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a b s t r a c t

This research is aimed at characterizing the elastic properties of carbon nanotubes (CNTs) reinforced
polyimide nanocomposites using a multi-scale simulation approach. The hollow cylindrical molecular
structures of CNTs were modeled as a transverse isotropic solid, the equivalent elastic properties of which
were determined from the molecular mechanics calculations in conjunction with the energy equivalent
concept. Subsequently, the molecular structures of the CNTs/polyimide nanocomposites were established
through molecular dynamics (MD) simulation, from which the non-bonded gap as well as the non-
bonded energy between the CNTs and the surrounding polyimide were evaluated. It was postulated that
the normalized non-bonded energy (non-bonded energy divided by surface area of the CNTs) is corre-
lated with the extent of the interfacial interaction. Afterwards, an effective interphase was introduced
between the CNTs and polyimide polymer to characterize the degree of non-bonded interaction. The
dimension of the interphase was assumed equal to the non-bonded gap, and the corresponding elastic
stiffness was calculated from the normalized non-bonded energy. The elastic properties of the CNT nano-
composites were predicted by a three-phase micromechanical model in which the equivalent solid cyl-
inder of CNTs, polyimide matrix, and the effective interphase were included. Results indicated that the
longitudinal moduli of the nanocomposites obtained based on the three-phase model were in good agree-
ment with those calculated from MD simulation. Moreover, they fit well with the conventional rule of
mixture predictions. On the other hand, in the transverse direction, the three-phase model is superior
to the conventional micromechanical model since it is capable of predicting the dependence of transverse
modulus on the radii of nanotubes.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Because of their exceptional mechanical properties, carbon
nanotubes (CNTs) have been extensively utilized as reinforcements
in composite materials [1,2]. Because the dimensions of the CNTs
are within nanoscale while the polymer itself is often regarded
as a bulk matrix material in composites, it becomes a challenging
issue to properly characterize the properties of the CNT/polymer
hybrids using the conventional continuum theory. In the past dec-
ade, the mechanical properties of CNT-reinforced nanocomposites
have been modeled by many researchers using the molecular
dynamics (MD) simulation [3–5], continuum mechanics [6–8],
and multi-scale simulation [9,10].

Han and Elliott [3] investigated the mechanical properties of
nanocomposites with various volume fractions of single-walled
(10,10) CNTs embedded in amorphous polymer matrix. Results
indicate that when the interaction between the CNTs and polymer
ll rights reserved.
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is strong, the interfacial effect cannot be ignored in the material
modeling. The elastic moduli for the single-walled CNTs/polyethyl-
ene nanocomposites were predicted by Griebel and Hamaekers [4]
using MD simulation. For the nanocomposites with very long CNTs,
the longitudinal modulus demonstrated excellent agreement with
the predictions by micromechanical rule of mixtures. Zhu et al. [5]
performed MD simulation on single-walled CNT-reinforced Epon
862 matrix, indicating that long CNTs can greatly improve the
moduli of the nanocomposites. According to the results in the liter-
ature [4,5], it seems that the atomistic interaction between the
CNTs and polymer may not have a significant effect on the longitu-
dinal modulus of a nanocomposite, if it is reinforced by the long
CNTs. Moreover, the moduli of the nanocomposites can be properly
modeled using the continuum micromechanics model (rule of mix-
ture). Liu and Chen [6] proposed a representative volume element
based on the continuum mechanics to evaluate the effective
mechanical properties of CNT nanocomposites. Finite element re-
sults revealed that the load carrying capacities of CNTs in nano-
composites were significant. Luo et al. [7] investigated the effects
of spatial distribution and geometry of CNTs on the modulus of
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Fig. 1. Schematic diagram of single-walled CNTs cross-section: (a) atomistic CNTs
structure, (b) equivalent solid cylinder.
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CNT nanocomposites using finite element analysis. Results illus-
trated that the effects of fiber volume fraction and aspect ratio
were similar to those of conventional short-fiber composites. Be-
cause the interfacial effects are not taken into account in contin-
uum mechanics modeling, some essential characteristics in
atomistic/nanoscales may be disregarded in the continuum analy-
sis [6,7]. The comparative study of the continuum micromechani-
cal models employed in the prediction of elastic properties of
single-walled nanocomposites was provided by Selmi et al. [8].
Hammerand et al. [9] conducted micromechanical analysis on
the CNT nanocomposites by introducing an interphase layer be-
tween the CNTs and the matrix to simulate the imperfect load
transfer or imperfect bonding. The dimension of the interphase
was determined such that the interphase has the same volume
fraction as the CNTs. Gates et al. [10] provided details on the cur-
rent approach to multi-scale modeling and simulation of advanced
materials such as nanotube-reinforced polymer composites for
structural applications. Among the aforementioned approaches, it
has been found that the longitudinal properties of the CNT com-
posites are mostly of concern whereas the investigations on the
transverse properties are relatively few. In addition, the effects of
atomic interaction between the CNTs and the surrounding poly-
mer, which may play an important role in the mechanical re-
sponses of the nano-structured materials, are rarely explored and
considered in the material modeling.

In this study, the simulation methodology basically has been
divided into two parts. The first one is to establish an equivalent
solid cylinder with proper mechanical properties, taking the place
of atomistic structures of CNTs in the CNT-reinforced nanocom-
posites. In the second part, the extent of atomistic interaction be-
tween the CNT atoms and the surrounding polyimide polymer has
been modeled by an effective interphase such that the information
of the atomistic interaction, which is in atomic scale, can be taken
into account in the continuum media. Eventually, the mechanical
properties of CNT/polyimide nanocomposites were characterized
using the continuum micromechanical model, and the results
were compared with those obtained directly from the MD
simulations.
2. Equivalent solid cylinder

2.1. Construction of equivalent solid cylinder

The configuration of CNTs is a hollow, cylindrical structure
that consists of hexagonal carbon rings. As reinforcements in
composite materials, the fundamental mechanical properties of
the CNTs should be defined in the conventional manner of
mechanics such that the existing micromechanical model can be
directly implemented into the CNT nanocomposites [11,12]. In
general, the reinforcements in the mechanics of composites are
regarded as a solid with homogeneous material properties.
Apparently, the original attributes of cylindrical hollow structure
of CNTs cannot satisfy the stated requirement; therefore, it is nec-
essary to have an equivalent solid cylinder so that the mechanical
properties of the atomistic CNT structure can be properly inter-
preted in the continuum solid model and precisely transformed
into the CNTs nanocomposites. It has been assumed that the
equivalent solid cylinder has the same geometric configuration
as those of the original CNTs structures. In other words, the ra-
dius of the equivalent solid cylinder is equal to the distance mea-
sured from the center of a CNT to the circumferential atoms, as
shown in Fig. 1. In this study, only zig-zag type single-walled
CNTs, i.e., (10,0), (14,0), and (18,0), with radii, 3.9, 5.5, and
7.1 Å, were selected for the demonstration, but the approach pre-
sented hereafter is not limited to these cases.
2.2. Determination of mechanical properties of the equivalent solid
cylinder

In addition to the geometric configuration, the associated
mechanical properties of the equivalent solid cylinder have to be
determined properly in accordance with the atomistic structures
of CNTs. Because of the geometric configuration of the CNTs, the
corresponding properties of the equivalent solid cylinder were as-
sumed to be transversely isotropic. In other words, there are five
independent material constants in the effective solid required to
be evaluated. To accomplish this objective, the discrete atomistic
structures of CNTs with energy minimization were constructed in
the beginning using MD simulation. Subsequently, by applying a
desired displacement on the CNTs, the strain energy variation in
terms of the deformation was calculated. Meanwhile, the same
deformation was applied to the equivalent solid. According to the
hypothesis that the strain energy variations in the CNT atomistic
structure and the equivalent solid continuum in terms of the same
deformation should be the same, the corresponding material con-
stants in the equivalent solid were evaluated.

2.2.1. Construction of CNT molecular structures
The fundamental mechanical properties of CNTs were charac-

terized using MD simulation in which the molecular structures
of CNTs as well as the atomistic interaction have to be con-
structed and specified appropriately. The zig-zag type CNTs with
85.2 Å in length were constructed by repeating the unit cell sev-
eral times along its axial direction (1 direction) as shown in
Fig. 2.

In the MD simulation, two kinds of atomistic interactions
have been taken in account in the modeling of CNTs; one is
bonded interaction, such as the covalent bonding, and the other
one is the non-bonded interaction, i.e., van der Waals and elec-
trostatic forces. For the CNTs, the primary structure was con-
structed by the bonded atomistic interaction between the
carbon atoms. Such bonded interaction can be described using
the potential energy that consists of bond stretching, bond angle
bending, torsion, and inversion as illustrated in Fig. 3 [13]. The
explicit form of the total potential energy for bonded interaction
is expressed as

UCNT ¼
X

Ur þ
X

Uh þ
X

U/ þ
X

Ux ð1Þ

where Ur is a bond stretching potential; Uh is a bond angle bending
potential; U/ is a dihedral angle torsional potential; and Ux is an
inversion potential. For small deformations, the stretching and
bending behaviors can be modeled using elastic springs and then
the corresponding potentials can be approximated as [14]
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Fig. 3. A schematic representation of the inter-atomic potential: (a) bond stretch,
(b) bond angle bending, (c) dihedral angle torsion, and (d) inversion.

Axial deformation

Fixed boundaryFixed boundary

Axial deformation

Energy equivalent

Axial deformation

Fixed boundaryFixed boundary

Axial deformation

Energy equivalent

Fig. 4. Axial deformation applied in the CNT atomistic structures and the
equivalent solid cylinder.
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Fig. 2. Schematic depiction of a zig-zag type (18,0) CNT unit cell.
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Ur ¼
1
2

krðr � r0Þ2 ð2Þ

Uh ¼
1
2

khðh� h0Þ2 ð3Þ

For the dihedral torsional potential and inversion potential, Li
and Chou [14] adopt the simplest harmonic form to incorporate
the two interactions together into a single equivalent term as

Us ¼ U/ þ Ux ¼
1
2

ksð/� /0Þ
2 ð4Þ

In Eqs. (2)–(4), kr ; kh, and ks are the bond stretching force con-
stant, angle bending force constant, and torsional resistance, respec-
tively. The constants kr ¼ 93;800 kcal

mol nm2 and kh ¼ 126 kcal
mol rad2 selected

from AMBER force field for carbon–carbon atomic interaction [15],
were employed in the present molecular simulation. On the other
hand, for the force constant ks, since Li and Chou [14] indicated that
this value may not have significant influence on CNT’s Young’s mod-
ulus, we directly adopted the constant ks ¼ 40 kcal

mol rad2 from the liter-

ature. The parameters r0; h0, and /0 represent bond length, bond
angle, and dihedral torsional angle in equilibrium position, which
are equal to 1.42 Å, 120�, and 180�, respectively, in the CNTs atomis-
tic structures. It should be noted that the DL-POLY package originally
developed by Daresbury Laboratory [16] was employed for the
current MD simulation, in which Dreiding potential [17] was utilized
to model the inter-atomic potential of carbon–carbon bonding. For
the bond stretching and angle changing behaviors, the mathematical
forms in Dreiding potential are exactly the same as those given in
Eqs. (2) and (3). Nevertheless, for the dihedral torsion and inversion,
the Dreiding torsional potential that accounts for the two portions
together, could be expressed as

Us ¼ U/ þ Ux ¼ A½1� cosðmð/� /0ÞÞ� ð5Þ

Because the carbon–carbon bonding in the hexagonal graphite
is in resonance, the parameter m in Eq. (5) should be equal to 2
[17]. In addition, the parameter A is decided according to the
assumption that Dreiding torsional potential should correspond
to the dihedral torsional potential given in Eq. (4). It has been
found that when A is equal to 10:02 kcal=mol, the Dreiding tor-
sional potential is in a good agreement with the torsional potential.
As a result, m ¼ 2 and A ¼ 10:02 kcal=mol were used in Eq. (5) for
the Dreiding torsional potential.

For the non-bonded atomistic interaction, Lennard–Jones (L–J)
potential

UVDW ¼
A

ðrijÞ12 �
B

ðrijÞ6

" #
ð6Þ

was employed to describe the van der Waals force between the car-
bon atoms where rij is the distance between the non-bonded pair of
atoms. For the hexagonal graphite, the parameters
A ¼ 1:171� 10�6 kcal nm12

mol and B ¼ 6:675� 10�4 kcal nm6

mol suggested in
the literature [17] were adopted in the following simulation.

The atomistic structures of CNTs with minimized potential en-
ergy were constructed by performing NVT ensemble with time
increment at 1 fs for 50 ps until the potential energy accomplished
a stable value. Subsequently, the NPT ensemble with temperature
at 0 K and pressure equal to 0 was conducted until the initial
stress-free condition was accomplished.

2.2.2. Young’s modulus E1 in the longitudinal direction
In order to evaluate the properties of the equivalent solid cylin-

der, the potential energy of the CNTs in the initial state (stress-free
state) was calculated through MD simulation. Subsequently, a
small axial elongation was applied at one end of the CNTs with
the other end being fixed. After an energy minimization process,
the energy in the deformation configuration was evaluated again
through the MD simulation. The simulation process is illustrated
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in Fig. 4. As a result, the potential energy variation between the ini-
tial and deformed configuration in CNT’s atomistic structures asso-
ciated with the axial strain increment was deduced.

On the other hand, when a continuum solid is subjected to sim-
ple tension, based on the linear elasticity theory, the Young’s mod-
uli can be derived from the strain energy variation with respective
to the strain increment as

E1 ¼
2DU

e2VSolid
ð7Þ

where DU is the strain energy variation; e is the strain increment;
and VSolid is the volume of the continuum solid. It is noted that
the Poisson’s effect was not considered in the above derivation.
The potential energy variation obtained from the MD simulation
was regarded as the energy difference in the equivalent solid asso-
ciated with the same axial deformation. Through Eq. (7), the longi-
tudinal moduli of the solid cylinder with three different radii were
evaluated, and the results are presented in Table 1. It was observed
that the Young’s modulus of equivalent solid cylinder decreases as
the cylinder radii increase. Basically, the trend matches with that
presented in Ref. [11]. However, the Young’s modulus of the equiv-
alent solid cylinder is a little higher than those obtained in Ref. [11]
for the same zig-zag type tubes. This discrepancy could be due to
the different definitions of the cross-section area as well as the force
potentials used in modeling the atomistic interaction of the carbon
atoms. A critical review on the effective Young’s moduli of carbon
nanotubes has been presented in the literature [12,18].

2.2.3. Shear modulus G12 in the longitudinal direction
For the calculation of the shear modulus of the equivalent solid,

the atomistic structure of CNTs was subjected to a torsional angle /
at one end together with the fixed boundary condition at the other
end as shown in Fig. 5. Similar boundary was also adopted in the
literature for the evaluation of the shear modulus of CNTs [19].
Table 1
Mechanical properties of equivalent solid cylinder.

Radius (Å) 3.9 5.5 7.1

E1 (GPa) 1382.5 981.5 759.9
G12 (GPa) 1120 779.2 596.3
m12 0.272 0.27 0.27
E2 (GPa) 645 504 425
m23 0.2 0.2 0.2

Fixed boundaryFixed boundary

Energy equivalent

Twist angle φTwist angle φ

Fixed boundaryFixed boundary

φφ

Fig. 5. Twist deformation applied on the CNT atomistic structure and the
equivalent solid cylinder.
After the energy minimization process, the energy difference
ðDUÞ of the deformed CNTs with respect to the torsional angle /
was calculated through the MD simulation. If the deformation is
very small and within the linear range, the associated shear mod-
ulus of the equivalent solid cylinder in terms of the torsional angle
and energy variation is given as [20]

G12 ¼
2DU

/2JSolid

L0 ð8Þ

where JSolid is the cross-sectional polar inertia of the equivalent so-
lid, and L0 is the length of the CNTs. The shear moduli calculated
with Eq. (8) for the equivalent solids are also shown in Table 1.
Analogous to the longitudinal modulus, the shear modulus exhibits
the declining behavior as the CNT radius increases.

2.2.4. Poisson’s ratio m12

In addition to the Young’s modulus and shear modulus, the
determination of Poisson’s ratio of the equivalent solid was directly
motivated by the continuum mechanics concept. Instead of the dis-
placement constraints imposed on the boundaries, the axial stress
was applied on the both ends of CNTs in order to diminish the end
constraint effect. In the MD simulation, a modified NPT ensemble
with the characteristics of varying simulation box in shape and size
[21] was employed such that uniaxial stress can be independently
applied at both ends of the CNTs with stress free in the lateral
direction. Again after the energy minimization process, the equili-
brated CNT atomistic structure was obtained, and then the Pois-
son’s ratio was defined as

m12 ¼ �
er

e
ð9Þ

where er is the lateral strain in a nanotube and defined as ðr � r0Þ=r0

in which r0 and r are the CNT radius before and after the stress is
applied, respectively. In addition, e represents the axial strain. The
Poisson’s ratio obtained based on Eq. (9) for the zig-zag type CNTs
with various radii are presented in Table 1. It seems that the Pois-
son’s ratio of the equivalent solid cylinder is not sensitive to the
CNT radius.

2.2.5. Young’s modulus E2 and Poisson’s ration m23 in the lateral
direction

Because of the characteristics of the atomistic structures of the
CNTs, the mechanical properties in the lateral direction (in-plane
properties) are isotropic; thus, only two material constants are
independent and need to be determined. Here, Young’s modulus
E2 and Poisson’s ratio m23 in the transverse direction were selected
in the following evaluation.

Radial displacement was applied on the atoms located at the
circumference of the CNT atomistic structures as shown in Fig. 6,
and then the energy variation of the CNTs after the deformation
was calculated through the MD simulation. In a similar manner,
the same amount of radial displacement was applied on the equiv-
Radial displacement Radial displacement

Energy equivalent

Radial displacement Radial displacement

Energy equivalent

Fig. 6. Radial deformation applied on the CNT atomistic structure and the
equivalent solid cylinder.
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alent solid, and the energy variation was calculated through the fi-
nite element analysis. By adjusting the values of E2 and m23 in the
equivalent solid cylinder such that the energy variation in the
equivalent solid is equal to that obtained from CNTs atomistic
structure, the transverse properties in the effective solid were
determined accordingly.

It is noted that in the equivalent solid, the energy variation is
calculated using commercial finite element program ANSYS with
a 2D plane element. Since only one equation (energy equivalence
equation) is available, it is unfeasible to yield a unique solution
for the two unknowns, E2 and m23, and thus multiple solutions
are always generated in the above calculation. In order to under-
stand the sensitivity of the E2 and m23 values on the mechanical re-
sponses of CNT-reinforced nanocomposites, we assumed m23 as 0.2
and 0.4, respectively, and calculated the corresponding values of E2

in the equivalent solids. Subsequently, the two different groups of
E2 and m23together with other material constants, i.e., E1;G12, and
m12, were implemented into the Mori–Tanaka micromechanical
model [22] for characterizing the properties of the CNT nanocom-
posites. Comparison of the moduli of the CNT nanocomposites ob-
tained based on the two different properties of equivalent solids
indicates that the mechanical properties of the CNTs composites
are not dramatically affected by the transverse properties of the
effective cylindrical solids. Therefore, we hereafter adopted m23 as
0.2 for the equivalent cylindrical solid and then calculated the re-
lated Young’s modulus E2. All mechanical properties of equivalent
cylindrical solid calculated based on the energy equivalence con-
cept are summarized in Table 1.
3. Effective interphase model

When the hollow molecular structure of a CNT was converted
into a solid cylinder through the energy equivalent concept as pre-
sented in the early section, the mechanical behavior of CNT nano-
(a)

Fig. 7. Schematic representation of simulation process: (a) CNTs/polyimi

Fig. 8. Sketch of polyim
composites can be predicted using the conventional two-phase
micromechanical model [22]. In the two-phase model, it is always
assumed that the reinforcements are perfectly bounded with the
surrounding polymeric matrix. However, in CNT-reinforced nano-
composites, the interfacial bonding is not perfect, but it is domi-
nated by the non-bonded interaction that consists of the
electrostatic and van der Waals interactions. Moreover, the extent
of atomistic interaction between the CNTs and surrounding matrix
may have an influence on the mechanical responses of the nano-
composites. As a result, it is indispensable to have a continuum
micromechanical model being able to account for the inter-atomic
effect in the modeling of CNTs nanocomposites. In this section, the
atomistic interaction between the CNTs and the polyimide matrix
was characterized through the effective interphase, the corre-
sponding properties of which were determined from the molecular
interaction energy calculated from MD simulation. With the prop-
erties of the effective interphase in conjunction with the equivalent
solid cylinder of CNTs, the CNT nanocomposites that originally are
discrete atomistic structures can be interpreted by using a three-
phase continuum micromechanical model as demonstrated in
Fig. 7.

3.1. Construction of CNTs/polyimide molecular structures

In order to understand the atomistic interaction between the
CNTs and the surrounding polyimide polymer, the molecular struc-
ture of CNTs/polyimide nanocomposites employed in the MD sim-
ulation were constructed initially. A simulation unit with periodic
boundary conditions that contain a CNT embedded in the amor-
phous polyimide molecular chains is constructed as shown in
Fig. 7(a). The polyimide polymer is generated by 10 repeated
monomer units, and the corresponding chain number is dependent
on the size of the simulation box. Fig. 8 illustrates the polyimide
monomer unit. It is noted that the Dreiding force field [17] was
employed to describe the covalent bonding as well as the non-
PI matrix

Equivalent 
solid cylinder

Effective 
interphase

m
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PI matrix
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de molecular structure and (b) three-phase micromechanical model.
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bonding interaction in the polyimide polymer. In addition, the
atomistic interaction between polyimide molecular and CNTs were
also directly modeled using the Dreiding force field although the
modified parameters in Dreiding force field were employed to
model the CNTs as discussed earlier. Three different sizes of CNTs,
3.9, 5.5, and 7.1 Å in radius, were considered individually as rein-
forcements in the nanocomposites, and the corresponding num-
bers of polyimide chains equal to 8, 16, and 26, respectively,
were utilized in these CNT/polyimide molecular structures in order
that the volume fractions of CNTs in the nanocomposites remain
the same.

The MD simulations for the CNT/polyimide nanocomposites
were conducted using a DL-POLY package [16]. The equilibrated
molecular structure with minimized energy was accomplished by
sequentially performing the NVT and NPT ensembles in the MD
simulation. It is noted that NVT ensemble stands for the volume
and temperature being fixed during the simulation, and NPT
ensemble represents that the pressure and temperature remain
constant during the simulation. The purpose of the NVT ensemble
conducted at 1000 K for 200 ps was to supply enough kinetic en-
ergy on the polyimide molecular so that homogeneous molecular
structure within the simulation box can be achieved. During the
process, the CNT atoms were frozen, which designates that the car-
bon atoms on CNTs were fixed at their original position throughout
the whole simulation [23]. Subsequently, the NPT process was des-
ignated to 0 atm such that the simulation box with traction-free
boundary conditions could be satisfied. Two sub-steps were intro-
duced for the temperature drop from 1000 to 0 K in the NPT pro-
cess. In the first step, the temperature was designated at 300 K
for 200 ps, and in the second stage, the frozen atoms in the CNT
structures were released, and the entire system was equilibrated
at 0 K under stress-free conditions for another 100 ps. During the
simulation, the total potential energy variation was examined,
and when the quantity fluctuated around a certain mean value
for a while, the system was considered to be in equilibrium. Figs.
9 and 10 demonstrate the potential energy history of the nanocom-
posites as well as the temperature variation during the second step
in the NPT ensemble, respectively. It seems that the potential en-
ergy attains stable condition after 10 ps, and meanwhile, the tem-
perature is approaching 0 K. Based on the observations, it was
suggested that the current molecular structure is in the equilib-
rium condition and suitable for the characterization of the molec-
ular structures as well as the material properties.
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3.2. Non-bonded gap

The density distribution of polyimide polymer near the CNTs
was initially examined according to the following formulation

qðrÞ ¼ gr

Vr
ð10Þ

where Vr ¼ pððr þ drÞ2 � r2ÞL0 indicates the volume of a cylindrical
shell near the CNTs with length equal to L0 as shown in Fig. 11, and
gr denotes the total atom mass in Vr . The density distribution of the
CNTs and the PI polymer in the radial direction is illustrated in
Fig. 12. It can be seen that near the CNTs, the polyimide density is
relatively high and then declines to a typical value ð1:31 g=ccÞ
[24] when it is far away from the CNTs. In addition, there is a clear
gap with very low molecular density existing between the CNTs and
the surrounding polyimide matrix. In this study, the gap has been
referred to as the non-bonded gap because it is caused by the
non-bonded force field between the CNTs and the polymeric matrix.
In order to qualitatively characterize the dimension of the non-
bonded gap, a radial volume element, as shown in Fig. 13, is pro-
posed, where Dh is the angle between two radial lines emitted from
the center of the CNTs, and Dz is the length in the CNTs longitudinal
Fig. 11. Evaluation of density distribution of polyimide polymer in the radial
direction.
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Table 2
Non-bonded gap and normalized non-bonded energy in CNT/polyimide nanocom-
posites with various CNTs radii.

Radius (Å) 3.9 5.5 7.1

Non-bond gap (Å) 3.333 3.236 3.158
Normalized non-bond energy ðJ=m2Þ 0.3560 0.3269 0.3142
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direction. For each incremental rotation (10�) of the volume ele-
ment with respective to the z-axis, the positions of the CNTs and
polyimide atoms within the element were counted. The maximum
radial distance for the CNTs atoms within the volume element is de-
noted as rmax

CNTs, and the minimum radial distance for the polyimide
atoms is represented as rmin

PI . The non-bonded gap between the CNTs
and the polyimide matrix within the unit volume is introduced as

rnon-bonded ¼ rmin
PI � rmax

CNTs ð11Þ

Fig. 14 illustrates the measurements of the maximum radial dis-
tance for CNTs atoms together with the minimum radial distance
for polyimide atoms for each rotational increment. When the radial
volume element rotates around 360�, the average value of the
rnon-bonded is regarded as the non-bonded gap of the nanocomposites.
Table 2 indicates the non-bonded gap calculated from the nano-
composites with three different CNT radii. It seems that the non-
bonded gap decreases a little bit as the CNT radius increases. Nev-
ertheless, the dependence of the non-bonded gap on the CNT radius
was found to be not so significant.

3.3. Non-bonded energy

In addition to the non-bonded gap, the non-bonded energy be-
tween the CNTs and the polyimide matrix was also estimated from
the MD simulation. In the calculation of the non-bonded interac-
tion, only the van der Waals interaction that was modeled by Len-
nard–Jones potential function was considered. It should be noted
that, in reality, some kind of cross-linking between the CNTs and
polyimide matrix may be constructed in the curing process. This
phenomenon has not been included in the present modeling. The
total non-bonded energy within the nanocomposites is contributed
not only by the interaction between the CNTs and the polyimide,
but also by the CNTs as well as the polyimide molecular chains.
Therefore, the non-bonded energy between the CNTs and polyim-
ide is calculated by subtracting the non-bonded energy of the CNTs
and polyimide polymer from the total non-bonded energy, and it
can be expressed as

UPI—CNTs ¼ Utotal � UCNTs � UPI ð12Þ

where Utotal is the total non-bonded energy obtained from the nano-
composites. UCNTs and UPI stand for the non-bonded energy of CNTs
and polyimide molecular chain, respectively. The non-bonded en-
ergy of the polyimide molecular chain was evaluated in the simula-
tion box where the CNTs were removed, and only the molecular
structures of the polyimide matrix were left. In a similar manner,
the non-bonded energy of CNTs was calculated. Therefore, with
Eq. (12), the non-bonded energy between the CNTs and the polyim-
ide was determined. It is worthy to note that the non-bonded en-
ergy provides a relative indication regarding the extent of
interaction between the CNTs and the surrounding matrix. If the
non-bond interaction can be further employed to represent the
properties of an equivalent interphase with the dimension equal
to the non-bond gap, it is possible that the mechanical properties
of the nanocomposites could be described by the three-phase
micromechanical model comprising the CNTs, effective interphase,
and polyimide polymer.

To achieve this goal, the degree of interaction between the CNTs
and the matrix is characterized in terms of the normalized non-
bonded energy, which is defined as the non-bonded energy divided
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by the surface area of the CNTs. Subsequently, the normalized non-
bonded energy was assumed to be associated with the non-bonded
gap in the form as

UðrÞ ¼ 1
6

kr6 ð13Þ

where r is the non-bonded gap, and k is the parameter to be deter-
mined. Based on the normalized non-bonded energy, the corre-
sponding normalized interaction force was obtained by
differentiating the energy with respect to the distance as

FðrÞ ¼ � @U
@r
¼ �kr5 ð14Þ

The negative sign of the force in Eq. (14) represents the attrac-
tive interaction. On the other hand, Eqs. (13) and (14) can also be
interpreted as the strain energy of a unit element with length equal
to the non-bond gap, r, and the cross-section area equal to 1, when
it is subjected to the applied loading kr5. Therefore, from the 1D
elasticity, the strain energy of the unit element is represented as

U ¼ r2

2E
r ð15Þ

where E is the Young’s modulus of the equivalent unit element, and
r is equal to kr5 that is the loading applied on the unit area (so-
called stress). From the hypothesis that the strain energy of the unit
element is equivalent to the normalized energy given in Eq. (13),
the modulus of the equivalent unit element is yielded as

E ¼ 3kr5 ¼ 18UðrÞ
r

ð16Þ

It is noted that in the above calculation, only the strain energy
caused by axial loading was adopted to illustrate the normalized
non-bonded energy of the nanocomposites obtained from the MD
simulation. As a result, once the non-bonded gap as well as the
normalized non-bonded energy was calculated, the elastic moduli
of the equivalent interphase can be determined by means of Eq.
(16). Table 2 demonstrates the normalized non-bonded energy of
the nanocomposites calculated with different CNTs radii. It shows
that as the radius increases, the corresponding normalized non-
bonded energy decreases, which indicates the interaction is
lessening.

3.4. Three-phase micromechanical model

Based on the aforementioned derivation, the non-bonded inter-
action between the CNTs and the surrounding polyimide matrix
can be appropriately replicated by a continuum-based equivalent
interphase. With the mechanical properties of the equivalent solid
cylinder (representing CNTs), effective interphase, and polyimide
matrix as well as the corresponding geometric parameters, the re-
sponses of the CNTs nanocomposites can be depicted using the
micromechanical model with multiple phases [25,26]. It should
be noted that three ingredients have been considered in the
three-phase model, which is different from conventional Mori–Ta-
naka micromechanical model [22] where only two phases are in-
cluded in the analysis. The explicit formulation of the three-
phase model is written as [25]

C� ¼ Cm þ ðvC þ vXÞfCC � CmgAdi
V þ vX ðCX � CCÞAdi

X

n oh i
vmI þ ðvC þ vXÞ Adi

V

n oh i�1
ð17Þ

where C� denotes the stiffness matrix for the nanocomposites,
CX;CC, and Cm represent the stiffness of the domain of X (equivalent
solid), C (interphase), and m (polyimide matrix), respectively, as
shown in Fig. 7(b); vX;vC, and vm indicate the volume fraction of
the respective domains. In addition,
Adi
V ¼ I þ EV

EshU
V ð18Þ

Adi
X ¼ I þ DEEshU

C þ EX
EshU

X ð19Þ

where

UX¼� EX
EshþC1

� �
þDEEsh EX

Esh�
vX

vC
DEEshþC2

� ��1

EX
Esh�

vX

vC
DEEshþC1

� �" #�1

ð20Þ

UV ¼ vX

vXþvC
UXþ vC

vXþvC
UC ð21Þ

UC¼� DEEshþ EX
EshþC1

� �
EX

Esh�
vX

vC
DEEshþC1

� ��1

EX
Esh�

vX

vC
DEEshþC2

� �" #�1
ð22Þ

DEEsh¼EX
Esh�EV

Esh
ð23Þ

C1¼ðCX�CmÞ�1Cm ð24Þ
C2¼ðCC�CmÞ�1Cm ð25Þ

In the above expression, V ¼ Xþ C, which is the domain com-
prising the CNTs and the interphase as well, and EV

Esh and EX
Esh indi-

cate the Eshelby’s tensor for the domains V and X, respectively
[27]. It is noted that when the aspect ratio of the inclusion phases
are infinite, such as CNTs, the Eshelby’s tensors can be written
explicitly as [28]

EX
Esh ¼ EV

Esh ¼ Eijkl ð26Þ

where

E1111 ¼ 0 ð27Þ

E2222 ¼ E3333 ¼
5� 4mm

8ð1� mmÞ
ð28Þ

E2233 ¼ E3322 ¼
4mm � 1

8ð1� mmÞ
ð29Þ

E2211 ¼ E3311 ¼
mm

2ð1� mmÞ
ð30Þ

E1122 ¼ E1133 ¼ 0 ð31Þ

E2323 ¼
3� 4mm

8ð1� mmÞ
ð32Þ

E1212 ¼ E1313 ¼
1
4

ð33Þ

and mm is the Poisson’s ratio of the surrounding matrix. In the above
approach, the discrete molecular structure of CNT nanocomposites
was efficiently converted into a continuum system, and the corre-
sponding properties could be simulated using the continuum
micromechanical analysis when the equivalent properties were
properly determined.
4. Elastic constants of molecular structures

In addition to the micromechanical analysis previously dis-
cussed, the mechanical properties of the equilibrated molecular
configuration of CNTs nanocomposites were also predicted using
the molecular dynamic simulation. A modified NPT ensemble with
the characteristics of varying simulation box in shape and size [21]
was subjected to uniaxial tension. After the energy minimization
process, the deformed configuration of the nanocomposites was
obtained from which the strain increment in the loading direction
was calculated, and the associated stress was then calculated from
the virial theorem [29]. It is noted that on the lateral surfaces of the
simulation box, stress-free condition was imposed in order to sim-
ulate the simple tension condition [30]. Therefore, the modulus of
the nanocomposites in the loading direction can be measured as
the ratio of the stress associated with the corresponding strain
increment

E ¼ Dr
De

ð34Þ
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In this study, the moduli of the CNTs nanocomposites in the lon-
gitudinal and transverse directions were estimated, respectively,
from the molecular dynamic simulation, and the results were com-
pared with those derived from the three-phase micromechanical
model.
5. Results and discussions

Table 3 shows the longitudinal moduli of the CNTs/polyimide
nanocomposites with three different radii of CNTs. It seems that
as the radius increases, the corresponding modulus of the nano-
composites decreases although the CNTs volume fractions re-
main the same. In addition, the moduli of the nanocomposites
calculated from the MD simulation are quite close to the con-
ventional micromechanical model (rule of mixture). Thus, the ef-
fect of atomistic interaction between the CNTs and polyimide
may be neglected in modeling the longitudinal modulus of nano-
composites with continuous CNTs as indicated in Refs. [4,5]. Be-
cause of the influence of the effective interphase, the
longitudinal modulus of the nanocomposites obtained from the
three-phase model is little higher than that obtained from the
MD simulation.

On the other hand, for the transverse moduli of the CNT/polyim-
ide nanocomposites, the results with different radii of CNTs are
listed in Table 4. Similar to the longitudinal moduli, the transverse
moduli is also decreasing when the CNTs radii increase. Nonethe-
less, the declining characteristic observed in the MD simulation
and three-phase model was not exhibited in the conventional
micromechanical model. Apparently, in the transverse direction,
the atomistic interaction effect is more significant, but not ac-
counted for, in the conventional continuum mechanics modeling.
In the light of the forgoing discussion, it is suggested that in the
longitudinal direction, the conventional micromechanical model
with the equivalent CNT properties is adequate for predicting the
moduli of CNT nanocomposites. Alternatively, for the transverse
modulus of the nanocomposites, the three-phase model has to be
employed in the description of the mechanical properties with
accuracy. In addition, for the reinforcement efficiency, it has been
revealed that the CNTs with smaller radii can provide better
mechanical properties in their composites when the volume frac-
tions of CNTs remain the same. This suggestion is consistent with
the experimental observations that the efficiency of reinforcement
varies linearly with the total CNT’s surface area in the nanocom-
posites [31].
Table 3
Comparison of longitudinal Young’s moduli of CNT/polyimide nanocomposites
obtained from MD simulation, Mori–Tanaka model and three-phase model.

Radius (Å) 3.9 5.5 7.1

Volume fraction of CNT (%) 6.28 6.43 6.67
Young’s modulus (GPa) (MD simulation) 90.6 67.6 54.2
Young’s modulus (GPa) (Mori–Tanaka model) 90.6 66.9 54.7
Young’s modulus (GPa) (three-phase model) 92.9 68.3 55.8

Table 4
Comparison of transverse Young’s moduli of CNT/polyimide nanocomposites
obtained from MD simulation, Mori–Tanaka model and three-phase model.

Radius (Å) 3.9 5.5 7.1

Volume fraction of CNT (%) 6.28 6.43 6.67
Transverse Young’s modulus (GPa) (MD simulation) 6.22 5.86 5.29
Transverse Young’s modulus (GPa) (Mori–Tanaka model) 5.28 5.27 5.28
Transverse Young’s modulus (GPa) (three-phase model) 6.32 5.90 5.74
6. Conclusion

The mechanical properties of the CNT/polyimide nanocompos-
ites were characterized using multi-scale simulation. The equiva-
lent cylindrical solid was proposed to model the atomistic
structure of CNTs, and the corresponding properties were deter-
mined from the molecular mechanics in conjunction with the en-
ergy equivalence concept. The level of atomistic interaction
between the CNTs and the surrounding polyimide polymer was
modeled by the effective interphase, the properties of which were
obtained from the non-bonded energy as well as the non-bonded
gap determined from the MD simulation. With the properties of
equivalent solid cylinder, effective interphase, and polyimide poly-
mer, the mechanical properties of CNTs nanocomposites can be
predicted using the three-phase continuum micromechanical
model. For comparison purposes, the two-phase micromechanical
model (Mori–Tanaka model) was also adopted in the prediction.
A comparison of the micromechanical results with the MD results
indicates that the longitudinal moduli of the CNT nanocomposites
can be precisely predicted using the two-phase micromechanical
model together with the equivalent cylinder properties of the
CNTs. However, in the transverse direction, the three-phase model
can provide better results than the two-phase micromechanical
model since the atomistic interactions between the CNTs and poly-
imide polymer become essential in such conditions.
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