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Here, we numerically investigate the lowest stability and bifurcation boundary of supercritical Taylor vortices in
flows with different wavenumbers and for various radius ratios; the radius ratios range from those corresponding to
axisymmetrical Taylor vortex flow (TVF) to those corresponding to wavy vortex flow (WVF). The variation in the
wavenumber of a supercritical TVF is found to affect the stability of the flow, because the wavenumber of the Taylor
vortices remains constant only when the flow is quasi-static. The variation in the wavenumber is examined and found
to be significant when the radius ratio is less than 0.7842. The results for TVF are compared with those for the flow
during the quasi-static transition from TVF to WVF.
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1. Introduction

Fluid flows between two concentric rotating cylinders
are often encountered in fluid dynamics. These flows
are interesting and complex. Thus, they attract the
attention of many scholars and researchers. Here, we
numerically analyse and simulate the flow patterns and
flow characteristics between two concentric rotating
cylinders.

The Taylor vortex problem, for many years, was on
the verge of being classified as a nonlinear problem
until Coles (1965) first reported on the nonuniqueness
of the wavy flow in the Taylor-Couette flow. The entire
pattern of wavy vortices moves with a uniform velocity
in the azimuthal direction. Since the term ‘wavy’ is
typically associated with motion that includes periodic
vertical oscillations, this study emphasises that the
wavy Taylor vortices move as rings in the azimuthal
direction. The rings have k1 fixed sinusoidal upward
and downward deformations, where k1 is an integer
number of azimuthal waves. Wavy Taylor vortices
were observed by Taylor (1923), Lewis (1928), Schultz-
Grunow and Hein (1956) and Coles (1965). However,
they were not recognised as a characteristic feature of
the flow. After Coles’ preliminary results were pub-
lished, wavy vortices were also observed by Nissan
et al. (1963).

Burkhalter and Koschmieder (1974) found that in
the case of large radius ratios, the wavelength of

axisymmetrical vortices was independent of the
Reynolds number in fluid columns of infinite length
if the Reynolds number in such fluid columns increases
quasi-statically. Jones (1985) presented the stability
boundary for an axial wavenumber of 3.13, the critical
value for a quasi-static transition, for a wide range of
radius ratios. Jones (1985) considered the problem
of calculation of nonlinear axisymmetrical Taylor
vortices. A spectral method together with Newton–
Raphson iterations was used to solve the nonlinear
algebraic equations.

While Taylor’s study analysed such flow under
supercritical conditions, Stuart (1958) observed that
the shape, i.e. the size of the vortices remains
unchanged above the critical Reynolds number.
Numerous studies (see Coles 1965, Burkhalter and
Koschmieder 1973, 1974, Park et al. 1981, Ahlers et al.
1983, Andereck et al. 1986, Antonijoan and Sanchez
2002) have demonstrated the importance of consider-
ing the acceleration/deceleration of the flow in
determining the final state of the flow. These vortices
have axial wavelengths that are different from those of
vortices observed after a quasi-static transition. The
present study demonstrates that the stability boundary
occurs at a critical wavelength corresponding to the
quasi-static transition in addition to another wave-
length. These solutions are related to the standard
Taylor vortices and can be obtained quasi-statically for
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certain radius ratios when a mechanism is used for
modifying the axial wavelength (see Hall and Blenner-
hasset 1979).

2. Formulation

Figure 1 shows the system geometry specified by the
inner and outer radii, R1 and R2, of cylinders with an
infinite aspect ratio and the dimensionless parameter in
the problem is the radius ratio Z ¼ R1/R2. The inner
cylinder rotates with the Reynolds number Re, Re ¼
R1O1d/n where n is the dynamic viscosity, O1 is the
angular velocity of the inner cylinder rotation, and
d ¼ R27R1 is the radial gap between cylinders. The
outer cylinder is considered to be at rest under all
conditions. First, the Taylor vortex flow (TVF) is
solved numerically and the details have been published
by Yang and Lin (2009). The flow is described by
the incompressible, three-dimensional, and dimension-
less Navier–Stokes equations with the cylindrical

coordinates (r, y, z) in an absolute frame of reference
according to the velocity–pressure formulation.

The stabilities of the supercritical TVF are studied
by introducing disturbances in the TVF. This flow type
is expressed as follows:

f Vr;Vy;Vz; pð Þ ¼ �f �Vr; �Vy; �Vz; �pð Þ þ f 0 V0r;V
0
y;V

0
z; p
0� �

ð1Þ

where �f denotes the flow velocity and pressure profile
of the supercritical TVF, and f 0 represents the per-
turbations. The equations employed for the analysis –
only out-of-phase wavy modes are investigated – of
perturbations in normal modes are as follows:

V0r ¼
XQ

q¼1

XSþ1
s¼2

aqsfs xð Þsin qaz � exp stþ i k1yþ k2zð Þ½ �

ð2Þ

V0y ¼
XQ

q¼1

XSþ1
s¼2

bqsfs xð Þsin qaz � exp stþ i k1yþ k2zð Þ½ �

ð3Þ

V0Z¼
XQ�1

q¼0

XSþ1
s¼2

cqsfs xð Þcosqaz�exp stþi k1yþk2zð Þ½ � ð4Þ

p0 ¼
XQ

q¼1

XS�1
s¼0

dqsTs xð Þsinqaz �exp stþ i k1yþk2zð Þ½ � ð5Þ

Here, t is the dimensionless time and a is the axial
wavenumber of the TVF. Q and S are the number of
terms in the Fourier series expansion and Chebyshev
polynomial expansion, respectively. k1 (an integer) and
k2 (a real number) are the wavenumbers of the per-
turbations in the azimuthal and axial directions,
respectively; aqs, bqs, cqs and dqs are the amplitude
coefficients. The space can be defined as: Ts(x) ¼ cos(s �
cos71 x); fs is a basis function that satisfies the
boundary conditions. fs is expressed as follows:

fs xð Þ ¼ Ts � 1� �1ð Þs½ �T1

2

� 1þ �1ð Þs½ �T0

2
; s ¼ 2; 3; 4 . . . : ð6Þ

where x 2 [71, 1]. The domain of r in the governing
equation is transformed from Z/(17Z) � r � 1/(17Z)
to 71�x�1 through the relational equation x ¼ 2r7
(1 þ Z)/(17Z).

The dimensionless Navier-Stokes and continuity
equations are as follows:

@t~fþ~f � r~f ¼ �rpþ
1

Re
D~f; r �~f ¼ 0 ð7Þ

Figure 1. The computational model of flow field.
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The boundary conditions are as follows:

f 0 ¼ 0 at r ¼ Z
1� Z

and r ¼ 1

1� Z
ð8Þ

Substituting Equation (1) into Equation (7) and
linearising the dimensionless Navier-Stokes equa-
tion, we can obtain the characteristic perturbation
equations, which constitute a generalised eigenvalue
problem as follows:

AX ¼ sBX; A ¼

A11 A12 A13 A14

A21 A22 A23 A24

A31 0 A33 A34

A41 A42 A43 0

2
6664

3
7775;

B ¼

B11 0 0 0

0 B22 0 0

0 0 B33 0

0 0 0 0

2
6664

3
7775; X ¼

ars

brs

crs

drs

2
6664

3
7775 ð9Þ

In the above equations, A and B are complex
matrices that depend on the values of k1 and k2, and
the eigenvector X contains the amplitudes of the
eigenfunctions. The stability of the flow can be
determined by the real part of the growth rate of a
complex disturbance sr. When sr 5 0, the entire flow
is stable. The disturbance decreases with an increase in
time. When sr 4 0, the disturbance increases with
time and the flow becomes unstable. When sr ¼ 0, the
flow has neutral stability.

The eigenvalue of the generalised eigensystem is
obtained by using the subroutine DGVLCG in the
IMSL library, which determines all eigenvalues with a
high level of accuracy. Re is searched on the neutral
stable curve, i.e. the curve on which the real part of the
most unstable eigenvalue vanishes, using the secant
method that requires two initial guesses. The iteration
is not terminated until the real part of the most
unstable eigenvalue is less than 10–6. The Re values for
different wavenumbers can be obtained for neutral
stable states. The minimum Reynolds number is called
the critical Reynolds number and corresponds to the
critical wavenumber.

3. Results and discussion

Prior to the computation of the flow field, we analysed
the degree of accuracy, which served as the basis for
the post computation. In theory, the greater the
number of terms expanded, the higher is the accuracy.
However, the limit to the increase of the number of
terms can be determined from the round-off error and
the computation process becomes time consuming.

Therefore, the best option was to use the expansion
with the least number of terms for which a certain
degree of accuracy can be guaranteed. The results have
been published by Yang and Lin (2009). For the
computation in this study, both Q and S, which are the
number of terms in the Fourier series expansion and
Chebyshev polynomial expansion, respectively, were
maintained at 10 terms.

Figure 2 shows the numerical result (with k2 ¼ 0)
together with the experimental data obtained by Ahlers
et al. (1983). Each symbol (solid circle) corresponds to
a solution in their study (onset of the wavy vortex flow
(WVF) at k1 ¼ 3). The range of wavenumbers con-
sidered is 2.6–4.0, and the range of Re/Rec is 0.8–2.0.
Rec is the critical value of Re, i.e. the value at which the
TVF occurs. The model used in the present study
assumes that wavy Taylor vortices are perfectly
periodic in the axial direction and thus ignore the
end effects. This model is similar to that developed by
Ahlers et al. (1983).

A comparison of the model used in the present
study with the models developed by Park (1984) and
Jones (1981) indicated a good agreement between the
experimental and theoretical values for k1 ¼ 2 (see
Table 1).

Table 1. Comparison of experimental and theoretical Re

values for Z ¼ 0.782.

Experiment of
Park (1984)

Study of
Jones (1981)

This
study

Onset of k1 ¼ 1 Not observed 110 109.5
Onset of k1 ¼ 2 137.3 120 119.5
k1 ¼ 2 gone 161.3 163 167.5
k1 ¼ 1 gone Not observed 169 167.8
Onset of k1 ¼ 3 322 None None

Figure 2. Combines both numerical and experimental
results for the onset of WVF for Z ¼ 0.893.
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Figure 3. Neutral stability curves of the transition of Taylor vortex flow to wavy vortex flow for various (a) Z ¼ 0.7, (b)
Z ¼ 0.727, (c) Z ¼ 0.74605, (d) Z ¼ 0.76, (e) Z ¼ 0.78415, (f) Z ¼ 0.8032, (g) Z ¼ 0.82, (h) Z ¼ 0.88, (i) Z ¼ 0.93.
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The plots in Figure 3a–i show the stability
boundaries at the onset of wavy Taylor vortices with
k1 in the range 1–3 in the parameter plane (a, Re/Rec).
A good agreement has been observed on comparing
every plot with the plots obtained by Jones (1985).

For Z in the range 0.7–0.74605, the lowest stability
of the transition from TVF to WVF depended heavily
on the value of a, which was less than 3.13. For
Z ¼ 0.76 and Z ¼ 0.78415, the dominant transition
occurred at k1 ¼ 3, which was below a certain value
for a. When Z was increased above 0.78415, a new
transition curve with k1 ¼ 1, for which a was equal to
approximately 3.13, represented the lowest stability
boundary.

Figure 4 presents the wavenumbers of the lowest
stability boundary for various values of Z. For the
transition from TVF to WVF, a is less than 3.13 for

Figure 3. (Continued).

Figure 4. The wave number of the lowest stability
boundary for various. The numbers denote k1.
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three sections: the first section is 0.764Z40.7842 with
an upper branch of k1 ¼ 1, the second section is
0.74Z40.7248 with k1 ¼ 2 and the third section is
0.72484Z40.7842 with k1 ¼ 3 (see Figure 5). The
critical Reynolds number shifted to values of a that
were substantially less than 3.13; that is, the azimuthal
waves were easily generated. Figure 6 also shows the
new stability boundary curves for the transition from
TVF to WVF and presents different stability boundary
curves for axisymmetrical TVF when Z was lower than
approximately 0.7842.

4. Conclusion

The effect of a variation in the axial wavenumber of a
TVF on the stability of the flow can be studied by the
infinite cylinder approximation. The wavenumber was

considered as an external parameter and is not
determined theoretically, but is measured experimen-
tally. In some apparatuses, such as those used by King
and Swinney (1983), fluid could be added or removed
even when the cylinders were rotating, thereby allow-
ing direct control over the wavelength. The present
study determined a new curve for the lowest stability
boundary for the transition from a supercritical TVF
to a WVF. This curve differed from that obtained by
Jones (1985), who assumed that the Reynolds number
of the inner cylinder increased quasi-statically.

This study also investigated the lowest stability
boundary for different axial wavenumbers and various
radius ratios ranging from the ratio corresponding to a
supercritical TVF to that corresponding to a WVF.
The variation in the axial wavenumber was found to
affect the stability of the flow for radius ratios less than
0.7842.

References

Ahlers, G., Cannell, D.S., and Lerma, M.A.D., 1983.
Possible mechanism for transitions in wavy Taylor-
vortex flow. Physical Review A, 27, 1225–1227.

Andereck, C., Liu, S.S., and Swinney, H.L., 1986. Flow
regimes in a circular Couette system with independently
rotating cylinders. Journal of Fluid Mechanics, 164, 155–
183.

Antonijoan, J. and Sanchez, J., 2002. On stable Taylor
vortices above the transition to wavy vortices. Physical
Fluids, 14, 1661–1665.

Burkhalter, J.E. and Koschmieder, E.L., 1973. Steady
supercritical Taylor vortex flow. Journal of Fluid
Mechanics, 58, 547–560.

Burkhalter, J.E. and Koschmieder, E.L., 1974. Steady
supercritical Taylor vortices after sudden starts. Physical
Fluids, 17, 1929–1935.

Coles, D., 1965. Transition in circular Couette flow. Journal
of Fluid Mechanics, 21, 385–425.

Hall, P. and Blennerhasset, P.J., 1979. Centrifugal instability
of circumferential flow in finite cylinders. Proceedings of
the Royal Society London A, 365, 191–207.

Jones, C.A., 1981. Nonlinear Taylor vortices and their
stability. Journal of Fluid Mechanics, 102, 249–261.

Jones, C.A., 1985. The transition to wavy Taylor vortices.
Journal of Fluid Mechanics, 157, 135–162.

King, G.P. and Swinney, H.L., 1983. Limits of stability and
irregular flow patterns in wavy vortex flow. Physical
Review A, 27, 1240–1243.

Lewis, J.W., 1928. An experimental study of the motion of a
viscous liquid contained between two coaxial cylinders.
Proceedings of the Royal Society London A, 117, 388–407.

Nissan, A.H., Nardacci, J.L., and Ho, C.Y., 1963. The onset
of different modes of instability for flow between rotating
cylinders. AIChE J, 9, 620–624.

Park, K., 1984. Unusual transition sequence in Taylor wavy
vortex flow. Physical Review A, 29, 3458–3460.

Park, K., Gerald, L., and Donnelly, R.J., 1981. Determina-
tion of transition in Couette flow in finite geometries.
Physical Review Letters, 47, 1448–1450.

Schultz-Grunow, F. and Hein, H., 1956. Beitrag zur
Couettestromung. Z. Flugwiss, 4, 28–30.

Figure 6. The lowest stability boundary for the bifurcation
from Taylor vortices (with the simulated result obtained by
Jones (1985)).

Figure 5. The lowest stability boundary for the bifurcation
from Taylor vortices (in this study).

232 H.-C. Lin et al.

D
ow

nl
oa

de
d 

by
 [

N
at

io
na

l C
hi

ao
 T

un
g 

U
ni

ve
rs

ity
 ]

 a
t 2

3:
03

 2
4 

A
pr

il 
20

14
 



Stuart, J.T., 1958. On the nonlinear mechanics of hydro-
dynamic stability. Journal of Fluid Mechanics, 4, 1–21.

Taylor, G.I., 1923. Stability of a viscous liquid contained
between two rotating cylinders. Philosophical Transac-
tions of the Royal Society London A, 223, 289–343.

Yang, W.M. and Lin, H.C., 2009. Instability analysis of
modulated Taylor vortices. International Journal of
Computational Fluid Dynamics, 23, 643–648.

International Journal of Computational Fluid Dynamics 233

D
ow

nl
oa

de
d 

by
 [

N
at

io
na

l C
hi

ao
 T

un
g 

U
ni

ve
rs

ity
 ]

 a
t 2

3:
03

 2
4 

A
pr

il 
20

14
 


