4, besides the functionalities we modeled to control behavior of the TLB 

memory the extra circuitry added by Balsa tool suite is very huge. The part really should be 

redesigned manually in the future. 

 

 Finally, our goal is to design our own asynchronous RISC core with virtual memory 

support for embedded systems or handheld devices. In fact, we hope to design 

asynchronous-based SoC or MPSoC with our own asynchronous processor core. As 

mentioned in section 2-2-3, there are some studies of asynchronous interconnections and 

GALS. In fact, the clock issue has been becoming one of the most critical issues in large SoC 

designs. As mentioned in section 1-2, ideally, asynchronous circuits may make software 

“OOP”-style design on hardware possible. Imaging, without the global clock issue, designing 

SoC might be a little like playing the LEGO
®
 bricks. Ideally, each asynchronous IPs can be 

plugged in the design if they “talk” the same “handshake protocol.” That’s why we hope to 

design our own asynchronous processor core. The design of asynchronous TLB is one of the 
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critical parts of the asynchronous processor core. In order to verify our future processor core 

more formally, we’ll suggest a new asynchronous processor design flow that can support not 

only architecture exploration but also facilitate hardware/software co-design. We’ll discuss 

this topic in the next section. 

 

5-3 Verification Issue for future work 

In traditional synchronous based design, the verification can be easier than that of 

asynchronous ones. You can verify your design based on the “clock.” That means that you 

can verify the status of the design based on the clock cycles. Figure 5-1 shows a very 

simplified VLSI design flow. The design ideas are described in cycle-based functional 

specification descriptions. Traditionally, the functional specification can be described with C 

programming language. Thus, the cycle-based simulator can be used to prove the design ideas. 

Then, the design will be implemented in RTL/gate-level design. To verify the implementation, 

the two models will be verified via cycle-by-cycle cross-verification. Finally, the design can 

be transferred into layout. Certainly, the cycle-based equivalence checking should be done 

between RTL/gate-level design and layout. On the contrary, without the global clock, each 

part of the design may work in its own speed and it’s not easy to make sure if the design 

operates correctly in any specific time. It will be even worse that the operation times of the 

same component may be also different depending upon the input. That’s especially on most 

DI/QDI designs. You can be very sure what status should be of your design at 10
th
 cycle, but 

how can you do the same thing on system without clock? Imaging in a 2-phase bundled data 

design and given a specific time, how can you make sure the status should be? As mentioned 

in section 2-2-2, in such systems each part of the design may begin to operate whether the 

request or acknowledge signals are rising edge or falling edge. Verifications of different 

models of asynchronous circuits may also be a good research topic. 

 

We have already pointed out that lots of new issues should be carefully dealt with in 

developing embedded processors. Because most of these problems can be resolved with 

asynchronous circuits, that’s why we put lots of efforts in developing asynchronous 

processors. In addition, because of some new application requirements, new features should 

be supported by these processors. However, it’s important to do some architectural 

explorations before these features can be supported. Thus, we’ll suggest a design flow that 

can be used to design new asynchronous embedded processors from architectural exploration 

to functional verification. Figure 5-2 shows our new design flow. We’ll introduce the use of 

architecture description language (ADL). LISA will be selected as our design tool [110]. 

That’s not only because LISA is the most popular and successful ADL but also it’s a mixed 
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structural and behavioral ADL. Thus, the design described with LISA can be used to generate 

simple toolchains including (compiler), assembler, linker, and simulator. It can also be used to 

generate RTL of Verilog HDL. Thus, hardware/software co-design can be easily achieved. 

CoWare
®
 Inc. now provides a complete GUI IDE based LISA development environment 

called CoWare
®
 Processor Designer [111]. With CoWare

®
 Processor Designer, it makes 

LISA easy to learn and use. The first, the design specification should be implemented with 

LISA descriptions manually. Then the CoWare
®
 Processor Designer can be used to generate 

toolchains and simulator. It should be noted that in order to achieve the goal of 

hardware/software co-design the application software can be developed simultaneously. In 

addition, if the designed architecture is described in structural model, the RTL can also be 

generated. Though the RTL model generated is not a very efficient implementation, it still can 

be used as reference synchronous model for evaluation. In fact, after simulator and toolchains 

can be generated, the performance of designed architecture can be roughly estimated. Then 

the generated simulator can be used as golden model in order to do cross-verification with 

new designed asynchronous processor. However, because it’s impossible to do clock-by-clock 

cross-verification with asynchronous circuits, we suggest using the “instruction-based” 

cross-verification. That means we can compare the execution results 

instruction-by-instruction. With this design flow, we can develop our new asynchronous 

embedded processor more effectively. 
 

 

 

 

Figure 5-1: Simple VLSI design flow 
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Figure 5-2: Our asynchronous processor design flow 
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