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摘要 

 
 

本文針對振動狀態下的摩擦力降低現象提出理論研究，其中包含垂直及平行於接觸

面的振動，除了無潤滑狀態下之接觸外, 亦考慮在潤滑接觸下的影響。研究顯示接觸面

的切線彈性對摩擦力降低效應的影響很大，本文提出以振動的位移振幅與表面突起的穩

態撓曲的位移比來描述切線彈性對摩擦力降低效應的影響，對於平行於接觸面的振動，

切線彈性會降低摩擦力降低效應，然而對於垂直於接觸面的振動，切線彈性會提昇摩擦

力降低效應，對於任何型態的振動，當滑行速度小於振動速度時，摩擦力降低效應較顯

著。對於潤滑接觸，表面突起的線性阻尼對摩擦力降低不起作用，而接觸面的黏滯性會

降低摩擦力降低效應，Stribeck 效應對摩擦力降低亦有影響。本文亦提出其他對摩擦力

降低有影響的因子並分別加以分析，其中包括振動波形、非對稱摩擦及自伺服效應，藉

由振動波形、非對稱摩擦的方向及伺服結構的選擇，可增強或抑制摩擦力降低效應來符

合實際應用的需求。藉由本文提出的方法所計算出的摩擦力降低量與文獻中實驗結果相

當符合。 

 I



A Study on the Effect of Friction Reduction in the Presence of 
Vibrations 

 
 

 
Student: Chen-Chu Tsai           Advisor: Ching-Huan Tseng 

 
 

Department of Mechanical Engineering 

National Chiao Tung University 

 
ABSTRACT 

 
 Theoretical approaches are presented that describe the friction reduction observed in the 

presence of the vibrations.  The direction of vibrations can be either normal or tangential to 

the contact surfaces, and the contact surfaces can be either dry or lubricated.  It is showed 

that the tangential compliance of the contacts should be taken into consideration in the 

analysis of the friction reduction by vibrations.  A displacement ratio of the displacement 

amplitude of the vibrations to the steady-state deflection of the asperity is proposed to 

describe the influence of the tangential compliance.  For tangential vibrations, the tangential 

compliance degrades the effect of friction reduction.  However, for normal vibrations, the 

tangential compliance enhances the effect of friction reduction.  For any type of vibrations, 

the friction reduction effect is more significant when the magnitude of macroscopic velocity is 

smaller than the velocity amplitude of vibration.  In the lubricated contacts, the linear 

damping of the asperities has no effect on the friction reduction, and the linear viscosity of the 

contacts degrades the effect of friction reduction.  The influence of Stribeck effect on the 

friction reduction effect is also presented.  Other factors that also have influences on the 

friction reduction are proposed and investigated individually, including the waveform of the 

oscillation, asymmetric Coulomb friction and self-servo effect.  By choosing a suitable 

waveform of the oscillation, direction of the asymmetric Coulomb friction or self-servo 
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structure, the friction reduction can be enhanced or suppressed depends on the applications.  

The amount of the friction force reduction calculated by the proposed approach is quite 

consistent with the experimental results in the literatures. 

 

 III



ACKNOWLEDGEMENT 
 

博士學業的完成，首先要感謝我的指導教授 曾錦煥博士，提供了穩

定無虞的求學環境，除了課業上的指導外，在待人處事方面的經驗分享與

生活上的關心，更讓學生滿心感動。  

感謝我的論文口試委員：中央大學王教授國雄、國科會蔡處長忠杓、

臺灣科技大學黃教授世欽、中山大學邱教授源成、中正大學馮教授展華，

與交通大學洪教授景華，不辭辛勞，撥冗前來擔任學生的論文口試，並對

學生的論文提供許多寶貴的建議與修正，使論文的內容更加完整與充實。

其中特別感謝國科會蔡處長忠杓在百忙之中特別撥出時間擔任學生口試委

員，並對學生論文逐頁逐字仔細的修正，另外，感謝交通大學洪教授景華

提供相關的研究經驗，與求學路上的鼓勵。 

在應用最佳化實驗室的日子裡，感謝學長、同學與學弟們在研究上的

協助與勉勵，並一起分享生活的樂趣。特別感謝大師在我沒日沒夜趕論文

時的雪中送炭，王維漢學長及劉俊賢學長對於論文口試的寶貴建議。在這

些日子中，還要感謝我女朋友的照顧、包容與鼓勵，多少的假日與深夜，

她陪我在沒人的實驗室中度過，沒能好好睡，也沒能享受該有的休閒時間。 

在這漫長的求學過程中，父母親是最溫暖的支持，我想若不是父親在

我小時後引導我上軌道，及母親一路的鼓勵，我應該沒能攻讀博士，博士

求學期間的不順利，讓父母親擔心的到處為我祈求論文順利，如今完成博

士學業，若有丁點成就，應該歸功於我的父母親，同時也該謝天謝地。  

 

 

 

 
 

 IV



TABLE OF CONTENTS 
 
 

摘要 .............................................................................................................................................I 

ABSTRACT .............................................................................................................................. II 

ACKNOWLEDGEMENT........................................................................................................IV 

TABLE OF CONTENTS...........................................................................................................V 

LIST OF TABLES.................................................................................................................. VII 

LIST OF FIGURES...............................................................................................................VIII 

NOMENCLATURE .................................................................................................................XI 

CHAPTER 1 INTRODUCTION..........................................................................................1 

1.1 Introduction ............................................................................................................1 

1.2 Literature Review ...................................................................................................2 
1.2.1 Tangential Vibrations......................................................................................2 
1.2.2 Normal Vibrations ..........................................................................................3 
1.2.3 Friction Model ................................................................................................7 

1.3 Objectives ...............................................................................................................8 

1.4 Thesis Outlines .......................................................................................................8 

CHAPTER 2 FRICTION REDUCTION BY PARALLEL VIBRATIONS........................10 

2.1 Theoretical model .................................................................................................10 

2.2 Dahl’s Friction Model...........................................................................................12 

2.3 Factors to Affect the Effect of Friction Reduction by Vibrations.........................18 
2.3.1 Waveform .....................................................................................................19 

2.3.1.1 Triangular Wave ........................................................................................19 
2.3.1.2 Square Wave ..............................................................................................20 
2.3.1.3 Asymmetrical Square Wave ......................................................................21 

2.3.2 Asymmetric Fc..............................................................................................23 
2.3.3 Self-servo Effect ...........................................................................................25 

2.4 Energy Dissipated.................................................................................................27 

2.5 Concluding Remarks ............................................................................................30 

CHAPTER 3 FRICTION REDUCTION IN THE LUBRICATED CONTACTS..............57 

3.1 Introduction ..........................................................................................................57 

3.2 LuGre Model ........................................................................................................58 

3.3 Time-averaged Friction of the LuGre Model .......................................................59 
3.3.1 Damping Term..............................................................................................60 
3.3.2 Viscosity Term..............................................................................................60 

 V



3.3.3 Elastic Term..................................................................................................61 

3.4 Parameter Studies .................................................................................................62 
3.4.1 Influence of Stribeck Effect on the Friction Reduction Effect .....................62 
3.4.2 Lubricated Contacts with Tangential Compliance........................................65 

3.5 Influence of the Normal Force on the Stribeck Curve..........................................69 

3.6 Identification of the Model Parameters ................................................................70 

3.7 Concluding Remarks ............................................................................................71 

CHAPTER 4 FRICTION REDUCTION BY TANGENTIAL VIBRATIONS ..................96 

4.1 Introduction ..........................................................................................................96 

4.2 Sliding of Rigid Body...........................................................................................96 

4.3 Sliding with Tangential Compliance ....................................................................98 
4.3.1 Asperity Slip without a Stiction Phase (Dahl Model with 1=i )...............101 
4.3.2 Asperity Slip with a Stiction Phase (Dahl Model with 0=i ) ...................102 

4.4 Friction Ratio......................................................................................................103 

4.5 Concluding Remarks ..........................................................................................106 

CHAPTER 5 FRICTION REDUCTION BY NORMAL VIBRATIONS ........................123 

5.1 Introduction ........................................................................................................123 

5.2 Friction Based on Adhesion Theory ...................................................................123 
5.2.1 True Area of Contact ..................................................................................123 
5.2.2 Maximum Friction Reduction without Loss of Contact.............................124 

5.3 Influence of the Tangential Compliance.............................................................125 
5.3.1 System Model .............................................................................................125 
5.3.2 Sliding without Loss of Contact .................................................................127 
5.3.3 Sliding with Loss of Contact ......................................................................128 

5.4 Concluding Remarks ..........................................................................................130 

CHAPTER 6 CONCLUSIONS AND FUTURE WORKS...............................................137 

6.1 Conclusions ........................................................................................................137 

6.2 Future Works ......................................................................................................139 

REFERENCES .......................................................................................................................140 

PUBLICATION LIST ............................................................................................................145 

VITA.......................................................................................................................................146 
 

 

 VI



LIST OF TABLES 
 
 
Table 3.1 Friction ratio with the Stribeck effect for varied parameters. (The basic set of 

parameters for these curves are ( ) ( )2,2,8.1,, =αsvsf rr
8.1

; gray line for r 1=sf ; short 
dashed line for 2.1=sfr ; solid line for =sfr ; long dashed line for 4.2=sfr ) .....72 

Table 3.2 Basic set of parameters used in the simulation.........................................................73 

Table 5.1 Area of contact between surfaces in terms of asperity deformation.......................131 

 

 

 VII



LIST OF FIGURES 
 
 
Fig. 2.1 An analytical model.....................................................................................................31 

Fig. 2.2 Friction ratio for ζ > 0 and experimentally obtained values (dot) by Littmann et al. .32 

Fig. 2.3 True contact between surfaces ....................................................................................33 

Fig. 2.4 Relation between the friction force and the displacement ..........................................34 

Fig. 2.5 Instantaneous friction force (Dahl and Coulomb) and relative sliding velocity over 
one steady state period..................................................................................................35 

Fig. 2.6 Friction ratios based on Dahl model ...........................................................................36 

Fig. 2.7 Instantaneous Dahl friction forces of different displacement ratios and relative sliding 
velocity over one steady state period............................................................................37 

Fig. 2.8 Friction ratio based on Dahl model and experimentally obtained values (dot) by 
Littmann et al. ..............................................................................................................38 

Fig. 2.9 Velocity of the vibrating body over one period – triangular wave..............................39 

Fig. 2.10 Instantaneous Dahl friction forces of different displacement ratios and relative 
sliding velocity over one steady state period for the triangular wave oscillation.........40 

Fig. 2.11 Friction ratios for triangular wave oscillation ...........................................................41 

Fig. 2.12 Velocity of the vibrating body over one period – square wave.................................42 

Fig. 2.13 Instantaneous Dahl friction forces of different displacement ratios and relative 
sliding velocity over one steady state period for the symmetrical square wave 
oscillation .....................................................................................................................43 

Fig. 2.14 Friction ratios for the symmetrical square wave oscillation .....................................44 

Fig. 2.15 Velocity of the vibrating body over one period – asymmetrical square wave ..........45 

Fig. 2.16 Friction ratios for the asymmetrical square wave oscillation (d = 0.2).....................46 

Fig. 2.17 Friction ratios for the asymmetrical square wave oscillation (d = 0.8).....................47 

Fig. 2.18 Asymmetrical Coulomb friction and its influence on the friction ratio ....................48 

Fig. 2.19 Friction ratios for the asymmetrical Coulomb friction (rf = 1.5) ..............................49 

Fig. 2.20 Friction ratios for the asymmetrical Coulomb friction (rf = 0.5) ..............................50 

Fig. 2.21 Self-servo effect and its influence on the friction ratio .............................................51 

Fig. 2.22 Friction ratios with the self-servo effect ( )25.0)( =cnFlh . .....................................52 

Fig. 2.23 Displacement x decomposed into elastic z and plastic (sliding) components w .......53 

Fig. 2.24 Normalized average dissipated power 
vc

Dahlv

vF
P , ..........................................................54 

Fig. 2.25 The ratio of the dissipated energy with vibrations to that without vibrations...........55 

Fig. 2.26 The friction and displacement under the steady state ...............................................56 

Fig. 3.1 Analogy of the LuGre model.......................................................................................74 

 VIII



Fig. 3.2 The generalized Stribeck curve, showing friction as a function of velocity for low 
velocities.......................................................................................................................75 

Fig. 3.3 Friction as a function of steady state velocity for various lubricants; the Stribeck 
curve .............................................................................................................................76 

Fig. 3.4 Stribeck curve of steady-state friction force versus sliding velocity v........................77 

Fig. 3.5 Friction components of LuGre model over one steady state period ...........................78 

Fig. 3.6 Friction ratios based on Dahl’s model with viscous friction.......................................79 

Fig. 3.7 Instantaneous friction force and relative sliding velocity over one period .................80 

Fig. 3.8 Friction ratios with the stribeck effect.........................................................................81 

Fig. 3.9 Normalized Stribeck curves ........................................................................................82 

Fig. 3.10 Stribeck friction under vibrations..............................................................................83 

Fig. 3.11 Friction ratios with the stribeck effect for varied contact stiffness σ0 .......................84 

Fig. 3.12 Instantaneous friction force for varied stiffness 0σ  and relative sliding velocity 
over one period, 5.0=ζ .............................................................................................85 

Fig. 3.13 Instantaneous friction force and relative sliding velocity for 1.1=ζ ......................86 

Fig. 3.14 Friction ratios with the stribeck effect for varied breakaway force baF ..................87 

Fig. 3.15 Friction ratios with the stribeck effect for varied Stribeck velocity sv ....................88 

Fig. 3.16 Friction ratios with the Stribeck effect and the viscous friction under 5.02 =σ .....89 

Fig. 3.17 Instantaneous friction force for varied viscous friction parameter 2σ  at 5.0=ζ .90 

Fig. 3.18 Friction reversal arising with elastic damping and Stribeck friction for 2001 =σ  at 
1.1=ζ ..........................................................................................................................91 

Fig. 3.19 Friction-velocity data for different normal loads (Hess and Soom, 1990)................92 

Fig. 3.20 Simulation of different normal loads ........................................................................93 

Fig. 3.21 Dahl curve .................................................................................................................94 

Fig. 3.22 Stribeck curve............................................................................................................95 

Fig. 4.1 An analytical model for sliding with tangential vibrations .......................................107 

Fig. 4.2 Friction and velocities ...............................................................................................108 

Fig. 4.3 Mechanism of time-average friction reduction .........................................................109 

Fig. 4.4 Friction ratios xr  for different angles ...................................................................... 110 

Fig. 4.5 The friction interface between two surfaces is thought of as a lumped elastic asperity
.................................................................................................................................... 111 

Fig. 4.6 Friction-displacement curves for 0>v .................................................................... 112 

Fig. 4.7 Behavior of the lumped asperity (top view).............................................................. 113 

Fig. 4.8 Behavior of the lumped asperity over one steady state period.................................. 114 

Fig. 4.9 Friction ratios with 1=i ; 2/πθ = ......................................................................... 115 

 IX



Fig. 4.10 Friction ratios with 0=i ; 2/πθ = ...................................................................... 116 

Fig. 4.11 Friction ratios with 1=i ; 6/πθ = ....................................................................... 117 

Fig. 4.12 Friction ratios with 0=i ; 6/πθ = ...................................................................... 118 

Fig. 4.13 Comparison of the behaviors of asperity over one steady state period ( r 2=disp , 
15.0=ζ , 2/πθ = ): (a) Dahl model without a stiction phase ( 1=i ); (b) Dahl model 

with a stiction phase ( i 0= ) ....................................................................................... 119 

Fig. 4.14 Friction forces over one steady state period............................................................120 

Fig. 4.15 Behavior of asperity over one steady state period ( 2=dispr , 5.0=ζ , 2/πθ = ).121 

Fig. 4.16 Comparison of friction ratios between calculated values and experimental results 
(dot) by Littmann et al. (2001, 2002) .........................................................................122 

Fig. 5.1. An analytical model for normal vibrations...............................................................132 

Fig. 5.2. Dynamic normal loads in a cycle of contact ............................................................133 

Fig. 5.3 Oscillations of the frictional resistance of the contacts and corresponding tangential 
velocity of the slider ...................................................................................................134 

Fig. 5.4. Instantaneous friction forces during contact ............................................................135 

Fig. 5.5. Friction ratios for conditions with loss of contact....................................................136 

 
 

 X



NOMENCLATURE 
 
 

vC  empirical parameter for Stribeck curve 

d ratio of the time interval of the positive velocity to one period 

F friction force without vibration 

F~  instantaneous friction force 

F  time-averaged friction force 

0
~F  friction force without the self-servo effect 

baF  breakaway force (static friction) 

cF  Coulomb friction force 

cnF  normalized Coulomb friction 

ssF  steady state friction force for lubricated contacts 

1σF  time average of the damping term of the LuGre model 

2σF  average of the viscous term of the LuGre model 

h height of the hinge pin 

i parameter of Dahl model 

l length 

m  mass 

MA moment about the hinge pin 

N normal force 

 XI



sP  average dissipated power in the absence of vibrations 

vP  average dissipated power in the presence of vibrations 

CoulombvP ,  average dissipated power based on Coulomb friction 

DahlvP ,  average dissipated power based on Dahl model 

r friction ratio 

dispr  displacement ratio 

rf parameter for asymmetric Coulomb friction 

sfr  friction ratio, cba FF  

svr  velocity ratio, sv vv  

0σr  friction ratio for the stiffness term of the LuGre model 

t time 

210 ,, ttt  time when the relative velocity is zero  

T period 

v velocity 

vb macroscopic velocity  

relv  relative sliding velocity 

sv  characteristic velocity of the Stribeck curve 

vv velocity amplitude of the vibration component 

w sliding distance of the asperity 

 XII



w&  derivative of w 

W actuating force 

vW  energy dissipated during one steady state period of vibrations 

x displacement 

x&  derivative of x  

z average deflection of the asperities 

z&  derivative of z 

ssz  average steady state deflection of the asperities 

0z  initial deflection of the asperities 

α  parameter of the Stribeck curve 

ζ  velocity ratio, vb vv /  

η  viscosity 

θ  angle of the harmonic velocity with the constant velocity 

μ friction coefficient 

baµ  normalized static friction 

cµ  normalized Coulomb friction 

ssµ  normalized friction force for lubricated contacts 

n0σ  normalized tangential stiffness of the asperities 

σ0 tangential stiffness of the asperities 

 XIII



1σ  damping coefficient 

2σ  viscous coefficient 

ω angular velocity 

 
 
 

 XIV



CHAPTER 1 INTRODUCTION 

 

 

1.1 Introduction 

A reduction of friction by vibrations has been observed in various experiments.  This 

phenomenon is a common occurrence in many machine elements, for instance, nuts loosed 

from vibrating screws.  When surfaces are in contact, they are often subjected to 

combinations of steady and dynamic loads.  The dynamic loads can cause vibrations.  The 

dynamic loads may be generated either external to the contact region, as in the case of 

unbalanced moving machinery components, or within the contact region, as in the case of 

surface roughness or waviness-induced vibrations.  For the external loading, the dynamic 

loads can be easily modulated; thus the frictional forces can be actively controlled.  

 The performance of many sensitive devices such, for example, as floated gyros and the 

like is harmfully affected by the presence of friction in the bearings that support the sensitive 

element of the devices.  Introducing the vibrations into these devices can improve the 

performance because the friction forces are reduced.  On the other hand, there are various 

devices utilizing dynamic friction, for instance, brakes and clutches.  Introducing the 

vibrations can also reduce the dynamic frictional forces of these devices when the dynamic 

frictional forces exceed the suitable values.  In the case of the friction clutches, when the 

undesired conditions such as overloading or over speed are detected, the application of 

vibrations to one of the clutch elements allows the clutch to slip during such times as the 

adverse conditions are maintained.  Moreover, this effect can also be used for reduction of 

process force in manufacturing processes, such as ultrasonic machining and 

ultrasonic-vibrations drawing (Hayashi et al., 2003), or solving the problem of position 

control in high vacuum environments, such as electron microscopes, where friction can be 
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controlled through the variation of the vibration amplitude only.  Some applications can be 

found in the patents (Broeze and Laubendorfer, 1966; Argentieri and Andresen, 1974; Armour, 

1982; Armour and Watson, 1982; Saito and Mohri, 1992; Kramer, 2000). 

 The reasons for the friction reduction in the presence of vibrations can be divided into 

two categories (Zeng et al., 1998).  One is the mechanics.  The vibrations can change the 

direction or magnitude of the friction force.  The other is the physical property.  The 

vibrations can reduce the surface roughness.  The heat resulted from the vibrations can 

soften the sliding surfaces.  For lubricated contacts, the vibrations can enhance the formation 

of the fluid lubrication.  

It is widely agreed that dynamic frictional forces in complex mechanisms are not being 

adequately modeled at the present time.  Therefore, most investigations about the friction 

reduction by vibrations gave only the qualitative descriptions of its behavior.  Few analytical 

models have been proposed, but they can’t estimate the reduction of friction under a wide 

variety of conditions. 

 

1.2 Literature Review 

According to the direction of vibrations with respect to the contact surface, the vibrations 

can be divided into two categories.  One is the tangential (in plane) vibration and the other is 

the normal (out of plane) vibration. 

 

1.2.1 Tangential Vibrations 

The practical importance of this type of friction led some researchers to undertake 

experimental analysis.  To explore the origin of ultrasound-induced friction reduction, 

Hesjedal and Behme (2002) experimentally studied the friction reduction phenomena in 

microscopic mechanical contacts using a scanning force microscope in the lateral force mode 
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(LFM) and a scanning acoustic force microscope (SAFM).  The data suggest that the lateral 

oscillation component has no influence on the reduction of friction.  They concluded that the 

friction reduction effect results entirely from the vertical oscillation component.  However, 

previous experimental investigations on tangential vibration showed friction reduction 

(Matunaga and Onoda, 1992; Littmann et al., 2001a, 2001b, 2002).  This discrepancy is 

thought to be lack of quantitative analysis. 

Matunaga and Onoda (1992) and Littmann et al. (2001a, 2001b, 2002) also proposed 

quantitative analytical models based on the rigid Coulomb friction.  The ratios of the friction 

with and without vibrations obtained in the experiments showed the same tendency as the 

experimental data, but have higher values.  The main reason of the discrepancy is thought to 

be that the rigid Coulomb friction does not provide a very good description of the friction 

phenomena under vibrations.  For these types of contacts, with small amplitude of sliding 

displacement, Tani (1996) showed that the rigid Coulomb friction model was insufficient to 

describe the friction behavior.  He built a small mobile machine which has two legs made of 

bimorph piezoelectric actuators.  Simulations were made to investigate the dynamics of its 

mobility using different friction models.  The comparison of the simulation results with the 

measured speed and acceleration suggests that the viscous friction model explains the 

movement better than the Coulomb friction model.  The viscous friction model is adapted 

such that the friction coefficient is proportional to the relative velocity up to a certain limit 

and is saturated at the limit value. 

 

1.2.2 Normal Vibrations 

A reduction in friction due to normal contact motions during sliding has been observed 

by many researchers.  In the first works related to this subject, Tolstoi et al. (1973) modeled 

the contact region between two surfaces as a non-linear spring without damping, using an 
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empirical stiffness relation which are based on the experiment data given by static loading.  

When the normal vibration is applied in the contact region, the average compression of the 

non-linear spring is reduced.  The reduced average compression can be calculated by his 

empirical stiffness relation from energy considerations.  Then the effective value of normal 

load can be calculated by substituting the reduced average distance into the empirical stiffness 

relation.  Finally, the friction reduction by normal vibration was calculated by the reduction 

of the effective normal load.  Both the model and measurement showed that the friction 

reduction due to normal vibration could be as large as 30% for various steel surfaces. No 

attempt was made to analyze the system dynamics. 

In the case of the kinetic friction between plastics and ice or snow, Lehtovaara (1987) 

presented experimental results.  In his apparatus, vibrations were induced in the test 

specimen by an exciter while the test specimen was sliding on smooth ice.  The results 

showed that the frictional force reduction was greatest at the first natural frequency of the test 

specimen where the vibration amplitude was large compared with the amplitudes of the 

antiresonance frequencies.  At temperature below –1 ºC, where dry friction is dominant, the 

kinetic friction was reduced even when the acceleration of the vibrating body was much lower 

than the acceleration of gravity (no loss of contact).  The reduction in kinetic friction is 

almost linearly dependent on the normal acceleration.  At air temperatures above zero, where 

wet friction (viscous shear of water) dominates, vibration has no effect on friction.  

 Tworzydlo and Becker (1991) investigated the influence of forced vibration on the static 

coefficient of friction.  They applied a model of frictional interface, assuming the existence 

of non-linear normal compliance of the interface, to the transient analysis of vibration of the 

system.  Their analysis revealed that in the presence of normal vibrations the tangential 

motion of the slider consisted of microscopic sticks and slips, which in the macroscopic scale 

are perceived as a “creep”-type motion.  The experimental results showed that the rate of 
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decrease of the friction was very sensitive to the amount of damping applied on the interface.  

The maximum reduction of the static friction for steels is about 84% for clean surfaces (lower 

damping) and is about 30% for contaminated surfaces (higher damping).  The presence of 

interface damping weakens the effect of friction reduction, especially in the vicinity of a 

resonance zone.   

 Hess and Soom (1991a, 1991b, 1993) analyzed resonant non-linear normal vibrations as 

well as the associated instantaneous contact area and friction force under harmonic loads 

applied to both Hertzian contacts and rough planar contacts using a non-linear 

mass-spring-damper model.  A decrease in the average contact deflection under dynamic 

loading was predicted in each case.  This resulted in an 11% reduction in the average friction 

force for Hertzian contacts when the normal vibration amplitude was just below that required 

to produce momentary loss of contact.  However, the average contact area and friction force 

for the rough planar contacts were hardly affected.  Further, the normal vibrations and 

friction at Hertzian contact under random excitation were analyzed.  Both external excitation 

and internal excitation that arose from surface roughness were considered.  It was found that 

for a 5% probability of contact loss, a reduction in the mean friction force of approximately 

9% is expected for both cases.  The reduction in average friction arose due to the non-linear 

relationship between the normal contact load and the area of contact, under the assumption 

that the instantaneous friction force was proportional to the instantaneous area of contact.  

Average friction measurements taken during continuous sliding were in agreement with the 

analysis.  However, their analysis was restricted to the conditions without loss of contact, 

and the tangential compliance was not considered.   

To analyze the mechanism of friction drive with ultrasonic wave, Adachi et al. (1996) 

developed an apparatus that can measure the friction force at the interface between a 

rotational disk and an oscillatory pin induced by ultrasonic wave.  The experimental results 
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showed that the friction force decreased with the decrease of the rotational speed of disk and 

the increase of the amplitude of pin motion (the pin-disk contact is broken for part of the 

vibration cycle).  They introduced a simple relationship between tangential coefficient and 

micro-displacement at the contact region to explain the friction reduction phenomenon. 

 The friction force microscope (FFM) has opened a way for the study of the friction in 

micro-/nanoscopic mechanical contacts.  Dinelli et al. (1997) studied the dynamic friction 

dependence on out-of-plane ultrasonic vibration, using friction force microscopy and a 

scanning probe technique, the ultrasonic force microscope (UFM), which can probe the 

dynamics of the tip-sample elastic contact as a submicrosecond scale.  The results showed 

that friction fell sharply when the tip-surface contact broke for part of the out-of-plane 

vibration cycle.  Moreover, the friction force reduced well before such a break, and this 

reduction does not depend on the normal load.  They suggested that the contact was 

solid-liquid-solid.  However, the mechanism of the friction reduction was not studied in 

detail. 

Similarly, Hesjedal and Behme (2000, 2002) experimentally studied the friction 

reduction phenomena in microscopic mechanical contacts using a scanning force microscope 

in the lateral force mode (LFM) and a scanning acoustic force microscope (SAFM).  The 

data suggested that the lateral oscillation component has no influence on the reduction of 

friction.  They concluded that friction reduction effect is only due to the vertical oscillation 

component that leads to an effective shift of the cantilever away from the surface.   

The general conclusion of these researches is that average friction falls sharply when the 

contact broke for part of the out-of-plane vibration cycle and the presence of interface 

damping weakens the effect of friction reduction.  Analytical models that assumed the 

non-linear normal compliance of the interface showed that without loss of contact the 

vibration has little effect on the average friction.  However, these analytical models were 
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restricted to the conditions without lost of contact, and the tangential compliance was not 

considered. 

 

1.2.3 Friction Model 

Experiments have observed that when two contacting surfaces slide against each other, a 

motion of one surface over the other occurs before actual body sliding begins.  This effect 

occurs with the tangential compliance.  The movement caused by the applied force below the 

breakaway force is called the presliding displacement or micro-slip (Olofsson, 1995, 1998, 

1999). 

Dahl (1976) formulated a mathematical model of the presliding displacement by 

incorporating tangential compliance.  The model acts as a nonlinear spring with a nearly 

linear elastic response for small deflections, which yields and approaches an asymptotic value 

for large deflections.  The asymptotic value is the Coulomb friction force.  When the rest 

stiffness tends to infinity, the response of the Dahl model converges to that of the rigid 

Coulomb friction model.  Bliman (1992) studied the existence and uniqueness of solutions 

and hysteresis effects of the model. 

In order to capture more frictional phenomena observed in the experiments, Canudas de 

Wit et al. (1995) proposed a new model, LuGre friction model, which is an extension of the 

Dahl model.  They were inspired by the bristle model proposed by Haessig and Friedland 

(1991).  The surfaces in contact are visualized as two rigid bodies that make contact through 

elastic bristles. When a tangential force is applied, the bristles will deflect like springs which 

gives rise to the friction force.  If the deflection is sufficiently large, the bristles start to slip. 

The average bristle deflection for a steady state motion is determined by the velocity. It is 

lower at low velocities, which implies that the steady state deflection decreases with 

increasing velocity.  This models the Stribeck effect that is the steady-state relationship 
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between friction force and slip velocity.  In addition, the damping effect of the bristles and 

viscous friction between the surfaces are also included.  This dynamic model can capture 

most of the friction behavior.  This includes the presliding displacement, Stribeck effect, 

hysteresis, and varying breakaway force.  Further analysis of the model and its application 

can be found (Dupont et al., 1997; Olsson et al., 1998; Altpeter, 1999; Canudas de Wit and 

Tsiotras, 1999; Barabanov and Ortega, 2000). 

A significant limitation of the Dahl and LuGre models, however, is that they exhibit drift 

when systems subjected to a small bias force and small vibrations.  To minimize the drift, 

Dupont et al. (2000, 2002) proposed a elasto-plastic model in which presliding is 

elasto-plastic, i.e., under loading the displacement is first purely elastic (reversible) before 

transitioning to plastic (irreversible). 

 

1.3 Objectives 

The objective of this study is to provide the theoretical approaches that can estimate the 

reduction of friction under a wide variety of conditions, including the dry and the lubricated 

contacts, the tangential and the normal vibrations. 

 

1.4 Thesis Outlines 

Chapter 2 is devoted to investigate the phenomenon of the friction reduction by the 

tangential vibrations by incorporating the Dahl friction model.  The comparison between the 

friction reduction based on the Dahl model and that based on the rigid Coulomb friction 

model are presented.  A displacement ratio of the displacement amplitude of the vibrations to 

the steady-state compliance is given to describe the influence of tangential compliance on the 

friction reduction effect.  Other factors that affect the effect of the friction reduction are 

proposed and investigated individually.  Finally, the energy dissipated with the oscillation is 
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computed and compared to that without the oscillation. 

Chapter 3 applies the LuGre model to investigate the friction reduction observed in the 

lubricated contacts with the parallel vibrations.  Stribeck effect is an important characteristic 

of lubricated contacts.  Its influence on the friction reduction effect is also investigated.  

Chapter 4 investigates the influence of the direction of tangential vibrations on the 

friction reduction.  An approach based on the deflection of the asperities is proposed to 

model the instantaneous friction in the presence of the non-parallel tangential vibrations.  A 

comparison between the calculated results and the experimental data in the literatures is 

presented. 

Chapter 5 focuses on the analysis of the friction reduction phenomenon in the presence 

of the normal vibrations.  The friction reduction when the contact is broken for part of the 

normal vibration cycle is also studied.  First, a simple analysis is performed for a contact that 

is modeled simply as a nonlinear spring without the tangential compliance.  Then the Dahl 

model is applied to investigate influence of the tangential compliance on the friction reduction 

in the presence of the normal vibrations. 

Chapter 6 gives conclusions and discusses further works of this study. 
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CHAPTER 2 FRICTION REDUCTION BY PARALLEL VIBRATIONS 

 

 

The phenomenon of the friction reduction by the parallel vibrations is investigated by 

incorporating the Dahl’s friction model that is a mathematical model of micro-slip.  The 

assumption in this study is that the friction force is not influenced by the wear and heat of the 

contact surfaces. 

 

2.1 Theoretical model 

In order to investigate the mechanism of friction reduction by tangential vibrations, a 

simple model shown in Fig. 2.1 is adopted.  The model consists of a flat plane with a 

macroscopic velocity vb and a vibrating body that is pressed against the flat plane by constant 

normal force.  The velocity of the vibrating body is defined as 

)cos()( tvtv v ω= . (2.1) 

Thus the relative sliding velocity is 

))cos(()()( tvtvvtv vbrel ωζ −=−= , (2.2) 

where vb vv /=ζ  is the ratio of the macroscopic velocity and the velocity amplitude of the 

vibration component.  The effective friction force, which is observed macroscopically, is the 

time-averaged mean friction force over one period of vibration ωπ /2=T : 

∫=
T

dttF
T

F
0

)(~1 . (2.3) 

The effect of friction reduction by superposed tangential vibrations can be described 

quantitatively by the ratio 
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F
Fr = , (2.4) 

of the reduced friction force F  and the friction force F observed in the absence of vibrations.  

For demonstration, the friction is assumed to be the Coulomb friction first which is described 

by 

))(sgn())(sgn()(~ tvFtvFtF relNrelc µ== , (2.5) 

Where  is the amplitude of Coulomb friction force,  the normal load and µ the 

friction coefficient.  The amplitude of the Coulomb friction force is constant because the 

normal force and friction coefficient are assumed to be constant, but the direction is opposite 

to the relative sliding velocity.  After some calculations, the friction ratio in this case is  

cF NF

1
1

1
)(sin 12

>
≤





=
−

ζ
ζζπr . (2.6) 

It only depends on the dimensionless velocity ratio ζ.  A significant reduction of friction 

force can be observed if the macroscopic velocity is small compared to that of the vibrations, 

as shown in Fig. 2.2.  However, the values of the results of the experiments by Matunaga and 

Onoda (1992) or Littmann et al. (2001a, 2001b, 2002) are larger than that of the model based 

on the Coulomb friction.  In other words, the amount of the friction reduction by vibrations 

is over estimated.  One important characteristic of the sliding pair is that the superimposed 

vibrations may periodically change the direction of the relative sliding and the displacement 

amplitude of the harmonic component is usually in the range of some micrometers (e.g. 

amplitude of 0.7 µm at 60 kHz in the experiment by Littmann et al.) that is in the same order 

with the presliding displacement.  In the condition with vibrations, the rigid Coulomb 

friction model can’t properly describe the friction behavior (Tani, 1996). 
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2.2 Dahl’s Friction Model 

On the microscopic level, apparently smooth surfaces are still ‘rough’.  When these 

surfaces are press against each other, the true contact area usually is from 1/400 to 1/10000 of 

the apparent area observed by the naked eye, as shown in Fig. 2.3.  The protuberant features 

are called asperities. 

When a tangential force is applied, the asperities will deform like springs which gives 

rise to the friction force.  When the strain of any particular asperity exceeds a certain level, 

the bond is broken and a new bond having a smaller strain is established.  Dahl modeled the 

average stress-strain curve by a differential equation.  Let x be the deflection, F~  the 

friction force, and Fc the Coulomb friction force. Then Dahl model has the form 

i

c

x
F
F

dx
Fd )sgn

~
1(

~
0 &−= σ , (2.7) 

where σ0 is the contact stiffness or slop of the force-deflection curve at 0~ =F , and i is a 

parameter that determines the shape of the stress-strain curve, which describe ductile 

materials if  and brittle type materials if 1≥i 1<i .  Applications of this model commonly 

employ the value i=1.  It is remarkable that the friction force of the Dahl model is only a 

function of displacement and the sign of the velocity when σ0 and Fc are constant.  With 

sufficient unidirectional sliding, the friction force saturates at the Coulomb level Fc, as shown 

in Fig. 2.4(a).  This figure also shows that the reverse of the speed is not sufficient to reverse 

the friction immediately: a memory does exit.  Due to the memory effect, the instantaneous 

power of the friction force ( vF~− ) is not always negative (dissipative).  The friction can store 

energy and give it back to the system (Bliman, 1992). 

The time rate of change of the friction could be expressed as 
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i

rel
c

rel vv
F
Fv

dx
Fd

dt
dx

dx
Fd

dt
Fd









−=== sgn

~
1

~~~
0σ . (2.8) 

Introducing zF 0
~ σ=  and assuming i=1, the Dahl model can be written as 









−= zv

F
v

dt
dz

rel
c

rel )sgn(1 0σ , (2.9) 

and zF 0
~ σ= , (2.10) 

where z is the average deflection of the asperities.  Equation (2.9) gives the steady state 

deflection 

0σ
c

ss
Fz = . (2.11) 

Using the initial condition 0)(~ =xF  at 0=x  and assuming i=1 and , Eq. (2.7) 

gives the result 

0>relv

)(
1

~
ssz
x

c

e
F
F −

−= . (2.12) 

The dimensionless friction and the dimensionless displacement given by Eq. (2.12) are shown 

in Fig. 2.4(b). 

Unlike the Coulomb friction which is described by static maps between velocity and 

friction force, the Dahl model is a dynamic model that is relative to the sliding history.  

When the direction of motion is changed, it has a lag in the change of friction force.  Hence, 

in the case of the sliding with harmonic vibrations imposed, the initial responses of the 

friction force are transient, which depend on the initial conditions.  After sufficient cycles of 

the vibrations, the responses of the friction force reach the steady state, which can be constant 

or periodic.  Due to the fact that the transient responses disappear quickly under the high 
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frequency vibrations, this paper focused on the steady-state behavior of the sliding with 

vibrations. 

Equation (2.9) can be separated into two equations, one for positive and the other one for 

negative velocity.  When the velocity is positive, , the friction force 0/ ≥dtdz F~  increases 

and approaches Fc; when the velocity is negative, 0/ ≤dtdz , the friction force F~  decreases 

and approaches -Fc.  

For velocity ratio 1>ζ , the relative velocity, Eq. (2.2), is always positive.  According 

to Eqs. (2.9) and (2.10), the friction of Dahl model will increase and saturate at Fc.  Thus 

friction ratio is 1=r .  In other words, the imposed vibrations do not reduce the time-average 

frictions. 

For the velocity ratio 10 ≤≤ ζ , let the velocity increase from zero at the beginning of 

one period ( 0)( 0 =trelv ), one period can be divided into two time intervals, one for positive 

and the other one for negative velocity.  The instantaneous friction force and the relative 

sliding velocity are plotted in Fig. 2.5 for one period of the steady state.  The curve of the 

relative sliding velocity intersects the time axis at ,  and  that have the relations: ot 1t 2t

ω
ζπ )(cos22 1

1

−−
=− ott , (2.13) 

and 
ω

ζ )(cos2 1

12

−

=− tt . (2.14) 

To calculate the deflection of the steady state at t0, let  

00 )( ztz = . (2.15) 

In the first time interval, the relative velocity is positive, thus sgn( .  The relative 

sliding velocity in this time interval is 

1) =v

)))(coscos(()( 1 ζωζ −+−= tvtv vrel . (2.16) 
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The deflection  can be obtained by solving Eqs. (2.9) and (2.16) with the initial 

condition (2.15): 

)( 1tz

0

))(cos(12

00
1

12
0

)()(
σ

σ ω

ζπζζσ

c

v

F

v

cc eFzFtz






 −+− −

−+
−= . (2.17) 

In the second time interval, the relative velocity is negative, thus .  The relative 

sliding velocity in this time interval can be written as 

1)sgn( −=v

)))(cos2cos(()( 1 ζπωζ −−+−= tvtv vrel . (2.18) 

The deflection  can be obtained by solving Eqs. (2.9) and (2.18) with the initial 

condition (2.17): 

)( 2tz
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ω
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ω
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)(sin212)(sin14

0
0

)(sin14

2

12
0

12
0

12
0

21)( .(2.19) 

Due to the fact that the system is in steady state (periodic), the deflection  must be 

equal to .  Hence the deflection  can be obtained by solving Eqs. (2.15) and (2.19), 

which is 

)( 0tz

)( 2tz 0z

0
4

)2(4

00 )1(
)21()(

σ

πζ

ab
c

baab

e
Feeztz

+−
−+

−==
+

, (2.20) 

where 

c

v

F
va
ω

σ 0= , (2.21) 

and )(sin1 12 ζζζ −+−=b . (2.22) 

The Dahl friction of one steady state period, as shown in Fig. 2.5, can be obtained by 
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solving Eqs. (2.9), (2.10) and (2.16) with the initial condition (Eq. (2.20)).  Then the friction 

ratio, Eq. (2.4), can be rewritten as   

cF

dttz

F
Fr

∫
==

ω
π

σ
π

ω 2

0 0 )(
2 . (2.23) 

The friction ratio versus velocity ratio ζ is shown in Fig. 2.6.  Only if the macroscopic 

velocity is smaller than that of the vibrations (i.e. 1<ζ ), the time-average friction force can 

be reduced.  For 10 << ζ , the friction ratio decreases as the velocity ratio ζ decreases.  

However, the friction ratio depends on not only the velocity ratio ζ but also vv, ω, σ0 and Fc.  

Introducing the displacement ratio 

ss

v

c

v

c

v
disp z

x
F
v

F
vr ===

0

0

σ
ω

ω
σ , (2.24) 

which is same with Eq.(2.21), then Eq. (2.23) has the form 

( )ζ,disprTAFRr = , (2.25) 

where  is the displacement amplitude of the vibrations,  is the steady-state deflection, 

and TAFR is the function of the time-average friction ratio.  For a specific velocity ratio ζ, 

the friction ratio decreases as the displacement ratio increases, as shown in Fig. 2.6.  The 

instantaneous Dahl friction forces of the different displacement ratios and relative sliding 

velocity over one steady state period is plotted in Fig. 2.7.  As the displacement ratio 

increasing, the friction force approaches to the Coulomb friction level F

vx ssz

c.  Hence the friction 

ratio approaches to that of rigid Coulomb friction model, i.e. Eq. (2.6).  On the contrary, as 

the displacement ratio decreasing, the friction force becomes insensitive to the change of the 

relative velocity and approaches to the initial condition of the steady state period, 00zσ .  So 

the friction ratio has an upper bound and a lower bound as follows  
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( ) 1,
)(sin12

limlim
1200

000

0max ≤
+−

===
−→→

ζ
ζζζ

πζσσ
z

FF
z

r
dispdisp r

cc
r

, (2.26) 

1,)(sin 12
min ≤= − ζζπr . (2.27) 

The calculated friction ratio from the analysis based on the rigid Coulomb friction (Matunaga 

and Onoda, 1992; Littmann et al., 2001a, 2001b, 2002) is equal to the lower bound.  

However, the tangential compliance of the sliding pair reduces the effect of the friction 

reduction by vibrations.  Hence the friction ratios obtained from the experiments are higher 

than the lower bound, . minr

A comparison between the experimental results and the calculated values is showed in 

Fig. 2.8.  The values obtained from the experiment by Littmann et al. are higher than the 

lower bound, , but are in very good agreement with the curve of .  The 

displacement amplitude of the vibrations is 0.7 µm in their experiment.  Hence Eq. (2.24) 

gives the steady-state deflection 

minr 2=dispr

35.02/7.0 ==ssz µm.  This value cannot be measured 

directly because it is an average behavior of the asperities during sliding.  What can be 

measured directly is the presliding displacement.  The presliding displacement of this case 

can be obtained from Eq. (2.12).  Due to the reason that the friction of Dahl model only 

approaches but never reach the steady-state sliding friction Fc as displacement increases 

continuously, the presliding displacement can be defined as the displacement when the 

friction is 99.3 % of Fc, i.e. 993.0=cFF .  Then Eq. (2.12) leads to the dimensionless 

displacement 5≅ss

35.0 =

zx

5×=

. Thus the presliding displacement of this case is 

µm.  The presliding displacements of the metals measured in 

the experiments (Armstrong, B., 1991; Olofsson, U., 1995; Hagman, L. A.; Olofsson, U., 

1998) are about 0.3~10 µm which is near the typical asperity dimension of finished hard 

metals.  Hence the calculated presliding displacement of 1.75 µm is reasonable.  According 

75.15= sspresliding zx
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to Fig. 2.6 and the analysis above, it is obvious that the tangential compliance should be taken 

into consideration in modeling the effect of friction reduction by vibrations when the 

presliding displacement is comparable to the displacement amplitude of the vibrations.  

Although the tangential compliance of Dahl model results from the small-scale asperities, the 

tangential compliance of the bulk material has the similar influence on the friction reduction 

that can be included in the model with a modified stiffness 0σ .  

From the viewpoint of friction control, the vibration frequency is an important control 

parameter.  If the vibration amplitude ( ωvv ) is constant (i.e. a constant displacement ratio), 

a higher vibration frequency will lead to a larger vibration velocity (i.e. a lower velocity ratio).  

According to Fig. 2.6, a lower velocity ratio leads to a smaller friction ratio.  Hence, 

increasing the vibration frequency can enhance the effect of the friction reduction.  However, 

for typical vibrators the vibration amplitude decreases with the vibration frequency.  If this 

dependence is assumed that the vibration amplitude is proportional to ω1  (namely the 

vibration velocity is constant), then a higher frequency leads to a lower displacement ratio that 

results in a higher friction ratio.  In one word, increasing the vibration frequency degrades 

the effect of the friction reduction.   

Sometimes, the reduction in friction is not advantageous, particularly in various machine 

joints or friction driven actuators such as ultrasonic motors.  This may lead to loosening of 

joints or decreasing of efficiency.  Hence the selection of the parameters depends on the 

applications. 

 

2.3 Factors to Affect the Effect of Friction Reduction by Vibrations 

According to the analysis above, the important factors that affect the effect of friction 

reduction by vibrations is the velocity ratio ζ and displacement ratio .  However, there dispr
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are still other factors that affect this effect.  They are studied in this section. 

 

2.3.1 Waveform 

In the situation that the vibrator has large inertia, the sinusoidal oscillation may be the 

best waveform for the friction reduction method.  However, if the inertia is small, other 

waveform of oscillation is possible.  In addition, the oscillations from machines are not 

necessarily sinusoidal waveform.  Hence it is worth evaluating the friction under oscillations 

with other waveforms. 

 

2.3.1.1 Triangular Wave 

The system to be investigated is same as Fig. 2.1 but the velocity of the vibrating body is 

defined as Fig. 2.9, the triangular-wave oscillation.  Applying the procedures as Eqs. 

(2.13)-(2.20), the initial deflection of one steady state period (the relative velocity increases 

from zero at the beginning) is 
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where 

disp
c

v r
F

va ==
ω

σ 0 .  

The instantaneous friction forces of different displacement ratios and relative sliding velocity 

over one steady state period for the triangular wave oscillation is plotted in Fig. 2.10.  The 

friction ratio can be obtained from Eqs. (2.9), (2.10) and (2.23) with initial condition (2.28): 
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The friction ratios of different displacement ratios are plotted in Fig. 2.11.  As the case of the 

sinusoidal oscillation, the upper bound and lower bound of the friction ratio in this case are 
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Both of them are larger than that of sinusoidal oscillation.  Hence the triangular wave is not a 

good waveform for the friction reduction.  It is noticeable that the lower bound is a linear 

function of ζ. 

 

2.3.1.2 Square Wave 

For the square-wave oscillation, the velocity of the vibrating body is defined as Fig. 2.12.  

Thus the relative velocity can be defined as  

( ))sin(sgn()( tvtv vrel )ωζ −−= . (2.32) 

The initial deflection of one steady state period is 
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where 
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The instantaneous friction forces of different displacement ratios and relative sliding velocity 

over one steady state period for the square wave oscillation is plotted in Fig. 2.13.  The 

friction ratio can be obtained from Eqs. (2.9), (2.10) and (2.23) with initial condition (2.33):  

( )
)1(

)(csch)cosh()coth(2
2ζπ

ππζπζ
−

−
=

a
aaar . (2.34) 

The friction ratios of different displacement ratios are plotted in Fig. 2.14.  The upper bound 

and lower bound of the friction ratio are 
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and 1,0
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Both of them are lower than that of the sinusoidal oscillation.  Especially, if the displacement 

ratio is large enough, the friction ratio is insensitive to the change of the velocity ratio ζ and 

approaches zero for 1<ζ .  It is due to the character of the square wave that the time 

interval of the positive velocity and the time interval of the negative velocity are not changed 

by the velocity ratio ζ for 1<ζ  (refer to Eq. (2.32)).  Hence the square wave is very 

suitable for the friction reduction.  Comparing the friction ratio of the square wave 

oscillation to that of the triangular wave oscillation, it is found that the lower bound of the 

triangular wave oscillation is equal to the upper bound of the square wave oscillation.   

 

2.3.1.3 Asymmetrical Square Wave 

The friction ratio of square wave oscillation can be reduced further if the time interval of 
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the negative velocity is larger than that of the positive velocity.  For this reason, the velocity 

of the vibrating body can be defined as an asymmetrical square wave, as shown in Fig. 2.15, 

where d is the ratio of the time interval of the positive velocity to one period.  It is assumed 

that the net displacement of the vibrating body is zero over one period, i.e. 0)1(21 =−− dvdv .  

Letting , then the positive velocity vvvv =2 1 is 

10)1(
1 <<

−
= dv

d
dv v . (2.37) 

Following the procedure used in the previous section, the initial deflection of one steady 

state period can be obtained, namely 

0
))1(22(2

))1(1(2))1(22(2

0 )1(
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ζπζζπ

−+−+

+−+−+−+

+−
−+

−= da
c
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e
Feez , (2.38) 

where 

disp
c

v r
F

va ==
ω

σ 0 .  

The friction ratio can be obtained from Eqs. (2.9), (2.10) and (2.23) with initial condition 

(2.38): 
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where 

disp
c

v r
F

va ==
ω

σ 0 ,  

and ))1(1(2 −+= ζπ daD .  

The upper bound and the lower bound of the friction ratio are 
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and 11,12
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It is noted that both of the upper bound and the lower bound decrease as d decrease.  

Furthermore, for , the friction ratio can be negative which means that the 

time-average friction becomes a “driving” force rather than a resisting force.  The friction 

ratios of different displacement ratios are plotted in Fig. 2.16 (d = 0.2) and Fig. 2.17 (d = 0.8).     

5.0<d

Unlike the previous cases that the friction ratio is an odd function of ζ, the friction ratio 

of the asymmetrical square wave oscillation is not symmetric about the origin.  The curve of 

the lower bound intersects that of the upper bound at 

d
d

i 2
12 −

=ζ , (2.42) 

which can be obtained from Eqs. (2.40) and (2.41).  In fact, the curves of different 

displacement ratios all pass trough this point )12,
2

12(),( −
−

= d
d

drζ

i

.  In other words, the 

friction ratio is independent of the displacement ratio when ζζ = .  It is remarkable that the 

time-average friction decreases as the displacement ratio decreases when the velocity ratio 

falls in the range of iζ~0 . 

 

2.3.2 Asymmetric Fc 

The Coulomb friction force Fc is usually chose to be equal (symmetrical) for positive and 

negative velocities.  However, it may be asymmetrical due to the anisotropic property of the 

sliding surface, such as the machined lay orientations.  If Fc for positive velocities is lower 

than that for negative velocities, the friction reduction effect will be enhanced.  The 

asymmetrical Coulomb friction is defined as Fig. 2.18(a), where the friction for the negative 

velocity is -rfFc for . 0>fr
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Applying the procedures as Eqs. (2.13)~(2.27), the initial deflection of one steady state 

period under the sinusoidal oscillation is 
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where 

)(cos1 12 ζζζπζ −−−+=E . (2.44) 

The upper bound and the lower bound of the friction ratio are 
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The lower bounds of different rf are plotted in Fig. 2.18(b).  For 0>ζ , the lower bound of 

the friction ratio decreases as rf increases.  For r , the lower bound of the friction ratio 

can be negative that means the time-average friction force become a “driving” force.  Hence, 

the friction reduction effect will be enhanced when .  The friction ratios of different 

displacement ratios are plotted in Fig. 2.19(r

1>f

fr 1>

f = 1.5) and Fig. 2.20 (rf = 0.5).  They are also 

not symmetric about the origin  .For 0>ζ , if , the time-average friction decreases as 

the displacement ratio increases, however, if 

1>fr

1<fr , the time-average friction increases as the 

displacement ratio increases for small velocity ratio ζ . 
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2.3.3 Self-servo Effect 

The friction moment can increase or decrease the normal force which in turn changes the 

friction force.  This effect is called self-servo.  A simple system is used to illustrate the 

effect shown in Fig. 2.21(a).  The figure shows a sliding element hinged at A, having an 

actuating force W, a normal force N pushing the surfaces together, and a friction force F~ .  

The conditions of static equilibrium are applied by taking a summation of moments about the 

hinge pin.  This gives 

∑ =−−= 0~hFWlNlM A . (2.47) 

Assuming that zn0σ  is the normalized friction force (Dahl model), i.e. the friction force per 

unit normal force, thus the friction force F~  is given by 

0,~
00 >= nnzNF σσ , (2.48) 

where n0σ  is the normalized tangential stiffness and  is the average deflection of the 

asperities.  The normal force can be obtained by substituting 

z

zN n0σ  for F~  and solving 

(2.47), namely 



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

 −
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z

l
h
WN

n01 σ
. (2.49) 

Thus the friction force F~  can be written as 



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l
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~
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Let the friction force without the self-servo effect ( 0=h  and W N= ) is zWF n00
~ σ= .  For 

00 >znσ , the friction force with the self-servo effect is always large than that without the 
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self-servo effect, i.e. 0
~~ FF > , this is called self-energizing.  Contrarily, for 00 <znσ , 

0
~~ FF < , this is called self-deenergizing.  Note that a certain critical value of the normalized 

friction force zn0σ  will cause the term ( )zlh n0)(1 σ−  to become zero.  This is the 

condition for self-locking. 
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where  is the normalized Coulomb friction, i.e. the coefficient of Coulomb friction.  

Following the procedure used in the section of the sinusoidal oscillation, the upper bound and 

the lower bound of the friction ratio are 
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The friction ratio of the lower bound is plotted in Fig. 2.21(b).  For 0)( >cnFlh  

(self-energizing as the relative velocity is positive), the friction ratio increases as the value of 

)( lh  or  increases.  For cnF 0)( <cnFlh  (self-deenergizing as the relative velocity is 

positive), the friction ratio decreases as the value of )( lh  or  increases, and even 

becomes negative that means that the time-average friction force is a “driving” force.  The 

friction ratios for different displacement ratios are plotted in Fig. 2.22.  The influence of 

self-servo effect on the time-average friction is similar to that of asymmetric F

cnF

c.  The 

time-average friction decreases as the displacement ratio increases, except the condition for 

0)( >cnFlh  and small velocity ratio ( 0>ζ ).  It is worth to mention that other structures, 

such as the wedges and screws, will also cause the similar self-energizing effect.   

 

2.4 Energy Dissipated 

The asperities are elastic, so they can store energy and give it back to the system (Bliman, 

1992).  They can be represented by the physical analogy plotted in Fig. 2.23.  The sliding 

body displacement x can be decomposed into elastic and plastic (sliding) components, z and 

w: 

wzx += . (2.54) 

The governing rate equation, from Eq. (2.54), is given by 

wzx &&& += . (2.55) 

For the friction force in the case with vibrations, the energy dissipated during one steady state 

period can be expressed as  

∫=
T

relv dttvtFW
0

)()(~ . (2.56) 

Hence the average dissipated power is 
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which has the units of power.  Applying the Dahl model, Eq. (2.57) can be written as 
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The dissipated power is divided into two parts, the first term for the elastic part and the 

second term for the plastic part.  In the steady state, the average deflection has the relation, 

)()0( Tzz = . (2.59) 

Thus 

0)(
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& , (2.60) 

and 
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Then Eq. (2.58) is reduced to  
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The elastic term does not dissipate energy, but just stores energy and gives it back to the 

system.  Under the sinusoidal oscillation, the average dissipated power of Dahl model in 

steady state is  
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where  

c

v

F
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ω

σ 0= , 

and )(sin1 12
1 ζζζ −+−=E . 

If the friction is assumed to be a rigid Coulomb friction, the elastic component z is zero, 
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i.e. , and wx && = )sgn()(~
relc vFtF = .  Thus under the sinusoidal oscillation, the average 

dissipated power, Eq. (2.57), can be written as 
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= − 101)(sin2
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P , (2.64) 

which is the limit of Eq. (2.63) when the displacement ratio a approaches infinity.  In the 

case without vibrations, the dissipated power is calculated by 

ζvcbcs vFvFP == . (2.65) 

For 1≥ζ , note that the dissipated power with vibrations is equal to the dissipated power 

without vibrations (refer to Eqs. (2.63)-(2.65)) because the vibrations do not affect the friction 

in this condition, i.e. the friction force is constant.   

The normalized average dissipated power )(, vcDahlv vFP  is plotted in Fig. 2.24.  The 

normalized average dissipated power with vibrations decreases as the displacement ratio 

decreases because the tangential compliance reduces the sliding component w.  The ratio of 

the dissipated energy with vibrations to that without vibrations, which can be obtained from 

Eq. (2.63) divided by Eq. (2.65), is plotted in Fig. 2.25.  The average dissipated power with 

vibrations may be lower than that without vibrations, especially when the displacement ratio a 

is small.  This can be explained by the friction-displacement curve in Fig. 2.26.  The energy 

dissipated is equal to the area below the friction-displacement curve.  Due to the tangential 

compliance, the friction with vibrations is smaller than that without vibrations.  Thus the 

area below the curve with vibrations is smaller than the area below the curve without 

vibrations, i.e. .  Note that the Dahl’s friction model does not include the damping of the 

asperity.  Hence, if the damping is included, the dissipated energy will be higher than the 

value calculated from Eq. (2.63) and increase with the frequency of the vibrations.  However, 

the dissipated energy only approaches but does not exceed the value calculated from Eq. (2.64) 

xFc
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because the damping of the asperity only increases the effective stiffness of the asperity but 

not the Coulomb friction .   cF

 

2.5 Concluding Remarks 

A theoretical approach based on Dahl’s friction model is presented that describes the 

time-average friction reduction by the parallel vibrations.  The comparison between the 

friction reduction based on the rigid Coulomb friction model and the experimental data shows 

that the tangential compliance should be take into consideration in the analysis of the friction 

reduction by the tangential vibrations.  A displacement ratio of the displacement amplitude 

of the vibrations to the steady-state compliance is proposed to describe the influence of the 

tangential compliance.  The analysis shows that the time-averaged friction is reduced when 

the base velocity is smaller than the vibrating velocity, and it decreases as the displacement 

ratio increases.  In addition to the tangential compliance, other factors that also have 

influences on the friction reduction are proposed and investigated individually, including the 

waveform of the oscillation, asymmetric Coulomb friction and self-servo effect.  By 

choosing suitable waveform of the oscillation, direction of the asymmetric Coulomb friction 

or self-servo structure, the friction reduction can be enhanced or suppressed depending on the 

applications.  The energy dissipated during sliding with vibrations is also studied.  As the 

displacement ratio decreases, the average dissipated energy with vibrations decreases and may 

be lower than that without vibrations.  Sensitivity studies and optimizations for specified 

applications are natural extension of this work.  
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Fig. 2.1 An analytical model 

 

 

 31



 

 

 

 

 

 

 

 

0.25 0.5 0.75 1 1.25 1.5 1.75 2 
ζ 

0.2 

0.4 

0.6 

0.8 

1 

Fr
ic

tio
n 

ra
tio

 

 

Fig. 2.2 Friction ratio for ζ > 0 and experimentally obtained values (dot) by Littmann et al. 
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Fig. 2.3 True contact between surfaces 
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Fig. 2.4 Relation between the friction force and the displacement 
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Fig. 2.5 Instantaneous friction force (Dahl and Coulomb) and relative sliding velocity over 

one steady state period 

 

 

 35



 

 

 

 

 

 

 

 

 

0.25 0.5 0.75 1 1.25 1.5 1.75 2 
ζ 

0.2 

0.4 

0.6 

0.8 

1 

Fr
ic

tio
n 

ra
tio

 

Displacement ratio

~0 1 2 4 10

8 

 

Fig. 2.6 Friction ratios based on Dahl model 
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Fig. 2.7 Instantaneous Dahl friction forces of different displacement ratios and relative sliding 

velocity over one steady state period 
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Fig. 2.8 Friction ratio based on Dahl model and experimentally obtained values (dot) by 

Littmann et al. 
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Fig. 2.9 Velocity of the vibrating body over one period – triangular wave 
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Fig. 2.10 Instantaneous Dahl friction forces of different displacement ratios and relative 

sliding velocity over one steady state period for the triangular wave oscillation 
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Fig. 2.11 Friction ratios for triangular wave oscillation 

 

 

 41



 

 

 

 

 

 

 

 

t 

vv 

− vv 

Velocity 

ω
π

ω
π2  

 

Fig. 2.12 Velocity of the vibrating body over one period – square wave 
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Fig. 2.13 Instantaneous Dahl friction forces of different displacement ratios and relative 

sliding velocity over one steady state period for the symmetrical square wave oscillation 
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Fig. 2.14 Friction ratios for the symmetrical square wave oscillation 
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Fig. 2.15 Velocity of the vibrating body over one period – asymmetrical square wave 
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Fig. 2.16 Friction ratios for the asymmetrical square wave oscillation (d = 0.2) 
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Fig. 2.17 Friction ratios for the asymmetrical square wave oscillation (d = 0.8) 
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(a) Asymmetrical Coulomb friction 
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Fig. 2.18 Asymmetrical Coulomb friction and its influence on the friction ratio 
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Fig. 2.19 Friction ratios for the asymmetrical Coulomb friction (rf = 1.5) 
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Fig. 2.20 Friction ratios for the asymmetrical Coulomb friction (rf = 0.5) 
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Fig. 2.21 Self-servo effect and its influence on the friction ratio 
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Fig. 2.22 Friction ratios with the self-servo effect ( )25.0)( =cnFlh . 
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Fig. 2.25 The ratio of the dissipated energy with vibrations to that without vibrations 
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Fig. 2.26 The friction and displacement under the steady state 
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CHAPTER 3 FRICTION REDUCTION IN THE LUBRICATED 

CONTACTS 

 

 

3.1 Introduction 

The friction behavior in the lubricated contacts is different form that in the dry contact.  

For this reason, a friction model that can capture the friction behavior in the lubricated 

contacts is required.  In this chapter, the LuGre model is applied to investigate the friction 

reduction observed in the lubricated contacts with the parallel vibrations. 

In order to capture more frictional phenomena observed in the experiments, Canudas de 

Wit et al. (1995) proposed a new model, LuGre friction model, which is an extension of the 

Dahl model.  They were inspired by the bristle model proposed by Haessig and Friedland 

(1991).  The surfaces in contact are visualized as two rigid bodies that make contact through 

elastic bristles. When a tangential force is applied, the bristles will deflect like springs which 

gives rise to the friction force.  If the deflection is sufficiently large, the bristles start to slip. 

The average bristle deflection for a steady state motion is determined by the velocity. It is 

lower at low velocities, which implies that the steady state deflection decreases with 

increasing velocity.  This models the Stribeck effect that is the steady-state relationship 

between friction force and slip velocity.  In addition, the damping effect of the bristles and 

viscous friction between the surfaces are also included.  This dynamic model can capture 

most of the friction behavior.  This includes the presliding displacement, Stribeck effect, 

hysteresis, and varying breakaway force.  Further analysis of the model and its application 

can be found (Dupont et al., 1997; Olsson et al., 1998; Altpeter, 1999; Canudas de Wit and 

Tsiotras, 1999; Barabanov and Ortega, 2000). 

A significant limitation of the Dahl and LuGre models, however, is that they exhibit drift 
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when systems subjected to a small bias force and small vibrations.  To minimize the drift, 

Dupont et al. (2000, 2002) proposed a elasto-plastic model in which presliding is 

elasto-plastic, i.e., under loading the displacement is first purely elastic (reversible) before 

transitioning to plastic (irreversible). 

 

3.2 LuGre Model 

The LuGre model is an extension of Dahl’s model that can provide representations of 

many friction behaviors, including the presliding displacement, Stribeck effect, hysteresis, and 

varying breakaway force.  This model is given by 

v
dt
dzzF 210

~ σσσ ++= , (3.1) 

and 







−= zv

vF
v

dt
dz

ss

)sgn(
)(

1 0σ , (3.2) 

where state variable z denotes the average deflection of the asperities, σ0 and σ2 are contact 

stiffness and viscous friction parameters, and σ1 provides damping for the tangential 

compliance.  The model can be represented as the analogy depicted in Fig. 3.1.  The 

parameters σ0, σ1 and σ2 are usually assumed to be constant in the applications.  The function 

 is the steady state friction force versus rigid body velocity for lubricated systems, 

called the Stribeck curve, and is illustrated in Fig. 3.2.  The negative going portion of the 

curve arises from the contact riding up on a lubricant film; as the lubricant film grows thicker 

with increasing velocity, the friction decreases.  Fig. 3.3 presents several friction-velocity 

curves (Armstrong et al., 1994).  Details of the friction-velocity curve depend on the degree 

of boundary lubrication and the detail of partial fluid lubrication.  When lubricants that 

provide little or no boundary lubrication are employed, the friction decreases as the velocity 

increases before full fluid lubrication dominates, as curve (a).  When boundary lubrication is 

)(vFss
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more effective, the friction is relatively constant up to the velocity at which partial fluid 

lubrication begins to play a role, as curve (b).  A curve of type (c) is given by way lubricants.  

The boundary lubrication provided by the additives to these oils reduces static friction to a 

level below kinetic friction.  For analysis or simulation it is important to have a 

mathematical model of the Stribeck curve.  But for the moment no predictive model of the 

Stribeck curve is available, an empirical model is required.   

A reasonable choice of  which gives a good approximation of the Stribeck effect 

is given by 

)(vFss

α
svv

cbacss eFFFvF −−+= )()( , (3.3) 

where  is the Coulomb friction force (minimum kinetic friction),  is the breakaway 

force (static friction),  is the characteristic velocity of the Stribeck curve that determines 

how  vary within its bounds 

cF

(vss

baF

sv

)F bassc FvFF ≤< )( , and α  is a parameter that determines 

the shape of the Stribeck curve (an effective boundary lubricant would suggest α  very large; 

the value 2=α  is used by Canudas et al.).  By appropriate choice of parameters, curves of 

types (a), (b) and (c) can be realized.  The viscous friction is not added here; it is added to Eq. 

(3.1) to fully describe the Stribeck’s friction.  The Stribeck friction curve is sometimes 

plotted only in the first quadrant; here a more general form is considered in which  is a 

signed quantity, as shown in Fig. 3.4.  As the LuGre model includes the Stribeck, damping 

and viscous effects, it can capture more friction behaviors than the Dahl’s model.  The 

LuGre model reduces to the Dahl’s model if 

)(vFss

cFss vF =)(  and 0=21 = σσ .  

 

3.3 Time-averaged Friction of the LuGre Model 

The friction of LuGre model, Eq. (3.1), is the sum of the three individual terms.  So the 

influence of them on the friction reduction effect by vibrations can be analyzed individually.  
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The parameters σ0, σ1 and σ2 are also assumed to be constant in the study.  Hence the 

time-averaged friction of the LuGre model has the form 

210 σσσ FFFF ++= . (3.4)  

The system to be analyzed is the same with Fig. 2.1 where the relative sliding velocity is 

))cos(()()( tvtvvtv vbrel ωζ −=−= . (3.5) 

The three individual terms of LuGre model over one steady state period is plotted in Fig. 3.5. 

 

3.3.1 Damping Term 

In a steady state period (periodic), the deflections in the beginning and end of the period 

are equal, i.e. )()0( Tzz = .   is a continuous function.  Thus the definite integral of 

 on the period T is 

)(tz

)(tz&

0)0()()(
0

=−=∫
T

zTzdttz& . (3.6)  

This leads to the time average of the damping term of the LuGre model, 

0)()(1
0

1
0 11 ∫∫ ===

TT
dttz

T
dt

dt
tdz

T
F &

σσσ . (3.7)  

Fortunately, this term has no effect on the time-average friction. 

 

3.3.2 Viscosity Term 

The time average of the viscous term of the LuGre model is given by 

( ) bvv

T
vvtvv

T
F 22

2

0 20 2 )cos(
2

1
2

σζσωζσ
π

ωσ ω
π

σ ==−== ∫∫ , (3.8)  

which is equal to the viscosity term without vibrations.  In other words, the vibrations do not 

affect the time average of the viscous term.  Substituting Eqs. (3.7) and (3.8) into Eq. (3.4) 

gives 
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bvFF 20
σσ += . (3.9) 

Equation (3.2) gives the steady state deflection, 

0

)(
σ

bss
ss

vFz = . (3.10) 

Without vibration (i.e. the constant sliding velocity), the steady state friction force is given by 

bbssss vvFvzF 220 )( σσσ +=+= . (3.11) 

Hence, the friction ratio is
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== , (3.12) 

where )(
00 bss vFFr σσ =  is the friction ratio without the viscous friction.  For 1

0
<σr , the 

friction ratio increases as the viscous friction increases.  In other words, the viscous friction 

reduces the effect of friction reduction by vibrations.  If the viscosity term dominates the 

friction, the friction ratio is 

1
2

2 =≈=
b

b

v
v

F
Fr

σ
σ . (3.13) 

Thus the vibrations have little effects on the friction when the viscous effect dominates the 

friction, such as the contacts with the hydrodynamic lubrication that the surfaces are pushed 

apart by the lubricant. 

Adding the viscous friction to the Dahl’s model, the increase of the friction ratio (the 

decrease of the friction reduction effect) is shown in Fig. 3.6. 

  

3.3.3 Elastic Term 

The Stribeck effect is a friction phenomenon that arises from the use of fluid lubrication.  
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Thus, for dry friction,  and css FvF =)( 02 =σ .  Besides, the time average of the damping 

term of the LuGre model is zero.  So in the case of dry friction the friction reduction based 

on the LuGre model is same with that based on the Dahl model that only has the elastic term.  

However, in the lubricated contacts the elastic term z0σ  of the LuGre model is different 

from that of the Dahl model because it includes the Stribeck effect. 

 

3.4 Parameter Studies 

Due to the fact that the damping term has no effect on the time-averaged friction and the 

viscous term simply degrades the friction reduction effect (refer to Eqs. (3.7) and (3.12)) and 

is normally not sufficiently large to have obvious influence on the friction ratio, the following 

study can only focus on the elastic term, z0σ .   

 

3.4.1 Influence of Stribeck Effect on the Friction Reduction Effect 

The simple general solution of Eq. (3.2) was not found.  So a simpler case was first 

studied, which the stiffness parameters σ0 was assumed to be very large ( ∞→0σ ), to reveal 

the influence of Stribeck effect on the friction reduction effect.  Due to the rigid body 

assumption, the friction force with Stribeck effect is given by 

( )α
srel vtv

cbacrel eFFFtvtF )()())(sgn()(~ −−+= . (3.14) 

Instantaneous friction force and relative sliding velocity over one period is plotted in Fig. 3.7.  

The friction force increases when the relative sliding velocity approaches zero.  

The relative sliding velocity with vibrations is defined in Eq. (3.5).  The effective 

friction force, which is observed macroscopically, is the time-averaged mean friction force 

over one period of vibration: 
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where tωτ = .  Without vibrations, the steady state friction force is 

αζ sv vv
cbac eFFFF −−+= )( .  (3.16) 

The effect of friction reduction by superposed vibrations can be described quantitatively by 

the friction ratio 

F
Fr = .  (3.17) 

Introducing cbasf FFr =  and svsv vvr = , and substituting F  from Eq. (3.15) and  from 

Eq. (3.16) give  

F
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α
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π τζ ττζ
π

sv

sv

r
sf

r
sf

er

der
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−

−−

−+
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=
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)1(1

)1(1))cos(sgn(
2
1 2

0

))cos((

.  (3.18) 

The above integral can be calculated explicitly if 1=sfr  or 0=α , which represents the case 

without the Stribeck effect, as follows: 

.1
11

1

sin2 1

1 >
≤≤−







=
−

= ζ
ζζ

πsfrr  (3.19) 

This is the same with the friction ratio based on the Coulomb friction model whose friction 

only depends on the direction of the relative sliding velocity (refer to Sec. 2.1).   

In the literature surveyed, α  ranges from 0.5 to a large value.  The more effective 

boundary lubrication would suggest a larger α .  The LuGre model adopted 2=α .  So a 

reasonable basic set of the parameters of Eq. (3.18) is ( ) ( 2,2,8 ).1,, =αsvsf rr .  The 

calculations for friction ratio were performed for varying parameters.  The results are shown 
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in Table 3.1 and Fig. 3.8.   

When  is small or large enough, the influence of the Stribeck effect on the friction 

ratio is small.  It has the maximum influence when  is in the range of 1~2.  For a small 

velocity ratio 

svr

svr

ζ  (about 0~1), the friction ratio decreases as  or sfr α  increases.  For a 

larger velocity ratio ζ  (about > 1), the friction ratio increases as  or sfr α  increases.  The 

normalized Stribeck curves with varying parameters are plotted in Fig. 3.9.  The higher  

represents the greater Stribeck effect, and the larger 

sfr

α  represents that the friction variation is 

larger when the sliding velocity is close to the Stribeck velocity .   sv

The Stribeck friction under vibrations is plotted in Fig. 3.10.  When  is small (the 

amplitude of the vibrating velocity  is small compared to the Stribeck velocity ), the 

change of the Stribeck friction in quantity over one vibration period is small.  So the friction 

ratio is close to that of  where the value of friction force is constant within a cycle.  

When  is large enough, the larger Stribeck frictions near low velocities only occupy a 

small part of time over one period.  So the friction ratio is also close to that of .  The 

greatest effect of the Stribeck friction on the friction ratio occurs when  is close to 1~2.  

When the velocity ratio 

svr

vv sv

0

0=svr

svr

=svr

svr

ζ  is large enough to keep high sliding velocities, there would be no 

friction rise over one period.  The lowest sliding velocity within one cycle is )1( −ζvv .  

Supposing the threshold of the friction rise is cF%)11( +  (refer to Fig. 3.9.), the maximum 

velocity ratio ζ  where the Stribeck friction can raise within one cycle can be derived from 

Eq. (3.14) and expressed as follows: 

.)]1(100[log11

)]1(100[log1
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−+=
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Taking parameters ( ) ( 2,4,8.1,, = )αsvsf rr  as an example, the maximum velocity ratio ζ  is 

1.5 (as shown in Table 3.1).  When the velocity ratio ζ  is larger than 1.5, the friction ratio 

is not affected by the Stribeck effect, approaching to the curve of .  Note that the 

viscous friction is not included in the above calculations.  To add this term to the calculated 

friction ratio, refer to Eq. (3.12). 

1=sfr

 

3.4.2 Lubricated Contacts with Tangential Compliance 

The rigid body assumption simplifies the calculations.  In the condition with high 

frequency vibrations, however, the vibrating displacement is usually very small (some µms), 

and the tangential compliance can be comparable to the vibrating displacement.  In this 

condition, the tangential compliance should be included in the calculations, which were 

presented in the following study. 

It is worthy to mention that the LuGre model captures the friction lag phenomenon by 

the elastic term.  If ∞→0σ  (rigid body), there is no friction lag.  Hence, if the friction 

behavior of the contacts with vibrations does shows the friction lag phenomenon, the rigid 

body assumption is not suitable for that condition.   

In order to investigate the influence of the Stribeck effect on the friction reduction by 

vibrations, an initial set of parameter values in Table 3.2 have been used.  The parameters are 

varied individually, one at a time.  The stiffness 0σ  was chosen to give a presliding 

displacement of the same magnitude as reported in various experiments (about 0.3~10 µm).  

The Coulomb friction level  corresponds to a friction coefficient cF 1.0≈µ  for a unit mass, 

and  gives a higher friction for very low velocities.  The Stribeck velocity  is the 

same order of magnitude as given in (Hess and Soom, 1990).  The LuGre model adopted 

baF

2

sv

=α .  The vibrating velocity vv and frequency ω of the system are also the same with that 
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of the experiment by Littmann et al. (2001a, 2001b, 2002).  The damping term and the 

viscous term were not included here.  

The influence of the contact stiffness σ0 on the friction reduction effect was studied first.  

The results are shown in Fig. 3.11, where the solid line indicates the parameter configuration 

corresponding to Table 3.2.  For a small velocity ratio ζ  (about < 1), the friction ratio 

decreases (i.e. the amount of the friction reduction increases) as the contact stiffness σ0 

increases.  In other words, the tangential compliance reduces the friction reduction effect.  

This is very similar to the results based on the Dahl model as shown in Fig. 2.6, where the 

friction ratio is a function of the displacement ratio and the velocity ratio ζ , and decreases as 

the displacement ratio increases for 1<ζ .  The displacement ratio in the study based on the 

Dahl model is defined as 

ss

v

c

v

c

v
disp z

x
F
v

F
vr ===

0

0

σ
ω

ω
σ .  (3.21) 

It is a ratio of the displacement amplitude of the vibration to the steady state deflection of the 

asperities.  The displacement ratio indicates how close the instantaneous friction approaches 

the “saturated” friction (  in the Dahl model) before the reverse of the sliding direction.  A 

larger displacement ratio represents that the instantaneous friction is closer to the saturated 

friction during the unidirectional sliding.  As the friction of the Dahl model is a function of 

displacement (refer to Fig. 2.4), the response of the instantaneous friction depends on the 

displacement but not time.  The LuGre model is the extension of the Dahl model.  So the 

behaviors of the asperities are similar to that of the Dahl model.  One of the differences 

between these two models is that the LuGre model includes the Stribeck effect that describes 

the steady-state behavior of the lubricated contacts.  The underlying assumption of the 

LuGre model is that the fluid layer develops its thickness instantaneously in response to the 

input sliding velocity and the slower asperity dynamics control the evolution to the steady 

cF
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sliding friction force associated with the sliding velocity.  Hence, the “saturated” friction will 

change with the sliding velocity, which is formulated by the Stribeck curve.  The 

displacement ratio may vary between )()( 0 bav Fv ωσ  to )()( 0 cv Fv ωσ , depending on the 

sliding velocity (refer to Eq. (3.3)).  The lowest one of the two ratios can be used as a rough 

indication of the influence of the tangential compliance on the friction ratio.  The lowest 

displacement ratios of the curves in Fig. 3.11 are 0.3 for , 3.4 for  

and  for 

5
0 105×=σ 6

0 105×=σ

∞ ∞=0σ .  A small displacement ratio represents that the friction response is not 

fast enough to approach the “saturated” friction, as shown in Fig. 3.12 where the curve of 

 is always lower than the curve of 5
0 10×=σ 5 ∞=0σ  (representing the saturated friction).  

If the Stribeck effect is not effective ( cbasf FFr =  or sv vvsvr =  is small), it is reasonable to 

take )( cF)0v(v ωσ  as the indication.    

1>ζFor , the friction ratio with the Stribeck effect can be larger than 1, which 

represents that the time-averaged friction is larger than the steady friction without vibrations, 

as shown in Fig. 3.13.  When 1>ζ , the relative sliding velocity only changes its magnitude 

but not direction, so does the instantaneous friction.  As the sliding velocity decreases in its 

magnitude, the instantaneous friction increases due to the Stribeck effect.  Thus, if the steady 

velocity  is large enough to produce a small steady friction, the friction ratio can be larger 

than 1.  However, as the steady velocity  increases, the influence of the Stribeck effect on 

the instantaneous friction decreases.  Then the friction ratio approaches 1 (refer to Fig. 3.11).  

It is worthy to mention that the instantaneous friction lags behind the sliding velocity during 

dynamic sliding speed variations.  As was previously stated, the LuGre model captures the 

friction lag phenomenon by the elastic term.  The friction lag decreases as the contact 

stiffness 

bv

0

bv

σ  increases.  Note that the damping term and the viscous term are not included 

here.  If these two terms are included, the maximum of instantaneous friction depends on the 
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summation of the three terms in the LuGre model as shown in Fig. 3.5.   

The friction ratios for varied breakaway force  and for varied Stribeck velocity  

are plotted in Fig. 3.14 and Fig. 3.15.  The influence of the Stribeck parameters on the 

friction ratio is similar to that with the rigid body assumption.  The major difference between 

the two cases is that the tangential compliance smoothes the curves around 

baF sv

1=ζ .  

The viscous friction, which is normally not sufficiently large to have obvious influence 

on the friction ratio, was not included in the above calculations.  If it is included, the friction 

reduction effect will be degraded (refer to Eq. (3.12)).  For example, let 5.02 =σ , the 

calculated friction ratios are plotted in Fig. 3.16.  When the friction ratio without the viscous 

friction is lower than 1, the increase of the viscous friction increases the friction ratio, 

degrading the friction reduction effect.  When the friction ratio without the viscous friction is 

larger than 1, which is due to the Stribeck effect, the increase of the viscous friction reduces 

the friction ratio.  The instantaneous friction force with the viscous friction at 5.0=ζ  is 

plotted in Fig. 3.17.  Note the influence of the viscous friction on the maximum of 

instantaneous friction.  

The damping term of the LuGre model was not included in the above calculations 

because it doesn’t have influence on the friction ratio (Eq. (3.7)).  However, if it is included, 

it has influence on the instantaneous friction force.  It is worth pointing out that the elastic 

damping combined with the Stribeck effect can cause some non-physical conditions.  One of 

them is the “Stribeck slingshot effect” (Dupont et al., 2000,2002).  The Stribeck curve 

indicates that the steady-state friction force is a decreasing function of velocity magnitude.  

As the sliding velocity increases, the elastic deflection of the asperities must decrease to 

produce the smaller steady-state friction force.  The inequality  

)sgn()sgn( zv &≠ ,  (3.22) 
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will hold during the elastic relaxation.  The elastic damping can reverse the direction of the 

friction force during relaxation, rendering the model non-dissipative, as shown in Fig. 3.18.  

This is a non-physical modeling artifact because the modeled friction force actually 

accelerates the mass forward.  This effect can be avoided by proper choice of model 

parameters (Barabanov and Ortega, 2000). 

 

3.5 Influence of the Normal Force on the Stribeck Curve 

In order to include the normal force in the LuGre model, the author of the LuGre model 

suggested this form (Canudas de Wit, C and Tsiotras, 1999): 







 ++= v

dt
dzzNF 210

~ σσσ ,  (3.23) 
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ss
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µ
σ ,  (3.24) 

and 
α

µµµµ svv
cbacss ev −−+= )()( ,  (3.25) 

where N is the normal force, )(vssµ  the normalized friction force, cµ  the normalized 

Coulomb friction, and baµ  the normalized static friction.  This form was also used by 

Dupont et al. (1997).  This form implies that the normalized Stribeck curve, Eq. (3.25), is 

independent of the normal force.  However, the experimental results presented by Hess and 

Soom showed that the normalized Stribeck curve influenced by not only the normal force but 

also the viscosity of the lubricant, as shown in Fig. 3.19 for different normal loads.  A 

better-normalized Stribeck curve is given by an equation of the form:    

αη

µµµµ N
vC

cbacss

v

ev
−

−+= )()( ,  (3.26) 

where η  is the viscosity, W the normal force, and  the empirical parameter.  Replacing vC
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Eq. (3.25) with this equation, a simulation of different normal loads is plotted in Fig. 3.20, 

which shows the same tendency as the experimental data in Fig. 3.19.  Comparing Eq. (3.25) 

with Eq. (3.26), it implies that the Stribeck velocity  depends on the viscosity and the 

normal force. 

sv

baF

 

3.6 Identification of the Model Parameters 

The parameters of the LuGre model can be identified by the use of model properties, as 

shown in Fig. 3.21 and Fig. 3.22.  The parameters,  and 0σ , can be obtained by the 

experiments that produce the Dahl curve.  The parameters, , cF 2σ  and , can be 

obtained by the experiments that produce the Stribeck curve.  The damping coefficient 

sv

1σ  

can be obtained by identifying the system dynamics within small displacements (stiction 

regime).  Considering a mass m in contact with a fixed horizontal surface, the equation of 

motion is 

dt
dx

dt
dzzF

dt
xdm 2102

2

σσσ −−−=−= .  (3.27) 

The stiction condition is analogous to the existence of an elastic region on the stress-strain 

curve of a material, where the displacement is very small and the deflection of the asperity is 

equal to the displacement of the mass.  Thus, 

dt
dx

dt
dz

= .  (3.28) 

Inserting Eq. (3.28) into Eq. (3.27) gives 

0)( 0212

2

=+++ x
dt
dx

dt
xdm σσσ .  (3.29) 

This shows that the contact with small displacements behaves like a damped second-order 

system.  
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3.7 Concluding Remarks 

A theoretical approach based on the LuGre friction model is presented that describes the 

friction reduction observed in the lubricated contacts with the parallel vibrations.  It is 

showed that the linear damping of the asperities has no effect on the friction reduction, and 

the linear viscosity of the contacts, whose time-averaged value is not affected by the 

vibrations, degrades the effect of friction reduction by vibrations.  The tangential compliance 

of the contacts also reduces the effect of friction reduction by vibrations, and its influence on 

the friction reduction can be represented roughly by the displacement ratio of the 

displacement amplitude of the vibration to the steady state deflection of the asperities.   

The influence of Stribeck effect on the friction reduction effect is presented.  

Comparing with the sliding without Stribeck effect, the presence of the Stribeck effect leads to 

a lower friction ratio for a small velocity ratio (about 0~1) and a larger friction ratio for a 

larger velocity ratio.  The tangential compliance reduces the Stribeck effect on the friction 

reduction. 

An approach to include the normal force in the LuGre model is proposed, which shows a 

better agreement with the experimental results in the literatures. 
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Table 3.2 Basic set of parameters used in the simulation 

Parameter Value Unit 

σ0 5000000  N/m 

σ1 0 Ns/m 

σ2 0 Ns/m 

Fc 1 N 

Fba 1.8 N 

vs 0.1 m/s 

α 2  

vv 0.26 m/s 

ω 120000π rad/s 
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Fig. 3.1 Analogy of the LuGre model 
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Fig. 3.2 The generalized Stribeck curve, showing friction as a function of velocity for low 

velocities 
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Fig. 3.3 Friction as a function of steady state velocity for various lubricants; the Stribeck 
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Fig. 3.4 Stribeck curve of steady-state friction force versus sliding velocity v 
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Fig. 3.5 Friction components of LuGre model over one steady state period 
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Fig. 3.6 Friction ratios based on Dahl’s model with viscous friction 
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Fig. 3.7 Instantaneous friction force and relative sliding velocity over one period 
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Fig. 3.8 Friction ratios with the stribeck effect  
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Fig. 3.11 Friction ratios with the stribeck effect for varied contact stiffness σ0 
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Fig. 3.12 Instantaneous friction force for varied stiffness 0σ  and relative sliding velocity 
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Fig. 3.13 Instantaneous friction force and relative sliding velocity for 1.1=ζ  
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Fig. 3.14 Friction ratios with the stribeck effect for varied breakaway force  baF
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Fig. 3.15 Friction ratios with the stribeck effect for varied Stribeck velocity  sv
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Fig. 3.16 Friction ratios with the Stribeck effect and the viscous friction under 5.02 =σ  
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Fig. 3.21 Dahl curve 
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CHAPTER 4 FRICTION REDUCTION BY TANGENTIAL 

VIBRATIONS 

 

 

4.1 Introduction 

The angle of the tangential vibrations with the direction of the macroscopic velocity is 

influential to the friction reduction.  The friction reduction by the parallel vibrations has been 

presented in Chapter 2 and 3.  In this chapter, the friction reduction by tangential vibrations 

at any angle, particularly perpendicular vibrations, is investigated.   

 

4.2 Sliding of Rigid Body 

The friction system under investigation comprises a rigid body sliding over a rigid and 

flat plane at a prescribed velocity under constant normal force, as shown in Fig. 4.1.  The 

prescribed velocity consists of two components.  The first component is a macroscopic 

constant velocity , and the second is a harmonic velocity bv )cos( tvv ω  representing the 

vibration.   

Let θ  denote the angle of the harmonic velocity )cos( tvv ω  with the constant velocity 

 that is parallel with the x-axis.  The velocity of the rigid body can be expressed as the 

vector 

bv

jtvitvvv vvb

vvv θωθω sin)cos()cos)cos(( ++= .  (4.1) 

Since the Coulomb friction works on the body in the opposite direction to the relative sliding 

velocity, the instantaneous Coulomb friction becomes 

jFiF
v
vNF yx

vv
v

vv ~~ +=−= µ ,  (4.2) 
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where N represents the normal force, as shown in Fig. 4.2.  The components of the friction 

are given by  

NFx µ
ττθζζ

τθζτ
22 coscoscos2

coscos)(~
++

−−
= ,  (4.3) 

and NFy µ
ττθζζ

τθτ
22 coscoscos2

cossin)(~
++

−
= ,  (4.4) 

where τ  is the normalized time defined as 

tωτ = ,  (4.5) 

and ζ  denotes the velocity ratio which is defined in Section 2.1. 

The mechanism of friction reduction by tangential vibrations is illustrated in Fig. 4.3.  

The velocity of the sliding body frequently changes its direction in accordance with the 

vibration component, and the direction of Coulomb friction also changes.  Because the 

amplitude of instantaneous Coulomb friction remains constant, the friction force in the 

direction of  reduces on time-average.  It is important to recognize that the superposed 

vibrations reduce the time-average friction force, not the real (instantaneous) friction.   

bv

The effective friction force that is observed macroscopically is the time-averaged friction 

force.  The time-averaged friction force in the directions of x (i.e. the direction of the 

macroscopic velocity ) and y are defined as bv

ττ
π

π
dFF xx ∫=

2

0
)(~

2
1 ,  (4.6) 

and ττ
π

π
dFF yy ∫=

2

0
)(~

2
1 .  (4.7) 

    The effect of friction reduction by superposed vibrations can be described quantitatively 

by the ratio of the time-averaged friction force F  to the friction force NF µ−=  observed 
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in the absence of vibrations.  The friction ratio in the directions of x and y become 

τ
ττθζζ

τθζ
π

θζ
π

drx ∫ ++

+
=

2

0 22 coscoscos2
coscos

2
1),( ,  (4.8) 

and τ
ττθζζ

τθ
π

θζ
π

dry ∫ ++
=

2

0 22 coscoscos2
cossin

2
1),( .  (4.9) 

The friction ratio in the direction of x (the direction of the macroscopic constant velocity ) 

is of most interest.  It can be calculated explicitly if 

bv

0=θ  and 2πθ =  respectively as 

follows: 

1
10

1

sin2
)0,(

1

>
≤≤







=
−

ζ
ζζ

πζxr ,  (4.10) 

and )
1

1(
1

2)
2

,( 22 ζζ
ζ

π
πζ

++
= Krx ,  (4.11) 

where  is the complete elliptic integral of the first kind.  The friction ratio  for 

different angles is plotted in Fig. 4.4.  The friction ratio decreases with decreasing velocity 

ratio 

)(mK xr

ζ .  A significant friction reduction effect is observed whenever the macroscopic 

velocity is smaller than the velocity amplitude of the vibration component.  For velocity 

ratio 95.0<ζ , the vibration parallel to the direction of the macroscopic velocity ( 0=θ ) 

exerts the greatest effect on the friction reduction.  For velocity ratio 1>ζ , the vibration 

perpendicular to the direction of the macroscopic velocity ( 2πθ = ) has a larger effect on the 

friction reduction, but the amount of the friction reduction is limited.   

 

4.3 Sliding with Tangential Compliance 

Surfaces are very irregular at the microscopic level.  Therefore two surfaces contact at a 
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number of asperities.  When a tangential force is applied, the asperities will deflect like 

springs giving rise to the friction force.  If the force is sufficiently large, some of the 

asperities deflect so much that they will slip.  The average behavior of the asperities can be 

represented by the physical analogy depicted in Fig. 4.5.  Here, the sliding body experiences 

a friction force due to the deformation of a single lumped asperity contact.  

The deflection z of the lumped asperity is defined as the horizontal distance between 

points P and T.  The deflection z can be modeled by the extension of Dahl model.  The 

Dahl model has the general form 

i

c

v
F
F

dx
dF









−= )sgn(10σ ,  (4.12) 

where F denotes the friction force, x represents the displacement of the sliding body, σ0 is the 

stiffness of the asperity, Fc denotes the Coulomb friction force and i represents a parameter 

that determines the shape of the friction-displacement curve.  The value i  is most 

commonly used.  Higher values will gives a friction-displacement curve with a sharper bend, 

as shown in Fig. 4.6.  Notably, in this model the friction force is only a function of the 

displacement and the sign of the velocity.  This so-called rate independence is an important 

property of the model. 

1=

To introduce the deflection z into the model, the friction force is defined as 

zF 0
~ σ= ,  (4.13) 

then the model can be written as 

i

c

zv
F

v
dt
dz









−= )sgn(1 0σ ,  (4.14) 

Equation (4.14) claims that during the unidirectional sliding the deflection z approaches the 

magnitude 
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0σ
c

ss
Fz = ,  (4.15) 

which is the steady state deflection of the asperity.  Thus Eq. (4.14) can be written as 

i

ss

v
z
zv

dt
dz









−= )sgn(1 .  (4.16)  

The hypothesis of Dahl model, including most friction models, is that the friction force is 

parallel to the velocity of the sliding body.  Some difficulties arise in modeling the behavior 

of the asperity in the friction system shown in Fig. 4.1, where the instantaneous friction force 

may not be parallel to the velocity of the sliding body.  In this friction system, the velocity of 

the sliding body frequently changes direction in accordance with the vibrations.  The 

vibration direction must be parallel to the direction of the macroscopic velocity (i.e. 0=θ ) 

for the instantaneous friction force to parallel to the velocity of the sliding body, and the Dahl 

model can be applied without difficulty.  However, the behavior of the lumped asperity 

becomes more complicated when the direction of vibrations is not parallel to the direction of 

the macroscopic velocity (i.e. 0≠θ ).   

Figure. Fig. 4.7 shows the behavior of the lumped asperity when the sliding body moves 

along a curve.  This figure is the top view of Fig. 4.5 and only the points P and T are shown.  

The trajectory of point P of the sliding body is known and the trace of the point T of the 

asperity needs to be determined to calculate the friction force.  The trace of the point T can 

be approximated by the following procedure.  At time t, point P of the sliding body is in 

position P(t) and point T of the asperity is in position T(t).  At time (t+ ∆ t), point P moves to 

the position P(t+ ∆ t).  If the time increment ∆ t is small, the asperity is pulled 

approximately along line )()( ttPt ∆+T  to a new position T(t+ ∆ t).  The length of line 

)()( ttPttT ∆+∆+ , namely the new deflection of the asperity, depends on the friction force 

and the elasticity of the asperity, which are discussed below.  Following this scheme and 
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using a small time change t can obtain the trace of the point T, as shown in Fig. 4.8. ∆

t)(

(Tx

tP

+

(

2

v+

(tz

 

4.3.1 Asperity Slip without a Stiction Phase (Dahl Model with ) 1=i

Referring to Dahl model to Eq. (4.14), the deflection change after a small time increase 

t can be expressed as ∆

tztv
F

tvz
c

∆







−≈∆ ))(sgn(1)( 0σ ,  (4.17) 

where the value 1=i  is used.  Obviously ∆ z approaches zero as the deflection  

approaches the steady state deflection 

)(tz

)( cssz 0 Fσ= .  The deflection of the asperity at time t 

is given by 

22 ))()(()))(()()()( tTtPttPtPtTtz yyx −+−== ,  (4.18) 

where  and ))(),(()( tPtPtP yx= ))(),(()( tTtTtT yx= .  The velocity  in Eq. (4.17) can 

be approximated by the mean velocity of the point P along line 

)(tv

))( tPtT ∆(t + , i.e.   

t
tztTttPtTttP

t
tTttPtTtv

yyxx

∆

−−∆+−∆+
=

∆
−∆+

≈

)())()(())()((

))()()()(

2
.  (4.19)  

According to Eq. (4.17), the deflection of the asperity at time (t+ ∆ t) is written as 

ttztv
F

ttzztzttz
c

∆







−≈∆+=∆+ )())(sgn(1)()()()( 0σ ,  (4.20) 

which can be obtained by inserting Eqs. (4.18) and (4.19).  Once the new deflection of the 

asperity at time (t+ ∆ t) is obtained, the new position of point T, T(t+ ∆ t), is given by 

))()((
)()(

))()( tTttP
ttPtT

tttPttT xxxx −∆+
∆+

∆+
−∆+=∆+ ,  (4.21) 
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and ))()((
)()(

)()()( tTttP
ttPtT

ttzttPttT yyyy −∆+
∆+

∆+
−∆+=∆+ .  (4.22) 

The friction force depends on the deflection and the direction of the asperity.  The friction 

force at time (t+ ∆ t) therefore can be expressed as (refer to Eq. (4.13)) 

))()(()(~
0 ttTttPttF xxx ∆+−∆+=∆+ σ ,  (4.23) 

and ))()(()(~
0 ttTttPttF yyy ∆+−∆+=∆+ σ ,  (4.24) 

which is the component form of the friction force.  Following Eqs. (4.18)~(4.24), the friction 

force at time (t+2 t) can be obtained.  Continuing this process can obtain the friction force 

during sliding with tangential vibrations.  

∆

 

4.3.2 Asperity Slip with a Stiction Phase (Dahl Model with ) 0=i

Equation (4.14) shows that in the Dahl model with 0≠i

0

 the asperity can slip (i.e. 

) even when the deflection is very small.  Thus, when an oscillatory applied force 

that is far smaller than the Coulomb friction F

dttvdz )(≠

dttvdz )(=

c applies to the sliding body, the position of the 

sliding body drifts.  To minimize the drift, Dupont et al. (2000, 2002) proposed an 

elasto-plastic friction model that possesses a stiction phase.  The asperity sticks (i.e. 

) when its deflection is smaller than a breakaway deflection.  Consequently, it is 

reasonable to assume that the asperity as shown in Fig. 4.7 sticks when its deflection is 

smaller than the steady state deflection.  Here, the value =i  is used in the Dahl model to 

render stiction.  The Dahl model then reduces to 

ss

ss

zz
zztv

dt
dz

≥
<





=
0

)(
,  (4.25) 

and zF 0
~ σ= ,  (4.26) 
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which is essentially an elastic Coulomb friction model.  The asperity is modeled as a linear 

spring.  When an increasing tangential force is applied, the asperity does not slip until the 

force increases to the size of the Coulomb friction Fc.  Before slippage, the deflection of the 

asperity equals the displacement of the sliding body.  Thus, the deflection of the asperity at 

time (t+ t) in Fig. 4.7 can be written as ∆

.)()(
)()()()(

)(
ss

ss

ss zttPtTif
zttPtTif

z
ttPtT

ttz
≥∆+
<∆+



 ∆+

=∆+   (4.27) 

Replacing Eq. (4.20) with Eq. (4.27) and following Eqs. (4.18)~(4.24) can yield the friction 

force during sliding with tangential vibrations.  

 

4.4 Friction Ratio 

In the friction system shown in Fig. 4.1, the trajectory of point P of the sliding body is 

given by 

θω
ω

ζ cos)sin()( tvtvtP v
vx += ,  (4.28) 

and θω
ω

sin)sin()( tvtP v
y = .  (4.29) 

In steady state, the time-averaged friction force in the directions of x and y are defined as 

ttktFF
n

k
xx ∆∆+= ∑

=1
)(

2π
ω ,  (4.30) 

and ttktFF
n

k
yy ∆∆+= ∑

=1
)(

2π
ω ,  (4.31) 

where  

t
n

∆
=

ω
π2 .  (4.32) 
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The effect of friction reduction by superposed vibrations can be described quantitatively 

by the friction ratio in the direction of x, i.e. the direction of the macroscopic velocity, which 

is given by 

ttktF
FF

Fr
n

k
x

cc

x
x ∆∆+== ∑

=1
)(

2π
ω .  (4.33) 

As stated, in the Dahl model the friction force is only a function of the displacement and 

the sign of the velocity.  In other words, the friction force depends on the trajectory of point 

P, which depends on ),,( ωθζ v .  For the value 1=i  or 0=i , this property leads to the 

relation in which the time-averaged friction force is a function of the displacement ratio 

ss

v

c

v

c

v
disp z

x
F
v

F
vr ===

0

0

σ
ω

ω
σ ,  (4.34) 

which is a ratio of the displacement amplitude of the vibration component to the steady state 

deflection of the asperity.  The displacement ratio can be seen as an index of the influence of 

the tangential compliance on the friction reduction.   

Equations (4.18)~(4.24) can yield the friction force over one steady state period.  The 

friction ratios  with the value xr 1=i  (without a stiction phase) and  (with a stiction 

phase) for 

0=i

2/πθ =  (perpendicular vibrations) are plotted in Fig. 4.9 and Fig. 4.10 

respectively.  The friction ratios for 6/πθ =  are plotted in Fig. 4.11 and Fig. 4.12.  These 

figures show that a larger displacement ratio leads to a lower friction ratio.  With increasing 

displacement ratio, the friction ratio approaches to that based on rigid Coulomb friction model 

(refer to Fig. 4.4).  Comparing the curves for 1=i  with the curves for  clearly shows 

that for larger velocity ratios the friction ratios are equal, while for smaller velocity ratios the 

former drops faster than the latter with decreasing velocity ratio.  This result can be 

explained by the asperity behaviors.   

0=i

As the velocity ratio ζ  decreases, the trajectory of point P of the sliding body is 
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squeezed in the x-axis direction, as shown in Fig. 4.13.  When the sliding body travels along 

the trajectory with large curvature, the asperity may relax due to the decrease in the horizontal 

distance between points P and T.  Equation (4.14) shows that during asperity relaxation and 

the stretching, the Dahl model with 1=i  has a larger relaxing rate (where 1)sgn( −=v ) and 

a lower stretching rate (where sgn( 1) =v ) than the Dahl model with i , for which 

.  Consequently, over one steady state period, the friction magnitude of the Dahl 

model with  is lower than that of the Dahl model with 

0=

)(/ tvdtdz =

1=i 0=i , leading to a lower friction 

ratio (refer to Fig. 4.14).    

ss

0

z

1=i =

As the velocity ratio ζ  increases, the trajectory of point P of the sliding body is 

lengthened in the direction of x-axis, as shown in Fig. 4.15(a).  If the velocity ratio is 

sufficiently large, the curvature of the trajectory of point P will be too small to cause a 

relaxation of asperity.  In steady state, the deflection of the asperity reaches the steady state 

deflection , namely the magnitude of the friction force keeps constant (Fc), as shown in  

Fig. 4.15(b).  Hence, Dahl model predicts the same friction ratio in this condition whether 

 or i . 

The comparison of friction ratio between calculated values and experimental results by 

Littmann et al. (2002) is shown in Fig. 4.16.  The results based on Dahl model clearly 

display better agreement with the experimental results than those based on the rigid Coulomb 

friction model.  Additionally, for lower velocity ratios, the results based on the Dahl model 

with a stiction phase exhibit closer agreement with the experimental results than those without 

a stiction phase.  It is worthy to point out that the displacement ratios matching the 

experimental results by Littmann et al. are equal for the perpendicular and the parallel 

vibrations (where the displacement ratio = 2).   

Comparing the experimental data with the calculated results has shown that the 

tangential compliance should be considered in modeling the effect of friction reduction by 
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vibrations.  Although the tangential compliance of the Dahl model results from the 

small-scale asperities, the tangential compliance of the bulk material exerts a similar influence 

on the friction reduction. 

 

4.5 Concluding Remarks 

This study presents a theoretical approach based on the Dahl friction model that 

describes the friction reduction observed in the presence of the tangential vibrations at an 

arbitrary angle.  The analysis results demonstrate that the vibrations parallel to the 

macroscopic velocity most effectively reduce the friction.  The friction reduction effect is 

significant whenever the magnitude of macroscopic velocity is smaller than the velocity 

amplitude of vibration.  However, when the magnitude of macroscopic velocity is larger than 

the velocity amplitude of vibration, the vibrations perpendicular to the macroscopic velocity 

still take effect and are most effective but the friction reduction is not significant.  At any 

vibration angle, the tangential compliance of the contacts reduces the friction reduction effect.  

The results obtained using the proposed approach exhibit better agreement with the 

experimental data than those based on the rigid Coulomb friction model. 
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Fig. 4.1 An analytical model for sliding with tangential vibrations 
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Fig. 4.2 Friction and velocities 
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Fig. 4.3 Mechanism of time-average friction reduction 
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Fig. 4.4 Friction ratios  for different angles xr
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(b) Perspective view 

Fig. 4.5 The friction interface between two surfaces is thought of as a lumped elastic asperity 
 

 111



 

 

 

 

 

 

 

 

− 1 − 0.5 0.5 1 1.5 2 2.5 3

− 1 

− 0.5 

0.5 

1 

cFF /~

x/zss

0 0.5 1
2

i 

 

Fig. 4.6 Friction-displacement curves for  0>v
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Fig. 4.7 Behavior of the lumped asperity (top view) 
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Fig. 4.8 Behavior of the lumped asperity over one steady state period. 
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Fig. 4.9 Friction ratios with 1=i ; 2/πθ =  
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Fig. 4.10 Friction ratios with 0=i ; 2/πθ =  
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Fig. 4.11 Friction ratios with 1=i ; 6/πθ =  
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Fig. 4.12 Friction ratios with 0=i ; 6/πθ =  
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(a)                            (b) 

Fig. 4.13 Comparison of the behaviors of asperity over one steady state period ( 2=dispr , 

15.0=ζ , 2/πθ = ): (a) Dahl model without a stiction phase ( 1=i ); (b) Dahl model with a 

stiction phase ( ) 0=i
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Fig. 4.14 Friction forces over one steady state period 
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(b) Friction forces 

Fig. 4.15 Behavior of asperity over one steady state period ( 2=dispr , 5.0=ζ , 2/πθ = ) 
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(b) Parallel vibrations; 0=θ  

Fig. 4.16 Comparison of friction ratios between calculated values and experimental results 
(dot) by Littmann et al. (2001, 2002)  
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CHAPTER 5 FRICTION REDUCTION BY NORMAL VIBRATIONS 

 

 

5.1 Introduction 

In this chapter Dahl model was applied to analysis the friction reduction phenomenon in 

the presence of the normal vibrations.  The friction reduction when the contact is broken for 

part of the normal vibration cycle was also studied.  

In the first part of this chapter, a simple analysis is performed for a contact that is 

modeled simply as a nonlinear spring without the tangential compliance.  While not many 

practical contacts can be modeled as this, this analysis provides physical insight into friction 

force during normal vibrations.   

 

5.2 Friction Based on Adhesion Theory 

In the presence of the normal vibration, the dynamic normal force changes the true area 

of contact.  Based on the adhesion theory of friction, the instantaneous friction force can be 

assumed to be proportional to the area of the contact.  Therefore, the friction under dynamic 

normal forces can be obtained by this load-area-friction relation. 

 

5.2.1 True Area of Contact 

When two surfaces contact with each other, the surfaces asperities are themselves 

deformed elastically, plastically, viscoelastically or brittly.  The area of contact is determined 

by the deformation properties of the materials and the detailed topography of the surfaces.  

Several models of the contact were presented (Tabor, 1981).  They are summarized in Table 

5.1.  If the number of asperity contacts remains constant and the load N is increased, the area 
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of contact in the range where the asperities deform elastically will be proportional to 32N .  

If the number of asperity contacts increase with the load such that the average size of each 

asperity contact remains constant the area of contact in the elastic region will be proportional 

to N.  If the asperities are conical or pyramidal the area will always be proportional to N.  

Finally if plastic deformation takes place, the area of contact will be roughly proportional to N 

whatever the asperity distribution since the yield pressure for each asperity contact will be a 

material constant.  There are many variations on this theme which yield slightly different 

conclusions but the broad picture remains the same however much the details may vary. 

 

5.2.2 Maximum Friction Reduction without Loss of Contact 

Based on the adhesion theory of friction, the instantaneous friction is assumed to be 

proportional to the area of the contact.  To obtain the maximum friction reduction without 

loss of contact, a simple analysis can be performed for a contact that is modeled simply as a 

nonlinear spring, without any system dynamics.  The maximum friction reduction occurs 

when the dynamic load is high enough to cause the onset of contact loss.  At loss of contact, 

the mean and applied harmonic loads are 

)cos1(0 tNN ω+= .  (5.1) 

Based on the adhesion theory of friction, the relation of average friction during steady-state 

vibration is  

00 A
A

F
F avav = ,  (5.2)  

where A0 and N0 correspond to the static values.  If the relation between the area of contact A 

and the normal load N is (Table 5.1) 

32NA ∝ , (5.3)  
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the average value of the friction at the onset of contact loss is 

∫
∫
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+
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ω
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However, when the relation between the area of contact A and the normal load N is 

NA ∝ , (5.5)  

the value is  

∫ =+== ω
π

ω
π

ω 2

0
00

1)cos1(
2

dtt
A
A

F
F avav , (5.6)  

which means that the average friction is not reduced.  Therefore, before loss of contact, there 

is no friction reduction in those cases that area of contact is linearly proportional to the normal 

contact force.   

Similar studies (Hess and soom, 1991) that model the contact region as a nonlinear 

spring in parallel with a viscous damping element got the similar results.  Their results 

showed that the maximum reduction in average friction for Hertzian contacts ( 32NA ∝ ) at 

primary resonance under dynamic loading without any loss of contact is approximately ten 

percent, and for rough planar contacts ( NA ∝ ) is approximately zero.     

 

5.3 Influence of the Tangential Compliance  

The tangential compliance of the contacts has obvious influence on the instantaneous 

friction force that in turn changes the average friction under dynamic loading.  In this section, 

both normal vibrations with and without loss of contacts are considered. 

 

5.3.1 System Model 

The analytical model for normal vibrations is shown in Fig. 5.1.  The dynamic normal 
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load is given as follows: 

tANtN N ωcos)( 0 += ,  (5.7) 

where  is the static load, and  is the amplitude of the harmonic load with a frequency 0N NA

ω .  However, in the case of NN A<0 , the value of the normal load can becomes negative.  

This means that the contact is broken for part of the vibration cycle.  Therefore, when 

, the dynamic normal load in a period is given as follows: NA<N0







≤≤≤≤

≤≤+
= ,2,00

cos
)(

21

210

ω
π

ω

tttt

ttttAN
tN

N
  (5.8) 

where  and  represent the starting and the finishing time of contact respectively in a 

period.   and t  are given as follows: 

1t 2t

1t 2

)(cos1 01
1

NA
Nt −=

ω
,  (5.9) 

and 12
2 tt −=
ω
π .  (5.10) 

The typical dynamic normal loads in a cycle of contact are shown in Fig. 5.2. 

When two surfaces contact with each other and have a relative motion, the asperities on 

the surfaces will deform like springs which gives rise to the friction force.  When the strain 

of any particular asperity exceeds a certain level, the bond is broken and a new bond having a 

smaller strain is established.  Dahl (1976) modeled the average stress-strain curve by a 

differential equation.  Here, the Dahl model can be written as follows:   

i

c

vzv
dt
dz









−= )sgn(1 0

µ
σ ,  (5.11) 

and zNF 0σ= ,  (5.12)  
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where σ0 is the normalized contact stiffness, cµ  is the normalized Coulomb friction,  is 

the relative velocity,  is the normal force, z is the internal friction state, and i is a 

parameter that determines the shape of the stress-strain curve.  Applications of this model 

commonly employ the value i=1. 

v

N

 

5.3.2 Sliding without Loss of Contact 

In the system of Fig. 5.1, the relative velocity  is assumed to be constant.  Thus, if 

there is no loss of contact during sliding, the internal friction state z of the Dahl model 

approaches to the steady state  

bv

ssz

0σ
µc

ssz = ,  (5.13) 

leading to the instantaneous friction force 

ctNtF µ)()(~ = .  (5.14)  

The effective friction force that is observed macroscopically in the presence of normal 

vibrations is the time-averaged friction force that is given by 

∫= ω
π

π
ω 2

0
)(~

2
dttFF .  (5.15)  

Then the time-averaged friction force without loss of contact is obtained by inserting Eqs. (5.7) 

and (5.14) into Eq. (5.15), leading to  

cNF µ0= .  (5.16) 

This value is equal to the friction force without normal vibrations.  Hence, there is no 

friction reduction in the condition without loss of contact.  

It is worthy to point out that the static friction is reduced in the presence of the normal 
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vibrations without loss of contact due to the oscillations of the frictional resistance of the 

contacts (Tworzydlo and Beckker, 1991), as shown in Fig. 5.3.  In addition, the normal 

vibrations may induce a stick-slip sliding (Martins, 1990). 

 

5.3.3 Sliding with Loss of Contact 

If the contact is broken for part of the normal vibration cycle, the asperities deform 

during the contact and relax after the loss of contact.  The instantaneous friction force during 

contact can be obtained by solving Eqs. (5.11) (with i=1) and (5.12) with the initial condition 

, as follows: 0)0( =z










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b tv
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,   0 12 ttt −<< .  (5.17) 

The dynamic normal load during contact is given as follows: 

)(cos)( 10 ttANtN N ++= ω ,   0 12 ttt −<< .  (5.18)  

The instantaneous friction force during contact is plotted in Fig. 5.4.  A larger velocity  

or contact stiffness σ

bv

0 lead to the faster response of the instantaneous friction force to the 

dynamic normal load.    

The time-averaged friction force is given by 

∫
−

= 12

0
)(~

2
tt

dttFF
π

ω .  (5.19) 

The effect of friction reduction by superposed normal vibrations can be described 

quantitatively by the ratio of the time-averaged friction force to the friction force without 

vibrations, as follows: 

cN
Fr
µ

= .  (5.20) 
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After some calculations, the friction ratio for the condition that the contact is broken for 

part of the normal vibration cycle can be obtained, as follows: 

( ) ( )( )
( )( )( ) ,,1sin2
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where 

(( )loadd rreE
1sin2

1

−+−= π ,  

N
load A

Nr 0= ,  
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c

b
d

vr
ωµ

σ 0= .  

The friction ratio is an increasing function of  whose property is similar to the 

displacement ratio proposed in Chapter 2.  When 

dr

N NA=0  (the onset of contact loss), Eq. 

(5.21) reduces to 
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( )dd

dd
r

rr
rrer
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+
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=
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3

32

2
12

π
ππ

,  (5.22) 

which approaches 1 as  increases.  dr

The friction ratios are plotted in Fig. 5.5.  The friction ratio decreases for each of the 

following change in parameters: decrease of sliding velocity , decrease of contact stiffness 

σ

bv

0, increase of vibrating frequency ω , and increase of normalized Coulomb friction cµ .   

The system dynamics is not included here for simplification.  If it is included, only the 

normal contact force (Eq. (5.7) and Eq. (5.8)) is changed and the above approach still can be 

applied.      
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5.4 Concluding Remarks 

In this chapter, theoretical approaches based on the adhesion theory of friction and the 

Dahl friction model is presented that describes the friction reduction observed in the presence 

of the normal vibrations.  It is showed that under the normal vibrations without loss of 

contact the reduction of the time-averaged friction is not significant.  Under the normal 

vibrations with loss of contact, the tangential compliance reduces the instantaneous friction 

force, leading to the reduction in the time-averaged friction.  The friction reduction increases 

as the tangential stiffness or the sliding velocity decreases, or as the vibrating frequency 

increases.   
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Table 5.1 Area of contact between surfaces in terms of asperity deformation 

3/2NA ∝  Constant number of asperity contacts 
Elastic 

NA ∝  Constant size of asperity contacts 

Plastic NA ∝   
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Fig. 5.1. An analytical model for normal vibrations 
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Fig. 5.2. Dynamic normal loads in a cycle of contact 
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Fig. 5.3 Oscillations of the frictional resistance of the contacts and corresponding tangential 

velocity of the slider 
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Fig. 5.4. Instantaneous friction forces during contact 
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Fig. 5.5. Friction ratios for conditions with loss of contact 
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CHAPTER 6 CONCLUSIONS AND FUTURE WORKS 

 

 

6.1 Conclusions 

Theoretical approaches based on the Dahl friction model are presented that describe the 

time-averaged friction reduction observed in the presence of the vibrations that can be either 

normal or tangential to the contact surface.  The underlying assumption in this study is that 

the friction force is not influenced by the wear and heat of the contact surfaces.  The 

comparison between the friction reduction based on the rigid Coulomb friction model and the 

experimental data in the literatures shows that the tangential compliance of the contacts 

should be taken into consideration in the analysis of the friction reduction by vibrations.  A 

displacement ratio of the displacement amplitude of the vibrations to the steady-state 

compliance of the asperity is proposed to describe the influence of the tangential compliance.  

For tangential vibrations, the tangential compliance degrades the effect of friction reduction.  

However, for normal vibrations, the tangential compliance enhances the effect of friction 

reduction.  For any type of vibrations, the friction reduction effect is more significant when 

the magnitude of macroscopic velocity is smaller than the velocity amplitude of vibration. 

For tangential vibrations, it is showed that the vibrations parallel to the macroscopic 

velocity are most effective to reduce the friction.  However, when the magnitude of 

macroscopic velocity is larger than the velocity amplitude of vibration, the vibrations 

perpendicular to the macroscopic velocity still take effect and are most effective comparing to 

non-perpendicular vibrations but the amount of the friction reduction is limited.  Comparing 

with the experimental data in the literatures, the results based on the proposed approach have 

a better agreement than that based on the rigid Coulomb friction model, and the Dahl model 

with a stiction phase provides a better description of the friction reduction by perpendicular 
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vibrations. 

A theoretical approach based on the LuGre friction model is presented that describes the 

friction reduction observed in the lubricated contacts with the parallel vibrations.  It is 

showed that the linear damping of the asperities has no effect on the friction reduction, and 

the linear viscosity of the contacts, whose time-averaged value is not affected by the 

vibrations, degrades the effect of friction reduction by vibrations.  The influence of Stribeck 

effect on the friction reduction effect is also presented.  Comparing with the sliding without 

Stribeck effect, the presence of the Stribeck effect leads to a lower friction ratio for a small 

velocity ratio (about 0~1) and a larger friction ratio for a larger velocity ratio.  The tangential 

compliance reduces the influence of the Stribeck effect on the friction reduction. 

For normal vibrations, it is showed that under the normal vibrations without loss of 

contact the reduction of the time-averaged friction is not significant.  Under the normal 

vibrations with loss of contact, the tangential compliance reduces the instantaneous friction 

force, leading to the reduction in the time-averaged friction.  The friction reduction increases 

as the tangential stiffness or the sliding velocity decreases, or as the vibrating frequency 

increases.  Due to that the dynamics of the normal vibrations with loss of contact is very 

complex, the system dynamics is not included here for simplification.   

Other factors that also have influences on the friction reduction are proposed and 

investigated individually, including the waveform of the oscillation, asymmetric Coulomb 

friction and self-servo effect.  By choosing suitable waveform of the oscillation, direction of 

the asymmetric Coulomb friction or self-servo structure, the friction reduction can be 

enhanced or suppressed depending on the applications.  The energy dissipated during sliding 

with vibrations is also studied.  As the displacement ratio decreases, the average dissipated 

energy with vibrations decreases and may be lower than that without vibrations.  If the 

damping at contacts is low, quite small dynamic loads with frequency near the contact 
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resonance frequency can lead to large normal contact motions (loss of contact is possible).  

Hence, from the viewpoint of energy saving, the normal vibrations may be better than the 

tangential vibration for friction reduction at contacts with low damping.   

  

6.2 Future Works 

The nature of the friction is fairly complex.  The full description and analysis of the 

dynamic friction phenomena actually pose severe practical and computational difficulties.  

Therefore, the LuGre friction model that can capture most of the friction behavior observed 

experimentally still produces non-physical behaviors.  There is still plenty of room for 

further study about the effect of friction reduction by vibrations.  

In the future, this study can be extended to the topics as follows: 

z This study focused on the theoretical analysis, the experimental data is needed to 

confirm the theoretical results and, if necessary, to modify the theoretical model 

(including the friction model). 

z This study can be extended to multi-directional vibrations, such as circular 

vibrations. 

z In the case of the normal vibrations, the damping of the asperities and the fluid 

effect between the contacts can be included in the theoretical analysis.  The 

damping is of extreme importance since it strongly affects the actual amplitudes of 

normal vibrations, but it is very complex in nature. 

z If the wear or heat plays an importance role and affects the friction during the 

sliding, other friction models will be needed, such as the brake system where the 

friction force depends on the growing and destruction of hard patches (Ostermeyer, 

2001).   

z Optimizations for specified applications can be performed.   
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