b
B
b
i
by

SARLE T ZHFTPT
%4

i +

7

MR R4 2 R HOR i
SR TR P

TLB with Low Miss Rate in Context Switching and
Study of Implementation of Asynchronous Circuit

FERBLT/N\NFE L A

N

LA FESF 2 IR H S EE
2 H bR R RF TR

7

\ZEC
T ﬂvf}

TLB with Low Miss Rate in Context Switching and
Study of Implementation of Asynchronous Circuit

g4 D RER Student : Wei-Min Cheng
R mE A Advisor : Chang-Jiu Chen
Bz o2~ F
L - - N A
EL w2
A Thesis

Submitted to Institute 6f Computer Science and Engineering
College of Computer Science
National Chiao Tung University
in partial Fulfillment of the Requirements
for the Degree of
Doctor of Philosophy

in
Computer Science

July 2009

Hsinchu, Taiwan, Republic of China

‘;lgg':e\]_'—g],t.l.,_;}: 1

o
M
%
.L‘;r&
(w

wiIH g

Q
FEARN TR LB

Fiimas hERE I REE K

AR+ FFTRAERTAPEZL 2T 47

P N TR EAE A N RN S EEE Y S F LR T R

HAT o 2l T B i R i AT B AL B hfE

Borr i doo gl B S ARIEEARE KRR FEF S A L 1T Tk 0 3F SR

N hRBE N B TR AT E K e E 4 ~ 7% Linux &

b3

Windows® mobile, @ % 7 BN ITE ki bimemiidd o A EEE N
LR Rl e L F e e ARG B HSe R Sl iR 4)
F2- o 50 RF CHEHarT > B TR AT ER ML B i F g
BrE o Flpt o AP aRtE Y AP/ - BRFER N AILFEL G KPR
B AFF OB EEF SR AR50 R RO T B APHEERT R
BHRPFEEEERP- AL PEXPFEEER] b n IR FEER £ 7 @
FHPIEERBAI AR ST A F A s AR el by TS F RN
H

ol it » SC AL B i HOF B B E o W TG B IR S L AR

S Balsa MR T R R BEEEFELHE F1E T

g P ANl g B i 2 ’i%ﬁ’?gﬁ’ 2 (TipARe N ,ra)r IVRRE B/ S SV -8

%‘
'
[N

i~ A SRED M S TR NHREA PR FLT T

!
R EE AP RREY R H R SR EFR R T AL A
I

7
3

1N

R
"

EL FIPL AP/ NERT - BARNPIFEE Y i E
T AL 0 B fS 0 4 Balsa 1 & & 4 7 B {ER & hnetlist » 37 7
FBIER BH R BRI S NF RS AT A M X BIEM #H S 688,560,
s WP TR RARAMYBREIER AW EFT TR TR F] RE R T

il

TLB with Low Miss Rate in Context Switching and
Study of Implementation of Asynchronous Circuit

Student : Wei-Min Cheng Advisors : Prof. Chang-Jiu Chen

Institute of Computer Science and Engineering
National Chiao Tung University

Abstract

Embedded processors are widely used in many embedded systems and
handheld devices. Hence, low power, reliability, and robustness have been
becoming the critical issues for these processors. Asynchronous circuits may be
one of the best solutions to overcome these problems. Thus it may be more

suitable to implement these processors with asynchronous circuits.

It is widely known that these embedded processors are used to execute
varieties of tasks. Recently, many new embedded systems and handheld devices
begin to execute very complex operating systems, such as embedded Linux or
Windows® mobile. In order to support virtual memory mechanism of modern
operating systems, address translation from virtual address to physical address
should be supported. However, it is widely considered as the critical issue of
memory system performance. In order to improve the address translation

performance, the Translation Lookaside Buffer (TLB) is implemented inside

il

almost all contemporary processors. In this work, we propose an alternative
TLB architecture with low context switch miss rate for asynchronous embedded
processors. We adopted a heuristic TLB banking designs to replace per-entry
ASID to identify each address space. In addition, simple prefetching mechanism
is used to reduce some possible compulsory misses. Because the architecture is

designed for asynchronous embedded processors, all operations are very simple.

Finally, we implemented the TLB controller for the proposed TLB
architecture with Balsa HDL. Because we skillfully arrange the communication
channels, we can verify the implementation easier with assumed random pattern.
Though it’s possible to verify our implementation with such simple way, it’s
impossible and unreasonable to verify the whole asynchronous embedded
processor that we are curfently working for. We also suggested a
hardware/software co-design and cross-verification flow for our future work.
Finally, the gate-level netlist was|generated with Balsa tools, and the equivalent
gate count of the implementation was estimated. The result shows that the cost
of the implementation modeled with Balsa HDL is not cheap. The total
equivalent gate count is 688,560. However, we also describe why designing
asynchronous circuits with such high-level asynchronous HDL. It’s needed for

future larger design!

v

Acknowledgement

WNEHFRLTIHFHA > ARERRARKRT P FRERELERBRS > R
RAAAR 2 2 B0 S 3 AOREK K WFF 2 A BB RIEHN - EXRANHF L R - R
AR ATREDRREE > AhEEEHRSRALR -

B R GH R S A — E AR SRR AR E B E AR
BhRER ARERLETRER WEHTOBE BRANRE - AFALEAT
BEFIENSRAERERFHEE BARMAN A R LHRER T EERS
TSR S RAREM NS ERERE W S EREERE L — L Z 3
HOEE SRR TR AEEE U HE S BRI EAKRE R - R
TEEEAMEEAN TS, A BENSEREREARRFARER I
EXRETRBERORE EAR LRRBRAEE ARETHE 5 wR AL 7
EEERM N EERRGE 0 R R EEBE AR E 0 AR B fryE R
EES T YT SR T e TR Er AT C ST T 8 N e
THREEBHRE EBARS HRMAXTHGLT TH S TR ERUMGER
SEAK G ARG BT B b R RS A TR FRES R DR
W ot R R RS A K BRI B REDEER > AR
B ERESHRUES KES R L X ARY B o WA ERTIEA -
ELEH RHEABLNRECIIART IR R TP L RE S L LT R F
049 71 % B 4h - 25 7 B TLB S MMUSSREESERG JBSL 1 77 4 | B S 0 0 & 1E K
BREREAGH I L REERA TR ERE FERERNA AL
B AN R TER AT RENA LR R HRANKE HWHR S ER
RoNPETRE FAETEEE BT E REHFANE SRS AHER
P ACERBH WHAF -

Contents

ADSEFACE ..ottt ettt et s et e saeee e 111
ACKNOWIEAGEMENL...........cooiiiiiiiiiiiie et e e e st e e e et e e e s e e e e e neees \%
COMEEIIES ...ttt et ettt et e bt e et e e s bt e et e eanteebeesaneenbeenaeas vi
LiSt Of FIUIESoooeiiiiieeeee et et e e e e e e eae e e s nee e vii
LiSt Of TaDIeScooooiiii e st e X
Chapter 1: INtroduCtioncoooiiiiiiiiiiiieee e e eesaaeee e 1
L= MOLIVALION ..ttt ettt ettt et st e be e e e e sbeeeabeenaeeeas 1
1-2 Introduction to aSynChronouS CITCUILS.........cccvieervieeriieeeiieeeiieeeieeeeveeeeeveeeeaee e 2
1-3 Introduction to Translation Lookaside Buffer.............ccoccoiiiiiniiiiinins 5
Chapter 2: Related WOTKSoocoiiiiiiie e 12
2-1 Recent studies Of TLB......cc.iiiiiiiiiee e 12
2-2 Circuit design with asynchrONOUS CITCUILScceeerveeerieeeieieeeiieeeieeeeieeeeaens 24
2-3 Previous Asynchronous TLBorMMU Design..........cccoeveeniiiiieiniiniieenieeieene 42
Chapter 3: Proposed TLB architecture for asynchronous embedded processor.46
3-1 Relationship between the TLB miss rate-and Sizes...........ccecvveeecvveerreeeeveeennenn. 46
3-2 The proposed TLB archit@Cture ioieu.. . i veeeeieeiieiie e 49
3-3 Performance evaluation of the proposed architecture.............ccceceeveieiceneennnen. 53
3-4 Discussions of the proposed architecture...........cccceevveeevieercieenieeeee e 58

Chapter 4: Implementation the TLB Controller with Asynchronous Circuits.... 59

e B D315 o Lo USSR 59
4-2 The Balsa Frameworkccccviiiiiieiiiieciie ettt 61
4-3 The Design With BalSac.cccocuiiiiiiiiiiiiceie e 66
N 133 0] (5101 01 71 10) APPSR 73
Chapter 5: Conclusions and Future Works.................coccooiiiiiiiiniinieeee, 76
51 CONCIUSIONS ...vieeivieeiiieeiieeeie et e e et e e te e et e e etaeeetaeessbeeessseeessseeesseeessseeensseens 76
52 FULUTE WOTKSeiuiiiiiiieeiiie ettt et ettt e et e et e e s aee e et e e saveeessaaesnseeesnseeennseees 78
5-3 Verification Issue for future Worki..........cccoeevviieiiieiiiieecce e 79
REFEIENCE ...t e e et e e e e et e e e e s anaeeeennnees 82

vi

List of Figures

Figure 1-1 Clock distribution domains and generators.............co.voeviriniiniieniinnenennenn. 4
Figure 1-2 Conceptual virtual MemOTY.........o.ouuiieiiii i e 8
Figure 1-3 Virtual address translation with TLB.............cooii 8
Figure 1-4 Page table structure of IA32e mode with 4KB page size.............c.coeiiiinnn.n 9
Figure 1-5 Virtual to physical address translation of Alpha AXP..............coooiiiiit. 9
Figure 1-6 Smart phones with Windows®™ Mobile OS.................oiiiiiiieeiieiieiiiiii, 10
Figure 2-1 Structure of TLBs and cache memories of Intel® Core i7..............ccccceeeeei.nn. 13
Figure 2-2 IA32 linear address translation (4KB page).........cccceeviievieniieniieiienieeieeeeeee 14
Figure 2-3 IA32 linear address translation (4MB page)...........ccoevvviiiiiienieenceieenennnnnn 14
Figure 2-4 Complete-subblock TLB with block factor 4., 17
Figure 2-5 Promotion TLB structure & Banked promotion TLB structure....................... 18
Figure 2-6 MMC example with shadow region................coooiiiiiiiiiiiiiiiiii e 18
Figure 2-7 Reconfigurable partitioned TLB...........coooiiiiiiii e, 19
Figure 2-8 Share tag design of TLB and cache memory.............c..coovviiiiiiiiiinn.n. 19
Figure 2-9 Operations of “Recency Stack™. 0ile ..o, 20
Figure 2-10 Memory translation fablé of FLLB with “Recency prefetching”.................... 21
Figure 2-11 TLB with “Distance ‘Prefetching”..., 21
Figure 2-12 Schematic of generi€ TLB ptrefetching hardware. ..., 22
Figure 2-13 CPD and per-address page tables..... ..t .o 23
Figure 2-14 TLB with per-entry ASID Aag . . e 23
Figure 2-15 Isochronous fork....... ..o 26
Figure 2-16 Classifications of asynchronous CirCuits.co.evueeieiiriniiniiiiinnieenn. 26
Figure 2-17 The 4-phase protocol...........ooiiiiiiiiii e, 27
Figure 2-18 The 2-phase protocol...........ooiiiiiiiiii e 28
Figure 2-19 Bundled-data signaling model.................cooiiiiiiiiiiiii e 28
Figure 2-20 Dual-rail data signaling model...................oooiiiiiiiiiii i 28
Figure 2-21 The Muller C-element: symbol & truth table....................oon, 33
Figure 2-22 The Muller pipeline............ooiiiiiiiii e, 33
Figure 2-23 A three-stage 1-bit wide 4-phase dual-rail pipeline............................oal. 34
Figure 2-24 Control circuit of micropipeling...............coooiiiiiiiiiiiiiiii e 34
Figure 2-25 Micropipeline architeCture.ovueiuieiniit i 35
Figure 2-26 Q €lemMeNt.ontni ittt 35
Figure 2-27 The architecture of CEFPP...... ..o i 36
Figure 2-28 Concept of GALS. ... i 37
Figure 2-29 Asynchronous pipelined 8051 architecture................oooiiiiiiiiiiiiiiiiinin, 40
Figure 2-30 Transistor-level and gate-level of C element implementation....................... 40

vii

Figure 2-31 Dual-rail OR gate symbol & gate-level implementation............................. 41

Figure 2-32 1-bit dual-rail re@iSter........covitiii i e 41
Figure 2-33 Architecture of NCTUAC18 microcontroller core..............coovvviiiiniinnnn.nn.. 41
Figure 2-34 Overview of Mayers and Martin’s asynchronous MMU............................ 44
Figure 2-35 Architecture of baseline asynchronous MMU.................ccooiiiiiiiiiiienn, 44
Figure 2-36 Architecture of asynchronous MMU with performance architecture............... 45
Figure 3-1 ITLB/DTLB miss rate for gcc with 4KB page..........ccoooviiiiiiiiiiiiiia, 48
Figure 3-2 ITLB/DTLB miss rate for ijpeg with 4AKB page...........ccoovviiiiiiiiiiiiiinn.n.. 48
Figure 3-3 ITLB/DTLB miss rate for compress with different page sizes and TLB sizes....49
Figure 3-4 The proposed TLB architecture...............ooiviiiiiiiiiii i 50
Figure 3-5 ITLB miss rates for SPEC95 benchmarks................coooiiiiiiiiiii i 55
Figure 3-6 DTLB miss rates for SPEC95 benchmarks...................coooiiiinn. 56
Figure 4-1 Block diagram of the TLB interface...............oooiiiiiiiiiiiiii e, 61
Figure 4-2 The Balsa design flow.........c.oiiiiiiiiii e 63
Figure 4-3 The NC2P element.cooiiuiiiiiii i e 63
Figure 4-4 The S €lement.ooiuiiii i e e e e ree e 64
Figure 4-5 The Fetch component.l il oo, 64
Figure 4-6 The Sequence COMPONEGHL.awsms e e aeh v v enneeenteetteenteenneeaeeenteeaneeenenenes 65
Figure 4-7 The Concurrent CompOneNt. ... i i ettt ee e e eeeeaeens 65
Figure 4-8 Architecture of asynchronous TEEB modeled with Balsa HDL........................ 66
Figure 4-9 Handshaking component graph 0f CU..o 72
Figure 4-10 Handshaking compoenet graph of PA Generator................c.coooiiiiiiiini 73
Figure 4-11 Waveform of circuit simulation...............coooiiiiiiiiii e, 74
Figure 5-1 Simple VLSI design flow........oouiiiiiii e, 80
Figure 5-2 Our asynchronous processor design flow.............ccovviiiiiiiiiiiiiiiiin e, 81

viii

List of Tables

Table 1-1 Comparisons of ARM996HS and ARMO968E-S..........cocoiiiiiiiiiiiiii 4
Table 4-1 Definitions of asynchronous TLB interface................cooooviiiiiiiiiiiiiinin 60
Table 4-2 Structure of each TLB entry.........ccoouiiiiiiiiiii e, 69
Table 4-3 Structure of each TLB bank tag..............cooiiiiiiiiii e, 69
Table 4-4 Structure of 4-bit TLB command...............coooiiiiiiiiiiiiiiiiiiee 71
Table 4-5 Data signal of TLB_hit channel...............c.ooii i 71
Table 4-6 Equivalent gate COUNt...........oiuiitiiitt it e e e e 74

X

Chapter 1: Introduction

1-1 Motivation

Embedded processors and microcontrollers are widely used in varieties of different
embedded systems and handheld devices. Because of new complex applications today, these
processors are now required to execute new embedded operating systems. Thus it’s very
important to provide the capability to support virtual memory mechanism needed in modern
operating system. In order to provide fast address translation, the translation lookaside buffer
(TLB) should be provided inside these processors now. Furthermore, because of the
embedded system or handheld devices nature, simple and easy context switching model
should also be provided. In ordersto reduce ‘the address translation penalty of context
switching, a well-designed TLB-with Iow context switching miss ratio is needed for these

processors [1,2,3].

In addition, to keep those processors operating with high robustness and low power
consumption are the two most important issues. It is widely known that asynchronous circuit
is the best solution to address these two issues at the same time [4,5,6,7]. Thus embedded
processors and microcontrollers may be suitable to be implemented with asynchronous
circuits. However, it’s not very easy to implement the TLB that needed for modern operating
system for asynchronous processors. In our work, we proposed TLB architecture with low
context switching miss ratio that is suitable for embedded systems that runs only some tasks

and implement the TLB controllers with asynchronous circuits.

1-2 Introduction to asynchronous circuits

Asynchronous chips improve computer performance

by letting each circuit run as fast as it can!

By Ivan E. Sutherland and Jo Ebergen
"Scientific American", August 2002 [4]

It is widely known that synchronous circuits have some problems that have to be
carefully dealt with, such as clock skew, difficulty in clock distribution, worse case
performance, not modular, sensitive to variations in physical parameters (temperature, voltage,
and process), synchronization failure, and noise (EMI). All these problems derive from the
“clock” signal [4,5,6,7]! As the VLSI based systems become larger, more complex, and work

with higher clock rate, these problems also become more serious than ever before.

In addition, to reduce the power-consumption-has already become one of the most important
issues in large VLSI system design. It is widely known that the dynamic power dissipation
P fev’[8]. That means that the dynamic power consumption is in proportion to the number of
switching activities. In order to improve the circuits or system performance, the clock
frequency becomes higher and higher. Thus, the extra power wasted in the clock tree
distribution also becomes larger and larger. That’s very clear that clock signal consumes a
very large proportion power of the whole chip. For example, the clock tree distribution
network of DEC (Compaq) Alpha 21064 processor consumes about 40% power when it runs
at maximum speed [9]. Similarly, the Motorola MCORE micro-RISC processor consumes
36% power in clock tree distribution [10]. In fact, the clock distribution network should be
responsible for an increasing fraction of the dynamic power consumed by modern processors
and SoCs [11,12,13]. Thus, if the clock signal can be removed, the power consumption may
be reduced with very high possibility. In order to reduce the power consumption, lots of
different techniques are proposed and implemented, such as clock gating and dynamic voltage
and frequency scaling (DVFS)[14]. Furthermore, higher clock frequency may also cause the
temperature of the VLSI chips very high. It’s also harmful for embedded systems or handheld

devices. We can say that all these problems cause nightmares for almost all VLSI-based

system developments today.

On the contrary, asynchronous circuits can easily reduce the power consumption via
removing the “clock™ signals that spread the whole VLSI chip. Replaced by the handshaking
protocols, asynchronous circuits offer low active power and almost zero standby power
[4,5,6]. In fact, because of data-driven nature, the inactive components or parts of
asynchronous circuits can be automatically “shut-off.” Thus, asynchronous circuits can offer
very good power efficiency. For example, the most famous asynchronous ARM compatible
processors—the Amulet series processors [15,16,17,18] shows very good power efficiency
than its synchronous ARM processor counterparts. Another very famous example, Philips
asynchronous 80C51 microprocessor is 4 times power efficient than that of its synchronous
counterparts [19]. The most interesting of all is the latest ARM996HS processor that is the
first commercial-available synthesible 32-bit CPU built with clockless logic[7,20]. It
consumes about 2.8x less power than the clock-gated ARM968E-S core. Table 1-1 shows the
comparisons between ARMO996HS ' and: ARM968E-S [7]. The table also shows that
ARMO996HS can operate correctly in varieties of operating environment. It can operate with
lower voltage in high temperature envitonment: Asynchronous circuits are much more robust

than synchronous circuits.

In fact, designing the “clock™ system has been becoming the critical issue in large VLSI
system design today. For example, very complex “clocking architecture” is implemented in
the latest Intel® 45nm 8-core Xeon® Enterprise processor announced in ISSCC2009 [21].
Figure 1-1 shows its clocking architecture. The design has totally 16 PLLs, 8 DLLs, and
independent clock domains for each cores and the uncore. What a complex design it is!
Unfortunately, such designs are very popular today. Since the first microprocessor, the Intel®
4004, was announced in 1971, the VLSI technologies have had great improvement. To put
one billion transistors on a single chip have been becoming possible. How terrible it is to

design the “clock™ system on such big system!

However, because of several complex historical and practical reasons, almost all systems

today are still implemented with fixed clock period based design. While synchronous design

may introduce lots of problems with systems growing up larger and larger, asynchronous
design may overcome these problems via avoiding the use of clock signal. Furthermore, how
to accomplish IP reuse easier becomes one of the most important issues for SoC design.
Asynchronous circuits may be one of the best solutions to address this issue. Without the
influence of the “clock” signal, asynchronous circuits make “software OOP” style design for
hardware design possible. All things that the designers need to know are the handshaking
protocol interface [4,5,6]. It also makes each designed component or IP more reusable. With
growing up mobile device and embedded system markets, all these issues need to be seriously

considered. Thus, it’s time to implement these systems with asynchronous circuits.

Table 1-1: Comparisons of ARM996HS and ARMY968E-S

Frequency Performance Power Gate Count
[equiv. MHz] [DMIPS] [mW/equiv. MHz] [NAND2
equiv.]
ARM996HS 0.045 89K
(nominal, 1.2 V, 25°C)
ARMO68E-S 0.13 88K

(nominal, 1.2 V, 25°C)

O BCLK [] Filter PLL
= 10 PLLs [J Unworc PLL
B oDl [0 CorePLLs

Figure 1-1: Clock distribution domains and generators

4

1-3 Introduction to Translation Lookaside Buffer

In order to support larger memory requirements for modern applications, it’s important
for modern operating systems (OS) to provide the virtual memory mechanism. Conceptually,
with virtual memory, the movements of code and data of one program between main memory
and secondary storage can be automatically achieved, and a single complete and contiguous
“memory space” can be given for each program. Thus, only part of code and data of one
program needs to be placed in main memory. Programmers do not need to know anything on
how the code and data are arranged. Moreover, the program size can be even larger than the
real physical memory size. In fact, virtual address space are often much larger than real
physical memory space and size. Figure 1-2 shows the conceptual virtual memory. The virtual
memory is divided into lots of fixed size blocks called pages and each page has a specific
page number called Virtual Page Numbér (VPN). Similarly, the physical memory is also
divided into the same size page frames, and-each of'it has its own unique page frame number
called Physical Page Number (PPN): Via the memory:mapping, each page of virtual memory
can be mapped to a page frame of physical memory or the secondary storage. With

appropriate hardware support, the virtual memory is.carefully maintained by the OS [22].

As mentioned before, the OS is responsible to provide the mechanisms to map virtual
address to physical address. However, all these virtual address to physical address translations
are stored in main memory. To reduce the cost of address translations, the translation
lookaside buffers (TLBs) are widely implemented inside the processor [23,24,25,26,27,28].
Figure 1-3 depicts the basic design idea of TLB. Once the virtual address (VA) is sent to TLB,
it is compared with all the tag fields to find a matched VPN. If it is a hit, the corresponding
PPN will be sent out. The physical address therefore can be generated via the combination of
PPN and offset. Otherwise, if it is a miss, the page table traversal will be performed. The OS
will take care of the TLB miss handling.

But, the virtual memory mechanism varies with different processor architecture and OS

implementation. The page table organization dominates the page table traversal time that

occupies most TLB miss handling time. Though some new architectures use some advanced
page table organizations to reduce the page table traversal time such as inverted page table
structure [22] such as PowerPC architecture[29], the forward-mapped hierarchical page table
structure are still widely used, such as Compaq/DEC Alpha AXP[28], the latest AMD64, and
Intel“64 [30,31,32] architectures. It costs several main memory accesses to fetch the correct
Page Table Entry (PTE) if any miss occurs. It even possibly needs to traverse 7 levels of
different page tables on processors with 64-bit addressing [33]. Figure 1-4 shows the page
table structure of IA32¢ mode with 4KB page size of Intel64 architecture. If no any TLBs
and address caches are implemented inside these processors, traversals of four levels of
different tables should be completed to obtain correct PPN. Figure 1-5 shows the page table
structure of Compaq/DEC Alpha AXP [28]. It has three levels of page tables. That impacts
the overall system performance very seriously. Thus it’s important to reduce the TLB miss

rates for systems with such page table structure.

In addition, frequently happened context switching may cause some extra TLB misses.
Some research even shows that these misses.play.important role in TLB performance [1,2,3].
Thus most processors have implemented some kinds: of address space identifier (ASID) to
distinguish each address space [25]. For eéxample, MIPS R10000 processor has an 8-bit ASID
for each of its 64-entry TLB to allow centext switches without having to invalidate all entries
[34]. It is also suggested to provide 8-bit ASID for SPARC architecture [35,36]. However,
some processors including the IA32 (x86) architecture which is the most popular processor
family today simply flush all the TLB entries when the context switching occurs [31,1].
Unfortunately, it’s even still the same for the latest IA32 processors. We’ll treat the model as
the worse case performance. Though lots of different research about TLB has been done, only
some notice the influence of context switching. That may be because it’s very hard to model
and estimate the context switching activities caused by the OS and it’s also hard to consider
this issue without considering the OS behavior first. In our work, we tried to provide an
alternative to address the context switching issue for TLB. To support the proposed
mechanism, the OS should be modified a little. In fact, because of architecture differences,
these kinds of modifications of OS for TLBs are needed for all architectures. We hope that
this simple mechanism can be implemented inside an asynchronous embedded processors or

microcontrollers that only run some tasks simultaneously.

To estimate the performance of the proposed architecture, we did some simulations. All
the simulations were done by the modified SimpleScalar Version 3.0d tool suite [37] provided
by the SimpleScalar LLC with SPEC95. In addition to the performance of traditional
1024-entry fully-associative TLB with x&86-style assumption, we also compare the
performance of 1024-entry fully-associative TLB with ASID and two different pre-fetching
mechanisms incorporate with our proposed design. The results show that our banked design

can work very well with sequential prefetching (SP, also called linear pre-fetching).

Our work is trying to realize TLB controllers for asynchronous embedded processors or
microcontrollers with low TLB miss rate caused by context switching. Though most
processors reduce the miss rate caused by context switching with ASID, our work provides an
alternative to address this issue. There are several reasons for the proposed architecture. These
embedded systems only execute some tasks at the same time. Thus, it really doesn’t need to
store too many ASIDs. That’s why no ASIDs TLB design of StrongARM SA-1100 processor
[2,3]. Don’t forget these processors.are not designed for desktop purpose. Figure 1-6 shows
smart phones that execute Windows " mabile OSiIn fact, because we wish to implement such
TLB for asynchronous embedded processors or microcontrollers, less tag bits may be more
important than other issues. In addition, wWe also discuss why sequential prefetching is more
suitable for the proposed design:: Moreover, . we’ll try to realize this design on the
asynchronous processor which we currently work for. That would not be too hard to realize
the proposed mechanism on an asynchronous processor with same extra handshaking

protocols on bundled delay or self-timed design.

Virtual
Memory

Page 0

Page 1

Page 2

Page 3

Page 4

Page N

Memory
Mapping

Pysical
Memory

Secondary
Storage

< __ >
LT
NN
NN
NN
=0
NN

v

Figure 1-2: Conceptual virtual memory

Visual Address

Physical Page #

TLB miss

Page
TLB Table
VPN | PN | Tl b Table
Lo PTE
TLB —]
Search
TLB hit

Physical Address

Physical Page # ‘ Offset
Physical Memory
0 1 2 3 N

Figure 1-3: Virtual address translation with TLB

Linear Address
63 48 47 39 38 30 29 21 20 12 11 0
[Sign Extended| PML4 | Directory Pir | Directory | Table [Offset |
| 9 5
7

/12 4-Kbyte Page

» Physical Addr

Page-Directory-

Page-Table Entry [—*

Pointer Table Directory Entry — Page Table
Page-Directory
» Dir. Pointer Entry|
9
512 PML4 *512 PDPTE * 512 PDE * 512 PTE = 235Pages
— PML4 Entry —

CR3 (PML4)

Figurel-4: Page table structure of IA32e mode with 4KB page size

48

) [J
. < Virtual address

segO/segl 000 +++ 0 or
Selector 111 -+ 1

Levell

Level2

Level3

Page offset

Page table F N —
base register - w5 1896 o

L1 page table

T2 page table
Page table entry

13 page table
Page table number

Page table number

l Physical address

A
Physical page frame number Page offset

Main memory

Figure 1-5: Virtual to physical address translation of Alpha AXP

Figure 1-6: Smart phones with Windows® Mobile OS

10

1-4 Summary

As mentioned in previous section, new embedded systems or handheld devices now
begin to execute new modern operating systems. It therefore becomes more and more
important for these processors to provide efficient address translations. A well-designed TLB
now becomes one of the critical performance issues for these processors. In addition, because
embedded systems and handheld devices may operate in varieties of environments, robustness
and reliability are two of the most important issues to these processors. Asynchronous circuits
can easily address these issues. However, lack of address translation mechanism, most
asynchronous processors doesn’t support virtual memory directly. In order to support virtual
memory for asynchronous processors, asynchronous TLB controller should be implemented.
Thus, in this thesis, we propose a TLB architecture for future asynchronous embedded
processors, and modeled it with Balsa HDL. Followings are the main contributions of this
thesis.

® Plenty surveys of TLB studies

® Plenty surveys of asynchronous circuits, and detailed introductions of how to design

circuits with asynchronous circuits

® Studies of performance issue of TLB'in context switching

® New alternative TLB:architecture -with- low miss rate in context switching for

asynchronous embedded processors

® Studies of implementation of proposed TLB architecture with asynchronous circuits

® Confirming the possibility to design TLB controller for asynchronous processors

11

Chapter 2: Related Works

In this chapter, we’ll discuss the related works of both TLB design and
asynchronous systems or circuits design. Because only a few specific research on TLB design
for asynchronous processors, we’ll discuss them separately in this chapter. Finally, case

studies of asynchronous MMU or TLB design will be discussed.

2-1 Recent studies of TLLB

As mentioned in Chapter 1, TLB plays an important role in the overall performance of
the processors that support virtual memory technique. Thus, lots of different research has
been done. Moreover, because of architecture and addressing mode differences, the real
implementation may have great differences. The design requirements may even vary from
different page modes or new addressing-mode support for the same processor. However,
that’s quite interesting that the TLB designs of most real commercial processors are not too
complex. Most of them are not implemented-withtoo complex algorithms or architectures.
The key issue of these designs is to reduce the ' TLB search time. Some related works of TLB
research will be described in the following paragraphs. These works will be classified into
traditional techniques, advanced techniques, and works of reducing TLB context switching

miss rate.

2-1-1 Traditional Techniques

Because TLB in fact is part of the memory hierarchy and can be considered as a special
designed cache memory to cache the page table entry, it can be directly perceived through the
senses that those traditional techniques to improve the cache performance can also be applied
to TLB. That also means the 3Cs misses [28] can be also suitable for the TLB. In fact, those

techniques are now widely used in commercial processors in different ways.

12

In order to reduce the TLB miss rate, most processors increase the size (total entries) of
TLBs with fully or set associative. For example, recent AMD Opteron™™ processor has both
512-entry L2 instruction TLB (ITLB) and L2 data TLB (DTLB) [38] and the IBM POWER4
processor has a common 1024 entry TLB for each processor core [39]. Furthermore, some
processors even try to provide multi-level TLBs, such as 2-level ITLB/DTLB design on
recent AMD Opteron™ processor [38] and each core (Nehalem architecture) of the latest
Intel®Core i7" processor [31]. Figure 2-1 shows the TLB designs of the Intel*Core i7"
processor. Each core of the processor has separated the Instruction and Data TLB with a
unified Second-level TLB (STLB). In addition, some processors begin to provide larger page
sizes to increase the TLB span, such as 2MB or even 4MB page size on all new Intel 1A32

Processors after the Pentium® Pro Processor [40]. The Intel IA64 architecture offers 4K to

256MB and 4GB page sizes [41]. The AMD64 architecture also provides 4KB, 2MB, 4MB,
and incredible maximum 1GB page sizes [42]. There are several advantages of larger page
sizes. First, because the page table entry can be reduced, it can save the page table sizes.
Second, it allows for larger physically;addtessed caches. Third, because each page can map
larger memory spaces, fewer page tablesrand TLB entries can be used. Finally, because the
level of page tables can be decreased, the fewer-accesses to main memory are needed to
generate correct physical page number' if“TLB miss occurs. Figure 2-2 shows the page table
structure of IA32 mode with 4KB'pagé size of [A32 architecture, and Figure 2-3 shows the
page table structure of IA32 mode with'4MB" page size of 1A32 architecture [31]. We can

easily find that with larger page size the levels of page tables can be decreased.

. Instruction
Instruction Decoder and front end ‘<—+ ITLB “—’E

Y

Chipset

Out-of-Order Engine

Data TLB }4—» STLB m™mC

——

Data Cache
Unit (L1)

L2 Cache

L3 Cache

Figure 2-1: Structure of TLBs and cache memories of Intel® Core i7

13

Linear Address
31 22 21 1211 0

Directory Table Offset

4-KByte page

10 10 Page Table

Physical Address

Page Directory

L_,| Page-Table Entry >

20
L Directory Entry >
—
3

2% 1024 PDE * 1024 PTE = 2%Pages
CR3 (PDBR) |

*32 bits aligned onto a 4-Kbyte boundary.

Figure 2-2: IA32 Linear address translation (4-KByte page)

Linear Address

31 22921 0

Directory Offset
22
4-MByte page

10 flage RO Physical Address

L » Directory Entry >
10
32% _
\ CR3 (PDBR) | 1024 PDE = 1024 Pages

*32 bits aligned onto a 4-Kbyte boundary.

Figure 2-3: IA32 linear address translation (4-MByte page)

2-1-2 Advanced Techniques

As mentioned in previous paragraph, most contemporary processors now provide some
different page sizes from 4-KB size to incredible very large sizes. Some even allow these
pages with different sizes coexist simultaneously with some augmented page table entry
format. Certainly, it needs extra supports of OS. In fact, with small page size, the memory

space can be saved. That’s because with larger page sizes, memory spaces would be wasted

14

due to the internal fragmentation. In addition, with small page size, the startup time of small
program would be shorter. However, to provide several page sizes, some commercial designs
put several TLBs inside the processor for each individual size. Some try to modify the TLB

entry format and therefore the TLB can be shared with different page sizes.

In addition to what we mentioned in previous paragraph, several interesting
mechanisms are proposed to support superpaging. Several base pages with both virtual and
physical address alignment can be merged into a larger page called superpage at run time
[43,44,45,46]. With superpage mechanism, the internal fragmentation problem can be
resolved. However, to support a superpage, very complex OS and hardware interactions are
needed. Furthermore, the virtual and physical memory space aligned limitation seriously
impacts the usage of a superpage. Hence, some studies have focused on overcoming the
limitation by dynamically supporting the superpage mechanism. Talluri et al. described an
advanced method called the complete-subblock which allows a single TLB block to map to
multiple base pages without any special OS support [43,44]. In addition, they also described a
much smaller design called the partial-subblock which shares PPN and attribute fields across
base page mappings. Figure 2-4-shows a complete-subblock TLB block (entry) with factor 4.
Lee et al. proposed a novel banked-promotion TLB structure to support two page sizes
dynamically [47]. Four 4KB pages ‘can be promoted to a 16KB superpage. To support such
mechanism, an interesting promotion TLB was designed. The heuristic promotion algorithm
can promote four consecutive entries from small-page TLB bank to large-page TLB bank.
Thus, the four 4KB TLB entries can be reused. Furthermore, in order to reduce the power
consumption and TLB reference latency, they even divided the TLB for 4KB page into two
banks [48]. Figure 2-5 shows the structures of their promotion TLB and banked-promotion
TLB. In addition, Swanson et al. presented a novel memory controller (MMC) which can
aggressively create superpages even from non-contiguous and unaligned regions of physical
memory space [49,50]. Figure 2-6 depicts this design. In this design, they suggested to use a
portion of unused physical memory address range to virtualized physical memory in their
proposed MMC. The shadow pages are “shadow” of accessed page that can be remapped to
real physical address by MMC. The TLB reach can be extended via a novel Memory
Controller TLB (MTLB). Thus the superpage can be aggressively created from
non-contiguous and nonaligned regions of physical memory. Park et al. proposed a way to

integrate both partial-subblock with MMC to improve TLB performance [51]. They also

15

proposed a method called Variable-Size Subblock TLB (VS-TLB) which is an extension of
original subblock TLB to support multiple size subblock. Based on the original subblock TLB
design, they added subblock size field (SS) for each entry. With this extension, the total TLB
reach can be increased via its maximum subblock size. There is still much research about

improving TLB performance of superpaging.

Besides previous research, some different and interesting research can also be found.
Channon et al. presented the reconfigurable partitioned TLBs to improve the TLB
performance [52]. They claim that traditional split instruction and data TLB design is not
suitable for unpredictable memory reference pattern. Thus the reconfigurable partitioned TLB
can reduce misses between distinct reference types. The reconfigurable partitioned TLB can
dynamically adjust the position of the partition in real time. Figure 2-7 shows this design. In
addition, some research focus on the low power issue. Besides some architecture
improvements to reduce power consumption such as baking skills, some even try to redesign
the basic circuit element itself. Forlexample, Juan presented low power CAM and SRAM
cells design that can be implemented [53]. They also studied the relationship of power
consumption and associativity- of ‘TLB..They concluded that small TLB with fully
set-associative and implemented-with modified cell can save more power. Because TLB is
part of memory hierarchy, some research tries to integrate both TLB and cache memory.
Among all of these studies, Lee et al. proposed an interesting way to reduce the tag memory
of cache memory [54,55]. The design uses share tag memory of both TLB and cache memory.
They still use CAM as the tag memory for TLB. However, the cache memory shares the same
tag memory. The index tag memory of cache now only stores encoded index of an entry in
shared tag memory rather than the PPN. Thus, the total tag memory sizes can be reduced.
Figure 2-8 shows this design. In addition to these hardware efforts, lots of different software
efforts can be found. Instead of hardware managed TLB, software management TLBs are
widely used in lots of new RISC processors, such as SPARC, Alpha AXP, PA-RISC and
MIPS architectures [23,25]. In fact, there are still varieties of different studies of TLBs and

virtual memory.

Though lots of new TLB designs are proposed, just only a few studies focused on the
TLB entries prefetching/preloading. Saulsbury introduces an interesting mechanism, called

the Recency-based TLB Preloading (RP), to prefetch the TLB entry according to the

16

“Recency” of the referenced pages [56]. The mechanism maintains the “Recency Stack” via
augmented translation table entry in memory and the TLB inside the processor according to
the recently referenced pages. Thus the next possible referenced page number can be
prefetched. Figure 2-9 (a) shows how the stack changes inside the processor if the TLB
reference is a hit. Because it’s a TLB hit, the recency of all translation table entries (TTE) of
the translation table will not be changed. Figure 2-9 (b) depicts how the “Recency Stacks” of
both TLB and translation page table change if the TLB reference is a miss. After the missed
TTE is moved to the top of TLB stack, the recency of both TLB entries and the translation
table entries will be changed according to the recency stack position. Finally, the TTE with
“recency * 1” of missed TTE can be prefetched into the prefetch buffer inside the processor.
It should be noted that in real implementation all the TTE positions of “Recency Stack™ are
maintained by the previous and next pointers of each TTE. Figure 2-10 shows the
implementation of the translation table in memory. However, the mechanism may increase the
memory traffic and the PTE should do some changes to store the stack pointers for the
link-list. To solve these possible problems, Kandiraju proposes a new prefetching technique,
called the Distance Prefetching (DP), aceording tor the recently referenced pages ‘distance
(stride)’ [57]. The mechanism maintains a table to keep the track of differences between
successive address references and do prefetching according to the predicted distance. Figure
2-11 shows the implementation of TLB with DP technique. The paper also shows a generic
schematic prefetching hardware and‘compares other possible prefetching techniques
borrowing ideas from the cache prefetching techniques, such as Sequential Prefetching (SP),
Arbitrary Stride Prefetching (ASP) and the Markov Prefetching (MP). Figure 2-12 shows the
schematic of generic prefetching hardware. Because of the implementation costs, we’ll focus

on the studying of the SP and DP in our work.

VPBN ‘ BV ‘ Vo PPNO ATTRO
Vi1 PPN1 ATTR1
V2 PPN2 ATTR2
v3 PPN3 ATTR3

Figure 2-4: Complete-subblock TLB with block factor 4

17

| et | Oftser ‘

AKbyte

Bunked-TLB

| Tag part
| hank offset
0
Hank 0 Bank |
Virtual page number 1
(VEN) L L
caM [sram CAM [SRAM
VPN [= PN VFN e FPN
kbyie) f— Al (dkbyte) || Amrib
TAG DATA I ‘
4Kbyte VPN tag (CAM) (SRAM) 4Kbyte TLB I
- TLB Hit
VPN PPN
(4Kbyte) (4Kbyte) atrrib
Physical page number
To cache
4Kbyte TLB bi TAG _
»
Promotion Promotion bit(old PPN)
16Kbyte VPN tag s Promorion bit(new PPN) Page table To cache TAG
J'—Iﬁ—l ———— |entry from
off chip Physical puge number
memory
CAM SRAM SRAM SRAM SRAM
VPN B SRAM | SRAM | SRAM | SRAM
(16Kbyte)| PPN Abyte L
¥e VPN PPN PPN PPN PPN
16K byte TLB o n b b
l * * * e (16KBYTE) (dbyte) | (dbwte} | (dbyie) | (dbye)
LB |
Hir
16Kbyte TLB hit

16K byre
Promotion

Figure 2-5: Promotion TLB structure & Banked-promotion TLB structure

Shadow Addresses

Physical Addresses

0x04012000

Virtual Address
0x00004000 S 515D 0x80240000,
0x00005000 0x80241000°1
0x00006000 S 0x80242000
0x00007000 0x80243000
g =
.22 5 -3
. L O T |53
= T a9 = Q €
virtual ~ *Physical* size 5588 shadow physical € & 5
00004 [80240 [001 [Y[Y[Y[Y]N] 80240 40138 [Y[Y[]Y
80241 04012 [Y[Y[N
Processor page table/TLB 80242 disk N|-|-
80243 06155 [Y[Y[Y
MMC page table/TLB

0x06155000

0x040138000

Figure 2-6: MMC example with shadow region

18

PID VIRTUAL ADDRESS

Page Offset

14 445 12

Page Tag PID Real Page

Instruction

165 14 25
— 445 14 12 .
65 14 87

Data

Kernel Partition

12 12

REAL ADDRESS

Figure 2-7: Reconfigurable partitioned TLB

13912 54 0

Virtual Address ‘ Index ‘ Offset

—| Index TAG ™ Cache Data

hit

) ¥

| Index bits

L»| Shared TAG e —EL.
63 g =
') L1
6
TLB
-~ Data | Index TAG > Cache Data
Memory

Physical Address

Figure 2-8: Share tag design of TLB and cache memory

19

s TLB

CpPU’

A A A
B B B
c c c
2
=1
83 g X X X
g3 E Y Y Y
SEc
© ® z Z
¢ EE !
Before During After

(a)

2) Selected TTE is
loaded into/TLB

3) TTE displaced
from TLB is added to A
head of recency stack
B
C
X
z z z
1) Selected TTE is
unhooked from
recency stack
Before During After

(b)

Figure 2-9: Operations of “Recency Stack”

20

Memory

Page Table
Virtual Physical
Address Address Prev Next
‘ VA2 | PA2 |

‘ VA1 | PAl |

‘ VA3 | PA3 |

\
\
]

\
J

Extra fields that are
required in the PTE

Figure 2-10: Memory translation table of TLB with “Recency Prefetching”

Previous Page #

Missed
Page #

Predicted Distances

1. Calculate the current Distance

2. Index the table, check if this distance is
present

3. If this distance is present, add the predicted
distances to the current page #

4. Store the current Distance as a predicted
distance of the previous distance

i
|
i
I}
T
|
|
|
I
:
|
Previous Distance di a2 d3 5. Overwrite the previous distance by the
! current distance.
|
1
I
I
I
|
|
I
|
|
|
I
I
T
|
T
I
I

v

|
1
I
I
|
|
L
|
|
|
|
1
1
I
I
T
|
|
I

s

Prcﬂ:‘lch Address

‘ Issue requests to the memory

Figure 2-11: TLB with “Distance Prefetching”

21

Any other information (Program Counter etc.)

CPU
Page #
—

TLB Repl

Missed Page #

—_—_——_—— e —_——_— — —

| Requests to the

. Memory Subsystem
Prefetch Logic 4I—>

I
I
I
I
iss |
? %,T,E‘?Ii@si,r,,,, |
J .
7 I | Page Table Entries
I
|
T
I

Hit / Miss
information

Prefetch Buffer ~a
Specific to a Mechanism

Figure 2-12: Schematic of generic TLB prefetching hardware

2-1-3 Reducing TLB Miss Ratein Context Switching

As mentioned in previous,sections;~the-~TLB miss handling requiring several main
memory accesses and that impact the overall performance seriously. However, in traditional
design, the simplest way to deal with context switching (address space switching) for TLB is
to flush all the TLB entries. Thus, that’s even worse if the miss caused by TLB flushing of
context switching. After the flushing of the TLB, it needs lots of “learning time” to refill these
entries. However, only a few studies focus on this topic. Liedtke try to reduce the possibility
of TLB flushing of address-space switching via integrating the segmentation mechanism of
x86 [1]. Based on the L4, Wiggins and Heiser try to avoid reloading translation table base
register by using a pointer register that points to a caching page directory (CPD) [2,3]. The
basic idea of this implementation can be described as following sentences. The CPD contains
entries from a number of different address spaces and each of it is defined by its own page
table. Once the TLB miss occurs, the hardware only needs to reload the TLB via indexing to
the CPD that contains pointers to LPT (Leaf Page Table, an array of 256 entries PTEs) of
various address space. If it’s a miss, the current thread PD (page directory) should be indexed
by handler to find a valid entry. Then the entry should be copied into CPD. The handler
restarts the thread. Finally, the hardware can reload TLB. Now, only a valid page table entry

22

should be found. Figure 2-13 depicted this basic idea. In fact, still lots of other research tries
to reduce the possibilities by modifying the OS or page table structures. Besides these
software solutions, the basic method supported by TLBs is to provide address space identifier
(ASID) for each entry to identify each address space. Figure 2-14 shows the TLB with
per-entry ASID tag.

LPTy LPTy, LPTy, LPTy,

Figure 2-13: CPD and per-address page tables

ASID VPN PPN
A 0x8000 0x100
B 0x8000 0x400
B 0x8200 0x3500
A 0x8020 0x120
| A | 0x8100 | 0x200 |

Figure 2-14: TLB with per-entry ASID tag

23

2-2 Circuit design with asynchronous circuits

The technological trend is inevitable:
In the coming decades, asynchronous design will become prevalent!
By Ivan E. Sutherland and Jo Ebergen
"Scientific American", August 2002 [4]

Asynchronous circuits have been studied since early 1950’s; however, synchronous
circuits have still dominated the mainstream of digital circuit design [4,6]. Recently, some
academic and commercial research shows that it’s worth to implement real-life systems with
asynchronous circuits. But, without the global synchronization signal called “clock”, it makes
asynchronous circuit design very difficult. In order to replace the “clock signal”, handshaking
protocols between each part of asynchronous circuits are needed. It therefore makes the
circuit costs of asynchronous circuits‘much higher than synchronous counterparts. In addition,
because of lack of tools and standardizatron of implementation and design models, there is
still not much research on it and that limits-applications in commercial products. In fact, it’s
very hard to find commercial products that are implemented with asynchronous circuits. In
this section, we’ll discuss topics‘of.asynchronous circuits from the classifications of
asynchronous circuits, handshaking protocols, research of asynchronous circuits, and case

study of implementation with asynchronous circuits.

2-2-1 Classifications of Asynchronous Circuits

We have discussed so many issues of asynchronous circuits, but you may ask what
asynchronous circuits are. In fact, it’s not very hard to answer this question. We can say that
asynchronous circuits are circuits without any global synchronization signal called “clock.”
Based on this assumption, asynchronous circuits can be classified into four classes depending
upon the delay model of gate and wire of the circuit. The four classes are Delay-Insensitive
(DY) circuits, Quasi-Delay-Insensitive (QDI) circuits, Speed-Independent (SI) circuits, and
Self-Timed (ST) Circuits [5,6].

24

Delay-Insensitive (DI) circuits are the most robust and reliable circuits of all. These
classes or circuits permit arbitrary (unbounded but finite) delays on gates and wires. The basic
concept of DI circuits derives from Clark’s “Macromodular computer systems” proposed in
1967 [58]. However, because of its “arbitrary delays on gates and wires” nature, only a few
circuits belong to this class. Martin already proved it in 1990 [59]. Thus, enormous limitations

exist in designing DI circuits.

Because it’s too hard to implement pure DI circuits, Quasi-Delay-Insensitive (QDI)
circuits relieve a little in arbitrary delay on wires. QDI circuits are DI circuits with
1sochronous forks. It means that all branches of a forked wire have exactly the same wire
delay [60]. Figure 2-15 shows the isochronous fork. In this example, the signal from A can
propagate to both B and C with the same wire delay. With this assumption, it permits DI class
circuits can be more practical. In fact, in order to meet DI and QDI constraints, the
implementation costs of these circuits may be higher. In addition, they should be carefully
implemented to avoid violations of the constraints..Thus, to implement such circuits are really
very difficult. However, because no extra delay.assumptions, DI and QDI circuits may be

attractive for asynchronous VLSI circuit synthesis {60},

The concept of Speed-Independent "(SI) “circuits first appeared in 1959 proposed by
David Muller [59,60]. The class of circuits allows arbitrary (unbounded but finite) delays on

gates but assumes zero wire delays. The SI circuits can be modeled with Petri net [63].

Self-Timed (ST) circuits are popular in lots of asynchronous circuit implementations. It
is introduced by Seitz in 1980 [64]. The ST circuit is composed of a group of ST elements and
each of ST elements is inside of an “equipotential region.” The wire delays of the region are
negligible or well-bounded. The elements can be DI, QDI, SI, or circuits that can operate
correctly with some local timing assumptions. There’s no any timing assumption on
communications between regions. That also means that the communication belongs to DI. For
example, Chang et al. proposed a ST torus-network with 1-of-5 DI encoding in 2009 [65].
The implementation uses DI encoding communication between each parts of the whole

design.

25

Figure 2-16 shows the relationship of these models of asynchronous circuits. If the

design contains both DI components and ST components, it should be an ST circuit.

A fork

Figure 2-15: Isochronous fork

Async
<>

Figure 2-16: Classifications of asynchronous circuits

2-2-2 Handshaking Protocols

Without a clock to govern its actions,

an asynchronous system must rely on local coordination circuits instead!
By Ivan E. Sutherland and Jo Ebergen

"Scientific American", August 2002 [4]

Without clock signal, asynchronous circuits rely on handshaking protocols to make sure
the correctness of the circuit operations [5,66,67]. The protocols can be divided into control
signaling and data encoding. A complete handshaking protocol is a combination of the control
signaling and data encoding. Figure 2-17 shows the 4-phase handshaking protocol. In this
protocol, only the rising edge is the valid active transition; thus it’s a level signaling or

return-to-zero protocol. On the contrary, in the 2-phase handshaking protocol, the falling and

26

rising edge of request and acknowledge are active signals; thus it’s a transition signaling or
non-return-to-zero protocol. However, it makes the circuits, especially datapath circuits,
very complex and hard to implement. Figure 2-18 shows the 2-phase handshaking protocol. In
addition to control signaling, there are also choices for how to encode data (data signaling
protocol). The Bundled Data or called Single Rail refers to separate request and acknowledge
wires that bundles the data signals with them. Thus total n+2 wires are required to send n-bit
data. Figure 2-19 shows the bundled-data model. Besides bundled-data model, there are data
encoding methods for DI circuits. However, because of implementation issue, dual-rail
encoding is the most popular used DI data encoding scheme. To represent 1-bit data in
dual-rail encoding method, two physical wires are used. For example, a valid data, D is
represented by two physical data wires, d.0 and d.1. The following equation shows this
encoding scheme. (1) D=0 (d.0,d.1) =(0,1) (2) D=1 (d.0,d.1) = (1,0). In particular, (0,0)
represents a space which allows us to identify consecutive 0's or 1's. (1,1) state is not used.
Data transferring starts from the (0,0) state (called “null” or “empty” data). If a state is
changed from (d.0,d.1) = (0,0) to (0,1)/(1;0),»which notices the arrival of valid data '0/1'. Thus

total 2*n wires are needed to transfér n-bit-data..Figure 2-20 shows the dual-rail model.

Request

7SS

Acknowledge

. b 1 l Done event i+1
Start event 1 I

Start event i+1

Event 1 done

Ready for next event

Figure 2-17: The 4-phase protocol

27

Request

NSNS

Acknowledge

A
Start event i ‘ Event i+1 done

Event 1 done

Start event 1+1

Figure 2-18: The 2-phase protocol

Request

¥

Acknowledge

&
+

Sender Receiver
Data

Figure 2-19: Bundled-data signaling model

Acknowledge

gt

Sender Receiver
Data

2n

Figure 2-20: Dual-rail data signaling model

2-2-3 Research of Asynchronous Circuits

Though it’s not very easy to conclude all studies of asynchronous circuits, we’ll discuss

28

the asynchronous pipeline models first. That’s because most asynchronous systems are
designed or implemented based on these asynchronous pipeline models. David Muller
proposed his famous Muller C-element and Muller pipeline (aka Muller distributor) in 1959
[68,69]. A Muller pipeline is a naturally simple and elegant handshaking control model. The
simplest form of Muller pipeline mainly consists of C-elements and inverters. Figure 2-21
shows the schematic symbol and truth table of a two-input C-element. If both inputs are high
or low, the output will be high or low; otherwise, the previous value is kept. Figure 2-22
shows the original Muller pipeline model. To understand its behavior, let’s consider the ith
C-element C;. In the initial state, all C-elements are initialized to 0. The handshaking may be
initialized. The ith C-element C; can propagate a 1 from its previous stage the (i-/)th
C-element only if the next stage C-element (Ci1) is 0. Thus, the signal can be propagated one
stage to one stage. It should be notice that the original single-rail model is based on
bundled-data model; thus the request signal must be propagated via a matching delay as
shown is Figure 6. In fact, the matching issue should be carefully handled on all bundled-data
model. The pipeline model can also be,constructed as 4-phase dual-rail model as shown in
Figure 2-23 [66]. The model can be considered-as two Muller pipelines connected in parallel
with a common acknowledge signal in per stage. We implemented a 4-phase dual-rail pipeline

based QDI 8-bit NCTUAC18 microcontroller core in 2009 [70].

Besides the Muller pipeline, there are also several models were proposed. The most
important of all is the micropipeline which was described by Ivan E. Sutherland in his famous
Turing Award “Micropipelines” lecture in 1989 [71]. The approach is based on a two-phase
bundled-data model with micropipeline as backbone control circuit. Figure 2-24 shows the
control circuit of a 4-stage micropipeline model. Without datapath, the micropipeline is a
string of Muller-C elements. At each stage, there are one request input signal, R(n), and one
output acknowledge signal, A(n). The request signal can propagate from left-most side, R(in)
to the right-most side, R(out). It’s the same as the direction of data flow. The data therefore
can flow from the left-most side to the right-most side stage by stage. After the data can be
received by the right-most side, the acknowledge signal should be returned from the
right-most side, A(out). The acknowledge signal, A(n), therefore can propagate back to the
left-most side, A(in), and clear the whole pipeline. Thus the pipeline can keep on operation.
Figure 2-25 depicts how to combine the control circuit of micropipeline with datapath. As the

most well-known asynchronous circuit design model, lots of different asynchronous systems

29

have been implemented based on it. It can be used to implement many kinds of different
pipelined systems, even processors. For example, the NSR processor is a very simple 16-bit
micropipeline based microprocessor with very simple RISC instructions (less than 20
instructions) [72]. The Amuletl is known as the first ARM compatible processor
implemented with asynchronous circuit [15,73]. It was implemented with 2-phase

micropipeline architecture.

There are also some different models proposed for asynchronous circuits design. Some
try to modify the original “micropipeline” architecture. For example, a new control circuit for
micropipeline was proposed by Choy et al. [74] and “Micronets” architecture tries to
decentralize the control to the functional units [75]. Furthermore, there have been still several
famous asynchronous processor implementation models proposed. Takashi Nanya et al.
showed their QDI 8-bit microprocessor model called “TITAC” which uses Martin’s
Q-element [60] as control circuitry [76]. Figure 2-26 shows the Martin’s Q element. With Q
element, the control path can be gasily built. In addition, they proposed Autosweeping
Module (ASM) which is modified from-Q element to replace Q element to gain better
performance. TITAC2 was = proposed to show a new delay model -called
scalable-delay-insensitive (SDI)= [77]. ‘Thedelay’ model modified original DI or QDI
unbounded gate and wire delay to bounded relative delay ratio between any two components.
There are also some works that try to model processor with asynchronous circuits. Martin et
al. at Caltech have already shown three generations of different asynchronous processor
model [78]. Chen et al. showed an asynchronous RISC processor model in 2002 [79]. In
addition, there are also several asynchronous superscalar processor models proposed, for
example the Kin architecture [80], Hades project [81], and the most famous of all the counter
flow pipeline (CFPP) [82]. The design of CFPP is quite different from traditional design
concept. Figure 2-27(a) shows the architecture of a 5-stage CFPP. The design separates the
instruction flow and result flow in a counter flow. In this Figure, the instruction is fetched,
decoded, and inserted into the instruction pipeline in stage F. At the same time, the source
operands needed for this instruction is also inserted into the result pipeline in stage R. Figure
2-27(b) describes the instruction and result bindings. Each binding is composed of register
name, valid bit, and data value. Because the instruction flow and data flow walk in counter
flow, the instruction can meet needed data in one of the stages. Once the needed operands can

be fetched, the instruction can be executed correctly. In addition, if the binding destination of

30

the instruction matches one of the binding results, the binding result will be updated. Thus the
following instructions in the pipeline can obtain correct result value. It may be regarded as
special designed data forwarding. However, all these superscalar models are not very easy to
implement or just ideas that cannot be realized and certainly not very suitable to be
implemented for cores of embedded processors. In fact, because it’s very hard to guarantee
the instruction execution order in asynchronous design, only some research of asynchronous

superscalar processor are really in progress.

Another issue should be pointed out here. As mentioned before, Chen et al. implemented
a 4-phase dual-rail pipelined QDI processor [70]. However, in order to implement the QDI
processor, all dual-rail components should be constructed first. These components even
include all basic logic components. That’s lots of extra efforts for designing a processor.
Considering the synchronous circuit design, they can be easily implemented with lots of
pre-designed cells, components, or even large modules. In fact, it’s also a key to success.
Some researchers have been already trying to offér solutions for asynchronous circuit design.
Some try to provide basic building ¢lement., For example, Smith et al. proposed a new DI
digital system called NULL Convention Logiec (NCL) {83]. With NCL, DI system can be built
easier. Some try to offer new pipeline/FIFO control. For example, a basic control circuits
for an asynchronous pipeline called: Asynchronous Symmetric Persistent Pulse Protocol,
“asP*” was introduced by Molnar [84]. Sutherland and Fairbanks described GasP in 2001
[85]. There is still much different research involving new control circuits or offering new

asynchronous elements.

Besides the “pure” asynchronous implementation research, some research topics focus
on trying to find applications in other directions. Imaging on a large SoC, each components or
IPs may be designed by different teams or even different companies. Integrating them on a
single die may be a very difficult job. The most important reason is that these different
designs may be operate correctly in different clock frequency. Some research tries to wrap the
synchronous circuit with asynchronous wrapper. Thus, the whole system can communicate
with asynchronous channels, while each local circuit can operate in their local clock. Thus,
some Globally-Asynchronous Locally-Synchronous (GALS) methodologies are proposed.
The concept of GALS was proposed by Capiro in his PhD thesis in 1984 [86]. Figure 2-28

depicts this idea. In addition, some research focus on the interconnection networks with

31

asynchronous circuits. In fact, MPSoCs or multicore processors have been becoming the
major trend of system or processor designs nowadays. Thus the design of interconnection
networks becomes the most important issue of all. However, lots of different problems may
arise in the network design and they should be carefully handled. It is widely known that most
of these problems can be resolved easily by asynchronous circuits. Hence, it’s really attractive
to replace these networks with asynchronous implementations. For example, Dally and Seitz
implemented the first torus topology based interconnection networked multiprocessors in
1986 [87]. They implemented the self-timed torus routing chip (TRC) which uses the
bundled-data encoding to perform cut-through routing in k-ary n-cube multiprocessor
interconnection networks. In 1997, Natvig presented a high-level simulation model of TRC
written in Verilog [88]. Chen et al. implemented self-Timed torus interconnect with 1-of-5
encoding in 2009 [65]. In fact, because of asynchronous nature, the routing paths with

different distances can operate in different speeds.

In addition, we have already pointed out that-almost all commercial digital systems are
implemented with synchronous g¢ircuits. One very important reason is lack of suitable EDA
tools that can be used to implement asynchronous circuits directly. In fact, it’s also hard to
directly model your design in behavior ©f RTE model with traditional HDL directly. Thus,
most designs should be implemented in gate-level: In order to reduce the efforts in designing
asynchronous systems and circuits, specific HDLs for designing asynchronous systems and
circuits are needed. Tangram and Balsa HDLs are the most famous two of all related
frameworks. The Philips Research Laboratories started to develop the Tangram tool over 20
years ago [89]. Now the tool is offered by Handshake Solutions. In fact, the ARM 996HS was
also developed via it [7,20]. Handshake Solutions now provides Haste Design Language for
describing the behavior of asynchronous circuits. In addition, an integrated easy-to-use tool
suite called TIDE™ (Timeless Design Environment) is also offered [90]. In fact, it’s the most
successful commercial EDA tools for asynchronous circuit design. However, Balsa is a
framework for providing an asynchronous HDL and synthesizing of asynchronous circuits
and systems. It’s an open source and free solution developed and offered by the University of
Manchester [91,92,93]. In fact, part of Amulet 3 was designed with Balsa [18]. In addition,
Chen et al. also proposed an asynchronous pipelined 8051 soft-core with Balsa [94,95]. Zhang
and Theodoropoulos modeled an asynchronous MIPS core with Balsa called SAMIPS [96].

An asynchronous MP3 decoder was also modeled by us with Balsa [97]. In addition, there are

32

still several works in developing EDA tools for asynchronous circuits. In addition,
asynchronous research group in Caltech provides Communicating Hardware Processes (CHP)
and its synthesis tool as asynchronous circuit design tool [98]. The notation of CHP is
inspired by CSP. In fact, three generations of their asynchronous processors were designed
with CHP [76], including a very large MiniMIPS processor [99]. The most interesting of all is
SoCAD developed at Tatung University, Taipei, Taiwan [100]. They don’t develop any
special HDL for asynchronous circuit design. Instead of specific HDL, Data dependency
graphs (DDG) or Java language can be used to model the behavior of the design. Via several
translation processes proposed by Cheng, the DDG or Java models will be translated into
VHDL and mapped to lots of pre-defined cell-based designed asynchronous components.
With SoCAD, the goal of hardware/software codesign can easily be achieved. They also
modeled a very robust asynchronous Java Chip with it [101]. Unfortunately, though several
EDA tools for asynchronous circuit design can be found, it still has a very long way to go for

these tools.

a b ¥
] 0 0. 0.
C 0 1 No change
— 1 0. No change.
1 1.

1.

Figure 2-21: The Muller C-element: symbol & truth table

Ack

|
‘ACk '\I .

Req

Ack

A

AN

Ack

Figure 2-22: The Muller pipeline

33

Ack -

A

j?fA

Y

J U]

=eli

) d

dj:@ -
==l

df —m

Figure 2-23: A three-stage 1-bit wide 4-phase dual-rail pipeline

R(in) A R(2) AG) R(out)
@AY/ DELAY -
C C
C C
‘ £
A(in) R(1) AQ2) R(3) Alout)
DIRECTION OF DATA FLOW- >

Figure 2-24: Control circuit of micropipeline

34

\

Ack

d.t

df

A1) R(2)

DELAY

-

REG
JL

A(in) R(1) AQ2)

AQ)

R(3)

REG

Figure 2-25: Micropipeline architecture

Uo 4

= Lo

Li

Figure 2-26: Q element

35

R(out)

A(out)

Stage R
Register file
A
A
Stage 0
Instruction Results
===

[=9 A =
; Stage 1 E
) 3
2 Instruction Results S
g =
8
Rl === ||z
5 2
% 4 °
= ~
= A

Stage 2

v
Instruction Results
4
Y
Stage F
Program counter and
Instruction fetch
(@)
Update result bindings
Opcode Instruction latch Result [a
|
Source 2 | Destination Result 1 Result 2
Garner

source bindings

Key: |Bingings name

Validity bit
Register name

(b)

Figure 2-27: The architecture of CFPP

36

Asynchronous wrapper Asynchronous wrapper

Asynchronous channel Locally-synchronous
module

Clock
generator

Locally-synchronous
module

Clock
generator

Figure 2-28: Concept of GALS

2-2-4 Case Study of Asynchronous Circuit Design

As mentioned in previous sections, it’s difficult to design and implement asynchronous
circuits directly. Most designs cannot be implemented via writing RTL of Verilog or VHDL.
In our group, some circuits are implemented with Balsa HDL, and some are implemented via
writing gate-level descriptions of. Verilog HDL. In this section, the two methods will be

discussed.

It is widely known that it’s hard work to implement all designs with gate-level
descriptions. It’s not worth to implement all circuits with gate-level descriptions. With higher
level modeling, we can pay more attention on design itself. That’s the same for asynchronous
circuit design. Thus, we select Balsa framework as our tool. Because the details of Balsa HDL
and framework will be described in section 4.1, we’ll describe how to model a design with
Balsa. We’ll describe how to model a pipelined asynchronous 8051 core here [94,95]. The
first step, you must define your design model and the asynchronous communication channels
between each part of your design. Figure 2-29 shows the AsyncPA8051 model and its
interfaces and channels between each part of the model. Then, each part of the design can be
described with high-level Balsa descriptions. Following segment shows the top module of the
AsyncPA8051. It should be noted that components are connected with communication

channels.

37

procedure PA8051 IFIDOF (output pO,pl,p2,p3 : byte) is

channel IF 2 ID data : byte
channel IF 2 _mem_addr : Address
channel ID 2 IF addr : Address

BalsaMemory interface(IF 2 _mem_addr,read,...)||

IF(mem_2 IF data,ID 2 IF addr,...) ||

ID top(IF 2 ID data,jmp,ID data,...)||

PA8051 OF(ReadsS, WriteSin, MEM_OF,...)||

RAM(maddr,wr,mem_in,mem_out,pO,pl,p2,p3)||

MEM INTERFACE(Memln,....)||

PA8051 EXE(srcl, src2, src3,...)||

PA8051 WB(EXE WB, ...)||

Ram_Read Arbitor(MEM data,valid face 2 arbitor,...)||
end

end

However, the costs of asynchroenous circuits generated by Balsa HDL are sometimes not
very cheap. In addition, the gate-level descriptions: of bundled-data circuits generated by
Balsa cannot be optimized by your target-EDA tools in order to keep the delay elements
inserted by Balsa. Furthermore, you should still pay attention on these matching delays. In
fact, that’s the most important issue in implementation of bundled-data circuits. Therefore, we
also try to implement some of our designs with Verilog gate-level descriptions. Following
example is used to describe how we implemented our design in Verilog gate-level
descriptions. The example is a 4-phase dual-rail pipelined based 8-bit QDI microcontroller
core called NCTUACI18 [70]. In order to implement circuits with dual-rail QDI model, all
basic dual-rail DI/QDI building cells and components should be constructed first. We
implemented all needed basic QDI dual-rail gates and constructed all building blocks with
these QDI dual-rail gates. The most important of all is the C-element. The generalized
transistor-level C-element implementation is shown in Figure 2-30 (a); however, to provide
synthesizable model for FPGA we also modeled it with gate-level design as shown in Figure
2-30 (b). In addition, we also implemented C-element with reset for pipeline latch. With
C-element, other basic dual-rail components can also be constructed easily, for example

dual-rail OR gate as shown in Figure 2-31.

38

In addition, we developed our own QDI register set. Figure 2-32 shows a 1-bit dual-rail
register. When a valid codeword is sent to din.t and din.f, the two NOR gates can correctly
hold it. If the data item is written into the register, it issues acknowledgement to its previous
stage to inform the written operation done. Because of the dual-rail nature, we designed the
acknowledge signal simply through ORing two in/out signal of the two NOR gates. To read
data from the register, just send read request signal to it and thus the dual-rail data can be
correctly read out via dout.t and dout.f. Our register design does not deliver much higher cost

than traditional register for synchronous systems.

Because lack of synthesis tool the design cannot be written in RTL model. Thus, the
whole circuit should be carefully written in gate-level design. If the asynchronous design
should be implemented with CMOS VLSI, some components had better to be created with
full-custom design. For example, to implement efficient CMOS C-element, manually
designed C-element cell is needed. Besides modeling it with transistor-level as shown in
Figure 2-30(a), we also modeled it with gate-level as shown in Figure 2-30(b). Thus, it can be
synthesized with CAD tool. In addition,-because of DI nature, all components should be
constructed carefully with DI medel. Thus, the implementation cost is very high. The circuit
should be optimized manually. Then, the'design ¢an be implemented with the pre-constructed

components.

After all building blocks were constructed, the circuit control model should be decided.
In this example, the 4-phase dual-rail pipeline model as shown in Figure 2-23 was selected.
Finally, each execution stage should be designed and put into the pipeline. Figure 2-33 shows

the system block diagram of NCTUAC18 microcontroller core.

39

addr wr datiin dataout
MEM_INTERFACE

RANM_READ_ARBIT 'OR)

e s a _7?

- — i
b d
oy Y
—
oy -
a—‘ b—‘ I—a
6 or =

(b)
Figure 2-30: (a) Generalized transistor-level C-element implementation

(b) Gate-level C-element implementation

af —1 ¢ — - z.f
at —
1
b.f LW zt
b.t

dint— 1 _ .~ —— doutt

dinf—— — - doutf

read

Figuré 2-32: 1-bit dual-rail register

| BSR | [STATUS| | stall ||p. ...
R egisters
Data
Data RAW Data | |Data
|
il - EX/
IF — ID - — OF 7
%; WB
3
8

! [comt]

Figure 2-33: Architecture of NCTUAC18 microcontroller core

41

2-3 Previous Asynchronous TLB or MMU Design

Though some asynchronous processors are proposed for the past years, most of these
processors are very simple. Thus, no very complex memory address translation mechanisms
were implemented inside these processors. Furthermore because of the complication, it’s
really very difficult for us to find TLB design inside commercial asynchronous processors. In
fact, even no what is called memory management unit by ARM is implemented inside the first
commercial licensable 32-bit asynchronous core, the ARM996HS [7,20]. Only what is called
enhanced memory protection unit (MPU) by ARM is implemented. That means that it only
supports hardware memory protection over software-designated regions. The processor has no
virtual memory supporting hardware. The research group of Caltech delivers three
generations of asynchronous processors [78]. The biggest one is the MiniMIPS that is an
MIPS R3000 compatible asynchronous processor [99]. We still cannot find TLB design inside
this processor [102]. In [102], they.said, “The first prototype misses the TLB (address
translation mechanism) which we: found much. too-complicated, the partial-word memory

operations, and some cache instructions.”

However, Myers and Martin desctibed a simple memory management unit with CSP
specification [103] for an asynchronous processor [104]. Figure 2-34 shows the MMU that
they described. This MMU can generate 24-bit real address via concatenating 16-bit memory
address from the memory address (ma) bus and 8-bit address from one of the two segment
register, sr (Segment Read register) and sw (Segment Write register). Once the real address
can be generated, it will be placed on the real address (ra) bus. Thus the data can be
transferred from memory interface and microprocessor via 16-bit data bus. However, it should
be noted that the s and sw can only be accessed via memory read/write to address OxFFFF
and OxFFFE respectively. The contents of segment register are transferred via low 8-bit of
data bus. The data bus therefore can transfer data between microprocessor and memory or the
two segment registers. In addition, the microprocessor initiates memory or the
two-segment-register read/write communication to MMU via MDI (memory data load) and
MDs (memory data store) control signals. Through comparisons of memory address, MMU
decide if it’s a memory or the two-segment-register read/write communication. If it’s a

memory read/write communication, the MMU can initiates MSI (memory storage load), or

42

MSs (memory storage store) control signals to memory interface. In addition, the real address
will be placed on the ra bus. Thus, the load and store operations are roughly described in the

following descriptions.

* [[MDI — (b1,b2,b3 :=
(ma = FFFF),(ma = FFFE),—(ma = FFFF) A—(ma = FFFE)),
[bl — data := sr; MDI
[] b2 — data := sw; MDI
[] b3 — ra := sr; MSI; MDI]

[] [MDs — (b1,b2,b3 :=

(ma = FFFF),(ma = FFFE),—~(ma = FFFF) A—(ma = FFFE)),
[bl — sr :=data; MDs
[] b2 — sw := data; MDs
[] b3 — ra := sw; MSs; MDs]]

Though Myers and Martin modeled’an- asynchronous MMU, it’s really just a very
rudimentary design. The functionality of this:design'may be not suitable for most applications.
However, they still clearly demonstrated how.to design asynchronous MMU with high-level
descriptions. In addition, they also demonstrated- how to optimize the design and implemented

with the asynchronous circuits.

Weigel proposed two much more practical architectures of asynchronous MMU and
TLB [105]. With aid of original author of Balsa, he modeled the two architectures with Balsa
HDL carefully. The two architectures were designed to connect to a modified ARM
coprocessor interface. Figure 2-35 shows the baseline architecture of the MMU. In this
architecture, all components are activated in sequence. Because all operations are performed
sequentially in Baseline Architecture, he also proposed architecture called Performance
Architecture in order to improve the performance through speculative performing operations
in parallel and pipelining. Figure 2-36 shows the architecture of performance architecture.
However, in order to improve the translation performance, a TLB model was described in his
design. He described the TLB in three aspects. The behavior of entry organisation, the entry
lookup, and entry invalidation were all introduced in Balsa descriptions. The Balsa
descriptions of three aspects were all detailed listed. In fact, the TLB described only a very

basic design here. In addition, because of limitations of Balsa tool, Weigel suggested the real

43

implementation of TLB may try to reference other asynchronous cache design.

MDI MMU MSI

MDs MSs

dat: st register #
ata g ra o4
Sw register 8 data? '
16

MICROPROCESSOR

HOVAIALINI AYOWHIN

Figure 2-34: Overview of Myers and Martin’s asynchronous MMU

‘ Processor ‘
' v 1
—-ﬁ Main Loop ‘
v |
5 —ﬂ Ali grl(fheck ‘—»
A
é —ﬂ Translate F’ g 5
o g >
§ —» DomainCheck % =
> O
) v <
—-ﬂ PermCheck ‘
\ 4 v 7y v v
‘ MemMux ‘

A

v
Memory ‘

Figure 2-35: Architecture of baseline asynchronous MMU

44

Processor

v

System Coprocessor

—

Pipeline Registers Stage 1

N T

AlignCheck || Translation

—

v v v

Pipeline Registers Stage2

v v v

Domain/Permission Check

|
Generate Physical Address

v v

Pipeline Registers Stage 3

v v v

*—-—

Abort Handler || Memory Arbiter

A

A

v

Memory

Figure 2-36: Architecture of asynchronous MMU with performance architecture

45

MMU

Chapter 3: Proposed TLB architecture for
asynchronous embedded processor

As mentioned in Section 1-3, OS support is an important new issue for designing
embedded systems or handheld devices. In order to support these modern embedded OSs,
providing virtual memory is becoming more and more important. A well-designed TLB will
become one of the critical issue in these embedded processor performance. It should be noted
that page table traversal is much more expensive in embedded system than that in desktop
system. However, in order to reduce the implementation costs, some designs including the
most popular general purpose IA32 family processors simply flush the TLB entries in context
switching (address space switching). It is widely known that per-entry ASID tag can reduce
such misses. But it may increase the overall costs in tag bits. That may be a bad idea for
asynchronous processor. In our work, we try to provide an alternative architecture via the
concept of banking TLB. This architecture therefore can be implemented in our future
asynchronous embedded processor core.In addition; we also hope that this architecture can

also be implied for IA32 processors, We’ll discuss this-architecture in this chapter.

3-1 Relationship between the TLB miss rate and sizes

It is widely known that the two most important issues for cache system performance
are lower miss rate and the miss penalty. It’s almost the same for the TLB performance. In
fact, because the miss rate has the greatest impact on TLB performance, most studies focus on
it. In this section, we consider the relationships among miss rates, page sizes and TLB sizes.

In order to study this topic, we have done simulations with different TLB configurations..

Let’s consider the relationship between the miss rates and TLB sizes with 4KB page size.
Figure 3-1 shows the relationship between TLB sizes and miss rates of running gcc. The two
results show that the miss rates would be lower if the TLB sizes can be increased. We can
also find that in order to obtain better performance for 4KB page the size should be at least 64

entries. However, that’s not always true for all applications. Let’s observe the result of ijpeg

46

showing in Figure 3-2. It’s very clear that a 16-entry TLB is enough. It’s useless to increase
the number of TLB entries. In fact, it’s almost the same for some other benchmark programs,

such as vortex and /i. However, the results vary from application to application.

Another solution to improve the performance of TLB is to extend the page size into
larger one. In fact, most modern processors provide multiple page sizes, such as 4KB, 2MB,
and 4MB on all new Intel® IA32 series processors [31]. The advantages of larger page size
are not only obtaining better performance but saving the implementation cost with shorter
tags of virtual page number (VPN) and translations (physical page number, PPN) needed to
be stored. It is also a good method to reduce the cost on TLB implementation of processors
with larger addressing space, such as processors with 64-bit addressing capability. Certainly,
larger page size is suitable to be implemented for processor core of SoC or embedded systems.
Figure 3-3 shows the miss rate of compress for 4KB, 16KB, 32KB, 64KB, and 1MB page
sizes with different TLB sizes. Observing the results, we can easily find that the performance
of IMB page size of TLB with only 8 entries ¢dn, even outperform 4KB page size of TLB
with 256 entries. In fact, with the larger page size the larger working set can be covered. In
addition, we can also find that the performance of 32KB page size TLB with 32 entries is
good enough for compress. With prefetching mechanism, the performance would be even
better. However, according to the previous.discussion, even with 4KB page size, the total
TLB entries needed may still vary from application to application. Sometimes, even 16-entry
TLB is good enough for 4KB page. In fact, the new proposed architecture can be
implemented to support different page size. Furthermore, the TLB size of each bank is also

configurable depending upon the system needs. It’s an implementation tradeoff!

47

iTLB Miss Rate

060%

0.50%

O% 040%

e

2 030%

= 020%

0.10%

000%

16 kv 64 128 256
TLB Size
dTLB Miss Rate

200%

150%
i)
&

w 100%
Zz
=

050%

000%

16 32 64 128 256
TLB Size

Figure 3-1: ITLB/DTLB miss rate for gcc with 4KB page

iTLB Miss Rate

0.08%
0.07%
0.06%
0.05%

Miss Rate
=
2
R

0.03%
0.02%
0.01%
0.00%

16 32 64 128 256
TLB Size

dTLB Miss Rate

0.25%
0.20%
0.15%

0.10%

Miss Rate

0.05%

0.00%

16 32 64 128 256
TLB Size

Figure 3-2: ITLB/DTLB miss rate for ijpeg with 4KB page

48

Miss Rates

0.001000
0.000800
0.000600
0.000400

0.000200 —D
0.000000 ; T =
4KB-256 16KB- 32KB-32 64KB-32 1MB-8

256

ITLB Configuration

Miss Rate

0.007000
0.006000
0.005000
0.004000
0.003000
0.002000

0.001000 4|:|—|:|—
s s P I P

0.000000
4KB-256 16KB- 32KB-32 64KB-32 1MB-8
256

DTLB Configuration

Miss Rate

Figure 3-3: ITLB/DTLB miss rate for compress with different page sizes and TLB sizes

3-2 The proposed TLB architecture

This section describes in detail of the new TLB structure and mechanism we proposed
for embedded processors. The new novel design can be implemented not only in
contemporary processors but future high performance processors comprised with billion of
transistors. Furthermore, the mechanism is especially suitable to be implemented on
processors with larger addressing space than current processors with just 32-bit addressing

ability.

3-2-1 Overview

Figure 3-4 shows in detail the proposed TLB structure to reduce the miss rate in context

switching. According to the studies of previous section, we’ll assume the page size is 32-KB.

49

However, it should be noted that the study is based on analysis on general desktop
requirements. In fact, it can be easily changed to adequate for different page sizes with little
configuration changes. Furthermore, we’ll have other new study for TLB to provide

superpages with page promotion mechanism.

VA
I
-
VPN >~
s Prefetch Buffer
|
L [|
T R S |
L | \
B i s 5
@
=
[\ o
i)
= = || while Prefetch <
= — ile o
m Buffer Hi d
L \\ TtIEIeI:A\EIsl. ESELN‘ “
= update the
= o specific
@ l l l l l g ¢— group of TLE
\'3':_ geeot MUX Prefetch buffer|hit‘miss
s
Group hit/missb)
Offset . | 4
0
pY L
Prefetch Logic
TLE Miss)
e e
PTE Ernory System

Figure 3-4:The proposed TLB architecture

The proposed structure consists of the following parts — 32 TLB banks with group tags to
store the address translations, a multiplexer to select specific TLB banks, a prefetch buffer to
store the prefetching entries, and the prefetch & control logic to activate the prefetching
mechanism. Each TLB bank has 32 entries and it can be implemented with CAM (content
addressable memory) which is commonly used in the traditional TLB. Furthermore, each TLB
bank was implemented with fully associativity with the LRU entry replacement policy. That
means each bank can be easily implemented the same as traditional design. Thus there are
totally 1024 entries in this new design. However, we can easily find that other new processors
also try to increase the total entries of their TLB (TLB size) to reduce the possibilities of the
TLB misses, such as 1024-entry common TLB for each processor core of IBM POWER4
processor [37]. In addition to the 32 TLB banks, there are also 32 extra registers to store the
bank tag for each bank as shown in Figure 3-4. The register contains task tag to identify each

task, the current bit to identify the current task, the valid bit to validate a bank, and the LRU

50

bits to replace the victim bank. It should be noted that the task tag can be any address space
identifier (ASID) which the processor itself provides or the PPN (Physical Page Number) of
the executing instruction when the context switching occurs on processors without any ASID
support (IA32 based processors). On processors without ASID support, the PPN of the
executing instruction when the context switching occurs from the PPN field (or last
translation) is used. Considering the worse [A32-style case, the PPN is selected; however, the
implementation with ASID provided by the processor itself can be more easily. The
discussion will be ignored in this paper. However, we still have to point out that we treat
ITLB and DTLB as a couple, and they share the same bank tag. That means they stores

translations for the same task in the same related bank.

Besides previous discussed parts, the remainder parts are designed for the entry
prefetching mechanism. The prefetch & control logic initiates when the TLB misses occurs.
When the lookup misses in the current TLB bank but hits in the prefetch buffer, the address
translation is generated from that hit'entry and it'will be inserted into the current TLB bank
that is the same as traditional TLB entry replacement: Then, the prefetch & control logic tries
to prefetch other entries into the-prefetch buffer. If the-lookup are missed in both current TLB
bank and the prefetch buffer, the traditional address translation mechanism is initiated to
generate the correct address translation.and then the prefetch & control logic prefetches new
entries into the prefetch buffer depending upon the current address. The ‘Prefetch Logic’ can

be SP or DP described in [57].

3-2-2 OS Modification

In order to implement the mechanism, the OS is needed to do a little modification. In
addition to the page size issue, the OS is required to send ‘the clear TLB signal’ to the
processor only when page swapping with disks occurs or page frames release. If the signal is
received by the control logic, the control logic should flush all the TLB banks and the
prefetch buffer for the worse case example or the corresponding TLB bank and the prefetch

buffer for the general cases. Fortunately, it's not hard to realize. In fact, almost all modern

51

processors, provide some ways to flush TLB entries, such as STA instruction with alternative
addresses on SPARC architecture [35,36]. In fact, even 1A32 also begins to provide simple
way to protect important global entries. [31,32]

3-2-3 Mechanism of the proposed architecture

The proposed TLB structure is divided into 32 banks and once the virtual address is
generated from the CPU, the virtual page number (VPN, from the most significant bit to the
previous bit of the offset, for example [31:15] in 32-bit addressing environment with 32KB
page) is sent to the 32 banks and the prefetch buffer in parallel. Each bank and the prefetch
buffer work as the conventional TLB, and the PPN of the hit entries of each bank and prefetch
buffer are sent to a multiplexer. In addition, the select signals are obtained from ‘AND’ of the
current bit of group tags and hit signal of each TLB bank, and also the hit signal from the
prefetch buffer, to select the correct translation, If'it’s a hit in current TLB bank, the current
TLB bank works as conventional TLB. The physical address can be simply generated by
combining the output PPN and:the offset from the wvirtual address. If it’s a miss in current
TLB bank but a hit in prefetch buffer; the'operations are the same as what mentioned in the
previous section. However, besides the simplest situation, all other conditions should be
carefully handled by the prefetch & control logic. The details will be described in the

following paragraphs.

1) No current bit set in all banks: The situation could be happened only when the first
instruction fetching after a context switching for ITLB, the system initialization, or swapping
pages with disks occurs. In this situation, no valid physical address can be provided via TLB
translation. The address should be generated in conventional way by the OS and MMU. After
the physical address or address space identifier (ASID) supported by the architecture is
generated, it is compared with the task field of bank tags. If any of it is hit with a valid bank
tag, the current bit of that bank tag is set, and then the current TLB bank performs as a
conventional TLB. On the contrary, if it's a miss, the prefetch & control logic should try to
select a victim bank with invalid bit and LRU bits from the bank tag and flush all its 32
entries (both related ITLB and DTLB). Then the current bit of this bank should be set and the

52

LRU bits of all bank tags should be updated. Then the correct translation is stored into the
current ITLB bank entry, and the task tag of the current bank tag should be set. Moreover, it is
the generated PPN or ASID provided by the processor that is stored into the task tag field of
the current bank tag. Finally, the prefetch logic & control logic initiates the prefetching

mechanism that is the same as what mentioned in previous section.

2) One current bit found but no valid translation in both current bank and prefetch
buffer: If one current bit is found but no valid translation can be generated, that means the
TLB (ITLB or DTLB) reference of the current task is available before but the missed page has
not referenced yet. The operation of the current TLB bank just simply acts as a conventional
TLB, and no bank tag modification is needed. Then the prefetch mechanism is worked as

what mentioned in previous section.

3) Context switching: Once the contextsswitching occurs, the MMU just needs to clear
the current bit of the bank tags.and flushrthe. prefetch buffer. No more other actions are

needed.

4) Page swapping with disk occurring ot page frame releasing: If the page swapping
with disks or page frame releasing occurs, the modified OS that we already discussed sends
the ‘clear TLB signal’ to the MMU. Hence, the prefetch & control logic can clear the valid bit
of all bank tags on system without architecture supported ASID (x86) and flush the prefetch
buffer.

3-3 Performance evaluation of the proposed architecture

All of the simulations were done with modified SimpleScalar Version 3.0d tool suite
[37]. The SPEC95 benchmark programs were simulated to estimate the performance. We
assume that the context switching would happen after executing one million instructions, and
we also assume that the compared 1024-entry TLB is the worse case [A32 (x86)-style

example. In addition, we compared the miss rates of worse case style 1024-entry

53

fully-associative TLB with the proposed TLB structure of 32 entries each bank with SP and
DP prefetching mechanism after correctly keeping the entries and 1024-entry full-associative
TLB with ASID of the same workload assumption with proposed TLB structure. We assume
that the SP can prefetch entries with VPN of +9 and -8. That means total 18 entries are
prefetched. Moreover, we also assume that the DP can prefetch total 16 entries with 64-row
distance table and each row has 2 predicted distance slots. Though we assume the DP with
only 16-entry prefetch buffer, the costs of DP is still higher than SP. That’s because the extra
distance table is required in the DP methodology. Figure 3-5 and 3-6 give the simulation
results of SPEC95 benchmark.

54

Miss Rate

0.0014
0.0012
0.0010
0.0008
0.0006
0.0004
0.0002
0.0000

10241

DP-li

Miss Rate of ITLB

ASIDi SPi 1024-go DP-go ASID-go SP-go
1i and go with different TLB Configurations

Miss Rate

0.0050
0.0045
0.0040
0.0035
0.0030
0.0025
0.0020
0.0015
0.0010
0.0005
0.0000

1024-vortex

DP-vortex

Miss Rate of ITLB

ASID-vortex SP-vortex 1024-gee DP-gcc ASID-gec SP-gee
vortex and gec with different TLB Configurations

(% e~ ¥]

Miss Rat

0.0040
0.0035
0.0030
0.0025
0.0020
0.0015
0.0010
0.0005
0.0000

Miss Rate of TTLB

1024-m88ksim ~ DP-m88ksim ~ ASID-m88ksim ~ SP-mi88ksim 1024-perd DP-per ASID-perl SP-perl

m88ksim and perl with different TLB Configurations

Miss Rate

0.0300

0.0250

0.0200

0.0150

0.0100

0.0050

0.0000

1024-ijpeg

DP-ijpeg

Miss Rate of ITLB

ASID-ijpeg SP-ijpeg 1024compress DP-compress ~ ASID-compress ~ SP-compress
ijpeg and compress with different TLB Configurations

Figure 3-5: ITLB miss rates for SPEC9S benchmarks

55

Miss Rate of DTLB
0.0070
0.0060
0.0050
£ oooo
= 0.0030
0.0020
0.0010
0.0000

1024-li DP-li ASIDHi SP-li 1024-go DP-go ASID-go SP-go
li and go with different TLB Configurations

Miss Rate of DTLB

0.0140

0.0120
0.0100

0.0080

Miss Rate

0.0060
0.0040
0.0020

0.0000
1024-vortex DP-vortex ASID-vortex SP-vortex 1024-gee DP-gce ASID-gce SP-gee

vortex and gee with different TLB Configurations

Miss Rate of DTLB

0.0050
0.0045
0.0040
0.0035
0.0030
0.0025

Miss Rat

0.0015
0.0010
0.0005
0.0000

1024-m8ksim DP-m88ksim ~ ASID-mS8ksim ~ SP-m88ksim 1024-perl DP-perd ASIDperd SP-perl
m8&ksim and perl with different TLB Configurations

Miss Rate of DTLB

0.1000
0.0900
0.0800
0.0700
0.0600
0.0500

Miss Rate

0.0300
0.0200
0.0100
0.0000

1024-ijpeg DP-ijpeg ASID-ijpeg SP-ijpeg 1024-compress DPcompress ASIDcompress SP-compress
ijpeg and compress with different TLB Configurations

Figure 3-6: DTLB miss rates for SPEC95 benchmarks

Figure 3-5 and Figure 3-6 show the simulation results for ITLB and DTLB with
1024-entry conventional TLB, new TLB structures with DP and SP prefetching mechanism,
and 1024-entry conventional TLB with ASID respectively. Observing the simulation results,
we can find that our design can deliver better performance than conventional TLB structure if

correct TLB entries can be kept. Furthermore, we can also find that the proposed banked TLB

56

with SP prefetching mechanism can deliver better performance than DP prefetching
mechanism and conventional TLB with ASID under multiprogramming environment.
Through observing the simulation results, we can also find that prefetching mechanism may
be sometimes more important than just increasing more entries. For example, both of the
DTLB performances of new TLB structures with SP and DP mechanism are better than
conventional TLB with ASID for gcc. However, in most cases, the performance of new TLB
structure with DP prefetching mechanism is still worse than conventional TLB with ASID.
That’s because after the context switching occurring the DP prefetching mechanism needs the
learning time to fill in the distance table. According to the simulation results, we strongly

suggest to use the simplest SP prefetching mechanism in our design.

Even so, we still have to point out several important issues. Firstly, it’s not really very
fair to assume the conventional fully associative TLB works as the worse case [A32
(x86)-style. That’s because only some older processors or embedded processors flush their
TLBs in context switching. Most modern high-petformance processors incorporate their own
address space identifiers with =TLB tags. These *designs, including our methodology,
incorporated tags with ASID may have almost the same performance. However, our structure
can save some tag bits because of our banking method. As shown in Figure 2-13, it’s very
clear that the design of TLB entries with ASID tag needs more tag bits than our design. We
provide an alternative method to store the ASID. Secondly, it’s not a very nice model to
assume that context switching occurs after executing each one million instructions. In fact, it
may differ from different environments. Most OS defines its own time slice with several
milliseconds, and with different processors, the total instructions executed may have
enormous differences. In addition, the real situation depends upon real OS running situation.
In fact, we seriously consider developing a new generic simulator incorporated with Linux OS
to model more accurate real environment. Thirdly, though the page size we assume here is
32KB, it’s not very hard to change it to other sizes with some configurations change. In fact,
in this thesis we model our asynchronous TLB controller for 4KB page system. Finally,
though only a few studies about TLB entry prefetching, it still possible to provide more
heuristic prefetching mechanism for TLB entry prefetching. Furthermore, it may be also

possible to incorporate other prefetching mechanism with the proposed architecture.

57

3-4 Discussions of the proposed architecture

The TLB misses cause serious performance degradation on modern processors. In
addition, the context switching under the multiprogramming OS may cause this problem even
more seriously. However, only some studies focus on the context switching issue. In our work,
we presented an alternative TLB mechanism to reduce the miss rate in context switching for
embedded processors or microcontrollers. We also discuss how OS should be modified to
support this mechanism. Furthermore, we also discuss how to implement TLB entry
prefetching mechanism in the proposed architecture. Finally, according to the simulation
results, we suggested just simply to use the sequential prefetching (SP) mechanism in this
design. Besides the proposed mechanism, we have already begun to find solution to integrate
the proposed structure to support superpaging with bank promotion methodology. To obtain
more accurate performance evaluation dnireal environment, the new simulation model and
simulator will be developed. In additionywe’ve already implemented asynchronous TLB
controller to support this mechanism.in our current.new RISC asynchronous processor project.
We’ll discuss the implementation in the next chapter. We believe that still lots of work should
be done in this field. The major features of the proposed TLB architecture are listed as

follows.

® An alternative way to reduce TLB misses in context switching with good

performance for (asynchronous) embedded processors
® Using banking mechanism to replace per-entry ASID tags
® Adopting prefetching mechanism to reduce compulsory misses
® Easy and simple architecture and operations

B Bank-based operations to replace per-entry based operations in context

switching

B Especially suitable for asynchronous embedded processors

58

Chapter 4: Implementation the TLB
Controller with Asynchronous Circuits

Because there are no standard ways to implement asynchronous circuits, we’ll try to
design our TLB controllers with Balsa HDL which is a CSP-based asynchronous HDL, and
then the design will be synthesized by Balsa synthesis tool. Thus, the designed circuit can be

easily reused or modified. That’s why we implemented our design with Balsa HDL.

4-1 Interface

In Section 2-2-4, we have clearly discussed our current asynchronous circuit and system
design philosophy. Based on the design _philosophy, we’ll describe our design sequentially.
For an asynchronous circuit design, the design cani-be conceptually regarded as a black box.
Thus, the environment can communicate -withit.via-communication channels. Because the
design is based on bundled-data model as shown -in Figure 2-19, separate request and
acknowledge wires are bundled-with data-signals.- Table 4-1 shows the interface of the
proposed TLB controller architecture with-bundled-data protocol. As shown in Figure 2-19,
these signals can be conceptually divided into 8 communication channels. Because of
asynchronous nature, no clock signal is needed. In fact, it’s easy to put the design into any
design that accepts the same protocols! The 4-phase handshaking protocol is shown in Figure

2-17.

59

Table 4-1: Definitions of asynchronous TLB interface

Port Name Direction Width Meaning

VA req in 1 request signal
VA data in 32 Virtual Address
VA ack out 1 acknowledge signal
PTE req in 1 request signal
PTE data in 32 Page Table Entry
PTE ack out 1 acknowledge signal
clr TLB req in 1 request signal
clr TLB data in 1 ‘1’: clr all TLB banks
clr TLB ack out 1 acknowledge signal
ASID req in 1 request signal
ASID data in 5 Address Space Identifier
ASID ack out 1 acknowledge signal
CMW req in 1 request signal
CMW data in 1 ‘17: Context Switching occurs
CMW ack out 1 acknowledge signal
PA req out 1 request signal
PA data out 32 Physical Address
PA ack in 1 acknowledge signal
PFE req out 1 request signal
PFE data out 1 ‘1’: Prefech an entry from page table
PFE ack in 1 acknowledge signal
TLB hit req out 1 request signal
TLB hit data out 1 ‘1’: TLB hit; ‘0’: TLB miss
TLB hit ack in 1 acknowledge signal

60

= = 5 5
: : : :
<£ 25 il S 2
B > <= © O
2 2 : 5
E & Z 2
VA [- |
NG
VPN SN Prefetch Buffer
[— [|
[— [|
[— | |
(r—— 1 | | D
[E— [| o
I I o
(o]
Async N 7
yne. T o)
FSM =5 3 =
= HNE
... Dhuffer
§) Select MUX Prefetch 1/ iss
s & AN
&+ hit/miss
s /2
TLB_hit req Offset K J
Matched . ..” Y —
_req >
— i
Delay PTE ack Y Prefetch Logic
_ . — TLBMis)
| !
< e o 3 R t to th
A pre] [Rssiiote |
E g s m S
o 5 <5 £5
= 2 E
2 2 a
g e &

Figure 4-1: Block diagram of the TLB interface

4-2 The Balsa Framework

We have already pointed out that it’s not easy to implement asynchronous circuits
directly with gate-level and RTL descriptions of traditional HDL. In addition, with such
“fixed” descriptions, you cannot change the handshaking protocol that you have already
implemented. On the contrary, if you model your design with Balsa HDL or other
asynchronous HDL such as Haste description language [90], or Java and DDG of SoCAD
[100], the target handshaking protocol you wish to use can be decided during synthesis phase.
Your design therefore can be changed to any handshaking protocols which supported by your

asynchronous tool. You can put more efforts on your asynchronous algorithm and architecture

61

design! That gives you more design and implementation flexibility. We select Balsa as our
tool not only because it’s the most popular open source solution, but also because it have been
already used in many successful design. In addition, the APT (Advanced Processor
Technologies) group of the University of Manchester can affords some needed supports for

users [106].

Figure 4-2 shows the Balsa design flow. The Balsa back-end can generate gate-level
netlists that can be imported into target CAD systems. Balsa now supports three commercial
EDA tools: Compass Design Automation tools from Avant, Xilinx FPGA design tools and
Cadence Design Framework II. It supports three back-end protocols for use with each
technology: bundled-data scheme using a 4-phase-broad/reduced-broad signaling protocol, a
delay-insensitive dual-rail encoding and a delay-insensitive 1-of-4 encoding. Thus it makes it

easy to design asynchronous circuits or systems for these three protocols with Balsa HDL.

To generate netlists for target CAD systems, the Balsa system make use of basic cells of
these target CAD systems, suchzas;AND, ORsNOR,“XOR, NADN, BUF, XNOR, INV, FD
(D-type flip-flop), FDC and FDCE of Xilinx FPGA, technology. In addition, it also provides
specific cells needed for asynchronous' circuit implementation. The most important of all is
the Muller C-element as described in" Section 2.2. In addition to the C-element, it also
provides special designed cells. Figure 4-3 shows the NC2P element. Once the input i0 is
equal to 0, the output will be 1. When both inputs are 1, the output will be 0. Finally, if the
input 10 is 1 and il is 0, the output value will not be changed. With NC2P element, the
S-element which performs a series of handshaking can be constructed. Figure 4-4 shows the
S-element and its behavior. The S-element has 4 input that includes 2 request/acknowledge

handshake pairs — ‘Ar’/’Aa’ and ‘Br’/’Ba’.

With these basic cells, the Balsa system provides total 40 handshake components. We’ll
describe some of them here. Figure 4-5 shows the fetch component which is the most
common way to control a datapath from a control tree. It transfers input data to variable, from
variable to output channel, or from variable to variable. Figure 4-6 and Figure 4-7 are the
symbol of sequence and concurrent components. The sequence components output the control
signals in sequence, and the concurrent component outputs the control signals in parallel.

They can be used to activate a number of operations.

62

il —

Balsa description

A

Define refinement

(.balsa file)

A

»

SISOYIUAS
reuse

<
<

Breeze description

‘balsa-¢’

‘bre

‘breeze-cost’

eze2ps’

(HC netlist)

‘balsa-netlist’

A 4

Gate-level netlist

Commercial Si
or FPGA P&R

A 4

Layout /bitstream

Balsa
behavioural
simulation
syfitem Behaviour
> Simulation
Gate-level Simulation . Functional
» Simulation

Layout simulation

\4

Figure 4-2: The Balsa design flow

NC2P

(@)

0
il

10

—

0o 1 |q
q 0 X |1
1 110
1 0 no change
(b)
q

(c)

63

Figure 4-3: The NC2P-element (a) symbol (b) true table (c) gate-level implementation

Timing Simulation

Ar NC2P
Ba

Aa Ba

(a) (b)

(c)

Figure 4-4: The S-element (a) symbol (b) gate-level implementation (c) handshaking

protocol

activate
‘ activate_Or

BUF

BUF
inp 74» out

‘ out_Oa

BUF

JUUL

‘ inp_0d(31:0)
BUF

(@) (b)
Figure 4-5: The Fetch component (a) handshake component (b) gate-level

implementation

64

Br

activateOut_Or

activate Or 40

activateOut_1r

Figure 4-6: The Sequence component

activateOut_Or
activate_Or 40
activateOut_1r

Figure 4-7: The Concurrent component (a) handshake component

65

4-3 The Design with Balsa

prefetch cmd

Prefetch
Control

+— PTE

“"U
—

puo
snyeis

Y A

Prefetch
Buffer
(32 entries)

'

PA

a O
- <
L
os}
vA —— Control Unit
ASID ——» B status
TLB hit «—— LRU VA
- Replacement B PPN
o S
E s |5
\J \ \ A
TLB Memory
TLB Bank Tag TLB,Bank
(32 entries) (32%32 entries)
y PPN
Offset PA % PPN
Generator

Figure 4-8: Architecture of asynchronous TLB modeled with Balsa HDL

The design of proposed architecture with Balsa will be described in this section.
Different from what described in Weigel’s work [105], we focus on modeling an advanced
TLB architecture while they focused on implementation of MMU. Thus, the TLB they
modeled is only simple architecture that supports lookup and flush functionality. In our work,
we implemented the advanced TLB architecture that we proposed. According to the interface
defined in Figure 4-1 and table 4-1, we carefully designed our proposed architecture. Figure
4-8 shows the architecture of the whole design. The design is divided into the following
parts — TLB Memory, Control Unit, Prefetch Control Unit, and Physical Address Generator.
The following Balsa descriptions show the top module definitions of the whole design. With
this definition, we can easily observe the communication channels that connect the design and

the environment. In fact, that’s what we defined in section 4.1.

66

procedure TLB_CTRL TOP(
--input channels

input iCLR_TLB: bit;

input iCMW: 1 bit;

input iASID: 5 bits;

input iVA: 32 bits;

input iPTE: 32 bits;
--output channels

output oPA: 32 bits;

output oHIT: bit

In order to implement the proposed architecture, the TLB controller algorithm was
designed carefully. It should be noted that because it’s an asynchronous implementation, the
data signals from the sender will not be cleared until the receiver replies the acknowledge
signal. That also means that the virtual address, (VA) from the processor will be remained
until the controller returns the VAracknowledge to the processor. Thus, the proposed TLB
architecture can be implemented with the following algorithm.

67

Asynchronous TLB controller algorithm:

if (‘clr _TLB channel’ is activated)
clear valid bits in all TLB banks ()
|| flush the prefetch buffer ()
else if (‘CMW channel’ is activated)
clear current bits ()
|| flush the prefetch buffer ()
else if (‘VA channel’ is activated)
if (no current bit is set in all TLB banks)
(activate ‘ASID channel’
|| activate ‘TLB_hit channel’) // TLB_hit data = “0’, indicating TLB miss
; if (ASID is found in a TLB bank)
set current bit in this TLB bank ()
else // ASID is not found
(select a victim bank with invalid bit or according to LRU bits ()
; flush 32 entries in the victimbank ()

; set current bit, task tag;’and valid-bit

; update all LRU bits)
|| activate prefetch mechanism (). // activate PTE channel multiple times
else if (TLB hit)
activate ‘PA channel’ || activate ‘TLB_hit channel’
else if (TLB miss)

if (prefetch buffer hits)
(put this entry into TLB bank() || activate ‘TLB_hit channel’ ||

activate ‘PA channel’)
; activate ‘PTE channel’
else if (prefetch buffer miss)
activate ‘TLB hit channel’

; activate ‘PTE channel’

With Balsa HDL, designing the proposed TLB architecture can be simplified as
describing each part of the TLB architecture with Balsa HDL high-level descriptions. Each
part of the design will be described in detail in the following paragraphs.

TLB Memory:

There are total 32 TLB banks of the TLB memory architecture. Each of the TLB banks is

68

composed of 32 entries. Because the real implementation of memory cells themselves should
be closely related to the process and should be additionally designed carefully, we only
modeled the TLB memory with Balsa data structure and simulated under the Balsa
environment with Balsa block memory. The data structure of TLB entry is defined as show in
table 4-2.

Table 4-2: Structure of each TLB entry

Field valid Iru tag ppa
bit 35 34 33...17 16...0

In chapter 3, we have already discussed the proposed TLB architecture. In the proposed
architecture, each TLB bank has its associated TLB bank tag. Therefore, there are total 32
entries in the TLB bank tag. We defined total 4 fields for each entry. It should be noted that in
order to simplify the design, we only defined 5 bits to represent the ASID. In fact, in most
systems the width of ASID is 8 bits. In addition, we use the 5 bits to index the 32 banks. Thus
the data structure of each bank tag is defined as table 4-3.

Table 4-3: Structure of each TLB bank tag
Field ASID current valid Iru
bit 7..3 2 1 0

With the previous definitions, the . TLB entry and TLB bank TAG entry can be easily
described in the following Balsa deseriptions: In fact, it’s really easily to describe TLB
memory model with Balsa HDL. Following Balsa descriptions depicts the data structures that
define the TLB entry and the TLB bank tag.

type TLB_ENTRY is record
valid: bit;
tag: 17 bits;
ppa: 17 bits; --Physical Page Address
Iru_bit: bit

end

type TLB_BANK TAG is record
task tag: 5 bits;
cur_bit: bit;
valid: bit;
Iru_bit: bit

end

69

In addition, we also modeled all TLB bank control with Balsa HDL. Following Balsa
descriptions depict how we modeled the valid bit clear, LRU bit clear, and TLB entry search.

shared clr_all valid is begin
for ;i in0.31 then
tlb_bank[i] .valid := 0
end -- for loop

end

shared clr_all lru_bit is begin
for;iin 0..31 then
tlb_bank[i] .lru_bit := 0
end -- for loop

end

shared search_tlb_bank is begin
if tlb _bank[0] valid = 1 and.tlb bank/0].tag = tmp tag then tmp hit := 1 ||
tmp_ppa := tlb_bank[0].ppa
| tlb_bank[1].valid = 1 and tlb bank[i]tag = tmp tag then tmp hit := 1 ||
tmp_ppa := tlb_bank[1].ppa

Control Unit

The control unit communicates with the environment through these handshake channels,
clr TLB (pull channel), CMW (pull channel), TLB hit (push channel), and VA (pull
channel). Once one of these channels is activated, this control unit will adopt the
corresponding actions. It should be noted that in this implementation these pull channels can
not be activated simultaneously to avoid the occurrence of deadlock. The control unit will
issue control commands to the TLB memory when it is required to change the content of TLB

memory, check TLB hit or miss, or perform the entry replacement.

The 1-bit LRU (Least Recently Used) replacement policy is adopted by us to reduce the
overhead in hardware cost. Because there’s no global clock signal, we implemented our LRU
algorithm as follows. Initially, all LRU bit are all cleared. When TLB hit or replacement
occurs, the LRU bit at assigned entry is set. The entry with LRU bit equal to 0 is replaced first.

Once the LRU bits in all entries are set and replacement is needed, all LRU bits are cleared.

70

The 4-bit data signal of the TLB command is defined as table 4-4.

Table 4-4: Structure of 4-bit TLB command

Field clr_valid clr_Iru_bit search _va Iru_replace

bit 3 2 1 0

clr_valid: clear all valid bits in current TLB bank
clr_Iru bit: clear all Iru bits in current TLB bank
search_va: seach ppa in current TLB bank

Iru_replace: perform LRU replacement in current TLB bank

Finally, only 1 bit data signal of TLB hit channel to indicate the status of TLB. It is
defined as table 4-5.

Table 4-5: Data signal of TLB_hit channel
Field hit
bit 0

hit: indicate whether TLB hit or not

Prefetch Control Unit

To reduce the complexity, we implemented the simplest way of prefetch control unit.
Once an empty entry exists in the prefech buffer; the prefetch control unit will fetch a new
page table entry through the channel PTE. Then, the Prefetch Control Unit requires the
prefech buffer to store it.

We have described that the Balsa descriptions will be synthesized into handshaking
components netlists. Figure 4-9 shows the handshaking component graph of CU and prefetch
control unit. Observing this graph, all our Balsa descriptions were mapped into built-in
handshaking components of Balsa framework. These handshaking components then can be
used to synthesize into gate-level netlists depending on the selected target handshaking

protocol.

71

Figure 4-9: Handshaking component graph of CU

72

PA Generator

The PA Generator generates the physical address via concatenating the offset of virtual

memory and physical page number (PPN) generated by TLB. Finally, the generated physical

address is sent out through the PA handshake channel. In fact, it’s the simplest part of the

design. Figure 4-10 shows the handshaking components graph of the PA generator. In this

graph, we can easily find that it selects one of the hit PPN from prefetch buffer or TLB bank

output and combines it with the offset to generate the output PA.

C10: PPM FREF BUF

FV o1z

PA - : <<ns

1

TMP_PA_PPN[0..16]

G113 15;

1L THE PA PPN Dw -=

PAG

CE: C18:

FV

TMP_PA_OFFSETI[0..14]

~FFN _FREF ELIF

DW

PPN_PREF_BUF

PA_OFFSET

activate

|

L PA OFFSET

! PPN_TLE_MEM

Figure 4-10: Handshaking component graph of PA Generator

4-4 Implementation

Finally, the designed was verified manually with random pattern under Balsa

environment. Because only several channels should be verified, the design can be verified

easily. Thus, we verified the design via monitoring the communication channels. Figure 4-11

shows the waveform of these communication channels. However, it’s not a good and formal

way to verify the functionality. We’ll discuss this issue in the next chapter. The gate-level

73

netlist was then generated with Balsa tools, and synthesized with Design Compiler with
TSMC 0.13 um process. Table 4-6 shows the equivalent gate count (NAND gate).

GTKWave [N[=T
File Edit Traces Time Markers Help
. %
Add. Show All - Cut Paste
QA KM G LG @B

- From |05 | To: {92619 ns Primary marker: -- Cursor: 40640 ns
Signals Waves
31TLB_MEM_PTE |
_PREFETCH_VPN
7.TLEB_MEM_VPN
olog-55TLB_HIT
_PREFETCH_CMD
1.TLE_MEM_CMD
2UTLE_MEM_PTE
_PREFETCH_UPN
UTLE_MEM_VPN
ssa->CUTLE_HIT
_PREFETCH_CMD
JTLE_MEM_CMD
halsa->CLPTE
JPREFETCH_PPN
EFETCH_STATUS
_B_MEM_STATUS

balsa->CUVA

Foeld

Figure4-11: Waveform of circuit simulation

Table 4-6: Equivalent gate count

Equivalent Gate Count (NAND gate)
CU and Prefetch Control 1,441
TLB_Memory 687,119
Total 688,560

not include memory and matching delay elements

The costs are really high, in fact, far from our estimation. However, it’s possible. The
result in [97] that was synthesized with the same handshaking protocol also shows that the
costs of circuits generated by Balsa tool suite may not be very cheap. In that design, total
3,134,953 gates are used to implement Asynchronous MP3 decoder with Xilinx FPGA. That’s
because all Balsa descriptions will be translated into handshaking components, and the cost of

these components may be not too cheap.

However, we found that the costs of CU and prefetch control unit are only 1,441. That’s
because in our real implementation the CU and prefetch control parts only needs to handle the

input signals and send correspondence signals out. Unfortunately, the total equivalent gate

74

count of control circuits of TLB bank and prefetch buffer are 687,119. That’s not only
because we have to design lots of different functionalities of TLB memory parts, but we also
found that besides the control circuits that we modeled to control the behavior of our design
the Balsa framework also adds lots of extra control circuits to control the memory models. We
had already tried to model our circuits with as many as possible shared components. It’s still
very expensive. Maybe these parts should be designed with gate-level directly.

We also estimated the costs of CU and prefetch control unit with 4-phase dual-rail
protocol. Though we expected that the costs may be doubled, it didn’t occur. The equivalent
gate count is 2,450. That’s really interesting. That’s because the dual-rail circuits may also be
possibly implemented in reasonable costs. However, it’s not reasonable to have any
“dual-rail” memories. Thus it’s not reasonable to implement any memory related components
with dual-rail protocol. That’s why we implemented our design with 4-phase bundled-data

protocol. Following items list the major features of the implemented Balsa model.

® Modeled with Balsa HDL, the TLB controller can be synthesized into handshaking
protocols supported by Balsa framework.

® Simple and clear interface definitions caniamake the design be used easier.

® Unambiguous separation of each part “in real asynchronous design makes

verifications of the asynchronous TLB controller easier.

75

Chapter 5: Conclusions and Future Works

In this thesis, we proposed a novel TLB architecture for asynchronous embedded
processors. In addition, we also modeled it with Balsa HDL which is a CSP-based
asynchronous HDL. We demonstrated how to transfer the proposed architecture into

asynchronous circuits. In this chapter, the conclusions and future works will be summarized.

5-1 Conclusions

The computing devices have enormous changing for the past decades. Only recent years,
the embedded systems and mobile devices have been becoming the major trend in computing
devices. For the past years, because.early applications of these systems are simple, no extra
complex operating systems are ngeded. However, new embedded systems and mobile devices
have begun to support very complex operating systems, such as Windows® Mobile and
embedded Linux. Google even tries to-provide.very powerful software stack platform based
on embedded Linux called Android [107]. All these new applications need very efficient
supporting for embedded operating systems. Traditional design needs specific microcontroller
or processor to execute OS, and other DSP or accelerator processor to boost computing
performance. Recently, some designs try to provide an alternative solution. These designs
integrate both general purpose processor and DSP or accelerator processor into a single
processor, such as cores of Blackfin [108] and TILE processors [109]. All these new trends
demonstrate the importance of OS in embedded systems or handheld devices. In order to
provide high performance address translation from virtual address to physical address of
modern OS, the high efficient TLB design is needed. The TLB misses cause serious
performance degradation on modern processors. In addition, the context switching under the
multiprogramming OS may cause this problem even more seriously. However, only some
studies focus on the context switching issue for embedded processors. In our work, we
presented an alternative TLB design to reduce the miss rate in context switching for

embedded processors.

76

In addition, it is widely known that synchronous circuit has some disadvantages, such as
clock skew, higher power consumption, worse-case performance, and poor reusability.
However, asynchronous circuit can easily address these problems. In addition, asynchronous
circuit has higher reliability and robustness than its synchronous counterparts. In fact, all
these are all critical issues for embedded processors or microcontrollers. But it’s very hard to

implement digital systems with asynchronous circuits.

In our work, we implemented the proposed TLB controller for the proposed TLB
architecture with asynchronous circuits. We implemented our proposed TLB controller with
the 4-phase bundled-dada handshaking protocol. The bundled-data model was implemented
with Balsa HDL which is a CSP-based asynchronous HDL. With the Balsa HDL, we can
focus on the asynchronous architecture and algorithm designs without considering too much
on the handshaking protocol issues. In addition, because several target handshaking protocols
are supported by the Balsa tools, you don’t need to implement each HDL model for each
handshaking protocol. Thus, higher flexibility can'be provided. Unfortunately, the synthesized
result shows that total equivalent gate count of the TIB controller without memory is 688,560.
That’s really not cheap. However, we also-found that the CU and prefetch control parts are
not very expensive. It costs only 1,441 equivalent gates, but the TLB memory parts costs
687,119 equivalent gates. That’s not.only because we modeled lots of functionalities for this
part but also lots of extra memory control circuitry is added by Balsa tool suite. However, we
still successfully demonstrated an advanced asynchronous TLB controller than other related
works. Thus, the following items are the main features of the proposed asynchronous TLB

controller.

® An alternative TLB architecture was proposed to reduce the miss rate in context

switching for the asynchronous embedded processor.

® Instead of per-entry ASID, TLB banking is used to separate different address

space.

® Simple TLB entry prefetching mechanism is used to reduce some possible

compulsory misses.

® Modeled with Balsa HDL, the TLB controller can be synthesized into handshaking

protocols supported by Balsa framework.

® Simple and clear interface definitions can make the designed be used easily.

77

® Unambiguous separation of each part in real asynchronous design makes

verifications of the asynchronous TLB controller easier.

5-2 Future Works

In this thesis, we propose an alternative TLB architecture to reduce miss rate in context
switching for asynchronous embedded processor. As mentioned in section 3-2, to estimate
miss rate more accuracy the simulator should be integrated with OS. Therefore, new simulator
model should be developed for further study. In addition, as mentioned in section 3-1, the
performance of TLB not only relies on miss rate but also miss penalty. That’s means the
execution time should be taken into consideration. However, because lack of information of
processor architecture and memory system, it’s not very easy to estimate it directly. The

design should be placed into a real processor.

As mentioned before, most asynchronous processors today are very simple; thus, most of
them do not support virtual memory. In-our work,.we hope to provide a general asynchronous
TLB architecture that can be amplemented in asynchronous processors. That’s why we
modeled our design with Balsa HDL. Withrhigh=level asynchronous HDL, the design can be
synthesized into all supported handshaking protocels by Balsa tool suite. However, the Balsa
tool suite cannot provide the real TLB memory; thus it should be implemented separately. In
this work, we only simply use latches to replace the real TLB memory for verification. It’s not
reasonable. Thus, this part should be carefully handled in our future work. In addition, as the
analysis in section 4-4, besides the functionalities we modeled to control behavior of the TLB
memory the extra circuitry added by Balsa tool suite is very huge. The part really should be

redesigned manually in the future.

Finally, our goal is to design our own asynchronous RISC core with virtual memory
support for embedded systems or handheld devices. In fact, we hope to design
asynchronous-based SoC or MPSoC with our own asynchronous processor core. As
mentioned in section 2-2-3, there are some studies of asynchronous interconnections and
GALS. In fact, the clock issue has been becoming one of the most critical issues in large SoC
designs. As mentioned in section 1-2, ideally, asynchronous circuits may make software
“O0P”-style design on hardware possible. Imaging, without the global clock issue, designing
SoC might be a little like playing the LEGO® bricks. Ideally, each asynchronous IPs can be
plugged in the design if they “talk” the same “handshake protocol.” That’s why we hope to
design our own asynchronous processor core. The design of asynchronous TLB is one of the

78

critical parts of the asynchronous processor core. In order to verify our future processor core
more formally, we’ll suggest a new asynchronous processor design flow that can support not
only architecture exploration but also facilitate hardware/software co-design. We’ll discuss

this topic in the next section.

5-3 Verification Issue for future work

In traditional synchronous based design, the verification can be easier than that of
asynchronous ones. You can verify your design based on the “clock.” That means that you
can verify the status of the design based on the clock cycles. Figure 5-1 shows a very
simplified VLSI design flow. The design ideas are described in cycle-based functional
specification descriptions. Traditionally, the functional specification can be described with C
programming language. Thus, the cycle-based simulator can be used to prove the design ideas.
Then, the design will be implemented in RTL/gate-level design. To verify the implementation,
the two models will be verified via cycle-by-cycle cross-verification. Finally, the design can
be transferred into layout. Certainly, the cycle-based equivalence checking should be done
between RTL/gate-level design and layout, On the contrary, without the global clock, each
part of the design may work in“its"own speed and it’s not easy to make sure if the design
operates correctly in any specifie time. It-will-be even worse that the operation times of the
same component may be also different depending upon the input. That’s especially on most
DI/QDI designs. You can be very sure what status should be of your design at 10™ cycle, but
how can you do the same thing on system without clock? Imaging in a 2-phase bundled data
design and given a specific time, how can you make sure the status should be? As mentioned
in section 2-2-2, in such systems each part of the design may begin to operate whether the
request or acknowledge signals are rising edge or falling edge. Verifications of different

models of asynchronous circuits may also be a good research topic.

We have already pointed out that lots of new issues should be carefully dealt with in
developing embedded processors. Because most of these problems can be resolved with
asynchronous circuits, that’s why we put lots of efforts in developing asynchronous
processors. In addition, because of some new application requirements, new features should
be supported by these processors. However, it’s important to do some architectural
explorations before these features can be supported. Thus, we’ll suggest a design flow that
can be used to design new asynchronous embedded processors from architectural exploration
to functional verification. Figure 5-2 shows our new design flow. We’ll introduce the use of
architecture description language (ADL). LISA will be selected as our design tool [110].

That’s not only because LISA is the most popular and successful ADL but also it’s a mixed

79

structural and behavioral ADL. Thus, the design described with LISA can be used to generate
simple toolchains including (compiler), assembler, linker, and simulator. It can also be used to
generate RTL of Verilog HDL. Thus, hardware/software co-design can be easily achieved.
CoWare® Inc. now provides a complete GUI IDE based LISA development environment
called CoWare® Processor Designer [111]. With CoWare® Processor Designer, it makes
LISA easy to learn and use. The first, the design specification should be implemented with
LISA descriptions manually. Then the CoWare® Processor Designer can be used to generate
toolchains and simulator. It should be noted that in order to achieve the goal of
hardware/software co-design the application software can be developed simultaneously. In
addition, if the designed architecture is described in structural model, the RTL can also be
generated. Though the RTL model generated is not a very efficient implementation, it still can
be used as reference synchronous model for evaluation. In fact, after simulator and toolchains
can be generated, the performance of designed architecture can be roughly estimated. Then
the generated simulator can be used as golden model in order to do cross-verification with
new designed asynchronous processor. However, because it’s impossible to do clock-by-clock
cross-verification with asynchronous circuits, we suggest using the “instruction-based”
cross-verification. That means _qwWwe' “scan compare the execution results
instruction-by-instruction. With this design.flow,"we can develop our new asynchronous

embedded processor more effectively.

Design

Functional Specification

Equivalence
checking

RTL/Logic Description

Equivalence
checking

Layout

Chip

Figure 5-1: Simple VLSI design flow

80

NCTU-CS
Computer Architecture Lab — - Synchronous

Design & Architecture Processor
Exploration Flow

Design —
Specification ———»_LISAD LiSAdools Simulator
[Applications ||
Compiler
&
Toolchain

Verification

Performance
Evaluation

Asynchronous
Processor

designed manually

manually

refinement Plan: Wei-Min Cheng
Draw: Guo-Cheng Lee

48

Figure 5-2: Our as'ylllclrom’).u's"processor design flow

- o
N

81

Reference

[1]J. Liedtke, “Improved Address-Space Switching on Pentium Processors by Transparently
Multiplexing User Adress Spaces,” GMD Technical Report, No. 933, German National

Research Center for Information Technology, Nov. 1995.

[2] A Wiggins, G Heiser, “Fast Address-Space Switching On The StrongArm SA-1100
Processor,” Technical Report, UNSW-CSE-TR-9906, The University of New South Wales,
Austrila, 1999.

[3] A Wiggins, G Heiser, “Fast Address-Space Switching On The StrongArm SA-1100
Processor,” in In Proceedings of the 5th Australasian Computer Architecture Conference

(ACAC), 2000, pp. 97 — 104.

[4] 1. E. Sutherland and J. Ebergen, “Computers without Clocks,” Scientific American,
August 2002, pp. 62-69.

[5] A. Davis and S.M. Nowick, “An Introduction to Asynchronous Circuit Design,”
Technical Report, UUCS-97-013, Computer Science Department, University of Utah, Sep.
1997.

[6] S. Hauck, “Asynchronous design methodologies: an overview,” Proceedings of the IEEE,

Vol. 83, Issue 1, Jan. 1995, pp.69-93

[71 A. Bink and Mark de Clercq, “ARM996HS Synthesizable CPU with Clockless
Technology,” Information Quarterly, Vol. 5, No. 4, 2006, pp. 20-24.

[8] Neil H. E. Weste and K. Eshraghian, Principles of CMOS VLSI Design - A Systems
Perspective, 2ed. Addison-Wesley Publishing Co., 1993

[9] P. Gronowski, W. J. Bowhill, R. P. Preston, M. K. Gowan, R. L. Allmon,
High-Performance Microproessor Design, IEEE Journal of Solid-State Circuits, Vol. 33, No.
5, pp. 676-686, May 1998.

[10] D. R. Gonzales, Micro-RISC Architecture for the Wireless Market, IEEE Micro, Vol.
19, No. 4, pp. 30-37, July-August 1999.

[11] R. Y. Chen, N. Vijaykrishma, M. J. Irwin, “Clock Power Issues in System-on-a-Chip
Designs,” in Proceedings of the IEEE Computer Society Workshop on VLSI'99, 1999, pp. 48.

[12] D. Duarte, V. Narayanan, and M. J. Irwin, “Impact of Technology Scaling in the Clock

82

System Power,” in Proceedings of the IEEE Computer Society Annual Symposium on VLSI,
2002, pp. 59.

[13] T. Mudge, “Power: A First-Class Architectural Design Constraint,” IEEE Computer,
Vol. 34, No. 4,pp. 52-58, April 2001.

[14] B. Zhai, D. Blaauw, D. Sylvester, and K. Flautner, “Theoretical and practical limits of
dynamic voltage scaling,” in Proceedings of the 41st annual Design Automation Conference,

pp. 868-873, 2004.

[15] J. V. Woods, P. Day, S. B. Furber, J. D. Garside, N. C. Paver, and S. Temple,
“AMULETI: an asynchronous ARM microprocessor,” IEEE Trans. Computers, Vol. 46,
April 1997, pp. 385-398.

[16] S. B. Furber, J. D. Garside, S. Temple, J. Liu, P. Day, N. C. Paver, “AMULET2e: an
asynchronous embedded controller,” in Third International Symposium on Advanced

Research in Asynchronous Circuits and Systems, April 1997, pp. 290 — 299.

[17] S. B. Furber, J. D. Garside, PsRiocreux, S. Temple, P. Day, J. Liu, and N. C. Paver,
“AMULET2e:An Asynchronous:Embedded Controller,” Proceedings of the IEEE, Vol. 87,
Issue 2, Feb. 1999, pp. 243 — 256.

[18] S. B. Furber, D. A. Edwards-and-J. D./Garside, “AMULET3: a 100 MIPS Asynchronous
Embedded Processor”, in Proceedings of the dnternational Conference on Computer Design,

2000, pp. 329-334.

[19] H. v. Gageldonk, D. Baumann, K. van Berkel, D. Gloor, A. Peeters, and G. Stegmann,
An asynchronous low-power 80c51 microcontroller, in Proc. International Symposium on

Advanced Research in Asynchronous Circuits and Systems, pp. 96—107, 1998.

[20] A. Bink and R. York, “ARM996HS: The First Licensable, Clockless 32-bit, Processor
Core,” IEEE Micro, Vol. 27, Issue 2, pp. 58-68, March-April, 2007.

[21] S. Rusu, S. Tam, H. Muljono, J. Stinson, D. Ayers, J. Chang, R. Varada, Ma. Ratta, S.
Kottapalli, “A 45nm 8-Core Enterprise Xeon® Processor,” in IEEE International Solid-State
Circuits Conference, ISSCC, 2009.

[22] A. Silberschatz, P. Galvin,G. Gagne, Operating Systems Concepts, 7™ ed. John Wiley &
Sons, 2005.

83

[23] B. Jacob and T. Mudge, “Virtual Memory: Issues of Implementation,” IEEE Computer,
Vol. 31, NO. 6, June 1998, pp.33-43.

[24] R. Case and A. Padegs. Architecture of the IBM System/370, McGraw-Hill Book
Company, New York , 1982.

[25] B. Jacob and T. Mudge, “Virtual Memory in Contemporary Microprocessors,” IEEE
MICRO, July 1998, pp. 60-75.

[26] D. W. Clark and J. S. Emer, “Performance of the VAX-11/780 Translation Buffer:
Simulation and Measurement,” ACM Trans. on Computer Systems. Vol. 3, 1985, pp. 31-62.

[27] Michael J. Flynn, Computer Architecture — Pipelined and Parallel Processor Design,
Jones and Bartlett Publishers, Boston, 1995.

[28] J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quantitative Approach,
3" ed, Morgan Kaufman, 2006.

[29] J. P. Shen, M. H. Lipasti, Modern Processor Design: Fundamentals of Superscalar

Processors, McGraw-Hill Professional, 2004.

[30] Advanced Micro Devices, Inc., AMDO64- Technology- AMDG64 Architecture
Programmer’s Manual Volume2. system Programming, AMD, September 2006.

[31] Intel Corp.,Intel®64 and IA-32: Architectures: Software Developer’s Manual Vol. 3A:
System Programming Guide Part 1, Intel Corp., March 2009.

[32] Intel Corp.,TLBs, Paging-Structure Caches, and Their Invalidation: Application Note,
Intel Corp., 2008.

[33] M. Talluri, M. D. Hill, Y. A. Khalidi, “A new page table for 64-bit address spaces,”
ACM SIGOPS Operating Systems Review, Vol. 29, Issue 5, Dec. 1995, pp. 184 —200.

[34] MIPS Technologies, Inc., MIPS RI10000 Microprocessor User’s Manual, Ver. 2.0,
MIPS Technologies, Inc., 1996.

[35] SPARC International Inc., The SPARC Architecture Manual Version 8, SPARC

International Inc., 1992.

[36] D.L. Weaver and T. Germond, The SPARC Architecture Manual Version 9, SPARC

International Inc., 2000.

[37] Todd Austin, SimpleScalar LLC, http://www.simplescalar.com/ (2009/06)

84

[38] Advanced Micro Devices, Inc., Software Optimization Guide for AMD Athlon™ 64 and
AMD OpteronTM Processors, AMD, September 2003.

[39] J. M. Tendler, J.S. Dodson, J.S. Fields Jr, H. Le, B. Sinharoy, POWER4 System
Microarchitecture, IBM J. RES. & DEV. 46, 2002.

[40] Intel® Corp., Pentium® Pro Family Developer’s Manual Vol. 3 - Operating System
Writer’s Guide, Intel Corp., Dec. 1995.

[41] Intel Corp., Intel® Itanium® Architecture Software Developer’s Manual Vol. 2: System
Architecture Rev. 2.2, Intel Corp., Jan. 2006.

[42] Advanced Micro Devices, Inc., AMDG64 Architecture Programmer’s Manual Vol. 2:
System Programming Rev. 3.14, Advanced Micro Devices, Inc., Sep. 2007.

[43] M. Talluri, Use of Superpages and Subblocking in the Address Translation Hierarchy ,
Ph.D. thesis, Dep. Of CS, University of Wisconsin at Madison, 1995.

[44] M. Talluri and M. Hill. “Surpassing .the TLB Performance of Superpages with Less
Operating System Support,” in Proceedings of the Sixth Int’l Conference on Architectural
Support for Programming Languages and Operating.Systems, 1994, pp.171-182.

[45] M. Talluri, Shing Kong, Mark-D. Hill, and David A. Patterson. “Tradeoffs in
Supporting Two Page Sizes,” In*Proceedings of the 19th Annual Int’l Symp. on Computer
Architecture, May 1992, pp.415-424.

[46] T. H. Romer, W. H. Ohlrich, A. R. Karlin, and B. N. Bershad, “Reducing TLB and
Memory Overhead Using Online Superpage Promotion,” in Proceedings of the 22nd Annual
Int’l Symp. on Computer Architecture, 1995, pp.176-187.

[47] Jung-Hoon Lee, Jang-Soo Lee, and Shin-Dug Kim, “A dynamic TLB management
structure to support different page sizes,” Proceedings of the Second IEEE Asia-Pacific
Conference on ASICs, 2000, pp. 299-302.

[48] Jung-Hoon Lee, Jang-Soo Lee, She-Woong Jeong, and Shin-Dug Kim, “A
Banked-Promotion TLB For High Performance and Low Power,” Proceedings of the 2001
International Conference on Computer Design, 2001, pp. 118-123.

[49] M. Swanson, L. Stoller, and J. Carter, “Increasing TLB Reach Using Superpages
Backed by Shadow Memory,” Proceedings of the 25th Annual International Symposium On
Computer Architecture, 1998, pp. 204-213.

85

[50] Zhen Fang, Lixin Zhang, John B. Carter, Wilson C. Hsieh, and Sally A. Mckee,
“Reevaluating Online Superpage Promotion with Hardware Support,” in Proceedings of the

7th Int’l Symp. on High-Performance Computer Architecture, 2001, pp.63-72.

[51] C. H. Park, J. Chung, B. H. Seong, Y. Roh, and D. Park, “Boosting Superpage
Utilization with the Shadow Memory and the Partial-Subblock TLB,” in Proceedings of the
14th international conference on Supercomputing, 2000, pp. 187-195.

[52] David Channon and David Koch, “Performance Analysis of Re-configurable
Partitioned TLBs,” Proceedings of the 30th Hawaii International Conference on System
Sciences, 1995, Vol. 5, pp.168-177.

[53] T. Juan, T. Lang, J. J. Navarro, “Reducing TLB power requirements,” in International

Symposium on Low Power Electronics and Design, 1997, pp. 196-201.

[54] Y. Lee, T. Lee, S. An, and Y. Lee, “Indirectly-compared cache tag memory using a
share tag in a TLB,” IEE Electronics Letters, Vol. 33, No21, 1997, pp. 1764-1766.

[55]Y. Lee, T. Lee, S. An, and Y.'Lee, “Shared tag for MMU and cache memory,” in
International Semiconductor Coiiference,-CAS'97, Vol. 1, Oct. 1997, pp. 77-80.

[56] A. Saulsbury, F. Dahlgten, and P: Stenstrom, “Recency-Based TLB Preloading,”
Proceedings of the 27th Intermational ' -Symposium on Computer Architecture, 2000,
pp-117-127.

[57] G. B. Kandiraju and A. Sivasubramaniam, “Going Distance for TLB Prefetching: An
Application-driven Study,” in Proceedings of the 29th Annual International Symposium on
Computer Architecture, 2002.

[58] W. A. Clark, “Macromodular computer systems,” in Proceedings of the April 18-20,
1967, Spring Joint Computer Conference (AFIPS Joint Computer Conferences), April 18-20,
1967, pp. 335-336.

[59] A. J. Martin, “The limitations to delay-insensitivity in asynchronous circuits,” in

Proceedings of the sixth MIT conference on Advanced research in VLSI, 1990, pp. 263-178.

[60] A. J. Martin, Programming in VLSI: from communicating processes to delay-insensitive
circuits, University Of Texas At Austin Year Of Programming Series, Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1991.

[61] D. E. Muller and W. S. Bartky, “A theory of asynchronous circuits,” in Proceedings of

86

an International Symposium on the Theory of Switching, The Annuals of Computation
Laboratory of Harvard University, Vol. 29, Part I, Harvard University Press, Cambridge,
1959, pp. 204-243.

[62] J. B. Dennis and S. S. Patil, “Speed Independent Asynchronous Circuits,” in
Proceedings of the Fourth Hawaii International Conference on System Sciences, 1971, pp.

55-58.

[63] D. Misunas, “Petri nets and Speed Independent Design,” Communications of the ACM,
Vol. 16, Issue 8, August 1973, pp.474-481.

[64] C. L. Seitz, System Timing Introduction to VLSI Systems Ch.7, Addison-Wesley Pub.
Co., 1980.

[65] Y. T. Chang, M. C. Huang, W. M. Cheng, H. Y. Tsai, C. J. Chen, F. C. Cheng,
“Self-Timed Torus Network with 1-of-5 Encoding,” in Proceedings of the 13th IEEE
International Symposium on Consumer Electronics, Kyoto, Japan, May 25-28, 2009.

[66] J. Sparse and S. Furber, Principles of asynchronous circuit design — a systems

prospective, Kluwer Academic Rublishers, London, 2001, pp. 11-25.
[67] Chris J. Myers, Asynchronous Circuit'Design, John Wiley & Sons, Inc.,2003.

[68] D. Muller and W. Bartky, ““A theory of asynchronous circuits,” in Proceedings of an
International Symposium on the Theory of Switching, April 1959, pp. 204-243.

[69] J. Gunawardena, “A generalized event structure for the Muller unfolding of a safe net,”
in Proceedings of the 4th International Conference on Concurrency Theory, June, 1993, pp.
278-292.

[70] C. J. Chen, W. M. Cheng, H. Y. Tsai, and J. C. Wu, “A Quasi-Delay-Insensitive
Microprocessor Core Implementation for Microcontrollers,” Journal of Information Science

and Engineering, Vol. 25, No. 2, March 2009, pp. 543-557.

[71] LE. Sutherland, “Micropipelines,” Turing Award Lecture, Communications of the ACM,
Vol.32, Number 6, June 1989, pp 720-738.

[72] E. Brunvand, “The NSR Processor,” in Proceeding of the 26th Hawaii International
Conference on System Sciences, 1993, pp. 428-435.

[73] S. B. Furber, “Computing without Clocks: Micropipelining the ARM Processor,” in
Asynchronous Digital Circuit Design, Proceedings of the 1993 VIIith Banff High Order

87

Workshop, Springer Verlag, January 1995, pp. 211-262.

[74] C. S. Choy, J. Butas, J. Povazanic, C.F. Chan, “A new control circuit for asynchronous
micropipelines,” IEEE Trans. Computers, Vol. 50, Sep. 2001, pp.992-997.

[75] D. K. Arvind, R.D. Mullins,V. E. F. Rebello, “Micronets: a model for decentralising
control in asynchronous processor architectures,” in Second Working Conference on

Asynchronous Design Methodologies, May 1995, pp.190-199.

[76] T. Nanya, Y. Ueno, H. Kagotani, M. Kuwako, and A. Takmura, “TITAC: Design of a
Quasi-Delay-Insensitive Microprocessor”, IEEE Design & Test of Computer, Summer 1994,
pp. 50-63.

[77] A. Takamura, M. Kuwako, M. Imai, T. Fujii, M. Ozawa, 1. Fukasaku, Y. Ueno, and T.
Nanya, “TITAC-2: A 32-bit Asynchronous Microprocessor based on
Scalable-Delay-Insensitive Model,” in Proceedings of the International Conference on

Computer Design, Oct. 1997, pp. 288-294.

[78] Alain J. Martin, Mika Nystedm, and Catherine G. Wong, “Three Generations of
Asynchronous Microprocessors,” IEEE Design.& Test of Computers, Nov.-Dec. 2003, pp.
9-17.

[79] C. J. Chen, C. C. Shiu, and M:'S: W, =The -Design of Asynchronous Processor”, in

Proceedings of International Computer:Symposium, 2002.

[80] R. Kol, and R. Ginosar, “Kin: a high performance asynchronous processor architecture,”
in Proceedings of the 12th International Conference on Supercomputing, July 1998, pp.
433-440.

[81] C. J. Elston, D. B. Christianson, P. A. Findlay, and G. B. Steven, “Hades—An
Asynchronous Superscalar Processor,” in [EE Colloquium on Design and Test of

Asynchronous Systems, 1996.

[82] Robert F. Sproull, Ivan E. Sutherland, and Charles E. Molnar, “The counterflow
pipeline processor architecture,” IEEE Design & Test of Computers, pp. 48-59, Fall 1994.

[83] S. C. Smith, R. F. Demara, J. S. Yuan, M. Hagedorn, and D. Ferguson,
“Delay-insensitive gate-level pipelining,” Integration, The VLSI Journal, Vol. 30, No. 2,
October 2001, pp. 103-131.

[84] C. E. Molnar, I. W. Jones, W. S. Coates, and J. K. Lexau, A FIFO ring performance

88

experiment,” in Proceedings of the 3rd International Symposium on Advanced Research in

Asynchronous Circuits and Systems, 1997, pp. 279-289.

[85] I. Sutherland and S. Fairbanks, “GasP: A Minimal FIFO Control,” in Proceedings of the
7th International Symposium on Asynchronous Circuits and Systems, 11-14 March, 2001, pp.
46-53.

[86] D. M. Chapiro, Globally-asynchronous locally-synchronous systems, Ph.D. Thesis
Stanford Univ., CA. Dept. of Computer Science, 1984.

[87] W. J. Dally and C. L. Seitz, “The torus routing chip”, Distributed Computing, Vol. 1, pp.
187-196, 1986.

[88] Lasse Natvig, “High-level Architectural Simulation of the Torus Routing Chip,” in
IEEE International Verilog HDL Conference, 1997, pp. 48-55.

[89] K. V. Berkel, J. Kessels, M. Roncken, R. Saeijs, P. Schalij, “The VLSI-programming
language Tangram and its translation into handshake circuits,” in Proceedings of the

European Conference on Design Automation. EDAC, 25-28 Feb. 1991, pp. 384 —389.

[90] http://www.handshakesolutions.com/ (2009/06)

[91] A. Bardsley, Implementing Balsa Handshake Circuits, Ph.D. thesis, Dep. of Computer
Science, Univ. of Manchester, 2000.

[92] A. Bardsley, D. A. Edwards, The Balsa Asynchronous Circuit Synthesis System, Dep. of

Computer Science, Univ. of Manchester, 2000.

[93] A. B. Doug Edwards, Balsa: A Turorial Guide version 3.4, Dep. of Computer Science,
Univ. of Manchester, 2004.

[94] C. J. Chen, W. M. Cheng, R. F. Tsai, H. Y. Tsai, T. C. Wang, “A Pipelined
Asynchronous 8051 Soft-core Implemented with Balsa,” in 9" IEEE Asia Pacific
Conference on Circuits and Systems, Macao, China, Nov. 30 - Dec. 3, 2008, pp. 976-979.

[95] C. J. Chen, W. M. Cheng, T. C. Wang, Y. T. Chang, H. Y. Tsai, “Instruction Decoder
Implemented with Balsa for an Asynchronous Pipelined 8051 compatible Microcontroller,”

in International Computer Symposium, Taipei, Taiwan, 13-15 Nov., 2008.

[96] Q. Zhang and G. Theodoropoulos, “Modelling SAMIPS: a synthesisable asynchronous
MIPS processor,” in Proceedings of 37th Annual Simulation Symposium, 18-22 Apr, 2004,
pp- 205-212.

89

[97] C.J. Chen, W. M. Cheng, H. W. Lo, Y. T. Chang, H. Y. Tsai, I. H. Hsieh, F. C. Cheng,
“An Asynchronous MP3 Decoder Implemented with Balsa,” in /[EEE Regional Symposium
on Micro and Nano Electronics, 2009. (to appear)

[98] A. J. Martin, Synthesis of Asynchronous VLSI Circuits, Technical Report
[Caltech-CS-TR-93-28], California Institute of Technology, 1991.

[99] A. J. Martin, A. Lines, R. Manohar, M. Nystrom, P. Penzes, R. Southworth, U.
Cummings and T. K. Lee, “The Design of an Asynchronous MIPS R3000 Microprocessor,”
in Proceedings of the 17th Conference on Advanced Research in VLSI, 1997, pp. 164.181.

[100] http://4c.cse.ttu.edu.tw/snipsnap/space/SoCAD (2009/06)

[101] F. C. Cheng, C. R. Wang, “Specification and design of a quasi-delay-insensitive Java
card microprocessor,” in Proceedings oh 13th International Conference on VLSI Design, 3-7

Jan. 2000. pp. 356-361.

[102] http://www.async.caltech.edu/mips.html (2009/06)

[103] C.A.R. Hoare, “Communicating Squential Processes,” Communications of the ACM,

Vol. 21, No. 8, 1978, pp. 666-677.

[104] C. Myers and A. Martin, =The design of.an asynchronous memory management unit,”

Technical Report [Caltech-CS-TR-92-25], California Institute of Technology, 1992.

[105] F. Weigel, An Asynchronous ARM Compatible Memory Management Unit Design and
Implementation, M.S. Thesis, Dep. of Computer Science, Univ. of Manchester, 2002.

[106] http://intranet.cs.man.ac.uk/apt/projects/tools/balsa/ (2009/06)

[107] http://code.google.com/intl/zh-TW/android/ (2009/06)

[108]
http://www.analog.com/en/embedded-processing-dsp/blackfin/adsp-bf561/processors/produc
t.html (2009/06)

[109] http://www.tilera.com/products/processors.php (2009/06)

[110] A. Hoffmann, T. Kogel, A. Nohl, G. Braun, O. Schliebusch, O. Wahlen, A. Wieferink,
and H. Meyr, “A Novel Methodology for the Design of Application-Specific Instruction-Set
Processors (ASIPs) Using a Machine Description Language,” [EEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, Vol. 20, No. 11, Nov. 2001, pp.
1338-1354.

90

[111] http://www.coware.com/products/processordesigner.php (2009/06)

91

