
國 立 交 通 大 學

資訊科學與工程研究所

博 士 論 文

網路桌面遊戲之模式與系統設計

On the Model and System Design for
Online Tabletop Games

研 究 生：徐健智

指導教授：吳毅成 教授

中 華 民 國 九 十 五 年 七 月

網路桌面遊戲之模式與系統設計

On the Model and System Design for
Online Tabletop Games

研 究 生：徐健智 Student：Chien-Chin Hsu

指導教授：吳毅成 Advisor：I-Chen Wu

國 立 交 通 大 學
資 訊 科 學 與 工 程 研 究 所

博 士 論 文

A Dissertation

Submitted to Institute of Computer Science and Engineering

College of Computer Science

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

in

Computer Science

July 2006

HsinChu, Taiwan, Republic of China

中 華 民 國 九 十 五 年 七 月

 ii

網路桌面遊戲之模式與系統設計

學生：徐健智 指導教授：吳毅成博士

國立交通大學資訊工程學系研究所博士班

摘 要

網路桌面遊戲，如西洋棋、圍棋、橋牌、麻將等，在 Internet 上十分受歡迎。

許多桌面遊戲擁有相同的特性，如玩家圍坐在桌子旁，使用撲克牌之類的小物體

來玩遊戲。由於桌面遊戲普及性及相似性，讓我們想研究如何加速網路桌面遊戲

的發展。根據桌面遊戲的相同特性，我們設計兩個模式。第一個模式允許玩家在

一個虛擬的大廳中邀請朋友一起玩遊戲。第二個模式則是為桌面遊戲定義了物

件、狀態、以及遊戲的動作。根據這兩個模式，我們設計並實作了了一套網路桌

面遊戲發展系統。這個系統的功能包括了網路通訊功能，玩家及遊戲伺服器管

理，以及專為桌面遊戲提供的圖形介面支援等等。

在實作的過程中，我們遇到了兩個會造成我們的系統服務暫停或中止的問

題。第一個問題是某些對網路讀寫資料的動作可能會造成遊戲伺服器暫時停止運

作。第二個問題是當緩衝區溢位 (buffer overflow) 這種錯誤發生時，會讓整個遊

戲伺服器程式被破壞，無法繼續提供服務。我們深入研究了這兩個問題並在本論

文中提出了我們的解決方法。我們的研究成果可以讓遊戲伺服器程式避免被上述

那兩個問題干擾，而能夠正確地持續提供服務。

實際上在台灣和香港已經有數個遊戲網站採用我們的系統。近年來，這些遊

戲網站已經擁有超過百萬的會員，而最高的同時上線玩遊戲人數，也屢次超過了

一萬人，足以說明我們的系統的實用性及穩定性。

 i

 ii

On the Model and System Design for
Online Tabletop Games

Student: Chien-Chih Hsu Advisor: I-Chen Wu

Institute of Computer Science and Engineering
College of Computer Science

National Chiao Tung University

Abstract

Online tabletop games, such as Chess, Go, Bridge, Mahjong, etc, are popular in the

Internet. Many online tabletop games share the same characteristics, e.g., players play around

tables using physical objects such as cards. Due to the popularity and similarity of tabletop

games, we are motivated to facilitate the development of online tabletop games. We design

two models for online tabletop games according to the shared characteristics. The first model

allows players to invite friends to play games together in a virtual room. The second model

defines game objects, game states, and playing operations for tabletop games. Based on the

two models, we design and implement a system for developing online tabletop games. The

functionalities of the game system include network communication, player management,

game server management, and graphical support for online tabletop games.

While implementing the game system practically, we encounter two issues on which the

services of our system for online tabletop games are blocked or disrupted. The first issue is

that some network I/O operations may block servers in our system unexpectedly for a long

time. The second issue is that buffer overflow failures may crash servers in our system and

therefore disrupt the services. In this dissertation we propose solutions to the two issues

respectively so that our game system can support services smoothly and correctly without

 iii

suffering form the two issues.

In practice, our game system has been used in some commercial game sites in Taiwan

and Hong-Kong. These game sites have attracted more than one million people to register as

members and have supported up to 10,000 concurrent players.

 iv

誌 謝

能夠取得博士學位，我要感謝許多人的支持與幫忙。首先感謝我的指導教授

吳毅成老師，在我研讀碩士及博士期間，在學業上給我許多指導與教誨，在生活

也給我許多關懷與幫助。

其次我要感謝我的論文口試委員朱正忠教授、黃世昆教授、許舜欽教授、郭

譽申教授、葉義雄教授、蔡文能教授與顏士淨教授（以上按姓氏筆劃排列），他

們對我的論文的指導與建議，對我日後的研究工作有著莫大的助益。

在吳毅成老師門下學習的期間，許多學長姐、同學、及學弟妹曾與我一起合

作研究、學習新知，也分享了不少生活上的喜怒哀樂。感謝他們給我許多建議和

鼓勵，陪我渡過了這段時光。

最後我要感謝我的父母、妻子、以及其他家人，他們在精神及物質上的支持

與鼓勵，使我得以安心進修，完成這個學業。謹將這篇論文，獻給我最摯愛的家

人。

 v

 vi

Contents

摘 要 ... I

ABSTRACT .. III

誌 謝 ..V

CONTENTS ...VII

LIST OF FIGURES.. IX

CHAPTER 1 INTRODUCTION ..1

1.1 BACKGROUND..1
1.2 MOTIVATION ..3
1.3 ORGANIZATION OF DISSERTATION..6

CHAPTER 2 MODELS FOR TABLETOP GAMES7

2.1 THE GROUPED ONLINE TABLETOP GAME (GOTG) MODEL ...7
2.2 THE TABLETOP GAME (TG) MODEL...9

2.2.1 The Simplified Tabletop Game (STG) Model ...9
2.2.2 The General TG Model ..17

CHAPTER 3 THE DESIGN AND IMPLEMENTATION OF THE GOTG
SYSTEM...21

3.1 THE BASIC FUNCTIONALITIES OF THE GOTG SYSTEM...21
3.2 THE SPECIFIC SUPPORT FOR TABLETOP GAMES..25
3.3 A GOBANG BASED ON THE TG FRAMEWORK ...27
3.4 AN UNIVERSAL TABLETOP GAME SYSTEM...31

CHAPTER 4 RELATED ISSUE 1: RESOLVING PROBLEMS OF
BLOCKING I/O OPERATIONS FOR SERVER PROGRAMMING...........35

4.1 SERVER PROGRAMMING FOR INTER-USER COMMUNICATION...35
4.2 THE EVENT-DRIVEN PROGRAMMING MODEL ..38
4.3 OUTPUT BLOCKING PROBLEM AND SOLUTION...40

4.3.1 Output Blocking Problem ..41
4.3.2 Solution to the Output Blocking Problem ..41

4.4 REQUEST BLOCKING PROBLEM AND SOLUTION ...45
4.4.1 Request Blocking Problem...45
4.4.2 Solutions for HTTP Access Requests ...47

 vii

4.4.3 Solutions for Other Service Requests...50
4.5 EXPERIMENTS ..55

CHAPTER 5 RELATED ISSUE 2: FAST RECOVERY FROM
OVERFLOW FAILURES FOR NON-DISRUPTIVE GAME SERVICES ..59

5.1 THE BUFFER OVERFLOW PROBLEM ...59
5.2 THE DESIGN AND IMPLEMENTATION OF BODAR...61

5.2.1 Integration of Address Space Permutation and Trapping OOB by Unallocated Address Space61
5.2.2 Guarding Buffers with Addresses within Unallocated Regions ...63
5.2.3 Faulty Address Resolution ...65
5.2.4 Source Code Transformation for the Guarded OOB Instrument ...66

5.3 RESULTS ..68
5.3.1 Stack Buffer Allocation Overhead..68
5.3.2 Security Tolerance and Availability Evaluation...69
5.3.3 Efficiency Evaluation...71

5.4 DISCUSSIONS ...75
5.4.1 The Utilizable Virtual Address Space ..75
5.4.2 Limitations...77

CHAPTER 6 CONCLUSION ...79

6.1 SUMMARY OF CONTRIBUTIONS...79
6.2 FUTURE WORK..83

6.2.1 The Improvements on the GOTG System ...83
6.2.2 GAML and History Authoring Systems..84
6.2.3 The Improvement on BODAR ..84

REFERENCES ..87

 viii

List of Figures

Figure 2.1. The Grouped Online Tabletop Game (GOTG) model...8
Figure 2.2. A game play of Tic-tac-toe. ...12
Figure 2.3. (a) The appearance before moving heart four and (b) after moving heart four.19
Figure 3.1. The architecture of the GOTG system. ..21
Figure 3.2. The class diagram of the TG framework. ..26
Figure 3.3. A screenshot of the TG framework based Gobang..28
Figure 3.4. The main flowchart of the TG framework based Gobang. ..29
Figure 3.5. Part of the TG framework based Gobang program..30
Figure 3.6. Initializing a game. ..31
Figure 3.7. Defining a new TG game...32
Figure 3.8. A game appearance for player one. ...33
Figure 4.1. Class diagram of the Reactor pattern. ..39
Figure 4.2. Class diagram of the event-driven framework with the output buffering

mechanism..42
Figure 4.3. Sequence diagram for accepting a new client..44
Figure 4.4. Sequence diagram for handling output buffering. ...44
Figure 4.5. Class diagram of the event-driven framework with service brokers.48
Figure 4.6. Sequence diagram for establishing a connection and sending an HTTP request.......49
Figure 4.7. Sequence diagram for handling responses...50
Figure 4.8. Handling database requests using multi-threads..51
Figure 4.9. Class diagram of helper processes. ..52
Figure 4.10. Collaboration diagram of handling services in a helper process.52
Figure 4.11. Case of deploying helper processes. ..54
Figure 4.12. The deployment of the evaluating the output buffering mechanism.56
Figure 4.13. The averaged top-100 response time. ..56
Figure 4.14. The averaged top-100 response times vs. the blocking times..................................57
Figure 5.1. The buffer organization in the BODAR system...64
Figure 5.2. Converting stack buffers to heap buffers. ..67
Figure 5.3. The stack buffer allocation overhead. ..68
Figure 5.4. Apache http server 1.3.34 (with mod_mylo 2.1) runs under attacks (part 1).70
Figure 5.5. Apache http server 1.3.34 (with mod_mylo 2.1) runs under attacks (part 2).70
Figure 5.6. Thttpd 2.23beta1 runs under attacks (part 1). ..71
Figure 5.7. Thttpd 2.23beta1 runs under attacks (part 2). ..71
Figure 5.8. Apache http server 1.3.34 and thttpd 2.23beta1 runs without attacks.72
Figure 5.9. Sparse Degree Measurement. ..72
Figure 5.10. Use GnuPG to perform RSA encryption. The source file sizes are 0.5M, 1M,

 ix

1.5M, 2M, 2.5M, and 3M bytes files respectively. ..73
Figure 5.11. Use GnuPG to perform RSA decryption. The decrypted file sizes are 0.5M, 1M,

1.5M, 2M, 2.5M, and 3M bytes respectively. ..73
Figure 5.12.Use access-time.awk to analyze 50K-lines, 100K-lines, 150K-lines, 200K-lines,

250K-lines, and 300K-lines squid access log respectively. ...74
Figure 5.13. Use proxy_stats.awk to analyze 50K-line, 100K-lines, 150K-lines, 200K-lines,

250K-lines, and 300K-lines squid access log respectively. ...74
Figure 5.14. Use scalar.awk to analyze 50K-lines, 100K-lines, 150K-lines, 200K-lines,

250K-lines, and 300K-lines squid access log respectively. ...74
Figure 5.15. Sparse Degree of CPU bound programs. ...75
Figure 5.16 The memory layout of a BODAR-enabled process on FreeBSD 5.4 on an

AMD-64 machine or an Intel IA-32 machine. ...75
Figure 6.1. The screenshot of a game coordinator in the CYC Game League.............................82
Figure 6.2. The screenshot of a Chinese Chess game in the CYC Game League........................83

 x

Chapter 1 Introduction

In this chapter, we present a brief introduction to online games. Among these games, we

further discuss online tabletop games which are a kind of popular online games in the

Internet.

1.1 Background

With the rapid development and the fast-growing user base of the Internet, online games

become one of the most important applications in the Internet communities. The market as

well as the player number of online games are growing up over the past decade. There are

many categories of online games. Some popular categories of online games are briefly

introduced as follows.

 Turn-based strategy games: Strategy games are games that the decision-making skills of

players significantly affect the game result. A player of a turn-based strategy game is

allowed to think for a period of time before committing a game action. The examples of

turn-based strategy games include the Civilization Net series [25] and the Total War series

[69].

 Real-time strategy games: Real-time strategy games refer to a certain computer strategy

games that the action in the games is continuous and the players have to make decisions

while the states of games constantly progress. The examples of real-time strategy games

include the AOE series [42] and the Warcraft series [9].

 First-person shooter games: First-person shooter games are a type of fighting video or

computer games. In such a game, the screen simulates the first-person view. The examples

of first-person shooter games include the Doom series [34] and the Half Life series [84].

 Role-playing games: A role-playing game is a kind of game in which a player pretends the

 1

role of a character and collaborates with others to create narratives. The game progresses

according to a predefined system of guidelines and rules. The examples of role-playing

games include the Diablo series [10] and the Baldur’s Gate series [8].

 Tabletop games: Tabletop games is a general term that refers to card games (e.g., Bridge,

Big2, and Showhand), board games (e.g., Chess, Chinese chess, and Othello), tile-based

games (e.g., Mahjong) and other games that are normally played on a table with some

small objects (such as cards or pieces).

Although tabletop games are relatively simple among these game categories, they are

still popular in the Internet. For example, Yahoo! Games [95] that supports many tabletop

games is a very popular game site. Millions of people register as the its members and more

than 40000 of the members log on it concurrently to play tabletop games anytime in 2006.

Besides, a survey undertaken in 2005 by the Market Intelligence Center of the Institute for

Information Industry of Taiwan reports that the market share of online tabletop games in

Taiwan is about several billions in 2005 and 2006 [35].

Many tabletop games have similar characteristics. For example, players usually play

around tables using physical objects such as cards. We summarize the shared characteristics

of tabletop game as following.

 Players of a game sit around a table.

 They play the game by manipulating physical objects on the table. For example, players

who play Chess move Chess pieces on a chessboard on the table.

 They may hold objects in their private areas to keep these objects secret. For example,

players that play Bridge may hold cards in their own hands.

 All objects are finite and never disappear on the table.

The summarized characteristics of tabletop games focus on the objects used in tabletop

 2

games and operations that manipulate these objects. We believe that a model for tabletop

games can be designed according to these shared characteristics and a reusable software

architecture for tabletop game development can be constructed based on the model.

Since the model mentioned above focuses on objects and operations in tabletop games, it

does not consider the matchmaking functionality, that is, searching partners to play games

together. However, the matchmaking functionality is very important for online games since

players would like to play games in an online game system if they can find their partners in

the game system easily. In order to support the functionality, we can design another model

that depicts the following scenario:

 There are many tables in a large room.

 After a player P enters the room, P can search or wait for P’s friends.

 If P finds that some of P’s friends have sat around a table, P may sit around the table and

play games with them.

 P can sit around an empty table and wait for P’s friends to sit down and then play games

together.

Based on the model, the matchmaking functionality for an online tabletop game system

can be implemented in an easy way. In fact, some popular online tabletop game sites Yahoo!

Games [95] and Acer Game Zone [30] have used similar model to implement their

matchmaking functionality.

1.2 Motivation

Due to the popularity and similarity of online tabletop games, we are motivated to

facilitate the development of tabletop games. We expect to design and implement an online

tabletop game system practically based on the similarity mentioned in Section 1.1 so that an

 3

online tabletop game can be easily developed. We first survey the past work for tabletop

games below.

There are several popular online tabletop game sites in the Internet. Some of these sites

are dedicated to single tabletop game. For example, Free Internet Chess Server (FICS) [24] is

dedicated to Chess while Internet Go Server (IGS) [53] is dedicated to Go. Other tabletop

game sites, such as Yahoo! Games [95] and Acer Game Zone [30], support a series of

tabletop games. Although these game sites are well-designed and attractive to players, they

rarely describe the design of their systems in detail.

A research topic related to tabletop games is to develop artificial intelligence systems

that can play games with human. For example, the IBM Deep Blue project [33] developed the

epochal Chess game system that won the World Chess Champion in 1997. Besides, the

research on playing Chinese Chess [91, 96], Go [77], and Connect6 [92, 93] also made

achievements. Since the research topic focuses on artificial intelligence, they seldom discuss

about how to develop tabletop games.

The research in [55, 56] presented a system named Extensible Graphical Game

Generator (EGGG) that can use to develop tabletop games. EGGG defines a high-level script

language that allows users to design games. The rules, graphical content, and network

functionality of an online tabletop game can be designed with the script language. The authors

of EGGG expect that users can use the script language to design a game easily, therefore they

claim that a game is easy to be designed and debugged. However, they did not formalize their

game model so that it is unknown about how general their systems are. Besides, EGGG does

not provide the matchmaking functionality so that the users must develop the functionality if

needed.

Eeik et al. proposed a multiplayer board game framework [49] for developing online

 4

board games. It supported a set of reusable components for network communication and

graphic user interface. Besides, it also provides default control flow for board games.

Although the framework provides some supports board games, it does not support other types

of tabletop games, such card games or tile-based games.

In the dissertation, we try to facilitate the development of online tabletop games in the

following way. First we design two models for online tabletop games. The first one named

Grouped Online Tabletop Game (GOTG) model that allows players to search for their friends

in a virtual room and then play games with them in the room. The second one named the

Tabletop Game (TG) model that defines game objects, game states, and playing operations for

tabletop games. For the TG model, we formalize the definition of tabletop games and related

terminologies and then prove that it is general for all tabletop games.

Based on the TG and GOTG models, we implement a system also named GOTG for

developing online tabletop games. The GOTG system provides services over the Internet that

allow players to gather in groups to play tabletop games. Besides, it also supports the service

for matchmaking so that players can search for their friends to play games together. For

developing a tabletop game, the GOTG system provides a framework based on the TG model

to help developers handling objects used in the game and operations that manipulate these

objects.

While implementing the GOTG system practically, we encounter two issues that may

block or disrupt the services of our system. The two issues are briefly described as follows.

 Resolving problems of blocking I/O operations for server programming

The game servers in the GOTG system use the event-driven model for the concurrent

message (or event) handling. However, using blocking I/O operations in an event-driven

server may freeze the whole server so that the services of the server stop for an

 5

unexpected period of time. We have identified two common blocking problems due to the

use of blocking I/O operations and provide solution to them. The solution have been

integrated into the GOTG system so that the game servers in the GOTG system can be

immune from the two blocking problems.

 Fast recovery from overflow failures for non-disruptive game services

The GOTG system provide services that allow tabletop games to be played over the

Internet. These services rely on the collaboration of several kinds of servers, including

game servers, web servers, database severs, etc. However, the services may disrupt if

some of these servers crash. To continuously provide the services, the servers should try

to recover from failures timely. In the dissertation, we address the buffer overflow failure

that may disrupt some of these servers. To prevent buffer overflow failures from

disrupting servers, we develop a technique to detect and recover from buffer overflow

failures efficiently.

Since we expect the GOTG system to continuously provide services for players, we try

to solve the two issues. We present our solutions in the dissertation that make our system

provide services correctly and smoothly without suffering from the two issues.

1.3 Organization of Dissertation

Chapter 2 presents the models for online tabletop games. Chapter 3 introduces the design

and implementation of the GOTG system. Chapter 4 describes the influence of blocking I/O

operations on server programming and the solution to this issue. Chapter 5 describes the

influence of buffer overflow failures on game services and the solution to this issue. Finally,

Chapter 6 presents our conclusions.

 6

Chapter 2 Models for Tabletop Games

In this chapter, we present two models for tabletop games. The first one allows players to

search for their friends and then gather in groups to play games together. The second one

defines objects used in tabletop games and operations that manipulate these objects. The two

models can help us to design and implement a tabletop development system in practice.

2.1 The Grouped Online Tabletop Game (GOTG) Model

For most tabletop games, a game session on a table is independent from game sessions

on other tables. That is, players’ actions on a table do not affect any games on other tables.

Therefore, in order to allow tabletop games to be played over the Internet, it is possible to run

many isolated game servers and each of them simulates a table. In such configuration, a

player can connect to one of these servers and then play games with other players on the same

server.

However, the configuration is not convenient for most players because they must know a

list of game servers in advance. Even a player P know the list, P does not know if some of P’s

friends have logged on a server before P logs on it. Therefore, P may spend much time to

search for friends.

In order to avoid such problem, we present a model named the Grouped Online Tabletop

Game (GOTG) for online tabletop games. Figure 2.1 shows the GOTG model in which tables

connect to a game coordinator and players connect to a table or the game coordinator. In fact,

the model depicts the environment under which there are many tables and players in a large

room where the players may search for friends or sit around one of the tables to play games.

The behavior of players in the model is summarized as follows.

 A player P must log on the game coordinator first.

 7

 After logging, P can browse the list of tables and players to find P’s friends. The list is

stored and maintained by the game coordinator.

 P may join some table.

 When the table is full of players, a game starts.

 Or P can sit around an empty table and wait for P’s friends to sit down and play.

 P may leave the current table and then join another table.

Table

Server
Side

Client
Side

Game
Coordinator

Table

Player

Player

Player

Player

Player

Player

Figure 2.1. The Grouped Online Tabletop Game (GOTG) model.

The GOTG model is based on the client-server model in which players are in the client

side and tables and the game coordinator are in the server side. We adopt the client-server

model rather than the peer-to-peer model for the following two reasons.

1. Store critical data in server side to provide further services. For example, players’ game

scores are generally stored in server side. If a game company keeps these game scores, it

can hold a game competition and invite players with top scores to join the competition in

order to popularize its games.

2. Process important data in server side to keep it secure. For example, the game scores

should be stored and computed in server side. If they are stored and computed in client

 8

side, they may be illegally modified and the fairness of the games would be suspected.

Conceptually there is one and only one game coordinator in the GOTG model.

Practically the game coordinator may be distributed over different servers to increase

scalability.

2.2 The Tabletop Game (TG) Model

This section formally defines the Tabletop Game (TG) model. For convenience those

tabletop games that follow the TG model are called TG games. First, for simplicity,

Subsection 2.2.1 defines the simplified TG (STG) model for tabletop games in which all

objects are publicly put on the table. In addition, it is proved that some game systems can be

devised to play all Simplified TG (STG) games. Second, Subsection 2.2.2 defines the general

TG model that allows players to hold game objects in their own private areas. Similarly, it is

shown that some game systems can be devised to play all the TG games.

2.2.1 The Simplified Tabletop Game (STG) Model

A STG game is G = (A,O, S,M) as defined as follows.

 A is a set of two-dimensional coordinates or a two-dimensional area representing the

game table.

 O is a finite set of n game objects. Namely, O = {o1, o2, o3, . . . , on}, where each object

oi has mi faces, Φi = { , , , . . . , }. Here, i is the object index. Now, with A

and O, all the possible table states Γ(A, O) can be derived as follows: Γ(A, O) = O1 × O2

× . . .× On, where Oi = A × Z × Φi and Z is the set of Z-order values (for simplicity, let

them be real numbers, R). Oi is said to be the set of states of object oi. For each table state

q = ((p1, z1, f1), (p2, z2, f2), . . . , (pn, zn, fn)) where 1 ≤ fi≤ mi and for each object oi, the

1iφ 2iφ 3iφ imi,φ

 9

object state (pi, zi, fi) indicates that this object oi switches to the face at position pi

with Z-order zi (representing the distance to viewers; note that for simplicity of

discussion the larger the Z-order the closer the object appears). One key point of STG

games is that no objects disappear on the table once games have been set up.

ifi ,φ

 S is a set of legal game states. Namely, S = {(start), (end)} S−, where S− is a subset

of Γ(A,O). For each game, players start from the state (start) and end at the state (end).

U

 M is a set of legal game operations, representing the game rule. Namely, M is a subset of

S × S, where each legal operation (s, s’) indicates that this operation changes the game

state from s to another s’. Those operations with s = (start) are called initial operations;

and those with s’ = (end) are final operations.

In the above game G, a sequence of game states (q1, q2, q3, . . . , qg) is called a game play

interval, if each neighboring pair of states (qi, qi+1) in the sequence is a legal game operation in

M. A sequence of game states (q1, q2, q3, . . . , qg) is called a game play in G, if q1 is (start), qg

is (end), and the sequence is a game play interval.

For each game state, its game appearance is the image that the players can see on the

table. As for the two special game states, (start) and (end), their appearances are defined to be

different from any other game states. For each of all the other game states (i.e., table states) q

= ((p1, z1, f1), (p2, z2, f2), . . . , (pn, zn, fn)), the appearance is the image canvas painted in the

following steps:

1. Sort the objects by using their Z-order as the major keys and their object indices as the

minor keys in the ascending order.

2. According to the sequence (sorted in Step 1), repeatedly paint each object oi with face

 at position pi on the image canvas.
ifi,φ

 10

Let us illustrate the above definition by the game Tic-tac-toe GT = (AT, OT, ST, MT) as

follows.

 AT is a table with 3 × 3 grids (at positions d11, d12, d13, d21, . . . , d33) plus a place (at

position d00).

 OT has 5 white pieces and 4 black pieces, where each piece has only one face. Each piece

is put at one of the 10 positions mentioned above. In this game, we assume white to play

first. As above, the set of all the table states Γ(AT, OT) is O1 × O2 × ... × O9, where Oi = AT

× Z × Φi. For simplicity, let the objects with odd object indices be white pieces and the

objects with even object indices black pieces. In addition, let all objects have the same

Z-order, say 0. For each object, since its Z-order has only one value and it has only one

face, Oi can be simplified as AT and, therefore, Γ(AT, OT) = AT × AT × . . .× AT = AT
 9 =

{d11, d12, d13, d21, . . . , d33}9.

 ST = {(start), (end)} AT
 9. U

 MT is a set of legal game operations defined as follows:

– The initial operations: {((start), q) | q ∈ AT
 9, all objects of q must be at d00}.

– The move operations: {(qi, qj) | qi, qj ∈ AT
 9, qi is the same as qj except for that one

white (black) piece in qi is moved from d00 to a grid which is empty in qi, if qi is in

the white (black) turn}.

qi is in the white turn if the number of white pieces at d00 is higher than that of black

pieces at d00; otherwise, in the black turn.

– The final operations: {(q, (end)) | q ∈ AT
 9, each grid except for d00 has one and only

one object}.

Note that most Tic-tac-toe games end when one line of three pieces has the same

 11

color, but for simplicity, we define that the game ends when all pieces are moved.

A game play of GT is illustrated in Figure 2.2.

Figure 2.2. A game play of Tic-tac-toe.

For a STG game G, a sequence of game states (q1, q2, q3, . . . , qg) is called a partial game

play of the game play (q’1, q’2 , q’3 , . . . , q’g’), if qi = for each i where 1 ≤ i ≤ g and 1 = m1 <

m2 < . . .< mg = g’. Consider two STG games G and G’. If we want a game play ρ in G to be

simulated by another ρ’ in G’, we only need to let the appearances of the game play ρ look the

same as those of some partial game play of ρ’. More specifically, a game play (q1, q2, q3, . . . ,

qg) in G is simulated by another game play (q’1 , q’2, q’3 , . . . , q’g’) in G’, if qi has the same

appearance as for each i where 1 ≤ i ≤ g and 1 = m1 < m2 < . . .< mg = g’. The

operations from to are said to simulate the operation (qi, qi+1).

imq'

imq'

imq'
1

'
+imq

A STG game G is said to be simulated by another STG game G’, if for each game play ρ

in G there exists some game play in G’ that simulates the game play ρ.

A STG game system is defined to be a set of STG games. A STG game system is said to

be general, if all the STG games can be simulated by games in this STG game system.

Now, consider a STG game system = {(R2, O, SC(O), MC(O)) | for all object set O}, CΨ

 12

as described as follows.

 R2 is the complete two-dimensional space. Note that all game areas A belong to R2.

 SC(O) = {(start), (end)} Γ(R2,O). U

 MC(O) is the union of the following three sets:

– The set of initial operations: {((start), q) | q ∈ Γ(R2,O)}.

– The set of change-object operations: {(q, q’) | q, q’ ∈ Γ(R2,O); and the game state q

is the same as q’ except for that only one object may have different object states in

both q and q’}.

– The set of final operations: {(q, (end)) | q ∈ Γ(R2,O)}.

Theorem 2.1 shows that the above game system is general. CΨ

Theorem 2.1 As defined above, the game system is general for all STG games. CΨ

Proof. It suffices to prove that for each given STG game G = (A, O, S, M) the STG game G’=

(R2, O, SC(O), MC(O)) in simulates G. Namely, we want to prove that for each game play

ρ in G there exists a game play ρ’ in G’ simulating the game play ρ.

CΨ

Let ρ = ((start), q1, q2, q3, . . ., qg, (end)) in G. First, each object state in game G is also a

valid object state in G’, since A R2 and S SC(O) apparently. ⊂ ⊂

Second, for each operation (qi, qi+1) in ρ, if at least two objects’ states are changed, we

can insert some game states (in G’) such that each operation only changes one object’s state.

For example, if one operation in G moves both objects oi and oj, we insert one more game

state in-between to break the operation into two such that the first operation moves object oi

and the second moves object oj. Obviously, after these game states are inserted, each pair

 13

becomes change-object operations in G’. (Note that all the initial and final operations in G are

also legal operations in G’.) Thus, the new sequence of game states including the inserted

game states form a game play in G’. This shows that there exists a game play in G’ simulating

the game play ρ in G. ■

Lemma 2.1 As described above, if a game system Ψ is general for all STG games and

another game system 'Ψ simulates Ψ , then the game system 'Ψ is also general for all

STG games.

Proof. Trivial. ■

From Lemma 2.1 and Theorem 2.1, we can easily prove the generality of another game

system by letting simulate 'Ψ 'Ψ Ψ .

Consider a game system that is the same as except for that only the

following three kinds of change-object operations are legal:

MCCΨ CΨ

 Move-object operation: A move-object operation is a change-object operation, with

changing one object’s position only.

 Change-Z operation: A change-Z operation is a change-object operation, with changing

one object’s Z-order only.

 Change-face operation: A change-face operation is a change-object operation, with

changing one object’s face only.

Let the game system be = {(R2, O, SC(O), MMCC(O)) | for all object set O} and

MMCC(O) = {(p, q) | (p, q) ∈ MC(O) and (p, q) is an initial, final, move-object, change-Z, or

change-face operation}. Theorem 2.2 proves that the game system is still general for

all the STG games.

MCCΨ

MCCΨ

 14

Theorem 2.2 The above game system is general for all STG games. MCCΨ

Proof. From Lemma 2.1 and Theorem 2.1, it suffices to prove that the game system

simulates the general game system , or that for each G = (R2, O, SC(O), MC(O)) in

the STG game G’ = (R2, O, SC(O), MMCC(O)) in simulates G. Thus, we will prove that

for each game play ρ = ((start), q1, q2, q3, . . ., qg, (end)) in G there exists a game play in G’

simulating the game play ρ.

MCCΨ

CΨ CΨ

MCCΨ

For each change-object operation (qi, qi+1) ∈ MC(O), where 1 ≤ i ≤ g−1, since it only

changes an object’s three factors, location, Z-order and face, we can break the operation into

at most three operations — move-object, change-Z, and change-face operations — in MMCC(O)

that simulate the change-object operation. Besides, the initial and final operations are

obviously legal in G’. The new sequence of game states including the inserted game states are

also a game play in G’. This implies that there exists a game play in G’ simulating the game

play ρ. ■

Again, consider another new general game system by slightly modifying as

follows. Change-Z and change-face operations are changed to max-Z and next-face operations,

respectively.

MCCΨ

 Max-Z operation: A max-Z operation is a change-Z operation, but the Z-order of the

object is changed to a value larger than any other objects’ Z-order.

 Next-face operation: A next-face operation is a change-face operation, but the face of the

object oi is changed from to the next face , where the set of faces of object

oi is { , , , . . . , }.

ijφ))%1((, imii +φ

1iφ 2iφ 3iφ imi,φ

 15

Let the game system be = {(R2, O, SC(O), MMMN(O)) | for all object set O} and

MMMN(O) = {(p, q) | (p, q) ∈ MMCC(O) and (p, q) is an initial, final, move-object, max-Z, or

next-face operation}. Then, the game system is also general for all STG games as

shown in Theorem 2.3.

MMNΨ

MMNΨ

Theorem 2.3 The above game system is general for all STG games. MMNΨ

Proof. From Lemma 2.1 and Theorem 2.2, it suffices to prove that the game system

simulates the general game system , or that for each G = (R2, O, SC(O), MMCC(O)) in

 the STG game G’ = (R2, O, SC(O), MMMN(O)) in simulates G. Thus, we will

prove that for each game play ρ = ((start), q1, q2, q3, . . ., qg, (end)) in G there exists a game

play in G’ simulating the game play ρ.

MMNΨ

MCCΨ

MCCΨ MMNΨ

Let the object set O have n objects and their Z-order be {z1, z2, . . . , zn}. For each

change-Z operation ω in ρ, assume that ω changes the Z-order of object oi from zi to z’i. Then,

sort these Z-order from {z1, z2, . . . , zi−1, z’i , zi+1, . . . , zn} to {z*
1, z*

2, . . . , z*
n } in the ascending

order. Let o*
i be the object with Z-order z*

i. Then, perform the max-Z operation on each object

o*
i once from o*

1 to o*
n. Thus, after the n max-Z operations, the appearance is still the same as

that for the change-Z operation ω due to the same relative Z ordering. Therefore, the n max-Z

operations simulate ω.

For each change-face operation in ρ, assume that it changes a face of object oi to

another face . For the change-face operation, we only need to do the next-face operations

on the object (k − j) times, if k > j, or (k + mi − j) times, if k < j and mi is the face number of

the object oi. Thus, these next-face operations simulate the change-face operation.

ijφ

ikφ

 16

The above implies that there exists a game play in G’ simulating the game play ρ. ■

Since the game system is general for all STG games, it suffices to support the

three operations only: move-object, max-Z, and next-face operations. We are more interested

in game system than or , because it is much easier to implement

move-object, max-Z, and next-face operations than other operations, as shown in Section 3.4

(below).

MMNΨ

MMNΨ CΨ MCCΨ

2.2.2 The General TG Model

In the STG model, we assume that all players can see all the game objects on the table.

However, for the games such as Bridge, players can only see their own cards that others

cannot see. Therefore, in the model of TG games, we need to extend one area to multiple

areas, the one for all players, called the public area, and every other for one player or a certain

number of players, called the private area.

A p-private-area TG (p-TG) game is (A(p+1), O, S, M), as defined as follows.

 A(p+1) is a set of 2-D areas, {A0, A1, A2, . . . , Ap}. A0 is the public area and Ai is the i-th

private area.

 O is the same as the definition of the object set for STG games.

Similarly, we define the set of table states Γ(A(p+1), O) = O1 × O2 × . . .× On, each Oi =

A(p+1) × Z × Φi. For A(p+1), we use (b, p) to indicate the position p in area Ab. Thus, we use

(bi, pi, zi, fi) to indicate the state of object oi, instead.

 S is {(start), (end)} S−, where S− is a subset of Γ(A(p+1),O). U

 M is similar to the definition for STG games.

In each game state q = ((b1, p1, z1, f1), (b2, p2, z2, f2), . . . , (bn, pn, zn, fn)), the i-th object is

 17

put at position pi in area with face and Z-order zi.
ibA

ifi,φ

A TG game is a p-TG game, if there are p private areas in the game. Obviously, STG

games can be viewed as 0-TG games.

For each game state, its game appearance is the images that players can see. For example,

player i can only see the public area A0 and its private area Ai. Thus, a game’s appearance

should include the appearances of the p + 1 areas. More specifically, for a game state q = ((b1,

p1, z1, f1), (b2, p2, z2, f2), . . . , (bn, pn, zn, fn)), the appearance of q has p + 1 image canvases and it

is painted in the following steps:

1. Sort the objects in the same way as Step 1 in Subsection 2.2.1.

2. According to the sequence (sorted in Step 1), paint each object say oi with face at

position pi on the bi-th image canvas.

ifi,φ

An example of a poker game is illustrated in Figure 2.3. Figure 2.3(a) and 2.3(b) show

the appearances before and after moving heart four from the common area A0 to the private

area A2.

Similarly, we define that a game play in a p-TG game is simulated by another p-TG

game, in the same way as STG games. A p-TG game G is simulated by another p-TG game G’,

if for each game play ρ in G there exists some game play in G’ that simulates the game play ρ.

A p-TG game system is defined to be a set of p-TG games. A p-TG game system is general, if

each p-TG game is simulated by some game in this p-TG game system.

 18

Figure 2.3. (a) The appearance before moving heart four and (b) after moving heart four.

Now, consider a p-TG game system = {((R2)(p+1), O, (O), (O)) | for all

object set O}, as described as follows.

)(p
CΨ)(p

CS)(p
CM

 (R2)(p+1) has p + 1 areas, each of which is the whole two-dimensional space, R2.

 (O) = {(start), (end)} Γ((R2)(p+1), O).)(p
CS U

 (O) is the union of the following three sets:)(p
CM

– The set of initial operations: {((start), q) | q ∈ Γ((R2)(p+1), O)}.

– The set of change-object operations: {(q, q’) | q, q’ ∈ Γ((R2)(p+1), O); and the game

state q is the same as q’ except for that only one object may have different object

states}.

– The set of final operations: {(q, (end)) | q ∈ Γ((R2)(p+1), O)}.

Similar to Theorem 2.1, Corollary 2.1 shows that the above game system is

general for all p-TG games.

)(p
CΨ

Corollary 2.1 The above game system is general for all p-TG games.)(p
CΨ

 19

By using the techniques similar to those used in Subsection 2.2.1, we can break a

change-object operation into several move-object, max-Z, and next-face operations that

simulate the change-object operation. Now, let be the same as except for that

the set of legal operations are all of these three operations. Thus, we can obtain Corollary 2.2.

)(p
MMNΨ)(p

CΨ

Corollary 2.2 The above game system is general for all p-TG games.)(p
MMNΨ

Consider a TG game system . The TG game system is general for

all TG games as in Theorem 2.4 (below). Similarly, the TG game system

is also general for all TG games as in Theorem 2.4 (below).

U
∞

=
Ψ=Ψ

0
)(*

i
i

CC
*
CΨ

U
∞

=
Ψ=Ψ

0
)(*

i
i

MMNMMN

Theorem 2.4 Both TG game systems and (described above) are general for all

TG games.

*
CΨ *

MMNΨ

Proof. Trivial. ■

 20

Chapter 3 The Design and Implementation of the

GOTG System

In this chapter we discuss the design and implementation of the GOTG system. First, we

present the basic functionalities of the GOTG system. Then, we present a framework based on

the TG model for developing the Graphic User Interface (GUI) of tabletop games. Next, we

demonstrate how to develop a Gobang based on the framework and the GOTG system. Finally,

we present an universal tabletop game system that allows users to design and play tabletop

games.

3.1 The Basic Functionalities of the GOTG System

The GOTG system is designed based on the TG and GOTG models for developing

online tabletop games. Figure 3.1 (below) shows the architecture of the GOTG system.

According to the functionalities, the system can be divided into several modules. The

shadowed modules are the game specific part that game developers need to implement. Note

that the network module and player management module are implemented in both client and

server sides since their functionalities need the collaboration of both sides.

Internet

Game specific
modulesC

ore client m
odules

C
ore server m

odules

Player
manage-

ment
module

Server
manage-

ment
module

Database
manage-

ment
module

Player
manage-

ment
module

GUI
module

Game specific
modules

Client side Server side

Network moduleNetwork module

Figure 3.1. The architecture of the GOTG system.

The functionality of each module is introduced below.

 21

 Network module

The communication ability over the Internet is essential for all online games. The network

module provides the communication ability for GOTG-based games. Other modules in the

GOTG system (including game specific modules) send and receive data through this

module.

A simple application layer protocol is defined and realized by the network module based

on the TCP/IP [18, 19, 73]. The protocol specifies a message format so that other GOTG

modules and game-specific modules can send and receive messages through the network

module. If an incomplete message is received, the network module stores it until the

remainder is received. Once a message is completely received, the network module

dispatches it to the destination module.

The network module can encrypt and decrypt the messages in order to prevent from

eavesdropping. For the performance consideration, this module provide a symmetric key

algorithm based on the exclusive or (abbr. XOR) operation. That is, the encryption

performs the XOR operation on the plain text (original data) and a key while the

decryption performs the XOR operation on the cipher text (encrypted data) with the same

key. The detail process is described in [39].

To use a symmetric key algorithm, the peers that exchange cipher text must agree on a

key in advance. Currently, the GOTG system uses the password of a player as the key in

the XOR-based cryptography. The password of the player is transmitted to a game server

when the player logins. The data exchanged in the login process is transferred with the

https protocol [61] to keep it secret.

 Player management module

This module is design for the membership management and matchmaking functionalities.

For the former functionality, this module control provides interfaces that allow a user to

 22

register as a member. Besides, this module also provides interfaces that allow game

developers to update the newest state of a member. To support the membership

management functionality, this module controls the database management module

(described below) to store the states of members.

For the matchmaking functionality, this module maintains a list of players that login the

GOTG game system. To maintain such a list, this module manages the process of player

login and logout. With the help of the list, it is easy for players to find their friends or

opponents. Besides, this module also helps a player to join or create a game before

playing and leave a game after playing.

 Graphic User Interface (GUI) module

This module includes two parts. The first part is the interfaces that allow the player

management module to refresh its recent status, i.e. the list of players that currently login

the GOTG game system. A player can control the player management module through the

interfaces in order to join or create a game. Several implementations of the interfaces are

also included so that the developers can use them directly.

The second part is a framework that is designed based on the TG model for tabletop

games. The framework is introduced in Section 3.2.

 Database management module

A game company generally store the players’ records and other states in the database to

provide further services or for business. Therefore, the we designe this module to help

developers accessing SQL-based database. To hide the detail of SQL, this module provide

a simple interface to access database so that the developers do not need to handle SQL in

many cases. Besides, this module maintains a set of connections to database servers in

order to reduce the overhead of connection establishment. Finally, this module can be

configured to log update queries for auditing.

 23

 Server management module

This module provides an interface for the managers of game companies to monitor and

control game servers in the GOTG system. The managers can use the interface to query

information of the game servers, such as the player number and the usage of some

resources. Besides, the managers can use the interface to control the game server to do the

following matters: broadcasting messages to all or specific players, kicking out a player

who does something bad, etc.

Currently, the managers communicate with the server management module through a TCP

socket. That is, this module creates a TCP socket that allows the managers to login and

then monitor or control the game server remotely.

The server side of the GOTG system is implemented on the Linux/FreeBSD platforms

with the C/C++ languages. The main reason why choose Linux/FreeBSD is the consideration

of cost. Linux/FreeBSD are free and stable enough for many applications. Besides, there are

also many powerful and open source tools on Linux/FreeBSD for system administration,

network administration, programming, etc.

The main reason why choose the C/C++ languages for the server side programs is the

consideration of performance. In order to reduce the cost, it is feasible to serve as many

players on a game server as possible. Therefore, the author choose the C/C++ languages to

maximize the performance of game server programs so that the number of game servers could

be reduced.

The client side of the GOTG system is developed on the Java platform due to the

availability of Java. Java is available on many operating systems (such as Windows, Linux,

and Mac OS) and different hardware (such as PC, PDA, and mobile phone). The wide-spread

of Java make the ideal of “write once, run everywhere” easier to realize. The author designs

the Java-based client side programs of the GOTG system for the portability to as many

 24

operating systems and hardware as possible.

3.2 The Specific Support for Tabletop Games

In this section we develop a framework named the Tabletop Game (TG) framework

according to the TG model. The goal of this framework is to facilitate the development of the

graphic user interface (GUI) for tabletop games. Practically, the TG framework is developed

in Java and implemented as a part of the GOTG system so that the TG framework based

games can also benefit from the advantages of the GOTG system.

Since the TG framework is dedicated for the GUI of tabletop games, the developers need

to program other parts of the games, such as game state handling and rule checking. In order

to simplify the description of TG framework, we assume that each TG framework based game

has an object named Game_Status that is responsible for handling the states and

controlling other parts of the game, including the TG framework. That is, the Game_Status

object controls the TG framework to draw the appearance of the game. Besides, the TG

framework reports a player’s operations to Game_Status so that it can refresh the game

states and decide the end of the game.

 25

«interface»
Game_Operation_Actor

define_Game_Object(obj_id, faces)
define_Game_Area(area_id, x, y, w, h)
move(obj_id, area_id, x, y)
max_z(obj_id)
next_face(obj_id)

«interface»
Game_Operation_Actor

define_Game_Object(obj_id, faces)
define_Game_Area(area_id, x, y, w, h)
move(obj_id, area_id, x, y)
max_z(obj_id)
next_face(obj_id)

Game_StatusGame_Status

Game_GUIGame_GUI

Game_Object
obj_id
x, y, z, f
faces

Game_Object
obj_id
x, y, z, f
faces

Game_Area
area_id

Game_Area
area_id

move(obj_id, area_id, x, y)
max_z(obj_id)
next_face(obj_id)

«interface»
Game_Operation_Checker

move(obj_id, area_id, x, y)
max_z(obj_id)
next_face(obj_id)

«interface»
Game_Operation_Checker

java.awt.Paneljava.awt.Panel

Figure 3.2. The class diagram of the TG framework.

The class diagram of the TG framework is showed in Figure 3.2. Each components of the

TG framework is introduced as follows.

 A Game_Object represents a physical object in the tabletop games. It is identified by

the attribute obj_id. As the definition in the TG model, a Game_Object has one or

more faces and the attributes x, y, z, and f indicate the Game_Object’s X-coordinate,

Y-coordinate, Z-order, and current face respectively. Note that the unit of the X and

Y-coordinate is pixel.

 A Game_Area is a two-dimensional area representing the game table or a private area. It

is identified by the attribute area_id. A Game_Area contains zero or more

Game_Objects while each Game_Object must be placed in one and only one

Game_Area.

In order to simplify the implementation, each Game_Area has finite size and is disjoined

with other ones if there are two or more Game_Areas in a tabletop game. Therefore, it is

easy to draw all Game_Areas in a two-dimensional space. Note that the unit of position

and size of a Game_Area is pixel.

 26

 The Game_Operation_Actor interface provides a means that allows a

Game_Status to control the TG framework. A Game_Status uses this interface to

define Game_Objects and Game_Areas, to move a Game_Object (within one

Game_Area or between two), to maximize a Game_Object’s Z-order, and to change a

Game_Object to the next one.

 The Game_Operation_Checker interface provide a means that allows the TG

framework to report a player’s operations to the Game_Status. The reported operations

are the three defined in the TG model. The Game_Status should implement this

interface to receive a player’s operations.

 The Game_GUI object plays the manager role in the TG framework. It contains one more

Game_Areas and is responsible to draw all Game_Areas and Game_Objects on a

Java AWT Canvas object. It draw Game_Areas and Game_Objects in the way

specified in the TG model. Besides, Game_GUI implements the

Game_Operation_Actor so that the Game_Status can define and control

Game_Areas and Game_Objects.

On the other hand, Game_GUI receives a player’s actions such as mouse clicks or

drag-and-drops on the Canvas object and converts them into the operations on the

Game_Objects. Then, it reports the operations to Game_Status through the

Game_Operation_Checker interface.

Currently, Game_GUI receives the mouse left button click, right button click, and

drag-and-drop actions and converts them into the max-Z, next-face, and move-object

operations on the Game_Objects respectively.

3.3 A Gobang Based on the TG Framework

In this section, a Gobang is presented to demonstrate how to develop a game based on

 27

the TG framework. The demonstration focuses on using the TG framework’s API to control

the GUI of the Gobang game.

Gobang is a two-player board game. The objects used in a Gobang game include 213

black pieces, 212 white pieces and a board with 15x15 intersections. One player uses black

pieces and the other uses white pieces. They play the game by placing one of their pieces at an

empty intersection in turn. The player who uses black pieces plays first. The winner is the first

one who gets an unbroken line of five pieces horizontally, vertically, or diagonally.

Figure 3.3. A screenshot of the TG framework based Gobang.

Figure 3.3 shows a screenshot of the TG framework based Gobang. Note that there are a

pile of black pieces and a pile of white pieces near the right side of the board. The players use

their mouses to drag a black or white piece from the pile of the black or white pieces and then

drop the piece on an empty intersection on the board. The reason why using the mouse

drag-and-drop action is to simplify the implementation since the action is built-in the TG

framework.

 28

Initialize Game_Objects

The player in his/her turn
places a piece

Mark the operation
and send it to server

Server notifies another
player and changes the turn

Check if the operation is legalNo

Yes

No

Yes

start

end Server check if the game is over

Figure 3.4. The main flowchart of the TG framework based Gobang.

Figure 3.4 shows the main flowchart of the Gobang. It describes the major steps of a

round of the game. Before the first round starts, the Game_Area and Game_Objects (the

black pieces, white pieces and the board) should be defined with the define_Game_Area

and define_Game_Object methods of the Game_Operation_Actor interface. Each

step in Figure 3.4 is described as follows.

 In step , all black and white pieces are moved to the position of the black and white

piece pile by the move method of the Game_Operation_Actor interface.

 In step , the player in his or her turn uses the mouse drag-and-drop action to place a

piece on an empty intersection on the board. The TG framework handles this move

operation and then invokes the move method of the Game_Operation_Checker

interface to inform the Game_Status of the Gobang.

 29

Game_Status implements Game_Operation_Checker
{
int board[][] = new int[15][15] ;
Game_Operation_Actor actor;

boolean move(int obj_id, int area_id, int x, int y) {
if(!isMyTurn()) return false; //
Point p = toLogicalCoordinate(x, y); //
if(!isEmpty(p.x, p.y)) return false; //
board[p.x][p.y] = obj_id; //
sendToServer(obj_id, p.x, p.y); //
return true;

}

void refresh_move(int obj_id, int area_id, int x, int y) {
Point p = toPhysicalCoordinate(x, y); //
actor.move(obj_id, area_id, p.x, p.y); //
changeToNextTurn(); //

}

...
}
Figure 3.5. Part of the TG framework based Gobang program.

 In step , the Game_Status’s move method is invoked to check if the move object

operation is legal. The method is showed in Figure 3.5. The method first checks if the turn

is the player’s turn. Then the method checks if the piece is placed in an empty intersection

by looking up the board attribute. If the move object operation is illegal, the move

method returns false and the TG framework will cancel the move object operation by

moving the moved object to its original position.

Note that since the TG framework measures the object positions in pixels, the x and y

parameters of the move method should be translated into the logical coordinates used in

the Game_Status and the game server.

 In step , the move object operation is marked in the board attribute of the

Game_Status for next checking. Then the operation is sent to the game server.

 In step , the game server checks if the round of the game is over and decides which

player is the winner. If the round is over, some messages should be showed to tell the

players who is the winner. Then the players can decide to quit the game or play another

round.

 30

 In step , the game server notifies another player who is named player B below the move

object operation. Player B receives this notification and the refresh_move method of

player B’s Game_Status is invoked. In the method, the move method of the

Game_Operation_Actor interface is invoked to inform the TG framework the about

move object operation so that the TG framework moves the object to the specified

position.

Then, player B gets the turn of the game and the game continues.

3.4 An Universal Tabletop Game System

From Theorem 2.4 in Subsection 2.2.2, we know that both TG game systems and

 are general, that is, for all TG games G, there exists some game G’ in and

that simulates G. In this section, we practically implement a TG game system based

on the TG framework to support all TG games openly. Note that we are more interested in

 than because it is much easier to implement the three operations, move-object,

max- Z, and next-face as we will see in the remaining of this section.

*
CΨ

*
MMNΨ *

CΨ *
MMNΨ

*
MMNΨ

*
MMNΨ *

CΨ

Figure 3.6. Initializing a game.

From Theorem 2.4, for all TG games G, there exists some game G’ in that

simulates G. More specifically, if G is a p-TG game and G = (A(p+1), O, S, M), then G’ =

((R2)(p+1), O, S(p)
C(O), M(p)

 MMN(O)). Obviously, the only parameters for G’ are p and O. Thus,

in our real implementation, the game system allows players to set the numbers of private areas

*
MMNΨ

 31

and all the game objects initially. For simplicity, we assume that one player uses a distinct

private area in the rest of this section. This implies that the number of players are the same as

that of private areas.

In order to facilitate players’ operations, our game system allows players to choose to set

the player numbers and the game objects via game packages that include these data. In order

to retrieve the game package more easily, players only need to specify the URL location of

the game package, as shown in Figure 3.6.

Alternatively, players can choose to set the player numbers and the game objects via

game packages manually as shown in Figure 3.7. When adding new game objects, players

specify the objects’ names, initial positions (including the area index, x, and y), and faces (a

list of URLs to the image files of faces, separated with commas), and then click on the button

“Add/Modify”. Players can choose to update an object by clicking the row of the object.

When all objects are set, players can choose to save the package by clicking on the button

“Save”, start playing by clicking on the button “Play”, or leave the game by clicking on the

button “Quit”.

Figure 3.7. Defining a new TG game.

After players start playing the game (by clicking on “Play”), players can only see the

public window or their own private windows (note that each window is corresponding to one

 32

area). For any other windows, players cannot see. However, in our implementation, an option

is given to choose to see the back face of objects in the private window and the back face is

set to be the first face in the face list by default. Figure 3.8 illustrates the game appearance of

player one.

Since Theorem 2.4 shows that it is general for the game system to support the

move-object, max-Z, and next-face operations, our physical game system supports the three

kinds of operations in the following way:

 The move-object operations: Use traditional drag-and-drop actions to change locations of

targeted objects.

 The max-Z operations: Players can click on targeted objects to raise the Z-order of the

objects with the left mouse button.

 The next-face operations: Click on targeted objects to change the faces of these objects to

the next ones (in the lists of faces) with the right mouse button.

Figure 3.8. A game appearance for player one.

Since all the basic operations in the TG game system are implemented, it is *
MMNΨ

 33

sufficient for players to play (or simulate) all TG games in the physical game system as

described above.

 34

Chapter 4 Related Issue 1: Resolving Problems of

Blocking I/O Operations for Server Programming

When design and implement game servers, the use of blocking I/O operations is

straightforward but may freeze the game servers in some cases so that the services of the

server stop for an unexpected period of time. In this chapter, we discuss this issue in detail

and present our solution. Since the issue affects not only game servers but also other

applications involving real-time communication among clients, we use the term inter-user

communication applications to refer to these types of applications in the dissertation.

4.1 Server Programming for Inter-User Communication

With the rapid growth of the Internet, applications involving real-time communication

among clients have become increasingly important. Consider an example of chat room or

game system. One user types a message and others then can read that message in real time.

Since these applications involve inter-user communication, this dissertation calls them

inter-user communication applications.

For inter-user communication applications, servers are often used to handle inter-user

communication. For example, game servers receive player events (or messages) and then

respond (or pass messages) to other players. For inter-user communication applications,

server developers generally must consider the following criteria.

1. Minimize the client response time. If the response time is unexpectedly long, interactions

may not evolve as expected or users may run out of patience.

2. Ensure high server stability. Server crashes cause all clients connected to that server to

become disconnected.

 35

3. Support as many clients concurrently as possible. For example, support thousands of

players on a single server.

The first criterion is essential for server programming in inter-user communication

applications. To respond to users as rapidly as possible, servers usually hold connections to

clients. Servers thus must handle client messages (or events) from all connections

concurrently and server developers must handle concurrent events carefully.

Two main programming models exist for concurrent event handling, namely threading

and event-driven programming. Threading is a general-purpose technique for managing

concurrency. The advantages of threading compared to event-driven programming include: (a)

support of context switching among threads, and (b) support of scalable performance on

multiple CPUs.

However, some developers and researchers [57, 66] also have observed that threading

has some drawbacks compared to event-driven programming. Note that Ousterhout [57]

described the following drawbacks:

1. Difficult to program. Threads generally require synchronous mechanisms (e.g., locks) to

access shared data safely. However, incorrect locking may cause deadlocks, making

independent module design difficult. Besides, another problem that also increases

programming difficulty is that several standard libraries are not thread-safe [51].

2. Hard to debug. For threading, it is difficult for developers to debug the code due to data

and timing dependencies. Besides, another problem that also increases debugging

difficulty is that thread stack sizes are normally limited [46, 51], causing processes crash

when stacks overflow. In contrast, in event-driven programming, the lack of context

switching among event handlers makes it quite easy to debug the code by recording and

then replaying the sequence of events.

 36

3. Difficult to achieve good performance. Coarse-grain locking yields low concurrency,

while fine-grain locking tends to increase lock operations and thus reduce performance.

Since inter-user communication applications are often used to facilitate heavy inter-user

communication among numerous clients (say, thousands of players in a game system), it

makes the above drawbacks even worse. The first two drawbacks imply that it is hard for

threading to satisfy the second criterion (above) of the inter-user communication applications;

and the third drawback indicates that it is hard for threading to satisfy the third criterion. Thus,

for the application developers who are more concerned with the second and third criteria and

less concerned with the two threading advantages (described above), the event-driven

programming model becomes attractive. Hence, this dissertation is motivated to study and

design an event-driven framework for inter-user communication applications.

Our framework is based on event-driven programming (rather than threading) for the

following reason. In inter-user communication applications, the above three drawbacks of

threading (or the second and third criteria) are important as described above, while the two

drawbacks of event-driven programming are less important because they can be ignored or

alternatively can be solved in this dissertation. First, regarding the two drawbacks of

event-driven programming, this dissertation ignores the one, namely not supporting scalable

performance on multiple CPUs, because for most inter-user communication applications

servers can be separated into several processes to achieve scalable performance. In the case of

tabletop games, such as Chess and Bridge, servers can naturally be separated into several

processes, e.g., one for each game. Even for most massive multiplayer online games

(MMOGs), such as Ultima Online [22], the server system can use several processes each

dealing with a single game scene. Second, this dissertation focuses on overcoming the other

drawback of event-driven programming: the need to pay attention to the blocking problems

due to the use of blocking I/O operations in event handling.

 37

This dissertation addresses two major blocking problems and presents solutions or

guidelines. The two blocking problems are described below.

1. Output blocking: This problem occurs on sending messages to clients with corresponding

full kernel buffers. The buffer generally becomes full when network traffic is jammed.

This problem frequently is neglected at the start of server development.

2. Request blocking: This problem occurs when a server waits for responses after sending

requests to other servers. For example, when a game server attempts to read several game

records from a remote database server.

This chapter presents solutions for the above two blocking problems. An output buffering

mechanism is presented to solve the output blocking problem, while a service brokering

mechanism is presented to solve the request blocking problem. Meanwhile, for the second

problem, several system and library calls that may cause the problem are also identified. Both

mechanisms are incorporated into the event-driven framework presented in this chapter.

The rest of this chapter is organized as follows. Section 4.2 reviews the event-driven

programming model. Section 4.3 describes the output blocking problem and presents

solutions. Section 4.4 then describes the request blocking problem and presents solutions.

Section 4.5 presents performance analysis.

4.2 The Event-Driven Programming Model

This section reviews the event-driven programming model. In this model, applications

wait for specific events and dispatch occurring events to appropriate handlers for processing.

In networked applications, event-driven based servers generally handle both input and output

events. Input events occur when sockets are ready to read, while output events occur when

sockets are ready to write.

 38

Most event-driven based servers in the Unix environment use the select system call

[19, 41, 72, 74] to demultiplex input/output events. The select-based event-driven model

has been induced as the Reactor design patterns in [65, 66]. In this pattern, the core

component named Reactor waits for input/output events synchronously. When such events

occur, the Reactor object identifies the handlers of these events and then invokes the

appropriate methods of the handlers.

The Reactor pattern defines an event handler interface. Concrete event handlers

implement the event handler interface to support application specific services. These concrete

event handlers are registered with the Reactor object dynamically, and then are passively

reacted to the occurrences of designated events. Application developers only need to

implement concrete event handlers, when reusing the dispatching mechanism of the

Reactor object.

Event_Handler

handle_input()
handle_output()
handle_close()

Reactor

handle_events()
register_handler()
remove_handler()

Concrete event handler

handle_input()
handle_output()
handle_close()

*

Socket acceptor

handle_input()

The handle_output()
and handle_close()
methods are usually
empty methods in
a socket acceptor.

Event_Handler

handle_input()
handle_output()
handle_close()

Event_Handler

handle_input()
handle_output()
handle_close()

Reactor

handle_events()
register_handler()
remove_handler()

Reactor

handle_events()
register_handler()
remove_handler()

Concrete event handler

handle_input()
handle_output()
handle_close()

Concrete event handler

handle_input()
handle_output()
handle_close()

*

Socket acceptor

handle_input()

Socket acceptor

handle_input()

The handle_output()
and handle_close()
methods are usually
empty methods in
a socket acceptor.

The handle_output()
and handle_close()
methods are usually
empty methods in
a socket acceptor.

Figure 4.1. Class diagram of the Reactor pattern.

Figure 4.1 shows the class diagram of the Reactor pattern. Note that the shadowed classes

are application-specific (that is, application developers must implement these classes only).

The responsibilities of each class are detailed as follows.

 Reactor is the core component of event-driven applications and a process normally

requires only one Reactor object. Applications can register and remove event handlers

by calling register_handler and remove_handler of this object respectively.

 39

The handle_events method in this object is invoked to run the event-handling loop, in

which the select system call is used to wait for some specified input or output events

synchronously. As events occur, the Reactor object dispatches those events to the

corresponding event handlers.

 Event_Handler is an abstract event handler class that defines several hook methods

[29, 60]: handle_input, handle_output, and handle_close. Concrete event

handlers are application specific event handlers that inherit the Event_Handler class.

When an input (or output) event occurs for some concrete event handler, the

handle_input (or handle_output) method of the handler is invoked to process the

event. Before handler removal, the handle_close method is invoked for application

specific termination operations.

 A socket acceptor is a special concrete event handler that is responsible for accepting new

connections. The handle_input method of the socket acceptor accepts a new

connection from a client (by calling accept in Unix), generates the corresponding

concrete event handler for the client and then registers this handler with the Reactor

object. Since a socket acceptor does not output data and hold state, its handle_output

and handle_close are generally empty.

The above Reactor pattern forms a basis of the event-driven framework presented in the

remaining part of this chapter.

4.3 Output Blocking Problem and Solution

This section discusses the output blocking problem for event-driven programming in

inter-user communication applications. Subsection 4.3.1 describes the output blocking

problem, and Subsection 4.3.2 then presents a mechanism for solving this problem.

 40

4.3.1 Output Blocking Problem

In most TCP/IP implementations, each socket contains both send and receive buffers [19,

74] in the kernel. Both buffers are tens of kilobytes in size in Unix. When the send buffer of a

socket in the kernel is full, output to the socket is blocked, since by default all sockets are in

the blocking mode [74].

Output blocking is a serious problem in inter-user communication applications. For

example, in a game system, it is common for a server to receive one message from one player,

say A, and then immediately send that message to a set of players, say including player B.

However, if network traffic is jammed near or around player B (but not elsewhere), the server

blocks due to the failure to send the buffer of the socket to B.

From our experience with the CYC Game League [82], the output blocking problem

seriously degrades the performances of inter-user communication applications, since network

traffic may be jammed unexpectedly. A more serious situation is the following: if a client

crashes or its network wire is disconnected, the server may not detect the disconnection by

default for approximately nine minutes [73]. Furthermore, since a server for a game system

usually serves thousands of players or more, it is easy to cause server blocking as above and

result in slow responses to all clients.

4.3.2 Solution to the Output Blocking Problem

Stevens (cf. Section 15.2 of [74]) demonstrated a simple buffering method when

discussing nonblocking I/O. Since the buffer size is fixed to a small number, this method still

cannot solve the output blocking problem when the message size is larger than the buffer size.

Some event-driven based web servers, such as thttpd [1] and mathopd [11], used the

sendfile system call [83] as well as nonblocking sockets to avoid the output blocking

problem upon sending files. The Flash web server [58] also proposed a method that can avoid

 41

the output blocking problem for sending web pages. The above work solved the problem

specifically for their own applications. In this chapter, we propose a reusable framework for

generally solving this problem.

In order to solve this problem in event-driven based servers, this dissertation presents a

mechanism, called an output buffering mechanism, and incorporates it into our event-driven

framework. This mechanism sets all the sockets to the non-blocking mode and extends event

handlers to those with extra dynamic output buffers. The buffers are used to store unsent data

that cannot be sent when the send buffers of sockets are full, as described above. Namely, the

unsent data are stored into the extra output buffer when the socket send buffers are full, and

the buffered data then are sent out whenever the send buffers have available space.

Concrete event handler

handle_input()
handle_close()

Reactor

handle_events() disable_output_handling()
register_handler() enable_output_handling()
remove_handler()

*

Event_Handler

handle_input()
handle_output()
handle_close()

Socket acceptor

handle_input()

Buffered_Output_Handler

handle_output() set_output_buffer_size()
write_data()

Memory_Buffer

store_data()
retrieve_data()

Concrete event handler

handle_input()
handle_close()

Concrete event handler

handle_input()
handle_close()

Reactor

handle_events() disable_output_handling()
register_handler() enable_output_handling()
remove_handler()

Reactor

handle_events() disable_output_handling()
register_handler() enable_output_handling()
remove_handler()

*

Event_Handler

handle_input()
handle_output()
handle_close()

Event_Handler

handle_input()
handle_output()
handle_close()

Socket acceptor

handle_input()

Socket acceptor

handle_input()

Buffered_Output_Handler

handle_output() set_output_buffer_size()
write_data()

Buffered_Output_Handler

handle_output() set_output_buffer_size()
write_data()

Memory_Buffer

store_data()
retrieve_data()

Memory_Buffer

store_data()
retrieve_data()

Figure 4.2. Class diagram of the event-driven framework with the output buffering
mechanism.

Figure 4.2 shows the class diagram of the event-driven framework with the output

buffering mechanism. This dissertation simply describes the extra classes and methods in this

Figure, when compared to Figure 4.1, as follows.

 disable_output_handling and enable_output_handling are two new

methods added to the Reactor class. The former method disables handlers from

 42

handling output events, while the latter method enables handlers to handle output events.

Output handling is initially disabled for all event handlers.

 Buffered_Output_Handler is an abstract class that partially implements the

Event_Handler interface. Specifically, Buffered_Output_Handler uses the

handle_output method to handle unsent data, while leaving the two methods

handle_input and handle_close unimplemented. The classes of concrete event

handlers extend the class Buffered_Output_Handler, rather than

Event_Handler, and only need to implement the above two unimplemented methods.

In order to hide output handling from application developers, the

Buffered_Output_Handler class hides the method handle_output and

provides developers with the write_data method, rather than the write system call.

The write_data method normally writes data out as the write system call, but stores

the unsent data into a buffer on output blocking and thus enables output event handling.

 Memory_Buffer is a class of dynamic sized buffers.

Each concrete event handler allocates a single Memory_Buffer object to store

unsent data when the send buffer of the corresponding socket of the handler is full. Since

send buffers in the kernel rarely become full, the physical buffer spaces of the dynamic

output buffers are created only when required and are immediately freed when not

required. Normally, the maximum buffer size is set to a large number, for example 1M

bytes. Since each message in the inter-user communication applications is generally small,

overflowing of Memory_Buffer usually implies that the network has been jammed for

a while. Thus, it is reasonable to claim connection failure in such situations.

 43

This dissertation now illustrates the following interactions in more detail, including: (1)

how to accept a new client, and (2) how to handle output buffering. Note that the UML

sequence diagram [12] is used to demonstrate these interactions.

: Reactor : Operation
system

: Socket
acceptor

: Concrete
event handler

1: handle_events() 2: select()

3: handle_input()

4: accept()

6: fcntl()

5: «new»

7: register_handler()

8: disable_output_handling()

disable the output
event handling of the
concrete event handler

register the concrete
event handle for handling
both input & output events set sockets to

be non-blocking

: Reactor : Operation
system

: Socket
acceptor

: Concrete
event handler

1: handle_events() 2: select()

3: handle_input()

4: accept()

6: fcntl()

5: «new»

7: register_handler()

8: disable_output_handling()

disable the output
event handling of the
concrete event handler

disable the output
event handling of the
concrete event handler

register the concrete
event handle for handling
both input & output events

register the concrete
event handle for handling
both input & output events set sockets to

be non-blocking
set sockets to
be non-blocking

Figure 4.3. Sequence diagram for accepting a new client.

First, the sequence diagram in Figure 4.3 illustrates how the socket acceptor accepts a

new client. When invoked to handle an input message (in Step 3), the socket acceptor accepts

a connection request (in Step 4) and creates a concrete event handler (in Step 5). The concrete

event handler then sets the corresponding socket to the non-blocking mode (in Step 6),

registers itself for event handling with the Rector object (in Step 7) and initially disables

output handling (in Step 8).

: Reactor : Operation
system

hs: Concrete
event handler

: Memory
_Buffer

1: select()

2: handle_input()

3: read()

6: store_data()

under
handle_events()

hd:Concrete
event handler

4: write_data()

5: write()non-blocking
writing

7: enable_output_handlng()

8: select()

9: handle_output()

11: write()

12: disable_output_handlng()

10: retrieve_data()

step 6 - 12 occur when
some data cannot be sent
immediately in step 5

{if all buffered
data is written}

: Reactor : Operation
system

hs: Concrete
event handler

: Memory
_Buffer

1: select()

2: handle_input()

3: read()

6: store_data()

under
handle_events()
under
handle_events()

hd:Concrete
event handler

4: write_data()

5: write()non-blocking
writing
non-blocking
writing

7: enable_output_handlng()

8: select()

9: handle_output()

11: write()

12: disable_output_handlng()

10: retrieve_data()

step 6 - 12 occur when
some data cannot be sent
immediately in step 5

step 6 - 12 occur when
some data cannot be sent
immediately in step 5

{if all buffered
data is written}
{if all buffered
data is written}

Figure 4.4. Sequence diagram for handling output buffering.

 44

Second, the sequence diagram in Figure 4.4 illustrates how a concrete event handler, hs,

writes messages to another handler, hd, with a full send buffer while handling input messages.

In this case, the messages (from hs) cannot be sent out due to the send buffer of the

corresponding socket in hd being full (in Step 5). Subsequently, in hd, the unsent data is

stored into its own Memory_Buffer (in Step 6) and output handling is enabled (in Step 7)

to output the unsent data later. When the socket has available space for output, the

handle_output method of hd (in Step 9) is invoked to send the data in

Memory_Buffer out (in Steps 10 and 11). Finally, output handling for hd (in Step 12) is

disabled if all the data are sent out successfully.

4.4 Request Blocking Problem and Solution

This section investigates the request blocking problem for event-driven programming in

inter-user communication applications. Subsection 4.4.1 introduces the request blocking

problem. Subsection 4.4.2 then presents a solution to solve the request blocking problem for

HTTP requests only. Next, Subsection 4.4.3 leverages the solution in Subsection 4.4.2 to

solve the request blocking problem for all other requests.

4.4.1 Request Blocking Problem

For event-driven programming, application developers must also be careful about using

possible blocking operations in event handling. Besides the output blocking operations in

Section 3.3, blocking operations are classified into two types: namely local blocking

operations and request blocking operations.

The former include explicit system or function calls that may block execution locally,

such as wait, sleep, flock, and semop [72]. Developers should either prevent from

using these functions or use alternatives, instead.

 45

Request blocking operations are involved in service requests over network. For example,

when a game server SG needs to retrieve game records from (or store records into) a database

server SDB, SG generally performs the following three steps: (1) create a connection to SDB; (2)

send request messages to SDB; (3) receive response messages from SDB. However, the

operation in step (3) is clearly a blocking one.

In event-driven based servers, if a straightforward design is used that directly bundles the

three operations together within a single input event handler, called a source event handler

here, this service request obviously becomes blocked. Consequently, the performance of the

game server SG degrades.

Many developers usually notice the above example for database requests before coding.

However, unfortunately many services are requested implicitly. For example, the Harvest and

Squid projects [13, 90] noticed that the DNS-related function call, gethostbyname, may

issue a request to a DNS server and wait for the response from that server. Thus, for

event-driven programming, it becomes crucial for application developers to identify more

operations with remote service requests, as listed below.

 DNS-related functions. For example, accessing DNS servers via some library calls such as

gethostbyname, gethostbyaddr, getaddrinfo, and getnameinfo [19].

 Database-related functions. For example, accessing database servers via JDBC [26, 76] or

ODBC [45] drivers.

 LDAP-related functions. For example, accessing the servers of OpenLDAP via its client

library [54].

 HTTP access. For example, making HTTP requests via libwww [52].

 Remote file access. For example, accessing a file mounted on a remote host via the NFS

service [18, 19].

 46

Note that the last operation involving remote file access may also block event-driven

based servers for inter-user communication applications, because traffic to the remote file

server may also be jammed.

Regarding local file access, the research in [58] indicates that most local file operations

generally cannot be integrated with the select system call. Namely, select cannot be

used to detect the completion of these operations. Furthermore, some of these operations, such

as open and stat, may still be blocking. The above blocking problem is critical for the

HTTP server applications [58] because HTTP servers generally require frequent accessing of

local files. However, this dissertation is less concerned with local file access, since inter-user

communication applications generally process messages on the fly without frequently

accessing local files. For example, a game server generally does not need to save player chat

messages into local files. If a game server does need to access files frequently for some reason,

the server can use database, instead, and the solution presented in the remainder of this

section remains useful.

In order to solve the request blocking problem in event-driven applications, the Harvest

and Squid projects [13, 90] used helper processes to resolve DNS queries without incurring

blocking. However, they did not design a reusable software architecture for this problem.

For solving this problem in a reusable way, this dissertation first presents a service

brokering mechanism for dealing with HTTP requests in Subsection 4.4.2. Then, in

Subsection 4.4.3, this mechanism is applied to all the other service requests with blocking

operations.

4.4.2 Solutions for HTTP Access Requests

This subsection presents a mechanism, called the service brokering mechanism, for

dealing with HTTP requests, and incorporates this mechanism into the event-driven

 47

framework in this dissertation. In this mechanism, an event handler, called the source event

handler, creates another event handler, called the service broker here, to send an HTTP

request to a remote service provider and wait for the response. After receiving the response,

the service broker transfers the response back to its source event handler. These activities are

performed without any blocking.

Buffered_Output_Handler

handle_output() set_output_buffer_size()
write_data()

Concrete event handler

handle_input()
handle_close()

Memory_Buffer

store_data()
retrieve_data()

Concrete
service broker

handle_input()
handle_close()

Service_Broker

request()

Socket acceptor

handle_input()

*

Event_Handler

handle_input()
handle_output()
handle_close()

Reactor

handle_events() disable_output_handling()
register_handler() enable_output_handling()
remove_handler()

Buffered_Output_Handler

handle_output() set_output_buffer_size()
write_data()

Buffered_Output_Handler

handle_output() set_output_buffer_size()
write_data()

Concrete event handler

handle_input()
handle_close()

Concrete event handler

handle_input()
handle_close()

Memory_Buffer

store_data()
retrieve_data()

Memory_Buffer

store_data()
retrieve_data()

Concrete
service broker

handle_input()
handle_close()

Concrete
service broker

handle_input()
handle_close()

Service_Broker

request()

Service_Broker

request()

Socket acceptor

handle_input()

Socket acceptor

handle_input()

*

Event_Handler

handle_input()
handle_output()
handle_close()

Event_Handler

handle_input()
handle_output()
handle_close()

Reactor

handle_events() disable_output_handling()
register_handler() enable_output_handling()
remove_handler()

Reactor

handle_events() disable_output_handling()
register_handler() enable_output_handling()
remove_handler()

Figure 4.5. Class diagram of the event-driven framework with service brokers.

Figure 4.5 modifies the class diagram of the framework in Figure 4.2 by adding two

classes, Service_Broker and concrete service broker, detailed below.

 Service_Broker is an abstract class that extends Buffered_Output_Handler

for service brokering.

This class provides application developers with a request method that is used to

establish a connection to a server, such as an HTTP server, and forward an HTTP request

to the server. A concrete event handler (or the source event handler as defined in

Subsection 4.4.1) requires the following parameters to invoke this method: (1) server IP

address and port; (2) the pointer back to the source event handler; and (3) the HTTP

request message.

 48

 Concrete service brokers are application-specific classes implementing the

Service_Broker.

A concrete service broker object is created by a source event handler to handle one and

only one HTTP request. After requestor creation, the source event handler invokes the

request method of the requestor to connect to the corresponding HTTP server and then

registers the requestor with the Reactor object. When the server replies, the Reactor

object invokes the handle_input of the requestor to process the response.

Next, the following interactions are illustrated in more detail: (1) how to establish a

connection to a remote service provider and send an HTTP request to that provider, and (2)

how to handle service provider responses.

SB: Concrete
service
broker

5: request()

2: handle_input()

: Reactor EH: Concrete
event handler

4: «new»

10: handle_output()

6: socket(), fcntl(), connect()

: Operation
system

3: read()

7: register_handler()

: Memory
_Buffer

8: store_data()

store
the request
messages

1: select()

9: select()

under
handle_events()

register SB
for handling both
input & output events

perform non-
blocking connecting
to the service provider

send the request
message to the
service provider

SB: Concrete
service
broker

5: request()

2: handle_input()

: Reactor EH: Concrete
event handler

4: «new»

10: handle_output()

6: socket(), fcntl(), connect()

: Operation
system

3: read()

7: register_handler()

: Memory
_Buffer

8: store_data()

store
the request
messages

store
the request
messages

1: select()

9: select()

under
handle_events()
under
handle_events()

register SB
for handling both
input & output events

register SB
for handling both
input & output events

perform non-
blocking connecting
to the service provider

perform non-
blocking connecting
to the service provider

send the request
message to the
service provider

send the request
message to the
service provider

Figure 4.6. Sequence diagram for establishing a connection and sending an HTTP request.

First, the sequence diagram in Figure 4.6 illustrates how a concrete event handler, EH,

establishes a connection to a remote service provider, SVCP, and forwards an HTTP request

to that provider. When making an HTTP request, EH creates a service broker, SB, (in Step 4)

and then call the request method of SB (in Step 5). This method connects to SVCP in a

non-blocking manner (in Step 6), registers SB itself with the Reactor object (in Step 7) and

 49

stores the request message in the Memory_Buffer (in Step 8). The stored request message

is sent (in Step 10) immediately upon connection establishment.

SB: Concrete
service
broker

: Reactor EH: Concrete
event handler

2: handle_input()

: Operation
system

1: select()

4: some_callback()

3: read()

under
handle_events()

5: remove_handler()

transfer the
response to EH SB is

destroyed

SB: Concrete
service
broker

: Reactor EH: Concrete
event handler

2: handle_input()

: Operation
system

1: select()

4: some_callback()

3: read()

under
handle_events()
under
handle_events()

5: remove_handler()

transfer the
response to EH
transfer the
response to EH SB is

destroyed
SB is
destroyed

Figure 4.7. Sequence diagram for handling responses.

Second, the sequence diagram in Figure 4.7 illustrates how the service broker, SB,

handles the responses from the service provider, SVCP. On receiving responses from SVCP

(in Steps 2 and 3), SB processes those responses and may invoke some callback functions of

EH (in Step 4). Once the response has been completely received, SB destroys itself (in Step 5).

4.4.3 Solutions for Other Service Requests

The previous subsection presents a service brokering mechanism for dealing with HTTP

requests in the event-driven programming model. Since HTTP and its tools are pervasive, for

example web servers like Apache [78] and IIS [44], and web programming tools like PHP

[80], JSP [75] and ASP [43], a straightforward solution for all the service requests would be to

leverage the above solution based on the HTTP servers directly.

For example, if a source event handler (defined in Subsection 4.4.1) needs to access

database servers or get the IP address of a given hostname, the handler makes an HTTP

request to a web server, and the corresponding web page programs (say in PHP) then return

database records or the IP address. Since it is easy to write the code of service brokers, as

described in Subsection 4.4.2, and the corresponding web page programs (in PHP, JSP, or

ASP), application developers can easily develop the above service request. Note that web

 50

page languages such as PHP, JSP, or ASP are usually sufficiently general and high-level to

program service requests such as those listed in Subsection 4.4.1.

However, leveraging the HTTP technologies as above may incur significant overhead for

web page processing (in PHP, JSP, or ASP). For example, accessing a database or getting the

IP address of a given hostname in PHP generally may include process forking and page

interpretation.

Since the incurred overhead may become significant, this dissertation designs additional

helper processes for handling requests directly. The idea of helper processes has been used by

the researchers in [13, 58, 90] for calling DNS-related functions and disk I/O access. However,

they do not design a reusable software architecture for helper processes, as this dissertation

does.

Database
servers

Helper processacceptor
thread

socket
queue

worker
thread pool

Game
server

DB request
handlerDB request

handler

Database
servers

Helper processacceptor
thread

socket
queue

worker
thread pool

Game
server

DB request
handler

DB request
handlerDB request

handler
DB request

handler

Figure 4.8. Handling database requests using multi-threads.

Consider the example of accessing database servers. A helper process contains an

acceptor thread and a pool of worker threads, as illustrated in Figure 4.8. The acceptor thread

repeats to accept new connection requests from application servers (such as game servers) and

then queues the sockets corresponding to these connection requests. Each worker thread then

repeats the following steps:

1. Retrieve one socket from the queue.

2. Receive the request message (including the URL and the parameters) from the socket.

3. Identify the request and then create the corresponding service handler to process that

request. For example, for a database request, the corresponding service handler sends the

requests to the database servers, receives the response messages and then returns the

 51

results to the game server. Meanwhile, for a DNS request, the corresponding service

handler simply calls the DNS library and returns the results to the application servers.

Concrete service handler

handle_service()

Acceptor_Thread

run()

Worker_Thread

run()

Socket_Queue

put() {concurrent}
get() {concurrent}

Service_Handler

handle_service()

*11 1

The run() method
is the execution
loop of a thread.

Concrete service handler

handle_service()

Concrete service handler

handle_service()

Acceptor_Thread

run()

Acceptor_Thread

run()

Worker_Thread

run()

Worker_Thread

run()

Socket_Queue

put() {concurrent}
get() {concurrent}

Socket_Queue

put() {concurrent}
get() {concurrent}

Service_Handler

handle_service()

Service_Handler

handle_service()

*11 1

The run() method
is the execution
loop of a thread.

The run() method
is the execution
loop of a thread.

Figure 4.9. Class diagram of helper processes.

The class diagram in Figure 4.9 shows the components of the helper processes. The class

responsibilities are described as follows.

 Acceptor_Thread is the thread that waits to accept incoming connections. The sockets

corresponding to accepted connections are placed in a Socket_Queue (described

below).

 Socket_Queue is the queue that stores socket descriptors.

 Worker_Threads are threads that process requests in the Socket_Queue. Each

Worker_Thread object creates a concrete service handler (described below) for

application specific services.

 Service_Handler is a class of service handler interface that defines a hook method:

handle_service. Classes of concrete service handlers that inherit

Service_Handler implement this method for application specific services, such as

database access services.

: Worker_
Thread

: Socket_
Queue

Ta: Socket_
Acceptor_

Thread

Tw: Worker_
Thread

a2: put()

: Operation
system

a1: accept()

: Concrete
Service
Handler

: Concrete
service
handler

w1: get()

w3: handle_service()

w3.2: write()
: Library

w3.1: library_call()

w2: read()

: Worker_
Thread

: Socket_
Queue

Ta: Socket_
Acceptor_

Thread

Tw: Worker_
Thread

a2: put()

: Operation
system

a1: accept()

: Concrete
Service
Handler

: Concrete
service
handler

w1: get()

w3: handle_service()

w3.2: write()
: Library

w3.1: library_call()

w2: read()

Figure 4.10. Collaboration diagram of handling services in a helper process.

 52

Figure 4.10 shows the interaction of handling services in a helper process. The UML

collaboration diagram is used to show this interaction.

 The acceptor thread Ta repeats the following two steps. In Step a1, it accepts a new

socket, and in Step a2, it places accepted sockets in the Socket_Queue. If one or more

worker threads are waiting in the queue, one of them is woken up.

 A worker thread, Tw, repeats the following steps. In Step w1, Tw attempts to obtain a

socket from the Socket_Queue. Tw waits in this queue until the Socket_Queue

becomes not empty. In Step w2, Tw reads the request message from the socket. In step w3,

Tw invokes the handle_service method of its own concrete service handler by

passing the request message as an argument. In Step w3.1, the method invokes library

calls, such as gethostbyname, for the request. Finally, in Step w3.2, the method

returns the result to the application server.

Note that the above helper process also has an additional advantage, solving the

following problem, called the limited service problem in this dissertation. Consider that a

database server generally supports a limited number of service connections. The problem can

be easily solved in the helper process designed here by simply limiting the number of worker

threads to the number of connections to the database server and letting each thread hold a

single connection. For example, if a database server supports only 20 connections, the helper

process dedicated to all requests to the database server has a maximum of 20 worker threads.

In fact, the advantage of the helper process described above also applies to the

processing of HTTP requests, for the following reason. A web server such as Apache

generally limits the number of daemon processes for simultaneous requests [78]. When the

number of concurrent HTTP requests exceeds the limited number, some of the additional

HTTP requests may fail to establish connections or suffer from long latency [89].

Consequently, the helper process can be used simply to limit the number of worker threads to

 53

being the same as the number of HTTP daemon processes and thus let the service handler

work like a HTTP proxy. For example, if an Apache server only allows 100 daemons, the

helper process that is dedicated to all HTTP requests to the Apache server also has a

maximum of 100 worker threads. The helper process thus can hold thousands of HTTP

requests in the socket queue via the acceptor thread, while guaranteeing that 100 HTTP

daemons in the Apache server are always available for the helper process.

The above thread pool can actually be implemented more efficiently, as described in [66,

89]. Briefly, when worker threads are idle, some of these threads can be dynamically removed

to reduce the overhead of context switching. The details can be read in [89] and are omitted

here.

From the above, this dissertation suggests that helper processes be deployed as follows.

For each server with limited service resources (e.g., an Apache server with a limited number

of daemons or a database server with a limited number of connections), one helper process is

dedicated to the server. Meanwhile, other services such as DNS services can be grouped into

one or more helper processes, depending on the situation. Figure 4.11 illustrates a case of

deploying helper processes.

Database
servers

Helper process 2acceptor
thread

socket
queue

worker
thread pool

DNS
servers

Game
server connection

pool

DB request
handlerDB request

handler

Helper process 3acceptor
thread

socket
queue

DNS request
handlerDNS request

handler

worker
thread pool

HTTP
servers

Helper process 1acceptor
thread

socket
queue

HTTP request
handlerHTTP request

handler

worker
thread pool

Database
servers

Helper process 2acceptor
thread

socket
queue

worker
thread pool

DNS
servers

Game
server connection

pool

DB request
handler

DB request
handlerDB request

handler
DB request

handler

Helper process 3acceptor
thread

socket
queue

DNS request
handler

DNS request
handlerDNS request

handler
DNS request

handler

worker
thread pool

HTTP
servers

Helper process 1acceptor
thread

socket
queue

HTTP request
handler

HTTP request
handlerHTTP request

handler
HTTP request

handler

worker
thread pool

Figure 4.11. Case of deploying helper processes.

 54

Finally, one may ask why the event-driven model is not used for the helper processes.

Surely, the event-driven model can be used to implement the helper processes. However, the

fact that these requests must wait for responses complicates helper process design. On the

other hand, since threads in helper processes are almost independent, developers can easily

maintain and debug the code in the thread model.

4.5 Experiments

This section presents the performance analysis for using the output buffering mechanism.

The performance analysis for using the service brokering mechanism is similar and therefore

is omitted in this dissertation.

From the CYC Game League, we logged all the events of some game server with about

300 players for 10 minutes. The log contains 28,573 received messages and 142,570 sent

messages that represent the activity of the game server during that period.

For performance analysis, we simulated the activity of the log as follows. Let one host

simulate the 300 clients (players) and the other simulate the game server following the

messages indicated in the log. Both hosts ran on FreeBSD 5.3 and each of them was equipped

with an AMD Athlon XP 2000+ CPU, 512 MB RAM, 80GB hard disk, and a 100 Mb

Ethernet card. Besides, they were connected to a 100 Mb switch hub directly.

In our experiment, we only consider the response times of the messages among clients

(players), e.g., the messages for chatting or playing cards. Namely, for each of such messages

among clients, add into the message M the time when sending M from the sender. When

receiving M, the recipient measures the traveling time of M from the sender. Normally, the

response times are short, unless the server is overloaded or the network traffic is jammed or

blocked.

 55

Game
server G

… Client CN

The messages in the
connection are

blocked for a period of
time T starting at the

93rd second.

Client C2 Client C3Client C1

Game
server G

… Client CN

The messages in the
connection are

blocked for a period of
time T starting at the

93rd second.

Client C2 Client C3Client C1
Figure 4.12. The deployment of the evaluating the output buffering mechanism.

From the log, we chose one client, called C1, as shown in Figure 4.12, who entered the

system at the 93rd second. Then, we blocked all messages to client C1 for a period of time T

starting at the 93rd second to simulate that the network between C1 and the game server G

was jammed or blocked, as shown in Figure 4.12. We used the technique of divert sockets [3,

17] to simulate the blocking network.

C1’s network
starts blocking

The send buffer
from G to C1 gets full

C1’s network
ends blocking

T

The averaged top-100
response time

100 messages

time

C1’s network
starts blocking

The send buffer
from G to C1 gets full

C1’s network
ends blocking

T

The averaged top-100
response time

100 messages

time

Figure 4.13. The averaged top-100 response time.

For each T, we measured the averaged top-100 response times in the two cases that (1)

the output buffering mechanism was used and (2) the mechanism was not. Note that the

averaged top-100 response time is the average of the highest 100 response times among all

the messages. The top-100 response times reflect the worst response times among clients. In

the case that T is sufficiently large, the averaged top-100 response time is the average of the

response times of the first 100 messages after C1’s send buffer gets full, as shown in Figure

4.13.

 56

100.07 100.18 100.06 100.13 100.17 100.06
100.07 100.15 100.10

740.62

1767.84

2680.87

0

500

1000

1500

2000

2500

3000

0 1000 2000 3000 4000 5000

The blocking time (millisecond)

Th
e

av
er

ag
ed

 to
p-

10
0

re
sp

on
se

tim
e

(m
ill

is
ec

on
d)

With output buffering Without output buffering

Figure 4.14. The averaged top-100 response times vs. the blocking times.

Figure 4.14 shows our experiment results. Consider the second case that the mechanism

is not used. When T ≤ 2 seconds, the averaged top-100 response times are still very low

because in the FreeBSD kernel the send buffer (with about 32 kilo-bytes) from the game

server to client C1 is not overflown and the whole game system therefore is not blocked,

except for client C1. However, when T > 2 seconds, the send buffer is overflown and the

whole game system is blocked for the rest period of time T. Thus, the averaged top-100

response times grow nearly linear as T in this case. If the output buffering mechanism is used,

the averaged top-100 response times become all very low as shown in Figure 4.14. That is, the

performance is greatly improved in this case.

 57

 58

Chapter 5 Related Issue 2: Fast Recovery from

Overflow Failures for Non-disruptive Game Services

The services of the GOTG system rely on the collaboration of several kinds of servers,

including game servers, web servers, database severs, etc. However, the services may disrupt

if some of these servers crash. To continuously provide the services, the servers should try to

recover from failures timely. One of failures that we encountered when developing the GOTG

system is the buffer overflow failure that is commonly found in many software recently. In

the chapter, we develop a technique to detect and recover from buffer overflow failures

efficiently.

5.1 The Buffer Overflow Problem

The C and C++ languages are popular in program development due to their efficiency

and the capability of control over most resources, such as memory and I/O devices. However,

many programmers can not correctly handle this capability of control and therefore introduce

errors into applications. Among these errors, buffer overflow is a very common and serious

error. According to our survey on SecuriTeam [6] and CVE [79], buffer overflows account for

about 20% of errors in the recently years. The occurrence of the buffer overflows in a

program generally cause the program to work incorrectly or even crash. Since many servers of

the GOTG system are implemented in C/C++, we try to develop a technique to recover from

buffer overflows.

A buffer overflow occurs when an array access is out of the bounds of the array. Since

the C/C++ standard leave out of bounds(OOB) access undefined, most C/C++ compilers do

not generate code to check this flaw. Although this can avoid the extra overhead of boundary

checking, intruders can exploit buffer overflows to crash or intrude programs.

 59

An OOB writing may overwrite language implementation structures such as function

pointers and return addresses. The stack smashing attack [48] tries to overwrite a function

return address to intrude a program. Once a stack smashing attack is successful, the victim

program is hijacked and the intruder may get the superuser privilege.

Since buffer overflow is a serious vulnerability, many solution approaches have been

proposed to tackle this problem. One way to defeat the buffer overflow vulnerability is by

analyzing the source code of programs to discover the vulnerability [28][63][87][40].

However, source code analysis tools may generate considerable false positive warnings. Some

researches combine source code analysis and runtime memory-error checking to discover

memory errors [50][36]. These techniques can reduce the overhead of runtime checking but

they are not fully compatible with the existing C-programs.

Another way to defeat buffer overflows is to check OOB accesses at runtime. Some

techniques check only critical program status such as return addresses and previous stack

frame pointers [20] [85] [15] [5] [23] and therefore only partially resolve the issues. Others

check all OOB accesses [37][64][38][2][31] and therefore incur large runtime overhead in

general.

Still another way is to randomizes the addresses of code and data [7][27][14][94]. These

reported techniques can resolve most intrusions related to memory vulnerabilities without

remarkable overhead since the intrusions rely on absolute addresses of data/code or relative

distances among buffers. One major drawback of these buffer overflow prevention techniques

is that they will terminate the victim programs upon being attacked. Although doing so can

prevent intrusions, the termination of server programs may seriously affect the users of the

servers.

In this dissertation, we propose a new technique, called BODAR (Buffer Overflow

 60

Detection and Recovery), to recover from buffer overflows. Our method can avoid the above

drawback and recover programs from buffer overflows and continue to work correctly.

5.2 The Design and Implementation of BODAR

In this section, we present the design and some important implementation issues of our

buffer overflow detection and recovery method.

5.2.1 Integration of Address Space Permutation and Trapping OOB by

Unallocated Address Space

Random address space permutation is a technique to prevent from out of bound (OOB)

exploits by random arrangement of code, text, and stack segments. Emulation of

non-executable stacks or data execution prevention without supports from memory

management unit (MMU) also make use of similar permutation strategies. Any attempt to

hijack controls of such random address space only results in failures of program execution,

which suffers denial of services.

Electric Fence [59] is a replacement of the malloc family for debugging. It leverages

virtual memory hardware to detect the accesses overrunning the boundaries of a buffer

allocated with its malloc. Such an out-of-bounds access triggers a signal. Therefore when an

Electric Fence enabled program runs under a debugger such as gdb, the faulty instruction can

be displayed. However if the accesses jump over the range of the protected page (often

4-kbytes), the exception will not be triggered.

The Jones and Kelly (J&K) checker [37] proposed to handle out of bounds addresses

(OOB) by checking each memory access to the OOB tag. If the access is an OOB dereference

resulting from pointer arithmetic, the tag is replaced by a special ILLEGAL value. The CRED

method replaces OOB value with an OOB object tracking referent objects by storing the OOB

 61

value and the referent objects that the value refers to. The BMB (boundless memory blocks)

method [62] allows OOB access for continuous execution with extra space allocated when

OOB access is detected. These methods are intuitively straightforward and compatible to

existing applications and libraries. Recent evaluations by [98] conclude that CRED is with the

best detection response due to its high detection and low false alarm rate among seven

well-known detectors. Their major drawback is a unacceptable high execution overhead,

about six to thirty times slower.

Our system treats the full virtual address as a natural fence for OOB protection. Each

allocated buffer will be randomly distributed among the virtual space with maximum distance

separation from other buffers. Since most of the virtual space is within unallocated address

range, any overflow, underflow, and hopping access of OOB will trigger page faults. These

OOB pages are memory-mapped memory space with unallocated addresses. They virtually

exist without occupying physical space. If the accesses are within bounds, the executions are

the same as the original system without protection. If the accesses are out of bounds, the

unallocated addresses will trigger our pre-specified signal handler.

Our key idea is simple but still completely preserves the capability of OOB detection and

recovery based on J&K series of methods. The difficulties of implementation lie in the subtle

use of mmap system call, allowing memory allocation within unallocated regions, and the

scheme of faulty address resolution. It is a miniature memory management system and treats

each buffer as a guarded memory region. Unlike the pure isolation purpose of [88]and similar

to the page fault handler in the operating system kernel, our method requires to resolve faulty

addresses in order to deal with the recovery process (discussed in Section 2.3).

 62

5.2.2 Guarding Buffers with Addresses within Unallocated Regions

Current operating systems provide each process a virtual address space that is isolated

from other processes. In the virtual address space, the stack resides at the top of the user

process address space and heap resides behind the text and static data (including the

initialized and uninitialized data). The region between the heap and the stack is an unallocated

region, where normally no memory block resides at. The heap grows to higher addresses by

invoking the brk or sbrk system call, while the stack grows to lower addresses as

performed by the kernel automatically. Growing of the heap and stack is contiguous. Namely,

a new allocated memory block is adjacent to the last allocated block. Note that growing the

heap and stack reduces the size of the unallocated region.

Except growing the heap and stack, the mmap system call [72][41] can be used to

allocate memory blocks within the unallocated region. The common usage to mmap is

mapping files or devices into memory and therefore the mapped files or devices can be

accessed in the same manner as accessing memory. This technique can be used to construct

shared memory for an inter-process communication mechanism.

On the other hand, mmap can also be used to allocate memory blocks that are not

associated with any file or device. Considering the behavior of allocation memory, the major

difference between mmap and brk/sbrk is that mmap can specify the starting address of the

allocated blocks, while brk/sbrk can not. That is, a new allocated memory block with mmap

can be apart from the last allocated block. Therefore, mmap can allocate memory blocks

discretely while brk/sbrk only allocates memory blocks continuously.

In order to efficiently detect and tolerate buffer overflows, the BODAR system utilizes

the discrete allocation characteristic of mmap to introduce unallocated pages between

allocated buffers. Note that an access to an unallocated page is an invalid memory reference

 63

and triggers a segment violation signal (SIGSEGV) in UNIX or UNIX-like operating systems.

If a buffer is followed with unallocated pages, any overflowing access out of the buffer bound

causes a SIGSEGV. By carefully handling the signal, the buffer overflow can be detected and

eliminated.

The buffer organization in the BODAR system is showed in Figure 4.1. Each allocated

buffer is appended with a spare region and a forbidden region. A spare region consists of one

or more unallocated pages while the forbidden region consists of only one unallocated page.

If the size of a requesting buffer is larger than n pages but less than n+1 pages (n is zero or a

positive integer), we allocate n+1 pages to the buffer and align the end of the buffer with the

end of the n+1 pages.

buffer A
high

address
low

address

buffer A buffer B
high

address
low

address SA0 SA1 … SAn FA

spare region SA forbidden region

SB0 SB1 … SBk FB

spare region SB forbidden region

SA0 SA1 … SAm FA

spare region SA

SA2

forbidden region

(a)

(b)

Figure 5.1. The buffer organization in the BODAR system.

A spare region that is designed to tolerate buffer overflows while the forbidden region is

designed to set a limitation to the buffer overflow tolerance. In order to tolerate buffer

overflows, it is better to make each spare region as large as possible. Hence the BODAR

system allocates each buffer in the middle of the current largest spare region. For example, if

the spare region SA is the largest one (shown in Figure 4.1(a)), the BODAR system positions

the next allocated buffer B in the middle of SA (shown in Figure 4.1(b)). That is, n (the size of

spare region SA) equals to k (the size of spare region SB) or n = k+1. Currently, we

implement the allocation strategy with an AVL tree to maintain the buffer organization and a

priority queue to track the size of each spare region so that the largest spare region can be

found efficiently.

 64

The BODAR system tolerates OOB accesses in the following ways:

 In Figure 5.1(a), assume that one unallocated page SAx (m≥x≥0) of spare region SA is

read or written. This triggers the SIGSEGV signal and SAx can be identified in the signal

handler for SIGSEGV. The details of obtaining the faulty address SAx is discussed in the

next subsection.

 The BODAR allocates a page of memory at SAx so that the program can continue to run

without data corruption or termination. Hence the OOB reading before any writing at SAx

obtains a value zero.

 If the forbidden region FA is read or written, currently BODAR terminates the program to

prevent the buffer behind A from modifications and therefore intrusions.

 The pages storing the OOB data in spare region SA are treated as an extension of buffer A.

If buffer A is freed, they are freed too.

 To prevent OOB data from consuming too much memory, we set a limitation to the size of

each buffer’s extension, e.g., t pages (t≥0). If the unallocated page SAx (x>t) is accessed,

BODAR maps the device /dev/zero to the range from SAt to SAx-1. Since the pages

mapped from /dev/zero are read-only, BODAR allocates a page of memory at SAy

(x>y≥t) if the read-only page SAy is written.

5.2.3 Faulty Address Resolution

In order to recover from an OOB access, we need to resolve the faulty address that

causes the SIGSEGV signal. However, the widely-used ANSI C signal handler prototype

(void signal_handler(int)) does not provide this information. Fortunately, the

POSIX style signal handler prototype provides the information. Here, we describe how to use

the POSIX style prototype to obtain the faulty address.

The POSIX style signal handler prototype:
 void signal_handler(int signo, siginfo_t *info, ucontext_t *uap);

 65

The prototype listed above comes from FreeBSD. The faulty address is stored in the

si_addr element of the second argument info that is a siginfo_t structure. To use this

prototype, we must use the sigaction function to install a signal handler for SIGSEGV

and turn on the SA_SIGINFO flag in the fourth argument sa_flags of sigaction.

This faulty address resolution method has been tested on Linux and FreeBSD. The third

argument of the POSIX style prototype on Linux slightly differs from the FreeBSD one listed

above but the difference does not affect the faulty address resolution.

5.2.4 Source Code Transformation for the Guarded OOB Instrument

We have proposed a discrete buffer allocation technique to recover from buffer

overflows. In this subsection we discuss how to apply the proposed technique to heap buffers,

and stack buffers respectively.

The proposed technique is easy to be applied to heap buffers since most ones are

allocated with the malloc family and we can re-implement the malloc family based on the

technique. By statically linking with applications or using the preloading dynamic loadable

library technique [5], the new malloc family can replace the original one.

However, applying our technique to stack buffers is not as easy as applying to heap

buffers. Stack buffers are allocated by merely moving the CPU frame pointer register. This

process proceeds without any invocation of function calls. In order to apply the proposed

technique to stack buffers, we decide to convert all stack buffers to heap buffers by rewriting

the source code of applications without changing the semantics of programs. After such

rewriting and recompiling, applications can utilize our technique to recover from stack buffer

overflows.

We perform the code rewriting following the method described in [21]. The paper

 66

proposes a tool named Gemini to convert all stack buffers to heap buffers in order to prevent

stack buffer overflow attacks. It uses TXL [81] to perform the code rewriting. Note that TXL

is a hybrid rule-based and functional language and is suitable for source code to source code

rewriting. To perform the C code rewriting, we need the C grammar definition for TXL and a

set of rule that specifies how to rewrite code based on the C grammar definition. The C

grammar definition for TXL is available from the TXL website while the rule set was written

by the authors. We also use Perl scripts to perform the code rewriting automatically.

Original code Modified code

void foo() { void foo() {
int buf[64]; int *buf=(int*)malloc(64*sizeof(int));
bzero(buf,sizeof(buf); bzero(buf,64*sizeof(int));
... ...

} free(buf);
}

Figure 5.2. Converting stack buffers to heap buffers.

The example showed in the Figure 4.2 demonstrates the source code rewriting that

converts stack buffers to heap buffers. In the original code, buf is a stack buffer in function

foo. In the modified code, buf becomes a pointer and is initialized with a malloc that

allocates a heap buffer with the same size of buf in the original code. Note that buf does not

need to be reclaimed in the original code. This is because all stack buffers declared within a

function are automatically reclaimed before the function returns. On the contrary, in the

modified code buf must be explicitly reclaimed with the free function before foo returns

since heap buffers are not reclaimed automatically.

The sizeof construct must be carefully handled. In the original code, sizeof(buf)

represents the length of buf. However, in the modified code sizeof(buf) represents the

length of a pointer since buf becomes a pointer after the rewriting. Our solution to this

problem is replacing each affected sizeof construct with the constant that is the product of

element count and the size of a single element.

 67

5.3 Results

In this section we present the experiments to validate the proposed technique and

evaluate the performance. We perform the validation and performance evaluation with several

open source applications that have buffer overflow vulnerabilities. All hosts used in the

experiments ran on FreeBSD 5.4 and each of them was equipped with 1GB RAM, 80GB hard

disk, and a 100 Mb Ethernet card. One of them was 64-bit machine equipped with an AMD

Athlon 64 3000+ CPU. Each of other hosts was 32-bit machine equipped with an AMD

Athlon XP 2000+ CPU. They all connect to a 100 Mb switch hub directly without interference

of irrelevant traffic. We conduct the evaluations in two major phases: one is to evaluate the

feasibility and security tolerance of BODAR and the other is to perform efficiency evaluation.

The results in the first phase are much satisfied for a better throughput performance than the

original system without protection. The second phase results reveal the tradeoff between

space and time. The execution efficiency is almost the same as the unpatched version with

extra space overhead, on average ranging from 30% to six times larger.

5.3.1 Stack Buffer Allocation Overhead

The following experiment demonstrates the extreme case of buffer allocation overhead.

It was performed and averaged by running the following program 50 millions times. The

results exhibit the worst case of execution overhead due to space page allocation. However, in

normal situations, buffer allocation usually constitutes only a small fraction of the overall

runtime.

int test() {
char buf[128];
strcpy(buf, "1234567890");
return strcmp(buf, "9876543210");

}
Original BODAR

Execution time (sec.) 2.0083 7.2168
Figure 5.3. The stack buffer allocation overhead.

 68

5.3.2 Security Tolerance and Availability Evaluation

The evaluations of security tolerance are to prove the feasibility of our asynchronous

OOB detector and recovering capability. It needs to preserve the original detection response

(true negative and false positive rate) of CRED and BMB while retain better execution

efficiency. We design the experiments on two kinds of representative servers: one is a

multi-processes concurrent model using the Apache httpd and the other is a single-process

concurrent model using the thttpd.

 Process Pool Model Server

The use of the Apache httpd is with the configuration of initial process pool size of 10

and the max process pool size of 150. We perform the evaluation on the http server running

apache 1.3.34 with mod_mylo 2.1. The vulnerability does not reside in the main process of

httpd but in the plugin of mod_mylo. We try to exploit the vulnerability of mod_mylo 2.1. In

order to perform efficiency benchmark evaluation, we do not inject shell code from the

exploit, but just crash the server. To use mod_mylo, the dynamic shared object (DSO) option

of apache httpd must be enabled. The DSO option will slow down the httpd process. Both of

our system BODAR and the compared target of CRED are with DSO enabled.

The following figures reveal the evaluation results by using the Webstone [47] web

performance benchmarking system accompanying with the probe which exploits mod_mylo

2.1 vulnerability [67]. Three different versions of the Apache httpd are evaluated: the Original

unpatched, CRED-patched, and our BODAR-patched httpd. The results are averaged for three

runs of Webstone benchmarking and each time span of 3 minutes.

 69

0
100
200
300
400
500
600

0 5 10 15 20

Attacks per second

S
er

ve
r c

on
ne

ct
io

n
ra

te
(c

on
ne

ct
io

ns
/s

ec
on

d)

Original CRED BODAR

0

20

40

60

80

100

0 5 10 15 20

Attacks per second

S
er

ve
r t

hr
ou

gh
pu

t
(M

bi
ts

/s
ec

on
d)

Original CRED BODAR

Figure 5.4. Apache http server 1.3.34 (with mod_mylo 2.1) runs under attacks (part 1).

The left shows the server connection rate and the right shows the server throughput. The

connection rate of CRED-enabled server is about 33% slower while BODAR-enabled server

is 30% faster than that of the original one. The improvement of throughput is even larger. The

CRED server is 55% slower while the BODAR server is 92% faster than that of the original

one.

0

20000

40000

60000

80000

100000

0 5 10 15 20

Attacks per second

To
ta

l r
ea

d
pa

ge
s

Original CRED BODAR

0.00

0.05

0.10

0.15

0.20

0 5 10 15 20

Attacks per second

A
ve

ra
ge

 re
sp

on
se

 ti
m

e
(s

ec
on

d)

Original CRED BODAR

Figure 5.5. Apache http server 1.3.34 (with mod_mylo 2.1) runs under attacks (part 2).

The left shows the total number of pages read and the right shows the average response

time. The total web pages read and average response time also reveal such improvement. The

results indicate that the BODAR protection can be a good surviving technique for production

purpose.

 Event Driven Model Server

The thttpd [1] is an event driven model server. The evaluation is also conducted by using

Webstone with probe exploiting the thttpd vulnerability reported by [68].

 70

0
100
200
300
400
500
600

0.0 0.5 1.0 1.5 2.0

Attacks per second

S
er

ve
r c

on
ne

ct
io

n
ra

te
(c

on
ne

ct
io

ns
/s

ec
on

d)

Original BODAR

0

20

40

60

80

100

0.0 0.5 1.0 1.5 2.0

Attacks per second

S
er

ve
r t

hr
ou

gh
pu

t
(M

bi
ts

/s
ec

on
d)

Original BODAR

Figure 5.6. Thttpd 2.23beta1 runs under attacks (part 1).

The left shows the server connection rate and the right shows the server throughput. The

connection rate of BODAR-enabled server is three times faster than that of the original one at

the rate of 2 attacks/second. The improvement of throughput by the BODAR-enabled server is

six times faster than that of the original one at the same attack rate.

0

20000

40000

60000

80000

100000

0.0 0.5 1.0 1.5 2.0

Attacks per second

To
ta

l r
ea

d
pa

ge
s

Original BODAR

0.00

0.01

0.02

0.03

0.04

0.05

0.0 0.5 1.0 1.5 2.0

Attacks per second

A
ve

ra
ge

 re
sp

on
se

 ti
m

e
(s

ec
on

d)

Original BODAR

Figure 5.7. Thttpd 2.23beta1 runs under attacks (part 2).

The left shows the total number of pages read and the right shows the average response

time. The total web pages read by the BODAR-enabled server are seven times larger. The

response time of BODAR is longer than that of the original server is due to the handling of

recovery while the original server just quickly responds with failures.

5.3.3 Efficiency Evaluation

To evaluate the normal execution efficiency without attacks, we classify the experiment

benchmarks into I/O bound and CPU bound programs.

 I/O Bound Programs

 71

We also compare three different versions of the Apache httpd and two versions of thttpd

by the Webstone benchmarking system. The results are averaged in three runs with each time

span of three minutes.

Original CRED BODAR Original BODAR
Server connection rate (connections/sec.) 558.31 377.78 521.26 547.20 546.50
Server throughput (Mbits/sec.) 92.24 63.20 86.58 90.51 90.52
Total number of pages read (pages) 100496.33 67999.33 93826.33 98496.00 98370.67
Average response time (sec.) 0.035778 0.052848 0.038323 0.036508 0.036555
Maximum resident set size (Kbytes) 2545.33 N.A. 3134.08 8852.00 11692.00
Average shared text size (Kbytes) 359.23 N.A. 392.33 71.00 82.00
Data size (Kbytes) 2117.32 N.A. 2741.76 8781.00 11610.00

thttpdapache

Figure 5.8. Apache http server 1.3.34 and thttpd 2.23beta1 runs without attacks.

Due to the complicated behavior nature of the process pool model, the space overhead is

measured by the instrument of malloc family functions. By the registration of a function

using atexit, we can obtain the residential memory usage of the current process with

getrusage and record it by syslog. The CRED-enabled version will link the CRED

provided malloc family functions and our space measurement won’t work for CRED.

However, CRED space overhead is not of our concerns.

thttpd apache
Maximum spare size (pages) 1842 7373
Average spare size (pages) 1239 5810
Minimum spare size (pages) 918 3683
Sparse degree 0.1787% 0.0239%
Figure 5.9. Sparse Degree Measurement.

We define sparse degree to be (sum of all buffer size) / (utilizable virtual space size). The

more sparse the overall virtual space is used, the smaller possibility the hopping can override

existing buffers.

 CPU Bound Programs

We choose the benchmark for digital signing purpose with gnupg 1.4.1. Since the

primary function of signing application is for the computation of the message digest and the

 72

signature, the execution time is in proportion to the size of the data file. We exploit the

vulnerability of gnupg and both of the CRED and BODAR can detect the OOB access.

1600

2000

2400

2800

3200

3600

0 6 12 18 24

Execution time (sec.)

D
at

a
si

ze
 (K

 b
yt

es
)

Original CRED BODAR

1600

2000

2400

2800

3200

3600

0 0.2 0.4 0.6 0.8 1

Execution time (sec.)

D
at

a
si

ze
 (K

 b
yt

es
)

Original BODAR

Figure 5.10. Use GnuPG to perform RSA encryption. The source file sizes are 0.5M, 1M,
1.5M, 2M, 2.5M, and 3M bytes files respectively.

By the experiment of RSA encryption of GnuPG, the above results also reveal that the

CRED performs about twenty times slower than the original version. The BODAR system is

about 5% slower at the extra space overhead of 25% larger.

1600
2000
2400
2800
3200
3600
4000

0 6 12 18 24

Execution time (sec.)

D
at

a
si

ze
 (K

 b
yt

es
)

Original CRED BODAR

1600
2000
2400
2800
3200
3600
4000

0 0.2 0.4 0.6 0.8 1

Execution time (sec.)

D
at

a
si

ze
 (K

 b
yt

es
)

Original BODAR

Figure 5.11. Use GnuPG to perform RSA decryption. The decrypted file sizes are 0.5M, 1M,
1.5M, 2M, 2.5M, and 3M bytes respectively.

By using the GnuPG to perform RSA decryption, the CRED is thirty-five times slower

while the BODAR is only 7% slower. The extra space overhead is about 43% larger.

To measure our worst cases of space overhead, we perform the benchmark evaluation by

gawk 3.1.0 with overflow vulnerability.

 73

0
1000
2000
3000
4000
5000
6000

0 20 40 60 80 100

Execution time (sec.)

D
at

a
si

ze
 (K

 b
yt

es
)

Original CRED BODAR
Original-64 BODAR-64

0
1000
2000
3000
4000
5000
6000

0 1 2 3

Execution time (sec.)

D
at

a
si

ze
 (K

 b
yt

es
)

4

Original BODAR Original-64 BODAR-64
Figure 5.12.Use access-time.awk to analyze 50K-lines, 100K-lines, 150K-lines, 200K-lines,

250K-lines, and 300K-lines squid access log respectively.

0
1000
2000
3000
4000
5000
6000
7000
8000

0 60 120 180 240 300 360

Execution time (sec.)

D
at

a
si

ze
 (K

 b
yt

es
)

Original CRED BODAR Original-64 BODAR-64

0
1000
2000
3000
4000
5000
6000
7000
8000

0 5 10 15 20 25 30 35

Execution time (sec.)

D
at

a
si

ze
 (K

 b
yt

es
)

Original BODAR Original-64 BODAR-64

Figure 5.13. Use proxy_stats.awk to analyze 50K-line, 100K-lines, 150K-lines, 200K-lines,

250K-lines, and 300K-lines squid access log respectively.

0

50000

100000

150000

200000

250000

300000

0 60 120 180 240 300 360

Execution time (sec.)

D
at

a
si

ze
 (K

 b
yt

es
)

Original CRED BODAR Original-64 BODAR-64

0

50000

100000

150000

200000

250000

300000

0 5 10 15 20 25 30 35 40 45

Execution time (sec.)

D
at

a
si

ze
 (K

 b
yt

es
)

Original BODAR Original-64 BODAR-64

Figure 5.14. Use scalar.awk to analyze 50K-lines, 100K-lines, 150K-lines, 200K-lines,

250K-lines, and 300K-lines squid access log respectively.

The above results are obtained with three awk benchmark scripts: access-time.awk,

proxy_stats.gawk and scalar.awk for analysis of log files with size of 50K, 100K, 150K, 200K,

250K, and 300K lines respectively. The CRED version is about 10 times to 30 times slower

while the BODAR is about 20% slower. The space overhead of BODAR is 2.5 times to 28

times larger. This exhibits the worst situations of space consumption of the BODAR tradeoff

between time and space.

 74

encrypt decrypt script 1 script 2 script 3 script 1 script 2 script 3
Maximum spare size (pages) 3684 3722 1841 919 26 134180344 69825501 1708544
Average spare size (pages) 3220 2443 1083 586 17 79674386 43001310 1182793
Minimum spare size (pages) 1834 1836 918 458 11 67090170 33545083 853750
Sparse degree 0.0453% 0.0459% 0.0937% 0.1827% 14.2686% 0.0000013% 0.0000026% 0.0002022%

gawk (64-bit)gpg gawk (32-bit)

Figure 5.15. Sparse Degree of CPU bound programs.

The above results are measured when the maximum number of pages is allocated. The

gnupg case is with a three megabytes file and gawk is with 300 K-lines of Squid access log.

5.4 Discussions

5.4.1 The Utilizable Virtual Address Space

Since the proposed technique requires extra virtual address space that is limited for each

process, we need to find out the utilizable virtual address space.

uninitialized
data (bss) original heap stacknew heap

normally
64M bytes

reserved
mmap region hi

gh
ad

dr
es

s

lo
w

ad

dr
es

s

... ...

normally
512M bytes

normally
256M bytes

about
2G bytes

Intel IA-32
environment

normally
512M bytes

normally
32G bytes

normally
1G bytes

about
131035G bytes

AMD-64
environment

uninitialized
data (bss) original heap stacknew heap

normally
64M bytes

reserved
mmap region hi

gh
ad

dr
es

s

lo
w

ad

dr
es

s

... ...

normally
512M bytes

normally
256M bytes

about
2G bytes

Intel IA-32
environment

normally
512M bytes

normally
32G bytes

normally
1G bytes

about
131035G bytes

AMD-64
environment

Figure 5.16 The memory layout of a BODAR-enabled process on FreeBSD 5.4 on an

AMD-64 machine or an Intel IA-32 machine.

Figure 5.16 shows the memory layout of a BODAR-enabled process on FreeBSD 5.4 on

an AMD-64 machine or an Intel IA-32 machine. The region used by BODAR is called new

heap. The region behind the new heap region is stack. The region ahead of the new heap

region is called the reserved mmap region that is reserved for compatibility since applications

may use no-starting-address-hint mmap calls (mmap calls without specifying the starting

address of the requesting pages) to map something, e.g. files, into their address spaces. We set

the size of reserved mmap region to be 1G bytes and 256M bytes on an AMD-64 machine and

an IA-32 machine respectively.

 75

The region including the reserved mmap region and the new heap region can be called

the mmap controllable region since both them are controlled by mmap. The size of new heap

region can be determined by subtracting the size of reserved mmap region from the size of

mmap controllable region.

The lower bound of the mmap controllable region can be determined by the first

no-starting-address-hint mmap call since a process begins. On the other hand, the upper bound

of the mmap controllable region can be determined by the following steps.

1. Determine the upper bound of stack. Since the location of environment variables is near

the upper bound of stack, we approximate the upper bound of stack to the address that is

gotten by rounding up the address of the last environment variable to the page boundary.

2. Subtract the maximum size of stack from the upper bound of stack. The maximum size of

stack can be obtained by the getrlimit function.

3. Since stack is behind the mmap controllable region, we set the upper bound of the mmap

controllable region to be the lower bound of stack.

By subtracting the lower bound from the upper bound of the mmap controllable region,

the size of mmap controllable region and therefore the size of new heap region can be

determined. On FreeBSD 5.4, the size of new heap region is about 131035G bytes on an

AMD-64 machine and 2G on an Intel IA-32 machine. We wrote a simple program to allocate

each page in the new heap region and have proven that each page in the new heap region is

able to be allocated by mmap on both AMD-64 and Intel IA-32 machines on FreeBSD 5.4.

Since each allocation of BODAR requires at lease 3 pages of virtual address space, in

worst case the maximum heap size of a BODAR-enabled process is about 680M bytes (2.0 G

bytes dividing 3) on an IA-32 environment. We believe that this heap size is enough for many

applications. On an AMD-64 environment, the maximum heap size is about 43678G bytes

 76

(131035G bytes dividing 3).

5.4.2 Limitations

Our design of asynchronous OOB detection and recovery is still with some limitations.

We summary them as follows:

1. Buffers within a struct or class are not guarded. We haven’t dealt with the buffer

embedded within the class or struct fields. It can be further processed by a sophisticated

parser.

2. The BODAR design does not deal with static buffers due to the following two reasons:

first, most memory accesses occur in heap and stack; second, most reported buffer

overflow vulnerabilities also occur in heap and stack buffers. Currently we do not deal

with static buffers for the sake of simplicity, but we will study how to apply our technique

to static buffer in the future.

 77

 78

Chapter 6 Conclusion

In this dissertation, we present the GOTG system for online tabletop games and two

related issues on which the services of our system are blocked or disrupted. We summarize

these research results and discuss some future work in this chapter.

6.1 Summary of Contributions

In this dissertation, we design and implement the GOTG system in order to facilitate the

development of online tabletop games. We first survey the similarity of online tabletop games

and summarize the shared characteristics. According to the shared characteristics, we design

two models. The first one is the GOTG model that allows players to search for their friends in

a virtual room and then play games with them in the room. The second one is the TG model

that defines game objects, game states, and playing operations for tabletop games. For the TG

model, we formalize the definition of tabletop games and related terminologies and then

prove that it is general for all tabletop games.

Based on the two models, we implement the GOTG system that allows players to search

for their friend and play tabletop games over the Internet. For developing an online tabletop

game, the GOTG system provides the supports for network communication, player

management, matchmaking, etc. Besides, the GOTG system includes a framework based on

the TG model that provides graphical supports for tabletop games. The framework helps

developers handling game areas and game objects used in tabletop games. It supports

move-object, max-Z, and next-face operations for game objects.

The GOTG system provides services for playing tabletop games over the Internet. While

implementing the GOTG system practically, we encounter two issues on which the services of

our system for online tabletop games are blocked or disrupted. In order to provide the services

 79

correctly and smoothly, we try to solve the two issues. We present our solutions to them in

chapter 4 and 5 respectively and summarize the results as follows.

 Resolving problems of blocking I/O operations for server programming

Event-driven programming is a widely used technology for concurrent programming.

However, the major drawback of event-driven programming is the need to pay attention to

the blocking I/O operations in event handling. This dissertation addressed two major

blocking problems due to the use of blocking I/O operations in game servers and other

inter-user communication applications (defined in Section 4.1), namely output blocking

and service request blocking. For the former, this dissertation presents an output buffering

mechanism to solve this problem. Meanwhile, for the latter, this dissertation presents a

service brokering mechanism with helper processes to solve this problem.

Based on the output buffering and service brokering mechanisms, we design an

event-driven framework for inter-user communication applications, as shown in Figures

4.5 and 4.9. Application developers can apply this framework to develop their servers

simply by implementing some event handlers and service handlers, as in the shadowed

classes in Figures 4.5 and 4.9. Therefore, based on this framework, they can easily avoid

blocking problems. Besides, the framework has been the basis of the network module of

the GOTG system so that the game servers in the GOTG system are immune from the two

blocking problems.

In fact, our framework can also be applied to other applications. For example,

event-driven based HTTP servers, such as Zeus [97], mathopd [11], and thttpd [1], can be

implemented on top of this framework by putting file access operations into helper

processes.

 Fast recovery from overflow failures for non-disruptive game services

The services of the GOTG system rely on the collaboration of several kinds of servers.

 80

Since we expect to provide the services without any disruption, the servers should try to

recover from failures timely. One of failures that we encountered when developing the

GOTG system is the buffer overflow failure that is commonly found in many software

recently. In the dissertation, we develop a technique named Buffer Overflow Detection

and Recovery (BODAR) to detect and recover from buffer overflow failures efficiently.

The design of BODAR is a miniature of user space management in the kernel of operating

system. Each allocated buffer is considered as isolated and guarded regions. With the

allocation of guarded regions and faulty address resolution scheme, we can transform all

J&K series of OOB detectors and recovery tools into asynchronous execution. Therefore,

in normal situations without attacks or OOB accesses, the execution efficiency of BODAR

maintains about the same as those without protection, while achieving the same security

tolerance of the above OOB detectors at the expense of extra space overhead.

The impact of BODAR resides in security considerations in comparison with Stackguard

series and J&K series of OOB detectors. Stackguard series of OOB detectors simply

terminate the victim processes and still suffer from denial of service problems since large

number of malicious connections will very likely incur frequent service shutdowns.

BODAR can remedy this denial-of-service problem by efficiently recovering from

malicious connections as evidenced by experiments on Webstone benchmark with OOB

exploits. The experimental results show better throughput than the original server. In

regard of J&K series of OOB detectors, execution efficiency is a major concern. These

detectors can only be used for the development phase instead of the production purpose.

However, since the absence of OOB bugs is undecidable, an OOB detector for production

use is essential. Our BODAR design can resolve such security concerns.

Since the GOTG system provides the supports for network communication, player

management, matchmaking, game object and operation handling, etc., it can effectively

 81

reduce the effort to develop online tabletop games. With the help of the GOTG system,

developers can focus on the design and implementation of the game rule.

Practically, the GOTG system has been used in the CYC Game League [82], Sina [70,

71], Hinet [16], and other game sites in Taiwan and Hong-Kong. These sites provide dozens

of tabletop games, such as Chinese Chess, Bridge, Mahjong, etc. Currently, these sites totally

have attracted more than one million people to register as members and supported up to

10,000 concurrent players. Figure 6.1 and 6.2 are the screenshots of the customized GOTG

system in the CYC Game League. Figure 6.1 is the screenshot of a game coordinator in which

52 players login to play Chinese Chess. Figure 6.2 is the screenshot of a Chinese Chess game

in which two players are playing.

Figure 6.1. The screenshot of a game coordinator in the CYC Game League.

 82

Figure 6.2. The screenshot of a Chinese Chess game in the CYC Game League.

6.2 Future work

In this section, several pieces of future work are presented. First, an improvement on the

GOTG system is discussed. Then, an extended research to the TG model is presented. Finally,

a method to reduces the overhead of BODAR is discussed.

6.2.1 The Improvements on the GOTG System

The improvement on the GOTG system is to share the network traffic of game servers to

clients. Currently, a game server in the GOTG system is responsible to relay the actions or

messages of one player to others in a game session. For example, in a GOTG-based Bridge

game, the action of one player dealing out a card is firstly sent to the game server. Then the

server relays the action to the other three players. As a result, the server may send at least

three times of data than it received in many cases. So that the game server may become the

bottleneck in data transmission. We plan to use the peer-to-peer (P2P) technique to resolve

this problem. That is, we wish to design a method to find some clients to be the super nodes

that help the game servers to relay game actions and messages. This mechanism should be

integrated into the network module of the GOTG system and be transparent for developers.

 83

6.2.2 GAML and History Authoring Systems

Chess-like games, such as Chess, Chinese Chess, Go, and Gobang, are popular tabletop

games in the world. Due to the popularity, several file formats are defined for storing game

records in order to help players learning Chess-like games. However, these formats are

usually dedicated for a small set of games. For example, the well-known Smart Game Format

(SGF) [32] is dedicated for Go and several games. Besides, there may be several file formats

for a Chess-like game. For example, there are at least four formats [4] for Chinese Chess.

When Chess-like games need to exchange, many formats make the interoperability hard.

Since the TG model is general for tabletop games, the we are motivated to design a

general file format called GAML for storing game records. GAML is based on XML [86] in

order to take the advantages from XML. It can be an intermediate format to make the

translation among existing formats easier. Furthermore, a history authoring framework based

on GAML for Chess-like games may be defined so that it becomes efficient to develop a

history authoring system for each game based on the framework.

6.2.3 The Improvement on BODAR

The major problem of our BODAR system is the space overhead. In normal situations,

extra space overhead is on average around 25%. In worst situations, it can consume as much

as thirty times extra space. In the future, we shall further improve BODAR to reduce the

space consumption. Since the space overhead of BODAR is introduced from the internal

fragmentation of spare and forbidden pages, we propose to adaptively adjust BODAR’s use of

protected buffers. A possible adjustment is to change the protection of small and rarely used

buffers by using CRED or address obfuscations [7][5] and protection of the remaining large or

frequently used buffers by BODAR. Using this adaptive scheme for security protection and

tolerance, we aim to optimize the tradeoff between time and space usage. If space is more

 84

concerned than time, BODAR zone can be reduced according to the past working model of

small and rarely used buffers. Otherwise, BODAR zone will override and guard all allocated

buffers.

To apply the BODAR protection in more ambitious ways, we can guard frequently used

and automatic expanded arrays in various script languages such as Perl, PHP, and Python, and

also boundary checking arrays in the Java’s StringBuffer objects. After the feasible trial

of miniature for the isolated buffer in a dedicated process space, all of the above protections

can then be realized in the BODAR approach.

 85

 86

References

[1] ACME Laboratories. thttpd. http://www.acme.com/software/thttpd/ (last access: May 2005).

[2] T. Austin, S. Breach and G. Sohi. "Efficient detection of all pointer and array access errors." In

Proceedings of the ACM SIGPLAN'94 Conference on Programming Language Design and
Implementation, June 2004.

[3] I. Baldine. Divert Sockets mini-HOWTO.
http://www.faqs.org/docs/Linux-mini/Divert-Sockets-mini-HOWTO.html (last access: April
2006).

[4] S. Bao. XQFtoAny. http://www.hgchess.com/ReadNews.asp?NewsID=355 (last access: May
2006).

[5] A. Baratloo, N. Singh and T. Tsai. "Transparent Run-Time Defense against Stack-Smashing
Attacks." In Proceedings of the 2000 USENIX Annual Technical Conference (USENIX-00), pp.
251, June 2000.

[6] Beyond Security. SecuriTeam. http://www.securiteam.com/ (last access: May 2006).

[7] S. Bhatkar, D.C. DuVarney and R. Sekar. "Address Obfuscation: An Efficient Approach to Combat
A Broad Range of Memory Error Exploits." In USENIX Security Symposium, pp. 105-120,
August 2003.

[8] BioWare. Baldur's Gate. http://www.bioware.com/games/baldurs_gate/ (last access: May 2006).

[9] Blizzard Entertainment Inc. Blizzard Entertainment – Warcraft III. http://www.blizzard.com/war3/
(last access: April 2006).

[10] Blizzard Entertainment Inc. Diablo II. http://www.blizzard.com/diablo2/ (last access: May 2006).

[11] M. Boland. Mathopd. http://www.mathopd.org/ (last access: April 2006).

[12] G. Booch, I. Jacobson and J. Rumbaugh. The Unified Modeling Language User Guide.
Addison-Wesley, Massachusetts, 1998.

[13] A. Chankhunthod, P.B. Danzig, C. Neerdaels, M.F. Schwartz and K.J. Worrell. "A Hierarchical
Internet Object Cache." In Proceedings of the 1996 USENIX Technical Conference, San Diego,
California, USA, pp. 153-163, 1996.

[14] M. Chew and D. Song. "Mitigating buffer overflows by operating system randomization."
Technical Report CMU-CS-02-197, Carnegie Mellon University, December 2002.

[15] T.C. Chiueh and F.H. Hsu. "Rad: A compile-time solution to buffer overflow attacks." In 21st
International Conference on Distributed Computing, Phoenix, Arizona, USA, pp. 409, 2001.

[16] Chunghwa Telecom. HiNet Game Zone. http://games.hinet.net/ (last access: May 2006).

 87

[17] A. Cobbs. Divert. http://www.freebsd.org/cgi/man.cgi?query=divert (last access: April 2006).

[18] D.E. Comer. Internetworking with TCP/IP Vol. 1: Principles, Protocols, and Architecture, Forth
Edition. Prentice Hall, New Jersey, 2000.

[19] D.E. Comer and D.L. Stevens. Internetworking with TCP/IP Vol. 3: Client-Server Programming
and Applications – BSD Socket Version, Second Edition. Prentice Hall, New Jersey, 1996.

[20] C. Cowan, C. Pu, D. Maier, H. Hinton, J. Walpole, P. Bakke, S. Beattie, A. Grier, P. Wagle and Q.
Zhang. "StackGuard: Automatic adaptive detection and prevention of buffer overflow attacks." In
Proceedings of the 7th USENIX Security Symposium, pp. 63-78, January 1998.

[21] C. Dahn and S. Mancoridis. "Using Program Transformation to Secure C Programs Against
Buffer Overflows." In IEEE Proceedings of the 2003 Working Conference in Reverse Engineering
(WCRE'03), British Columbia, Canada, pp. 323-332, November 2003.

[22] Electric Arts Inc. ORIGIN – Ultima Online. http://www.uo.com/ (last access: April 2006).

[23] H. Etoh and K. Yoda. Protecting from Stack-Smashing Attacks.
http://www.trl.ibm.com/projects/security/ssp/main.html (last access: January 2006).

[24] FICS. Free Internet Chess Server. http://www.freechess.org/ (last access: April 2006).

[25] Firaxis Games. Civilization IV. http://www.2kgames.com/civ4/home.htm (last access: May 2006).

[26] M. Fisher, J. Ellis and J. Bruce. JDBC API Tutorial and Reference, Third Edition.
Addison-Wesley, New Jersey, 2003.

[27] S. Forrest, A. Somayaji and D.H. Ackley. "Building diverse computer systems." In 6th Workshop
on Hot Topics in Operating Systems, Los Alamitos, CA, USA, pp. 67-72, 1997.

[28] J. Foster, M. Fahndrich and A. Aiken. "A theory of type qualifiers." In Proceedings of the ACM
SIGPLAN Conference on Programming Language Design and Implementation (PLDI), May
1999.

[29] E. Gamma, R. Helm, R. Johnson and J. Vlissides. Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, Massachusetts, 1995.

[30] GigaMedia. FunTown. http://www.funtown.com.tw/ (last access: May 2006).

[31] R. Hastings and B. Joyce. "Purify: A tool for detecting memory leaks and access errors in C and
C++." In Proceedings of the Winter USENIX Conference, pp. 125-138, January 1992.

[32] A. Hollosi. SGF File Format. http://www.red-bean.com/sgf/ (last access: May 2006).

[33] IBM. DeepBlue. http://www.research.ibm.com/deepblue/ (last access: May 2006).

[34] id Software. DOOM 3. http://www.doom3.com/ (last access: May 2006).

[35] Institute for Information Industry. View Point of MIC.
http://mic.iii.org.tw/pop/micnews2_op_new.asp?sno=110&cred=2005/7/8 (last access: May

 88

2006).

[36] T. Jim, G. Morrisett, D. Grossman, M. Hicks, J. Cheney and Y. Wang. "Cyclone: Asafe dialect of
C." In Proceedings of the USENIX Annual Technical Conference, pp. 275-288, June 2002.

[37] R. Jones and P. Kelly. "Backwards-compatible bounds checking for arrays and pointers in C
programs." In Third International Workshop on Automated Debugging, May 1997.

[38] S.C. Kendall. "Bcc: run-time checking for c programs." In Proceedings of the USENIX Summer
Conference, 1983.

[39] A. Kirmse, "A Network Protocol for Online Games," in Game Programming Gems, M.A.
DeLoura Ed. Massachusetts: Charles River Media, INC., 2000, pp. 104-108.

[40] D. Larochelle and D. Evans. "Statically Detecting Likely Buffer Overflow Vulnerabilities." In
Proceedings of the 10th USENIX Security Symposium, pp. 177-190, August 2001.

[41] M.K. McKusick, K. Bostic, M.J. Karels and J.S. Quarterman. The Design and Implementation of
the 4.4BSD Operation System. Addison-Wesley, Massachusetts, 1996.

[42] Microsoft. Age of Empires. http://www.microsoft.com/games/empires/ (last access: May 2006)

[43] Microsoft Corporation. Active Server Pages.
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnanchor/html/activeservpages.a
sp (last access: April 2006).

[44] Microsoft Corporation. Internet Information Services.
http://www.microsoft.com/WindowsServer2003/iis/default.mspx (last access: April 2006).

[45] Microsoft Corporation. MSDN: ODBC.
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vccore98/HTML/_core_odbc.as
p (last access: April 2006).

[46] Microsoft Corporation. MSDN: Thread Stack Size.
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dllproc/base/thread_stack_size.a
sp (last access: April 2006).

[47] Mindcraft Inc. Webstone. http://www.mindcraft.com/benchmarks/webstone/ (last access: January
2006).

[48] Mudge. How to write buffer overflows.
http://www.insecure.org/stf/mudge_buffer_overflow_tutorial.html (last access: May 2006).

[49] Multimedia University. Multiplayer Board Game Framework.
http://foe.mmu.edu.my/software/gameframework/ (last access: May 2006).

[50] G.C. Necula, S. McPeak and W. Weimer. "CCured: Type-Safe Retrofitting of Legacy Code." In
Proceedings of the Principles of Programming Languages (PoPL), pp. 128-139, January 2002.

 89

[51] B. Nichols, D. Buttlar and J.P. Farrel. Pthreads Programming: A POSIX Standard for Better
Multiprocessing. O’Reilly, California, 1996.

[52] H. Nielsen, T. Berners-Lee and J. Groff. Libwww – the W3C Sample Code Library.
http://www.w3.org/Library/ (last access: April 2006).

[53] NKB Inc. Internet Go Service. http://igs.joyjoy.net/ (last access: April 2006).

[54] OpenLDAP Foundation. OpenLDAP Software Man Pages: ldap.
http://www.openldap.org/software/man.cgi?query=ldap (last access: April 2006).

[55] J. Orwant, "Eggg: Automated programming for game generation," IBM Systems Journal, vol.
39(3):782–794, 2000.

[56] J. Orwant. "EGGG: The Extensible Graphical Game Generator." PhD Thesis, MIT, December
1999.

[57] J. Ousterhout. Why Threads Are A Bad Idea (for most purposes).
http://home.pacbell.net/ouster/threads.pdf (last access: April 2006).

[58] V. Pai, P. Druschel and W. Zwaenepoel. "Flash: An Efficient and Portable Web Server." In
Proceedings of USENIX Annual Technical Conference, Monterey, California, USA, pp. 199-212,
1999.

[59] B. Perens. "Electric Fence Malloc Debugger." In Pixar Animation Studios, 1993.

[60] W. Pree. Design Patterns for Object-Oriented Software Development. Addison-Wesley,
Massachusetts, 1995.

[61] E. Rescorla and A. Schiffman. "The Secure HyperText Transfer Protocol." Technical Report RFC
2660, August 1999.

[62] M. Rinard, C. Cadar, D. Dumitran, D.M. Roy and T. Leu. "A Dynamic Technique for Eliminating
Buffer Overflow Vulnerabilities (and Other Memory Errors)." In Proceedings of the 20th Annual
Computer Security Applications Conference (ACSAC'04), 2004.

[63] R. Rugina and M. Rinard. "Symbolic bounds analysis of pointers, array indices, andaccessed
memory regions." In Proceedings of the ACM SIGPLAN'00 Conference on Programming
Language Design and Implementation, pp. 182-195, June 2000.

[64] O. Ruwase and M.S. Lam. "A Practical Dynamic Buffer Overflow Detector." In Proceedings of
the 11th Annual Network & Distributed System Security Symposium, pp. 159-169, February 2004.

[65] D.C. Schmidt, "Reactor: An Object Behavioral Pattern for Concurrent Event Demultiplexing and
Event Handler Dispatching," in Pattern Languages of Program Design, Massachusetts:
Addison-Wesley, 1995, pp. 529-545.

[66] D.C. Schmidt, M. Stal, H. Rohnert and F. Buschmann. Pattern-Oriented Software Architecture Vol.
2: Patterns for Concurrent and Networked Object. John Wiley & Sons, New York, 2000.

 90

[67] SecurityFocus. Mod_mylo apache module REQSTR buffer overflow vulnerability.
http://www.securityfocus.com/bid/8287/ (last access: January 2006).

[68] SecurityFocus. Thttpd defang remote buffer overflow vulnerability.
http://www.securityfocus.com/bid/8906/ (last access: January 2006).

[69] SEGA and Creative Assembly. Total War. http://www.totalwar.com/ (last access: May 2006).

[70] Sina. SinaHK. http://game.sina.com.hk/cgi-bin/index.cgi (last access: May 2006).

[71] Sina. SinaTW. http://games.sina.com.tw/ (last access: May 2006).

[72] W.R. Stevens. Advanced Programming in the UNIX Environment. Addison-Wesley,
Massachusetts, 1992.

[73] W.R. Stevens. TCP/IP Illustrated Vol. 1: The Protocols. Addison-Wesley, Massachusetts, 1994.

[74] W.R. Stevens. UNIX Network Programming Vol. 1: Networking API: Sockets and XTI, Second
Edition. Prentice Hall, New Jersey, 1998.

[75] Sun Microsystems Inc. JavaServer Pages Technology. http://java.sun.com/products/jsp/ (last
access: April 2006).

[76] Sun Microsystems Inc. JDBC Technology. http://java.sun.com/products/jdbc/ (last access: April
2006).

[77] Tanguy Urvoy and gnugo team. Pattern Matching in Go with DFA.
http://www.irisa.fr/galion/turvoy/papers/dfabstract.ps (last access: May 2006).

[78] The Apache Software Foundation. The Apache HTTP Server Project. http://httpd.apache.org/ (last
access: May 2006).

[79] The MITRE Corporation. Common Vulnerabilities and Exposures. http://cve.mitre.org/ (last
access: May 2006).

[80] The PHP Group. PHP: Hypertext Preprocessor. http://www.php.net/ (last access: April 2006).

[81] The Software Technology Laboratory, Queen's University, Kingston, Canada. TXL Home Page.
http://www.txl.ca/ (last access: January 2006).

[82] ThinkNewIdea Inc. CYC Game League. http://cycgame.com (last access: April 2006).

[83] J. Tranter, "Exploring the sendfile system call," Linux Gazette, vol. Issue 91, June. 2003.

[84] Valve. Half Life 2. http://half-life2.com/ (last access: May 2006).

[85] Vendicator. Stack shield. http://www.angelfire.com/sk/stackshield/ (last access: January 2006).

[86] W3C. Extensible Markup Language (XML). http://www.w3.org/XML/ (last access: May 2006)

[87] D. Wagner, J.S. Foster, E.A. Brewer and A. Aiken. "A First Step towards Automated Detection of
Buffer Overrun Vulnerabilities." In Network and Distributed System Security Symposium, pp.

 91

3-17, February 2000.

[88] R. Wahbe, S. Lucco, T.E. Anderson and S.L. Graham. "Efficient software-based fault isolation."
In Proceedings of the Fourteenth ACM Symposium on Operating Systems Principles, Asheville,
North Carolina, United States, pp. 203-216, December 05-08.

[89] M. Welsh, D. Culler and E. Brewer. "SEDA: An Architecture for Well-Conditioned Scalable
Internet Services." In Proceedings of the 18th ACM Symposium on Operating Systems Principles,
Alberta, Canada, pp. 230-243, 2001.

[90] D. Wessels . Squid Web Proxy Cache. http://www.squid-cache.org/ (last access: May 2005).

[91] R. Wu and D.F. Beal, "Solving Chinese Chess Endgames by Database Construction,"
Information Sciences, 2001.

[92] I.C. Wu and D.Y. Huang. "A New Family of k-in-a-row Games." In The 11th Advances in
Computer Games (ACG11) Conference, Taipei, Taiwan, 2006.

[93] I.C. Wu, D.Y. Huang and H.C. Chang, "Connect6," Internation Computer Game Association,
2005.

[94] J. Xu, Z. Kalbarczyk and R.K. Iyer. "Transparent runtime randomization for security." Technical
Report UIUL-ENG-03-2207, Center for Reliable and High-Performance Computing, University
of Illinois at Urbana-Champaign, May 2003.

[95] Yahoo! Inc. Yahoo! Games. http://games.yahoo.com/ (last access: April 2006).

[96] S.J. Yen, J.C. Chen, T.N. Yang and S.C. Hsu, "Computer Chinese Chess," ICGA Journal, March
2004.

[97] Zeus Technology limited. Zeus Web Server. http://www.zeus.co.uk/products/zws/ (last access:
April 2006).

[98] M. Zhivich, T. Leek and R. Lippmann. "Dynamic Buffer Overflow Detection." In 2005 Workshop
on the Evaluation of Software Defect Detection Tools (BugWorkshop05), Chicago, 12 June 2005.

 92

	摘　　要
	Abstract
	 誌　　謝
	 Contents
	 List of Figures
	Chapter 1 Introduction
	1.1 Background
	1.2 Motivation
	1.3 Organization of Dissertation

	 Chapter 2 Models for Tabletop Games
	2.1 The Grouped Online Tabletop Game (GOTG) Model
	2.2 The Tabletop Game (TG) Model
	2.2.1 The Simplified Tabletop Game (STG) Model
	2.2.2 The General TG Model

	 Chapter 3 The Design and Implementation of the GOTG System
	3.1 The Basic Functionalities of the GOTG System
	3.2 The Specific Support for Tabletop Games
	3.3 A Gobang Based on the TG Framework
	3.4 An Universal Tabletop Game System

	 Chapter 4 Related Issue 1: Resolving Problems of Blocking I/O Operations for Server Programming
	4.1 Server Programming for Inter-User Communication
	4.2 The Event-Driven Programming Model
	4.3 Output Blocking Problem and Solution
	4.3.1 Output Blocking Problem
	4.3.2 Solution to the Output Blocking Problem

	4.4 Request Blocking Problem and Solution
	4.4.1 Request Blocking Problem
	4.4.2 Solutions for HTTP Access Requests
	4.4.3 Solutions for Other Service Requests

	4.5 Experiments

	 Chapter 5 Related Issue 2: Fast Recovery from Overflow Failures for Non-disruptive Game Services
	5.1 The Buffer Overflow Problem
	5.2 The Design and Implementation of BODAR
	5.2.1 Integration of Address Space Permutation and Trapping OOB by Unallocated Address Space
	5.2.2 Guarding Buffers with Addresses within Unallocated Regions
	5.2.3 Faulty Address Resolution
	5.2.4 Source Code Transformation for the Guarded OOB Instrument

	5.3 Results
	5.3.1 Stack Buffer Allocation Overhead
	5.3.2 Security Tolerance and Availability Evaluation
	5.3.3 Efficiency Evaluation

	5.4 Discussions
	5.4.1 The Utilizable Virtual Address Space
	5.4.2 Limitations

	 Chapter 6 Conclusion
	6.1 Summary of Contributions
	6.2 Future work
	6.2.1 The Improvements on the GOTG System
	6.2.2 GAML and History Authoring Systems
	6.2.3 The Improvement on BODAR

	 References

