

國立交通大學建築研究所

碩 士 論 文

Propagating Figures
A Genetic Algorithm Approach

繁衍形體
基因演算法

研 究 生 王 聰 憲

指 導 教 授 劉 育 東

中華民國九十三年七月

Propagating Figures
A Genetic Algorithm Approach

繁衍形體
基因演算法

研 究 生 王 聰 憲 S t u d e n t Tsung-Hsien Wang

指 導 教 授 劉 育 東 A d v i s o r Yu-Tung Liu

國 立 交 通 大 學

建 築 研 究 所

碩 士 論 文

A Thesis

Submitted to Graduate Institute of Architecture
College of Humanities and Social Sciences

National Chiao Tung University
in partial Fulfillment of the Requirements

for the Degree of
Master

In
Architecture

July 2004

Hsinchu, Taiwan, Republic of China
中 華 民 國 九 十 三 年 七 月

ABSTRACT

 A cognitive phenomenon, emergent subshapes, has been examined extensively in
the last decade. From the cognitive perspective, “emergent subshapes” plays the
important role in developing the design, and this phenomenon happens very frequently
during the early conceptual phase. Based on this, various computational approaches also
arise to explore this cognitive phenomenon, and the most well known of them are
symbolic and connectionist approaches. To compare these two methods, one distinct
discrepancy is that symbolism is good at efficient performance where connectionism
excels in providing valid recognition. In other words, one focuses on providing
abundant shapes and the other tries to recognize those useful, though few, subshapes.
Therefore, the predominate problem statement of this study is how to propose a suitable
mechanism to generate not only numerous but also valid subshapes.
 Moreover, after abundant explorations in design thinking, cognitive and
computational approaches are already sufficient enough to provide computer-aided
design (CAD) tool with a very substantial foundation. New computer media also bring
designers a promising vision by means of its powerful computing capacity;
notwithstanding, this is no more than prospect. Therefore, how to take advantage of the
computational capacity to assist designers from a cognitive perspective is also the other
significant issue in this study.

Particularly, in order to make the computer media get closely involved into the
process of designing rather than merely serve as a presenting tool, this study aims to
propose a mechanism that could show the potential of not only recognizing subshapes
but also allowing designers to interact with throughout the early conceptual phase. To
specify this, how to achieve this objective will start from exploring the cognitive
perspective—emergent subshapes, and then implement this mechanism as a CAD
system to assist designers. Furthermore, in this study, genetic algorithm is adopted to
tackle this issue. By means of the nature-like selection, the relationship of shapes and
subshapes was reexamined; thus, from this point of view, genetic algorithm provides
another approach—neither symbolism nor connectionism—to support designers in
evolving more unanticipated subshapes. Ultimately, through integrating this mechanism
into the three-dimensional modeling application, the combination of theoretical
researches with computer-aided design could go further into a more practical and
constructive stage.

Keywords: emergent subshapes, the early conceptual phase, genetic algorithm.

ii i

摘要

 浮現子形這個現象在過去的十年間已經被大量的討論，特別是在設計初期的

發展過程中，這個現象扮演著推進設計一個非常重要的角色。所以，在這個現象

被提出之後，另外一群研究者從運算的角度來重新檢視這個現象，其中最知名的

不外乎是形狀文法（Shape Grammar）、資料檢索模型 (Data-driven symbolic

model)以及神經網路 (Connectionist networks) 等。這些方法最大的差異在於，

前面兩種比較傳統的運算方式在對於產生很多形體的運算上很有效率，另外一個

神經網路正相反，他提出了應該以尋找有效的隱含形體為主，而非是去尋找無限

多的形。所以在本研究首要的目的便是希望可以提供一個方法，可以來同時處理

多且有效的形的問題。

 此外，在大量相關的研究之後，這些認知與運算的研究已經提供了非常充足

的基礎來建構一個電腦輔助設計系統，是以能夠從認知的角度為出發，透過電腦

運算的能力來加強設計者的能力。這樣一來，電腦媒材才可以不僅僅是被當作呈

現的工具，而進一步從運算的能力來輔助設計者。所以如何能夠從這樣一個研究

的基礎為背景，進一步提出適當的電腦輔助設計工具 (computer-aided design

tool) 是在本文另外一個重要的問題。

所以，為了達到這樣的目標，在本研究中希望透過基因演算法，從一個演化

的觀點來重新檢視這樣一個問題，最後，透過將這個方法整合到一個 3D 建模的

環境，這樣一個結合理論研究與電腦輔助的工具將會更進一步推進到有效且實用

的階段。

關鍵字：浮現子形，設計初期階段，基因演算法。

 -ii -

TABLE OF CONTENT

Abstract i

Abstract(Chinese) ii

Chapter 1 Introduction
 1.1 Scopes [01]

 1.2 Problem Statement and Objective [02]

 1.3 Methodology and Steps [04]

Chapter 2 Emerging Shapes
 2.1 Cognitive Emergent Subshapes [06]

 2.2 Computational Emergent Shapes [09]

 2.3 Genetic Algorithm and Knowledge Representation [11]

Chapter 3 Data Structure and Genetic Framework
 3.1 Data Structure [14]

 Two Kinds Of vertices [14]

 Operational Chromosome [15]

 3.2 Genetic Framework [16]

 The Fitness Measure [16]

 Selection Methods [18]

 Genetic Operations Set [19]

 Population Size [21]

 Termination Criteria [21]

Chapter 4 System Construction and Specification
 4.1 System Overview [23]

 4.2 System Specifications [28]

 4.3 Fitness Validity [32]

 4.4 Demonstration [35]

Chapter 5 Conclusion
 5.1 Analyses and Comparisons [40]

 5.2 Significance [42]

 5.3 Limitations and Future Studies [43]

References [44]

Appendix 1 Activations of Single-Gene Chromosomes [46]

Appendix 2 System Codes [48]

ii

 CHAPTER 1 INTRODUCTION
CHAPTER 1 INTRODUCTION

1.1 Scopes

Design process, in a sense, is a kind of search based on visual processing (Schon
and Wiggins, 1992; Liu, 1996b; Oxman, 2002). Within this visual search, shapes play
the most indispensable role and in general, these shapes, in light of different contexts
and conditions, could present different meanings and contents (Gero and Yan, 1993;
Soufi and Edmonds, 1996). That is to say, even those incomplete figures, ambiguous
and uncertain, could provide designers with plentiful information, especially during the
early conceptual phase. Thus, designers could integrate the information they received
with the images emerged, and further make design progress.

During the design process, visual interactions articulate what designers move
according to what they perceived and considered inside their minds (Schon and Wiggins,
1992). Within this, one cognitive phenomenon—emergent subshapes—was proposed.
Most importantly, designers have their distinct gaps in recognizing subshapes, and at the
same time, the greater part of shapes must be searched for instead of emerging
effortlessly (Liu, 1995). Moreover, the more complex the shapes are, the more time
designers need to find them. Besides, these emergent subshapes, in general, do not exist
explicitly in the original shapes but do have the indispensable relationship with the
original ones and the significant influence on the following design. From the cognitive
and computational model of restructuring shapes proposed by Liu (1996a), it signifies
two major steps in restructuring emergent subshapes. One is selecting (from
pre-attending to selectively attending) and the other is encoding (Figure 1.1). Similarly,
Soufi and Edmonds (1996) also regarded these emergent subshapes as the results not
only from perceiving the external stimuli but also from transforming the internal
structures. To summarize, these emergent subshapes appear when 1) designers
perceive/select certain shapes, and 2) further restructure these shapes into new
configurations of them.

Figure 1.1 A cognitive and computational model of restructuring shapes in terms of emergent subshapes (after Liu,

1996a)

 In addition to cognitive examinations, computational approaches also arise to

PROPAGATING FIGURES - 1 -

 CHAPTER 1 INTRODUCTION

PROPAGATING FIGURES - 2 -

investigate this phenomenon, emergent subshapes. Such as shape grammar, it provides a
productive way to recognize or, say, generate emergent subshapes by means of symbolic
notations and rule-applications (Stiny, 1978, 1980, 1993; Knight 2003a, b). Or, Gero
and Yan (1993) proposed a data-driven symbolic model to discover emergent subshapes
from infinite maximal lines and generated so-called phantom shapes eventually. More,
Liu (1993) submitted a connectionist system trained to recognize emergent subshapes
from the opposite way. All these computational methods addressed their own fashions
of how computers recognize those emergent subshapes that human designers could
under certain conditions.
 Ultimately, on the strength of rapid development in artificial intelligence, there is
one another prevailing mechanism, genetic algorithm, available to tackle those
particularly intangible problems. More specifically, based on nature selection, the
fundamental principles of genetic algorithm (GA) were first proposed by Holland
(1975). Through genetic evolutions and competitions, a chromosome, which has the
better fitness, is more likely to survive and thus becomes the potential solution under
current condition. Moreover, by employing such a population-based search, GA has
been used in a variety of disciplines, including art, music, or architecture (Bentley, 1999;
2002). In this regard, this mechanism reveals a great capability of solving those
complicated and intangible problems, which are exactly the same as the problems in
design, from utilizing this biologically inspired approach (Mitchell, 1996).

1.2 Problem Statement and Objective

Under most circumstances in design, drawings always play the most important role
in externalizing designers’ ideas. Moreover, through interacting with these drawings,
designers make their design proceed. Within this process, emergent subshapes are the
key media responding to what designers consider in their minds and this happens very
frequently especially when designers try to reexamine what they have drawn under
distinct conditions.

Based on this point of view, Minsky (1986, p.144) proposed that “the way we
perceive the world, from one moment to another, depends only in part on what comes
from our eyes: the rest of what we see from inside our brain.” As a result of Minsky’s
statement, it implies that there should be two steps of recognizing shapes. One is what
we perceive from the external stimuli and the other is what we restructure inside our
brains, such as rules applications or knowledge transformation, etc. That is to say, first
of all, designers look at the given shapes, so-called the external stimuli, and then

 CHAPTER 1 INTRODUCTION

PROPAGATING FIGURES - 3 -

restructures what they have seen and what they are contemplating in their minds,
so-called the internal transformation. Therefore, the first step could be just served as to
see (perceiving) and the second is to restructure (transforming). In this case, a suitable
mechanism that is intended to tackle the problems deriving from emergent subshapes
should be beneficial in both these two steps—perceiving and transforming.

However, notwithstanding symbolic and connectionist approaches have been
employed on this issue tremendously, it is still hard to satisfy designers in recognizing
subshapes with fixed rules and limited recognition. To specify this, on the one hand,
symbolism submits an efficient computational way in generating numerous shapes by
means of notations and rule-applications. On the other hand, connectionism attempts to
recognize shapes in terms of connecting vast artificial neurons from an opposite respect.
Both of them, without doubt, address some advantages in generating or, say,
recognizing shapes. Yet, it seems still insufficient in recognizing emergent subshapes
from neither symbolic nor connectionist approaches. Such as, symbolic processing
usually generates emergent subshapes only when there are already the rules specified.
Therefore, although this mechanism could generate numerous subshapes, those
generated subshapes are relatively limited to certain anticipated scopes. In other words,
only when the left hand side of rules is matched, the corresponding shapes are generated.
Obviously, this is deficient in perceiving part of recognizing subshapes.

In addition, connectionist processing proves its success in recognizing subshapes
especially from ill-structured or incomplete shapes. In this regard, this useful
recognition can provide designers more feasible recognition and simulates how
designers recognize shapes. However, the vulnerable point of connectionism is always
the limited training patterns; sometimes, with respect to the limitations of the small
quantity of trained patterns, it reminds us of performance inefficiency. In other words,
although connectionism has a great adaptation in recognizing those ill-structured shapes,
its limited training patterns confines its capability in restructuring these perceived
shapes. Therefore, how to propose a robust mechanism that could show a power
capability in both perceiving and transforming steps of recognizing subshapes becomes
the major problem statement in this study.

In addition, whereas emergent shapes play such an important role in design process
and meanwhile have the great relevance to creativity, another significant issue proposed
in this study is how to provide a computer-aided design (CAD) system to support
designers in search for more promising subshapes. Therefore, by means of amplifying
the amounts of emergent shapes, designers could be inspired and further evolve the
innovative designs.

Therefore, in order to propose a suitable mechanism to tackle the problem of
recognizing emergent subshapes, genetic algorithm is here proposed. From genetic

 CHAPTER 1 INTRODUCTION

PROPAGATING FIGURES - 4 -

perspective, no matter how gene is selected and further evolved, it is manifest that a
crucial relationship of inheritance and similarity does exist between parents and
offspring. Moreover, the relationship between parents and offspring is analogous to the
relationship of shapes and subshapes or the sum of shapes and subshapes in this study.
Particularly, those intangible and ambiguous problems have been proved and solved
successfully by means of genetic algorithm (Man, Tang and Kwong, 1999). In this
regard, genetic algorithm (GA) signifies the prospect of dealing with the issues with
respect to emergent shapes, those exactly having the identical characteristics of
ambiguity and uncertainty in design.

To summarize:
1) Neither symbolism nor connectionism is sufficient enough to tackle the problem
of recognizing emergent subshapes.
2) Emergent subshapes play such an essential role in making design progress.
3) Moreover, these emergent shapes usually have a profound influence on the
following design, and have a significant relevance to creativity.
The major objective of this study expects to propose a suitable mechanism to

reexamine the cognitive phenomenon, emergent subshapes, from an evolutionary
perspective. Moreover, by means of implementing this mechanism into a physical
system, this study further expects this evolutionary system can provide designers more
accesses to evolve designs, especially during the early conceptual phase. In this regard,
it will be used to help designers in generating more shapes and providing more
stimulation. Ultimately, in terms of the expansion of the emergent behaviors, designers
could evolve innovative designs from a biological evolutionary perspective.

1.3 Methodology and Steps

 In order to achieve the objective of providing a suitable mechanism of
recognizing and reconfiguring shapes, there are several principal procedures. However,
in order to specify this process more efficiently, I take two-dimensional shapes as a
foundation to explore basic evolutionary mechanism. Therefore, the first section with
respect to basic data structure and genetic framework is articulated through two
overlapping rectangles as the preliminary research. Then, by means of implementing
this mechanism into the three dimensional modeling environment, a computer-aided
design system is hence conducted. Eventually, through a demonstration, more complex
and more efficient performance is crystallized. For more details, all these procedures are
discussed as follows:

 CHAPTER 1 INTRODUCTION

PROPAGATING FIGURES - 5 -

1) Data structure: Two kinds of vertices are examined to construct the fundamental
data. One of them is termed as the embedded vertex (EV), which is encoded by the
original coordinate values of the current shapes. The other is the invisible vertex
(IV) conducted from the intersections of extending polylines. Afterwards, the
basic operational units are produced according to these basic vertex data (EV and
IV), and these smallest units, in more detail, are the most essential components for
the next stage.

2) Genetic algorithm framework: In order to provide a CAD environment without
firing rules, the generative mechanism is contrived mainly from genetic algorithm
to simulate the process of nature selection. Through several steps, including
initialization, evaluation, propagating (such as selecting, crossover, mutation and
reproduction) and terminating, this mechanism could be used to handle the
problem of recognizing subshapes during the design process.

3) System construction and specification: After articulating the genetic algorithm, an
evolutionary system is constructed and relevant system components are specified.
During this section, first of all, the overview of this system is described. Secondly,
system components are proposed. Third, single-chromosome gene is examined to
see the validity of fitness. Finally, a physical manipulating process is
demonstrated.

In sum, on the strength of combining the genetic algorithm with shape emergence,

this generative system aims to assist designers during the early conceptual phase to
propagate more promising emergent shapes. Moreover, considering some inseparable
connections to creativity, such a tool signifies the potential to improve the creativity in
terms of amplifying the quantity of the emergent shapes. However, to build a more
intelligent system, it should allow designers to interact with this system more easily.
Therefore, in this study, by integrating into the current popular application,
Alias|Wavefront MAYA—a three-dimensional modeling software, this mechanism,
implemented by Maya Embedded Language (MEL), provides designers with more
eligibility during the design process. Ultimately, this study could contribute profits in
both cognitive and computational domains.

CHAPTER 2 EMERGING SHAPES
CHAPTER 2 EMERGING SHAPES

An emergent shape is a shape that exists only implicitly in a primary shape, and this shape

is never explicit input and is not represented at input time (Mitchell, 1992b).

As a well-know behavior, designing proceeds through a sequence of

seeing-moving-seeing circulation (Schon and Wiggins, 1992). Based upon what he
perceived, a designer conducts his next moves. Moreover, during this period, the visual
representation-and-interaction behavior plays the most significant role in
communicating designers and design-representing tools. Simultaneously, the cognitive
phenomenon of emergent subshapes, which happens very frequently when a designer
attempts to make his next move, has also proved the capability in making design
proceed during the early conceptual phase. Therefore, two essential domains, including
cognitive and computational researches relevant to shape emergence, arise in this
research. In addition, in order to tackle the issue deriving from shape emergence,
genetic algorithm is served as the major mechanism in this study. All these relevant
researches will be introduced in this Chapter.

In the beginning, the first section will start from discussing cognitive researches
with respect to emergent subshapes. For example, when these subshapes appear, how
these subshapes could be recognized or the significant characteristics of emergent
subshapes—all these will be described to form a cognitive framework of emergent
subshapes.

Subsequently, the second section addresses several computational approaches,
which are mainly used to generate or recognize these subshapes concealing under the
primary shapes. Such as, shape grammar, data-driven symbolic model, connectionist
network and so on—these approaches all take distinct computational perspectives to
investigate the cognitive phenomenon, emergent subshapes, from a generative
perspective.

Finally, genetic algorithm (GA) is discussed briefly and Knowledge representation
of chromosome is introduced.

2.1 Cognitive Emergent subshapes
2.1.1 Shape Emergence

Since emergent subshapes are proposed, during this iterative and ceaseless
process—seeing, moving and seeing, this visual phenomenon elucidates when and how

PROPAGATING FIGURES - 6 -

CHAPTER 2 EMERGING SHAPES

PROPAGATING FIGURES - 7 -

subshapes are extracted from parts or the sum of parts of shapes, and therefore play an
important role in directing the further explorations in design process (Gross, 1995; Soufi,
1996; Oxman, 2002). Moreover, how a designer discerns the sub-shapes from a
cognitive perspective and what a designer proceeds through visual perceptions were
proposed to examine the relationship between designers and drawings (Soufi, 1996).
For example, emergent shapes, by means of the diverse decompositions of shapes in any
phase of the design process, could be generated infinitely under distinct contexts. In
others words, emergence could be extracted from whether the sum of shapes or the part
of shapes and there is no absolute standards for extracting subshapes from primary
shapes (Holland, 1999; Stiny, 2001).

2.1.2 Tow Steps in Recognizing Emergent Subshapes

In the other perspective, pertinent to the perception of shapes emergence, designers
often recognize subshapes from certain contexts, attentions, purposes and interests
(Testa, 2001). Based on different conditions, designers could detect different subshapes
and drive their design into different directions. Similarly, Oxman (2002) also submitted
that the manipulations of visual schemas and prototypes enable to generate more
alternatives. Thus, some researches further presented, within this process, there should
be certain attention and guidance before perceiving or, more correctly, searching for
emerging shapes (Liu 1995; Oxman 2002). For example, designers might pay
pre-attention into certain area first, where they interest under current context, and then
further reconsider the subject again and again and therefore conduct their next steps.
That is to say, when we look into the more details of shape emergence, how to recognize
subshapes could be synthesized as two major steps. One is to perceive the intended
subject from part of original shapes. The other is to restructure these selected shapes by
means of relevant domain knowledge (Liu, 1996a). Regardless of how to perceive these
selected shapes in advance, designers interpret the shapes in their own fashions and then
restructure the shapes (Soufi, 1996). To summarize, a complete process of shape
emergence has a dual-process in the search of subshapes—perceiving and restructuring
(Figure 2.1).

Figure 2.1 Two Steps in recognizing emergent shubshapes.

CHAPTER 2 EMERGING SHAPES

PROPAGATING FIGURES - 8 -

Although how to recognize those sub-shapes from the existing shapes seems as only
one of the most trivial human behaviors, it’s better to regard this behavior, recognizing
emergent subshapes, as to ‘search for’ them rather than ‘seeing’ them effortlessly
(Oxman, 2001). Particularly, some of these subshapes might be more difficult and
laborious to detect, such as those unnamable ones (Liu, 1995). Thus, in a sense,
emergent shapes are predictable in the process of generation; nevertheless, when an
emergent shape could be discerned is still unpredictable (Stiny, 2001; Knight, 2003).

2.1.3 The Classification and Corresponding Activations of Shapes
 After the considerable accumulation of useful investigations, some researchers set
out to categorize these emergent shapes. Liu (1995) submitted that shapes could be
classified into explicit、implicit、closed and unclosed shapes which are first mentioned
by Mitchell (1992), and proposed four significant phenomena in recognizing these
subshapes. Within this, the time designers need to recognize a subshape is in proportion
to the complexity and visibility of the subshape. Figure 2.2 represents these four
different compositions of subshapes.

a. closed and explicit

b. unclosed but explicit

c. closed but implicit

d. unclosed and implicit

Figure 2.2 Four kinds of shapes (after Liu, 1998).

Besides, there is still one more specific element proposed, which is termed as “the
threshold of recognizing activation (TRA) value” (Liu, 1995). This value is particularly
used to discern the discrepancies between expert and novice designers in recognizing
these emergent subshapes. In Liu’s research, when this TRA value is integrated into
connectionist networks, different subshapes with different activations could be
recognized in turn. For example, when the TRA value is 0.98, only Figure 2.3a. could
be extracted. Following this, when this TRA value is decreased to certain degree, say,
0.8, three more other figures—Figure 2.3b., Figure 2.3c., Figure 2.3d.—could be
extracted. Within this process, one interesting finding is that those subshapes, existing
implicitly and unclosedly at the beginning, are the hardest ones to be extracted and in
general, only those expert designers who have lower TRA value could recognize these
subshapes. This implies some order but also limitations in extracting these subshapes;
therefore, from this way, subshapes could be recognized more systematically.

CHAPTER 2 EMERGING SHAPES

PROPAGATING FIGURES - 9 -

Figure 2.3 TRA values versus subshapes encoded by connectionist networks (refined after Liu,1995).

In addition, in the process of shape emergence, shapes are distinguished as
anticipated, possible or unanticipated ones (Knight, 2003b). From Knight’s definitions,
unanticipated shapes could show the capability of handling rules extragrammatically.
Moreover, in general, the appearance of emergence always accompanies with ambiguity.
As is stated above, that, ambiguity, is exactly one of the most important characteristics
of emergent subshapes, and by means of this characteristic, any implicit subshapes are
possible.

More, when Soufi (1996) classified the shapes from the composition of shapes, such
as those boundaries of subshapes, subshapes could be just regarded the same as those of
the original shapes or part of them. Or, shapes could also arise as a result of occlusion,
including the combinations of the extending boundary lines, existing points or new
points resulted from the intersections of the extending boundaries, etc.

Oxman (2002) proposed a binary perspective which comprises perceptual and
cognitive components to specify the emergence in design process.

In brief, with ample explorations in visual thinking, this phenomenon, which we
termed it as shape emergence, was proposed and pertained to the characteristics of
uncertainty and ambiguity (Mitchell, 1992; Soufi, 1996; Suwa, 1999; Stiny, 2001; Testa,
2001). In terms of these characteristics, subshapes could be extracted from the primary
shapes, no matter existing explicitly or implicitly at the beginning. However, though,
these characteristics are sometimes a prospect, but also a hindrance at the same time, to
an opportunity of extracting unexpected subshapes.

2.2 Computational Emergent Shapes

2.2.1 Shape Grammar

 Sequentially, from computational point of view, there are diverse approaches in
generating shapes; some of them are applied to investigating emergent subshapes. For
example, shape grammar was first proposed by Stiny and Mitchell (1978). In that
research, shape grammar was used to generate certain villa-style planes, which is used
to simulate what Palladio might do. In this case, shape grammar could be simplified as a
mechanism to generate Palladian-style planes by means of symbolic notations and

CHAPTER 2 EMERGING SHAPES

PROPAGATING FIGURES - 10 -

rule-applications derived from original Palladio’s design disciplines.
For a more implementation purport, Nagakura (1990) tried to use a script-based

approach to recognize, and transformed shapes on the basis of shape grammar. Starting
from categorizing abundant shapes, which is mainly defined as a set of successive lines,
this approach used pre-coded scripts of the drawing “D” and categorical objects “O”
and categorical transformations “T” to “Find” possible subshapes (where “Find” is the
control command in this research). Eventually, stylistic geometry could be generated
through a pattern-matching process.

Besides, in 1993, Stiny further used this mechanism in generating subshapes. He
used rules in reinterpreting the relationships of the way what designers perceive, and
how they move after perceiving. By means of ambiguity of descriptions, possible
subshapes could be generated and used to manifest the mutual relations respectively.

Following this, Knight (2003) embodied shape grammar in more usable devices to
computing with unanticipated shapes or designs in compliance with several steps and
rules. Figure 2.4 shows a simple example where two L-shapes are treated as original
shapes and after firing these two rules, new emergent shape is generated. Within this
computation, as long as the left-hand side is matched in advance, the corresponding rule
could be applied by users into the computation. Therefore, abundant unanticipated
shapes could be generated.

Figure 2.4 This is a grammar example after Knight(2003b). Within this figure, two rules and original shapes are

presented. Through five steps, new combination of shapes could be generated.

2.2.2 Data-Driven Symbolic Model
In addition to these finite shapes, Gero (1993) proposed another data-driven

symbolic model to explore emergent subshapes. In this study, there are two dominant
steps—one is termed as constraint derivation and the other is termed as shape discovery.
As shown in Figure 2.5, this mechanism first unstructured the original input shapes into
hiding shapes; then, by means of deriving new constrains that do not exist at the first
input time, a data-driven search method was used to construct suitable polyline
shapes—emergent shapes. Within this study, the most interesting thing is that those
so-called “phantom shapes” could also be discovered.

CHAPTER 2 EMERGING SHAPES

PROPAGATING FIGURES - 11 -

Figure 2.5 In terms of infinite maximum lines, emergent subshapes could be generated, especially those “phantom

shapes” that could not be generated by shape grammar (redrawing after Gero and Yan, 1993).

2.2.3 Connectionist Networks
Except for symbolic approaches, Liu (1996b) further suggested a connectionist

networks trained to recognize these emergent subshapes, including explicit, implicit,
closed or unclosed ones. Within this connectionist networks, searchlight attention,
current attention and extracting mechanisms are used to reinforce the recognizing ability
of it. Finally, in addition to emerging subshapes, this study also clarified one cognitive
phenomenon in regard to designers’ visual behaviors—the threshold of recognizing
activation. By means of this, connectionist networks could successfully simulate how a
human designer recognizes these emergent shapes. Therefore, a computer system proves
the ability to generate those useful subshapes rather than merely providing enormous
alternatives.

In brief, all these researches provide an integral foundation to inspect this significant

phenomenon of shape emergence in visual thinking, not only from cognitive but also
from computational point of views. Moreover, the more important thing is that shape
emergence has an inseparable relationship with creativity as well and still not to clear up
yet (Soufi, 1996;Ueda, 2001; Oxman, 2002; Knight, 2003). Whereas it does imply one
exciting prospect in developing novel designs in terms of expanding this behavior of
emergence during the design process, there should be more efforts in exploring more
and useful emergent shapes from both cognitive and computational way.

2.3 Genetic Algorithm and Knowledge Representation

2.3.1 Genetic Algorithm
 With the rapid development in artificial intelligence, more and more intelligent
exploitations in the design researches arise to simulate how a human designer could do
(Bentley, 2002). Such as so-called evolutionary computation, it submits a feasible way
to solve the complex problems based on nature selection and evolutionary searches.
Among these mechanisms, genetic algorithm (GA), originally proposed by Holland,
J.H., has been substantially applied into diverse disciplines. It was primitively inspired

CHAPTER 2 EMERGING SHAPES

PROPAGATING FIGURES - 12 -

Figure 2 tance

2.3.2 Knowledge Representation of Genetic Algorithm
of the fundamental steps is

T = {X, ℜ}; F = {+, -, *, %} (2.1)

from the Darwinian principle of nature selection. Through closely mutual competitions,
those individuals who have better fitness would have a great probability to survive.
 Moreover, in general, GA is one kind of the population-based search. Once new
“building block” appears, new offspring will converge toward this tendency. The only
way to get out of this convergence is use mutation operator. By introducing variations
into the current populations, GA could rediscover new populations. Therefore, another
good “building block” of solutions that are conferred higher fitness will eventually
evolve.
 Besides, from another respect inside genetic operations, no matter how gene is
selected and further operated, it is manifest that between parents and offspring exist one
crucial relationship of inheritance and similarity (Figure 2.6). That is the reason why
these populations look “similar”. Thus, this very relationship would be further
analogized to examine the relationship between shapes and subshapes afterwards. In
more details, the entire evolutionary process consists of the gene structure of a
chromosome, several genetic operators, control function sets, the fitness measure, the
terminal criterion, etc. During such a evolutionary process, a near-optimal solution
could be possibly generated and presented by means of the fitness survival. Particularly,
those intangible and ambiguous problems have been proved and solved successfully and
efficiently by using genetic algorithm (Man, Tang and Kwong, 1999). It signifies the
prospect of dealing with the issues concerning shapes, those exactly having the
characteristics of ambiguity and uncertainty in design.

eri

GGeennoottyyppee PPhheennoottyyppee

.6 No matter how populations evolve, there must exist certain degree of similarity and inh

reciprocally (after Bentley, 2002).

 Before starting the evolutionary process, one
chromosome representation. In terms of different problem conditions, there are various
ways in representing chromosomes. For example, the conventional GA is developed on
the basis of the scheme theory (Figure 2.7). Within this simple GA operation from Koza
(1992), two fundamental ingredients are specified. One is the function set, and the other
is the terminal set (2.1).

CHAPTER 2 EMERGING SHAPES

PROPAGATING FIGURES - 13 -

Where ℜ denotes constant numerical terminals in some reasonable range [–5.0 , +5.0], and
when whose output value is equal to the values of the quadratic polynomial x2+x+1 in the range
from –1 to +1, this system terminate.

 Sequentially, by means of recombination of two selected populations of the
“Generation 1”, the desire solution is propagated in the “Generation 2”. All these
manipulations could be presented in graph expressions. In addition, the bit string
representation, in general, is also the other useful coding method and is adopted
extensively. As shown in Figure 2.7, an insect is presented in a 25-bit long binary string.
Different bits of this string are used to present different portions of the body, including
color, size, texture, etc. Typically, based on bits flipping between the statuses of 1 or 0,
the useful information could be restored and be retrieved in the future.

 a.

b.
Figure 2.7 a. graph expressions (After John Koza, 1992); b. binary string representation (after Man, Tang and

Kwong, 1999)

CHAPTER 3 DATA STRUCTURE AND GENETIC FRAMEWORK
CHAPTER 3 DATA STRUCTURE AND GENETIC FRAMEWORK

In this research, emergent subshapes are regarded as one of the most important role
during the early conceptual phase. Moreover, how to encode these schematic data into
certain codes that machine could recognize is the primary step before further proposing
a feasible system. During this early conceptual phase, designers usually draw scratchy
diagrams to record or externalize their immediate concepts and ideas. At the same time,
these diagrams, in general, encompass various and plentiful information with respect to
any possible proposals. Designers, under this circumstance, reexamine what they have
drawn iteratively, and therefore generate new combinations of part of old or new
diagrams.

Thus, in order to achieve the objective of providing a suitable mechanism in
restructuring shapes by means of genetic algorithm, there are several principal
procedures. However, as a preliminary step in constructing the basic mechanism, this
research takes rectangle shapes as the dominate subjects. Moreover, only rectangles are
discussed in this research. Eventually, through this 2D diagram, including two
overlapping rectangles, the exhaustive search is constructed to reexamine the
relationship among these small emergent units reciprocally. In more details, this first
section includes:

1) the data structure of input and output, and
2) the structure of chromosome.
Following this, the second part of this chapter describes the genetic framework in

this study. By means of defining genetic operations, including crossover, mutation,
production and evaluation, new populations, subshapes, could be evolved. All these
fundamental genetic operations are refined from Man, Tang and Kwong (1999). After
this, the preliminary step of this study is complete.

3.1 Data Structure
 In this step, two major sub-procedures are articulated. One of them is the data
structure of this program, and the other is to submit the most basic operational units,
genes, of this system.

3.1.1 Two Kinds of Vertices
 First of all, all the input figures would be transferred into vertex data. For example, a
line consists of two vertices and similarly, an enclosed plotlines-shape is viewed as one

PROPAGATING FIGURES - 14 -

CHAPTER 3 DATA STRUCTURE AND GENETIC FRAMEWORK

PROPAGATING FIGURES - 15 -

circuit of four vertices. Therefore, after designers draw some figures in working
environment, this system would first interpret these figures into the primitive vertex
data consisting of two dimensional coordinate values (Figure 3.1a.). As stated above, in
order to demonstrate the whole process concisely, this study takes two-dimensional
rectangle figures as the example in this section. The way applied in three-dimensional
environment in the following section is identical. Figure 3.1 shows how to encode these
two square shapes into vertex data. During this step, two kinds of vertices are generated.
One is termed as the embedded vertex (EV) and the other is the invisible vertex (IV).
EVs are those vertices embedded inside the original shapes or, say, the end points of
original boundary lines (Figure 3.1a.). These vertices, in general, are visible and
explicit at the input time. On the contrary, IVs are the vertices implicit at the input time
and these vertices, in general, are generated from the intersections of extending lines
and original boundary lines, as shown in Figure 3.1b.

 a. b.

Figure 3.1 (a) Embedded Vertices (End points); (b) Invisible Vertices (intersections).

3.1.2 Operational Chromosome
 After transferring the input figures into coordinate vertex data, there is still an
indispensable step needed to be conducted in advance of having these data into the
reasoning machine. A basic operational unit structure, chromosome, is therefore
proposed and generated according to these vertex data. As stated above, the basic
formation of this chromosome adopted in this study is rectangular. Therefore, by means
of confining the category of emergent shapes, an exhaustive relationship could be
reexamined in this research. Therefore, a gene could be regarded as a rectangle, which
consists of either vertices embedded or invisible vertices or both of them. Most
importantly, these small rectangle units, genes, should never be intersected by any other
extending boundary lines (Figure 3.2a). In this regard, the new sub-boundary is
emerged and the basic operational gene structure is generated.

Sequentially, the relevant information of these genes would be preserved in a set of
parameters structured by a string of value in binary form. As shown in Figure 3.2, a
primary shape of two overlapping rectangles would be encoded as a 9-rectangle
chromosome. Therefore, every bit of this 9-bit long binary string exactly represents
every gene of this chromosome. Moreover, based on bits flipping between the statuses of 1

CHAPTER 3 DATA STRUCTURE AND GENETIC FRAMEWORK

PROPAGATING FIGURES - 16 -

or 0, the visibility of the corresponding gene is altered. In this study, the bit value of “1”
represents a visible gene. On the contrary, the bit value of “0” represents the invisible
one. Thus, by means of replication or recombination of these binary strings—parents,
new offspring could be propagated.

Figure 3.2 a: Operational units (genes of chromosome); b: Binary string representation.

3.2 Genetic Framework

 As stated above, the major objective of this study expects to take advantage of
genetic algorithm to provide more feasible and promising shapes or subshapes for
designers during the early conceptual phase. According to the evolutionary
characteristics, including crossover, mutation, selection, fitness function, terminal
criteria, etc., all these genetic operations outline the fundamental genetic framework in
this study. All methods are described below.

3.2.1 The Fitness Measure
 During a genetic operation, the fitness function is always necessary and used to
evaluate the status of a chromosome to see how “good” it is. Without a doubt, all the
offspring propagated have to go through this evaluating process; therefore, those fitter
ones could hence be preserved and others could be eliminated. Moreover, in general,
this very fitness function set plays the predominant role with respect to the objective
space specified by users.
 Before starting, I would like to review the threshold of reorganization activation
(TRA) briefly in advance. This value, a specific parameter of evaluating the threshold of
designers in recognizing subshapes, has been proved to tell apart the discrepancy
between expert and novice designers from the cognitive point of view (Liu, 1996a).
Therefore, by echoing this TRA value, this study initiates with ranking distinct weights
according to the degree of the completeness of figures individually, and based on this,
further expects to simulate how designers recognize subshapes from the computational
perspective. Within this ranking process, the more complete the shape is, the higher
weight it will score. Figure 3.3 denotes how distinct weights rank according to the

CHAPTER 3 DATA STRUCTURE AND GENETIC FRAMEWORK

PROPAGATING FIGURES - 17 -

degree of completeness of shapes. In this case, three kinds of line segments are
specified:
1) The explicit line segment: this represents explicit lines derived from cleaving original

boundary lines by EVs and IVs, and has the index value of “1”;
2) The implicit line segments inside the original boundary: this segment includes every

possible extending line segment, which does not exist at the input time, and locates
inside the original boundary. The index value of it is “0.5”;

3) The implicit line segments outside the original boundary: different from the formers,
the third line segments represent those other extending line segments, existing
implicitly outside the original boundary, and have the index value “0.25”.

 Therefore, as shown in Figure 3.3, Fu5 comprises four explicit line segments and get
the total index value “12”. In this case, the Fweight of overlapping area (Fu5) is designated
to “1”, which is calculated from the ratio of the index value to the maximal value one
operational unit could score. Following this, the rest may be deduced by analogy:
1) Fweight of U2, U4, U6 or U8 respectively is equal to “0.875”, including three explicit

line segments and one implicit line segment inside the original boundary;
2) Fweight of U3 or U7 respectively is equal to 0.75, including two explicit line segments

and two implicit line segments inside the original boundary;
3) Fweight of U1 or U9, respectively is equal to 0.625, including two explicit line segments

and two implicit line segments outside the original boundary.
To summarize, in Figure 3.3, the value of FU5 is greater than that of FU2 (which is

equal to FU4, FU6 and FU8); FU8 is greater than FU3 (which is equal to FU7); FU7 is greater
than FU1 (which is equal to FU9). Thus, after ranking all these units, several phenomena
appear:
1) The fittest gene is generated from the overlapping area of two original shapes, and its

boundary lines are exactly parts of the boundary lines of original shapes.
2) The adjacent relationship between other genes and the overlapping one decides the

degree of Fweight. In general, the more the gene is close to the overlapping one, the
fitter value this gene would score.

3) Moreover, genes inside the original boundaries always have higher fitness than those
others outside the original boundaries.

Figure 3.3 Weights Ranking.

CHAPTER 3 DATA STRUCTURE AND GENETIC FRAMEWORK

PROPAGATING FIGURES - 18 -

 In addition, there is still one another fitness measure taking account of the
complex-degree of units (Fcomplex). To specify this, the more the Fcomplex is, the more
complex the chromosome would appear. Every different value of Fcomplex represents the
distinct maximum number of genes that could turn to visible. Figure 3.4 shows how
these two fitness measures work. For example, when {Fweight = 0.9 & Fcomplex =1}, only
overlapping area, gene5, would appear; when the value of Fweight is decreased from 0.9
to 0.8, other four different chromosomes would be appear in turn.
 Eventually, this population-based search could proceed and generate fitter offspring
with respect to the objective status, Fweight and Fcomplex. By altering the parameters of two
fitness measures, qualified offspring could therefore survive.

Figure 3.4 A demo shows how fitness measures work.

3.2.2 The Selecting Method
 In this section, in order to make sure new offspring could have a better fitness, this system
provides one selecting method to decide the proportion of every parent in reproduction.
Therefore, this step could be used to prevent premature convergence. In this study, Roulette
Wheel selection is adopted, which is one of the most common methods for a proportionate
selection (Man, Tang and Kwon, 1999). To specify this, the first step is to calculate the sum of

all the parents in the mating pool (Fsum). By means of randomly selecting a number “n” between
0 and the Fsum [0 <n< Fsum], One parent would be selected, and in this case, the fitter the
chromosome is, the possibility to be selected is higher. As shown in Figure 3.5, this Roulette
wheel has the circumference from summing the five chromosomes. Chromosome 4 is the fittest

one and hence has the largest interval. Therefore, a random number from the interval [0, Fsum]
has the highest chance to select chromosome 4 in reproduction.

CHAPTER 3 DATA STRUCTURE AND GENETIC FRAMEWORK

PROPAGATING FIGURES - 19 -

Figure 3.5 Roulette wheel selection (after Man, Tang and Kwon, 1999).

3.2.3 Genetic Operation Set
 During the genetic algorithm operations, the most important mechanism is the
re-combining process of the gene structures of parents. Therefore, in this section, all
genetic operators available in this research, including four crossover methods and one
mutation and one reproduction, are addressed as follows:
1. One-point crossover: This method is mainly used to recombine the given parents to

generate new chromosomes by means of one crossover point. Figure 3.6 indicates
how to perform this procedure. In details, one crossover point with the interval [1, 9]
could be randomly selected and then the new binary string is generated by
recombining the binary sting of two selected parents at this selected crossover point.

Figure 3.6 One-point crossover.

2. Multi-point crossover: In addition to one-point crossover specified above,
multi-point crossover method is also allowed to other possible situations during the
crossover operations. The minor difference between one-point and multi-point
crossover is that multi-point crossover takes multiple points in separating the
original binary string into several segments. By exchanging the value of these
segments, new offspring could be generated. In this study, two-point and three-point
crossover are allowed, and Figure 3.7 is given to demonstrate how three-point
crossover executes.

Figure 3.7 Multi-point crossover.

CHAPTER 3 DATA STRUCTURE AND GENETIC FRAMEWORK

PROPAGATING FIGURES - 20 -

3. Uniform crossover: This method mainly takes advantage of multi-masks as the index
to exchange the string value of two parent chromosomes. After randomly selecting
the number of the masks and the ranges of masks respectively, uniform crossover
could be executed to generate new offspring (Figure 3.8).

Figure 3.8 Uniform crossover.

4. Heuristic crossover: Within this operation, 9-bit long string is first converted into
corresponding integer and further generates another new binary string, offspring, by
means of the following formula (3.1). In general, this specific crossover method
could generate more surprising outcomes. Moreover, in some respects, it performs
like mutation but from mixing the gene structures of two chromosomes.

Offspring = parent1*β + parent2*(1-β) (3.1)

Figure 3.9 Heuristic crossover.

5. Mutation: During the genetic operation, mutation plays a very important role in
providing the program with the possibility of driving chromosome to an unexpected
milieu. By bringing variations into current chromosomes, new offspring could
stimulate the entire process and make progress to an optimal objective space.
Moreover, this operation is performed rarely and the mutation point is chosen
randomly. Figure 3.10 illustrates the performance of single-point mutation. Besides,
multi-point mutation is also allowed in this study.

Figure 3.10 Mutation.

CHAPTER 3 DATA STRUCTURE AND GENETIC FRAMEWORK

PROPAGATING FIGURES - 21 -

6. Reproduction: According to the fitness measure of individual in the mating pool,
every genotype, parent-chromosome, has a chance to be duplicated as a member of
the next generation. Therefore, this method is chiefly performed to reassure that all
the population could have the better fitness than the previous chromosomes.

 Whereas every genetic operator has its own specific capability in altering the
compositions of chromosomes, how to integrate all these operators is always the first
concern relevant to every generation. However, during the design process, designers
usually look for certain feasible or expandable solutions for the next step. At this
juncture, especially during the early conceptual phase, the optimal solution in this stage
might not be relatively appropriate. Rather, more and applicable alternatives would
provide designers innovative inspirations. Consequently, since this mechanism aims to
generate not only abundant but also promising shapes during the process of emerging
subshapes, the method to achieve this is through the intensive interactions between
designers and this CAD system. Therefore, within this study, all these genetic operators
specified above are allowed to be executed respectively or simultaneously. In terms of
this flexibility, this tool could provide more useful accesses for designers to use during
the early conceptual phase.

3.2.4 Population Size
 In addition to the fitness measure and genetic operations stated above, this system
also provides the other controlling parameter for users, which is termed as the
population size. In Figure 3.11, after selecting the parents in mating pool, the value of
population size specified in advance is used to decide the maximum number of the
populations during each run. Therefore, such a variable could prevent this system from
being executing unceasingly.

Figure 3.11 N: Population Size.

3.2.5 Termination Criteria
 A crucial relationship between termination criteria and the fitness measure is
discussed here. In practice, the criterion of termination determines whenever the
program continues or terminates, and further designates the result of the run. In other
words, by means of these termination criteria, this system could ascertain that those

CHAPTER 3 DATA STRUCTURE AND GENETIC FRAMEWORK

PROPAGATING FIGURES - 22 -

propagated offspring have reached a plateau. To specify this, the program is contrived
to terminate in the following conditions:
1. A specific fitness value of offspring, which was assigned at the beginning of each run,

is achieved. This means a comparatively better fitness value is achieved when the
integral fitness value of the population is reached or over the termination criterion.

2. The controlling parameter regarding the population size is reached. This condition is
contrived to prevent this system from unceasingly executing. Therefore, according
to the termination criterion designated by users, this program would propagate
satisfactory results, shapes or subshapes, under the circumstance during that time.

 To summarize, this chapter articulates the entire details of the procedures in this
study, which are used to generate subshapes or, say, the new combination of shapes. In
Figure 3.12 below, it shows that how this mechanism first selects the parent shapes,
secondly generates internal gene structure and eventually propagates the new
combination of subshapes. All these procedures are written in Maya Embedded
Language (MEL), which is a built-in programming language of Alias|Wavefront Maya,
to testify their validity and performance. Furthermore, by means of integrating into the
3D modeling environment, this mechanism could bring more immediate and powerful
influence on designers during the conceptual developing phase. Also, as a plug-in of
MAYA, this mechanism could provide more accessible fashion for designers and allow
them to work closer with computation. Sequentially, Chapter 4 will reveal how these
procedures execute in three dimensional modeling environment－Alias|Wavefront
Maya modeling platform.

Figure 3.12 Initializing from conducting the gene structure, a new population could be generated.

CHAPTER 4 SYSTEM CONSTRUCTION AND SPECIFICATION
CHAPTER 4 SYSTEM CONSTRUCTION AND SPECIFICATION

PROPAGATING FIGURES - 23 -

4.1 System Overview
 During the conceptual development phase, designers first draw abundant diagrams to
externalize their ideas. Then, under distinct conditions, they try to reexamine these
figures so as to extract the most important part of them. Within this period, the specific
part they are paying attention to currently is analogous to the input figures as the initial
data in this study, and this initial period is exactly the selecting stage (Figure 4.1).
Moreover, taking advantage of the genetic operators proposed above, this study
implements the genetic algorithm with regard to the emergence of shapes or, say,
reconfigurations of shapes and subshapes. All theses genetic operators are utilized
within a sequence of the following four stages—selecting, initializing, propagating and
terminating stages, as shown in Figure 4.1.

Figure 4.1 Four stages: selecting, initializing, propagating and terminating stages.

 In order to specify this, the entire process comprising a series of four stages are
described as follows:

1) Selecting stage: At the beginning, users are asked to select the specific shapes as
the primary input shapes, and afterwards, the system converts these selected
shapes into vertex database, including the embedded vertices (EVs) and the
invisible vertices (IVs). Meanwhile, by means of these vertex data, the
fundamental gene structure will be further generated, and at this input time, the
index of generation is designated to “1”. Therefore, this primary chromosome
could be therefore displayed in the 3D modeling environment as a graphic output
to designers/users during this stage.

2) Initializing stage: Secondly, certain controlling parameters need to be specified
at the beginning, including the population size, the complex of the chromosome
and the fitness weight. All the parameters are significant in regard to sequential
genetic operations. Therefore, this system could start to initialize the
first-generation populations. Following the fitness value designated by users in
the beginning of this stage, the amounts of populations are generated in a

CHAPTER 4 SYSTEM CONSTRUCTION AND SPECIFICATION

PROPAGATING FIGURES - 24 -

binary-string form and stored in temporary database. At this time, the fittest
chromosome of these initializing populations could also be displayed in the three
dimensional modeling environment. Moreover, by means of designers’
assignments, selected chromosomes would be put into the mating pool for the
following genetic operations.

3) Propagating stage: After sieving out promising parents from initial populations,
this system takes several genetic operators, such as crossover, mutation and
reproduction, simultaneously to generate new offspring. Therefore, these new
offspring could be stored for the next terminating stage.

4) Terminating stage: Ultimately, all these populations are turned into the last
stage, terminating stage, to see whether the status of any chromosome achieves
the desired termination criteria. If “Yes”, this system terminates and displays the
optimal solution in 3D modeling environment. In addition, when this user is
satisfied with this outcome, he or she could also end this run. Therefore, new
generations could be yielded, and new genetic process will be launched. In brief,
all these four stages could be synchronized as a flowchart, as shown in Figure
4.2.

Figure 4.2 Flowchart of the program

CHAPTER 4 SYSTEM CONSTRUCTION AND SPECIFICATION

PROPAGATING FIGURE

 During each run, all these four stages provide distinct functions in generating
near-optimal solutions. However, in order to be used more flexibly, all these functions
sets are also allowed to be manipulated respectively during any period of the run.
Therefore, such flexibility could provide designers or users with more possible
alternatives. Notwithstanding premature or imperfect, all these alternatives could
stimulate designers or users with more inspirations during the early conceptual phase.
For specifying this process more clearly, Figure 4.3 illustrates a sample test showing
how this system simulates what Petra did during the designing process in light of the
drawing first submitted by Schon and Wiggins (1992). That is to say, through serial
genetic operations, including crossover, mutation, and reproduction, etc., this program
could generate the identical output of Petra.
 In Figure 4.3a, the left side is a figure taken from Schon and Wiggins (1992), which
shows how a designer moves based on what he sees. On the right side, when a user
would like to use this system as a partner to explore the new reconfigurations of these
input shapes, what could this partner do?

Figure 4.3a Left: A d

Righ

 As stated above, th
shapes and transfers
chromosome. Therefor
bottom of this primary
Subsequently, this sys
chromosome with a bin
Left
S

esigner sees, moves and sees again. (After

t: How to restructure these original shap

e first stage is to select the spe
the primary shapes into the

e, first of all, this user notices th
 shape, and assigns these two r
tem retrieves the vertex data o
ary string—“000000000” (Figu

Figure 4.3b Stage 1: Selectin
Right
 - 25 -

 Donald Schon and Glenn Wiggins, 1992)

es into the desire ones.

cific figures as the primary input
 operational gene structure, a
at there are two rectangles in the

ectangles as the selecting shapes.
f them and generates the initial
re 4.3b).

g.

CHAPTER 4 SYSTEM CONSTRUCTION AND SPECIFICATION

PROPAGATING FIGURES - 26 -

Therefore, where { Fweight = 0.75 && Fcomplex = 4} and { Fweight = 0.7 && Fcomplex =
3}, two groups of populations are yielded according to the fitness measure specified
above. These initial populations are listed in Figure 4.3c. In general, during the
manipulating process, these figures are generated and stored in the binary-string form.
Until the end of each run, selected offspring which has the better fitness measure could
be eventually displayed as the graphic output.

Figure 4.3c Stage 2: Initializing.

Thus, after initializing the populations, two fitter offspring are sieved out as the
selected candidates for the following genetic operations. Moreover, to prove that this
genetic system could also show the capability of generating the identical outcome of
what Petra did, specific genetic operators are fired, including one-point, two-point
crossover and heuristic crossover and mutation. Eventually, five populations are
therefore generated, as showed in Figure 4.3d. During such an executing process, there
are much more possible alternatives. The outputs of this test are only parts of them for
the demonstrating purport.

Ultimately, by means of the terminating criterion where {Fcomplex = 4}, two survival
offspring are preserved (Figure 4.3e). Therefore, the entire process is complete and
when this outcome is applied into the current situation, new configuration of three
L-shape figures would be generated and the Figure 4.3f shows the whole process of
how this application is used to restructure the primary input shapes.

CHAPTER 4 SYSTEM CONSTRUCTION AND SPECIFICATION

PROPAGATING FIGURES - 27 -

 Figure 4.3d Stage 3: Propagating

Figure 4.3e Stage 4: Terminating

Figure 4.3f Applying genetic algorithm to restructure shapes.

 In brief, this study proposes another computational approach－genetic algorithm,
rather than symbolism or connectionism－for solving the problem in restructuring
shapes or subshapes during the early conceptual phase. Moreover, for the more practical
purposes, this mechanism expects to be integrated into the design process. Apparently,
as shown above, this approach provides a probability in generating shapes or subshapes
from a nature-like selection search. Without applying generating rules or training, this
program could also help designers in recognizing more possible and feasible shapes
during the design process. Here, I demonstrate an example of Petra’s drawing and
reveal the promising capability of this system in propagating shapes. However, as
shown in Figure 4.3f, this mechanism only focuses on providing more possible

CHAPTER 4 SYSTEM CONSTRUCTION AND SPECIFICATION

PROPAGATING FIGURES - 28 -

restructured shapes from the primary shapes. As for the knowledge transformation, such
as scaling or displacing, this is not specified here. Therefore, rather than symbolic or
connectionist approaches, there is another possible mechanism that could also be used
to restructure shapes from a genetic perspective. Moreover, for a more practical purpose,
all these mechanisms should go further into an application stage rather than merely
theoretical explorations, and allow designers to work with them more closely.
Following this, more details of this system are specified.

4.2 System Specifications

 As stated above, during the genetic manipulation, there are four major stages,
including selecting, initializing, propagating and terminating in turn. In this section,
more complete specifications of components relevant to these four stages and the user
interfaces of this system are discussed.

4.2.1 Selecting Stage
During this first stage (Figure 4.4), three sub-procedures are declared. They are:

Selecting
System procedures Graphic User Interface

Fn()

Select Object();

Generate Chromosome();

RandomizeGene();

Figure 4.4 Selecting stage.

1) Select Object() : This function is used to decide the parts of shapes users want to
pay attention to, which means selecting the primary shapes for this current run.
Therefore, once any two of them are selected, the index of generation is designated
to “1”.

2) Generate Chromosome() : Referring to the objects selected, this function retrieves
the basic vertex data of them, and stores these data in a two-dimensional table of
floating point values. For example, for any vertex in 3D modeling environment,
each has a triple of floating point numbers (usually representing X-, Y-, and
Z-coordinate values). Thus, this retrieving vertex data would be represented like:

CHAPTER 4 SYSTEM CONSTRUCTION AND SPECIFICATION

PROPAGATING FIGURES - 29 -

Matrix $i[2][3] = << X1,Y1,Z1;

 X2,Y2,Z2>>

Subsequently, by means of this vertex data, new operational gene structure would be
constructed.

3) RandomizeGene(): The last function of this stage is only submitted to help users get
used to how this chromosome performs when the binary string is changed. The
major controlling strategy used here is randomizing. By means of altering the string
value of the chromosome, the corresponding graphic output is displayed in the 3D
modeling environment.

4.2.2 Initializing Stage

After selecting, this initializing stage (Figure 4.5) is mainly used to randomize the
initial populations for the subsequent genetic operations. On the one hand, three kinds
of variable settings in regard to the size of the population, the degree of the complex and
the intended weight are queried. On the other, after generating the corresponding
populations, designers are usually asked to decide the preference to put into the mating
pool for the next propagating stage. All these functions are described as follows:

Initializing

System procedures Graphic User Interface

Fn()

Environment Settings:

Set PopulationSize();

Set Complex Value ();

Set Fitness Value();

Initializing:

Propagating();

GotoMatingPool();

Figure 4.5 Initializing stage.

1) Set PopulationSize(): This variable is an instruction to articulate the maximum
number of the population that each run should generate. Once this number of
population is reached, the system outputs the fittest chromosome and displays this
chromosome in the three-dimensional environment.

2) Set Complex Value(): Different from the population size, this one is used to control
the degree of complex of a chromosome. For example, the number of genes one
chromosome comprises is decided at the first stage. In this regard, the maximum
number of one chromosome that has 27 genes is excatly “27”. On the contrary, the

CHAPTER 4 SYSTEM CONSTRUCTION AND SPECIFICATION

PROPAGATING FIGURES - 30 -

minimum one, the defualt number, is “1”.
3) Fitness Value(): Every gene of a chromosome has its distinct weight when it is

generated at the beginning. Therefore, accoring to the three kinds of line segments
stated in Chapter 3, every chromosome get a total weight from suming the weights
of its genes. By means of specifying this fitness value, those chromosomes who
have the higher value could be preserved and others are eliminated.

4) Propagating(): After all these variables are designated, this function is used to
prapate the initial populations accordingly. Each time when this function is triggered,
the fittest chromosome is displayed as the graphic output.

5) GotoMating Pool(): Eventually, for providing users the suitable solutions, this
function allows designers to choose the intended population for the next propagating
stage. Therefore, more promising populations might be generated in light of
designers’ preferences.

4.2.3 Propagating Stage
 Subsequently, when initial populations are generated and selected, there are fitter
chromosomes in the mating pool. Before executing the genetic operations, all these
parents are ranked according to the fitness value, and by Roulette Wheel selection
method, these parents are used in proportion. All these mating functions utilized in this
study are listed in Figure 4.6. More details of every function are described as follows:

Propagating
System procedures Graphic User Interface

Fn()

Crossover:

 Choose Parents();

1_One-Point Crossover();

2_Two-Point Crossover();

3_Three-Point Crossover();

4_Uniform Crossover();

Figure 4.6a Propagating stage:Crossover

CHAPTER 4 SYSTEM CONSTRUCTION AND SPECIFICATION

PROPAGATING FIGURES - 31 -

Fn()

Mutation and Heuristic search:

Single Mutation();

Multiple Mutation();

Heuristic Search();

Reproduction:

Reproduction();

Figure 4.6b Propagating stage: Mutation and Heuristic

1) Choose Parent(): As implied by the name, this function is mainly used to seive
out potential parents from the mating pool in proportion to their weights
respectively.

2) One-, Two- and Three-Point Crossover(): In this study, three kinds of
point-crossover are provided. By means of remixing the binary strings of
parents, new string could be generated.

3) Uniform Crossover(): In addition to point-crossover, another form of crossover
is also allowed. This method mainly uses several masks as the index to
generate new offspring.

4) Mutation(): Two kinds of mutations are provided in this study. One is termed
as single-mutation and the other is multiple-mutation. As implied by the name,
the discrepancy of these two methods exists in the number of mutation points.
The former one is only used to alter the value of single mutation point, and the
other is used to alter the values of multiple mutation points.

5) Heuristic search: In terms of converting all these binary strings into integer and
calculating the value from the equations stated above, new offspring could be
produced.

6) Reproduction(): Finally, one more function is provided to reassure that the best
population is generated. Therefore, it suggests that the better offspring could be
propagated than parents.

4.2.4 Terminating Stage

In the end of this run, one more step is queried to certify the termination. As long
as users like, they could also reset the formation of the chromosome by means of the
controlling strategy provided here. All these components, as shown in Figure 4.7, are
specified as follows:

CHAPTER 4 SYSTEM CONSTRUCTION AND SPECIFICATION

PROPAGATING FIGURES - 32 -

Terminating

Fn()

Next Generation();

Reset generation();

Control generationR ();

Figure 4.7 Terminating stage.

1) Next Generation(): This functions is only needed when users want to generate
the fittest chromosome during this run. Once confirming, new index of
generations are generated and current fittest chromosome is displayed as the
graphic output in the three-dimensional environment.

2) Reset Generation(): If the user has the intention to alter the former population,
this function is mainly used for resetting the index number of generations and
therefore, the user could reconfigure the former population.

3) Control GenerationR(): For more flexibility, this controlling mechanism is
combined with Reset Generation() to alter the configurations of a former
chromosome.

To summarize, all system components with the relevant interfaces are specified

briefly in this section. The performance of this system will be discussed in the following
section, including testing the fitness validity and demonstrating a physical example
taken from an architecture curriculum.

4.3 Fitness Validity

After specifying the integral components of this system, I am going to use a simple
demonstration to show how these emergent subshapes could be generated in a sequence
of fitness measure. In this section, where Fcomplex is designated to “1”, those
discrepancies in single-gene chromosomes would testify for the individual activation
respectively. Therefore, echoing the threshold of recognizing activation, which was first
utilized in connectionist networks (Liu, 1995), those corresponding offspring could be
generated.

In the three-dimensional modeling environment, the primary shape, Figure 4.8a, is
a composition of two cubes; meanwhile, these two cubes are arranged in an interlacing

CHAPTER 4 SYSTEM CONSTRUCTION AND SPECIFICATION

PROPAGATING FIGURES

form. After selecting these two cubes as the primary input shapes, they are restructured
into an initializing gene structure, a chromosome (Figure 4.8b). As shown in the figure,
this chromosome is composed of 27 genes and is represented in a 27-bit long string at
the beginning of this run.

a. b.

Figure 4.8 a: primary shapes; b.

By exhaustively searching, where { Fcom

could be generated. How to generate these 2
weight respectively is shown as follows:

Generating the single-gene chromoso

Pseudo logic code MEL expressi

// initialize the binary string code string $zero = "000000

//generate the first 27 populations,
which are single-gene chromosomes.

for ($i = 0; $i<27; $i+
if($i == 0){

$ chrom
}else if($i == 2
 $ chrom
}else{
 $ chrom

$zero (
 }

}

Assigning the weight of fitness

Pseudo logic code MEL expressi
//calculate the weight in compliance

with the status of each gene of a
chromosome

// take coordinate X as
if ($X1<$chromosome
 $chromoWeigh
}else if($X2<$ chrom
 $ chromoWeig
}else{
 $ chromoWeig
}
………………………

Therefore, each chromosome is generate

the specific weight respectively. After that, the
each chromosome when the condition, Fweight,
when this chromosome has a better fitness, it
 - 33 -

00000000000000000000000000

 initializing gene structure.

plex =1 }, only 27 different chromosomes
7-bit long binary strings and assign the

mes

on

000000000000000000000";
+){

osome [$i] = "1" + `substring $zero (2+$i) 27`;
6){
osome [$i] = `substring $zero 1 $i` + "1";

osome [$i] = `substring $zero 1 $i` + "1" + `substring
$i+2) 27`;

on
 example
[0]<$X2){
t[index1][1] = $weight1;

osome [0]<$X3){
ht [index1][1] = $weight2;

ht [index1][1] = $weight3;

……………………………….

d and stored in a binary-string form with
 following step is to test the activation of

 is altered. Under the circumstances, only
could have the chance to survive after the

CHAPTER 4 SYSTEM CONSTRUCTION AND SPECIFICATION

PROPAGATING FIGURES - 34 -

i

trial. For example, where Fweight is designated to 0.85, chromosome13 is the only
survival, whose Fweight is greater than 0.85 (Figure 4.9). How this result is generated is
through:

Test ng the activation

Pseudo logic code MEL expression
// if Fweight > 0.85,
Leave this chromosome in the fitness
array.

for ($i=0; $i<size ($chromosome);$i++){
 if($chromWeight[$i] > 0.85){
 int $sizeVR;
 $sizeVR= `size $validityRank1`;
 $validityRank1[$sizeVR] = $validity[$i];
 }
}

Figure 4.9,The only survival, chromosome13 when Fweight =0.85.

 Following this, once decreasing the value of Fweight to 0.8, other six more
chromosomes are generated. Similarly, the rest can be deduced by analogy. Until Fweight

is deceasing to 0.5, all chromosomes, 27 single-gene chromosomes, are displayed. For
the more detailed relationship between graphic outputs and Fweight, all results are
displayed in the Appendix One.
 In brief, the entire process testifies the activation of every single-gene chromosome
according to the distinct weights designated when the primary gene structure is
generated. Thus, these genes construct an essential foundation for the later populations
with more complex configurations, which may consist of one or more than one gene in
every generation based on users’ designations. By means of this simulation, it could
elucidate that the lower the TRA value is, the more number of fitted chromosomes will
be generated. Moreover, these single-gene chromosomes seem to appear in a
corresponding relationship that each chromosome is ranked in compliance with:

1) the degree of adjacent relationship relevant to the overlapping area, and
2) the relative-position relationship, interior or exterior of the primary bounded

shapes.
To go a step further, the degree of adjacent relationship could be subdivided into

three grades: a. point-adjacent relationship; b. line-adjacent relationship; c.
plane-adjacent relationship. Figure 4.10 summarizes this hierarchy in sequence.

CHAPTER 4 SYSTEM CONSTRUCTION AND SPECIFICATION

PROPAGATING FIGURES - 35 -

Figure 4.10 The ranking relationship. A: Plane-adjacent and locating inside of the primary bounded

shapes, where Fweight >0.8 . B: Line-adjacent and locating inside of the primary bounded shapes,

where Fweight >0.75. C: Point-adjacent and locating inside of the primary bounded shapes, where

Fweight >0.7. D: Line-adjacent and locating outside of the primary bounded shapes, where Fweight >0.6.

E: Point-adjacent and locating outside of the primary bounded shapes, where Fweight >0.5.

In a sense, a single-gene chromosome seems to be limited in providing designers
with extra inspirations. However, when we set the complex value up to 2, the total
amount of chromosomes is expanded to 351. To sieve out those chromosomes with
better fitness and to eliminate trivial ones would be more profitable in terms of this
fitness measure. Therefore, this mechanism show the validity in providing not only
numerous but also beneficial shapes from a genetic perspective. In the following section,
a complete demonstration is given.

4.4 Demonstration

 In order to depict the overall execution process, this section illustrates how this
system works in light of a practical manipulation. Figure 4.11a is an example taken
from a certain architecture curriculum, which mainly comprises five rectangle figures,
and the other Figure 4.11b is another example which takes the left part as a concept to
develop its three-dimensional relationship with a physical model (after Rowe and
Slutzky, 1997). In this exercise, I assume that this 5-rectangle shape, Figure 4.11a, is the
concept diagram of a student during the early conceptual phase. This student would like
to try this system to evolve its 3D relationship with the virtual model instead of the
physical model. How and what could this student do with this system? To specify this,
the following demonstration is given by a sequence of four stages — selecting,
initializing, propagating and terminating stages.

CHAPTER 4 SYSTEM CONSTRUCTION AND SPECIFICATION

PROPAGATING FIGURES - 36 -

Figure 4.11 a: the curriculum example of five rectangles; b: a development from a concept to a physical model.

(after Rowe and Slutzky, 1997)

4.4.1 Selecting Stage
The first step is to construct this 3D model and tries to figure out which part this

student would like to start from. As shown in Figure 4.12a, this is the original 3D
shapes consisting of five rectangle cubes with different dimensions respectively and
Figure 4.12b is the selecting part by the user, which comprises two overlapping
rectangles. Afterwards, selecting operator is triggered and the primary gene structure is
generated, as shown in Figure 4.12c.

Figure 4.12 (a) the primary shape consisting of five rectangle cubes; (b) the selected shapes; (c) the gene structure.

4.4.2 Initialing Stage
Subsequently, in order to initialize the populations, three specific variables have to

be specified in advance: 1) the population size; 2) the complex value; 3) the minimum
fitness weight. According to these variables, the initial populations could be generated
automatically. Moreover, in compliance with the users’ definitions, fitness parents could
be sieved out and put into the mating pool for the next genetic operations.

Therefore, where {Fpopulation-size = 50; F complex = 15; F weight>65%}, ten populations
are generated and selected into the mating pool (Figure 4.13). All of them are
represented in a 27-bit long string. For example, the binary string of Chromo00 is
encoded as “010001111110010011110010001”. Every bit of this binary string represents
the visibility of every gene in this chromosome. To specify this, the manipulating
processes with relevant MEL expressions are shown as follows:

CHAPTER 4 SYSTEM CONSTRUCTION AND SPECIFICATION

PROPAGATING FIGURES - 37 -

Propagating initial populations

Pseudo logic code MEL expression
//wheen the parameters are specified:
1) Fpopulation-size ;
2) F complex ;
3) F weight ;

//Generate the fitness gene coded
strings.

// initializing the population according to the Fpopulation-size and F complex ;
for($i=0 ; $i<$populSize ; $i++){
 for ($j =0 ; $j<$fComplex; $j++){
 $index = `trunc (rand size($chromosome))`;
 string $cur = $chromo[$i];
 if($pp == 0){ $validity[$i] = "1" + `substring $cur (2+$i) 27`; }
 }
}
// sieving out those fitter populations
for ($i=0; $i<$ populSize;$i++){
 if($chromoWeight[$i] > $fWeight){
 $chromofit [$i] = $ chromosome [$i];
 }
}

Figure 4.13 Ten populations are generated and each of them has survived from a competition of 50 chromosomes,

which exactly have the complex value “15”.

4.4.3 Propagating Stage
After selecting and initializing, genetic operators are ready to be executed. In this

section, only several genetic operators are illustrated as examples, such as one-point
crossover and mutation. According to the fitness value specified above, new offspring
could be generated. Therefore, during this process, this student can exercise each
operator respectively and sees how these parents in the mating pool are manipulated in
such a way. All these operations are shown as follows:

Roulette wheel selection

Pseudo logic code MEL expression

// Using roulette wheel selection to
select parents in reproduction

$weightRank[] = sort($weight);
$max = `size $weightRank`;
int $indexweight;
$random = trunc (`rand 0 $weight[$max]`);
$sumWeight;
for($i = 0; $i<size($weightRank); $i++){
 if($random>$weightRank[$i]){$random= $random-$weightRank[$i];
 }else{$indexweight = $i;}

CHAPTER 4 SYSTEM CONSTRUCTION AND SPECIFICATION

PROPAGATING FIGURES - 38 -

}

Genetic operations

Pseudo logic code MEL expression

//single- or multiple-locations are
generated as the index of altering the
value of selected digit in the binary
string.

$selectP = $chromosome[$indexweight];
// One-point Crossover
int $onePIndex1 = trunc (`rand 2 26`);
string $new1Pchild = `substring $parent1 1 $onePIndex1` + `substring $parent2
($onePIndex1+1) 27`;……………………………..
.
// Mutation
If ($mutationArray[$indexMdigit] == "0"){$mutationArray[$indexMdigit] = "1";
}else{ $mutationArray[$indexMdigit] = "0";

}

Moreover, as shown in Figure 4.14, graphic outputs articulate the performance of
certain genetic operators. For example, as shown in Figure 4.14a, this system uses
one-point crossover operator to recombine “Chromo00” and “Chromo01” to generate
three new offspring, Offspring01, Offspring02, offspring03. Similarly in Figure 4.14b
and Figure 4.14c, other six more offspring are generated by means of taking advantage
of multi-point crossover, and, in Figure 4.14d and Figure 4.14e, two parents are
reproduced by means of the mutation operator.

Figure 4.14 Propagating offspring. (a) Using one-point crossover operator to generate offspring from Gene01 and

Gene01; (b) Using two-point crossover operator to generate offspring from Gene03 and Gene07; (c) Using

three-point crossover operator to generate offspring from Gene03 and Gene07; (d) and (e) Using mutation operator

to generate offspring from Gene05 and Gene06.

CHAPTER 4 SYSTEM CONSTRUCTION AND SPECIFICATION

PROPAGATING FIGURES - 39 -

4.4.4 Terminating Stage

 Unlike the conventional genetic algorithm, all genetic operators are allowed to be
executed individually. Therefore, users have to decide when this system should
terminate. In this regard, they have to designate the result manually and command this
system to go a step further. Subsequently, they could choose other shapes as the initial
input shapes for the next run. Figure 4.15 shows a complete execution from selecting to
terminating. This is only one of possible alternatives, and there are still more
possibilities during each operation. Moreover, most importantly, by means of this
interaction, this system makes it easier to explore new configurations of shapes during a
three-dimensional environment. In such a way, this computational process goes a step
further into a more applicable stage.

Figure 4.15 Propagating offspring.

CHAPTER 5 CONCLUSION

CHAPTER 5 CONCLUSION

By means of combining the genetic algorithm with a search model of shape
emergence, this evolutionay system provides a computational environment for designers
during the early conceptual phase, particularly in propagating more emergent shapes.
More, considering some inseparable connections to creativity (Soufi, 1996; Ueda, 2001;
Oxman, 2002; Knight, 2003), such a computer-aided design system reveals the potential
to improve creativity in terms of amplifying the quantity of emergent shapes. From
symbolism to connectionism, researchers utilize various methods to explore this
phenomenon. Each of them certainly has its own advantages but also disadvantages as
well. Through comparisons between these two mechanisms and genetic algorithm, I will
address some conclusions, limitations and future studies of this research.

5.1 Comparisons and Analyses

As for symbolic computation, the characteristics of high productivity and
efficiency are definitely the strengths. However, how could designers do with these
fixed rules? Figure 5.1 is an example after Knight (2003b). In this case, an emergent
fish appears during the computational process and numerous shapes are generated by
means of rule applications. Within this, only when there is a certain rule application, a
corresponding emergent shape could be therefore generated. That is to say, few rules
have the potential in generating numerous shapes but only finite emergent shapes appear.
However, one of the most important characteristics of emergent subshapes is that these
subshapes or shapes exist implicitly in the primary shape (Mitchell, 1992b). Therefore,
from this point of view, using rules is a productive way to generate “new shapes”. But
as for exploring what exists implicitly in the primary shapes, it seems not so useful.
Obviously, on the one hand, the grammar way lacks this very ability in exploring those
implicitly existing shapes. Moreover, on the other, designers always have to be familiar
with the built-in rules first, and then try to find a correct rule at a correct time—when
the left-hand side condition is satisfied. This is not so convenient for designers to use,
either. As a more eligible assistant, it should provide the more convenient access for
designers.

PROPAGATING FIGURES - 40 -

CHAPTER 5 CONCLUSION

P

e

s
m
o
s
o
5
g
t
s
d

n
d
t
c
i
m
w
c
p
o
i

a. Rules
ROPAGATING FIGUR

In addition, by e
ymbolic model gen
odel, they used lin

cclusive relationshi
ometimes, those unn
r, say, including mo
.3b). Therefore, the
enes as the basic e
hose basic emergen
hapes could be evo
esignations, designe

Figure 5.2 (a) Emergent ph

Except for sym
eurons so as to sea
esigners. By contra
hose ill-structured s
onnectionist system
nput time could also

ost vulnerable poin
ith the networks

omplete—such as
re-training patterns.
bjective. Therefore,
n perceiving shapes
b. Computation
Original Shap
ES - 41 -

Figure 5.1 Possible emergence after Knight (2003b).

mploying certain reasoning rules to derive constraints, data-driven
erates bounded polyline shapes (Gero and Yan, 1993). Within this
e segments as the basic reasoning foundation to construct new

ps, and thus, generated emergent shapes (Figure 5.3a). However,
amable shapes—which are difficult to be found—are not occlusive
re than one possible occlusive relationship simultaneously (Figure
 noticeable discrepancy lying in genetic algorithm is that GA takes
volving units. In some respects, these smallest units are exactly
t ones. By means of recombining these units, possible emergent
lved, from simple to complex. Moreover, according to designers’
r-oriented emergent shapes could be therefore generated.

antom shape (after Gero and Yan, 1993); (b) Figure 5.2b A combined shape consisting of

one L-shape and one square.

bolic processing, connectionist computation relies on connecting
rch for those emergent subshapes, which are more significant to
st, this connectionist processing is quite eligible in recognizing
hapes. More specifically, as long as enough relevant patterns this
 has learned, even those incomplete and unexpected shapes at the
 be recognized. Yet, this pattern training, at the same time, is the
t. Figure 5.3a is a simulation of encoding two overlaid squares

(after Liu, 1998). Within this process, the shapes, namable or
square or L-shape, are successfully recognized because of

 However, to find an unexpected emergent shape is always the final
 notwithstanding connectionist networks have a powerful capability
, the finite patterns is still limited. From this point of view, genetic

CHAPTER 5 CONCLUSION

PROPAGATING FIGURES - 42 -

algorithm adopted in this study treats every perceiving units as the ingredients of initial
chromosomes. Through recombining these chromosomes, new offspring are propagated.
By comparison, without pre-training patterns, GA not only could generate square or
L-shapes but also more complex ones, such as a concave shape (Figure 5.3b).

a. b.

Figure 5.3 (a) The simulation of encoding two overlaid squares (after Liu, 1998); (b) Concave shapes.

To summarize, once there are finite rules on the left-hand side, it confines the
solution space to a specific boundary on the right-hand side. Once recognizable patterns
are limited, it becomes deficient in providing enough and inspiring alternatives.
However, as a CAD system, it should provide not only useful but also plentiful
alternatives for designers. Through evolutionary process, GA generates a great amount
of solutions, which are more meaningful according to designers’ indications. Most
importantly, when utilizing GA to generate emergent shapes, these outcomes, by means
of specifying some significant features relevant to emergence, converge toward the
certain cognitive spectrum.

5.2 Significance
This study provides one another mechanism refined from genetic algorithm to

reexamine the cognitive phenomenon, emergent subshapes. Meanwhile, by means of
this mechanism, one computer aided-design system is proposed, especially focusing on
providing emergent subshapes during the early conceptual phase. Such a mechanism
reveals how to generate new combinations of ingredients encoded from original input
shapes through a sequence of genetic operations.

Moreover, in this digital era, computer media have been used extensively. How to
provide useful information at the right time becomes more profitable than providing
precise recognition, especially during the design process. In this regard, a good solution
for designers is not necessary; instead, a suitable solution is what designers intend. On
the strength of this, genetic algorithm is proposed to handle this neither symbolic nor
connectionist problem in restructuring the designers’ input shapes. By means of

CHAPTER 5 CONCLUSION

PROPAGATING FIGURES - 43 -

recombining the initial chromosomes, numerous and promising offspring are evolved.
In detail, these offspring generated by GA not only inherit parts of the original
chromosomes but also show distinct features from the primary one. Therefore, using GA
to propagate these emergent subshapes—from simple, namable shapes to complex,
unnamable ones—provides designers with more and promising alternatives from this
evolutionary perspective.

In briefly, the entire process could just be regarded as a shape-restructuring process.
From selecting to terminating stages, new generations provide more inspirations to
make design proceed. Therefore, designers have a better chance to evolve their designs
in a computational environment, from the early conceptual phase to the final presenting
stage. Furthermore, as a plug-in extension of Alias|Wavefront Maya, it provides a more
eligible way for designers to exploit during the design process and get designers and
design computation closer.

5.3 Limitations and Future Studies
 Apparently, only rectangular shapes are discussed in this study, and this seems not
to be sufficient enough to handle every possible condition. However, as a preliminary
study, rectangular shapes are regarded as the first shape to explore the possibility in
restructuring the emergent units. After implementing this mechanism, though only
rectangular shapes could be recognized at the input time, this evolutionary system
already shows a powerful capability in propagating numerous and designer-oriented
shapes or subshapes. Following this, in order to enhance the robustness of this
mechanism, more efforts are needed in the future:

1) Expanding the diversity of ingredients: In this study, I mainly retrieve vertex
data to construct the basic units, rectangle shapes. For expanding the diversity,
it has to develop one pre-encoding mechanism to take care of all possible
polyline shapes. Therefore, with more categories of emergent subshapes
specified, such an evolutionary system could be applied in a wider spectrum.

2) Introducing more variations into ingredients: During the evolutionary
processing, genetic operators are only used to recombine the selected
chromosomes. However, according to the limited compositions of
chromosomes—emergent units and their visibility in this study, the propagated
shapes are confined to the original boundary. Therefore, by means of
introducing productive rules in the future, it could get rid of this limitation.

In conclusion, in terms of expanding the diversity and introducing variations, more
promising shapes would be propagated. Ultimately, this evolutionary system could be in
a widespread use during the design process.

REFERENCES

Bentley, P. and Corne, D. (1999). Evolutionary Design by Computers. Morgan Kaufmann, San

Francisco.

Bentley, P. and Corne, D. (2002). Creative Evolutionary Systems. Morgan Kaufmann, San

Francisco.

Gero, J. S. (1998). Emergence of shape semantics of architectureal shapes, Environment and Planning

B: Planning and Design 25(4): 577-600.

Gero, J. S. (1999). Recent design science research:Constructive memory in design thinking,

Architectural Science Review 42: 3-5.

Gero, J. S. and Yan, M. (1993). Discovering Emergent Shapes Using a Data-Driven Symbolic Model,

CAAD Futures '93: 3-17.

Goldschmidt, G. (1994). On visual design thinking: the vis kids of architecture, Design Studies 15(2):

158-175.

Gross, M. D. (1996). The Electronic Cocktail Napkin-a computational environment for working with

design diagrams, Design Studies 17(1): 53-69.

Holland, J. H. (1975). Adaptation in Natural and Artificial Systems. Michigan Press, Michigan.

Holland, J. H. (1999). Emergence :from chaos to order. Perseus Books, MA.

Knight, T. (2003a). Computing with ambiguity, Environment and Planning B: Planning and Design

30(2): 165-180.

Knight, T. (2003b). Computing with emergence, Environment and Planning B: Planning and Design

30(1): 125-155.

Koza, J. (1992). Genetic programming: On the programming of computers by means of natural

selection. The MIT Press, Cambridge, MA. (www.genetic-programming.com: The home page of

Genetic Programming Inc., a privately funded research group that dose research in applying

genetic programming)

Liu, Y.-T. (1991). Schematic-Designer: a knowledge-based CAD system for schematic design in

architecture, Design Studies 12(3): 151-167.

Liu, Y.-T. (1993). Connectionist approach to shape recognition and transformation', CAAD Futures '93:

18-36.

Liu, Y.-T. (1995). Some Phenomena of seeing shapes in design, Design Studies 16(3): 367-385.

Liu, Y.-T. (1996a). Restructuring shapes in terms of emergent subshapes: a computational and

cognitive model, Environment and Planning B: Planning and Design 23(3): 313-328.

Liu, Y.-T. (1996b). Is designing one search or two? A model of design thinking involving symbolism

and connectionism, Design Studies 17(4): 435-449.

Liu, Y.-T. (1998). Restructuring Shapes : Design Cognition and Computation. Proctor Publications.

Man, K. F., Tang, K. S., et al. (1999). Genetic algorithms :concepts and designs. Springer.

Mccormack, J. P. and Cagan, J. (2002). Supporting designers' hierarchies through parametric shape

 - 44 -

recognition, Environment and Planning B: Planning and Design 29(6): 913-931.

Minsky, M. (1988). The Society of Mind. Simon & Schuster, Inc., New York.

Mitchell, M. (1996). An Introduction to Genetic Algorithms. MIT Press, Cambridge, MA.

Mitchell, W. J. (1990). The logic of Architecture. MIT Press, Cambridge, MA.

Mitchell, W. J. (1992a). The uses of inconsistency in design, Principles of computer-aided design:

evaluating and predicting design performance: 1-13.

Mitchell, W. J. (1992b). A Computational View of Design Creativity, Modelling Creativity and

Knowledge-Based Creative Design: 25-42.

Oxman, R. (2002). The thinking eye: visual re-cognition in design emergence, Design Studies 23(2):

135-164.

Roseman, M. and Gero, J. S. (1996). The Generation of Form Using an Evolutionary Approach,

Artificial Intelligence in Design '96: 643-662.

Rosenman, M. and Gero, J. (1999). Evolving Designs by Generating Useful Complex Gene

Structures. in Bentley, Peter (Eds),Evolutionary Design by Computers, Morgan Kaufmann.

Rowe, C. and Slutzky, R. (1997). Transparency. Birkhauser Verlag, Berlin.

Schon, D. A. and Wiggins, G. (1992). Kinds of seeing and their functions in designing, Design Studies

13(2): 135-156.

Simon, H. A. (1981). The Sciences of the Artificial. MIT Press, Cambridge, MA.

Soufi, B. and Edmonds, E. (1996). The cognitive basis of emergence: implications for design support,

Design Studies 17(4): 451-463.

Stiny, G. and Mitchell, W. J. (1978). The Palladian grammar, Environment and Planning B: Planning

and Design 5(1): 5-18.

Stiny, G. (1980). Introduction to shape and shape grammar, Environment and Planning B: Planning

and Design 7(3): 343-351.

Stiny, G. (1990). What designers do that computer should. in M. Mccullough, W.J. Mitchell, and P.

Purcell (Eds),The electronic design studio, MIT Press, Cambridge, MA: 17-30.

Stiny, G. (1993). Emergence and Continuity in Shape Grammar, CAAD Futures '93: 37-54.

Takehiko, N. (1990). Shape Recognition and Transformation. in M. Mccullough, W.J. Mitchell, and P.

Purcell (Eds),The electronic design studio, MIT Press, Cambridge, MA: 149-170.

Testa, P., O'reilly, U.-M., et al. (2000). AGENCY GP: Programming for Architecture Design,

ACADIA 2000: 227-230.

Testa, P., O'reilly, U.-M., et al. (2001). Emergent Design: a crosscutting research program and design

curriculum integrating architecture and artificial intelligence, Environment and Planning B:

Planning and Design 28(4): 481-498.

Ueda, K. (2001). Synthesis and emergence - research overview, Artificial Intelligence in Engineering

15: 321-327.

 - 45 -

APPENDIX I Activations of Single-Gene Chromosomes

Fweight Graphic Outputs Coding Strings

>0.85

Cromosome13_Weight: 87.5%_000000001000000000000000000

>0.80

Cromosome13_Weight: 87.5%_000000001000000000000000000

Cromosome04_Weight: 83.3%_000010000000000000000000000
Cromosome10_Weight: 83.3%_000000000010000000000000000
Cromosome12_Weight: 83.3%_000000000000100000000000000
Cromosome14_Weight: 83.3%_000000000000001000000000000
Cromosome16_Weight: 83.3%_000000000000000010000000000
Cromosome22_Weight: 83.3%_000000000000000000000010000

>0.75

Cromosome13_Weight: 87.5%_000000001000000000000000000

Cromosome04_Weight: 83.3%_000010000000000000000000000
Cromosome10_Weight: 83.3%_000000000010000000000000000
Cromosome12_Weight: 83.3%_000000000000100000000000000
Cromosome14_Weight: 83.3%_000000000000001000000000000
Cromosome16_Weight: 83.3%_000000000000000010000000000
Cromosome22_Weight: 83.3%_000000000000000000000010000

Cromosome05_Weight: 79.2%_000001000000000000000000000
Cromosome07_Weight: 79.2%_000000010000000000000000000
Cromosome09_Weight: 79.2%_000000000100000000000000000
Cromosome17_Weight: 79.2%_000000000000000001000000000
Cromosome19_Weight: 79.2%_000000000000000000010000000
Cromosome21_Weight: 79.2%_000000000000000000000100000

>0.7

Cromosome13_Weight: 87.5%_000000001000000000000000000

Cromosome04_Weight: 83.3%_000010000000000000000000000
Cromosome10_Weight: 83.3%_000000000010000000000000000
Cromosome12_Weight: 83.3%_000000000000100000000000000
Cromosome14_Weight: 83.3%_000000000000001000000000000
Cromosome16_Weight: 83.3%_000000000000000010000000000
Cromosome22_Weight: 83.3%_000000000000000000000010000

Cromosome05_Weight: 79.2%_000001000000000000000000000
Cromosome07_Weight: 79.2%_000000010000000000000000000
Cromosome09_Weight: 79.2%_000000000100000000000000000
Cromosome17_Weight: 79.2%_000000000000000001000000000
Cromosome19_Weight: 79.2%_000000000000000000010000000
Cromosome21_Weight: 79.2%_000000000000000000000100000

Cromosome08_Weight: 75 %_000000001000000000000000000
Cromosome18_Weight: 75 %_000000000000000000100000000

PROPAGATING FIGURES - 46 -

>0.6

Cromosome13_Weight: 87.5%_000000001000000000000000000

Cromosome04_Weight: 83.3%_000010000000000000000000000
Cromosome10_Weight: 83.3%_000000000010000000000000000
Cromosome12_Weight: 83.3%_000000000000100000000000000
Cromosome14_Weight: 83.3%_000000000000001000000000000
Cromosome16_Weight: 83.3%_000000000000000010000000000
Cromosome22_Weight: 83.3%_000000000000000000000010000

Cromosome05_Weight: 79.2%_000001000000000000000000000
Cromosome07_Weight: 79.2%_000000010000000000000000000
Cromosome09_Weight: 79.2%_000000000100000000000000000
Cromosome17_Weight: 79.2%_000000000000000001000000000
Cromosome19_Weight: 79.2%_000000000000000000010000000
Cromosome21_Weight: 79.2%_000000000000000000000100000

Cromosome08_Weight: 75 %_000000001000000000000000000
Cromosome18_Weight: 75 %_000000000000000000100000000

Cromosome01_Weight: 62.5%_010000000000000000000000000
Cromosome03_Weight: 62.5%_000100000000000000000000000
Cromosome11_Weight: 62.5%_000000000001000000000000000
Cromosome15_Weight: 62.5%_000000000000000100000000000
Cromosome23_Weight: 62.5%_000000000000000000000001000
Cromosome25_Weight: 62.5%_000000000000000000000000010

>0.5

Cromosome13_Weight: 87.5%_000000001000000000000000000

Cromosome04_Weight: 83.3%_000010000000000000000000000
Cromosome10_Weight: 83.3%_000000000010000000000000000
Cromosome12_Weight: 83.3%_000000000000100000000000000
Cromosome14_Weight: 83.3%_000000000000001000000000000
Cromosome16_Weight: 83.3%_000000000000000010000000000
Cromosome22_Weight: 83.3%_000000000000000000000010000

Cromosome05_Weight: 79.2%_000001000000000000000000000
Cromosome07_Weight: 79.2%_000000010000000000000000000
Cromosome09_Weight: 79.2%_000000000100000000000000000
Cromosome17_Weight: 79.2%_000000000000000001000000000
Cromosome19_Weight: 79.2%_000000000000000000010000000
Cromosome21_Weight: 79.2%_000000000000000000000100000

Cromosome08_Weight: 75 %_000000001000000000000000000
Cromosome18_Weight: 75 %_000000000000000000100000000

Cromosome01_Weight: 62.5%_010000000000000000000000000
Cromosome03_Weight: 62.5%_000100000000000000000000000
Cromosome11_Weight: 62.5%_000000000001000000000000000
Cromosome15_Weight: 62.5%_000000000000000100000000000
Cromosome23_Weight: 62.5%_000000000000000000000001000
Cromosome25_Weight: 62.5%_000000000000000000000000010

Cromosome00_Weight: 62.5%_100000000000000000000000000
Cromosome02_Weight: 62.5%_001000000000000000000000000
Cromosome06_Weight: 62.5%_000000100000000000000000000
Cromosome20_Weight: 62.5%_000000000000000000001000000
Cromosome24_Weight: 62.5%_000000000000000000000000100
Cromosome26_Weight: 62.5%_000000000000000000000000001

PROPAGATING FIGURES - 47 -

APPENDIX II System Codes

//windows

 string $window = `window -title "Genetic Propagating"
 -widthHeight 400 55`;
 string $tabs = `tabLayout`;
 string $tab1 = `columnLayout -columnAttach "both" 12 -rowSpacing 8 -columnWidth 200`;

 frameLayout -label "PolyCube" -labelAlign "center" -borderStyle "in";
 rowLayout ;
 iconTextButton -style "iconAndTextVertical" -image1 "cube.xpm" -w 170
 -label "cube" -ann "Use this tool, you could creat a polyCube." -command
"polyCube";
 setParent ..;
 setParent ..;

 frameLayout -label "Control Tools" -labelAlign "center" -borderStyle "out";
 rowLayout -numberOfColumns 3 -columnWidth3 60 60 60 ;
 toolCollection;
 toolButton
 -tool selectSuperContext
 -toolImage1 selectSuperContext "aselect.xpm" -iol select;
 toolButton
 -tool moveSuperContext
 -toolImage1 moveSuperContext "move_M.xpm" -iol move;
 toolButton
 -tool scaleSuperContext
 -toolImage1 scaleSuperContext "scale_M.xpm" -iol scale;
 setParent ..;
 setParent ..;
 frameLayout -label "Random Generation" -labelAlign "center" -borderStyle "etchedIn";
 columnLayout -columnAttach "both" 12 -rowSpacing 8 -columnWidth 170;

 button -label "Select Object" -ann "Use this tool to set the parent." -command
"selectObj();";
 global string $select = "selectCube";
 button -label "Generate Gene" -ann "The first step to generate the Gene." -command
"generateGene($select);";

 button -label "Propagating" -ann "Propagating the configurations." -command
"propagate($generation, $kk);";

 setParent ..;
 setParent ..;
 frameLayout -label "Next Generation" -labelAlign "bottom" -borderStyle "etchedIn";
 columnLayout -columnAttach "both" 12 -rowSpacing 8 -columnWidth 170;

 button -label "Next Generation" -ann "Go to the Next generation." -command
"nextGeneration($generation, $kk);";
 setParent ..;
 setParent ..;

 frameLayout -label "Control former Generation" -labelAlign "bottom" -borderStyle "etchedIn";
 columnLayout -columnAttach "both" 12 -rowSpacing 8 -columnWidth 170;

 button -label "Reset generation intended" -ann "Use this tool to set the parent."
-command "resetG();";

 button -label "Control generation reseted" -ann "Use this tool to set the parent."
-command "controlResetG($currentG);";
 text -label " Go to Next Stage" -align "center" ;
 setParent ..;
 setParent ..;
 frameLayout -label "Information" -labelAlign "bottom" -borderStyle "etchedOut";
 columnLayout -columnAttach "both" 12 -rowSpacing 8 -columnWidth 170;

 text -label " This tool is created by Michael" -align "center" -font "obliqueLabelFont";
 //text -label " NCTU Architecture Department" -align "center" -font
"obliqueLabelFont";
 iconTextStaticLabel -st "iconAndTextVertical" -h 140 -i1 "BOX.bmp" -l "cube";

 setParent ..;
 setParent ..;

 setParent ..;

 string $tab2 = `columnLayout -columnAttach "both" 12 -rowSpacing 8 -columnWidth 200`;
 frameLayout -label "Genetic Environment Settings" -labelAlign "bottom" -borderStyle "etchedIn";
 columnLayout -columnAttach "both" 12 -rowSpacing 8 -columnWidth 170;

 button -label "Set Complex Value intended" -ann "Use this tool to set the Complex
Value." -command "setComplex();";
 button -label "Set PopulationSize intended" -ann "Use this tool to set the Population
Size." -command "setPopulationSize();";

PROPAGATING FIGURES - 48 -

 button -label "Propagating" -ann "Use this tool to set the parent." -command
"generGeneCode($complexValue,$populationSize,$generation);";
 button -label "GotoMatingPool" -ann "Put cuurent gene into Mating Pool."
-command "gotoMatingPool($geneCodedString);";

 setParent ..;
 setParent ..;

 frameLayout -label "Crossover Operation" -labelAlign "bottom" -borderStyle "etchedIn";
 columnLayout -columnAttach "both" 12 -rowSpacing 8 -columnWidth 170;

 button -label "Choose Parents" -ann "Choosing Parents in Mating Pool." -command
"chooseParentinPool($poolGathering);";
 button -label "1 One-Point Crossover" -ann "One-Point Crossover Operation."
-command "onePcrossover($geneParent1,$geneParent2, $generation);";
 button -label "2 Two-Point Crossover" -ann "two-Point Crossover Operation."
-command "twoPcrossover($geneParent1,$geneParent2, $generation);";
 button -label "3 Three-Point Crossover" -ann "three-Point Crossover Operation."
-command "threePcrossover($geneParent1,$geneParent2, $generation);";
 setParent ..;
 setParent ..;

 frameLayout -label "Mutation & Heuristic Operation" -labelAlign "bottom" -borderStyle "etchedIn";
 columnLayout -columnAttach "both" 12 -rowSpacing 8 -columnWidth 170;
 button -label "single Mutation" -ann "Single-Point Mutation Operation." -command
"mutationGene($poolGathering, $generation);";
 button -label "Multiple Mutation" -ann "Multiple-Point Mutation Operation."
-command "mutationGene1($poolGathering, $generation);";
 button -label "Heuristic Search" -ann "Heuristic Operation." -command
"heuristicGene($poolGathering, $generation);";
 setParent ..;
 setParent ..;

 frameLayout -label "Reproduction Operation" -labelAlign "bottom" -borderStyle "etchedIn";
 columnLayout -columnAttach "both" 12 -rowSpacing 8 -columnWidth 170;
 button -label "Reproduction" -ann "Reproducting the Fitness Offspring." -command
"reproductionGene($poolGathering, $generation);";
 setParent ..;
 setParent ..;

 frameLayout -label "Next Generation" -labelAlign "bottom" -borderStyle "etchedIn";
 columnLayout -columnAttach "both" 12 -rowSpacing 8 -columnWidth 170;

 button -label "Next Generation" -ann "Go to the Next generation." -command
"nextGeneration($generation, $kk);";
 setParent ..;
 setParent ..;

 frameLayout -label "Control former Generation" -labelAlign "bottom" -borderStyle "etchedIn";
 columnLayout -columnAttach "both" 12 -rowSpacing 8 -columnWidth 170;

 button -label "Reset generation intended" -ann "Use this tool to set the parent."
-command "resetG();";

 button -label "Control generation reseted" -ann "Use this tool to set the parent."
-command "controlResetG($currentG);";
 //text -label " Initializing again or Terminate!" -align "center" ;
 setParent ..;
 setParent ..;

 setParent ..;
 tabLayout -edit
 -tabLabel $tab1 "Initilizeing"
 -tabLabel $tab2 "Genetic Operations"
 $tabs;

 showWindow;

PROPAGATING FIGURES - 49 -

// 1. Selecting Stage

global proc selectObj(){
 string $select[] = `ls -selection`;
 global int $generation;
 if(size($select)>1){
 string $testSelect = `confirmDialog -message "Do you want to set
these two objects as the parent?"
 -button "OK" -button "Cancel"
-defaultButton "OK" -cancelButton "Cancel" -dismissString "Cancel"`;
 if($testSelect == "OK"){
 duplicate -name selectCube1;
 string $name1 = $select[0] + ".visibility";
 string $name2 = $select[1] + ".visibility";
 setAttr $name1 0;
 setAttr $name2 0;
 select -cl ;
 }
 $generation = $generation + 1;
 string $resetGindexeneration = "The current Generation is " +
$generation + " !!" +"\n";
 global string $generationIform;
 $generationIform = "generation " + $generation;
 print $resetGindexeneration;
 }else{
 string $disselect= `confirmDialog -message "Warning: You didn't
choose the enough objects!!" -button "OK" -defaultButton "OK" -dismissString
"Cancel"`;
 if($disselect == "OK" || $disselect == "cancel") select -cl;
 }
}

global proc generateGene(string $name){

 string $name1 = $name + 1;
 string $name2 = $name + 2;
 float $transCube1[] = `xform -q -t $name1`;
 float $scaleCube1[] = `xform -q -r -s $name1`;
 float $transCube2[] = `xform -q -t $name2`;
 float $scaleCube2[] = `xform -q -r -s $name2`;
 global float $gtransCube1[];
 global float $gscaleCube1[];
 global float $gtransCube2[];
 global float $gscaleCube2[];
 for ($i = 0; $i<size($transCube1); $i++)
 $gtransCube1[$i] = $transCube1[$i];
 for ($j = 0; $j<size($scaleCube1); $j++)
 $gscaleCube1[$j] = $scaleCube1[$j];
 for ($i = 0; $i<size($transCube1); $i++)
 $gtransCube2[$i] = $transCube2[$i];
 for ($j = 0; $j<size($scaleCube1); $j++)
 $gscaleCube2[$j] = $scaleCube2[$j];

 //chromosome grid X 座標

 float $chromx1 = $gtransCube1[0] - ($gscaleCube1[0] / 2);
 float $chromx2 = $gtransCube1[0] + ($gscaleCube1[0] / 2);
 float $chromx3 = $gtransCube2[0] - ($gscaleCube2[0] / 2);
 float $chromx4 = $gtransCube2[0] + ($gscaleCube2[0] / 2);

 float $chromX[] = { $chromx1, $chromx2, $chromx3, $chromx4 };
 float $cXafterSort[] = sort($chromX);

 //*********************
 //chromosome grid Y 座標

 float $chromy1 = $gtransCube1[1] - ($gscaleCube1[1]/ 2);
 float $chromy2 = $gtransCube1[1] + ($gscaleCube1[1]/ 2);
 float $chromy3 = $gtransCube2[1] - ($gscaleCube2[1]/ 2);
 float $chromy4 = $gtransCube2[1] + ($gscaleCube2[1]/ 2);

 float $chromY[] = { $chromy1, $chromy2, $chromy3, $chromy4 };
 float $cYafterSort[] = sort($chromY);

 //*********************
 //chromosome grid Z 座標

 float $chromz1 = $gtransCube1[2] - ($gscaleCube1[2] / 2);
 float $chromz2 = $gtransCube1[2] + ($gscaleCube1[2] / 2);
 float $chromz3 = $gtransCube2[2] - ($gscaleCube2[2] / 2);
 float $chromz4 = $gtransCube2[2] + ($gscaleCube2[2] / 2);

 float $chromZ[] = { $chromz1, $chromz2, $chromz3, $chromz4 };
 float $cZafterSort[] = sort($chromZ);

 //產生 Chromosome 的中心座標與邊長

PROPAGATING FIGURES - 50 -

 //Chromosome X 中心座標

 float $Px0 = ($cXafterSort[0] + $cXafterSort[1])/2 ;
 float $Px1 = ($cXafterSort[1] + $cXafterSort[2])/2 ;
 float $Px2 = ($cXafterSort[2] + $cXafterSort[3])/2 ;

 //chromosome X 的邊長

 float $Dx0 = $cXafterSort[1] - $cXafterSort[0] ;
 float $Dx1 = $cXafterSort[2] - $cXafterSort[1] ;
 float $Dx2 = $cXafterSort[3] - $cXafterSort[2] ;

 //Chromosome Y 中心座標

 float $Py0 = ($cYafterSort[0] + $cYafterSort[1])/2 ;
 float $Py1 = ($cYafterSort[1] + $cYafterSort[2])/2 ;
 float $Py2 = ($cYafterSort[2] + $cYafterSort[3])/2 ;

 //chromosome Y 的邊長

 float $Dy0 = $cYafterSort[1] - $cYafterSort[0] ;
 float $Dy1 = $cYafterSort[2] - $cYafterSort[1] ;
 float $Dy2 = $cYafterSort[3] - $cYafterSort[2] ;

 //Chromosome Z 中心座標

 float $Pz0 = ($cZafterSort[0] + $cZafterSort[1])/2 ;
 float $Pz1 = ($cZafterSort[1] + $cZafterSort[2])/2 ;
 float $Pz2 = ($cZafterSort[2] + $cZafterSort[3])/2 ;

 //chromosome Z 的邊長

 float $Dz0 = $cZafterSort[1] - $cZafterSort[0] ;
 float $Dz1 = $cZafterSort[2] - $cZafterSort[1] ;
 float $Dz2 = $cZafterSort[3] - $cZafterSort[2] ;

 global float $coordX[2];
 global float $coordY[2];
 global float $coordZ[2];

 $coordX[0]=$Px0;
 $coordX[1]=$Px1;
 $coordX[2]=$Px2;

 $coordY[0]=$Py0;
 $coordY[1]=$Py1;
 $coordY[2]=$Py2;

 $coordZ[0]=$Pz0;
 $coordZ[1]=$Pz1;
 $coordZ[2]=$Pz2;

 float $Pxarray[] = {$Px0, $Px1, $Px2};
 float $Pyarray[] = {$Py0, $Py1, $Py2};
 float $Pzarray[] = {$Pz0, $Pz1, $Pz2};
 float $Dxarray[] = {$Dx0, $Dx1, $Dx2};
 float $Dyarray[] = {$Dy0, $Dy1, $Dy2};
 float $Dzarray[] = {$Dz0, $Dz1, $Dz2};
 $NumberX = size($Pxarray);
 $NumberY = size($Pyarray);
 $NumberZ = size($Pzarray);

 global matrix $cube[27][6];

 //Px,Dx 的陣列輸入***********************************
 for ($j = 0; $j < $NumberX ; $j++) {
 $jjmax = $NumberY * $NumberZ;
 for ($jj=0; $jj<$jjmax; $jj++){
 $cube[$j*9+$jj][0] = $Pxarray[$j] ;
 $cube[$j*9+$jj][1] = $Dxarray[$j] ;
 }
 }

 //Py,Dy 的陣列輸入***********************************
 for ($j = 0; $j < $NumberX ; $j++) {
 for ($k = 0; $k < $NumberY; $k++){
 $kkmax = $NumberZ;
 for ($kk=0; $kk<$kkmax; $kk++){
 $cube[$j*9+3*$k+$kk][2] = $Pyarray[$k] ;
 $cube[$j*9+3*$k+$kk][3] = $Dyarray[$k] ;
 }
 }
 }

 //Pz,Dz 的陣列輸入***********************************
 for ($j = 0; $j < $NumberX ; $j++) {

PROPAGATING FIGURES - 51 -

 for ($k = 0; $k < $NumberY; $k++){
 for ($m = 0; $m < $NumberZ ; $m++){
 $cube[$j*9+$k*3+$m][4] = $Pzarray[$m] ;
 $cube[$j*9+$k*3+$m][5] = $Dzarray[$m] ;
 }
 }

 }

 select $name1 $name2;
 duplicate -name usedCube1;
 delete $name1 $name2;
 string $used[] = `ls -sl`;
 select -cl;
 string $used1 = $used[0] + ".visibility";
 string $used2 = $used[1] + ".visibility";
 setAttr $used1 0;
 setAttr $used2 0;

 //設其他的材質為透明
 setAttr "lambert1.color" -type double3 0.739029 0.707506 0.95868;
 setAttr "lambert1.transparency" -type double3 0.9 0.9 0.9 ;

 global int $generation;
 int $indexg = ($generation-1)*27;
 for($kk=$indexg; $kk<$indexg+27; $kk++){
 int $kki = $kk-($generation-1)*27;
 string $chromoname;
 $chromoname = "chromo" + $kk;
 float $px = $cube[$kki][0] ;
 float $dx = $cube[$kki][1] ;
 float $py = $cube[$kki][2] ;
 float $dy = $cube[$kki][3] ;
 float $pz = $cube[$kki][4] ;
 float $dz = $cube[$kki][5] ;

 polyCube -w 1 -h 1 -d 1 -sx 1 -sy 1 -sz 1 -ax 0 1 0 -tx 1 -ch 1 -n
$chromoname;
 setAttr ($chromoname +".scaleX") $dx;
 setAttr ($chromoname +".scaleY") $dy;
 setAttr ($chromoname +".scaleZ") $dz;
 move -r $px $py $pz ;
 }
 select -cl;
}

global proc propagate(int $rG){
 setAttr "lambert1.color" -type double3 0.739029 0.707506 0.95868;
 setAttr "lambert1.transparency" -type double3 0.4 0.4 0.4 ;
 int $indexg = ($rG-1)*27;
 int $rkk;
 for($rkk=$indexg ; $rkk<$indexg+27; $rkk++){
 string $chromoname;
 $chromoname= "chromo" + $rkk;
 float $x = `rand 1` ;
 string $name = $chromoname + ".visibility" ;
 if ($x < 0.5){
 setAttr $name 1;
 }else{
 setAttr $name 0;
 }
 }
}

PROPAGATING FIGURES - 52 -

// 2. Initializing Stage

global proc setPopulationSize(){
 string $text;
 string $result = `promptDialog
 -title "Set the Size of Population"
 -message "Enter Desire Size:"
 -button "OK" -button "Cancel"
 -defaultButton "OK" -cancelButton "Cancel"
 -dismissString "Cancel"`;

 if ($result == "OK") {
 $text = `promptDialog -query -text`;
 //print $text;
 global string $populationSize;
 $populationSize = $text;
 }
}
global proc setComplex(){
 string $text;
 string $result = `promptDialog
 -title "Set the Fitness of gene Complex"
 -message "Enter Complex Value:"
 -button "OK" -button "Cancel"
 -defaultButton "OK" -cancelButton "Cancel"
 -dismissString "Cancel"`;

 if ($result == "OK") {
 $text = `promptDialog -query -text`;
 //print $text;
 global string $complexValue;
 $complexValue = $text;
 }
}
global procFitnessValue(){
 string $text;
 string $result = `promptDialog
 -title "Set the Size of Population"
 -message "Enter Desire Size:"
 -button "OK" -button "Cancel"
 -defaultButton "OK" -cancelButton "Cancel"
 -dismissString "Cancel"`;

 if ($result == "OK") {
 $text = `promptDialog -query -text`;
 //print $text;
 global string $RankValue;
 $RankValue = $text;
 }
}
proc string generGeneCode(int $fComplex, int $geneSize, int $nGeneration){

 global int $chromo[];
 global int $chromoselected[];
 global int $finalSelectedIndex;

 //int $chromo[];
 //int $chromoselected[];
 //int $finalSelectedIndex;

 int $weight[];
 int $weightRang[];
 int $weightSum[];
 int $ncol;
 int $nrow;

 for($ncol=0 ; $ncol<$geneSize ; $ncol++){
 for ($nrow =0 ; $nrow<27; $nrow++){
 $index = $ncol*27 + $nrow;
 $chromo[$index]= 0;
 }
 }

 for($ncol=0 ; $ncol<$geneSize ; $ncol++){
 for ($nrow =0 ; $nrow<$fComplex; $nrow++){
 $i = `rand 27`;
 int $nrowf =`trunc($i)`;
 $index = $ncol*27 + $nrowf;
 $chromo[$index]= 1;
 }
 }

 //***********************************
 //基因架構的產生
 global int $weight[];
 $weight = {25, 30, 25, 30, 40, 38, 25, 38, 36, 38, 40, 30, 40, 42, 40, 30, 40,
38, 36, 38, 25, 38, 40, 30, 25, 30, 25};

PROPAGATING FIGURES - 53 -

 clear $weightRang;
 for($ncol=0 ; $ncol<$geneSize ; $ncol++){
 for ($nrow =0 ; $nrow<27; $nrow++){
 $index = $ncol*27 + $nrow;
 if ($chromo[$index]== 1){
 $weightRang[$index] = $weight[$nrow];
 }else{
 $weightRang[$index] = 0;
 }
 }
 }

 //***********************************
 //比較十個基因 weight 的大小

 clear $weightSum;

 for($ncol=0 ; $ncol<$geneSize ; $ncol++){
 for ($nrow =0 ; $nrow<27; $nrow++){
 $index = $ncol*27 + $nrow;
 $weightSum[$ncol] = $weightSum[$ncol] +
$weightRang[$index];
 }
 }

 //將$wieghtSum[]依照大小排列
 global int $weightSumSort[];
 $weightSumSort = `sort $weightSum`;
 global int $weightSSmax;
 $weightSSmax = size($weightSumSort)-1;

 for ($i=0 ; $i<size($weightSum) ; $i++){
 if ($weightSumSort[$weightSSmax] == $weightSum[$i]){
 $finalSelectedIndex = $i;
 }
 }

 for ($nrow =0 ; $nrow<27; $nrow++){
 int $index = $finalSelectedIndex*27 + $nrow;
 $chromoselected[$nrow] = $chromo[$index];
 }

 for ($nrow =0 ; $nrow<27; $nrow++){
 int $index = $finalSelectedIndex*27 + $nrow;
 $chromoselected[$nrow] = $chromo[$index];
 }
 for ($i=0 ; $i<size($weightSum) ; $i++){
 if ($weightSumSort[$weightSSmax] == $weightSum[$i]){

 for ($j=0; $j<27; $j++){
 $index = $i*27 + $j;
 $indexG = $j+($nGeneration-1)*27;
 string $chromoname = "chromo" + $indexG;
 string $name = $chromoname + ".visibility" ;
 if ($chromo[$index] == 1){
 setAttr $name 1;
 }else{
 setAttr $name 0;
 }
 }
 }
 }

 string $abcde;
 for ($i=0; $i<27 ; $i++){
 string $abc = $chromoselected[$i];
 $abcde = $abcde + $abc;
 }

 string $outputStringIndex;
 if($finalSelectedIndex>9){
 $outputStringIndex = $finalSelectedIndex;
 }else{
 $outputStringIndex = "0" + $finalSelectedIndex;
 }

 $weightR = `sort $weight`;

 global int $geneFitSum ;
 $geneFitSum = 0;
 global int $fitPercent;
 for($i=0;$i<($fComplex+1);$i++){
 int $j = 26;
 $geneFitSum = $geneFitSum + $weightR[26-$i];
 }

PROPAGATING FIGURES - 54 -

 $fitPercent = `trunc ($weightSumSort[$weightSSmax]*100/$geneFitSum)`;

 global string $geneCodedString;
 string $abcdef = "IndexNum:" + $outputStringIndex +"_"+ "Weight:"+
$fitPercent + "%"+ $abcde + " ";
 $geneCodedString = $abcdef;
 print $geneCodedString;
 print ("\n");
 return $abcde;

}

//getMatingPool
global proc gotoMatingPool(string $choosedCode){

 string $addGeneration = `confirmDialog -message "Do you want to put this
population into Mating Pool" -button "OK"
 -button "Cancel" -defaultButton "OK" -cancelButton
"Cancel"
 -dismissString "Cancel"`;

 global string $poolGathering;
 if($addGeneration == "OK"){

 $poolGathering = $poolGathering + $choosedCode;
 int $sizeMP = (`size ($poolGathering)`)/50;
 print ("The Number of Parent in Mating Pool = " + $sizeMP);
 print ("\n");

 for ($i=0; $i<(size($poolGathering)/50);$i++){
 string $printone = `substring $poolGathering (1+$i*50)
(50+$i*50)`;
 print $printone;
 print ("\n");
 }

 }else{
 confirmDialog -message "You just cancel this assignment" -button
"OK"
 -defaultButton "OK";
 }

}

PROPAGATING FIGURES - 55 -

// 3. Propagating Stage

global proc chooseParentinPool(string $pgString){
//string $pgString;

//IndexNum:33_Weight:83%111011111001100100101010010

 global string $mpool[];
 global string $mpoolweiString[]; //string array
 global int $mpoolweiValue[]; //int array

 for ($i=0; $i<(size($pgString)/50);$i++){
 $mpool[$i] = `substring $pgString (23+$i*50) (49+$i*50)`;
 $mpoolweiString[$i] = `substring $pgString (20+$i*50) (21+$i*50)`;
 print $mpool[$i];
 print ("\n");
 print $mpoolweiString[$i];
 print ("\n");

 string $stringTOintA;
 string $stringTOintB;
 $stringTOintA = `substring $mpoolweiString[$i] 1 1`;
 $stringTOintB = `substring $mpoolweiString[$i] 2 2`;

 int $digit10th;
 int $digit1th;

 if ($stringTOintA == "1"){
 $digit10th = 10 ;
 }else if($stringTOintA == "2"){
 $digit10th = 20 ;
 }else if($stringTOintA == "3"){
 $digit10th = 30 ;
 }else if($stringTOintA == "4"){
 $digit10th = 40 ;
 }else if($stringTOintA == "5"){
 $digit10th = 50 ;
 }else if($stringTOintA == "6"){
 $digit10th = 60 ;
 }else if($stringTOintA == "7"){
 $digit10th = 70 ;
 }else if($stringTOintA == "8"){
 $digit10th = 80 ;
 }else if($stringTOintA == "9"){
 $digit10th = 90 ;
 }else{
 $digit10th = 0 ;
 }

 if ($stringTOintB == "1"){
 $digit1th = 1 ;
 }else if($stringTOintB == "2"){
 $digit1th = 2 ;
 }else if($stringTOintB == "3"){
 $digit1th = 3 ;
 }else if($stringTOintB == "4"){
 $digit1th = 4 ;
 }else if($stringTOintB == "5"){
 $digit1th = 5 ;
 }else if($stringTOintB == "6"){
 $digit1th = 6 ;
 }else if($stringTOintB == "7"){
 $digit1th = 7 ;
 }else if($stringTOintB == "8"){
 $digit1th = 8 ;
 }else if($stringTOintB == "9"){
 $digit1th = 9 ;
 }else{
 $digit1th = 0 ;
 }

 $mpoolweiValue[$i] = $digit10th + $digit1th;

 print $mpoolweiValue[$i]; // string array
 print ("\n");
 }

 global int $mpoolweiValueS[];
 $mpoolweiValueS = `sort $mpoolweiValue`;

 int $indexMPmax1 = size($mpoolweiValueS)-1;
 int $indexMPmax2 = size($mpoolweiValueS)-2;
 global int $geneParentIndex1;
 global int $geneParentIndex2;

 global string $geneParent1;

PROPAGATING FIGURES - 56 -

 global string $geneParent2;

 for ($n= 0; $n<size($mpoolweiValue); $n++){
 if ($mpoolweiValueS[$indexMPmax1] == $mpoolweiValue[$n]){
 $geneParentIndex1 = $n;
 $geneParent1 = $mpool[$n];
 if ($n==(size($mpoolweiValue)-1)){
 $geneParentIndex2 = $n-1;
 $geneParent2 = $mpool[$geneParentIndex2];
 }else if($n == 0){
 $geneParentIndex2 = $n+1;
 $geneParent2 = $mpool[$geneParentIndex2];

 }else{
 $geneParentIndex2 = $n-1;
 $geneParent2 = $mpool[$geneParentIndex2];
 }
 }
 }
global proc string onePcrossover(string $parent1, string $parent2, int
$nGeneration){

 int $onePIndex1 = trunc (`rand 2 26`);
 print ($onePIndex1+"\n");

 string $new1Pchild = `substring $parent1 1 $onePIndex1` + `substring
$parent2 ($onePIndex1+1) 27`;

 string $new1PchildCon[];
 for ($i=1; $i<28; $i++){
 $new1PchildCon[$i] = `substring $new1Pchild $i $i`;
 }

 for ($j=0; $j<27; $j++){
 int $indexG;
 $indexG = $j+($nGeneration-1)*27;
 string $chromoname = "chromo" + $indexG;
 string $name = $chromoname + ".visibility" ;
 if ($new1PchildCon[$j] == "1"){
 setAttr $name 1;
 }else{
 setAttr $name 0;
 }
 }

 print ("Index :" + $onePIndex1 + "\n"
+$parent1+"\n"+$parent2+"\n"+"new :"+"\n"+$new1Pchild+"\n");
 print ("\n");
 return $new1Pchild;
}
global proc string twoPcrossover(string $parent1, string $parent2, int
$nGeneration){

 int $twoPIndex1 = trunc (`rand 3 26`);
 int $twoPIndex2;
 if($twoPIndex1 > 13){
 $twoPIndex2 = trunc (`rand 1 $twoPIndex1`);
 }else{
 $twoPIndex2 = trunc (`rand ($twoPIndex1+2) 26`);
 }

 int $pIndex[]= {$twoPIndex1, $twoPIndex2};
 $pIndex = `sort $pIndex`;
 int $pDifference1 = $pIndex[1] - $pIndex[0];
 int $pDifference2 = 26 - $pIndex[1];

 int $twoPindex1Len = trunc (`rand 1 $pDifference1`);
 int $twoPindex2Len = trunc (`rand 1 $pDifference2`);

 int $twoPindex[];
 $twoPindex[0] = $pIndex[0];
 $twoPindex[1] = $pIndex[0]+$twoPindex1Len;
 $twoPindex[2] = $pIndex[1];
 $twoPindex[3] = $pIndex[1]+$twoPindex2Len;
 $new2Pchild = `substring $parent1 1 $twoPindex[0]` + `substring $parent2
($twoPindex[0]+1) $twoPindex[1]`+
 `substring $parent1 ($twoPindex[1]+1)
$twoPindex[2]` + `substring $parent2 ($twoPindex[2]+1) $twoPindex[3]`+
 `substring $parent1 ($twoPindex[3]+1) 27`;

 string $new2PchildCon[];
 for ($i=1; $i<28; $i++){
 $new2PchildCon[$i] = `substring $new2Pchild $i $i`;
 }
 for ($j=0; $j<27; $j++){

PROPAGATING FIGURES - 57 -

 int $indexG;
 $indexG = $j+($nGeneration-1)*27;
 string $chromoname = "chromo" + $indexG;
 string $name = $chromoname + ".visibility" ;
 if ($new2PchildCon[$j] == "1"){
 setAttr $name 1;
 }else{
 setAttr $name 0;
 }
 }

 print ("Index_1 :" + $twoPindex[0] + "\n" + "Length_1 :" +
$twoPindex1Len + "\n" +
 "Index_2 :" + $twoPindex[2] + "\n" + "Length_2 :" +
$twoPindex2Len + "\n" + $new2Pchild + "\n");
 print ("Parent :" + "\n" + $parent1 + "\n" + $parent2 + "\n");
 print ("\n");
 return $new2Pchild;
}
global proc string threePcrossover(string $parent1, string $parent2, int
$nGeneration){

 int $threePIndex1 = trunc (`rand 4 26`);
 int $threePIndex2;
 int $threePIndex3;

 if($threePIndex1 > 18){
 $threePIndex2 = trunc (`rand 1 ($threePIndex1-1)`);
 if($threePIndex2 > ($threePIndex1/2)){
 $threePIndex3 = trunc (`rand 1 ($threePIndex2-1)`);
 }else{
 $threePIndex3 = trunc (`rand ($threePIndex2+2)
($threePIndex1-1)`);
 }
 }else if(9 < $threePIndex1 < 18){
 $threePIndex2 = trunc (`rand 2 ($threePIndex1-1)`);
 $threePIndex3 = trunc (`rand ($threePIndex1+2) 26`);
 }else{
 $threePIndex2 = trunc (`rand ($threePIndex1+2) 26`);
 if($threePIndex2 > (($threePIndex1+27)/2)){
 $threePIndex3 = trunc (`rand ($threePIndex1+2)
($threePIndex2-1)`);
 }else{
 $threePIndex3 = trunc (`rand ($threePIndex2+2) 26`);
 }
 }

 int $pIndex3[]= {$threePIndex1, $threePIndex2, $threePIndex3};
 $pIndex3 = `sort $pIndex3`;
 int $p3Difference1 = $pIndex3[1] - $pIndex3[0];
 int $p3Difference2 = $pIndex3[2] - $pIndex3[1];
 int $p3Difference3 = 26 - $pIndex3[2];

 int $threePindex1Len = trunc (`rand 1 $p3Difference1`);
 int $threePindex2Len = trunc (`rand 1 $p3Difference2`);
 int $threePindex3Len = trunc (`rand 1 $p3Difference3`);

 int $threePindex[];
 $threePindex[0] = $pIndex3[0];
 $threePindex[1] = $pIndex3[0]+$threePindex1Len;
 $threePindex[2] = $pIndex3[1];
 $threePindex[3] = $pIndex3[1]+$threePindex2Len;
 $threePindex[4] = $pIndex3[2];
 $threePindex[5] = $pIndex3[2]+$threePindex3Len;

 //print $threePindex;

 $new3Pchild = `substring $parent1 1 $threePindex[0]` + `substring $parent2
($threePindex[0]+1) $threePindex[1]`+
 `substring $parent1 ($threePindex[1]+1)
$threePindex[2]` + `substring $parent2 ($threePindex[2]+1) $threePindex[3]`+
 `substring $parent1 ($threePindex[3]+1)
$threePindex[4]` + `substring $parent2 ($threePindex[4]+1) $threePindex[5]`+
 `substring $parent1 ($threePindex[5]+1) 27`;

 string $new3PchildCon[];
 for ($i=1; $i<28; $i++){
 $new3PchildCon[$i] = `substring $new3Pchild $i $i`;
 }
 for ($j=0; $j<27; $j++){
 int $indexG;
 $indexG = $j+($nGeneration-1)*27;
 string $chromoname = "chromo" + $indexG;
 string $name = $chromoname + ".visibility" ;
 if ($new3PchildCon[$j] == "1"){
 setAttr $name 1;

PROPAGATING FIGURES - 58 -

 }else{
 setAttr $name 0;
 }
 }

 print ("Index_1 :" + $threePindex[0] + "\n" + "Length_1 :" +
$threePindex1Len + "\n" +
 "Index_2 :" + $threePindex[2] + "\n" + "Length_2 :" +
$threePindex2Len + "\n" +
 "Index_3 :" + $threePindex[4] + "\n" + "Length_3 :" +
$threePindex3Len + "\n" + $new3Pchild + "\n");
 print ("Parent :" + "\n" + $parent1 + "\n" + $parent2 + "\n");
 print ("\n");
 return $new3Pchild;
}

global proc mutationGene(string $pgString, int $nGeneration){
 global string $mpool[];
 global string $mpoolweiString[]; //string array
 global int $mpoolweiValue[]; //int array

 for ($i=0; $i<(size($pgString)/50);$i++){
 $mpool[$i] = `substring $pgString (23+$i*50) (49+$i*50)`;
 $mpoolweiString[$i] = `substring $pgString (20+$i*50) (21+$i*50)`;
 string $stringTOintA;
 string $stringTOintB;
 $stringTOintA = `substring $mpoolweiString[$i] 1 1`;
 $stringTOintB = `substring $mpoolweiString[$i] 2 2`;

 int $digit10th;
 int $digit1th;
 e[$i] = $digit10th + $digit1th;
 }
 global int $mpoolweiValueS[];
 $mpoolweiValueS = `sort $mpoolweiValue`;
 string $mutationString;
 string $mutationArray[];
 int $idexMmax = size($mpoolweiValueS)-1;
 for ($i=0;$i<size($mpoolweiValue);$i++){
 if($mpoolweiValueS[$idexMmax] == $mpoolweiValue[$i]){
 $mutationString = $mpool[$i];
 }
 }
 for ($i=1; $i<(size($mutationString)+1);$i++){
 $mutationArray[$i] = `substring $mutationString $i $i`;
 }
 print ("old :");
 print ("\n");
 for($i=0; $i<27;$i++){
 print $mutationArray[$i];
 }
 print ("\n");
 int $indexMdigit = trunc(`rand 1 27`);
 print ("Mutation Location : "+$indexMdigit+"\n");
 if($mutationArray[$indexMdigit] == "0"){
 $mutationArray[$indexMdigit] = "1";
 }else{
 $mutationArray[$indexMdigit] = "0";
 }
 print ("new:");
 print ("\n");
 for($i=0; $i<27;$i++){
 print $mutationArray[$i];
 }
 print ("\n");
 print ("\n");
 for ($j=0; $j<27; $j++){
 int $indexG;
 $indexG = $j+($nGeneration-1)*27;
 string $chromoname = "chromo" + $indexG;
 string $name = $chromoname + ".visibility" ;
 if ($mutationArray[$j] == "1"){
 setAttr $name 1;
 }else{
 setAttr $name 0;
 }
 }
}
global proc mutationGene1(string $pgString, int $nGeneration){
 global string $mpool[];
 global string $mpoolweiString[]; //string array
 global int $mpoolweiValue[]; //int array
 for ($i=0; $i<(size($pgString)/50);$i++){
 $mpool[$i] = `substring $pgString (23+$i*50) (49+$i*50)`;
 $mpoolweiString[$i] = `substring $pgString (20+$i*50) (21+$i*50)`;
 string $stringTOintA;
 string $stringTOintB;
 $stringTOintA = `substring $mpoolweiString[$i] 1 1`;

PROPAGATING FIGURES - 59 -

 $stringTOintB = `substring $mpoolweiString[$i] 2 2`;
 int $digit10th;
 int $digit1th;
 if ($stringTOintA == "1"){
 $digit10th = 10 ;
 }else if($stringTOintA == "2"){
 $digit10th = 20 ;
 }else if($stringTOintA == "3"){
 $digit10th = 30 ;
 }else if($stringTOintA == "4"){
 $digit10th = 40 ;
 }else if($stringTOintA == "5"){
 $digit10th = 50 ;
 }else if($stringTOintA == "6"){
 $digit10th = 60 ;
 }else if($stringTOintA == "7"){
 $digit10th = 70 ;
 }else if($stringTOintA == "8"){
 $digit10th = 80 ;
 }else if($stringTOintA == "9"){
 $digit10th = 90 ;
 }else{
 $digit10th = 0 ;
 }
 if ($stringTOintB == "1"){
 $digit1th = 1 ;
 }else if($stringTOintB == "2"){
 $digit1th = 2 ;
 }else if($stringTOintB == "3"){
 $digit1th = 3 ;
 }else if($stringTOintB == "4"){
 $digit1th = 4 ;
 }else if($stringTOintB == "5"){
 $digit1th = 5 ;
 }else if($stringTOintB == "6"){
 $digit1th = 6 ;
 }else if($stringTOintB == "7"){
 $digit1th = 7 ;
 }else if($stringTOintB == "8"){
 $digit1th = 8 ;
 }else if($stringTOintB == "9"){
 $digit1th = 9 ;
 }else{
 $digit1th = 0 ;
 }
 $mpoolweiValue[$i] = $digit10th + $digit1th;
 }
 global int $mpoolweiValueS[];
 $mpoolweiValueS = `sort $mpoolweiValue`;
 string $mutationString;
 string $mutationArray[];
 int $indexM;
 int $mpsize = size($mpool);
 $indexM = trunc(`rand 1 $mpsize`);
 $mutationString = $mpool[$indexM];
 for ($i=1; $i<(size($mutationString)+1);$i++){
 $mutationArray[$i] = `substring $mutationString $i $i`;
 }
 print ("old :");
 print ("\n");
 for($i=0; $i<27;$i++){
 print $mutationArray[$i];
 }
 print ("\n");
 int $indexMdigit = trunc(`rand 1 27`);
 print ("Mutation Location : "+$indexMdigit+"\n");
 if($mutationArray[$indexMdigit] == "0"){
 $mutationArray[$indexMdigit] = "1";
 }else{
 $mutationArray[$indexMdigit] = "0";
 }
 print ("new:");
 print ("\n");
 for($i=0; $i<27;$i++){
 print $mutationArray[$i];
 }
 for ($j=0; $j<27; $j++){
 int $indexG;
 $indexG = $j+($nGeneration-1)*27;
 string $chromoname = "chromo" + $indexG;
 string $name = $chromoname + ".visibility" ;
 if ($mutationArray[$j] == "1"){
 setAttr $name 1;
 }else{
 setAttr $name 0;
 }
 }

PROPAGATING FIGURES - 60 -

}
global proc heuristicGene(string $pgString, int $nGeneration){
 string $mpool[];
 for ($i=0; $i<(size($pgString)/50);$i++){
 $mpool[$i] = `substring $pgString (23+$i*50) (49+$i*50)`;
 }
 int $heuristicValue;
 int $hv1;
 int $hv2;
 string $hvString1;
 string $hvString2;
 string $hvString1p[];
 string $hvString2p[];
 string $heuristicString;
 string $heuristicArray[];
 int $p1;
 int $p2;
 $p1 = trunc (`rand 1 90`);
 $p2 = 100-$p1;
 int $mpSize = size($mpool);
 int $idexHrand1 = trunc (`rand 1 $mpSize`);
 int $idexHrand2 = trunc (`rand 1 $mpSize`);

 $hvString1 = $mpool[$idexHrand1];
 $hvString2 = $mpool[$idexHrand2];
 for ($i=0; $i<size($hvString1);$i++){
 $hvString1p[$i] = `substring $hvString1 ($i+1) ($i+1)`;
 }
 for ($i=0; $i<size($hvString2);$i++){
 $hvString2p[$i] = `substring $hvString2 ($i+1) ($i+1)`;
 }
 print ("Heuristic Value 1 = ");
 int $iHcaculate;
 global int $hv1;
 for ($iHcaculate = 0; $iHcaculate<size($hvString1p) ; $iHcaculate++){
 if ($hvString1p[$iHcaculate] == 0){
 int $powH1 =0;
 $hv1 = $hv1 + 0;
 print ($powH1);
 }else{
 int $powH2 = `pow 2 (26-$iHcaculate)`;
 $hv1 = $hv1 + $powH2;
 print ($powH2);
 }
 print ("+");
 }
 print (" = " + $hv1 + ";" + "\n");
 print ("Heuristic Value 2 = ");
 global int $hv2;
 for ($iHcaculate = 0; $iHcaculate<(size($hvString2p)) ; $iHcaculate++){
 if ($hvString2p[$iHcaculate] == 0){
 int $powH1 =0;
 $hv2 = $hv2 + 0;
 print ($powH1);
 }else{
 int $powH2 = `pow 2 (26-$iHcaculate)`;
 $hv2 = $hv2 + $powH2;
 print ($powH2);
 }
 print ("+");
 }
 print (" = " + $hv2 + ";"+"\n");
 $heuristicValue = trunc ($hv1/100*$p1 + $hv2/100*$p2);
 print (" The Value of Heuristic Gene ==> " + "\n" + " A " + $hv1 + " X " +
$p1 + " %"+"\n" +
 "+ B " + $hv2 + " X " + $p2 +" %" + "\n" + "= H "
+$heuristicValue + "\n");
 int $caculateH = $heuristicValue;
 for ($iHs = 0; $iHs < size($hvString1p) ; $iHs++){
 int $powCompare = `pow 2 (27-$iHs)`;
 if ($caculateH > $powCompare){
 $heuristicString = $heuristicString + 1;
 $caculateH = $caculateH - $powCompare;
 }else{
 $heuristicString = $heuristicString + 0;
 }
 }
 print ("The string code of this heuristic operation =" + $heuristicString + ";"
+"\n");
 for ($i=0; $i<size($heuristicString);$i++){
 $heuristicArray[$i] = `substring $heuristicString ($i+1) ($i+1)`;
 }
 print ("\n");
 print ("\n");
 for ($j=0; $j<27; $j++){
 int $indexG;
 $indexG = $j+($nGeneration-1)*27;

PROPAGATING FIGURES - 61 -

 string $chromoname = "chromo" + $indexG;
 string $name = $chromoname + ".visibility" ;
 if ($heuristicArray[$j] == "1"){
 setAttr $name 1;
 }else{
 setAttr $name 0;
 }
 }
}

global proc string m1RGene(string $pgString, int $nGeneration){
 global string $mpool[];
 global string $mpoolweiString[]; //string array
 global int $mpoolweiValue[]; //int array

 for ($i=0; $i<(size($pgString)/50);$i++){
 $mpool[$i] = `substring $pgString (23+$i*50) (49+$i*50)`;

 $mpoolweiString[$i] = `substring $pgString (20+$i*50) (21+$i*50)`;

 string $stringTOintA;
 string $stringTOintB;
 $stringTOintA = `substring $mpoolweiString[$i] 1 1`;
 $stringTOintB = `substring $mpoolweiString[$i] 2 2`;

 int $digit10th;
 int $digit1th;

 if ($stringTOintA == "1"){
 $digit10th = 10 ;
 }else if($stringTOintA == "2"){
 $digit10th = 20 ;
 }else if($stringTOintA == "3"){
 $digit10th = 30 ;
 }else if($stringTOintA == "4"){
 $digit10th = 40 ;
 }else if($stringTOintA == "5"){
 $digit10th = 50 ;
 }else if($stringTOintA == "6"){
 $digit10th = 60 ;
 }else if($stringTOintA == "7"){
 $digit10th = 70 ;
 }else if($stringTOintA == "8"){
 $digit10th = 80 ;
 }else if($stringTOintA == "9"){
 $digit10th = 90 ;
 }else{
 $digit10th = 0 ;
 }

 if ($stringTOintB == "1"){
 $digit1th = 1 ;
 }else if($stringTOintB == "2"){
 $digit1th = 2 ;
 }else if($stringTOintB == "3"){
 $digit1th = 3 ;
 }else if($stringTOintB == "4"){
 $digit1th = 4 ;
 }else if($stringTOintB == "5"){
 $digit1th = 5 ;
 }else if($stringTOintB == "6"){
 $digit1th = 6 ;
 }else if($stringTOintB == "7"){
 $digit1th = 7 ;
 }else if($stringTOintB == "8"){
 $digit1th = 8 ;
 }else if($stringTOintB == "9"){
 $digit1th = 9 ;
 }else{
 $digit1th = 0 ;
 }

 $mpoolweiValue[$i] = $digit10th + $digit1th;
 }
 global int $mpoolweiValueS[];
 $mpoolweiValueS = `sort $mpoolweiValue`;
 string $reproductionString;
 string $reproductionArray[];
 int $idexRmax = size($mpoolweiValueS)-1;
 for ($i=0;$i<size($mpoolweiValue);$i++){
 if($mpoolweiValueS[$idexRmax] == $mpoolweiValue[$i]){
 $reproductionString = $mpool[$i];
 }
 }
 return $reproductionString;
}

PROPAGATING FIGURES - 62 -

// 4. Terminating Stage

global proc resetG(){
 string $text;
 string $result = `promptDialog
 -title "Reset Generation"
 -message "Enter Gneration:"
 -button "OK" -button "Cancel"
 -defaultButton "OK" -cancelButton "Cancel"
 -dismissString "Cancel"`;

 if ($result == "OK") {
 $text = `promptDialog -query -text`;
 int $index = `size $text`;
 global int $geneResetIndex[];
 clear $geneResetIndex;
 for($i=0; $i<$index; $i++){
 $geneResetIndex[$i] = `substring $text ($index-$i)
($index-$i)`;
 }
 int $s2i[];
 for($i=0; $i<$index; $i++){
 if ($geneResetIndex[$i] == "0"){
 $s2i[$i] = 0;
 }else if ($geneResetIndex[$i] == "1"){
 $s2i[$i] = 1;
 }else if($geneResetIndex[$i] == "2"){
 $s2i[$i] = 2;
 }else if($geneResetIndex[$i] == "3"){
 $s2i[$i] = 3;
 }else if($geneResetIndex[$i] == "4"){
 $s2i[$i] = 4;
 }else if($geneResetIndex[$i] == "5"){
 $s2i[$i] = 5;
 }else if($geneResetIndex[$i] == "6"){
 $s2i[$i] = 6;
 }else if($geneResetIndex[$i] == "7"){
 $s2i[$i] = 7;
 }else if($geneResetIndex[$i] == "8"){
 $s2i[$i] = 8;
 }else{
 $s2i[$i] = 9;
 }
 }
 global int $resetGindex;
 for ($i =0; $i<$index; $i++){
 int $digit = `pow 10 $i`;
 $resetGindex = $s2i[$i]*$digit;
 }
 }
}
global proc controlResetG(int $num){

 int $indexg = ($num-1)*27;
 for($rkk= $indexg; $rkk<$indexg+27; $rkk++){

 string $chromoname ;
 $chromoname= "chromo" + $rkk;
 float $x = `rand 1` ;
 string $name = $chromoname + ".visibility" ;
 if ($x < 0.5){
 setAttr $name 1;
 }else{
 setAttr $name 0;
 }
 }
}

PROPAGATING FIGURES - 63 -

