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摘 要 

 本論文在探討三維電腦視覺中，利用二張或更多張不同視度或不同光照條件下所拍

攝的景物影像來進行景物分析、辨識及套合等研究，所需克服影像間存在之幾何轉換 

(旋轉、尺度變化、平移及幾何變形)、影像亮度轉換 (影像模糊、照度改變、雜訊、影

像壓縮等)、部分遮蔽以及影像套合計算效率等問題。 

 首先，我們提出一個基於澤爾尼克矩相位資訊為主的不變量區域描述元，同時包含

精確估算二個特徵區域間旋轉角度的方法來解決旋轉方位對齊的問題，以及一個可以達

到高可靠度的比對函式。整體而言，在上述不同的幾何及影像亮度轉換下，這個新的澤

爾尼克矩相位描述元較諸目前五個主要方法具有更高的區辨能力，論文中亦包含定性及

定量分析來說明這些描述元效能差異的原因。 

 其次，我們將這個區域描述元延伸到行動裝置服務之商標符號辨識上，它可使用於



 

 iv

企業識別、公司網頁存取、交通安全號誌辨認及安全檢查等相關應用上，在此主要的挑

戰是行動裝置拍攝影像時所無法避免的幾何及影像亮度轉換，我們提出二種相似度量測

方法分別用於分類及檢索上，實驗顯示我們提出的方法較之既有的三個主要方法具有更

好的效能。 

 最後，我們提出一個不同於傳統之影像套合方法，更有效率的達到不同視點影像套

合所需之一對一特徵點對應，此方法是基於事先分析參考影像以獲取重要的資訊來引導

影像套合程序之進行。首先，在離線階段先針對參考影像中的特徵點根據下述五個規劃

策略來事先建立挑選順序之資料庫: (1)特徵點對影像變形之不變量、(2)對影像雜訊之抵

抗力、(3)描述元之區辨能力、(4)模型估算之有效性及(5)影像部份重疊之處理能力。因

此，當我們獲得感測影像進行影像套合時，即可更有效率的建立這二張影像間之特徵點

一對一對應關係，來估算這二張影像的轉換模型。 
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ABSTRACT 

 In 3D computer vision a scene in the real world is represented by multiple views imaged 

under different viewpoints and illumination conditions. The spatial and temporal relationships 

across these views are important to scene analysis and understanding. To derive these 

relationships the global and local features of the objects (foreground and background) in the 

scene are the clues. The local features related to the local object surface patches or regions are 

more robust to viewpoint change than the global features. In addition, the invariance under the 

photometric transformations such as blur, illumination, scale, noise, JPEG compression is also 

receiving great attention.  

 In this dissertation subjects related to the local image representation, matching, and 

recognition under the above image variations are addressed. First, a new distinctive image 

descriptor to represent the normalized regions extracted by an affine region detector is 

proposed which primarily comprises the Zernike moment (ZM) phase information. An 

accurate and robust estimation of a possible rotation angle between a pair of normalized 
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regions is then described, which will be used to measure the similarity between two matching 

regions. The discriminative power of the new ZM phase descriptor is compared with five 

major existing region descriptors based on the precision-recall criterion. The experimental 

results involving more than 15 million region pairs indicate the proposed ZM phase descriptor 

has, overall speaking, the best performance under the common photometric and geometric 

transformations. Both quantitative and qualitative analyses on the descriptor performances are 

given to account for the performance discrepancy.  

 Second, the proposed ZM phase descriptor is further extended to present a new 

recognition method of logos imaged by mobile phone cameras. The logo recognition can be 

incorporated with mobile phone services for use in enterprise identification, corporate website 

access, traffic sign reading, security check, content awareness, and the related applications. 

The main challenge to applying the logo recognition for mobile phone applications is the 

inevitable photometric and geometric transformations. The proposed ZM phase recognition 

method is associated with two similarity measures. The logo classification and retrieval 

experimental results show that the proposed ZM phase method has the best performance 

under the typical photometric and geometric transformations, compared with other three 

major existing methods. 

Finally, as for the one-to-one feature matching correspondences in view registration, we 

propose an efficient registration method different from the traditional methods. We take 

advantage of preprocessing of the reference image offline to gather the important statistics for 

guiding image registration. That is, we introduce five planning strategies to sort the feature 

points in the reference image based on the concepts of (1) feature invariance to image 

deformation, (2) image noise resistance, (3) distinctive description power, (4) model 

estimation effectiveness, and (5) partial image overlapping handling capability. Thus, a 
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reference matching database is constructed offline using the above five planning strategies. 

Then, an online registration process is presented to estimate the transformation model to 

overlay the reference image over an incoming sensed image. In this way, better registration 

efficiency can be achieved. 
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Chapter 1 

Introduction 
 

1.1 Problems Statement 

 In 3D computer vision a scene in the real world is represented by multiple views when 

imaged under different viewpoints and illumination conditions. The spatial and temporal 

relationships across these views are important to scene analysis and understanding. To derive 

these relationships the global and local features of the objects (foreground and background) in 

the scene are the clues. Global features such as Fourier descriptors describe the scene 

information as the scene is seen in the 2D image as a whole. The global features are suitable 

for deriving the relationships when the objects of concern have the same appearances in the 

different views. Generally, the objects have different surface appearances under different 

viewpoints, especially when the background and foreground objects are partially overlapped, 

so the global image features are often not invariant to the viewpoint. On the other hand, the 

local features related to the local object surface patches or regions are more robust to 

viewpoint change. In addition, the invariance under the photometric transformations such as 

blur, illumination, scale, noise, JPEG compression is also receiving great attention. The 

invariant local features are crucial to most image understanding and computer vision 

applications including image matching, camera calibration, texture classification, and image 

retrieval, etc. [1]-[5]. 

 The processing of local features involves three tasks: feature detection, feature 

description, and feature matching. The local features belong to an interest point (keypoint) or 
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an interest region. Since a single image point carries little information, an interest point must 

be associated with its surrounding image patch. From this image patch a second moment 

matrix of image intensities reveals the characteristic structure of the local image region. The 

keypoint detectors such as Harris corner detector [6] and the SIFT detector [7], which is based 

on the difference of Gaussians (DOG), utilize a circular window to search for a possible 

location of a keypoint. However, the image content in the circular window is not robust to 

affine deformations. Furthermore, the feature points may not be reliable and may not appear 

simultaneously across the view-point change, as illustrated in Fig. 1.1(b). Recently, a number 

of local feature detectors using a local elliptical window have been investigated. The affine 

covariant regions offer a unique solution to viewpoint change, as illustrated in Fig. 1.1(c). 

Matas et al. [5] presented a maximally stable extremal region (MSER) detector. Tuytelaars 

and Van Gool [8] developed an edge-based region (EBR) detector as well as an image-based 

(IBR) region detector. Mikolajczyk and Schmid [9] proposed Harris-Affine and 

Hessian-Affine detectors. The performances of the existing region detectors were evaluated in 

[11] in which the MSER detector and the Hessian-Affine detector were the two best.  

 
Fig. 1.1: (a) Two images taken from different viewpoints. (b) The detected regions by a circular detector. 

(c) The detected regions by an elliptical detector. 

 
Circular detector:
(Harris, LoG, …)

 
Elliptical detector 

(MSER, Harris-affine, IBR …)

(b) (c) 

(a)
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 In the descriptor construction, the detected ellipse-shaped region is first normalized to a 

circular patch of a fixed size. The normalized circular patch can be shown to be affine 

invariant up to a rotational ambiguity [10, 33]. A good feature descriptor to describe the 

normalized circular patch should be invariant (unchanged under the spatial transformation), 

distinctive (unique in feature description), stable (robust to image deformation) and 

independent (uncorrelated relation between feature descriptors).  

 After the region descriptor is determined, a matching function is defined to measure the 

similarity between regions extracted from different images of the same scene. The merits of 

various region detectors, coupled with their own region descriptors, are often judged based on 

the ROC (receiver operating characteristic) curve or the PR (precision-recall) curve. 

 

1.2 Sketch of the Work 

 In this dissertation, three themes related to the image representation, matching, 

recognition, and view registration under the aforementioned geometric and photometric 

transformations are addressed.  

In the first theme, the representation and matching power of region descriptors are to be 

evaluated. A common set of elliptical interest regions is used to evaluate the performance. The 

elliptical regions are further normalized to a circular one with a fixed size (typically, 41 by 41 

pixels). Here a new distinctive image descriptor to represent the normalized region is 

proposed which primarily comprises the Zernike moment (ZM) phase information. An 

accurate and robust estimation of the rotation angle between a pair of normalized regions is 

then described, which will be used to measure the similarity between two matching regions. 

The discriminative power of the new ZM phase descriptor is compared with five other major 
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region descriptors (SIFT, GLOH, PCA-SIFT, complex moments, and steerable filters) based 

on the precision-recall criterion. To match the region pairs, a new distance measure based on 

the ZM phase information is defined. For performance evaluation, important system 

parameters must be taken into consideration, which include (1) region scene types, (2) region 

descriptor types, (3) region detector types, (4) region overlap error, and (5) transformation 

types. From the experimental results involving more than 15 million region pairs the proposed 

ZM phase has the best overall performance under the aforementioned photometric and 

geometric transformations. Both quantitative and qualitative analyses on the descriptor 

performances are given to account for the performance discrepancy.  

In the second theme, the proposed ZM phase descriptor is further extended to present a 

new recognition method of logos imaged by mobile phone cameras. The logo recognition can 

be incorporated with mobile phone services for use in enterprise identification, corporate 

website access, traffic sign reading, security check, content awareness, and the related 

applications. The main challenge to applying the logo recognition for mobile phone 

applications is the inevitable photometric and geometric transformations encountered when 

using a handheld mobile phone camera operating at a varying viewpoint during the daytime or 

the nighttime. The discriminative power of the new logo recognition method is compared with 

three major existing methods. The experimental results indicate the proposed ZM phase 

method has the best performance in terms of the precision and recall criterion under the above 

inevitable imaging variations. 

 In the third theme, we propose an efficient registration method for the one-to-one feature 

matching correspondences in view registration. We take advantage of preprocessing of the 

reference image offline to gather the important statistics for guiding image registration. That 

is, we introduce five planning strategies to sort the feature points in the reference image based 
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on the concepts of (1) feature invariance to image deformation, (2) image noise resistance, (3) 

distinctive description power, (4) model estimation effectiveness, and (5) partial image 

overlapping handling capability. The invariant feature points are extracted from the reference 

image and a reference matching database is constructed offline using the above five planning 

strategies. Then, an online registration process is presented to estimate the transformation 

model to overlay the reference image over an incoming sensed image. In this way better 

registration efficiency can be achieved. 

 

1.3 Contribution of the Work 

The main contributions of this dissertation can be summarized as follows: 

(1) To design a new region descriptor and a new matching function based mainly on 

Zernike moment (ZM) phase information and show the ZM phase information is more 

distinctive than the ZM magnitude information in terms of image representation and 

matching. 

(2) To propose an accurate estimation of the rotation angle between a region pair to be 

matched. 

(3) To show the proposed ZM phase descriptor has the better overall performance than the 

five other major descriptors under common geometric and photometric 

transformations. 

(4) To extend the ZM phase descriptor to design a new distinctive logo feature vector and 

two associated similarity measures for logo recognition, and to show the proposed ZM 

phase logo feature vector has better recognition and retrieval performance than other 

three existing methods. 
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(5) To develop a new view registration method that take advantage of preprocessing of the 

reference image offline to gather the important statistics for image registration, and 

achieves better view registration time complexity than other existing methods. 

 

1.4 Dissertation Organization 

 The rest of this dissertation is organized as follows. Chapter 2 reviews existing literature 

on local region descriptors, methods for logo recognition, as well as methods for image 

registration. Chapter 3 presents our Zernike Moment phase based descriptor for local image 

representation and matching. Chapter 4 extends our Zernike Moment phase based descriptor 

to logo recognition. Chapter 5 presents five offline planning strategies and an online 

registration process for high-efficiency perspective view registration. Finally, Chapter 6 closes 

the dissertation with a summary of our work and a discussion on possible extensions and 

future research directions.  
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Chapter 2 

Previous Work 

 

2.1 Region detectors and descriptors 

 A region descriptor is needed to derive the region features for region representation and 

matching after the regions of interest are detected. Here a brief introduction of five major 

classes of the existing descriptors is briefly given to explore their strengths and weakness in 

order to compare them with the proposed ZM phase based descriptor. An excellent review on 

the existing descriptors can be found in [12]-[13]. 

(1) Filter-based Descriptors:  

 This class of descriptors includes steerable filters [14] and Gabor filters [15]. The 

steerable filter descriptor uses quadrature pairs of derivatives of Gaussian and their Hilbert 

transforms to synthesize any filter of a given frequency with arbitrary phase. On the other 

hand, the Gabor transform uses a number of Gabor filters tuned to various frequencies and 

orientations to represent the image patterns. Both the steerable filter and the Gabor filter 

descriptors need to seek a dominant orientation for image rotation alignment.  If the 

reference and transformed descriptor feature vectors are not aligned well, their matching score 

will be poor. Besides, these descriptors are not totally orthogonal and their feature vector 

dimensions are generally low, so their discriminative powers are limited.  

 



Chapter2 Previous Work 

 8

(2) Moment-based descriptors: 

 The first class of moment-based descriptor is the geometric (or regular) moments. The 

(p+q) order moment of an intensity or gradient image f(x,y) is defined as follows  

( , ),    , 0, 1, 2, ...p q
pq

x y

m x y f x y p q= =∑∑  

 Based on the geometric moments, a set of moment invariants can be derived from the 

nonlinear combinations of geometric moments to achieve affine invariance [16], [32]. The 

main problem with the geometric moments is that it is difficult to derive a sufficient number 

of invariants to describe complex shapes. Moreover, the higher-order moments are more 

sensitive to image noise than the lower-order moments. Therefore, the geometric moment 

invariants are usually suitable only for describing simple images [17]. 

 The second moment class is the complex moments of the form 

( , ) ( ) ( ) ( )m n
mn

x y

K x y x iy x iy f x, y= + −∑∑
 
where f(x, y) is an image intensity function [18], 

[19]. Any rotation of the image changes the phases of the complex moments, but not the 

magnitudes. That is, the magnitudes of the filter responses are rotational invariant. There are 

16 filters, defined by m + n≤ 6 and n≤m, available for image patch description. This low 

dimensional rotational invariant descriptor generally has a poor discriminative performance 

[12]. 

(3) Distribution-based descriptors:  

 This class of descriptors includes SIFT [7], GLOH [12], PCA-SIFT [22], spin image and 

RIFT descriptors [3]. They use the distributions of the image content to represent the features 

of the image region.  
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 The SIFT descriptor is represented by a 3D histogram of gradient locations and 

orientations. The histogram of the gradient orientations is quantized in 8 bins and the region is 

partitioned into a 4×4 location grid, resulting in a feature vector of dimension 128. Although 

the gradient histogram provides stability against deformations of the image pattern, the grid 

partition of the measurement region has the boundary effect problem. Gaussian smoothing 

and tri-linear interpolation can be called to alleviate this problem. More importantly, SIFT 

requires an accurate dominant (gradient) orientation for image rotation alignment. 

 The PCA-SIFT descriptor is a dimension-reduced version of SIFT (dimension reduced 

from 3042 to 36 or lower) based on an eigenspace obtained by applying PCA to a collection 

of 21,000 image patches. On the other hand, the GLOH descriptor is also an extension of the 

SIFT descriptor. Instead of sampling gradient orientations in a rectangular grid, GLOH is 

defined in a log-polar location grid with 17 location bins. These location bins, together with 

16 gradient orientation bins, form a feature vector of dimension 272. With PCA the feature 

dimension is reduced to 128 based on a training data set of 47,000 image patches. 

 The SIFT and its variants depend on a dominant orientation of the normalized patch to 

achieve the rotation invariance. However, according to the experience of Lazebnik et al. 

reported in [3], the dominant orientation estimation tends to be unreliable, especially for 

normalized Laplacian regions in which strong edges at the center are often not available.  

(4) Derivative-based descriptors:  

 This type of descriptors uses local derivatives, called “local jets”, to construct the 

differential invariants, which are rotationally invariant [23]. Schmid and Mohr [2] derive a set 

of differential invariants in terms of polynomials of local derivatives up to the third order for 

image retrieval. The derivative-based descriptors face with some problems: (a) the dimension 
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of the rotationally invariant differential invariants is generally low [12], and (b) the 

differential invariants are often sensitive to image blur or image noise if smoothing operation 

is not used beforehand. (The steerable filters can be also classified as a derivative-based 

descriptor.) 

(5) Others: 

 Besides the above basic descriptor types, there are other extended descriptors including (i) 

color-based descriptors [21] which utilizes the color information for feature representation, (ii) 

textons [3], which are based on the responses of a texture image to a filter bank, can 

categorize the large-scaled texture images. In this paper, only the basic descriptors of the first 

four classes are concerned. 

 

2.2 Logo Recognition 

 A logo is a graphic entity containing colors, shapes, textures, and perhaps text as well, 

organized in some spatial layout format. There are four major classes of the existing feature 

used for logo recognition: 

(1) Color features: 

Color feature are often easily obtained from the logo image. The color histogram [54] is 

probably one of the most popular gross representations of the foreground object in which the 

precise spatial information is lost, so an exact matching is generally impossible. Since a logo 

may be designed with a few setting of color combinations, color will be ignored as far as the 

unique identity of a logo (represented as an intrinsic graphic pattern) is concerned.  
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(2) Text features: 

The text in the logo is often modified to add to its aesthetic appealing, its segmentation 

for the OCR processing may not be easy and also unnecessary for logo identification. The 

whole text can be viewed as part of the logo and handled with others by a general shape 

analyzer.  

(3) Texture features: 

Similarly, if a logo contains texture patterns, the texture patterns can be treated as a 

graphic pattern and, again, handled with other parts together. In the end, a logo representation 

is boiled down to an integrated shape pattern or a set of sub-logo shape patterns. Hence, shape 

analysis of the logo is the main concern here. 

(4) Shape features: 

Different methods using different shape features for logo classification have been 

proposed in the literature. Edge histogram descriptor (EHD) [58] is an MPEG-7 texture 

descriptor that captures the spatial distribution of edges. EHD is represented by a histogram of 

the gradient orientations which is quantized in 5 bins and the region is partitioned into a 4×4 

location grid, resulting in a feature vector of dimension 80. Although the gradient histogram 

provides stability against mild deformations of the image pattern, the grid partition of the 

support region will lead to the non-smooth boundary feature values, i.e., the so-called 

boundary effect problem.  

 Recently, some researchers using Gabor transform and wavelet transform for pattern 

recognition [55]-[56]. However, the set of Gabor filters is not orthogonal, and thus reduce its 

discriminative power. On the other hand, the wavelet transform has the advantages of multiple 
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resolutions and reconstructability, but it is not rotational invariant (so is the Gabor transform). 

Therefore, both transforms need to solve the rotation problem first based on some orientation 

information.  

To achieve rotation invariant, an alternative method using a ring projection structure is 

suggested in which the absolute sums of the sub-band coefficients (LH, HL and HH) of 

wavelet transform are accumulated within a specific number of rings [59]. However, the ring 

projection will lose the spatial information in the radial direction. As a consequence, a logo 

and its mirror version have the same ring projection profiles, and, therefore, become 

indistinguishable. More impotently, most of the above methods cannot work properly under 

photometric and geometric image transformations, as shall be seen. 

 

2.3 View Registration 

 View registration is a process of overlaying images of the same scene taken at different 

imaging conditions [60-64]. View registration applications include satellite image registration 

[65, 66, 82, 83], medical view registration [61, 62], object recognition [69-70], motion 

tracking [71-73], image mosaic [74], automatic cartography [75], fundamental matrix 

estimation [76], and perspective reconstruction [74, 75]. Good survey on view registration can 

be found in [60-64]. 

Due to the variations in viewpoint, illumination and the sensor noise, the feature points 

may not be reliable and may not appear simultaneously across the multiple views. Therefore, 

the point correspondence validation is not a trivial task. One may skip the point 

correspondence matching and estimates the transformation model directly using an 
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appropriate number of feature point pairs. Traditionally, there are three major ways for the 

direct registration model estimation: 

(1) Clustering technique: 

The clustering technique [85] takes an appropriate number of point pairs, say r, from 

a total of available point pairs, say n, to compute the occurrence histogram of each set of 

possible model parameters and picks the histogram cell with the maximum cluster size as 

the best solution model. This is a complete (or exhaustive) search for the best model.  

(2) Random search for a correct model: 

  The method is to randomly select an r-point combination of an n-point set to 

instantiate a model [74]. After a pre-specified number of random trials, the model with the 

largest consensus set found are chosen as the final model; the model correctness depends 

on the size of the consensus set.  

(3) Ordered search for a probable model: 

Recently, another way was proposed to search for a correct model. That is, the set of 

nCr possible models is sorted according to some goodness measure and an ordered search 

is conducted until an acceptable model is found [66]. This is an ordered search for a 

probable model.  

  Table 2.1 lists the major point-based view registration methods under four different 

transformation models: rigid transform [79], similarity transform [80, 81], affine transform 

[66, 82, 83], and 2D perspective projection (or homography) [84], together with their search 

strategy and time complexity. The transformation model estimation is through solving a 

system of linear equations in terms of 3, 4, 6, or 8 transformation parameters. We have 
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observed that various countermeasures were taken to reduce the time complexity of the view 

registration method. 

 

TABLE 2.1 A PARADIGM OF VIEW TRANSFORMATION ESTIMATION METHODS 

Model type Method Search strategy Time complexity# 
The proposed method Ordered O(m)  

Homography 
Suk and Flusser  
[84, 2000] 

Random/Complete O(n5m5) 

Bentoutou et al.  
[83, 2005] 

Ordered O(nm)* 

Yang and Cohen 
[66, 1999] 

Ordered O(nm) * 

 
Affine 

Flusser and Suk  
[82, 1994] 

Ordered O(nm) * 

Dufournaud et al. 
[81, 2004] 

Random O(n2m2) Similarity 

Wang and Chen 
[80, 1997] 

Complete O(n2m2) 

Rigid Isgrò and Pilu 
[79, 2004] 

Random O(n3m) 

# n and m are the total numbers of feature points in the reference and sensed images, respectively. 
*These methods estimate the affine model only once based on the best matched point pairs found from 

the two images. 
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Chapter 3 

A Zernike Moment Phase Based Descriptor for 

Local Image Representation and Matching 

 

3.1 Introduction 

 Local features robust to common photometric transformations (blur, illumination, scale, 

noise, and JPEG compression) and geometric transformations (rotation, scale, translation, and 

viewpoint) are crucial to most image understanding and computer vision applications 

including image matching, camera calibration, texture classification, and image retrieval, etc. 

[1]-[5].  

 In this chapter, the representation and matching power of region descriptors are to be 

evaluated. A common set of elliptical interest regions is used to evaluate the performance. The 

elliptical regions are further normalized to a circular one with a fixed size. The normalized 

circular regions will become affine invariant up to a rotational ambiguity. Here a new 

descriptor, called the Zernike moment phase based descriptor (or ZM phase in short), is 

proposed. The phase information of a signal is more informative than the magnitude 

information for signal reconstruction was demonstrated by Oppenheim [34]. The robustness 

of local phase information for measuring image velocity and binocular disparity was studied 

in [35-36]. Recently, outputs of complex-valued steerable filter quadrature pairs taken as the 

separate feature elements for the design of a local image descriptor were proposed in [37-38], 

instead of combining the magnitudes of the quadrature pair into a single feature element, as 
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done in [12]. They empirically showed that their individual local descriptors have better 

performance than the gradient-based SIFT descriptor or differential invariants under the affine 

geometric deformation and lighting variation. However, the feature vector containing the 

separate steerable filter quadrature pair outputs is not an orthogonal vector itself. If the 

orthogonal descriptor is used instead, the features are uncorrelated and more informative. So 

we shall seek a genuine orthogonal feature vector to derive a novel local descriptor with a 

higher descriptive power. 

 The discriminative power of the new ZM phase descriptor is compared with five other 

major region descriptors based on the precision-recall criterion using the set of test images 

given in [12] plus some new images. To match the region pairs, a new matching function 

based on the ZM phase information is defined. For performance evaluation, important system 

parameters are taken into consideration, which include (1) region scene types, (2) region 

descriptor types, (3) region detector types, (4) region overlap error, and (5) transformation 

types. The experimental results involving more than 15 million region pairs indicate the 

proposed ZM phase has the best overall performance. Both quantitative and qualitative 

analyses on the descriptor performances are provided to account for the performance 

discrepancy. 

 The chapter is organized as follows. Section 2 introduces the Zernike moment (ZM) 

transformation and the ZM basis filters. Section 3 proposes the ZM phase descriptor along 

with a matching function, and discusses the discriminative powers of the ZM magnitude 

components and the ZM phase components. In Section 4 the discriminative power of the new 

descriptor is compared with five existing region descriptors based on the precision-recall 

criterion, while taking important system parameters into consideration. In Section 5 both 

quantitative and qualitative analyses on the descriptors are provided to account for the 

descriptor performance discrepancy. 
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 3.2 Fundamentals of Zernike Moments 

 Zernike moments (ZMs) have been used in object recognition and image analysis 

regardless of variations in position, size and orientation [20], [24]-[28].  Basically, the 

Zernike moments are the extension of the geometric moments by replacing the conventional 

transform kernel nm yx  with orthogonal Zernike polynomials. The relationships between the 

Zernike moments and geometric moments can be established [39]. The ZM coefficients are 

the outputs of the expansion of an image function into a complete orthogonal set of complex 

basis functions { ( , )}nmV ρ θ . Teh and Chin [20] show that among many moment based shape 

descriptors, Zernike moment magnitude components are rotationally invariant and most 

suitable for shape description.  

 The Zernike basis function Vnm (ρ, θ) with order n and repetition m is defined over a unit 

circle in the polar coordinates as follows: 

        
 ( , ) ( ) jm

nm nmV R e θρ θ ρ=   for  ρ≤ 1,                                   (3.1) 

where {Rnm(ρ)} is a radial polynomial in the form of  
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Here n is a non-negative integer and m is an integer satisfying the conditions: n-|m| is even 
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The two-dimensional ZMs for a continuous image function f (ρ, θ) are represented by  

2 1 2 1*

0 0 0 0

1 1( , ) ( , ) e ( , ) ( )jm
nm nm nm

n nZ f V d d f R d d
π π θρ θ ρ θ ρ ρ θ ρ θ ρ ρ ρ θ

π π
−+ +

= =∫ ∫ ∫ ∫ .  (3.3) 

For a digital image function the two-dimensional ZMs are given as  

∑ ∑
∈

+
=

,( diskunit )

* ),(),(1
ρ θ

θρθρ
π

nmnm VfnZ
.                                 (3.4) 

The Zernike moments can be viewed as the responses of the image function f (ρ, θ) to a set of 

quadrature-pair filters {Vnm (ρ, θ)}. To this end, Fig. 3.1 depicts some examples of ( , )nmV ρ θ . 

Notice that the real and imaginary functions of each basis function ( , )nmV ρ θ  are out of 

phase by π/2; namely, they form quadrature pairs of filters. In addition, repetition m indicates 

m sector cycles of the function values along the azimuth angle θ, while n and m jointly specify 

a different number of annular patterns of the function. 

 

    
(a) (b) (c) 

    
(d) (e) (f) 

Fig. 3.1: Plots of the real part and imaginary part of Vnm (ρ, θ) for a fixed n: (a) 1,5V , (b) 3,5V , (c) 5,5V , 

and for a fixed m: (d) 5,7V , (e) 5,9V
, and (f) 5,11V . 
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 3.3 Design of A Zernike Moment Phase Based Descriptor 

 We shall use the ZM phase information to design a novel region descriptor. Let the 

Zernike moments be sorted by m and n in order. The total number of ZM moments of the 

same repetition m is equal to 
2

N m−⎢ ⎥
⎢ ⎥⎣ ⎦

+1. Table 3.1 gives the sorted list of the 42 complex ZM 

moments for the case where the maximum order N and maximum repetition M are both equal 

to 12.  

 The sorted Zernike moments form a feature vector P
G

as follows: 

3111
11 31[ , , , ]NMj jj T

NMP Z e Z e Z eϕ ϕϕ=
G

"" ,                               (3.5) 

where nmZ  is the ZM magnitude，and nmϕ  is the ZM phase. Here the Zernike moments 

nmj
nmZ e ϕ  with m = 0 are not included, since they provide no information regarding the image 

matching. Zernike moments with m <0 are not included, either, since they can be inferred 

through nmmn ZZ *
, =− . 

 

TABLE 3.1. LIST OF ZMS SORTED BY n AND m  IN SEQUENCE FOR THE CASE WHERE ( ,n m ) = (12, 12) 

m Moments No. of 
moments m Moments No. of 

moments 
1 1,119171513111 ,,,,, ZZZZZZ  6 7 7,119777 ,, ZZZ  3 
2 2,122,1082624222 ,,,,, ZZZZZZ  6 8 8,128,1088 ,, ZZZ  3 
3 3,1193735333 ,,,, ZZZZZ  5 9 9,1199 , ZZ  2 

4 4,124,10846444 ,,,, ZZZZZ  5 10 10,1210,10 , ZZ  2 
5 5,11957555 ,,, ZZZZ  4 11 11,11Z  1 
6 6,126,108666 ,,, ZZZZ  4 12 12,12Z  1 
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3.3.1 The Image Description power of the ZM Magnitude Components and the ZM 

Phase Components 

 Let the Zernike moments of a reference image and its rotated version be ref
nmZ , rot

nmZ , 

respectively. Then it is well known that [24], [28] 

αjmref
nm

rot
nm eZZ −= ,                                                (3.6) 

where α ∈[0, 2π ] is the rotation angle. 

 Therefore, the magnitudes of Zernike moments of the two images are the same, 

i.e., rot
nm

ref
nm ZZ = , but their phase difference (or phase shift) is given by 

αm
Z
Z

ref
nm

rot
nm

nm =⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
≡Ω arg , πmnm 20 ≤Ω< , or                       (3.7) 

παπϕϕ 2mod)(2mod)-( mrot
nm

ref
nmnm ==Φ , π20 ≤Φ< nm .                  (3.8) 

In the following, under a mixture of rotation, inversion, and flipping operations, the Zernike 

moments of a reference image can be shown to be rotationally invariant in terms of the 

magnitudes, but not the phases.  

Let a rotated-and-inverted (the inverted is in terms of gray values) image version of the 

reference image ),( θρreff  be denoted by ),(-255),( αθρθρ +=− refinvrot ff . It can readily 

shown that their magnitudes are equal: invrot
nm

ref
nm ZZ −=  and their phase difference is given by 

[ ] ( ) ππαππαϕϕπϕϕ mod2-mod2)-(-mod2]-[ mmref
nm

ref
nm

invrot
nm

ref
nmnm =+==Φ − .     (3.9) 
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Next, let a rotated-and-mirrored version of the reference image ( , )reff ρ θ  be denoted by 

( , ) ( , ( ))rot mirror reff fρ θ ρ π θ α− = − + . Then it can be shown that their magnitudes also are equal: 

ref
nm

mirrorrot
nm ZZ =−  and their phase difference is given by 

 παπϕπϕϕ 2mod)](-2[2mod)-( −==Φ − mref
nm

mirrorrot
nm

ref
nmnm .              (3.10) 

 

3.3.2 Zernike Moment Phase Descriptor and Its Similarity Measure 

 From above, it can be seen that the phase information of Zernike moments is more 

informative than the magnitude information in terms of the discriminative power. Therefore, a 

new image region descriptor is proposed which is mainly based on the phase components of 

the feature vector, while the magnitude components are used only as the weighting factors.  

Let ),( yxI r  and ( , )tI x y  as the reference and transformed image regions with their 

respective ZM feature vectors { }
r
nmir

r nmP Z e ϕ=
G

 and { }
t
nmit

t nmP Z e ϕ=
G

. Here the transformed 

image can be either a rotated version of the reference image or a different image. If there 

exists a rotation angle α̂  between ),( yxI r  and ( , )tI x y , then  ˆ( ) mod(2 )nm mα πΦ − , which 

denotes the absolute phase difference between the two image regions after the rotation 

alignment, is equal to 0; otherwise, ˆ( ) mod(2 )nm mα πΦ −  is a nonzero value in the interval (0, 

2π) and α̂  is simply a putative estimate of a non-existent rotation angle. To derive a reliable 

estimate using all available phase differences { nmΦ }, we define a weighted, normalized phase 

difference to check the existence of a rotation angle α̂  as follows: 
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,

ˆ ˆmin{ ( ) mod(2 ) ,  2 ( ) mod(2 )}
r t

nm nm
nmI I
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m m
D w

α π π α π
π

Φ − − Φ −
= ∑∑ ,     (3.11) 

where ( - ) mod(2 )r t
nm nm nmΦ = ϕ ϕ π , α̂  is the estimated rotation angle to be described later, 

and nmw  is a normalized weighting factor of the form 

  

  

,

( )

r t
nm nm

nm r t
nm nm

n m

Z Z
w

Z Z

+
=

+∑
                             (3.12) 

such that the phase components associated with small magnitudes are weighted less. The 

weighted, normalized phase difference 
,r tI I

D  lies in the interval [0, 1] and is dimensionless 

since it is derived from ratios of angles.  

 Figs. 3.2(a)-2(d) show a reference coin image and its three variants: a rotated one (with a 

rotation angle 37.22o), an inverted one, and a mirrored one, as described above. Image 

matching between the reference and each variant based on either the phase components or the 

magnitude components of Zernike moments are shown in Figs. 3.2(e) - 3.2(j) where the ZM 

order (n, m) ranges from (1, 1) to (10, 10). The estimated values of ˆ( )mα mod(2π) are colored 

in blue and are connected for components with the same m values. The actual phase 

differences nmΦ  are shown in the red color. On the other hand, the ZM magnitude 

components for each pair of images are colored in purple. Notice that the magnitude 

component diagrams are the same for all the three pairs, but the phase component diagrams 

are different. Therefore, the phase components have a better discriminative power than the 

magnitude components. 
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(a) (b) (c) (d) 

 

(e)ZM phase for (a) and (b) (f) ZM phase for (a) and (c) (g) ZM phase for (a) and (d) 

 

(h) ZM magnitude for (a) and (b) (i) ZM magnitude for (a) and (c) (j) ZM magnitude for (a) and (d) 

Fig. 3.2: (a) The reference coin image. (b) A rotated variant of the reference coin image (with a rotation angle 

37.22o). (c) An inverted variant. (d) A mirrored variant. (e)-(g) The diagrams of the ZM phase differences (h)-(j) 

The diagrams of the ZM magnitude components.  

 

3.3.3 Estimation of the Rotation Angle from a Rotated Image 

In [29] Kim and Kim represented the rotation angle between an original image and its 

rotated image through the use of the Zernike moment phase shift as  

αππϕπϕ mkkk nmnm
r
nmnmnm =+Φ=+−+=Ω 2)2()2( 21 .              (3.13) 

They then proposed a probabilistic model ),|ˆ()ˆ( mnPP
m n

nm αξα ∑∑=  to estimate the rotation 

angle α  where nmξ  is the weighting factor proportional to the ZM magnitude nmZ . For 

each possible solution nm
nm

nm k
mm
πα 2ˆ +

Φ
= , they used a probability density function 
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1

0

1 2ˆ ˆ ˆ( | , ) * ( , )
nm

m
nm

nm
k

P n m k G
m m m

πα δ α α σ
−

=

⎧ ⎫Φ⎛ ⎞= − +⎨ ⎬⎜ ⎟
⎝ ⎠⎩ ⎭

∑ , a convolution of an impulse train with 

a scaled Gaussian kernel, to estimate α . Notice that the estimation is done in discrete angle 

steps. In order to be accurate, the estimation step size must be as small as possible. Let the 

estimation step size is 0.01o. For the case where (N, M) = (10, 10), there are 30 generated 

Zernlike Moments {Znm}. From each fixed Zernike moment Znm an estimator of the rotation 

angle is given by nm
nm

nm k
mm
πα 2ˆ +

Φ
= . There are 30 such estimators. To find the common 

solution to the rotation angleα using these 30 estimators, a common histogram with a bin size 

of 360×100 (assuming the estimation step size is 0.01o) is used to tabulate the possible 

rotation angle produced by the 30 estimators. Therefore, the total number of histogram bin 

values computed is 360×100×30 (=1,080,000), which is rather large. In addition, the method 

may face the ambiguity in multiple peaks in the histogram constructed. 

 Here a new estimation method of the rotation angle α̂  is proposed, which is 

implemented in the continuous angle space rather than in the discrete space. The basic idea 

behind the proposed method for estimating the rotation angle mα̂  is to avoid the m 

ambiguities in the value of nmk . Instead, the rotation angle α̂  can be found from the phase 

difference using any two adjacent nmΦ and 1, −Φ mn , 0≠m , through 

, 1 , 1( 1) ( 2 ) ( 2 )nm nm n m n mm m k kα α α π π− −= − − = Φ + − Φ +                        (3.14) 

, 1( ) mod 2nm n m π−= Φ −Φ , 0≠m .                                      

Since m = 1, 2, .., M , n = 1, 2, ..,N, there are 
1

( 1)
2

M

m

N m
=

−⎢ ⎥ +⎢ ⎥⎣ ⎦
∑  ways to compute the rotation 

angle α̂ . A more robust estimation is to weight the estimated angles by the individual 
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magnitude |Znm|.  

An iterative computation of the rotation angle α̂  using all available Zernike moments 

sorted by m is given below: 

The ZM phase-based rotation angle estimation algorithm 

Initialization: 0ˆ0 =α  and c0 = 0 

For m = 1, 2, …, M  

For n = m, m +2, .., m+2
2

N m−⎢ ⎥
⎢ ⎥⎣ ⎦

 

παδ 2mod]ˆ)1([( 1−−−Φ= mnmnm m  
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3.4 Experimental Results for Performance Evaluation 

 We will examine the system performance with respect to important system parameters 

including (1) region scene types, (2) region descriptor types, (3) region detector types, (4) 

region overlap error, and (5) transformation types. The region scene types under consideration 

are the structured and textured scenes. The test images available at the website [30], plus 

some new images, are used in the experiments. The transformation types considered here 

contain the common photometric transformations (blur, illumination, noise, and JPEG 

compression) and geometric transformations (rotation, scaling, translation, and viewpoint). 

Fig. 3.3 shows the representative test image pairs taken for the textured and structured scenes.  

In regard to the region descriptor types we include the proposed ZM phase and five 

popular descriptors: SIFT, GLOH, PCA-SIFT, steerable filters, and complex moments. In the 

beginning of the experiment, we need to choose a region detector in order to extract the 

regions of interest from the given image. Here we decide to choose either MSER detector or 

Hessian-affine detector. Once the region detector type is decided, the program codes available 

at the website [30] are used to obtain (a) regions of interest, (b) the dominant orientation in a 

region image and (c) the descriptor feature vectors of SIFT, GLOH, PCA-SIFT, steerable filter 

and complex moment for each region of interest. Then we run our program codes to generate 

our ZM phase descriptor and to calculate the similarity measures and generate the 

precision-recall curves to evaluate the descriptor performances, as done in [12]. Totally, there 

are 8 types of transformations, 2 types of scenes, and at least 4 image pairs for each 

transformation. On the average, one image pair generates 250,000 (= 500×500) region pairs 

for matching. All together the experiments involve more than 15 million region pairs. 

 Table 3.2 lists the typical feature vector dimensions of the six descriptors used in the 

experiments. Later, a discussion on the feature dimensionality will be provided. 
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(a) bikes 
 (blur) 

(b) tree  
(blur) 

(c) Leuven 
 (lighting) 

     
(d) bush 1 
 (lighting) 

(e) Leuven 
(nonlinear lighting) 

(f) bush 1 
(nonlinear lighting) 

   
(g) Chinese compound (noise) (h)Japanese garden 

(noise) 
(i)UBC  

(JPEG) 

   
(j) garden  
(JPEG) 

(k) graffito 
 (viewpoint) 

(l) wall brick  
(viewpoint) 

   
(m) castle 
 (rotation) 

(n) flower 
 (rotation) 

(m) Pentagon 
 (scaling) 

Fig. 3.3: Representative test image pairs taken from the textured and structured scenes under a specified 
photometric or geometric transformation.  

 

TABLE 3.2 THE TYPICAL FEATURE VECTOR DIMENSIONS OF THE SIX DESCRIPTORS 

Descriptor SIFT GLOH ZM phase PCA- SIFT complex 
moments 

steerable 
filters 

Feature 
dimensionality 128 128 42 36 15 14 

 

3.4.1 Performance Evaluation Criteria – PR curve 

For region matching, the extracted regions of the reference and transformed images are 

examined for (a) their distance measure and (b) their spatial overlap error under the applied 

transformation. There are three strategies for region matching proposed in [12]: (a) the 
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threshold-based matching, (b) the nearest-neighbor-based matching, and (c) two-nearest- 

neighbor-based matching. Although these three matching methods are functionally different, 

their ranking results of the performances of the various descriptors are virtually the same; the 

first one is generally recommended [12], [38]. Therefore, we adopt the threshold-based 

matching strategy in which the distance measure between a region pair is compared to a given 

distance threshold, Dt. 

On the other hand, the region overlap error is represented by the overlap ratio between 

the region intersection area and the region union area under the known planar homography 

[12], [31], that is, )/()(1 BHHABHHAO TT
e ∪∩−= , where A and B are the two matching 

regions and H is the given homograph between the two region patches. A region pair is called 

a match if it passes the region similarity test, namely, the distance measure between the image 

pair does not exceed the distance threshold Dt; otherwise, no match is found. A match is said 

to be correct, if the region pair also passes the region overlap test given by Oe< Ot for a given 

overlap error threshold Ot. A match is said to be false, if the pair fails the region overlap test. 

Sometimes, with a tight overlap error threshold, say Ot = 0.1, even though the two regions 

pass the region similarity test, but they fail the region overlap test due to Ot <Oe<1. It seems 

not very fair to call such a pair a false match when compared to a typical false match whose 

region overlap error Oe is equal to 1; namely, the two regions do not intersect and are, 

therefore, not related at all. Hereafter, a matching pair with a region overlap error in between 

such that Ot <Oe<1 is considered as a “don’t care” pair. In other words, the new definition of a 

false match is a match that passes the region similarity test and its region overlap error Oe 

must be equal to 1. 

It is important to realize a fixed distance threshold cannot be used to evaluate the 

descriptor performances. Instead, a precision-recall (PR) curve, created by varying the 
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distance threshold, must be used.   

Recall is the ratio of the number of correct matches to the number of corresponding 

region pairs satisfying the region overlap test: Oe< Ot. 

recall =
encescorrespond #

matchescorrect  # .                                          (3.15) 

Precision is the ratio of the number of correct matches to the total number of correct and false 

matches:  

1- precision =
matches false#matchescorrect   #

matches   false #
+

.                         (3.16) 

Fig. 3.4 depicts a PR curve generation process. Assume there are M, N regions detected in the 

reference and transformed images, respectively. The regions in the two images form M×N 

matching region pairs. Among these M×N pairs let the number of corresponding region pairs, 

which are each with a region overlap error Oe smaller than the specified bound Ot, be C. Also, 

let the number of the “don’t care” pairs be P. Now sort the C corresponding pairs and the 

M×N-C-P non-corresponding pairs, respectively, by their distance measures di,j in an 

ascending order. The range of distance measures for the set of C corresponding pairs generally 

overlaps with that of the set of non-corresponding pairs. Start to increase the distance 

threshold Dt  from the minimum value Dmin to the maximum value Dmax. The recall value is 

initially equal to zero, so is the value of (1-precision). As Dt passes over Dmin, more and more 

correct matches occur and the recall value is increasing, while the (1-precision) value remains 

0 since there have been no false matches so far. When Dt reaches the minimum distance 

measure a
tD  of the non-corresponding region pairs, false matching pairs begin to appear and 

the value of 1-precision is increasing from 0. Notice that the recall is always monotonically 
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increasing and reaches 1 when the distance threshold is equal to the maximum distance 

measure b
tD  of the C corresponding region pairs. At the end, when the distance threshold is 

equal to Dmax, the (1-precision) value approaches 1. Be aware that the (1-precision) value is 

monotonically increasing when Dt is sufficiently large, but it may decrease at the early stage, 

if the relative growth rate of false matches is smaller than that of the correct matches. 

 

 

(a) 

 

(b) 

Fig. 3.4: The PR curve generation process. (a) The correct matches and false matches associated with a 

varying distance threshold Dt . (b) The generated PR curve. 
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3.4.2 Evaluation on Region Detector Types and Region Overlap Error 

As mentioned above, the best two region detectors, MSER and Hessian-affine, are 

reported in [11]. We shall present the evaluation results for these two detectors side by side.  

Fig. 3.5 and Fig. 3.6 show the region detection results for both textured and structured 

scenes, and the two curves about the relation between recall and region overlap error and that 

between the number of correct matches and region overlap error using Hessian-affine regions 

and MSER regions, respectively. There are around 400 regions extracted by either detector. 

The number of correct matches and the number of correspondences for each overlap error are 

computed for a single section of overlap errors ranging from the previous one to the current 

one. For instance, the score for 20 percent is computed for the overlap error interval from 10 

percent to 20 percent. Also, the recall values are calculated, by keeping the precision at 0.5, as 

done in [12].  

We observe that the top black line, which shows the number of region correspondences 

dictated by the given overlap error bound Oe, bounces back at overlap error 40%. This is due 

to a natural increase in the region correspondences at the given higher region overlap error 

bound, resulting in “one-to-many” or “many-to-one” overlapped region pairs extracted from 

the reference and sensed scenes. Usually these new corresponding region pairs are less similar 

when compared to those at a smaller overlap error bound, causing a drop in the number of 

new correct matches. On the other hand, for a small overlap error bound the correspondences 

are mostly the “one-to-one” overlapped region pairs. 
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(a) Hessian-affine regions (b) MSER regions 

(c) (d) 

(e) (f) 

Fig. 3.5: Evaluation for different overlap errors for structured scene. (a)–(b) Detected Hessian-affine 

regions and MSER regions under viewpoint change for structured graffti scene. (c)-(d) The number 

of correct matches vs. the overlap error. Also, the top black line shows the number of region 

correspondences detected. (e)-(f) Recall vs. the overlap error.  
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(a) Hessian-affine regions (b) MSER regions 

  
(c) (d) 

  
(e) (f) 

Fig. 3.6: Evaluation for different overlap errors for textured scene. (a)–(b) Detected Hessian-affine 

regions and MSER regions under viewpoint change for textured brick scene. (c)-(d) The number 

of correct matches vs. the overlap error. Also, the top black line shows the number of region 

correspondences detected. (e)-(f) Recall vs. the overlap error.  
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We observe that the proposed ZM phase descriptor has a higher recall vs. region overlap 

error curve than other descriptors for the region overlap error in the interval [0.1, 0.4] for both 

sets of Hessian-affine and MSER regions. The portion of curve is less meaningful when Ot 

gets larger. This is because when Ot gets larger, the corresponding regions are less similar, as 

indicated in Figs. 3.7. As mentioned above, when the overlap error bound increases over 0.4, 

the intersection area of these new corresponding region pairs becomes smaller, resulting in the 

drop of  the number of correct matches and the decrease in the recall value under a fixed 

precision level (0.5 in this case). At a large overlap error bound the Zernike phase maintains 

the same tight control on the similarity matching of the new corresponding pairs based on the 

orthogonal moment features, so the increase in the new correct matches is rather small. On the 

other hand, SIFT and GLOH have less stringent control on the similarity measure based on 

the 8-gradient orientation bin tabulation on the 4×4 location grid, so there are more new 

correct matches when the overlap error bound increases. 

 

   

   
Oε = 0.1 Oε = 0.2 Oε = 0.3 Oε = 0.4 Oε = 0.5 Oε = 0.6 

Fig. 3.7: The examples of the detected region pairs with different overlap errors Oε  ranging from 0.1 to 0.6. 

The ellipses indicate the region boundary with blue color and red color for reference region A and the 

transformed region given by HTBH, respectively. The cross symbols show the key point positions. 
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We should not bother considering the corresponding region pairs associated with a large 

overlap error bound, since many belong to “one-to-many” or “many-to-one” correspondences. 

The inclusion of these less similar pairs or outliers will result in the erroneous estimations in 

the later stages such as in the estimations of homography, fundamental matrix and epipolar 

geometry, etc. Therefore, we set the Ot value to 0.3 rather than 0.5 used in [12].  

From now on, only MSER regions will be considered in the later experiments, since the 

descriptor performance characteristics are similar for MSER and Hessian-affine regions. 

 

3.4.3 Evaluation on Transformation Types 

Since the elliptical region is already normalized into a circular image, the normalized 

region is affine invariant. Nevertheless, the normalized region is not necessarily invariant to 

rotation. Thus, for most of the descriptors including SIFT, SIFT variants and the steerable 

filters, the image rotation problem must be solved first by finding a dominant gradient 

orientation. Similarly, the circular image intensity normalization has made the region 

descriptor robust to intensity scaling and offset, but not to image blur, image noise, image 

compression, and the illumination change.  

In image registration the two images can be taken by a single camera or different 

cameras, and the images can be taken during a short period or on different days. These 

shooting scenarios determine the type of image transformation encountered. For instance, if 

the two images are shot by different cameras or at different periods, the photometric 

conditions of the two shootings will be different, not to mention the possible viewpoint 

change. In general, a geometric transformation is accompanied by some sort of photometric 

change due to differences in the camera setting and the surface reflection angles. 
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A) Robustness under Photometric Transformations  

To focus on the effects of photometric transformations, we try to avoid the effect of a 

geometric transformation by setting the region overlap error threshold Ot to a small value 

(0.2~0.3). Overall speaking, the ZM phase obtains the best performance results for all 

textured scenes under all type of photometric transformations and for the structured scenes 

under image blur and nonlinear lighting. The performances of the ZM phase, SIFT, GLOH 

and PCA-SIFT are comparable for the structured scenes under affine lighting change, image 

noise and JPEG when the value of 1 – precision is very small. The analysis on these 

performance results will be given later. 

 

(i) Image Blur 

The performance is measured under image blur introduced by changing the camera focus 

setting. Figs. 3.8(a)-3.8(b) show the respective PR curves for the bike structured scene (see 

Fig. 3.3(a)) with minor blur and severe blur, while Figs. 3.8(c)-3.8(d) show the respective PR 

curves for the tree textured scene (see Fig. 3.3(b)) with minor blur and severe blur. The 

performance ranking indicates that the best descriptor is ZM phase for both the structured and 

textured scenes considered. On the other hand, SIFT performs better than its variants, GLOH 

and PCA-SIFT, for the textured scene, while its variant performs better for the structured 

scene, as reported in [12]. The last ranking position is the complex moments. This is because 

its low dimensional feature vector (15 in this case) and its exclusive use of the moment 

magnitudes without the phase information. 
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(a) (b) 

 

(c) (d) 

Fig. 3.8: The PR curves for the structured bike scene with (a) minor blur (b) severe blur. The PR 

curves for the textured tree scene with (c) minor blur (d) severe blur, all with Ot = 0.3. 

 

To show the performance discrepancies between the top best three descriptors (ZM phase, 

GLOH and SIFT) under image blur, Table 3.3 shows the matching statistics for the bike 

structured scene and the tree textured scene with a region overlap error of 0.3 and a recall 

value of 0.6. Fig. 3.9 depicts the correct and false region matches for the tree textured scene, 

when using ZM phase, GLOH and SIFT, respectively. There are 0, 11 and 42 false matches 

(shown by red lines) for ZM phase, SIFT and GLOH, respectively. All these descriptors have 

112 correct matches (shown by green lines). 
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TABLE 3.3 THE MATCHING STATISTICS FOR THE BIKE STRUCTURED SCENE AND TREE TEXTURED SCENE, ALL WITH 

tO = 0.3 AND RECALL = 0.6. 

#  MSER ZM phase SIFT GLOH  
Scene Left 

Image 
Right 
image

# corres- 

pondences 
Thres-
hold 
Dt 

# 
correct

# 
false 

Thres-
hold 
Dt 

# 
correct

# 
false 

Thres- 
hold 
Dt 

# 
correct

# 
false

Structured 
(bikes) 449 387 161 0.167 97 4 0.183 96 35 1600 96 14

Textured 
(tree) 631 531 186 0.179 112 0 0.220 112 11 1543 112 42

 

 

 

(a) ZM phase 

 
(b) SIFT (c) GLOH 

Fig. 3.9: The correct matches (in green) and false matches (in red) obtained by the descriptors, respectively, all 

with recall = 0.6 and Ot = 0.3. 

 

(ii) Illumination Change 

a) Affine Lighting Change 

To evaluate the descriptor performances under illumination changes, a collection of 

images has been taken by changing the camera iris settings. Figs. 3.10(a) and 3.10(d) 

show the PR curves for the Leuven structured scene and the bush 1 textured scene 

shown in Figs. 3.3(c) and 3.3(d), respectively. The best three descriptors in order are ZM 

phase, SIFT, and GLOH for the bush 1 textured scene and the situation remains the same 

for the structured scene except when the value of 1 – precision is less than 0.03. 



Chapter3 A Zernike Moment Phase Based Descriptor for Local Image Representation and Matching 

 39

b) Nonlinear Lighting Change 

  The nonlinear lighting is quite common in practice. Figs. 3.10(b) and 3.10(c) 

shows the PR curves under the underexposure and overexposure lighting for the Leuven 

structured scene shown in Figs. 3.3(e). Figs. 3.10(e) and 3.10(f) shows the PR curves 

under the underexposure and overexposure lighting for the bush 1 textured scene shown 

in Figs. 3.3(f). In comparison with the PR curves in Figs. 3.10(a) and 3.10(d) under 

affine lighting change, it can be seen that the performances of the SIFT-based descriptors 

become significantly worse. To the contrary, the performance results of the ZM phase 

have only a small change, especially in the case of the textured scene. This will be 

explained later. 

 

(a) Affine lighting(structured) (b) underexposure (structured) (c) overexposure (structured) 

(d) Affine lighting(textured) (e) underexposure (textured) (f) overexposure (textured) 

Fig. 3.10: The PR curves for the Leuven structured scene with (a) affine lighting change (b) non-linear 

lighting change (underexposure), (c) non-linear lighting change (overexposure). The PR curves for the bush 

1 textured scene with (d) affine lighting change (e) non-linear lighting change (underexposure), (f) non-linear 

lighting change (overexposure), all with Ot = 0.3. 
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(iii) Image Noise 

The performances are evaluated by adding a different amount of Gaussian noise to the 

images. Figs. 3.11(a) and 3.11(b) show the PR curve for the structured Chinese compound 

scene (see Fig. 3.3 (g)) with two different noise levels (SNR=20 and 10), respectively. Figs. 

3.11(c)-(d) show the PR curve for the Japanese garden textured scene (see Fig. 3.3(h)). The 

ZM phase has the best overall result among all the descriptors for the textured scene and is 

comparable to the SIFT-based descriptors for the structured scene.  

 

(a) image noise (structured) 
SNR=20 db 

(b) image noise (structured) 
SNR=10 db 

(c) image noise (textured) 
SNR=20 db 

(d) image noise (textured) 
SNR=10 db 

Fig. 3.11: The PR curves for the Chinese compound structured scene under image noise with (a) 

SNR=20 db, (b) SNR= 10 db. The PR curves for the Japanese garden textured scene under image 

noise with (c) SNR=20 db, (d) SNR=10 db, all with Ot = 0.3. 
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(iv) JPEG Compression 

Figs. 3.12 depict the PR curves under JPEG compression for the structured UBC scene 

shown in Fig. 3.3(i) and the textured garden scene shown in Fig. 3.3(j), respectively. The 

qualities of the compressed images range from 10 to 30 percent of the original one. The 

performance ranking is similar to that under the noise attack. 

  
(a) JPEG (structured) 

quality = 30% 
(b) JPEG (structured) 

quality = 10% 

 
(c) JPEG (textured) 

quality = 30% 
(d) JPEG (textured) 

quality = 10% 

Fig. 3.12: The PR curves for the structured UBC scene under JPEG compression with quality = 

(a) 30%, (b) 10%. The PR curves for the textured garden scene with quality = (c) 30%, (d) 10%, 

all with Ot = 0.3. 

 

 B) Robustness under Geometric Transformations 

To focus on the effects of geometric transformations, we try intentionally not to change 

the photometric conditions. As shall be seen, under all geometric transformations, the ZM 

phase performs best for all textured scenes, but is comparable to the SIFT-based descriptors 
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for the structured scenes when the value of 1 – precision is less than 0.05. 

(i) Viewpoint Change 

We use six images of the textured and structured scenes taken under a viewing angle 

ranging from 10 to 50 degrees. Figs. 3.13(a) and 3.13(b) give the PR curves for structured 

graffiti scenes (see Fig. 3.3(k)) and the textured brick scenes (see Fig. 3.3(l)), respectively. 

The ranking of the best four descriptors remain unchanged for the specified range [10o, 50o] 

of the viewing angle. The ZM phase descriptor clearly overpowers the five other descriptors 

for the textured scene, but not so for the structured scene.  

 

(ii) Rotation Change  

The images considered are taken by rotating the camera axis from 30o to 45 o. The 

descriptors for the structured castle scene (Fig. 3.3(m)) and the flower textured scene (Fig. 

3.3(n)) under image rotation are evaluated. Figs. 3.13(c)-3.13(d) show the PR curves for the 

scenes, respectively. The ranking of the top three descriptors remains the same throughout the 

range of rotation angle and it is similar to the case of viewpoint change.  

 

(iii) Scale Change  

Figs. 3.13(e)-3.13(f) show the performance measures for the descriptors under the scale 

change using the Pentagon structured scene (Fig. 3.3(m)) and textured bush 2 scene (Fig. 

3.3(n)), respectively. The scaling factor is close to 2. The performance rankings are similar to 

the above two cases of geometric transformations. 
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(a) viewpoint (structured) (c) rotation (structured) (e) scaling (structured) 

 

(b) viewpoint (textured) (d) rotation (textured) (f) scaling (textured) 

Fig. 3.13: The PR curves under geometric transformation, all with Ot = 0.3 

 

3.4.4 Evaluation on Feature Dimensionality   

To extend the SIFT descriptor both GLOH and PCA-SIFT increase the feature size and 

then apply PCA to reduce the feature dimensionality. The features of these descriptors are 

originally correlated and become orthogonal after the application of PCA. However, their 

optimal dimensions are determined by the training images in the database.  

The utilization of Zernike moments up to a higher order generally leads to a more 

accurate estimate of the region rotation angle and a better image representation power. Fig. 

3.14 depicts the PR curves for two structured scenes under two different attacks when the ZM 

descriptor uses moments of order N up to 10, 12, and 16, respectively. The corresponding 

feature dimensions are 30, 42, and 72. It can be seen that the descriptor performance becomes 
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better as the feature dimension gets increased. The selection of order N = 12 is a tradeoff 

between the computational complexity and the descriptor performance. 

(a) graffito scene (viewpoint change) (b) castle scenes (rotation change) 

Fig. 3.14: The PR curves for ZM phase with the maximum order N = 10, 12 and 16, together with the 

associated PR curves of SIFT for two structured scenes under two different attacks, all with Ot = 0.3. 

 

 

3.5 Analysis on Performance Evaluation Discrepancies and Time 

Complexity Analysis 

Since the complex moments and the steerable filters are never ranked in the first position 

throughout the experiments due to their low feature dimensions chosen, they will be ruled out 

for further consideration. The SIFT, GLOH, and PCA-SIFT have similar performance results 

under all the transformations reported. In the following, it is sufficient to compare the 

performances of SIFT and the ZM phase.  

A) The Effect of Image Intensity Fluctuation on the Descriptor Performance  

 We give a rule of thumb or a simplified explanation why the ZM phase descriptor 

performs better than other existing descriptors under non-uniform image intensity fluctuation, 

since an exact analysis varies with the underlying image and, therefore, is rather complicated. 

First of all, the transformed image is obtained from the reference image according to a given 
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photometric or geometric transform, so their image pattern structures are correlated. After the 

affine intensity normalization, their image intensity distributions become closer and tangled. 

Next, the phase difference of the ZM phase descriptor is computed as  

    1 1Im( ) Im( )tan ( ) tan ( )
Re( ) Re( )

tran ref
tran ref nm nm

nm nm nm tran ref
nm nm

Z Z
Z Z

ϕ ϕ ϕ − −Δ = − = − ,                (3.19) 

where Im( ) Im( ) Im( )
Re( ) Re( ) Re( )

tran ref
nm nm nm
tran ref
nm nm nm

Z Z Z
Z Z Z

+ Δ
=

+ Δ
 with Re( )nmZΔ and Im( )nmZΔ  being the real 

and imaginary ZM components of the difference image between the reference and 

transformed images. Since the image structures of the transformed and reference images are 

similar, so it is likely that the phase angles of the reference and transformed images are in 

phase (i.e., no phase difference after the image rotation alignment), especially when their ZM 

magnitudes are both large. The weighted sum of the absolute phase differences is, therefore, 

close to zero. On the other hand, the probability that the reference and transformed images are 

out of phase (a significant phase difference) is small. Consequently, most of the ZM moment 

counterparts of the image pair support the single majority of the estimated rotation angle, even 

though there is some fluctuation in the ZM magnitudes. This leads to the accurate rotation 

angle estimation when using the ZM phase.  

On the other hand, the SIFT based methods utilize the gradient information. The local 

gradient angles in the transformed image remain considerably unchanged (except under image 

blur which causes the gradient angles damaged), but their gradient magnitudes change 

somewhat non-uniformly. Besides, there are generally several different gradient angles found 

in an image especially for the textured image. (This may not be the case for structured scenes 

with a distinguished edge orientation.) Therefore, the 36-bin orientation histogram will 

contain multiple candidates on the histogram ballot. When the gradient magnitudes change 

non-uniformly, the vote counting of the multiple candidates will change. This leads to a 
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change of the dominant orientation in the transformed image. It, in turn, triggers further 

non-linear changes in the 128 dimensional SIFT feature vector, regardless of the unit length 

feature vector renormalization at the end. This is why the performance of the SIFT based 

methods generally degrades under a given transformation especially for the textured scenes. 

We shall use an example to justify our above reasoning. 

Figs. 3.15 to 3.18 present four experimental results for the performance comparison 

between ZM phase and SIFT under non-linear lighting change (a power-law (gamma) 

transform with gamma = 3), JPEG compression (the quality of the transformed image is 5 

percent of the reference one), viewpoint change and scaling change, respectively. The four 

figures are in the same format. Part (a) of the figures shows the region pair before and after 

affine intensity normalization in the gray color or in the pseudo color for better visualization, 

along with their difference images and difference intensity histograms. We can observe that 

the image structure of the transformed and difference images look similar to that of the 

reference image. This likely leads to the nearly equal real and imaginary parts of the ZM 

moments for the region pair except for a few components under the non-uniform intensity 

change, as indicated in part (b) of the figures. Therefore, the majority of the weighted phase 

differences are nearly zero, as shown in part (c) of the figures. On the other hand, the 

non-uniform intensity fluctuation causes the dominant orientation histogram and the 128 

dimensional SIFT feature vectors to change non-uniformly, resulting in an expected greater 

dissimilarity between the two images shown in part (d) of the figure, as expected. 

 



Chapter3 A Zernike Moment Phase Based Descriptor for Local Image Representation and Matching 

 47

 

 

Non-linear lighting 

  
reference  transformed      Reference   transformed 

(before intensity normalization) (after intensity normalization)

  
normalized  normalized    reference –   transformed - 
reference  transformed     transformed    reference  

( all images in pseudo colors)     
 

(a) (b) 

 

(c) (d) 

Fig. 3.15: A performance comparison of ZM phase and SIFT under non-linear lighting change. The detected 

ellipse-shaped regions are normalized to a circular patch through the affine normalization process beforehand. 
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 JPEG compression 

 

  
reference    transformed  Reference   transformed 

(before intensity normalization) (after intensity normalization) 
 

 
normalized   normalized  reference –  transformed -
reference   transformed  transformed  reference  

( all images in pseudo colors)     

 

(a) (b) 

(c) (d) 

Fig. 3.16: A performance comparison of ZM phase and SIFT under JPEG compression. The detected 

ellipse-shaped regions are normalized to a circular patch through the affine normalization process beforehand. 
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 Viewpoint change 

 

    
reference   transformed    Reference  transformed

(before intensity normalization) (after intensity normalization)
 

normalized   normalized  reference –  transformed -
reference   transformed  transformed   reference  

( all images in pseudo colors)     

 

(a) (b) 

(c) (d) 

Fig. 3.17: A performance comparison of ZM phase and SIFT under Viewpoint change. The detected 

ellipse-shaped regions are normalized to a circular patch through the affine normalization process beforehand. 
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 Scaling 

 

   
reference   transformed   Reference   transformed 
(before intensity normalization) (after intensity normalization)

 

 
normalized   normalized  reference –  transformed -
reference    transformed  transformed   reference  

( all images in pseudo colors)     

 

(a) (b) 

(c) (d) 

Fig. 3.18: A performance comparison of ZM phase and SIFT under scaling change. The detected ellipse-shaped 

regions are normalized to a circular patch through the affine normalization process beforehand. 
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In summary, noise, lighting change, compression, and blurring belong to the 

photometric transformation type which causes the image intensities to vary. On the other hand, 

viewpoint change, scaling and rotation belong to the geometric transformation type which 

first relocates the positions of the image points, and then requires some sort of intensity 

interpolation to compute the image intensities at the new image points; the new image 

intensities contain some non-uniform fluctuation (except for the rotation transformation which 

generally causes a very minor intensity fluctuation). We can apply the above-mentioned 

reasoning to conclude the ZM phase descriptor is generally more robust than the SIFT-based 

methods under these transformations especially for the textured scenes which generally 

containing the complex edge orientation information. 

 

B) Rotation Angle Error Statistics and Its Effect on the Descriptor Performance 

The descriptor performance discrepancy can be attributed to the different rotation angle 

estimation errors of the descriptors. The dominant orientation of the SIFT based descriptors 

relies on the peak detection in the 36-bin histogram of the gradient directions obtained from 

the region image, while the ZM phase descriptor computes the image rotation angle from the 

weighted sum of the ZM phase differences. Table 3.4 breaks down the estimated rotation 

angle errors (εangle) under the categories of 5, 10, 20, and 30 degrees for both textured scenes 

and structured scenes under all transformations except the viewpoint change. The rotation 

angle errors are evaluated by computing the estimated rotation angle for all normalized 

corresponding region pairs, and then compare them with respect to the actual angle. The 

actual angle can be obtained by the ground truth homographies given from [30], which are 

almost a similarity transform. The rotation angle error statistics are not available under the 
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viewpoint change, since the associated rotation angle between two regions under viewpoint 

change is not fixed. 

TABLE 3.4 THE ROTATION ANGLE ESTIMATION ERRORS FOR ALL CORRESPONING REGION PAIRS SPECIFIED BY tO = 0.3. 

εangle <5o εangle < 10 o εangle < 20 o εangle < 30 o Transform 

type Scene type method
Avg % Avg % Avg % Avg % 

ZM 1.801 86.022 2.333 97.312 2.502 98.925 2.502 98.925Textured 
(tree) 

SIFT 2.484 39.785 4.134 59.140 6.090 72.581 7.787 80.108
ZM 1.663 92.547 2.027 98.758 2.162 100 2.162 100 

 
 

blur 
Structured 

(Bikes) SIFT 2.147 51.553 3.605 72.671 4.543 80.124 5.080 82.609
ZM 0.764 96.755 0.947 99.705 0.979 100 0.979 100 Textured 

(bush 1) SIFT 1.747 68.437 2.724 84.366 3.366 89.676 3.426 89.971
ZM 1.506 93.662 1.641 98.775 2.115 100 2.115 100 

 
affine 

lighting 
Structured 
(Leuven) 

SIFT 1.726 62.676 2.631 78.873 3.313 83.803 4.071 86.620
ZM 1.099 94.561 1.284 97.908 1.363 98.745 1.363 98.745Textured 

(bush 1) SIFT 2.002 53.556 3.115 69.874 4.327 79.498 4.532 80.335
ZM 1.220 93.662 1.481 95.592 1.584 99.296 1.715 100 

 
non-linear 
lighting 

(underexposure) Structured 
(Leuven) SIFT 1.906 63.380 2.944 80.282 3.308 83.803 3.463 84.507

ZM 1.564 92.857 1.838 98.352 1.893 98.901 1.893 98.901Textured 
(Japan garden) 

SIFT 2.423 42.857 4.071 65.385 5.859 80.121 6.765 83.516
ZM 1.349 93.293 1.666 99.085 1.763 100 1.763 100 

 
 

noise 
Structured 

(Compound) SIFT 1.781 69.207 2.814 85.671 3.377 90.244 3.377 90.244
ZM 1.318 93.817 1.654 100 1.654 100 1.654 100 Textured 

(garden) SIFT 2.107 50.269 3.722 73.387 4.948 83.871 5.272 85.215
ZM 1.112 93.158 1.326 96.842 1.552 98.947 1.552 98.947

 
 

JPEG 
Structured 

(UBC) 
SIFT 1.852 68.947 2.724 82.632 3.162 86.316 3.419 87.368
ZM 1.310 97.692 1.370 99.231 1.370 99.231 1.370 99.231Textured 

(flower) SIFT 2.346 54.483 3.910 81.379 4.662 89.655 4.973 91.034
ZM 1.061 98.755 1.117 100 1.117 100 1.117 100 

 
 

Rotation 
 Structured 

(castle) 
SIFT 1.777 74.274 2.544 87.552 2.963 91.286 2.963 91.286
ZM 1.414 92.623 1.625 97.541 1.840 99.180 1.840 99.180Textured 

(bush 2) SIFT 2.222 53.279 3.519 70.492 4.340 76.230 5.390 80.328
ZM 0.913 98.551 0.999 100 0.999 100 0.999 100 

 
 

Scaling 
Structured 
(Pentagon) SIFT 1.356 78.261 2.154 90.580 2.529 93.478 2.529 93.478

 

From Table 3.4 the average rotation angle errors of the ZM phase is smaller than those of 

SIFT for the structured scenes and textured scenes when εangle < 30o. More importantly, the 

coverage percentage is more than 86% for ZM phase and around 40% to 78% for SIFT when 

εangle < 5o.  The coverage percentage is computed as the ratio between the number of region 
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pairs with rotation angle estimation error (εangle) less than a specific value (εt = 5o, 10o, 20o or 

30o in Table IV) and the total number of correspondence: 

# corresponding pairs with 
coverage percentage=

# correspondences
angle tε ε<

.               (3.18) 

The large rotation angle errors of SIFT are due to the big error caused by the ambiguity in the 

multiple dominant orientation peaks. This is the main reason why the SIFT performance 

becomes poor.  

Lowe [7] suggested solving the multiple dominant orientation problem by creating 

multiple keypoints at the same location but with one of the dominant orientations (In this case 

there is no clear rule for counting the multiple keypoints as correct or false matches in 

generating the PR curves). In Fig. 3.19 the PR curves for the flower textured scene under 

image blur is plotted with the removals of region pairs with a rotation angle error no less than 

10 o, 20 o, 30o, and 360o, respectively. The ZM phase performs better than SIFT for rotation 

angle errors not exceeding 20 o, 30o, and 360o, but not for the case of rotation angle errors 

<10o, where SIFT does not face the multiple dominant orientation problem, as described 

previously.  

 
Fig. 3.19: The PR curves for tree textured scene under image blur with the removal of regions with 

a rotation angle error not exceeding a specified level of 10 o, 20 o, 30o, and 360o, respectively.  

 



Chapter3 A Zernike Moment Phase Based Descriptor for Local Image Representation and Matching 

 54

C) The Effects of Feature Dimensionality and Feature Orthogonality on the Descriptor 
Performance 

Generally speaking, the high dimensional feature vector contains more descriptive 

information at the expense of memory space. For example, PCA-SIFT and GLOH start with a 

feature dimension of 3042 and 272, respectively. However, the components of these feature 

vectors are correlated and partially redundant. By the application of PCA (principal 

component analysis) a subset of eigenvectors associated with the larger eigenvalues can be 

extracted and the projection of the original feature vector to the sub-eigenspace reduces the 

original dimension down to 128 or even smaller. The dimensionality reduction can be 

determined based on the percentage of the sum of eigenvalues retained.  

We know the ZM phase applies a set of orthogonal ZM moments to design the feature 

vector such that the feature components are mutually independent and more informative. With 

the same dimensionality (or the same memory space) the set of orthogonal features generally 

results in a better descriptive power to distinguish the different image patterns embedded in 

the textured scenes. However, when the image patterns in the scenes are highly similar, it 

require a higher feature dimensionality in order to reflect the subtle pattern difference, as 

indicated previously in Fig. 3.14. 

 

D) Time Complexity Analysis 

The computation time for evaluating the descriptor performance consists of the region 

extraction time, the descriptor feature vector construction time and the region matching time. 

Because all descriptors use the same set of regions of interest detected, so their region 

extraction times are the same. As for the feature vector construction time, the numbers of 

multiplications and additions required to compute Zernike moments up to order N for a q×q 

image patch are both of order O (N 2q 2) [40] . However, this calculation can be speeded up by 
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using the symmetrical properties of Zernike basis functions [41], or achieve in real time 

performance by using special hardware accumulation grid architecture [42]. As for the region 

matching including the rotation angle estimation, the numbers of multiplications and additions 

required by the ZM phase descriptor are both of order O (N 2). Theoretically speaking, the 

SIFT based descriptor has a shorter region matching time per region pair, compared to the ZM 

phase descriptor. However, if desired, we can first use the ZM moment magnitude 

components, which are known rotationally invariant, to compute the distance between two 

given feature vectors. Only when the magnitude-based distance passes the condition checking, 

the ZM phase descriptor needs further to calculate the weighted, normalized phase difference 

to check if there exists a rotation angle between two matching regions.  
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Chapter 4 

Robust Logo Recognition for Mobile Phone 

Applications 

 

4.1 Introduction 

With the rise of affordable digital cameras mounted on mobile devices, the mobile 

applications of visual image information have received a great deal of attention. Visual pattern 

recognition could play a key role in the mobile applications for security check, context 

recognition, location detection, and museum guidance [43-53]. Fig. 4.1 depicts a scenario of 

the mobile applications of the logo images. A mobile user directs his or her mobile phone 

camera to a logo of interest and captures an image in the camera field of view. A software 

client built in the mobile device initiates submission of the image to the server via 3G or other 

wireless links. The web-service reads the message and evokes the logo recognition system to 

identify the logo in the sever logo database. Then the server sends the corresponding 

corporate identity back to the client, enabling the user to access to the more detailed and 

specific information. 
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Fig. 4.1: A scenario of the mobile applications for logo recognition. 

 

For a logo recognition system, features related to visual contents are first extracted to 

describe the logo images. Then, a similarity measure is defined to compare the query image 

with the target images in a logo database using the extracted features. Next, the target logos 

most similar to the query image are retrieved. Since the query logo image may be taken by a 

handheld mobile phone camera operating at a varying viewpoint under different lighting 

environments (daytime or nighttime), the query image may differ substantially from the 

database target one due to geometric transformations (viewpoint change, rotation, and scaling 

change) and photometric transformations (lighting change, noise, and image blur). Therefore, 

a challenge to the logo recognition system is to extract the features robust to the above 

inevitable imaging variations. 

In this chapter, we propose a logo recognition method based on the ZM phase-based 

feature vector. To start with, we apply a shape deformation correction process to solve the 

shape distortion problem caused by a geometric transformation. The normalized logo planar 

patch can be shown to be affine invariant up to a rotational ambiguity [10]. After the region 
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normalization, a ZM phase-based feature vector will be defined, which is robust to geometric 

and photometric image transformations. Meanwhile, due to the use of a set of orthogonal 

filters, the ZM feature vector is more compact and has a greater discriminative power. 

Experimental results show that the proposed ZM phase based recognition method has better 

retrieval performance in terms of the precision-recall criterion than the other existing 

methods. 

The chapter is organized as follows. Section 2 introduces the logo shape deformation 

correction. Section 3 proposes the similarity measure using a ZM phase-based feature vector. 

In Section 4 the discriminative power of the new ZM phase recognition method is compared 

with three existing methods based on the precision-recall criterion. Furthermore, an analysis 

on the performance discrepancy between different logo recognition methods is given.  

 

4.2 Logo Shape Deformation Correction 

Since a logo usually lies on a planar surface, the logo image undergoes a homography 

transformation when the viewpoint is changed. The homography can be shown locally affine, 

so an affine approximation is commonly made. We shall fit an ellipse to a logo region. The 

normalized region was shown to be affine invariant up to a rotation change [10]. 

The ellipse region can be formulated by 

2 2{( , ) | 2 1}R x y dx exy fy= + + ≤                                  (4.1) 

Where xx xy

xy yy

d e
e f

μ μ
μ μ
⎛ ⎞⎛ ⎞

= ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠
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2( ) ( , )xx
x

x x b x yμ = −∑  

2( ) ( , )yy
y

y y b x yμ = −∑  

( )( ) ( , )xy
x y

x x y y b x yμ = − −∑∑  

The center ( ,x y ) of the ellipse is obtained by taking mean of the coordinate of all 

non-zero intensity pixels. The second moment matrix is up to a scale so that the ellipse can 

cover all the logo pixels. The scale can be determined by finding the maximum distance from 

the logo center to all the boundary points of the logo: 

s = 2 2max{ ( ) 2 ( )( ) ( ) | ( , ) boundary of the logo}
dist

dist d x x e x x y y f y y x y= − + − − + − ∈ . (4.2) 

As a result, the final ellipse is determined with  

xx xy

xy yy
M s

μ μ
μ μ
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

.                                            (4.3) 

Define the affine normalized image of I’(x, y) to be 

1
2'( , ) ( , )I x y M I x y

−
= .                                         (4.4) 

  Fig. 4.2 shows examples of the respective original and normalized images of a logo and its 

two deformed versions. We can see, after the affine normalization process, the normalized 

images are more similar. 
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(a) (b) (c) 

Fig. 4.2: Three logo images taken from different viewpoints and their normalized images. (a) The 

reference logo image. (b)-(c) The two deformed versions of the reference image. The yellow ellipses 

show the detected ellipses.  

 

4.3 Logo Similarity Measure Based on the ZM Phase Information 

A logo can be viewed as a single integrated graphic entity or a composite of several 

sub-logos when it contains multiple sub-components. There are two types of logo processing 

tasks: one is to classify the query logo as one from the database and the other is to retrieve all 

similar logos in the database. The similarity measures for these two types are defined below. 

(a) The similarity measure for the logo classification 

Let ( , )qL x y  and ( , )dL x y  be a query logo and a database logo, respectively, and let 

their respective ZM feature vectors be { }
q
nmjq

q nmP Z e ϕ=
G

 and { }
d
nmjd

d nmP Z e ϕ=
G

. Here 

both logos are treated as an integrated graphic entity each. Here the query logo can be either a 

rotated version of the database logo or a totally different one. A similarity measure using the 

weighted ZM phase differences is expressed by 
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ˆ ˆmin{ ( ) mod(2 ) ,2 ( ) mod(2 )}
( , ) 1 nm nm

q d nm
m n

m m
S P P w

α π π α π
π

Φ − − Φ −
= −∑∑

G G
,    (4.5) 

where  

,

( )

q d
nm nm

nm q d
nm nm

n m

Z Z
w

Z Z

+
=

+∑
, and 

( ) mod 2q d
nm nm nmϕ ϕ πΦ = −  is the actual phase difference. 

The rotation angle α̂  is determined by an iterative computation of 

, 1ˆ ˆ( )mod2m n m mα α π−= Φ −  , with the initial value 0ˆ 0α = , using the entire information of 

Zernike moments sorted by m. The value range of ( , )q dS P P
G G

 is the interval [0, 1].  

 

(b) The similarity measure for the similar logo retrieval 

For the similar logo retrieval, the connected components of the logo are detected first, 

and then each component is treated as a sub-logo. We compute the ZM feature vector for each 

sub-logo. Therefore, a logo is represented by a set of ZM feature vectors. 

Given a query logo Lq with N sub-logos. We compare the query logo Lq with all the logos 

in the database. Assume a database logo Ld has M sub-logos. The similarity measure for the 

logo pair (Ld, Lq) is computed as the sum of the similarity scores of all matched sub-logo pairs. 

That is, for each sub-logo q
iC  of the query logo Lq, 1,  2,  ...,i N= . We find the sub-logo 

d
jC  of a database logo Ld with the maximum similarity score 

*( , ) max{ ( , ) | 1,  2,  ..., }q d q d
i i j i jj

S S C C S C C j M= = = . If the similarity score is greater than a 
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pre-defined threshold (e.g., 0.8), then *( , )q d
i jC C  is considered as a matched sub-logo pair. All 

of the matched sub-logo pairs are further checked to ensure the 1-1 correspondence relation. 

Assume there are 1 2,  ,  ,  Ti i i"  matched sub-logo pairs in the query logo Lq, the similarity 

score is computed as 

1

( , ) ( )
p p

P

q d i i
p

Score L L w S
=

= ×∑ ,                                       (4.6) 

where 
min( , )

q
ip

p

C

i
q d

A
w

A A
=  with 

,q dA A  and q
ip

C
A  being the areas of the query logo, a database logo and the it-th matched 

sub-logo 
p

q
iC  of Lq, respectively. 

 

4.4 Experimental Results 

To evaluate the performance of the proposed ZM phase based recognition method, three 

experiments are to be conducted. We compare with our proposed method with three other 

state-of-the-art methods for logo recognition: IZMD [57], EHD [58], and Ring projection [59]. 

The first experiment is to evaluate the classification power of the four methods by treating the 

logo as an integrated entity. The second experiment evaluates the precision and recall rates of 

the four methods in which the logo is considered as a whole. The final experiment 

demonstrates our proposed method for retrieving the similar traffic signs by treating the logo 

as a composite of multiple components. 
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4.4.1 The performance comparison for the logo classification 

Fig. 4.3 shows a set of 8 similar logos at a 400×400 pixel resolution which are 

downloaded from various web sites. In Fig. 4.4 we also download three different views of the 

first logo in the data set taken under a viewpoint change, an image blur, and a non-linear 

lighting change, respectively. 

   

Fig. 4.3: The set of similar logos. 

There are some properties of the mobile phone imagery for the logo segmentation. First, 

the logo is usually placed at the image center. Second, the logo and its background are highly 

contrasted. Third, the logo generally contains subparts in different colors. Therefore, the 

segmentation task of the logo image is simpler than a general image segmentation problem. 

Our segmentation process works in the HSI (Hue-Saturation-Intensity) color space. The major 

colors of the image are found as the local peaks in the histogram plot of the hue band. Then 

we apply the k-means clustering to cluster the image pixels of similar color as a group. We 

select the color clusters located near the center of the logo image. The homogeneous logo 

regions are then extracted using the selected color clusters. The final segmentation result of 

the logo positioning at each image center is shown in Fig. 4.4(b). 

The segmented logo images are then submitted for a logo query. The color images are 

transformed to gray-level images before computing the feature vectors by the four methods. 

After the classification process, the logos in the top three ranks are listed in Figs 4.4(c) – 4.4(f) 

for the four methods. The correct one is marked with a red box. The results show that ZM 

phase has the best classification power for the three query logos.  
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 view 1  

(viewpoint change) 

view 2  

(image blur) 

view 3 

 (nonlinear lighting change) 
 

(a) 

 

   

 

(b) 

   
 

(c) 

0.83177 0.81553 0.8155

 

(d) 

0.85378 0.83144 0.82017

 

0.86133 0.83578 0.8242

 

0.89707 0.85445 0.84715

 
 

(e) 

0.97939 0.96472 0.96287

 

0.94229 0.93787 0.93046

 
 

(f) 

 

0.70214 0.68605 0.67524

 

Fig. 4.4: The classification results for three logo queries. (a) Query logos. (b) Segmentation results of the query 

logos. The logos in the top three ranks determined by (c) ZM phase, (d) IZMD, (e) EHD and (f) Ring projection, 

respectively. 

 

 

4.4.2 The performance comparison for logo retrieval 

For evaluating the discriminative performances of the four methods, we use a database 

composed of M logo patterns (M = 300) in the experiment; some representatives of the logo 

patterns are shown in Fig. 4.5. For each logo in the database, we generate N synthetic images 
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(N = 10 in this case) under four kinds of imaging variations whose transformation parameters 

are listed below: 

(1) Image blur: via a Gaussian smoothing with mean 0 and standard deviation value σ = 1.2, 

1.4, 1.6 ,…., 3, respectively (with an increment of 0.2). 

(2) Gamma lighting change: Iq =Iγ, where Iq is the reference image I raised to a power of γ 

with γ being 1/3, 2/3, 1,.., 3, respectively (with an increment of 1/3). 

(3) Affine deformation: using 10 known planar homographies. 

(4) Image noise: via adding Normally distributed Gaussian noise with SNR=5, 7, 9, …., 23. 

(with an increment of 2) 

 

 

Fig. 4.5: Some of 300 logos used in the experiment. 

 

The M×N (3000=300×10) query logos under each of the above imaging variations are 

generated. The retrieval performances of the four recognition methods are evaluated based on 

the precision and recall rates as defined in 3.4.1.  
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#correct matchesRecall = 
#correspondence

 

#correct matchesPrecision = 
#correct matches #false matches+

 

Here, #correspondences = M ×N , #correct matches ≦ M ×N and #false matches ≦ (M-1) 

×(M ×N). 

Fig. 4.6 shows the results by the PR (Precision vs. Recall) curve. The ZM phase curve is 

located above other curves in each case, indicating the ZM phase method has the best 

performance among the four methods under the three given imaging variations which are 

rather typical.  

 

  
(a) View-point change (b) Image blur 

  
(c) Gamma lighting change (d) noise 

Fig. 4.6: The PR curves for retrieval performance evaluations under different kinds of specified transformations. 
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4.4.3 Traffic sign retrieval by multiple component matching 

To show the proposed method for logo retrieval based on the multiple components of the 

logos, the following experiment is conducted on a downloaded dataset which consists of 100 

traffic signs; some representatives of them are shown in Fig. 4.7. Given a query image, the 

components of the sign are extracted by the hue segmentation and each of the connected 

components is viewed as a sub-logo. We apply the similarity measure described in Chapter 

4.3.2 (b) to compute the similarity scores, and fetch traffic signs in the top 4 ranks from the 

dataset. Fig. 4.8 shows the top 4 positioned retrieved database logos for two different query 

images. As expected, the correct target traffic sign is ranked as the top one by the ZM phase 

method. 

 

 

Fig. 4.7: Some of 100 traffic signs used in the experiment. 
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(a) (b) 

Fig. 4.8: The traffic sign retrieval results. (a) The two query images and the extracted multiple sub-logos. (b) The 

4 highest-ranked database logos and their matching scores against the database sub-logos.  
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4.4.4 An Analysis on Logo Retrieval Results 

From above, we can observe that the ZM phase method has the best performance among 

the four recognition methods (ZM phase, IZMD, EHD and Ring projection) under image blur. 

The photometric and geometric transformations generally lead to an image intensity 

transformation at the pixel level (image blur is used as an example). To illustrate the 

performance differences between them, Fig. 4.9 show the intermediate results for the 

performance comparisons under image blur variation. Fig. 4.9(a) shows a database logo 

image ( , )dI ρ θ  and its transformed version (i.e., query image ( , )qI ρ θ ) under the image blur 

variation, along with their difference images and histograms of intensity differences. We can 

observe that the difference image contain some non-uniform intensity fluctuation. 

As stated in 3.5.3, the non-uniform intensity fluctuation causes the non-uniformly change 

in the ZM magnitude. On the other hand, since the image structures of the query and database 

images are similar, so it is likely that the phase angles of the two images are in phase (i.e., no 

phase difference after the image rotation alignment). On the other hand, the probability that 

the two images are out of phase is small. Since our ZM phase similarity score is measured by 

the phase difference weighted with the ZM magnitude for each order (n, m), the weighted sum 

of the absolute phase differences is nearly zero, as indicated in Fig. 4.9(b). Consequently, the 

single majority of phase differences (zero degree) lead to the robustness of the rotation angle 

estimation and of the ensuing similarity measurement. 

On the other hand, the similarity score of IZMD is computed as the weighted sum of the 

two distances: magnitude distance and phase distance. The non-uniform intensity fluctuation 

leads to a significant change in the ZM magnitudes, resulting in a change in the similarity 

score. Furthermore, the IZMD method performs a phase alignment using a fixed order 
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moment (e. g., φ3,1) to achieve the rotation invariance. However, since different logos have 

different ZM magnitudes, the specific |Z3,1| magnitude may be small. In this case, the φ3,1 

phase becomes unstable so that the other phase differences are not close to zero, as shown in 

the second row of Fig. 4.9(c). As a consequence, the rotation alignment is unstable, so is the 

similarity measure.  

The 4×4 grid partition of the EHD measurement region will face the boundary effect 

problem, as described previously. Although the local gradient angles in the transformed image 

remain considerably unchanged (except under a severe image blur which causes the gradient 

angles destroyed), their gradient magnitudes will change in a non-uniform manner, as 

indicated in Fig. 4.9(d). It results in a greater dissimilarity between the original and 

transformed images. 

Finally, the ring projection method is based on the sums of the corresponding feature 

values accumulated in the individual rings, and, thus, are potentially invariant to image 

rotation. The partition of the ring segments faces the boundary effect, too, and is 

sensitive to the non-uniform image fluctuation, as indicated in Fig. 4.9(e). Moreover, the ring 

projection structure loses the spatial information in the individual rings, thus reducing its 

discriminative power. Consequently, the ring projection has the poor performance, as shown 

in Fig. 4.6. 
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( , )dI ρ θ         ( , )qI ρ θ       ( , ) ( , )d qI Iρ θ ρ θ−      ( ( , ) ( , ))d qH I Iρ θ ρ θ−  

        
(a) 

(b) ZM phase (c) IZMD 

(d) EHD (e) Ring projection 

Fig. 4.9: A performance analysis on the ZM phase, IZMD, EHD and Ring projection methods under image blur. 
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Chapter 5 

High-Efficiency Perspective View Registration 

Using Offline Planning Strategies 

 

5.1 Introduction 

The fundamental problem of view registration is to recover a 2D spatial transformation 

model to overlay two or more images taken under different imaging conditions [60-64]. The 

image will generally deform under a view transformation. Therefore, the view registration is 

better based on the local image features instead of the global features. There are two major 

types of invariant features: points of interest and regions of interest. Both types of features are 

designated in the image by points. The view transformation model can be estimated with or 

without the actual establishment of point correspondences between the reference and sensed 

images first. These methods have different orders of time complexity (refer to Chapter 2). We 

have observed that various countermeasures were taken to reduce the time complexity of the 

view registration method. 

In this chapter we propose an alternative way to achieve better registration efficiency. We 

introduce five planning strategies to sort the feature points in the reference image based on the 

concepts of feature invariance to image deformation, image noise resistance, distinctive 

description power, model estimation effectiveness, and partial image overlapping handling 

capability. The feature points are detected using the Gabor filtering technique and a reference 

matching database is constructed offline using the proposed five planning strategies. Here, we 
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focus on the planning strategies to achieve better registration efficiency. The Gabor feature 

points can be replaced by any of the invariant feature detectors (e.g. MSER or Hessian-affine), 

which are with energy value, dominant orientation. Next, an online registration process is 

presented to estimate the transformation model to overlay the reference image over an 

incoming sensed image. We take advantage of preprocessing of the reference image offline to 

gather the important statistics for guiding the sensed image registration. Fig. 5.1 shows the 

architecture of the proposed method. In this way better registration efficiency can be achieved. 

Experimental registration results are provided and the computational complexity is analyzed.  

 

 
Fig. 5.1: The architecture of the proposed view registration process 
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The main concepts of the method include: 

(1) To reduce the time complexity we initially approximate the homography model by an 

affine one, which is then estimated by using only two pairs of matched points, along with 

their feature point directions, all obtained by the above Gabor filtering technique. The 

initial transformation model is later iteratively updated to produce the final homography 

model. 

(2) To solve the partial image overlapping problem, we partition the reference image into four 

sub-regions and construct six region pairs from the four sub-regions. During the online 

registration we compute the overlap index for the six region pairs so that we can avoid 

selecting the point pairs from the non-overlapping sub-regions. 

(3) We implement five planning strategies to sort the feature points in the reference image 

based on the concepts of feature invariance to image deformation, image noise resistance, 

model estimation effectiveness, distinctive description power, and partial image 

overlapping handling capability to construct a reference matching database offline. This 

database will be used in the later online sensed image registration. 

The rest of the chapter is organized as follows. Section 2 introduces the invariant 

feature point extraction using the Gabor filtering technique. In Section 3, we discuss how the 

affine transformation can be determined by using only two feature points along with their 

feature directions. Next, we refine the transformation model by applying an iterative process. 

Section 4 describes an off-line reference matching database construction using five planning 

strategies in order to select two good starting reference point pair to invoke a later online view 

registration. The concept of an overlap index is introduced to handle the partial image 

overlapping problem. Section 5 illustrates the on-line registration process. Experimental 

results and performance analysis are given in Section 6. Finally, we give an analysis of the 

algorithm computational performance in Section 7. 
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5.2 Feature Point Extraction by Gabor Filtering 

In our previous work [78], we apply a multi-scale and multi-orientation Gabor filtering 

technique to obtain a set of feature points from an image. Let I(x,y) be the input image. For a 

set of scales s ∈ {1, 2, 3, …, S}, and a set of orientations θl=l×Δθ, l = 1, 2,….., L (Δθ is a 

divisor of π), the image responses to the multi-scale and multi-orientation Gabor filters are 

described by a convolution operation:  

, ,( , ) ( , )* ( , )s l s lR x y I x y g x y= ,                               (5.1) 

where 
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The absolute responses to the filters at a common scale and L orientations is summed up at 

each image point and the maximum sum over the S scales is searched, as shown below 

,

1
( , ) max{ ( , ) ( , )}

L
s s l

s S l
E x y E x y R x y

∈ =

= =∑ .                        (5.2) 

This maximum energy E(x, y) is taken to reflect the actual energy at the image point pi(x, y) 
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and the particular scale at which the maximum energy occurs is called the dominant scale,
i

d
ps . 

The corresponding orientation l associated with the maximum filter response ,s lR  at the 

dominant scale is called the dominant orientation or feature point direction,
i

d
pθ , at the image 

point. The Gabor-filtered feature points with a local maximum energy can be shown to be 

robust to the local image deformation. 

 For measuring the similarity between two matching points, the image patches centered at 

the Gabor feature points are represented by the ZM phase descriptor, and the weighted, 

normalized phase differences are computed as in Chapter 3. 

 

5.3 View Transformation Model Estimation  

5.3.1 Affine approximation to the homography model 

 We shall first approximate a homography by an affine model. The affine transformation 

involves six parameters, so we need at least three matched point pairs to estimate the six 

parameters. However, we use only two pairs of feature points. The third point pair required 

for the model estimation is a virtual point pair obtained from the intersection of the two 

dominant orientations associated with the two feature points in each of the two images. Any 

other type of invariant feature points can substitute our feature points if they have an 

accompanied feature point direction, too. The advantage of using two point pairs instead of 

three pairs is to reduce the computational complexity, as shall been seen later.  

 Under the affine transformation the relationships between the two matched point pairs 

( , )k kp p′  and ( , )l lp p′  along with their associated feature point directions ( , )k ke e′G G  and ( , )l le e′G G  
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are given by a matrix A, i.e., 
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There are eight linear equations in six unknown parameters of the affine matrix. We can 

estimate the affine matrix using the singular value decomposition (SVD) technique. 

Fig. 5.2 illustrates the two respective pairs of Gabor feature points ( , )k lp p  and ( , )k lp p′ ′  

in the reference and sensed images, together with their associated unit feature point directions 

( , )k le eG G  and ( , )k le e′ ′G G . Note that the feature point directions keG , leG  and k lp p
JJJJJG

 must not be 

mutually parallel or nearly parallel in order that their extended lines can intersect. That is, 

they must satisfy the following intersection condition:  

| ( ) | 1 ,  |( ) | 1 ,and | ( ) | 1k k l l k l k le p p threshold e p p threshold e e threshold⋅ < − ⋅ < − ⋅ < −
JJG JJJJG JG JJJJG JJG JG

.   (5.4) 

Similarly, the feature point directions ke′G , le′G  and k lp p′ ′
JJJJJG

 in the sensed image must satisfy an 

identical condition. Denote the estimated matrix A by T(0). It will be used as the initial solution 

to estimate a more general homography transformation presented below. 
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(a) (b) 

Fig. 5.2: (a) The point set ( , )k lp p  and the dominant orientation set ( , )k le eK K
 in the reference image. (b) The 

corresponding point set ( , )k lp p′ ′  and dominant orientation set ( , )k le e′ ′ in the sensed image. 

 

5.3.2 Iterative view transformation updating  

Finally, we extend the estimation from the affine transformation to a homography 
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A homography transformation differs from an affine transformation in the nonzero values of 

m31 and m32. We use the affine solution T(0) as the initial solution to invoke an iterative model 

updating (IMU) algorithm to obtain the final transformation estimation.  

Let 1 2{ , , , }nP p p p= " be a set of n feature points in the reference image and 

1 2{ , , , }mQ q q q= "  be a set of m feature points in the sensed image. The IMU algorithm 

iteratively transforms the sensed feature point set Q back to the reference image space to seek 

for more corresponding points in P in support of the current transformation model. All the 

matched point pairs constitute the corresponding point set (CPS) similar to the consensus set 

1

l

l

p

l p

x

p y
⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎣ ⎦

K

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

1
k

k

p

p

k y
x

pK

1

v

v

p

v p

x

p y
⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎣ ⎦

K

0

k

k

e

k e

x

e y
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

G

G
G

0

l

l

e

l e

x

e y
⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎣ ⎦

G

G
G

0

k

k

e

k e

x

e y
′

′

′⎡ ⎤
⎢ ⎥′ ′= ⎢ ⎥
⎢ ⎥
⎣ ⎦

G

G
G

0

l

l

e

l e

x

e y
′

′

′⎡ ⎤
⎢ ⎥′ ′= ⎢ ⎥
⎢ ⎥
⎣ ⎦

G

G
G

1

l

l

p

l p

x

p y
′

′

′⎡ ⎤
⎢ ⎥′ ′= ⎢ ⎥
⎢ ⎥
⎣ ⎦

G

1

k

k

p

k p

x

p y
′

′

′⎡ ⎤
⎢ ⎥′ ′= ⎢ ⎥
⎢ ⎥
⎣ ⎦

G

1

v

v

p

v p

x

p y
′

′

′⎡ ⎤
⎢ ⎥′ ′= ⎢ ⎥
⎢ ⎥
⎣ ⎦

G



Chapter5 High-Efficiency Perspective View Registration Using Offline Planning Strategies 

 79

in RANSAC. Those unmatched pairs are viewed as the outliers. A new transformation T(c) is 

computed using the enlarged CPS(c-1), where c denotes the iteration index. The process is 

repeated unless CPS(c) converges or the iteration number of the process exceeds a specified 

bound.  

To facilitate the above search for any reference point of P in support of a sensed point 

under consideration, we use a table lookup technique. The lookup table is built offline and has 

the same size as the reference image. Each entry of the lookup table is a pointer, pointing to 

the location address of each reference image point. The content of this memory address 

contains a sorted list of {(pi, di), i∈{1, 2, 3, .., n}}, where pi is a reference feature point of P 

with di < d (c)  where di is the distance between pi and the image point picked by the pointer. 

The following is the iterative model updating algorithm: 

Algorithm IMU (Iterative Model Updating) 

Input:  

1. Sets of reference and sensed feature points: 1 2{ , , , }nP p p p= " and 1 2{ , , , }mQ q q q= " .  

2. The initial estimate of the affine transformation T(0) corresponding to a reference point 

pair , ,( , )
s ts i t ip p  and a selected sensed point pair ( , )k lq q . 

Output:  

1. The resultant corresponding point set CPS(r) 

2. The resultant homography transformation matrix T(r) 

Initialization: 

c = 0; d (0) = the reference image width/20; CPS(0) = Φ (empty set) 

Begin  

For c = 1, 2 … , cmax (cmax = 5 in our case) 

1. Reset CPS(c) = Φ (empty set); ( ) (0) / 2c cd d=  
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2. For j = 1, 2, … , m 

(1) Fetch the point qj from Q and find any matched point ip P∈  such that 

( 1) ( )( )c c
j iT q p d− − ≤  using the table look-up. 

(2) If there is more than one such point pi in P, find the one with the minimum 

descriptor matching distance with qj. If the matching distance is less than a 

pre-specified threshold, then add the matched pair to CPS (c).  

End For 

3. If ( ) ( 1)c cCPS CPS −≤ , then return T (r) = T (c) and CPS (r) = CPS (c) and stop the process. 

4. Compute the new transformation matrix T (c) using all point pairs in CPS (c). 

End For 

End 

___________________________________________________________________________ 

 

A remark is in order here. Regardless of whether the input reference pair , ,( , )
s ts i t ip p and 

the selected sensed point pair ( , )k lq q are actually matched or not, the process will be 

terminated within 5 iterations. If the iteration number is less than cmax (cmax = 5 in our case) 

and the resultant CPS (r) is of sufficiently large size, the solution model T(r) is likely to be 

correct; otherwise, the solution model is probably wrong. This is because the inputted 

reference point pair , ,( , )
s ts i t ip p  fetched from the database is the best reference pair based on 

the offline planning strategies. If this pair fails, it means the sensed image is probably not 

overlapped with a reference image part from which the pair , ,( , )
s ts i t ip p  is fetched. More 

concrete examples are given in the section on the experimental results. 
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5.4 Off-Line Reference Matching Database Construction with Planning 

Strategies 

By now, we know that the success of the final view registration is determined by two 

good starting reference points and their respective matched points in the sensed image. In the 

following we shall present five offline planning strategies for providing the two good starting 

reference points from a reference matching database to be constructed.  

First of all, the image feature points must be robust to image noise. The Gabor filters 

used contains a Gaussian smoothing factor, so they can resist the image noise impact. 

Therefore, a good reference feature point should have large response energy, as described 

below:  

Define the normalized energy factor at point pi as 

min

max min

( ) i
i

E EE p
E E

−
=

− ,                                 (5.6) 

where Emax and Emin are the maximum and minimum energy values at the points of the 

reference feature point set, respectively, and Ei is the energy at pi. 

On the other hand, the stability of the dominant orientation at a feature point can be 

measured by comparing the filter responses at the dominant orientation and its two 

neighboring orientations:  

1 1 )
( )

d d d d

d

l l l l
i i i i

i l
i

R R R R
DO p

R

+ −− + −
= ,                   (5.7) 

where dl
iR  is the filter response at point pi associated with the dominant orientation ld, ld 
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L∈ . 

Define the normalized orientation factor at point pi as: 

min

max min

( )( ) i
i

DO p DOO p
DO DO

−
=

−
,                             (5.8) 

where max max{ ( )}ii
DO DO p=  and min min{ ( )}ii

DO DO p= . 

 

Strategy 1: Sort the reference feature points pi, i =1, 2, … , n, in the descending order of their 

products of normalized energy and orientation factors E(pi) O(pi).  

As described in Section 5.2.1 on the affine model estimation, any two reference feature 

points must form a triangle with their associated feature point directions. (Refer to Fig. 5.2) 

Strategy 2: Select the possible reference point pairs such that the two associated feature point 

directions satisfy the intersection condition for constituting a triangle.  

In Fig. 5.3 the two points pi and pj, together with their dominant orientations 
ipeG and 

jpeG , 

form a triangle (shown by solid lines) with area A(pi, pj). The image noise in the two points 

and their dominant orientations will affect the ensuing view transformation estimation 

accuracy. An equilateral triangle with a large area is good for the transformation estimation. 

We should choose such a triangle from the data set. We need to measure the similarity 

between a triangle and a virtual equilateral triangle constructed by the longest side of the 

triangle (shown by dashed lines in Fig. 5.3). An effective equilateral triangle similarity 

measure is given by 
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( , )
( , )

( , )
i j

i j
e i j

A p p
S p p

A p p
= =

2
max

( , )
( 3 / 4)

i jA p p
l

; 0 ( , ) 1i jS p p≤ ≤ ,         (5.9) 

where Ae(pi, pj) is the area of the virtual equilateral triangle constructed. 

 

Fig. 5.3: The triangle formed by the two feature points pi , pj , and their dominant orientations ipeG  

and jpeG
, together with an equilateral triangle constructed by the longest side maxl of the triangle. 

 

Finally, the effective triangle index is defined by  

( , ) ( , )e i j i j i jS p p S p p p p= .                                 (5.10) 

Strategy 3: Sort the two reference point pairs screened by Strategy 2 in the descending order 

according to their individual effective triangle indices. 

Next, let N(pi) be the total number of sensed feature points which are found matched to the 

reference point pi. Similarly, let N(pj) be the total number of feature points which are matched 

to reference point pj. The distinctiveness (or uniqueness) measure of a reference feature point 

pair (pi, pj) is given by 

1( , )
( ) ( )i j

i j

U p p
N p N p

= .                              (5.11) 
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i jp p
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Strategy 4: Sort the reference point pairs in the descending order according to their individual 

pair-wise distinctiveness measures. 

If the reference image is only partially overlapped with the sensed image, the reference 

feature points in the non-overlapping region will find no matches in the sensed image. We 

should avoid using these reference feature points for the view registration. To handle this 

partial image overlapping problem, we partition the whole reference image into four equal 

sub-regions. We will rank reference point pairs in the six ( 4
2 6C = ) combinations of sub-region 

pairs. 

Strategy 5: Divide the reference image region into four sub-regions R1 to R4 and construct the 

six region pairs from the four sub-regions to handle the partial image Registration problem.  

Now, we are ready to give a process using the above planning strategies to pre-compile a 

reference matching database to be used in a later online registration to overlay the reference 

image over an incoming sensed image.  

The off-line reference matching database construction process 

1. Divide the reference image into four sub-regions R1 to R4 (Strategy 5). 

2. For each sub-region Ri, i =1, 2, 3, 4, sort the feature points pi,k of Ri in the descending order 

according to the product of normalized energy and orientation factors , ,( ) ( )i k i kE p O p  

(Strategy 1). Retain those reference feature points in each sub-region whose product of 

normalized energy and orientation factors is greater than a specified threshold. Denote the 

sorted list of the retained points by ,1 ,2 ,{ , ,..., }
ii i i i NF p p p= , i =1, 2, 3, 4. 

3. Construct the six possible region pairs from regions R1 to R4, denoted by RP = {(R1, R2), 

(R1, R3), (R1, R4), (R2, R3), (R2, R4), (R3, R4)}. For each region pair (Ri, Rj) of RP find the 
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Cartesian product (Fi× Fj).  

(a) For each Cartesian product (Fi× Fj), (i ,j)∈{(1, 2), (1,3) (1,4), (2,3), (2, 4), (3, 4)}, 

retain  the possible reference point pairs , ,( , )i k j l i jp p F F∈ ×  satisfying the intersection 

condition (i.e.,Strategy 2). Sort all of the feature point pairs , ,( , )i k j l i jp p F F∈ ×  in the 

descending order according to the effective triangle index , ,( , )e i k j lS p p (i.e., Strategy 3) 

and keep those point pairs , ,( , )i k j lp p with a triangle index , ,( , )e i k j lS p p greater than a 

specified lower bound. Replace the original Fi×Fj by the sorted list of the retained 

point pairs , ,( , )i k j lp p .  

(b) Sort the retained point pairs in Fi×Fj according to the pairwise distinctiveness measure 

(i.e., Strategy 4):
, ,

, ,

1( , )
( ) ( )i k j l

i k j l

U p p
N p N p

=  

  ________________________________________________________________________ 

Denote the set of six sorted lists of reference point pairs of {Fi×Fj} obtained above by 

SPP = {SPPi, i =1, 2, .., 6}. This is called the reference matching database. Table 5.1 lists the 

construction of SPPi from four sub-regions. The reference matching database contains pairs of 

reference points which will be served as the two starting reference points to invoke an affine 

model estimation and a subsequent iterative model updating process.  

TABLE 5.1 THE CONSTRUCTION OF iSPP  FROM THE FOUR SUB-REGIONS. 

SPPi Corresponding sub-regions 
SPP1 R1 R2 
SPP2 R1 R3 
SPP3 R1 R4 
SPP4 R2 R3 
SPP5 R2 R4 
SPP6 R3 R4 
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5.5 Online View Registration 

 When a sensed image is available, we can start to match the reference feature points in 

the matching database with the feature points extracted from the sensed image. We use SPP = 

{SPPi, i =1, 2, .., 6} obtained above to detect the overlapping area between the reference and 

sensed images. During the view registration process a reference point pair , ,( , )
s ts i t ip p  is 

fetched in order from SPP where , ss ip and , tt ip are the is-th and it-th reference feature points 

from sub-regions Rs and Rt, respectively. If either point fails to find any matched point in the 

sensed image, then delete all the reference point pairs in SPP involving the unmatched 

reference point, , ss ip or , tt ip . We define the size ratio of the updated SPPi to its initial set as the 

overlap index. When the overlap index is low for a particular SPPi, it implies the chance that 

the two reference sub-regions of SPPi overlap with the sensed image is also low. An algorithm 

for the on-line registration process is given below: 

 

Algorithm OLRP (On-Line Registration Process) 

Input:  

1. The sets of reference and sensed feature points: 1 2{ , , , }nP p p p= "  and 

1 2{ , , , }mQ q q q= " . 

2. The lists of sorted reference point pairs in the six region pairs: SPP={SPPi, i =1, 2, .., 6}. 

3. The size of initial SPPi,: Si= |SPPi| for i = 1, 2,…, 6. 

Output:  

1. The final corresponding point set: ( )fCPS  

2. The final transformation matrix: T( f ) 

Initialization: 

 Initialize the overlap index OIi = 1 for i = 1, 2,…, 6. 

Begin  
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For c = 1, 2 … , cmax (cmax = 5) 

1. Fetch the first element , ,( , )
s ts i t ip p  from the sorted point pair list SPPi whose overlap 

index OIi is maximum (if there is a tie, break the tie arbitrarily). 

2. Find the matched points in the sensed image for each of , ss ip and , tt ip based on the 

normalized cross correlation measure. Assume the resulting matched point sets are 

CMs = {qk, k =1, 2, .., ns} and CMt ={ql, l =1, 2, .., nt} for , ss ip and , tt ip , respectively. If 

CMs (or CMt) is empty, then delete all the reference point pairs involving the 

unmatched reference point, , ss ip (or , tt ip ), from its associated sub-region Rs or Rt and 

SPPi. Update OIi=|SPPi|/Si and go to step 1. If both CMs and CMt are not empty, 

continue. 

3. For each ( , )k lq q in s tCM CM×  

(1) Compute the affine transformation matrix (0)T  using the two point pairs 

, ,( , )
s ts i t ip p  and ( , )k lq q  (refer to Section 5.1). 

(2) Invoke the IMU algorithm to determine the homography matrix T(r) using (0)T  

as the initial solution and to find CPS(r) (refer to Section 5.2). 

(3) Check the stopping criteria: if the size of the corresponding point set CPS(r) is 

greater than a pre-defined threshold, then return T( f )= T(r) and terminate the 

process with “success”; otherwise, continue. 

       End For 

4. Delete the element , ,( , )
s ts i t ip p from an involved SPPi and update the involved overlap 

index OIi.  

End For 

End 

___________________________________________________________________________ 

 The iteration number of the above cycle is bounded by a fixed number (5 in our case), as 

shall be explained at the end of the next section. 
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5.6 Experimental Results 

A) The Iterative View Registration under the Homography Transformation 

We apply our method to register two aerial images. Fig. 5.4(a) shows the reference image 

of size 500 by 500. A synthetic sensed image with severe perspective deformation is generated 

and shown in Fig. 5.5(b).  

 
(a) 

 
(b) 

Fig. 5.4: (a) The reference image. (b) The synthetic sensed image. 

The reference features points are extracted using the Gabor filtering technique. A 

reference matching database is constructed offline using the five planning strategies. Given 

the sensed image the feature points are extracted first. Then the online registration process is 

invoked to register the two images. The first starting reference point pair is fetched from the 

reference matching database and the corresponding sensed point pair is found right away in 

the case, since this feature point pair is in the overlapping area. Both pairs are shown in the 

images as the two superimposed triangles. They lead to an affine transformation T(0). Then, 

the transformation model is updated by the iterative algorithm IMU and converges in two 

iterations.  

Table 5.2 lists three estimated transformation matrices T(c) for c = 0, 1, 2. To 

demonstrate how the transformation matrix converges, Fig. 5.5(a) shows the feature points 

and the image boundaries for the reference image and the three transformed sensed images 
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using T(c), c = 0, 1, 2. Furthermore, Figs. 5.5(b)–5.5(d) show the registration results under the 

three transformation models. The RMSE of distances between the sixteen matched point pairs 

is 0.75 pixels, so it implies the final homography model is rather accurate. 

 

 

(a) (b) 

  
(c) (d) 

Fig. 5.5: (a) The partial overlapping between the image boundaries of the reference and three 

transformed sensed images. (b)-(d) The view registration results under T(0), T(1), and T(2), respectively. 
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TABLE 5.2 THE TRANSFORMATION PARAMETERS PRODUCED IN THE THREE ITERATIONS 

M3×3
   

11m  
12m  13m  

21m  22m  23m  31m  32m  33m

T(0)
  -0.6110 -1.4876 664.0500 1.0264 -0.8557 161.9824 0 0 1 

T(1)  -0.7977 -0.9341 674.8476 1.0080 -0.7286 173.6283 -0.0005 0.0018 1 
T(2) -0.7995 -0.9120 682.9316 1.0400 -0.7318 175.3778 -0.0005 0.0020 1 

 

B) Image Noise Resistance 

To demonstrate the usefulness of strategy 1 of the offline planning in combating with image 

noise, we generate 100 noisy reference image copies by adding Gaussian noise with 

signal-to-noise ratio 6.2 dB to the original reference image shown in Fig. 5.4(a). Fig. 5.6 

shows the effect of image noise on the ranking of the reference feature points according to the 

descending order of the products of normalized energy and orientation factors E(pk)O(pk), 

k∈{1, 2, .., n}. The horizontal axis indicates the ranking sequence of the reference feature 

points before the introduction of image noise. For each of the 100 noisy reference image 

copies, the feature point ranking process is applied. The vertical axis indicates the new 

ranking number for each feature point in the horizontal ranking sequence. The mean of the 

new ranking number is indicated by the marker “*”, and the corresponding standard deviation 

of the new ranking number is indicated by the blue vertical bars centered at the mean rank at 

each horizontal ranking place. We add a dashed line of slope 45o to serve as the reference line 

for the ranking change evaluation. Any rank marker located above the reference line indicates 

a ranking setback under the influence of the image noise, any rank marker located below the 

line indicates a ranking improvement, and any rank marker located on the line indicates no 

ranking change. The experimental result shows that the new ranking numbers are fairly close 

to the old ones. Therefore, the ranking based on the product of E(pk)O(pk) is fairly stable in 

the presence of image noise. 
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Fig. 5.6: The effect of image noise on the ranking of reference feature points according to the 

product of normalized energy and orientation factor E(pk)O(pk), k∈{1, 2, .., n}. (See the text). 

 

 

C) The Efficiency of Online Registration between Two Partially Overlapped Images 

In this experiment we use two types of images, building, and landscape painting, to 

demonstrate the capability of our method in handling the registration of two partially 

overlapped images. Figs. 5.7(a) and 5.7(b) show the two building images superimposed with 

the two partitioned lines of the entire image and the labels of extracted feature points. The left 

image serves as the reference image. It can be seen that the overlapping area contains R2 and 

R4. From Table 5.3, we can explain the importance of using {OIi}i=1,2,…,6  to guide the 

registration process. Initially, we select SPP6 based on the maximum OIi value and fetches the 

first sorted point pair (#40, #57) from it. The processing results show |CPS| = 0 and no 

matched point pairs are found in the sensed image for either reference point of the pair (#40, 

#57). This indicates that the region pair (R3, R4) of SPP6  is not totally in the overlapping area. 

Then all entries in the six lists {SPPi}i=1,2,…,6 involving one of the reference points #40 and 

#57 will be removed, and the corresponding overlap indices {OIi}i=1,2,…,6 are updated 

accordingly. Next, we select SPP1 whose updated OI index is the largest and the leading point 

pair (#20, #7) of SPP1 is fetched. The online registration process fails again with a final size 
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|CPS| = 0. It indicates the overlapping area is not found yet. The third attempt chooses SPP5 

whose updated OI index is the largest and the reference point pair (#18, #38) is fetched from 

SPP5. These two reference points immediately lead to a successful registration with a final 

size |CPS| being 23. Thus, after three attempts (< 5) we find the point pair (#18, #38) that is 

totally in the overlapping area (R2, R4). The execution time for this on-line registration process 

is 0.312 seconds. Fig. 5.7(c) shows the final registration result of the reference and sensed 

images. 

 

 
(a) (b) 

 
(c) 

Fig. 5.7: (a)-(b) Two real building images that are partially overlapped. (c) The final registration result. 
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TABLE 5.3 THE STATISTIC OF THE ONLINE REGISTRATION PROCESS FOR REGISTERING TWO BUILDING 

IMAGES 

Overlap index Iteration The 
source 

Point labels of 
the pair 

(region involved)

# of 
Matched 

points 
(N(pi), N(pj))

Size 
of 

CPS
OI1 OI2 OI3

 OI4
 OI5 OI6

1 SPP6 (40(R3), 57(R4)) (0, 0) 0 1 1 1 1 1 1 
2 SPP1 (20(R1), 7(R2)) (0, 2) 0 1 0.95 0.79 0.76 0.83 0.47
3 SPP5 (18(R2), 38(R4)) (1, 3) 23 0.8 0.75 0.67 0.76 0.83 0.47

 

We apply the online registration process to another set of three synthetic landscape 

images shown in Figs. 5.8(a)-5.8(c). The reference image is given in Fig. 5.8(b). The final 

registration result is given in Fig. 5.8(d). 

  
(a) (b) (c) 

 
(d) 

Fig. 5.8: (a) -(c) Three synthetic landscape images used for view registration. (d) The final registration 

result. 

 

Table 5.4 gives the respective registration efficiencies with and without the five off-line 

planning strategies. We list the total number of attempts to fetch a reference point pair (PP) 

from the reference matching database SPP to complete a successful view registration. We also 
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record the total computational time (T) taken to complete a successful view registration. 

Without the use of planning strategies, only the IMU algorithm will be employed to find a 

solution model T(r) using a random drawing of two starting reference points from the set of all 

possible combinations of the reference point pairs. The model T(r) is correct, if |CPS(r)| is 

greater than a specified threshold. The IMU process is repeated until a successful view 

registration is completed (note the reference and sensed images are well overlapped in both 

cases). The registration statistics are collected for 100 successful runs. Let PPavg denote the 

average numbers of attempts to randomly draw a reference point pair until a successful view 

registration is completed and let Tavg be the average of the computer execution time taken for 

completing a successful view registration. The results indicate our method can cut down the 

computer execution time by using the offline planning strategies. The time reduction 

benefitted from offline planning strategies is larger, when there are more feature points in the 

given pair of images. 

 

TABLE 5.4 REGISTRATION EFFICIENCY COMPARISON WITH AND WITHOUT THE OFF-LINE PLANNING STRATEGIES 

Registration with  
offline planning 

Registration without 
offline planning Image 

type 

Reference 
image 

Sensed 
image 

PP T (sec) PPavg Tavg (sec) 
Building Fig. 5.7(a) Fig. 5.7(b) 3 0.312 17.42 6.24 

Landscape Fig. 5.8(b) Fig. 5.8(c) 5 0.532 24.76 13.04 
 

From our experience the online registration process generally obtain a correct solution 

within 5 iterations. To put into a more formal statement, under the assumptions that the 

invariant feature points can be reliably extracted by the feature extractor and that the 

overlapping area covers at least two sub-regions (a 50% overlapping area ratio), the online 

registration process will find the overlapping area between the reference and sensed images 



Chapter5 High-Efficiency Perspective View Registration Using Offline Planning Strategies 

 95

using the OI index within a finite number of attempts (4, most of the time in our case). The 

ensuing view registration will succeed, since the first sorted point pair fetched from the 

database SPP is totally in the overlapping area and will find a correct matched pair in the 

sensed image. If the database access number, denoted by NOLRP, exceeds a specified bound (5 

in our case), it is likely that the two images are not overlapped at all or only slightly 

overlapped. So the registration process should be terminated. Of course, we can increase the 

bound on NOLRP when considering those cases with an overlapping percentage less than 50%. 

 

5.7 Analysis of the Algorithm Computational Performance 

The time complexity of the online view registration algorithm does not include the off-line 

reference matching database construction time. The iterative model updating (IMU) process is 

a main sub-task of the on-line registration process. The time complexity of the IMU process is 

first given as follows: 

Step 1: Data initialization: Tinitialization. 

Step 2: Transform each point of the sensed feature point set to the reference image space 

and use the table lookup to find any possible matched reference point and, if so, 

include the matched point in CPS(c): m(Tpoint-transform + Ttable-lookup + Tsimilarity-measure 

+Tnew-point- inclusion) where m is the size of the sensed feature point set. (The feature 

point extraction time is not counted in the time complexity of the registration 

algorithm; refer to Table 5.1.) 

Step 3: Check the stopping condition to determine if a final solution is obtained: 

Tstopping-check 
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Step 4: Compute the new transformation model using the updated CPS(c): Tmodel-estimation 

Assume the IMU process stops after a total of NIMU iterations; NIMU is bounded by cmax 

(cmax = 5 as described in Section 5.2). The total execution time of the IMU process is given by 

TIMU = NIMU× [ Tinitialization +m(Tpoint-transform + Ttable-lookup + Tsimilarity-measure +Tnew-point- inclusion) + 

Tstopping-check + Tmodel-estimation]. Only the term in the inner bracket depends on m and the rest are 

fixed. Therefore, the time complexity of algorithm IMU is of order O(m). 

 

 The time complexity of the on-line registration process is given as follows: 

Step 1: Fetch the first element , ,( , )
s ts i t ip p from iSPP  with a maximum OI value, i = 1, 2, 3,..,6 : 

TSPP. 

Step 2: Find the matched point sets CMs and CMt with respect to , ss ip and , tt ip : 

2×m×Tsimilarity-measure, where Tsimilarity-measure is the time for computing the normalized 

cross correlation between two feature vectors. 

Step 3: For a pair , ,( , )
s ts i t ip p ∈SPP and its matched pair (qk, ql) from the set {CMs × CMt } 

(1) Find the approximate transformation matrix (0)T : Tmodel-estiamtion. 

(2) Apply the IMU algorithm to obtain the outputs ( )fCPS and ( )fT : TIMU. 

(3) Check for the stopping condition: Tstopping-check. 

Step 4: Update iSPP  and iOI  i = 1, 2, 3,..,6: Tdatabase-update. 

Step 5: Check for the failure condition: Tstopping-check. 

Assume NOLRP is the total number of attempts to fetch a point pair from the reference 

matching database SPP for a successful view registration. NOLRP is bounded by 5, as explained 

above. The computer execution time of the on-line registration process is TOLRP = NOLRP×[TSPP 
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+2×m×Tsimilarity-measure + |CMs|×|CMt|×( Tmodel-estiamtion + TIMU + Tstopping-check) + Tdatabase-update+ 

Tstopping-check] where the sizes of |CMs| and |CMt| are some fixed-sized (e.g., 5-element) subsets 

of the sensed feature point set. Among the computation times on the right-hand side of the 

equation, only the second term (2×m×Tsimilarity-measure) and the fourth term (TIMU) are 

proportional to m (refer to TIMU described above) and the other terms are deterministic and 

relatively small. Thus the overall time complexity of the online registration algorithm is of 

order O(m). 
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Chapter 6 

Conclusions and Future Work 

 

6.1 Summary 

In this dissertation, three themes are addressed. In Chapter 3 a new region descriptor, ZM 

phase, is presented which is robust to common photometric and geometric transformations. A 

method for an accurate and robust estimation of the rotation angle between two matching 

regions is described which is implemented in the continuous angle domain without the need 

of specifying a discrete angle histogram bin resolution. Then a measure for image similarity 

matching is expressed by a weighted, normalized phase difference. The proposed descriptor is 

compared with five popular descriptors, SIFT, PCA-SIFT, GLOH, steerable filter, and 

complex moments, based on the precision-recall criterion with respect to a number of 

important system parameters. There are more than 15 million region pairs analyzed. The 

results show that the proposed ZM phase has the leading performance under all photometric 

and geometric transformations for all textured scenes. As for the structured scenes, the ZM 

phase has the best performances under image blur and nonlinear lighting, but is comparable to 

the SIFT-based descriptors under other transformations when the values of 1-precision are 

small. The analyses on the performance evaluation results are given to account for the 

performance discrepancy. First, the descriptor performance depends on the estimation 

accuracy of the rotation angle between two matching regions. Table IV shows the rotation 

angle estimation error of the ZM phase is better than that of SIFT. Second, the feature 
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dimensionality and feature orthogonality also affect the descriptor performance. Third, the 

ZM phase is more robust than SIFT-based descriptors under the non-uniform image intensity 

fluctuation.  

In Chapter 4, we extend the proposed ZM phase descriptor to present a new recognition 

method of logos imaged by mobile phone cameras which can be incorporated with mobile 

phone services for use in enterprise identification, corporate website access, traffic sign 

reading, security check, content awareness, and the related applications. The proposed method 

is compared with three major existing methods, IZMD, EHD, and Ring projection. The logo 

classification and retrieval experimental results show that the proposed ZM phase method has 

the best performance under the typical photometric and geometric transformations 

encountered when using a handheld mobile phone camera operating in the daytime or 

nighttime. Furthermore, an analysis on the performance evaluation results is given to account 

for the performance discrepancy between the four different methods. 

In Chapter 5, we have developed a new view registration method that consists of two 

parts: offline planning process and online registration process. Five planning strategies are 

presented to construct a reference matching database offline. This database is essential to the 

reduction of time complexity of the online registration, in particular when the reference and 

sensed images are partially overlapped. This is because we can organize the reference feature 

points beforehand, aiming at tackling the various problems encountered including image 

deformation, image noise, point matching ambiguity, model estimation complexity, and 

partial image overlapping, etc. That is, we take advantage of the preprocessing of the 

reference image to guide the online registration. Computer simulation results demonstrate the 

desirable features of our method. A computational complexity analysis is also given, which 

indicates the time complexity of our online registration algorithm is of order O(m) where m is 
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the size of feature points in the sensed image.  

 

6.2 Future Research 

Some research topics for future work are proposed. 

(1) Symmetric information extraction 

Since symmetry exists widely in the real world, the symmetry detection and 

localization of symmetry axes is significance for understanding and interpreting the 

images. The Zernike moments are very suitable for the symmetry detection due to their 

symmetric and periodical properties. We are currently develop a novel approach which 

transforms the 2D symmetric image into a 1D periodic curve based on the symmetric 

properties of the ZMs function. In this way, the symmetric type (rotational or reflection 

symmetry), fold number and the fold axes can be plainly determined by finding the 

periodic information from the transformed 1D curve. Furthermore, a unique solution of 

the rotation angle for a given gray-level or binary image can also be determined. 

 

(2) Content-based image retrieval (CBIR) 

We plan to extend the proposed ZM phase-based descriptor for the application of 

content-based image retrieval. To do this, the interests of regions for a set of labeled 

training images are first detected and their descriptors are constructed by the proposed ZM 

phase approach. The collected descriptors are grouped via clustering, and the set of cluster 

centers are vector quantized. Then a set of vocabularies is established as a set of cluster 
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centers. To organize a codebook, the visual words are constructed from the set of 

vocabularies. The codebook is stored as an inverted file or a hash table, called the gallery 

image database. During the image retrieval stage, the corresponding visual vocabularies, 

visual words are generated for a query image, and then the images in the gallery database 

are ranked with respect to the query visual word. The most similar gallery images are then 

output as the query result.
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