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Student : Shu-Kuo Sun Advisor : Dr. Zen Chen
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National Chiao Tung University

ABSTRACT

In 3D computer vision a scene in the real world is represented by multiple views imaged
under different viewpoints and illumination conditions. The spatial and temporal relationships
across these views are important to scene analysis and understanding. To derive these
relationships the global and local features of the objects (foreground and background) in the
scene are the clues. The local features related to the local object surface patches or regions are
more robust to viewpoint change than the global features. In addition, the invariance under the
photometric transformations such as blur, illumination, scale, noise, JPEG compression is also

receiving great attention.

In this dissertation subjects related to the local image representation, matching, and
recognition under the above image variations are addressed. First, a new distinctive image
descriptor to represent the normalized regions extracted by an affine region detector is
proposed which primarily comprises the Zernike moment (ZM) phase information. An

accurate and robust estimation of a possible rotation angle between a pair of normalized



regions is then described, which will be used to measure the similarity between two matching
regions. The discriminative power of the new ZM phase descriptor is compared with five
major existing region descriptors based on the precision-recall criterion. The experimental
results involving more than 15 million region pairs indicate the proposed ZM phase descriptor
has, overall speaking, the best performance under the common photometric and geometric
transformations. Both quantitative and qualitative analyses on the descriptor performances are

given to account for the performance discrepancy.

Second, the proposed ZM phase descriptor is further extended to present a new
recognition method of logos imaged by mobile phone cameras. The logo recognition can be
incorporated with mobile phone services for use in enterprise identification, corporate website
access, traffic sign reading, security check, content awareness, and the related applications.
The main challenge to applying the logo recognition for mobile phone applications is the
inevitable photometric and geometric transformations. The proposed ZM phase recognition
method is associated with two similarity measures. The logo classification and retrieval
experimental results show that the proposed ZM phase method has the best performance
under the typical photometric and geometric transformations, compared with other three

major existing methods.

Finally, as for the one-to-one feature matching correspondences in view registration, we
propose an efficient registration method different from the traditional methods. We take
advantage of preprocessing of the reference image offline to gather the important statistics for
guiding image registration. That is, we introduce five planning strategies to sort the feature
points in the reference image based on the concepts of (1) feature invariance to image
deformation, (2) image noise resistance, (3) distinctive description power, (4) model

estimation effectiveness, and (5) partial image overlapping handling capability. Thus, a

vi



reference matching database is constructed offline using the above five planning strategies.
Then, an online registration process is presented to estimate the transformation model to
overlay the reference image over an incoming sensed image. In this way, better registration

efficiency can be achieved.
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Chapter 1

Introduction

1.1 Problems Statement

In 3D computer vision a scene in the real world is represented by multiple views when
imaged under different viewpoints and illumination conditions. The spatial and temporal
relationships across these views are important to scene analysis and understanding. To derive
these relationships the global and local features of the objects (foreground and background) in
the scene are the clues. Global features such as Fourier descriptors describe the scene
information as the scene is seen in the 2D image as a whole. The global features are suitable
for deriving the relationships when the objects of concern have the same appearances in the
different views. Generally, the objects have different surface appearances under different
viewpoints, especially when the background and foreground objects are partially overlapped,
so the global image features are often not invariant to the viewpoint. On the other hand, the
local features related to the local object surface patches or regions are more robust to
viewpoint change. In addition, the invariance under the photometric transformations such as
blur, illumination, scale, noise, JPEG compression is also receiving great attention. The
invariant local features are crucial to most image understanding and computer vision
applications including image matching, camera calibration, texture classification, and image

retrieval, etc. [1]-[5].

The processing of local features involves three tasks: feature detection, feature

description, and feature matching. The local features belong to an interest point (keypoint) or
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an interest region. Since a single image point carries little information, an interest point must
be associated with its surrounding image patch. From this image patch a second moment
matrix of image intensities reveals the characteristic structure of the local image region. The
keypoint detectors such as Harris corner detector [6] and the SIFT detector [7], which is based
on the difference of Gaussians (DOG), utilize a circular window to search for a possible
location of a keypoint. However, the image content in the circular window is not robust to
affine deformations. Furthermore, the feature points may not be reliable and may not appear
simultaneously across the view-point change, as illustrated in Fig. 1.1(b). Recently, a number
of local feature detectors using a local elliptical window have been investigated. The affine
covariant regions offer a unique solution to viewpoint change, as illustrated in Fig. 1.1(c).
Matas et al. [5] presented a maximally stable extremal region (MSER) detector. Tuytelaars
and Van Gool [8] developed an edge-based region (EBR) detector as well as an image-based
(IBR) region detector. Mikolajezyk and  Schmid [9] proposed Harris-Affine and
Hessian-Affine detectors. The performances of the existing region detectors were evaluated in

[11] in which the MSER detector and the Hessian-Affine detector were the two best.

Circular detector: Elliptical detector
(Harris, LoG,; ...) (MSER, Harris-affine, IBR ...)

3

N
(b) (c)

Fig. 1.1: (a) Two images taken from different viewpoints. (b) The detected regions by a circular detector.

(c) The detected regions by an elliptical detector.
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In the descriptor construction, the detected ellipse-shaped region is first normalized to a
circular patch of a fixed size. The normalized circular patch can be shown to be affine
invariant up to a rotational ambiguity [10, 33]. A good feature descriptor to describe the
normalized circular patch should be invariant (unchanged under the spatial transformation),
distinctive (unique in feature description), stable (robust to image deformation) and

independent (uncorrelated relation between feature descriptors).

After the region descriptor is determined, a matching function is defined to measure the
similarity between regions extracted from different images of the same scene. The merits of
various region detectors, coupled with their own region descriptors, are often judged based on

the ROC (receiver operating characteristic) curve or the PR (precision-recall) curve.

1.2 Sketch of the Work

In this dissertation, three themes related to the image representation, matching,
recognition, and view registration under the aforementioned geometric and photometric

transformations are addressed.

In the first theme, the representation and matching power of region descriptors are to be
evaluated. A common set of elliptical interest regions is used to evaluate the performance. The
elliptical regions are further normalized to a circular one with a fixed size (typically, 41 by 41
pixels). Here a new distinctive image descriptor to represent the normalized region is
proposed which primarily comprises the Zernike moment (ZM) phase information. An
accurate and robust estimation of the rotation angle between a pair of normalized regions is
then described, which will be used to measure the similarity between two matching regions.

The discriminative power of the new ZM phase descriptor is compared with five other major
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region descriptors (SIFT, GLOH, PCA-SIFT, complex moments, and steerable filters) based
on the precision-recall criterion. To match the region pairs, a new distance measure based on
the ZM phase information is defined. For performance evaluation, important system
parameters must be taken into consideration, which include (1) region scene types, (2) region
descriptor types, (3) region detector types, (4) region overlap error, and (5) transformation
types. From the experimental results involving more than 15 million region pairs the proposed
ZM phase has the best overall performance under the aforementioned photometric and
geometric transformations. Both quantitative and qualitative analyses on the descriptor

performances are given to account for the performance discrepancy.

In the second theme, the proposed ZM phase descriptor is further extended to present a
new recognition method of logos imaged by mobile phone cameras. The logo recognition can
be incorporated with mobile phone services for use in enterprise identification, corporate
website access, traffic sign reading, security check, content awareness, and the related
applications. The main challenge to applying the logo recognition for mobile phone
applications is the inevitable photometric and geometric transformations encountered when
using a handheld mobile phone camera operating at a varying viewpoint during the daytime or
the nighttime. The discriminative power of the new logo recognition method is compared with
three major existing methods. The experimental results indicate the proposed ZM phase
method has the best performance in terms of the precision and recall criterion under the above

inevitable imaging variations.

In the third theme, we propose an efficient registration method for the one-to-one feature
matching correspondences in view registration. We take advantage of preprocessing of the
reference image offline to gather the important statistics for guiding image registration. That

is, we introduce five planning strategies to sort the feature points in the reference image based
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on the concepts of (1) feature invariance to image deformation, (2) image noise resistance, (3)

distinctive description power, (4) model estimation effectiveness, and (5) partial image

overlapping handling capability. The invariant feature points are extracted from the reference

image and a reference matching database is constructed offline using the above five planning

strategies. Then, an online registration process is presented to estimate the transformation

model to overlay the reference image over an incoming sensed image. In this way better

registration efficiency can be achieved.

1.3 Contribution of the Work

The main contributions of this dissertation can be summarized as follows:

(1)

2)

€)

(4)

To design a new region descriptor and a new matching function based mainly on
Zernike moment (ZM) phase information and show the ZM phase information is more
distinctive than the ZM magnitude information in terms of image representation and
matching.

To propose an accurate estimation of the rotation angle between a region pair to be
matched.

To show the proposed ZM phase descriptor has the better overall performance than the
five other major descriptors under common geometric and photometric
transformations.

To extend the ZM phase descriptor to design a new distinctive logo feature vector and
two associated similarity measures for logo recognition, and to show the proposed ZM
phase logo feature vector has better recognition and retrieval performance than other

three existing methods.



Chapterl Introduction

(5) To develop a new view registration method that take advantage of preprocessing of the
reference image offline to gather the important statistics for image registration, and

achieves better view registration time complexity than other existing methods.

1.4 Dissertation Organization

The rest of this dissertation is organized as follows. Chapter 2 reviews existing literature
on local region descriptors, methods for logo recognition, as well as methods for image
registration. Chapter 3 presents our Zernike Moment phase based descriptor for local image
representation and matching. Chapter 4 extends our Zernike Moment phase based descriptor
to logo recognition. Chapter 5 presents five offline planning strategies and an online
registration process for high-efficiency perspective view registration. Finally, Chapter 6 closes
the dissertation with a summary of our work and a discussion on possible extensions and

future research directions.



Chapter 2

Previous Work

2.1 Region detectors and descriptors

A region descriptor is needed to derive the region features for region representation and
matching after the regions of interest are detected. Here a brief introduction of five major
classes of the existing descriptors is briefly given to explore their strengths and weakness in
order to compare them with the proposed ZM phase based descriptor. An excellent review on

the existing descriptors can be found in [12]-[13].
(1) Filter-based Descriptors:

This class of descriptors includes steerable filters [14] and Gabor filters [15]. The
steerable filter descriptor uses quadrature pairs of derivatives of Gaussian and their Hilbert
transforms to synthesize any filter of a given frequency with arbitrary phase. On the other
hand, the Gabor transform uses a number of Gabor filters tuned to various frequencies and
orientations to represent the image patterns. Both the steerable filter and the Gabor filter
descriptors need to seek a dominant orientation for image rotation alignment. If the
reference and transformed descriptor feature vectors are not aligned well, their matching score
will be poor. Besides, these descriptors are not totally orthogonal and their feature vector

dimensions are generally low, so their discriminative powers are limited.
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(2) Moment-based descriptors:

The first class of moment-based descriptor is the geometric (or regular) moments. The

(p+q) order moment of an intensity or gradient image f{(x,y) is defined as follows

my, = szpy"f(x,y), p,g=0,1,2, ...
x oy

Based on the geometric moments, a set of moment invariants can be derived from the
nonlinear combinations of geometric moments to achieve affine invariance [16], [32]. The
main problem with the geometric moments is that it is difficult to derive a sufficient number
of invariants to describe complex shapes. Moreover, the higher-order moments are more
sensitive to image noise than the lower-order moments. Therefore, the geometric moment

invariants are usually suitable only for describing simple images [17].

The second moment class is the complex moments of the form

K, (x,y)= ZZ(x +iy)"(x —iy)" f(x,y) where f{x, y) is an image intensity function [18],
x oy

[19]. Any rotation of the image changes the phases of the complex moments, but not the
magnitudes. That is, the magnitudes of the filter responses are rotational invariant. There are
16 filters, defined by m + n<6 and n<m, available for image patch description. This low
dimensional rotational invariant descriptor generally has a poor discriminative performance

[12].
(3) Distribution-based descriptors:

This class of descriptors includes SIFT [7], GLOH [12], PCA-SIFT [22], spin image and
RIFT descriptors [3]. They use the distributions of the image content to represent the features

of the image region.
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The SIFT descriptor is represented by a 3D histogram of gradient locations and
orientations. The histogram of the gradient orientations is quantized in 8 bins and the region is
partitioned into a 4x4 location grid, resulting in a feature vector of dimension 128. Although
the gradient histogram provides stability against deformations of the image pattern, the grid
partition of the measurement region has the boundary effect problem. Gaussian smoothing
and tri-linear interpolation can be called to alleviate this problem. More importantly, SIFT

requires an accurate dominant (gradient) orientation for image rotation alignment.

The PCA-SIFT descriptor is a dimension-reduced version of SIFT (dimension reduced
from 3042 to 36 or lower) based on an eigenspace obtained by applying PCA to a collection
of 21,000 image patches. On the other hand, the GLOH descriptor is also an extension of the
SIFT descriptor. Instead of sampling gradient orientations in a rectangular grid, GLOH is
defined in a log-polar location grid with 17 location bins. These location bins, together with
16 gradient orientation bins, form a feature vector of dimension 272. With PCA the feature

dimension is reduced to 128 based on a training data set of 47,000 image patches.

The SIFT and its variants depend on a dominant orientation of the normalized patch to
achieve the rotation invariance. However, according to the experience of Lazebnik et al.
reported in [3], the dominant orientation estimation tends to be unreliable, especially for

normalized Laplacian regions in which strong edges at the center are often not available.

(4) Derivative-based descriptors:

This type of descriptors uses local derivatives, called “local jets”, to construct the
differential invariants, which are rotationally invariant [23]. Schmid and Mohr [2] derive a set
of differential invariants in terms of polynomials of local derivatives up to the third order for

image retrieval. The derivative-based descriptors face with some problems: (a) the dimension
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of the rotationally invariant differential invariants is generally low [12], and (b) the
differential invariants are often sensitive to image blur or image noise if smoothing operation
is not used beforehand. (The steerable filters can be also classified as a derivative-based

descriptor.)

(5) Others:

Besides the above basic descriptor types, there are other extended descriptors including (i)
color-based descriptors [21] which utilizes the color information for feature representation, (i)
textons [3], which are based on the responses of a texture image to a filter bank, can
categorize the large-scaled texture images. In this paper, only the basic descriptors of the first

four classes are concerned.

2.2 Logo Recognition

A logo is a graphic entity containing colors, shapes, textures, and perhaps text as well,
organized in some spatial layout format. There are four major classes of the existing feature

used for logo recognition:

(1) Color features:

Color feature are often easily obtained from the logo image. The color histogram [54] is
probably one of the most popular gross representations of the foreground object in which the
precise spatial information is lost, so an exact matching is generally impossible. Since a logo
may be designed with a few setting of color combinations, color will be ignored as far as the

unique identity of a logo (represented as an intrinsic graphic pattern) is concerned.

10
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(2) Text features:

The text in the logo is often modified to add to its aesthetic appealing, its segmentation
for the OCR processing may not be easy and also unnecessary for logo identification. The
whole text can be viewed as part of the logo and handled with others by a general shape

analyzer.

(3) Texture features:

Similarly, if a logo contains texture patterns, the texture patterns can be treated as a
graphic pattern and, again, handled with other parts together. In the end, a logo representation
is boiled down to an integrated shape pattern or a set of sub-logo shape patterns. Hence, shape

analysis of the logo is the main concern here.

(4) Shape features:

Different methods using different shape features for logo classification have been
proposed in the literature. Edge histogram descriptor (EHD) [58] is an MPEG-7 texture
descriptor that captures the spatial distribution of edges. EHD is represented by a histogram of
the gradient orientations which is quantized in 5 bins and the region is partitioned into a 4x4
location grid, resulting in a feature vector of dimension 80. Although the gradient histogram
provides stability against mild deformations of the image pattern, the grid partition of the
support region will lead to the non-smooth boundary feature values, i.e., the so-called

boundary effect problem.

Recently, some researchers using Gabor transform and wavelet transform for pattern
recognition [55]-[56]. However, the set of Gabor filters is not orthogonal, and thus reduce its

discriminative power. On the other hand, the wavelet transform has the advantages of multiple

11
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resolutions and reconstructability, but it is not rotational invariant (so is the Gabor transform).
Therefore, both transforms need to solve the rotation problem first based on some orientation

information.

To achieve rotation invariant, an alternative method using a ring projection structure is
suggested in which the absolute sums of the sub-band coefficients (LH, HL and HH) of
wavelet transform are accumulated within a specific number of rings [59]. However, the ring
projection will lose the spatial information in the radial direction. As a consequence, a logo
and its mirror version have the same ring projection profiles, and, therefore, become
indistinguishable. More impotently, most of the above methods cannot work properly under

photometric and geometric image transformations, as shall be seen.

2.3 View Registration

View registration is a process of overlaying images of the same scene taken at different
imaging conditions [60-64]. View registration applications include satellite image registration
[65, 66, 82, 83], medical view registration [61, 62], object recognition [69-70], motion
tracking [71-73], image mosaic [74], automatic cartography [75], fundamental matrix
estimation [76], and perspective reconstruction [74, 75]. Good survey on view registration can

be found in [60-64].

Due to the variations in viewpoint, illumination and the sensor noise, the feature points
may not be reliable and may not appear simultaneously across the multiple views. Therefore,
the point correspondence validation is not a trivial task. One may skip the point

correspondence matching and estimates the transformation model directly using an

12
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appropriate number of feature point pairs. Traditionally, there are three major ways for the

direct registration model estimation:

(1) Clustering technique:

The clustering technique [85] takes an appropriate number of point pairs, say 7, from
a total of available point pairs, say #, to compute the occurrence histogram of each set of
possible model parameters and picks the histogram cell with the maximum cluster size as

the best solution model. This is a complete (or exhaustive) search for the best model.

(2) Random search for a correct model:

The method is to randomly select an r-point combination of an n-point set to
instantiate a model [74]. After a pre-specified number of random trials, the model with the
largest consensus set found are chosen as the final model; the model correctness depends

on the size of the consensus set.

(3) Ordered search for a probable model:

Recently, another way was proposed to search for a correct model. That is, the set of
2Cr possible models is sorted according to some goodness measure and an ordered search
is conducted until an acceptable model is found [66]. This is an ordered search for a

probable model.

Table 2.1 lists the major point-based view registration methods under four different
transformation models: rigid transform [79], similarity transform [80, 81], affine transform
[66, 82, 83], and 2D perspective projection (or homography) [84], together with their search
strategy and time complexity. The transformation model estimation is through solving a

system of linear equations in terms of 3, 4, 6, or 8 transformation parameters. We have

13



Chapter2 Previous Work

observed that various countermeasures were taken to reduce the time complexity of the view

registration method.

TABLE 2.1 A PARADIGM OF VIEW TRANSFORMATION ESTIMATION METHODS

Model type Method Search strategy Time complexity”
The proposed method Ordered O(m)
Homography Suk and Flusser Random/Complete O(n’m’)
[84, 2000]
Bentoutou et al. Ordered O(nm)"
Affine [83, 2005]
Yang and Cohen Ordered O(nm)”
[66, 1999]
Flusser and Suk Ordered O(nm) "
[82, 1994]
Similarity Dufournaud et al. Random O(n*m?)
[81,2004]
Wang and Chen Complete on*m*
[80, 1997]
Rigid Isgro and Pilu Random O(n’m)
[79, 2004]

* n and m are the total numbers of feature points in the reference and sensed images, respectively.

"These methods estimate the affine model only once based on the best matched point pairs found from

the two images.

14



Chapter 3

A Zernike Moment Phase Based Descriptor for

Local Image Representation and Matching

3.1 Introduction

Local features robust to common photometric transformations (blur, illumination, scale,
noise, and JPEG compression) and geometric transformations (rotation, scale, translation, and
viewpoint) are crucial to most image understanding and computer vision applications

including image matching, camera calibration, texture classification, and image retrieval, etc.

[11-[5].

In this chapter, the representation and matching power of region descriptors are to be
evaluated. A common set of elliptical interest regions is used to evaluate the performance. The
elliptical regions are further normalized to a circular one with a fixed size. The normalized
circular regions will become affine invariant up to a rotational ambiguity. Here a new
descriptor, called the Zernike moment phase based descriptor (or ZM phase in short), is
proposed. The phase information of a signal is more informative than the magnitude
information for signal reconstruction was demonstrated by Oppenheim [34]. The robustness
of local phase information for measuring image velocity and binocular disparity was studied
in [35-36]. Recently, outputs of complex-valued steerable filter quadrature pairs taken as the
separate feature elements for the design of a local image descriptor were proposed in [37-38],

instead of combining the magnitudes of the quadrature pair into a single feature element, as
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done in [12]. They empirically showed that their individual local descriptors have better
performance than the gradient-based SIFT descriptor or differential invariants under the affine
geometric deformation and lighting variation. However, the feature vector containing the
separate steerable filter quadrature pair outputs is not an orthogonal vector itself. If the
orthogonal descriptor is used instead, the features are uncorrelated and more informative. So
we shall seek a genuine orthogonal feature vector to derive a novel local descriptor with a

higher descriptive power.

The discriminative power of the new ZM phase descriptor is compared with five other
major region descriptors based on the precision-recall criterion using the set of test images
given in [12] plus some new images. To match the region pairs, a new matching function
based on the ZM phase information is defined. For performance evaluation, important system
parameters are taken into consideration, which include (1) region scene types, (2) region
descriptor types, (3) region detector types, (4) region overlap error, and (5) transformation
types. The experimental results involving more than 15 million region pairs indicate the
proposed ZM phase has the best overall performance. Both quantitative and qualitative
analyses on the descriptor performances are provided to account for the performance

discrepancy.

The chapter is organized as follows. Section 2 introduces the Zernike moment (ZM)
transformation and the ZM basis filters. Section 3 proposes the ZM phase descriptor along
with a matching function, and discusses the discriminative powers of the ZM magnitude
components and the ZM phase components. In Section 4 the discriminative power of the new
descriptor is compared with five existing region descriptors based on the precision-recall
criterion, while taking important system parameters into consideration. In Section 5 both
quantitative and qualitative analyses on the descriptors are provided to account for the

descriptor performance discrepancy.
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3.2 Fundamentals of Zernike Moments

Zernike moments (ZMs) have been used in object recognition and image analysis
regardless of variations in position, size and orientation [20], [24]-[28]. Basically, the

Zernike moments are the extension of the geometric moments by replacing the conventional
transform kernel x™y" with orthogonal Zernike polynomials. The relationships between the

Zernike moments and geometric moments can be established [39]. The ZM coefficients are
the outputs of the expansion of an image function into a complete orthogonal set of complex

basis functions {V (p,0)}. Teh and Chin [20] show that among many moment based shape

descriptors, Zernike moment magnitude components are rotationally invariant and most

suitable for shape description.

The Zernike basis function ¥V, (p, ) with order n and repetition m is defined over a unit

circle in the polar coordinates as follows:

_ im6
Vnm(poe)_an(p)ej for pﬁly (31)

where {R,x(p)} is a radial polynomial in the form of

(n{m))/2 (n _ S)! >,
R,.(p)= D.(-1) — o
=0 s!(’”é’"'—s)!(” L

Here n is a non-negative integer and m is an integer satisfying the conditions: n-|m| is even

and |m|<n.

The set of basis functions {V,, (p, 6)} is orthogonal, i.e.,

(Y (0.0 (0.0)pdpd0=—"—5 & 6—{1 a=b
'[0 J.O nm(p’ ) pq(p’ )p p _m e with “ 0 otherwise ) (32)
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The two-dimensional ZMs for a continuous image function f'(p, ) are represented by

n+l1 1

2, =" [ [ 0.0 0. Opd pd 0 ="
T

e [ f(p.O)R,(p)pdpdd. (33)

For a digital image function the two-dimensional ZMs are given as

”;12 S LD, m(p.0)

(p, O)eunitdisk (3 4)

The Zernike moments can be viewed as the responses of the image function f'(p, ) to a set of
quadrature-pair filters {V,., (p, 0)}. To this end, Fig. 3.1 depicts some examples of V, (p,0).
Notice that the real and imaginary functions of each basis function V, (p,0) are out of
phase by m/2; namely, they form quadrature pairs of filters. In addition, repetition m indicates

m sector cycles of the function values along the azimuth angle 6, while n and m jointly specify

a different number of annular patterns of the function.

“ —~ &N <% PR
= | a5 | 258l TR 1
I N/ S N7 N v
(a) (b) ©)
Re(V, Im(v; o) Re(V, ) Im(v, ) Re-c\!, a Im(V,, o)
/./ ;‘\ I //.\\ I /,/. \.\ l "/.‘.\\\I /./-‘ . l ,,/ - \\.l
e I | 13 1R ./ s | G |
Wen” | .w N sz | AR | NEE )
(d) ) 0

Fig. 3.1: Plots of the real part and imaginary part of V,,, (p, 6) for a fixed n: (a) VS,I , (b) Vs,s ’ (c)V5 5
and for a fixed m: (d) V7*5 , (e) V9,5 , and (f) Vn,s.
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3.3 Design of A Zernike Moment Phase Based Descriptor

We shall use the ZM phase information to design a novel region descriptor. Let the

Zernike moments be sorted by m and » in order. The total number of ZM moments of the

same repetition m is equal to {N —m J+1. Table 3.1 gives the sorted list of the 42 complex ZM
2

moments for the case where the maximum order N and maximum repetition M are both equal

to 12.

The sorted Zernike moments form a feature vector P as follows:

p= [|Z”|ejq)” , Z3l|e-/‘/’31 jereees , ZNM|e-/‘/’NM I, (3.5)
where |Z, | is the ZM magnitude, and ¢, 1s the ZM phase. Here the Zernike moments
Z, e’ with m = 0 are not included, since they provide no information regarding the image

matching. Zernike moments with m <0 are not included, either, since they can be inferred

throughZ, =27 Cum

TABLE 3.1. LIST OF ZMS SORTED BY 7 AND m IN SEQUENCE FOR THE CASE WHERE (n,m ) = (12, 12)

m Moments mliz&e(ilf‘;s m Moments mliﬁ&;fts
1 211,231,251, 271,291,211 6 11 Z,.24.2,, 3
2 23,242,262, 282> 210252122 6 8 | Zss.Z108:2128 3
3 Z33’ZS3’Z73’Z93’ZII,3 5 9 ZQ9’Z]1,9 2
4 Z44:Z64,284:210.4-Z12,4 N 10 | Zy910-Z12,10 2
5 ZS5’Z75’Z95’Z]1,5 4 11 Zl 1,11 ]
6 Ze6>2365210,6:212,6 4 12 | Zyy)0 1
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3.3.1 The Image Description power of the ZM Magnitude Components and the ZM

Phase Components

Let the Zernike moments of a reference image and its rotated version beZ'?, Z"

respectively. Then it is well known that [24], [28]
Zm =Zme ™, (3.6)

where « €[0, 2 7] is the rotation angle.

Therefore, the magnitudes of Zernike moments of the two images are the same,

ie,|Z7| = ‘Z ! but their phase difference (or phase shift) is given by
rot
Q,, =arg +;"f =ma, 0<Q,, <2mr,or (3.7)
an
@, = ((p:;i{ - (p;fn’)modZﬂ =(ma)mod2r, 0<®, <2r. (3.8)

In the following, under a mixture of rotation, inversion, and flipping operations, the Zernike
moments of a reference image can be shown to be rotationally invariant in terms of the

magnitudes, but not the phases.

Let a rotated-and-inverted (the inverted is in terms of gray values) image version of the

reference image /" (p,0) be denoted by "™ (p,0)=255- "7 (p,0+ ). It can readily

shown that their magnitudes are equal: ‘Z ref | =

nm

rot—inv
an

and their phase difference is given by

_ [ ref rot—inv ref
nm
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Next, let a rotated-and-mirrored version of the reference image /'/ (p,0) be denoted by

frm(0,0) = £ (p,m—(0+a)). Then it can be shown that their magnitudes also are equal:

Z rot—mirror
nm

—|\7ref
- ‘an

and their phase difference is given by

rot—mirror

®n7ﬂ = (¢7:Z - @)'IWI )mOd 27[ = [2¢r€f

nm

-m(7 —a)lmod2rx. (3.10)

3.3.2 Zernike Moment Phase Descriptor and Its Similarity Measure

From above, it can be seen that the phase information of Zernike moments is more
informative than the magnitude information in terms of the discriminative power. Therefore, a
new image region descriptor is proposed which is mainly based on the phase components of

the feature vector, while the magnitude components are used only as the weighting factors.

Let I"(x,y) andI'(x,y) as the reference and transformed image regions with their

respective ZM feature vectors P, = {‘Z ’|e®y and P = {‘Z ‘| . Here the transformed

image can be either a rotated version of the reference image or a different image. If there

exists a rotation angle & between/"(x,y) and/'(x,y), then |CDW —(ma)mod(27)|, which

denotes the absolute phase difference between the two image regions after the rotation

alignment, is equal to 0; otherwise,

®, —(ma) mod(27z)| is a nonzero value in the interval (0,

2m) and & is simply a putative estimate of a non-existent rotation angle. To derive a reliable

estimate using all available phase differences {®, }, we define a weighted, normalized phase

difference to check the existence of a rotation angle & as follows:
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min{®,, — (md)mod(27)

, 27 —|®,,, — (m@) mod(27)|}

T

(3.11)

Dl”,l’ = Zzwnm

m n

where @, =(¢. -@, )mod(27), ¢ is the estimated rotation angle to be described later,

and w,  1sanormalized weighting factor of the form

.
B Z |+

an
Sz

n,m

t
Z nm ‘

t
an

(3.12)
+

)

such that the phase components associated with small magnitudes are weighted less. The

weighted, normalized phase difference D, , lies in the interval [0, 1] and is dimensionless

since it is derived from ratios of angles.

Figs. 3.2(a)-2(d) show a reference coin image and its three variants: a rotated one (with a
rotation angle 37.22°), an inverted one, and a mirrored one, as described above. Image
matching between the reference and each variant based on either the phase components or the
magnitude components of Zernike moments are shown in Figs. 3.2(e) - 3.2(j) where the ZM

order (n, m) ranges from (1, 1) to (10, 10). The estimated values of (m&)mod(27) are colored

in blue and are connected for components with the same m values. The actual phase

differences @,  are shown in the red color. On the other hand, the ZM magnitude

components for each pair of images are colored in purple. Notice that the magnitude
component diagrams are the same for all the three pairs, but the phase component diagrams
are different. Therefore, the phase components have a better discriminative power than the

magnitude components.
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Fig. 3.2: (a) The reference coin image. (b) A rotated variant of the reference coin image (with a rotation angle
37.22°). (¢) An inverted variant. (d) A mirrored variant. (e)-(g) The diagrams of the ZM phase differences (h)-(j)

The diagrams of the ZM magnitude components.

3.3.3 Estimation of the Rotation Angle from a Rotated Image

In [29] Kim and Kim represented the rotation angle between an original image and its

rotated image through the use of the Zernike moment phase shift as

Q,., = (@, +2k7)— (@), +2k 1) =D, +27k,,=ma. (3.13)

They then proposed a probabilistic model P(&) = ZZ§nmP(d | n,m) to estimate the rotation

m n

angle o« where & = is the weighting factor proportional to the ZM magnitude |an|. For

each possible solution ¢, =

)

27

m m
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. 18 . (o, 27 . . . L

P(a|n,m)=— Z 1) {a—(ﬂnL—knmJ}*G(a, o), a convolution of an impulse train with
m m

a scaled Gaussian kernel, to estimate « . Notice that the estimation is done in discrete angle

steps. In order to be accurate, the estimation step size must be as small as possible. Let the

estimation step size is 0.01°. For the case where (N, M) = (10, 10), there are 30 generated

Zernlike Moments {Z,,}. From each fixed Zernike moment Z,,, an estimator of the rotation

o . (¥ 2 :
angle is given by «,, :ﬂ+—ﬂknm. There are 30 such estimators. To find the common

m m
solution to the rotation angle & using these 30 estimators, a common histogram with a bin size
of 360x 100 (assuming the estimation step size is 0.01°) is used to tabulate the possible
rotation angle produced by the 30 estimators. Therefore, the total number of histogram bin
values computed is 360x 100x30 (=1,080,000), which is rather large. In addition, the method

may face the ambiguity in multiple peaks in the histogram constructed.

Here a new estimation method of the rotation angle & is proposed, which is
implemented in the continuous angle space rather than in the discrete space. The basic idea

behind the proposed method for estimating the rotation angle ¢, is to avoid the m
ambiguities in the value of &, . Instead, the rotation angle & can be found from the phase

difference using any two adjacent ®, and ©® m # 0, through

nm—12
a=ma—(m-Da=(®,, +27k,)~(D,,  +27k,, ) (3.14)

=(P,,—P,, ) mod2z, m#0.

nm

. Mo N— .
Sincem=1,2,.,M,n=1,2, .. N, there are Z({ 5 mJ+ 1) ways to compute the rotation

m=1

angle &. A more robust estimation is to weight the estimated angles by the individual
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magnitude |Z,,.

An iterative computation of the rotation angle ¢ using all available Zernike moments

sorted by m is given below:

The ZM phase-based rotation angle estimation algorithm

Initialization: @, =0 and co=0

Form=1,2,... M

Forn=m, m+2, .., m+2 L?J

571'11 = [(q)nm - (m - 1)&,,,_1]1110(1 272'

r t
_ an + an
an - 2
End
{N—m
2
_ Z Wm+2k,m
Sm -
k=0 m
5
l % Wm+2k m
5m = Z 5m+2k,m
Sm k=0 m
.1 . 5
m (Cm—lam—l + Sm m)
cm—l + Sm
Cm = Cm71 + 5
End
o= aM
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3.4 Experimental Results for Performance Evaluation

We will examine the system performance with respect to important system parameters
including (1) region scene types, (2) region descriptor types, (3) region detector types, (4)
region overlap error, and (5) transformation types. The region scene types under consideration
are the structured and textured scenes. The test images available at the website [30], plus
some new images, are used in the experiments. The transformation types considered here
contain the common photometric transformations (blur, illumination, noise, and JPEG
compression) and geometric transformations (rotation, scaling, translation, and viewpoint).

Fig. 3.3 shows the representative test image pairs taken for the textured and structured scenes.

In regard to the region descriptor types we include the proposed ZM phase and five
popular descriptors: SIFT, GLOH, PCA-SIFT, steerable filters, and complex moments. In the
beginning of the experiment, we need to choose a region detector in order to extract the
regions of interest from the given image. Here we decide to choose either MSER detector or
Hessian-affine detector. Once the region detector type is decided, the program codes available
at the website [30] are used to obtain (a) regions of interest, (b) the dominant orientation in a
region image and (c) the descriptor feature vectors of SIFT, GLOH, PCA-SIFT, steerable filter
and complex moment for each region of interest. Then we run our program codes to generate
our ZM phase descriptor and to calculate the similarity measures and generate the
precision-recall curves to evaluate the descriptor performances, as done in [12]. Totally, there
are 8 types of transformations, 2 types of scenes, and at least 4 image pairs for each
transformation. On the average, one image pair generates 250,000 (= 500x500) region pairs

for matching. All together the experiments involve more than 15 million region pairs.

Table 3.2 lists the typical feature vector dimensions of the six descriptors used in the

experiments. Later, a discussion on the feature dimensionality will be provided.
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Fig. 3.3: Representative test image pairs taken from the textured and structured scenes under a specified
photometric or geometric transformation.

TABLE 3.2 THE TYPICAL FEATURE VECTOR DIMENSIONS OF THE SIX DESCRIPTORS

Descriptor SIFT GLOH | ZMphase | PCA-SIFT | Complex | steerable

moments filters
| Feature 128 128 0 36 15 14
dimensionality

3.4.1 Performance Evaluation Criteria — PR curve

For region matching, the extracted regions of the reference and transformed images are
examined for (a) their distance measure and (b) their spatial overlap error under the applied

transformation. There are three strategies for region matching proposed in [12]: (a) the
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threshold-based matching, (b) the nearest-neighbor-based matching, and (c) two-nearest-
neighbor-based matching. Although these three matching methods are functionally different,
their ranking results of the performances of the various descriptors are virtually the same; the
first one is generally recommended [12], [38]. Therefore, we adopt the threshold-based
matching strategy in which the distance measure between a region pair is compared to a given

distance threshold, D;.

On the other hand, the region overlap error is represented by the overlap ratio between
the region intersection area and the region union area under the known planar homography

[12], [31], that is, O, =1-(ANH"BH)/(AUH"BH), where A and B are the two matching

regions and H is the given homograph between the two region patches. A region pair is called
a match if it passes the region similarity test, namely, the distance measure between the image
pair does not exceed the distance threshold D;; otherwise, no match is found. A match is said
to be correct, if the region pair also passes the region overlap test given by O.< O, for a given
overlap error threshold O,. A match is said to be false, if the pair fails the region overlap test.
Sometimes, with a tight overlap error threshold, say O, = 0.1, even though the two regions
pass the region similarity test, but they fail the region overlap test due to O,<O.<I. It seems
not very fair to call such a pair a false match when compared to a typical false match whose
region overlap error O, is equal to 1; namely, the two regions do not intersect and are,
therefore, not related at all. Hereafter, a matching pair with a region overlap error in between
such that O,<0.<1 is considered as a “don’t care” pair. In other words, the new definition of a
false match is a match that passes the region similarity test and its region overlap error O,

must be equal to 1.

It is important to realize a fixed distance threshold cannot be used to evaluate the

descriptor performances. Instead, a precision-recall (PR) curve, created by varying the
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distance threshold, must be used.

Recall is the ratio of the number of correct matches to the number of corresponding

region pairs satisfying the region overlap test: O.< O,.

vecall = # correct matches (3.15)

# correspondences

Precision is the ratio of the number of correct matches to the total number of correct and false

matches:

1- precision = ftfalse_matches (3.16)

#correct matches+ # false matches

Fig. 3.4 depicts a PR curve generation process. Assume there are M, N regions detected in the
reference and transformed images, respectively. The regions in the two images form MxN
matching region pairs. Among these MxN pairs let the number of corresponding region pairs,
which are each with a region overlap error O, smaller than the specified bound O,, be C. Also,
let the number of the “don’t care” pairs be P. Now sort the C corresponding pairs and the
MxN-C-P non-corresponding pairs, respectively, by their distance measures d;; in an
ascending order. The range of distance measures for the set of C corresponding pairs generally
overlaps with that of the set of non-corresponding pairs. Start to increase the distance
threshold D; from the minimum value D,,;, to the maximum value D,,,.. The recall value is
initially equal to zero, so is the value of (1-precision). As D, passes over D,,;,, more and more
correct matches occur and the recall value is increasing, while the (1-precision) value remains
0 since there have been no false matches so far. When D, reaches the minimum distance

measure D’ of the non-corresponding region pairs, false matching pairs begin to appear and

the value of 1-precision is increasing from 0. Notice that the recall is always monotonically

29



Chapter3 A Zernike Moment Phase Based Descriptor for Local Image Representation and Matching

increasing and reaches 1 when the distance threshold is equal to the maximum distance

measure D’ of the C corresponding region pairs. At the end, when the distance threshold is

equal to Dy, the (1-precision) value approaches 1. Be aware that the (1-precision) value is
monotonically increasing when D; is sufficiently large, but it may decrease at the early stage,

if the relative growth rate of false matches is smaller than that of the correct matches.

: The C corresponding pairs (i) sorted by the distance measure d,

N : J 5

: YT - S : ; . .

: T'he MxN-C-P:non-corresponding pairs (k./) sorted by the distance measure dy;

R o (e S (oW oM e ¥ oo eR ]
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Fig. 3.4: The PR curve generation process. (a) The correct matches and false matches associated with a

varying distance threshold D, . (b) The generated PR curve.
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3.4.2 Evaluation on Region Detector Types and Region Overlap Error

As mentioned above, the best two region detectors, MSER and Hessian-affine, are

reported in [11]. We shall present the evaluation results for these two detectors side by side.

Fig. 3.5 and Fig. 3.6 show the region detection results for both textured and structured
scenes, and the two curves about the relation between recall and region overlap error and that
between the number of correct matches and region overlap error using Hessian-affine regions
and MSER regions, respectively. There are around 400 regions extracted by either detector.
The number of correct matches and the number of correspondences for each overlap error are
computed for a single section of overlap errors ranging from the previous one to the current
one. For instance, the score for 20 percent is computed for the overlap error interval from 10
percent to 20 percent. Also, the recall values are calculated, by keeping the precision at 0.5, as

done in [12].

We observe that the top black line, which shows the number of region correspondences
dictated by the given overlap error bound O., bounces back at overlap error 40%. This is due
to a natural increase in the region correspondences at the given higher region overlap error
bound, resulting in “one-to-many” or “many-to-one” overlapped region pairs extracted from
the reference and sensed scenes. Usually these new corresponding region pairs are less similar
when compared to those at a smaller overlap error bound, causing a drop in the number of
new correct matches. On the other hand, for a small overlap error bound the correspondences

are mostly the “one-to-one” overlapped region pairs.
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Fig. 3.5: Evaluation for different overlap errors for structured scene. (a)—(b) Detected Hessian-affine
regions and MSER regions under viewpoint change for structured graffti scene. (c)-(d) The number
of correct matches vs. the overlap error. Also, the top black line shows the number of region

correspondences detected. (e)-(f) Recall vs. the overlap error.
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Fig. 3.6: Evaluation for different overlap errors for textured scene. (a)—(b) Detected Hessian-affine
regions and MSER regions under viewpoint change for textured brick scene. (c)-(d) The number
of correct matches vs. the overlap error. Also, the top black line shows the number of region

correspondences detected. (e)-(f) Recall vs. the overlap error.
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We observe that the proposed ZM phase descriptor has a higher recall vs. region overlap
error curve than other descriptors for the region overlap error in the interval [0.1, 0.4] for both
sets of Hessian-affine and MSER regions. The portion of curve is less meaningful when O;
gets larger. This is because when O, gets larger, the corresponding regions are less similar, as
indicated in Figs. 3.7. As mentioned above, when the overlap error bound increases over 0.4,
the intersection area of these new corresponding region pairs becomes smaller, resulting in the
drop of the number of correct matches and the decrease in the recall value under a fixed
precision level (0.5 in this case). At a large overlap error bound the Zernike phase maintains
the same tight control on the similarity matching of the new corresponding pairs based on the
orthogonal moment features, so the increase in the new correct matches is rather small. On the
other hand, SIFT and GLOH have less stringent control on the similarity measure based on
the 8-gradient orientation bin tabulation on the 4x4 location grid, so there are more new

correct matches when the overlap error bound increases.

Fig. 3.7: The examples of the detected region pairs with different overlap errors O, ranging from 0.1 to 0.6.
The ellipses indicate the region boundary with blue color and red color for reference region 4 and the

transformed region given by H' BH, respectively. The cross symbols show the key point positions.
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We should not bother considering the corresponding region pairs associated with a large
overlap error bound, since many belong to “one-to-many” or “many-to-one” correspondences.
The inclusion of these less similar pairs or outliers will result in the erroneous estimations in
the later stages such as in the estimations of homography, fundamental matrix and epipolar
geometry, etc. Therefore, we set the O, value to 0.3 rather than 0.5 used in [12].

From now on, only MSER regions will be considered in the later experiments, since the

descriptor performance characteristics are similar for MSER and Hessian-affine regions.

3.4.3 Evaluation on Transformation Types

Since the elliptical region is already normalized into a circular image, the normalized
region is affine invariant. Nevertheless, the normalized region is not necessarily invariant to
rotation. Thus, for most of the descriptors including SIFT, SIFT variants and the steerable
filters, the image rotation problem must be solved first by finding a dominant gradient
orientation. Similarly, the circular image intensity normalization has made the region
descriptor robust to intensity scaling and offset, but not to image blur, image noise, image

compression, and the illumination change.

In image registration the two images can be taken by a single camera or different
cameras, and the images can be taken during a short period or on different days. These
shooting scenarios determine the type of image transformation encountered. For instance, if
the two images are shot by different cameras or at different periods, the photometric
conditions of the two shootings will be different, not to mention the possible viewpoint
change. In general, a geometric transformation is accompanied by some sort of photometric

change due to differences in the camera setting and the surface reflection angles.
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A) Robustness under Photometric Transformations

To focus on the effects of photometric transformations, we try to avoid the effect of a
geometric transformation by setting the region overlap error threshold O, to a small value
(0.2~0.3). Overall speaking, the ZM phase obtains the best performance results for all
textured scenes under all type of photometric transformations and for the structured scenes
under image blur and nonlinear lighting. The performances of the ZM phase, SIFT, GLOH
and PCA-SIFT are comparable for the structured scenes under affine lighting change, image
noise and JPEG when the value of 1 — precision is very small. The analysis on these

performance results will be given later.

(i) Image Blur

The performance is measured under image blur introduced by changing the camera focus
setting. Figs. 3.8(a)-3.8(b) show the respective PR curves for the bike structured scene (see
Fig. 3.3(a)) with minor blur and severe blur, while Figs. 3.8(c)-3.8(d) show the respective PR
curves for the tree textured scene (see Fig. 3.3(b)) with minor blur and severe blur. The
performance ranking indicates that the best descriptor is ZM phase for both the structured and
textured scenes considered. On the other hand, SIFT performs better than its variants, GLOH
and PCA-SIFT, for the textured scene, while its variant performs better for the structured
scene, as reported in [12]. The last ranking position is the complex moments. This is because
its low dimensional feature vector (15 in this case) and its exclusive use of the moment

magnitudes without the phase information.
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Fig. 3.8: The PR curves for the structured bike scene with (a) minor blur (b) severe blur. The PR

curves for the textured tree scene with (¢) minor blur (d) severe blur, all with O,= 0.3.

To show the performance discrepancies between the top best three descriptors (ZM phase,
GLOH and SIFT) under image blur, Table 3.3 shows the matching statistics for the bike
structured scene and the tree textured scene with a region overlap error of 0.3 and a recall
value of 0.6. Fig. 3.9 depicts the correct and false region matches for the tree textured scene,
when using ZM phase, GLOH and SIFT, respectively. There are 0, 11 and 42 false matches

(shown by red lines) for ZM phase, SIFT and GLOH, respectively. All these descriptors have

112 correct matches (shown by green lines).

37



Chapter3 A Zernike Moment Phase Based Descriptor for Local Image Representation and Matching

TABLE 3.3 THE MATCHING STATISTICS FOR THE BIKE STRUCTURED SCENE AND TREE TEXTURED SCENE, ALL WITH

0,=0.3 AND RECALL =0.6.

# MSER 4 ZM phase SIFT GLOH
Scene Left Right corres- Thres- # # Thres- # # Thres- # #
Image | image | pondences hold correct | false hold correct | false hold correct | false
Dy D, Dy

Structured | g9 | 387 161 0.167 | 97 4 0.183 96 35 | 1600 96 14
(bikes)

Textured

(tree) 631 | 531 186 0.179 | 112 0 0.220 | 112 11 | 1543 | 112 | 42

(a) ZM phase

(b) SIFT (c) GLOH
Fig. 3.9: The correct matches (in green) and false matches (in red) obtained by the descriptors, respectively, all

with recall = 0.6 and O, = 0.3.

(ii) lllumination Change
a) Affine Lighting Change
To evaluate the descriptor performances under illumination changes, a collection of
images has been taken by changing the camera iris settings. Figs. 3.10(a) and 3.10(d)
show the PR curves for the Leuven structured scene and the bush 1 textured scene
shown in Figs. 3.3(c) and 3.3(d), respectively. The best three descriptors in order are ZM
phase, SIFT, and GLOH for the bush 1 textured scene and the situation remains the same

for the structured scene except when the value of 1 — precision is less than 0.03.
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b) Nonlinear Lighting Change

The nonlinear lighting is quite common in practice. Figs. 3.10(b) and 3.10(c)
shows the PR curves under the underexposure and overexposure lighting for the Leuven
structured scene shown in Figs. 3.3(e). Figs. 3.10(e) and 3.10(f) shows the PR curves
under the underexposure and overexposure lighting for the bush 1 textured scene shown
in Figs. 3.3(f). In comparison with the PR curves in Figs. 3.10(a) and 3.10(d) under
affine lighting change, it can be seen that the performances of the SIFT-based descriptors
become significantly worse. To the contrary, the performance results of the ZM phase
have only a small change, especially in the case of the textured scene. This will be

explained later.
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Fig. 3.10: The PR curves for the Leuven structured scene with (a) affine lighting change (b) non-linear
lighting change (underexposure), (c) non-linear lighting change (overexposure). The PR curves for the bush
1 textured scene with (d) affine lighting change (e) non-linear lighting change (underexposure), (f) non-linear

lighting change (overexposure), all with O,=0.3.
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(iii) Image Noise

The performances are evaluated by adding a different amount of Gaussian noise to the
images. Figs. 3.11(a) and 3.11(b) show the PR curve for the structured Chinese compound
scene (see Fig. 3.3 (g)) with two different noise levels (SNR=20 and 10), respectively. Figs.
3.11(c)-(d) show the PR curve for the Japanese garden textured scene (see Fig. 3.3(h)). The
ZM phase has the best overall result among all the descriptors for the textured scene and is

comparable to the SIFT-based descriptors for the structured scene.
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Fig. 3.11: The PR curves for the Chinese compound structured scene under image noise with (a)
SNR=20 db, (b) SNR= 10 db. The PR curves for the Japanese garden textured scene under image
noise with (¢) SNR=20 db, (d) SNR=10 db, all with O,= 0.3.
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(iv) JPEG Compression

Figs. 3.12 depict the PR curves under JPEG compression for the structured UBC scene
shown in Fig. 3.3(i) and the textured garden scene shown in Fig. 3.3(j), respectively. The
qualities of the compressed images range from 10 to 30 percent of the original one. The

performance ranking is similar to that under the noise attack.
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Fig. 3.12: The PR curves for the structured UBC scene under JPEG compression with quality =
(a) 30%, (b) 10%. The PR curves for the textured garden scene with quality = (c) 30%, (d) 10%,

all with 0,=0.3.
B) Robustness under Geometric Transformations

To focus on the effects of geometric transformations, we try intentionally not to change
the photometric conditions. As shall be seen, under all geometric transformations, the ZM

phase performs best for all textured scenes, but is comparable to the SIFT-based descriptors
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for the structured scenes when the value of 1 — precision is less than 0.05.

(i) Viewpoint Change

We use six images of the textured and structured scenes taken under a viewing angle
ranging from 10 to 50 degrees. Figs. 3.13(a) and 3.13(b) give the PR curves for structured
graffiti scenes (see Fig. 3.3(k)) and the textured brick scenes (see Fig. 3.3(1)), respectively.
The ranking of the best four descriptors remain unchanged for the specified range [10°, 50°]
of the viewing angle. The ZM phase descriptor clearly overpowers the five other descriptors

for the textured scene, but not so for the structured scene.

(if) Rotation Change

The images considered are taken by rotating the camera axis from 30° to 45 °. The
descriptors for the structured castle scene (Fig. 3.3(m)) and the flower textured scene (Fig.
3.3(n)) under image rotation are evaluated. Figs. 3.13(c)-3.13(d) show the PR curves for the
scenes, respectively. The ranking of the top three descriptors remains the same throughout the

range of rotation angle and it is similar to the case of viewpoint change.

(iii) Scale Change

Figs. 3.13(e)-3.13(f) show the performance measures for the descriptors under the scale
change using the Pentagon structured scene (Fig. 3.3(m)) and textured bush 2 scene (Fig.
3.3(n)), respectively. The scaling factor is close to 2. The performance rankings are similar to

the above two cases of geometric transformations.

42



Chapter3 A Zernike Moment Phase Based Descriptor for Local Image Representation and Matching

T 4 e
: ¥ 09
0.8
078
— 08§ = { — 05}
E " ] ; ;}_E BB -1 - 5 02 P ;
0 —&— ZM phase A1 ~|—&— ZM phase 1 0.4 ~{—&—ZM phase
| —a—gIFT 0.3 | —&—SIFT | 03 | —&—sIFT
——GLOH % © |——oLoH —— GLOH
| —#—PCA-SIFT 1 0.2- “| -~ PCA-SIFT 1 02 | =3~ PCA-SIFT
#— Complex moments | | 0.1 | —#— Complex moments | | 01 «— Complex moments | |
X . Steerable fiters || o i i ¢ |~ Steerable fiters || 3 R Steerable fiters ||
0 01 02 03 04 05 06 07 08 09 1 0 01 0203 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1
1-precision 1-precision 1-precision
(a) viewpoint (structured) (c) rotation (structured) (e) scaling (structured)

o m I [}
B 05 I g 053 [ g 0 S—t
0.4 { —&— ZM phase 0.4 | —2—ZM phase 0.4} —&— ZM phase
03 —&—SIFT 0.3 | —&—SIFT | 03 —&—SIFT
——GLOH —»—GLOH N —»—GLOH
02 - ot~ POASIFT 1 0.2 | —#— PCA-SIFT 1 0278 .~ —#— PCA-SIFT
0. ii| % Complex moments || 01 oo oo —%#— Complex moments | | 018 #— Complex moments ||
l, L ISIeelfahIelﬂI!e@ ol .| | Steerablefiters || | . Steerable filters
0 0102 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1
1-precision 1-precision 1-precision
(b) viewpoint (textured) (d) rotation (textured) (f) scaling (textured)

Fig. 3.13: The PR curves under geometric transformation, all with O, = 0.3

3.4.4 Evaluation on Feature Dimensionality.

To extend the SIFT descriptor both GLOH and PCA-SIFT increase the feature size and
then apply PCA to reduce the feature dimensionality. The features of these descriptors are
originally correlated and become orthogonal after the application of PCA. However, their

optimal dimensions are determined by the training images in the database.

The utilization of Zernike moments up to a higher order generally leads to a more
accurate estimate of the region rotation angle and a better image representation power. Fig.
3.14 depicts the PR curves for two structured scenes under two different attacks when the ZM
descriptor uses moments of order N up to 10, 12, and 16, respectively. The corresponding

feature dimensions are 30, 42, and 72. It can be seen that the descriptor performance becomes
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better as the feature dimension gets increased. The selection of order N = 12 is a tradeoff

between the computational complexity and the descriptor performance.
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Fig. 3.14: The PR curves for ZM phase with the maximum order N = 10, 12 and 16, together with the

associated PR curves of SIFT for two structured scenes under two different attacks, all with O, = 0.3.

3.5 Analysis on Performance Evaluation Discrepancies and Time

Complexity Analysis

Since the complex moments and the steerable filters are never ranked in the first position
throughout the experiments due to their low feature dimensions chosen, they will be ruled out
for further consideration. The SIFT, GLOH, and PCA-SIFT have similar performance results
under all the transformations reported. In the following, it is sufficient to compare the

performances of SIFT and the ZM phase.

A) The Effect of Image Intensity Fluctuation on the Descriptor Performance

We give a rule of thumb or a simplified explanation why the ZM phase descriptor
performs better than other existing descriptors under non-uniform image intensity fluctuation,
since an exact analysis varies with the underlying image and, therefore, is rather complicated.

First of all, the transformed image is obtained from the reference image according to a given
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photometric or geometric transform, so their image pattern structures are correlated. After the
affine intensity normalization, their image intensity distributions become closer and tangled.

Next, the phase difference of the ZM phase descriptor is computed as

B Im(Ztmn) ~ Im(Z"e/)
A — tran ref = tan 1 nm —tan 1 nm 7 , 319
(pnm (Dnm ¢nm ( Re(Z:,Zn )) ( Re(Z’:s{ ) ( )
tran ref
where Im(Z’Z{” ) _ Im(an‘)+AIm(an) with ARe(Z,)and AIm(Z, ) being the real
Re(Z;")  Re(Z)+ARe(Z,,)

and imaginary ZM components of the difference image between the reference and
transformed images. Since the image structures of the transformed and reference images are
similar, so it is likely that the phase angles of the reference and transformed images are in
phase (i.e., no phase difference after the image rotation alignment), especially when their ZM
magnitudes are both large. The weighted sum of the absolute phase differences is, therefore,
close to zero. On the other hand, the probability that the reference and transformed images are
out of phase (a significant phase difference) is small. Consequently, most of the ZM moment
counterparts of the image pair support the single majority of the estimated rotation angle, even
though there is some fluctuation in the ZM magnitudes. This leads to the accurate rotation

angle estimation when using the ZM phase.

On the other hand, the SIFT based methods utilize the gradient information. The local
gradient angles in the transformed image remain considerably unchanged (except under image
blur which causes the gradient angles damaged), but their gradient magnitudes change
somewhat non-uniformly. Besides, there are generally several different gradient angles found
in an image especially for the textured image. (This may not be the case for structured scenes
with a distinguished edge orientation.) Therefore, the 36-bin orientation histogram will
contain multiple candidates on the histogram ballot. When the gradient magnitudes change

non-uniformly, the vote counting of the multiple candidates will change. This leads to a
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change of the dominant orientation in the transformed image. It, in turn, triggers further
non-linear changes in the 128 dimensional SIFT feature vector, regardless of the unit length
feature vector renormalization at the end. This is why the performance of the SIFT based
methods generally degrades under a given transformation especially for the textured scenes.

We shall use an example to justify our above reasoning.

Figs. 3.15 to 3.18 present four experimental results for the performance comparison
between ZM phase and SIFT under non-linear lighting change (a power-law (gamma)
transform with gamma = 3), JPEG compression (the quality of the transformed image is 5
percent of the reference one), viewpoint change and scaling change, respectively. The four
figures are in the same format. Part (a) of the figures shows the region pair before and after
affine intensity normalization in the gray color or in the pseudo color for better visualization,
along with their difference images and difference intensity histograms. We can observe that
the image structure of the transformed and difference images look similar to that of the
reference image. This likely leads to the nearly equal real and imaginary parts of the ZM
moments for the region pair except for a few components under the non-uniform intensity
change, as indicated in part (b) of the figures. Therefore, the majority of the weighted phase
differences are nearly zero, as shown in part (c) of the figures. On the other hand, the
non-uniform intensity fluctuation causes the dominant orientation histogram and the 128
dimensional SIFT feature vectors to change non-uniformly, resulting in an expected greater

dissimilarity between the two images shown in part (d) of the figure, as expected.
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Fig. 3.15: A performance comparison of ZM phase and SIFT under non-linear lighting change. The detected

ellipse-shaped regions are normalized to a circular patch through the affine normalization process beforehand.
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Fig. 3.16: A performance comparison of ZM phase and SIFT under JPEG compression. The detected

ellipse-shaped regions are normalized to a circular patch through the affine normalization process beforehand.
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Fig. 3.17: A performance comparison of ZM phase and SIFT under Viewpoint change. The detected

ellipse-shaped regions are normalized to a circular patch through the affine normalization process beforehand.
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Fig. 3.18: A performance comparison of ZM phase and SIFT under scaling change. The detected ellipse-shaped

regions are normalized to a circular patch through the affine normalization process beforehand.
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In summary, noise, lighting change, compression, and blurring belong to the
photometric transformation type which causes the image intensities to vary. On the other hand,
viewpoint change, scaling and rotation belong to the geometric transformation type which
first relocates the positions of the image points, and then requires some sort of intensity
interpolation to compute the image intensities at the new image points; the new image
intensities contain some non-uniform fluctuation (except for the rotation transformation which
generally causes a very minor intensity fluctuation). We can apply the above-mentioned
reasoning to conclude the ZM phase descriptor is generally more robust than the SIFT-based
methods under these transformations especially for the textured scenes which generally

containing the complex edge orientation information.

B) Rotation Angle Error Statistics and lts Effect on the Descriptor Performance

The descriptor performance discrepancy can be attributed to the different rotation angle
estimation errors of the descriptors. The dominant orientation of the SIFT based descriptors
relies on the peak detection in the 36-bin histogram of the gradient directions obtained from
the region image, while the ZM phase descriptor computes the image rotation angle from the
weighted sum of the ZM phase differences. Table 3.4 breaks down the estimated rotation
angle errors (&umge) under the categories of 5, 10, 20, and 30 degrees for both textured scenes
and structured scenes under all transformations except the viewpoint change. The rotation
angle errors are evaluated by computing the estimated rotation angle for all normalized
corresponding region pairs, and then compare them with respect to the actual angle. The
actual angle can be obtained by the ground truth homographies given from [30], which are

almost a similarity transform. The rotation angle error statistics are not available under the
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viewpoint change, since the associated rotation angle between two regions under viewpoint

change is not fixed.

TABLE 3.4 THE ROTATION ANGLE ESTIMATION ERRORS FOR ALL CORRESPONING REGION PAIRS SPECIFIED BY Ot =0.3.

Transform &angle <5° &angle < 10 ° &angle <20 ° &angle < 30 °
type Scene type method

Avg % Avg % Avg % Avg %

Textured ZM | 1.801 | 86.022 | 2.333 | 97.312 | 2.502 | 98.925 | 2.502 | 98.925

blur (tree) SIFT | 2.484 | 39.785 | 4.134 | 59.140 | 6.090 | 72.581 | 7.787 | 80.108
Structured ZM | 1.663 | 92.547 | 2.027 | 98.758 | 2.162 | 100 | 2.162 | 100

(Bikes) SIFT | 2.147 | 51.553 | 3.605 | 72.671 | 4.543 | 80.124 | 5.080 | 82.609
Textured ZM | 0764 | 96.755 | 0.947 | 99.705 | 0.979 | 100 | 0979 | 100

hagfhﬁt’i‘:g (bush 1) SIFT | 1.747 | 68.437 | 2.724 | 84366 | 3366 | 89.676 | 3.426 | 89.971
Structured ZM | 1506 | 93.662 | 1.641 | 98.775 | 2.115 | 100 | 2.115 | 100

(Leuven) SIFT | 1.726 | 62.676 | 2.631 | 78.873 | 3.313 | 83.803 | 4.071 | 86.620

. Textured ZM | 1.099 | 94.561 | 1.284 | 97.908 | 1.363 | 98.745 | 1.363 | 98.745

“ﬁrglilltl?:; (bush 1) SIFT | 2.002 | 53.556 | 3.115 | 69.874 | 4.327 | 79.498 | 4.532 | 80.335
(underexposure) Structured M 1.220 | 93.662 | 1.481 | 95592 | 1.584 | 99.296 | 1.715 100

(Leuven) SIFT | .1.906 | 63.380 | 2.944 | 80.282 | 3.308 | 83.803 | 3.463 | 84.507

Textured ZM | 1.56492.857 | 1.838 | 98.352 | 1.893 | 98.901 | 1.893 | 98.901

oise (Japan garden) [™q ) 03 | 42.857 | 4071 | 65385 | 5.859 | 80.121 | 6765 | 83516
Structured ZM | 1349 | 93.293 | 1.666 | 99.085 | 1.763 | 100 | 1.763 | 100

(Compound) I e 781 | 69.207 | 2.814 | 85.671 | 3377 | 90.244 | 3377 | 90244
Textured ZM | 1318 | 93817 | 1654 | 100 | 1.654 | 100 | 1.654 | 100

IPEG (garden) SIFT | 2.107 | 50269 | 3.722 | 73.387 | 4.948 | 83.871 | 5272 | 85.215

Structured ZM | 1112 | 93158 | 1.326 | 96.842 | 1.552 | 98.947 | 1.552 | 98.947

(UBC) SIFT | 1.852 | 68.947 | 2.724 | 82.632 | 3.162 | 86316 | 3.419 | 87.368

Textured ZM | 1310 | 97.692 | 1.370 | 99.231 | 1.370 | 99.231 | 1.370 | 99.231

Rotation (flower) SIFT | 2.346 | 54.483 | 3.910 | 81.379 | 4.662 | 89.655 | 4973 | 91.034
Structured ZM | 1061 | 98755 | 1117 | 100 | 1117 | 100 | 1117 | 100

(castle) SIFT | 1.777 | 74274 | 2.544 | 87.552 | 2.963 | 91.286 | 2.963 | 91.286

Textured ZM | 1414 | 92,623 | 1.625 | 97.541 | 1.840 | 99.180 | 1.840 | 99.180

Sealing (bush 2) SIFT | 2222 | 53279 | 3.519 | 70.492 | 4.340 | 76230 | 5390 | 80.328
Structured ZM | 0913 | 98551 | 0999 | 100 | 0.999 | 100 | 0999 | 100

(Pentagon) g o™ 11356 | 78261 | 2.154 | 90.580 | 2.529 | 93478 | 2.529 | 93.478

From Table 3.4 the average rotation angle errors of the ZM phase is smaller than those of
SIFT for the structured scenes and textured scenes when &,g. < 30°. More importantly, the
coverage percentage is more than 86% for ZM phase and around 40% to 78% for SIFT when

Eangle < 5°. The coverage percentage is computed as the ratio between the number of region
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airs with rotation angle estimation error (&) less than a specific value (5= 5°, 10°, 20° or
p g g p

30° in Table IV) and the total number of correspondence:

# corresponding pairs with &

angle

<&

coverage percentage= =, (3.18)

# correspondences

The large rotation angle errors of SIFT are due to the big error caused by the ambiguity in the
multiple dominant orientation peaks. This is the main reason why the SIFT performance

becomes poor.

Lowe [7] suggested solving the multiple dominant orientation problem by creating
multiple keypoints at the same location but with one of the dominant orientations (In this case
there is no clear rule for counting the multiple keypoints as correct or false matches in
generating the PR curves). In Fig. 3.19 the PR curves for the flower textured scene under
image blur is plotted with the removals of region pairs with a rotation angle error no less than
10°, 20°, 30°, and 360°, respectively. The ZM phase performs better than SIFT for rotation
angle errors not exceeding 20 °, 30°, and 360°, but not for the case of rotation angle errors
<10°, where SIFT does not face the multiple dominant orientation problem, as described

previously.

—6— ZM phase(c,,,, <360°)

— s SIFT(s__ <10°)
ange
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Fig. 3.19: The PR curves for tree textured scene under image blur with the removal of regions with

a rotation angle error not exceeding a specified level of 10°, 20°, 30°, and 360°, respectively.
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C) The Effects of Feature Dimensionality and Feature Orthogonality on the Descriptor
Performance
Generally speaking, the high dimensional feature vector contains more descriptive
information at the expense of memory space. For example, PCA-SIFT and GLOH start with a
feature dimension of 3042 and 272, respectively. However, the components of these feature
vectors are correlated and partially redundant. By the application of PCA (principal
component analysis) a subset of eigenvectors associated with the larger eigenvalues can be
extracted and the projection of the original feature vector to the sub-eigenspace reduces the
original dimension down to 128 or even smaller. The dimensionality reduction can be

determined based on the percentage of the sum of eigenvalues retained.

We know the ZM phase applies a set of orthogonal ZM moments to design the feature
vector such that the feature components are mutually independent and more informative. With
the same dimensionality (or the same memory space) the set of orthogonal features generally
results in a better descriptive power to distinguish the different image patterns embedded in
the textured scenes. However, when the image patterns in the scenes are highly similar, it
require a higher feature dimensionality in order to reflect the subtle pattern difference, as

indicated previously in Fig. 3.14.

D) Time Complexity Analysis

The computation time for evaluating the descriptor performance consists of the region
extraction time, the descriptor feature vector construction time and the region matching time.
Because all descriptors use the same set of regions of interest detected, so their region
extraction times are the same. As for the feature vector construction time, the numbers of
multiplications and additions required to compute Zernike moments up to order N for a gxq

image patch are both of order O (N *g ?) [40] . However, this calculation can be speeded up by
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using the symmetrical properties of Zernike basis functions [41], or achieve in real time
performance by using special hardware accumulation grid architecture [42]. As for the region
matching including the rotation angle estimation, the numbers of multiplications and additions
required by the ZM phase descriptor are both of order O (N ?). Theoretically speaking, the
SIFT based descriptor has a shorter region matching time per region pair, compared to the ZM
phase descriptor. However, if desired, we can first use the ZM moment magnitude
components, which are known rotationally invariant, to compute the distance between two
given feature vectors. Only when the magnitude-based distance passes the condition checking,
the ZM phase descriptor needs further to calculate the weighted, normalized phase difference

to check if there exists a rotation angle between two matching regions.
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Chapter 4
Robust Logo Recognition for Mobile Phone

Applications

4.1 Introduction

With the rise of affordable digital cameras mounted on mobile devices, the mobile
applications of visual image information have received a great deal of attention. Visual pattern
recognition could play a key role in the mobile applications for security check, context
recognition, location detection, and museum guidance [43-53]. Fig. 4.1 depicts a scenario of
the mobile applications of the logo images. A mobile user directs his or her mobile phone
camera to a logo of interest and captures an image in the camera field of view. A software
client built in the mobile device initiates submission of the image to the server via 3G or other
wireless links. The web-service reads the message and evokes the logo recognition system to
identify the logo in the sever logo database. Then the server sends the corresponding
corporate identity back to the client, enabling the user to access to the more detailed and

specific information.
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Fig. 4.1: A scenario of the mobile applications for logo recognition.

For a logo recognition system, features related to visual contents are first extracted to
describe the logo images. Then, a similarity measure is defined to compare the query image
with the target images in a logo database using the extracted features. Next, the target logos
most similar to the query image are retrieved. Since the query logo image may be taken by a
handheld mobile phone camera operating at a varying viewpoint under different lighting
environments (daytime or nighttime), the query image may differ substantially from the
database target one due to geometric transformations (viewpoint change, rotation, and scaling
change) and photometric transformations (lighting change, noise, and image blur). Therefore,
a challenge to the logo recognition system is to extract the features robust to the above

inevitable imaging variations.

In this chapter, we propose a logo recognition method based on the ZM phase-based
feature vector. To start with, we apply a shape deformation correction process to solve the
shape distortion problem caused by a geometric transformation. The normalized logo planar

patch can be shown to be affine invariant up to a rotational ambiguity [10]. After the region
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normalization, a ZM phase-based feature vector will be defined, which is robust to geometric
and photometric image transformations. Meanwhile, due to the use of a set of orthogonal
filters, the ZM feature vector is more compact and has a greater discriminative power.
Experimental results show that the proposed ZM phase based recognition method has better
retrieval performance in terms of the precision-recall criterion than the other existing

methods.

The chapter is organized as follows. Section 2 introduces the logo shape deformation
correction. Section 3 proposes the similarity measure using a ZM phase-based feature vector.
In Section 4 the discriminative power of the new ZM phase recognition method is compared
with three existing methods based on the precision-recall criterion. Furthermore, an analysis

on the performance discrepancy between different logo recognition methods is given.

4.2 Logo Shape Deformation Correction

Since a logo usually lies on a planar surface, the logo image undergoes a homography
transformation when the viewpoint is changed. The homography can be shown locally aftine,
so an affine approximation is commonly made. We shall fit an ellipse to a logo region. The

normalized region was shown to be affine invariant up to a rotation change [10].

The ellipse region can be formulated by

R={(x,y)|dx*+2exy+ fp* <1} 4.1)

d
Where { ej | He o
e f My My,
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Ho = Z(x_f)zb(an’)
ty =D (y=7)b(x,y)

Hy =D (x=X)(y—P)b(x,y)

The center (x,y) of the ellipse is obtained by taking mean of the coordinate of all

non-zero intensity pixels. The second moment matrix is up to a scale so that the ellipse can
cover all the logo pixels. The scale can be determined by finding the maximum distance from

the logo center to all the boundary points of the logo:

s = max{dist =d(x- x) +2e(x—x)y-7)+ f(¥y=7¥)"|(x,y) € boundary of the logo} . (4.2)

As a result, the final ellipse is determined with

Mo=s| i M 4.3)
/ley /Llyy

Define the affine normalized image of 7°(x, y) to be

1

I'(x,y)=M *I(x,y). (4.4)

Fig. 4.2 shows examples of the respective original and normalized images of a logo and its
two deformed versions. We can see, after the affine normalization process, the normalized

images are more similar.
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original image original image original image

Normalized image Normalized image

(a) (b) (c)
Fig. 4.2: Three logo images taken from different viewpoints and their normalized images. (a) The
reference logo image. (b)-(c) The two deformed versions of the reference image. The yellow ellipses

show the detected ellipses.

4.3 Logo Similarity Measure Based on the ZM Phase Information

A logo can be viewed as a single integrated graphic entity or a composite of several
sub-logos when it contains multiple sub-components. There are two types of logo processing
tasks: one is to classify the query logo as one from the database and the other is to retrieve all

similar logos in the database. The similarity measures for these two types are defined below.

(a) The similarity measure for the logo classification

Let L/(x,y) and L‘(x,y) be a query logo and a database logo, respectively, and let

. d
e’”m} . Here

e/} and P, = {‘Zdnm

their respective ZM feature vectors be Pq = {‘Z ‘.

both logos are treated as an integrated graphic entity each. Here the query logo can be either a
rotated version of the database logo or a totally different one. A similarity measure using the

weighted ZM phase differences is expressed by
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- min{{®,  —(md&)mod(2r)|,27 —|®,, —(ma)mod(27)|}
S(B.B)=1- 3 T, TP 8 modC), 27| b as
where
w,, = RN and
Z( Z:l]m + an )

® =(p! —¢’ )ymod2x is the actual phase difference.

The rotation angle & is determined by an iterative computation of
&, =(®,,, — &, ;)mod2z , with the initial value @ =0, using the entire information of

Zernike moments sorted by m. The value range of S(Pq,f’d) is the interval [0, 1].

(b) The similarity measure for the similar logo retrieval

For the similar logo retrieval, the connected components of the logo are detected first,
and then each component is treated as a sub-logo. We compute the ZM feature vector for each

sub-logo. Therefore, a logo is represented by a set of ZM feature vectors.

Given a query logo L, with N sub-logos. We compare the query logo L, with all the logos
in the database. Assume a database logo L, has M sub-logos. The similarity measure for the

logo pair (Lg, L,) is computed as the sum of the similarity scores of all matched sub-logo pairs.

That is, for each sub-logo C/ of the query logo L,, i=1, 2, ...,N . We find the sub-logo

Cj‘.’ of a database logo L; with the maximum  similarity  score

1 1

S, =S(C.",C]‘L)=max{S(C.",C}’)\j=1, 2, ..,M}. If the similarity score is greater than a
J
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pre-defined threshold (e.g., 0.8), then (CY, CJ’T’*) is considered as a matched sub-logo pair. All

of the matched sub-logo pairs are further checked to ensure the 1-1 correspondence relation.

Assume there are i, i,, ---, i, matched sub-logo pairs in the query logo L,, the similarity

score is computed as

P
Score(L,,L,) = Z(Wi,, X Sl.p), (4.6)

p=l

A

q

where w, = with

* min(4,,4,)

A4,,4, and 4 o being the areas of the query logo, a database logo and the i-th matched

sub-logo CZ of L,, respectively.

4.4 Experimental Results

To evaluate the performance of the proposed ZM phase based recognition method, three
experiments are to be conducted. We compare with our proposed method with three other
state-of-the-art methods for logo recognition: IZMD [57], EHD [58], and Ring projection [59].
The first experiment is to evaluate the classification power of the four methods by treating the
logo as an integrated entity. The second experiment evaluates the precision and recall rates of
the four methods in which the logo is considered as a whole. The final experiment
demonstrates our proposed method for retrieving the similar traffic signs by treating the logo

as a composite of multiple components.
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4.4.1 The performance comparison for the logo classification

Fig. 4.3 shows a set of 8 similar logos at a 400x400 pixel resolution which are
downloaded from various web sites. In Fig. 4.4 we also download three different views of the
first logo in the data set taken under a viewpoint change, an image blur, and a non-linear

lighting change, respectively.

Fig. 4.3: The set of similar logos.

There are some properties of the mobile phone imagery for the logo segmentation. First,
the logo is usually placed at the image center. Second, the logo and its background are highly
contrasted. Third, the logo generally contains subparts in different colors. Therefore, the
segmentation task of the logo image is simpler than a general image segmentation problem.
Our segmentation process works in the HSI (Hue-Saturation-Intensity) color space. The major
colors of the image are found as the local peaks in the histogram plot of the hue band. Then
we apply the k-means clustering to cluster the image pixels of similar color as a group. We
select the color clusters located near the center of the logo image. The homogeneous logo
regions are then extracted using the selected color clusters. The final segmentation result of

the logo positioning at each image center is shown in Fig. 4.4(b).

The segmented logo images are then submitted for a logo query. The color images are
transformed to gray-level images before computing the feature vectors by the four methods.
After the classification process, the logos in the top three ranks are listed in Figs 4.4(c) — 4.4(f)
for the four methods. The correct one is marked with a red box. The results show that ZM

phase has the best classification power for the three query logos.

63



Chapter4 Robust Logo Recognition for Mobile Phone Applications

view 1 : view 2 : view 3

(viewpoint change) (image blur) . (nonlinear lighting change)

(@)

(b)

(©)

(d)

(e)

¢

Fig. 4.4: The classification results for three logo queries. (a) Query logos. (b) Segmentation results of the query
logos. The logos in the top three ranks determined by (c) ZM phase, (d) IZMD, (e) EHD and (f) Ring projection,

respectively.

4.4.2 The performance comparison for logo retrieval

For evaluating the discriminative performances of the four methods, we use a database
composed of M logo patterns (M = 300) in the experiment; some representatives of the logo

patterns are shown in Fig. 4.5. For each logo in the database, we generate N synthetic images
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(N =10 in this case) under four kinds of imaging variations whose transformation parameters

are listed below:

(1) Image blur: via a Gaussian smoothing with mean 0 and standard deviation value ¢ = 1.2,
1.4,1.6,...., 3, respectively (with an increment of 0.2).

(2) Gamma lighting change: 1, =", where I, is the reference image / raised to a power of y
with y being 1/3, 2/3, 1,.., 3, respectively (with an increment of 1/3).

(3) Affine deformation: using 10 known planar homographies.

(4) Image noise: via adding Normally distributed Gaussian noise with SNR=5, 7,9, ...., 23.

(with an increment of 2)

Fig. 4.5: Some of 300 logos used in the experiment.

The MxN (3000=300x10) query logos under each of the above imaging variations are
generated. The retrieval performances of the four recognition methods are evaluated based on

the precision and recall rates as defined in 3.4.1.
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#correct matches
Recall =

#correspondence

#correct matches
#correct matches + # false matches

Precision =

Here, #correspondences = M xN , #correct matches = M xN and #false matches = (M-1)

(M xN).

Fig. 4.6 shows the results by the PR (Precision vs. Recall) curve. The ZM phase curve is
located above other curves in each case, indicating the ZM phase method has the best

performance among the four methods under the three given imaging variations which are

rather typical.

—&— ZM phase | f—o— zM pHase .

Recall
© O o O O«
w

—&—|ZMD 02 —A&—|ZMD
—%—EHD 01 —*—EHD
i | Rlngprqecncn X ~#— Ring projection
0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1
1-precision 1-precision
(a) View-point change (b) Image blur
0.9
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0.
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(c) Gamma lighting change (d) noise

Fig. 4.6: The PR curves for retrieval performance evaluations under different kinds of specified transformations.
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4.4.3 Traffic sign retrieval by multiple component matching

To show the proposed method for logo retrieval based on the multiple components of the
logos, the following experiment is conducted on a downloaded dataset which consists of 100
traffic signs; some representatives of them are shown in Fig. 4.7. Given a query image, the
components of the sign are extracted by the hue segmentation and each of the connected
components is viewed as a sub-logo. We apply the similarity measure described in Chapter
4.3.2 (b) to compute the similarity scores, and fetch traffic signs in the top 4 ranks from the
dataset. Fig. 4.8 shows the top 4 positioned retrieved database logos for two different query
images. As expected, the correct target traffic sign is ranked as the top one by the ZM phase

method.

A M\ LA A A
EWANAN VAN Y

SDE®E®
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PEOESTRIAN
ZONE

R (O (] (o] RER] |

Bus Stop

Fig. 4.7: Some of 100 traffic signs used in the experiment.
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Fig. 4.8: The traffic sign retrieval results. (a) The two query images and the extracted multiple sub-logos. (b) The

4 highest-ranked database logos and their matching scores against the database sub-logos.
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4.4.4 An Analysis on Logo Retrieval Results

From above, we can observe that the ZM phase method has the best performance among
the four recognition methods (ZM phase, [ZMD, EHD and Ring projection) under image blur.
The photometric and geometric transformations generally lead to an image intensity
transformation at the pixel level (image blur is used as an example). To illustrate the
performance differences between them, Fig. 4.9 show the intermediate results for the
performance comparisons under image blur variation. Fig. 4.9(a) shows a database logo

image /“(p,#) and its transformed version (i.e., query image /%(p,8)) under the image blur

variation, along with their difference images and histograms of intensity differences. We can

observe that the difference image contain some non-uniform intensity fluctuation.

As stated in 3.5.3, the non-uniform intensity fluctuation causes the non-uniformly change
in the ZM magnitude. On the other hand, since the image structures of the query and database
images are similar, so it is likely that the phase angles of the two images are in phase (i.e., no
phase difference after the image rotation alignment). On the other hand, the probability that
the two images are out of phase is small. Since our ZM phase similarity score is measured by
the phase difference weighted with the ZM magnitude for each order (n, m), the weighted sum
of the absolute phase differences is nearly zero, as indicated in Fig. 4.9(b). Consequently, the
single majority of phase differences (zero degree) lead to the robustness of the rotation angle

estimation and of the ensuing similarity measurement.

On the other hand, the similarity score of IZMD is computed as the weighted sum of the
two distances: magnitude distance and phase distance. The non-uniform intensity fluctuation
leads to a significant change in the ZM magnitudes, resulting in a change in the similarity

score. Furthermore, the IZMD method performs a phase alignment using a fixed order
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moment (e. g., ¢1)to achieve the rotation invariance. However, since different logos have
different ZM magnitudes, the specific |Z3 ;| magnitude may be small. In this case, the ¢,
phase becomes unstable so that the other phase differences are not close to zero, as shown in
the second row of Fig. 4.9(c). As a consequence, the rotation alignment is unstable, so is the

similarity measure.

The 4x4 grid partition of the EHD measurement region will face the boundary effect
problem, as described previously. Although the local gradient angles in the transformed image
remain considerably unchanged (except under a severe image blur which causes the gradient
angles destroyed), their gradient magnitudes will change in a non-uniform manner, as
indicated in Fig. 4.9(d). It results in a greater dissimilarity between the original and

transformed images.

Finally, the ring projection method is based on the sums of the corresponding feature
values accumulated in the individual rings, and, thus, are potentially invariant to image
rotation. The partition of the ring segments faces the boundary effect, too, and is

sensitive to the non-uniform image fluctuation, as indicated in Fig. 4.9(e). Moreover, the ring
projection structure loses the spatial information in the individual rings, thus reducing its
discriminative power. Consequently, the ring projection has the poor performance, as shown

in Fig. 4.6.
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Fig. 4.9: A performance analysis on the ZM phase, IZMD, EHD and Ring projection methods under image blur.
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Chapter 5

High-Efficiency Perspective View Registration
Using Offline Planning Strategies

5.1 Introduction

The fundamental problem of view registration is to recover a 2D spatial transformation
model to overlay two or more images taken under different imaging conditions [60-64]. The
image will generally deform under a view transformation. Therefore, the view registration is
better based on the local image features instead of the global features. There are two major
types of invariant features: points of interest and regions of interest. Both types of features are
designated in the image by points. The view transformation model can be estimated with or
without the actual establishment of point correspondences between the reference and sensed
images first. These methods have different orders of time complexity (refer to Chapter 2). We
have observed that various countermeasures were taken to reduce the time complexity of the

view registration method.

In this chapter we propose an alternative way to achieve better registration efficiency. We
introduce five planning strategies to sort the feature points in the reference image based on the
concepts of feature invariance to image deformation, image noise resistance, distinctive
description power, model estimation effectiveness, and partial image overlapping handling
capability. The feature points are detected using the Gabor filtering technique and a reference
matching database is constructed offline using the proposed five planning strategies. Here, we
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focus on the planning strategies to achieve better registration efficiency. The Gabor feature
points can be replaced by any of the invariant feature detectors (e.g. MSER or Hessian-affine),
which are with energy value, dominant orientation. Next, an online registration process is
presented to estimate the transformation model to overlay the reference image over an
incoming sensed image. We take advantage of preprocessing of the reference image offline to
gather the important statistics for guiding the sensed image registration. Fig. 5.1 shows the
architecture of the proposed method. In this way better registration efficiency can be achieved.

Experimental registration results are provided and the computational complexity is analyzed.

Offline Plannina Process

SRR, -, * .7 x
- -

Online Registration Process

Reference feature point set

Sensed feature point set HH Planning
tH < Rank the reference point pairs
i il according to five planning
strategies.

/ Transform model estimation

< Fetch the first sorted reference point
pair from SPP; whose OI; is maximum.

»| < Find a corresponding sensed point pair.

< Affine model estimation using the two
corresponding point pairs along with

their feature directions.
Update SPP &Homography estimation (IMU)
and O/
: I

No

Reference
matching database

< Six sets of sorted point pairs
SPP={SPP;},i=1,2,..,6.

< Reference feature point

lookup table

Successful model~

Consensus set size > threshold or
Iteration #> the bound?

Yes

Return with the
final homography

Fig. 5.1: The architecture of the proposed view registration process
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The main concepts of the method include:

(1) To reduce the time complexity we initially approximate the homography model by an
affine one, which is then estimated by using only two pairs of matched points, along with
their feature point directions, all obtained by the above Gabor filtering technique. The
initial transformation model is later iteratively updated to produce the final homography
model.

(2) To solve the partial image overlapping problem, we partition the reference image into four
sub-regions and construct six region pairs from the four sub-regions. During the online
registration we compute the overlap index for the six region pairs so that we can avoid
selecting the point pairs from the non-overlapping sub-regions.

(3) We implement five planning strategies to sort the feature points in the reference image
based on the concepts of feature invariance to image deformation, image noise resistance,
model estimation effectiveness, distinctive description power, and partial image
overlapping handling capability to construct a reference matching database offline. This

database will be used in the later online sensed image registration.

The rest of the chapter is organized as follows. Section 2 introduces the invariant
feature point extraction using the Gabor filtering technique. In Section 3, we discuss how the
affine transformation can be determined by using only two feature points along with their
feature directions. Next, we refine the transformation model by applying an iterative process.
Section 4 describes an off-line reference matching database construction using five planning
strategies in order to select two good starting reference point pair to invoke a later online view
registration. The concept of an overlap index is introduced to handle the partial image
overlapping problem. Section 5 illustrates the on-line registration process. Experimental
results and performance analysis are given in Section 6. Finally, we give an analysis of the

algorithm computational performance in Section 7.
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5.2 Feature Point Extraction by Gabor Filtering

In our previous work [78], we apply a multi-scale and multi-orientation Gabor filtering
technique to obtain a set of feature points from an image. Let /(x,y) be the input image. For a

set of scales s € {/, 2, 3, ..., S}, and a set of orientations =IxA@, [ =1, 2,......, L (A@is a
divisor of 1), the image responses to the multi-scale and multi-orientation Gabor filters are

described by a convolution operation:

R (x,y)=1(x,»)*g" (x,), (5.1)

where

() = — b= E O o ), o
2o o

S Ny

; 1 ,
g% (x,y) = ——5exp{————="—]}cos(w,x).
2o o

N A

x'| | cosd sing ||x
y'| |-sin@, cosb ||y

and w, =37/40, .

D)+ ()

The absolute responses to the filters at a common scale and L orientations is summed up at

each image point and the maximum sum over the § scales is searched, as shown below

E(x,y)=max{E* (x,y) = X |R" (x. )]} (52)

This maximum energy E(x, ) is taken to reflect the actual energy at the image point pi(x, y)
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and the particular scale at which the maximum energy occurs is called the dominant scale, sj_ .

The corresponding orientation / associated with the maximum filter response R’ at the

dominant scale is called the dominant orientation or feature point direction, 9;’_, at the image

point. The Gabor-filtered feature points with a local maximum energy can be shown to be

robust to the local image deformation.

For measuring the similarity between two matching points, the image patches centered at
the Gabor feature points are represented by the ZM phase descriptor, and the weighted,

normalized phase differences are computed as in Chapter 3.

5.3 View Transformation Model Estimation

5.3.1 Affine approximation to the homography model

We shall first approximate a homography by an affine model. The affine transformation
involves six parameters, so we need at least three matched point pairs to estimate the six
parameters. However, we use only two pairs of feature points. The third point pair required
for the model estimation is a virtual point pair obtained from the intersection of the two
dominant orientations associated with the two feature points in each of the two images. Any
other type of invariant feature points can substitute our feature points if they have an
accompanied feature point direction, too. The advantage of using two point pairs instead of

three pairs is to reduce the computational complexity, as shall been seen later.

Under the affine transformation the relationships between the two matched point pairs

(p,»p,) and (p,,p)) along with their associated feature point directions (€,,€;) and (é,,é))
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are given by a matrix 4, i.e.,

’ .
*p, $5,c0860 —s;sinf £ || ¥, ay Ay Ay || Xy

v ro| . _ T
Xp,_ Yo |= s,sin@ s,cosf t Vo |=lan an ayl|ly, - AX and

1 0 0 1 0 0 1] 1
Xy X,

vl=Aly, | =kl (5.3)
0 0

There are eight linear equations in six unknown parameters of the affine matrix. We can

estimate the affine matrix using the singular value decomposition (SVD) technique.

Fig. 5.2 illustrates the two respective pairs of Gabor feature points (p,,p,) and (p;,p,)
in the reference and sensed images, together with their associated unit feature point directions
(é,,¢) and (é,,¢). Note that the feature point directionsé,, ¢, and p,p, must not be

mutually parallel or nearly parallel in order that their extended lines can intersect. That is,

they must satisfy the following intersection condition:

(e, - p.p,) |< 1—threshold, (e, - p, p,) |< 1—threshold,and |(e, - ) |<1—threshold . ~ (5.4)

!

Similarly, the feature point directions €,, ¢ and p]p, in the sensed image must satisfy an

identical condition. Denote the estimated matrix 4 by 7*). It will be used as the initial solution

to estimate a more general homography transformation presented below.
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(@) (b)

Fig. 5.2: (a) The point set (P> 1) and the dominant orientation set (@) in the reference image. (b) The

’ ’ ! !
corresponding point set (pi> 1) and dominant orientation set (¢-e) in the sensed image.

5.3.2 Iterative view transformation updating

Finally, we extend the estimation from the affine transformation to a homography

my  my,  my || X

X
X'=ly |= My My My |1y |=MX. (5.5)
1

my,  m, 1 1

A homography transformation differs from an affine transformation in the nonzero values of
mj3; and m3,. We use the affine solution 7 as the initial solution to invoke an iterative model

updating (IMU) algorithm to obtain the final transformation estimation.

Let P={p,p,,-:-,p,} be a set of n feature points in the reference image and
0=1{4,,9,,"*,q,} be a set of m feature points in the sensed image. The IMU algorithm

iteratively transforms the sensed feature point set Q back to the reference image space to seek
for more corresponding points in P in support of the current transformation model. All the

matched point pairs constitute the corresponding point set (CPS) similar to the consensus set
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in RANSAC. Those unmatched pairs are viewed as the outliers. A new transformation 7 is

c-1)

computed using the enlarged CPS“", where ¢ denotes the iteration index. The process is

repeated unless CPS' converges or the iteration number of the process exceeds a specified

bound.

To facilitate the above search for any reference point of P in support of a sensed point
under consideration, we use a table lookup technique. The lookup table is built offline and has
the same size as the reference image. Each entry of the lookup table is a pointer, pointing to
the location address of each reference image point. The content of this memory address
contains a sorted list of {(p; d)), i€ {1, 2, 3, .., n}}, where p; is a reference feature point of P
with di< d© where d; is the distance between p: and the image point picked by the pointer.

The following is the iterative model updating algorithm:

Algorithm IMU (lterative Model Updating)

Input:
1. Sets of reference and sensed feature points: P = {p,, p,,*--, p,} and O = {q,,q,,"**,q,,} -
2. The initial estimate of the affine transformation 7' corresponding to a reference point

pair(p,, ,p,;) and aselected sensed point pair(g,,q,).

Output:

1. The resultant corresponding point set CPS"”

2. The resultant homography transformation matrix 7"
Initialization:

¢ = 0; d¥ = the reference image width/20; CPS”= @ (empty set)
Begin

Forc=1,2 ..., Cuax (Cmax = 5 1in Our case)

1. Reset CPS)= @ (empty set); d© =4 /2°
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2.Forj=1,2,...,m

(1) Fetch the point g; from @ and find any matched point p eP such that
|T(C"')(q - pi| <d' using the table look-up.

(2) If there is more than one such point p; in P, find the one with the minimum
descriptor matching distance with ¢;. If the matching distance is less than a
pre-specified threshold, then add the matched pair to CPS.

End For

3.1f ‘CPS(") , then return 7" = T@and CPS"” = CPS'® and stop the process.

< ‘CPS(C’”

4. Compute the new transformation matrix 7 using all point pairs in CPS.
End For

End

A remark is in order here. Regardless of whether the input reference pair(p,, , p,, )and

the selected sensed point pair(g,,q,)are actually matched or not, the process will be

terminated within 5 iterations. If the iteration number is less than ¢, (Cax = 5 In our case)
and the resultant CPS " is of sufficiently large size, the solution model 7% is likely to be
correct; otherwise, the solution model is probably wrong. This is because the inputted

reference point pair (p,,,p,,) fetched from the database is the best reference pair based on

the offline planning strategies. If this pair fails, it means the sensed image is probably not

overlapped with a reference image part from which the pair (p,,,p,,) is fetched. More

concrete examples are given in the section on the experimental results.
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5.4 Off-Line Reference Matching Database Construction with Planning

Strategies

By now, we know that the success of the final view registration is determined by two
good starting reference points and their respective matched points in the sensed image. In the
following we shall present five offline planning strategies for providing the two good starting

reference points from a reference matching database to be constructed.

First of all, the image feature points must be robust to image noise. The Gabor filters
used contains a Gaussian smoothing factor, so they can resist the image noise impact.
Therefore, a good reference feature point should have large response energy, as described

below:
Define the normalized energy factor at point p; as

Ei = Emin
Emax —Emin (56)

2

E(pi):

where E,, and E,;, are the maximum and minimum energy values at the points of the

reference feature point set, respectively, and E; is the energy at p;.

On the other hand, the stability of the dominant orientation at a feature point can be
measured by comparing the filter responses at the dominant orientation and its two
neighboring orientations:

-
DO(p,) =

+

ld
G

la
x

I,-1
-|&]

)

: (5.7)

where Rfd is the filter response at point p; associated with the dominant orientation /;, /;
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el.
Define the normalized orientation factor at point p; as:

_ DO(pi)_DOmin
DOmax _DOmin

O(p;) ; (5.8)

where DO, =max{DO(p,)} and DO, =min{DO(p,)}.

Strategy 1: Sort the reference feature points p;, i =1, 2, ..., n, in the descending order of their

products of normalized energy and orientation factors E(p;) O(p;).

As described in Section 5.2.1 on the affine model estimation, any two reference feature

points must form a triangle with their associated feature point directions. (Refer to Fig. 5.2)

Strategy 2: Select the possible reference point pairs such that the two associated feature point

directions satisfy the intersection condition for constituting a triangle.

In Fig. 5.3 the two points p; and p;, together with their dominant orientations ¢, and ¢, ,

form a triangle (shown by solid lines) with area A(p;, p;). The image noise in the two points
and their dominant orientations will affect the ensuing view transformation estimation
accuracy. An equilateral triangle with a large area is good for the transformation estimation.
We should choose such a triangle from the data set. We need to measure the similarity
between a triangle and a virtual equilateral triangle constructed by the longest side of the
triangle (shown by dashed lines in Fig. 5.3). An effective equilateral triangle similarity

measure is given by
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A(piapj) _ A(piapj) . OSS(pppj)Sla (59)

S(pi,p;)= = ;
’ Ae(pi’pj) (\/g/él')lmax2

where 4.(p;, p)) is the area of the virtual equilateral triangle constructed.

. . . . . . . é
Fig. 5.3: The triangle formed by the two feature points p;, p;, and their dominant orientations 7

e . . ; . .
and 7/, together with an equilateral triangle constructed by the longest side Lo of the triangle.

Finally, the effective triangle index is defined by

S.(p,,r,)=S(p;p,)|p:D;|- (5.10)

Strategy 3: Sort the two reference point pairs screened by Strategy 2 in the descending order

according to their individual effective triangle indices.

Next, let NM(p;) be the total number of sensed feature points which are found matched to the
reference point p;. Similarly, let N(p;) be the total number of feature points which are matched

to reference point p; The distinctiveness (or uniqueness) measure of a reference feature point
pair (p;, p;) 1s given by

1

S — 5.11
N(p,)N(p)) 1D

U(p;»p,) =
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Strategy 4: Sort the reference point pairs in the descending order according to their individual

pair-wise distinctiveness measures.

If the reference image is only partially overlapped with the sensed image, the reference
feature points in the non-overlapping region will find no matches in the sensed image. We
should avoid using these reference feature points for the view registration. To handle this

partial image overlapping problem, we partition the whole reference image into four equal

sub-regions. We will rank reference point pairs in the six (C, = 6) combinations of sub-region

pairs.

Strategy 5: Divide the reference image region into four sub-regions R; to R,and construct the

six region pairs from the four sub-regions to handle the partial image Registration problem.

Now, we are ready to give a process using the above planning strategies to pre-compile a
reference matching database to be used in a later online registration to overlay the reference

image over an incoming sensed image.

The off-line reference matching database construction process

1. Divide the reference image into four sub-regions R; to R4 (Strategy 5).
2. For each sub-region R;, i =1, 2, 3, 4, sort the feature points p; ; of R; in the descending order

according to the product of normalized energy and orientation factors E(p,,)O(p,,)

(Strategy 1). Retain those reference feature points in each sub-region whose product of
normalized energy and orientation factors is greater than a specified threshold. Denote the

sorted list of the retained points by F, ={p, , p,»,--» Dy }» i =1, 2,3, 4.

3. Construct the six possible region pairs from regions R;to R4, denoted by RP = {(R), R»),

(R1, R3), (R1, R4), (Ry, R3), (R, R4), (R3, R4)}. For each region pair (R;, R;) of RP find the
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Cartesian product (F;x F)).

(a) For each Cartesian product (Fix F)), (i ,j)e {(1, 2), (1,3) (1,4), (2,3), (2, 4), (3, 4)},
retain  the possible reference point pairs (p,,,p,,) e F,x F, satisfying the intersection
condition (i.e.,Strategy 2). Sort all of the feature point pairs (p,,,p;,)eF,xF, inthe
descending order according to the effective triangle index S,(p,,, p,,) (i.¢., Strategy 3)
and keep those point pairs(p,,,p, )with a triangle index S (p,,,p,,)greater than a
specified lower bound. Replace the original FixF; by the sorted list of the retained
point pairs ( Pii>Pjs)-

(b) Sort the retained point pairs in F;xFjaccording to the pairwise distinctiveness measure

1

(i.e., Strategy 4):U(p,,,p,,) = ————
T NN,

Denote the set of six sorted lists of reference point pairs of {F;xF;} obtained above by
SPP = {SPP;,i =1, 2, .., 6}. This is called the reference matching database. Table 5.1 lists the
construction of SPP; from four sub-regions. The reference matching database contains pairs of
reference points which will be served as the two starting reference points to invoke an affine

model estimation and a subsequent iterative model updating process.

TABLE 5.1 THE CONSTRUCTION OF SPP FROM THE FOUR SUB-REGIONS.

SPP; Corresponding sub-regions
SPP, R, R,
SPP, R, R;
SPP; Ry R,
SPP, R; R;
SPPs R; R,
SPPg R; R,
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5.5 Online View Registration

When a sensed image is available, we can start to match the reference feature points in
the matching database with the feature points extracted from the sensed image. We use SPP =
{SPP,i=1,2, .., 6} obtained above to detect the overlapping area between the reference and

sensed images. During the view registration process a reference point pair(p,,,p,,) 18
fetched in order from SPP where p,, and p,, are the i-th and i-th reference feature points

from sub-regions R,and R,, respectively. If either point fails to find any matched point in the
sensed image, then delete all the reference point pairs in SPP involving the unmatched
reference point, p,, or p,, . We define the size ratio of the updated SPP; to its initial set as the
overlap index. When the overlap index is low for a particular SPP;, it implies the chance that

the two reference sub-regions of SPP; overlap with the sensed image is also low. An algorithm

for the on-line registration process is given below:

Algorithm OLRP (On-Line Registration Process)

Input:

1. The sets of reference and sensed feature points: P={p,p,,--,p,} and

Q=199+, -

2. The lists of sorted reference point pairs in the six region pairs: SPP={SPP; i=1, 2, .., 6}.
3. The size of initial SPP;: S;= |SPP;| fori=1,2,..., 6.

Output:
1. The final corresponding point set: CPS""
2. The final transformation matrix: 7/

Initialization:

Initialize the overlap index OL;=1 fori=1, 2,..., 6.

Begin
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Forc=1,2 ..., cpax (Cax = 5)

1. Fetch the first element (p,,,p,,) from the sorted point pair list SPP; whose overlap

index OI;1s maximum (if there is a tie, break the tie arbitrarily).

2. Find the matched points in the sensed image for each of p , and p,, based on the

normalized cross correlation measure. Assume the resulting matched point sets are

CM = {qx k=1,2, .., ns} and CM,={q, [ =1, 2, .., n;} for p, andp,, , respectively. If

CM; (or CM,) is empty, then delete all the reference point pairs involving the

unmatched reference point, p; (or p,, ), from its associated sub-region R, or R, and

SPP;. Update OI;=|SPP,|/S; and go to step 1. If both CM; and CM, are not empty,
continue.

3. Foreach (q,,q,)in CM xCM,

(1) Compute the affine transformation matrix 7” using the two point pairs

(p,;-p.,;) and (g,,q,) (referto SectionS.1).

(2) Invoke the IMU algorithm to determine the homography matrix 7 using 7
as the initial solution and to find CPS” (refer to Section 5.2).

(3) Check the stopping criteria: if the size of the corresponding point set CPS" is
greater than a pre-defined threshold, then return 7/)= T*) and terminate the
process with “success”; otherwise, continue.

End For

4. Delete the element(p,, , p,,)from an involved SPP; and update the involved overlap
index OI,.
End For
End

The iteration number of the above cycle is bounded by a fixed number (5 in our case), as

shall be explained at the end of the next section.
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5.6 Experimental Results

A) The Iterative View Registration under the Homography Transformation
We apply our method to register two aerial images. Fig. 5.4(a) shows the reference image
of size 500 by 500. A synthetic sensed image with severe perspective deformation is generated

and shown in Fig. 5.5(b).

(b)
Fig. 5.4: (a) The'reference image. (b) The synthetic sensed image.

The reference features points are extracted using the Gabor filtering technique. A
reference matching database is constructed offline using the five planning strategies. Given
the sensed image the feature points are extracted first. Then the online registration process is
invoked to register the two images. The first starting reference point pair is fetched from the
reference matching database and the corresponding sensed point pair is found right away in
the case, since this feature point pair is in the overlapping area. Both pairs are shown in the
images as the two superimposed triangles. They lead to an affine transformation 7*’. Then,
the transformation model is updated by the iterative algorithm IMU and converges in two

iterations.

Table 5.2 lists three estimated transformation matrices 7(c) for ¢ = 0, 1, 2. To
demonstrate how the transformation matrix converges, Fig. 5.5(a) shows the feature points
and the image boundaries for the reference image and the three transformed sensed images
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using 7{(c), ¢ =0, 1, 2. Furthermore, Figs. 5.5(b)-5.5(d) show the registration results under the
three transformation models. The RMSE of distances between the sixteen matched point pairs

1s 0.75 pixels, so it implies the final homography model is rather accurate.
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(c) (d)
Fig. 5.5: (a) The partial overlapping between the image boundaries of the reference and three

transformed sensed images. (b)-(d) The view registration results under T, T, and T®, respectively.
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TABLE 5.2 THE TRANSFORMATION PARAMETERS PRODUCED IN THE THREE ITERATIONS

M3,z
my, mp, m; My, My, My, s, sy My
70 -0.6110 -1.4876 664.0500 1.0264 -0.8557 161.9824 0 0 1

7V 07977 -0.9341 674.8476 1.0080 -0.7286 173.6283  -0.0005 0.0018 1
7  -0.7995 -0.9120 6829316 1.0400 -0.7318 175.3778 -0.0005  0.0020 1

B) Image Noise Resistance

To demonstrate the usefulness of strategy 1 of the offline planning in combating with image
noise, we generate 100 noisy reference image copies by adding Gaussian noise with
signal-to-noise ratio 6.2 dB to the original reference image shown in Fig. 5.4(a). Fig. 5.6
shows the effect of image noise on the ranking of the reference feature points according to the
descending order of the products of normalized energy and orientation factors E(pi)O(pr),
ke{l, 2, .., n}. The horizontal axis indicates the ranking sequence of the reference feature
points before the introduction of image noise. For each of the 100 noisy reference image
copies, the feature point ranking process is applied. The vertical axis indicates the new
ranking number for each feature point in the horizontal ranking sequence. The mean of the

ek

new ranking number is indicated by the marker “*”, and the corresponding standard deviation
of the new ranking number is indicated by the blue vertical bars centered at the mean rank at
each horizontal ranking place. We add a dashed line of slope 45° to serve as the reference line
for the ranking change evaluation. Any rank marker located above the reference line indicates
a ranking setback under the influence of the image noise, any rank marker located below the
line indicates a ranking improvement, and any rank marker located on the line indicates no
ranking change. The experimental result shows that the new ranking numbers are fairly close
to the old ones. Therefore, the ranking based on the product of E(py)O(py) is fairly stable in

the presence of image noise.

90



Chapter5 High-Efficiency Perspective View Registration Using Offline Planning Strategies

okttt RIBD

s R N~ IO D T W B (R D~ BB
e
Faed
)

it

Ranking by Elg )O{p, ) aer adding image nolse

¥t
,,_}--}'}

¥
ki
| 4
S A S ST T S A T A SO A W S S ST WA P A S W
012345678 9101112131415161718192021222324252627
Ranking by E{p, }O(p, ) before adding image noise

Fig. 5.6: The effect of image noise on the ranking of reference feature points according to the

product of normalized energy and orientation factor E(py)O(py), k€ {1, 2, .., n}. (See the text).

C) The Efficiency of Online Registration between Two Partially Overlapped Images

In this experiment we use two types of images, building, and landscape painting, to
demonstrate the capability of our method in handling the registration of two partially
overlapped images. Figs. 5.7(a) and 5.7(b) show the two building images superimposed with
the two partitioned lines of the entire image and the labels of extracted feature points. The left
image serves as the reference image. It can be seen that the overlapping area contains R, and
R, From Table 5.3, we can explain the importance of using {OIl};-=;, .. s to guide the
registration process. Initially, we select SPPs based on the maximum OI; value and fetches the
first sorted point pair (#40, #57) from it. The processing results show |CPS| = 0 and no
matched point pairs are found in the sensed image for either reference point of the pair (#40,
#57). This indicates that the region pair (R3, Rs) of SPPs is not totally in the overlapping area.
Then all entries in the six lists {SPP;};-; > . s1involving one of the reference points #40 and
#57 will be removed, and the corresponding overlap indices {OI;};=;> . s are updated
accordingly. Next, we select SPP; whose updated OI index is the largest and the leading point

pair (#20, #7) of SPP; is fetched. The online registration process fails again with a final size
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|CPS| = 0. It indicates the overlapping area is not found yet. The third attempt chooses SPPs
whose updated OI index is the largest and the reference point pair (#18, #38) is fetched from
SPPs. These two reference points immediately lead to a successful registration with a final
size |CPS| being 23. Thus, after three attempts (< 5) we find the point pair (#18, #38) that is
totally in the overlapping area (R, R,). The execution time for this on-line registration process
is 0.312 seconds. Fig. 5.7(c) shows the final registration result of the reference and sensed

images.

(b)

(c)
Fig. 5.7: (a)-(b) Two real building images that are partially overlapped. (c) The final registration result.

92



Chapter5 High-Efficiency Perspective View Registration Using Offline Planning Strategies

TABLE 5.3 THE STATISTIC OF THE ONLINE REGISTRATION PROCESS FOR REGISTERING TWO BUILDING

IMAGES
I . The Point labels of # of Size Overlap index
teration urce the pair Matched of
[ J I J) I ]
(region involved) points CPS oh O OL OL Ol Ol
(N, Np))
1 SPPs  (40(R;), 57(Ry)) (0, 0) 0 1 1 1 1 1 1
2 SPP; (20(R1), 7(R2)) 0, 2) 0 1 095 079 0.76 0.83 047
3 SPPs  (18(R>), 38(Ry)) (1, 3) 23 0.8 0.75 0.67 076 0.83 0.47

We apply the online registration process to another set of three synthetic landscape
images shown in Figs. 5.8(a)-5.8(c). The reference image is given in Fig. 5.8(b). The final

registration result is given in Fig. 5.8(d).

(d)

Fig. 5.8: (a) -(c) Three synthetic landscape images used for view registration. (d) The final registration

result.

Table 5.4 gives the respective registration efficiencies with and without the five off-line
planning strategies. We list the total number of attempts to fetch a reference point pair (PP)

from the reference matching database SPP to complete a successful view registration. We also
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record the total computational time (7) taken to complete a successful view registration.
Without the use of planning strategies, only the IMU algorithm will be employed to find a
solution model 7" using a random drawing of two starting reference points from the set of all
possible combinations of the reference point pairs. The model 7 is correct, if |CPS"| is
greater than a specified threshold. The IMU process is repeated until a successful view
registration is completed (note the reference and sensed images are well overlapped in both
cases). The registration statistics are collected for 100 successful runs. Let PP,,, denote the
average numbers of attempts to randomly draw a reference point pair until a successful view
registration is completed and let 7,,, be the average of the computer execution time taken for
completing a successful view registration. The results indicate our method can cut down the
computer execution time by using the offline planning strategies. The time reduction
benefitted from offline planning strategies is larger, when there are more feature points in the

given pair of images.

TABLE 5.4 REGISTRATION EFFICIENCY COMPARISON WITH AND WITHOUT THE OFF-LINE PLANNING STRATEGIES

Registration with Registration without
Reference Sensed . : . .
Image . . offline planning offline planning
image image
type PP T (sec) PP, T e (sec)
Building  Fig. 5.7(a) Fig. 5.7(b) 3 0.312 17.42 6.24
Landscape Fig. 5.8(b) Fig. 5.8(¢c) 5 0.532 24.76 13.04

From our experience the online registration process generally obtain a correct solution
within 5 iterations. To put into a more formal statement, under the assumptions that the
invariant feature points can be reliably extracted by the feature extractor and that the
overlapping area covers at least two sub-regions (a 50% overlapping area ratio), the online

registration process will find the overlapping area between the reference and sensed images
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using the O index within a finite number of attempts (4, most of the time in our case). The
ensuing view registration will succeed, since the first sorted point pair fetched from the
database SPP is totally in the overlapping area and will find a correct matched pair in the
sensed image. If the database access number, denoted by Norp, exceeds a specified bound (5
in our case), it is likely that the two images are not overlapped at all or only slightly
overlapped. So the registration process should be terminated. Of course, we can increase the

bound on Ny.rp when considering those cases with an overlapping percentage less than 50%.

5.7 Analysis of the Algorithm Computational Performance

The time complexity of the online view registration algorithm does not include the off-line
reference matching database construction time. The iterative model updating (IMU) process is
a main sub-task of the on-line registration process. The time complexity of the IMU process is

first given as follows:
Step 1: Data initialization: Tjuiiatization-

Step 2: Transform each point of the sensed feature point set to the reference image space
and use the table lookup to find any possible matched reference point and, if so,
include the matched point in cPS©: M Tpoint-transform + Tiable-tookup + Tsimitarity-measure
+ Trew-point- inclusion) Where m 1s the size of the sensed feature point set. (The feature
point extraction time is not counted in the time complexity of the registration

algorithm; refer to Table 5.1.)

Step 3: Check the stopping condition to determine if a final solution is obtained:
T, stopping-check
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Step 4: Compute the new transformation model using the updated CcPS“9: T, model-estimation

Assume the IMU process stops after a total of Ny, iterations; N is bounded by ¢y
(cmax = 5 as described in Section 5.2). The total execution time of the IMU process is given by
Tivu = NivuX | Tiitiatization 0 Tpoint-transform + Tiabie-tookup + Tsimitarity-measure +Tnew-point- inclusion) T
Tsiopping-check + Tmodel-estimation]. Only the term in the inner bracket depends on m and the rest are

fixed. Therefore, the time complexity of algorithm IMU is of order O(m).

The time complexity of the on-line registration process is given as follows:

Step 1: Fetch the first element(p_, , p,, )fromspp with a maximum Of value, i =1, 2, 3,..,6 :

T'spep.

Step 2: Find the matched point sets CM, and CM, with respect to p , and p,, :

2xmx Timitarity-measure» WHere Tsimitarity-measure 15 the time for computing the normalized
cross correlation between two feature vectors.

Step 3: For a pair(p, , , p,, ) € SPP and its matched pair (qx ¢:) from the set {CM; x CM, }

(1) Find the approximate transformation matrix 7'’ : T}yodel-estiamtion-
(2) Apply the IMU algorithm to obtain the outputs cps”’ and7: Tp.
(3) Check for the stopping condition: Tpping-check-

Step 4: Update spp andor, i =1, 2, 3,..,6: Tauabase-update-

Step 5: Check for the failure condition: Tpping-check-

Assume Nozgp is the total number of attempts to fetch a point pair from the reference
matching database SPP for a successful view registration. Nozzp is bounded by 5, as explained

above. The computer execution time of the on-line registration process is Torrp = NorrpX[Tspp
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F2xmX Tsimitarity-measure T |CM|X|CM|X(" Tnodet-estiamtion + Tiau + Tsiopping-check) T Tdatabase-update™
Tiiopping-check]) Where the sizes of |CM;| and |CM,| are some fixed-sized (e.g., 5-element) subsets
of the sensed feature point set. Among the computation times on the right-hand side of the
equation, only the second term (2xmxTgimiarity-measure) and the fourth term (7py) are
proportional to m (refer to T described above) and the other terms are deterministic and
relatively small. Thus the overall time complexity of the online registration algorithm is of

order O(m).

97



Chapter 6

Conclusions and Future Work

6.1 Summary

In this dissertation, three themes are addressed. In Chapter 3 a new region descriptor, ZM
phase, is presented which is robust to common photometric and geometric transformations. A
method for an accurate and robust estimation of the rotation angle between two matching
regions is described which is implemented in the continuous angle domain without the need
of specifying a discrete angle histogram bin resolution. Then a measure for image similarity
matching is expressed by a weighted, normalized phase difference. The proposed descriptor is
compared with five popular descriptors, SIFT, PCA-SIFT, GLOH, steerable filter, and
complex moments, based on the precision-recall criterion with respect to a number of
important system parameters. There are more than 15 million region pairs analyzed. The
results show that the proposed ZM phase has the leading performance under all photometric
and geometric transformations for all textured scenes. As for the structured scenes, the ZM
phase has the best performances under image blur and nonlinear lighting, but is comparable to
the SIFT-based descriptors under other transformations when the values of 1-precision are
small. The analyses on the performance evaluation results are given to account for the
performance discrepancy. First, the descriptor performance depends on the estimation
accuracy of the rotation angle between two matching regions. Table IV shows the rotation

angle estimation error of the ZM phase is better than that of SIFT. Second, the feature
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dimensionality and feature orthogonality also affect the descriptor performance. Third, the
ZM phase is more robust than SIFT-based descriptors under the non-uniform image intensity

fluctuation.

In Chapter 4, we extend the proposed ZM phase descriptor to present a new recognition
method of logos imaged by mobile phone cameras which can be incorporated with mobile
phone services for use in enterprise identification, corporate website access, traffic sign
reading, security check, content awareness, and the related applications. The proposed method
is compared with three major existing methods, IZMD, EHD, and Ring projection. The logo
classification and retrieval experimental results show that the proposed ZM phase method has
the best performance under the typical photometric and geometric transformations
encountered when using a handheld mobile phone camera operating in the daytime or
nighttime. Furthermore, an analysis on the performance evaluation results is given to account

for the performance discrepancy between the four different methods.

In Chapter 5, we have developed a new view registration method that consists of two
parts: offline planning process and online registration process. Five planning strategies are
presented to construct a reference matching database offline. This database is essential to the
reduction of time complexity of the online registration, in particular when the reference and
sensed images are partially overlapped. This is because we can organize the reference feature
points beforehand, aiming at tackling the various problems encountered including image
deformation, image noise, point matching ambiguity, model estimation complexity, and
partial image overlapping, etc. That is, we take advantage of the preprocessing of the
reference image to guide the online registration. Computer simulation results demonstrate the
desirable features of our method. A computational complexity analysis is also given, which

indicates the time complexity of our online registration algorithm is of order O(m) where m is
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the size of feature points in the sensed image.

6.2 Future Research

Some research topics for future work are proposed.

(1) Symmetric information extraction

Since symmetry exists widely in the real world, the symmetry detection and
localization of symmetry axes is significance for understanding and interpreting the
images. The Zernike moments are very suitable for the symmetry detection due to their
symmetric and periodical properties. We are currently develop a novel approach which
transforms the 2D symmetric image into a 1D periodic curve based on the symmetric
properties of the ZMs function. In this way, the symmetric type (rotational or reflection
symmetry), fold number and the fold axes can be plainly determined by finding the
periodic information from the transformed 1D curve. Furthermore, a unique solution of

the rotation angle for a given gray-level or binary image can also be determined.

(2) Content-based image retrieval (CBIR)

We plan to extend the proposed ZM phase-based descriptor for the application of
content-based image retrieval. To do this, the interests of regions for a set of labeled
training images are first detected and their descriptors are constructed by the proposed ZM
phase approach. The collected descriptors are grouped via clustering, and the set of cluster

centers are vector quantized. Then a set of vocabularies is established as a set of cluster
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centers. To organize a codebook, the visual words are constructed from the set of
vocabularies. The codebook is stored as an inverted file or a hash table, called the gallery
image database. During the image retrieval stage, the corresponding visual vocabularies,
visual words are generated for a query image, and then the images in the gallery database
are ranked with respect to the query visual word. The most similar gallery images are then

output as the query result.
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