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Deriving protein dynamical properties from weighted protein contact
number

Student: Chih-Peng Lin Advisor: Dr. Jenn-Kang Hwang

Institute of Bioinformatics

National Chiao Tung University

ABSTRACT

It has recently been shown that in proteins the atomic mean-square displacement
(or B-factor) can be related to the number of the neighboring atoms (or protein contact
number) and the square distance from the center of mass of a protein. This relationship
allows one to compute the B-factor profiles directly from protein contact number and
the square distance from center of mass. The two methods, referred to as the protein
contact number model and the protein fixed-point imodel, are appealing, since they
require neither trajectory integration nor matrix diagonalization. As a result, the protein
contact number model and the protein: fixed-point - model can be applied to very large
proteins and can be implemented as a high-throughput computational tool to compute
atomic fluctuations in proteins. Here, we show that the properties of the two models can
be integrated and further refined to that between the atomic mean-square displacement
and the weighted protein contact-number, the weight being the square of the reciprocal
distance between the contacting pair. In addition, we show that this relationship can be
utilized to compute the cross-correlation of atomic motion (the B-factor is essentially
the auto-correlation of atomic motion). For a nonhomologous dataset comprising 972
high-resolution X-ray protein structures (resolution < 2.0 A and sequence identity <

25%), the mean correlation coefficient between the experimental and computed B-



factors based on the weighted protein contact-number model is 0.61, which is better
than those of the original contact-number model (0.51) and other methods. We also
show that the computed cross-correlation maps, eigenvalues and eigenvectors based on
the weighted contact-number model are globally similar to those computed through
Gaussian Network Model and normal model analysis for some selected cases. Our
results underscore the relationship between protein dynamics and protein packing. We
believe that our method will be useful in the study of the protein structure-dynamics

relationship.
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INTRODUCTION

Protein dynamics is dictated by protein structure. The dynamic properties of
proteins result from a network of complex interactions like covalent bonding and
nonbonded electrostatic or van der Waals interactions. To compute the dynamical
properties of proteins, one usually resorts to molecular dynamics simulation'”, which
consists of integrating long time trajectories of protein structure using empirical force
field. Though molecular dynamics is a powerful method, it is computationally
expensive. A recent study’ show that a massive molecular dynamics simulations of 30
proteins using four different force fields in aqueous solution reportedly took

computational time equivalent to around 50 years of CPU.

Due to the recent progress of structural biology research, the number of protein
structures deposited in Protein Data Bank has nearly quadrupled since 2000. Hence,
there is an increasing interest in developing -efficient: methods to compute protein
dynamic properties from protein structures.in-a high-throughput fashion. For example,
some studies have shown that simple energy functions that include the two most
important characteristics of amino acids, mainly hydrogen bond formation capacity and
hydrophobicity, may well account for the prediction of some supersecondary structures
or tertiary folds in small proteins ®’. From the above point of view, the question “Is it
possible to find a novel characteristic of a given protein to study protein dynamics with
or even without the development of a new simple energy function based on the

characteristics?” is interesting and valuable.

In 1996, Tirion developed a single-parameter Hookean potential and made it

suitable for the contact interaction of all atoms in X-ray protein structures in a normal



mode analysis (NMA) of large-amplitude (low frequency) vibrations in elastic motions®.
This approximation is based on a Gaussian distribution of interatomic distances about
their equilibrium values. The simplicity of the postulated single-parameter Gaussian
model and its success in predicting results for a complex system may have far-reaching
consequences in understanding protein structures. Based on this theory, Bahar et al.’
analyzed the connectivity matrix of nonbonded interactions in proteins and developed
the elastic network model. The Elastic Network Model (ENM) or Gaussian Network
Model (GNM)*'° provides an alternative for molecular dynamics in computing average
dynamical properties. In the GNM, each Ca atom is connected through a single-
parameter harmonic potential to its neighboring atoms that are within a certain cut-off
distance, usually in the range of 7.to 10 A. The elastic network model then builds a
connectivity matrix (or called:the Kirchhoff matrix), from which cross-correlations and
auto-correlations of fluctuations of residues can be obtained through matrix
diagonalization. Micheletti and-co-workers'' have developed a model based on a mean

11-13

field theory to study the dynamics of a protein. The shape of the protein is specified
by the locations of the Ca atoms with 2 types of interactions: simple harmonic potential
functions describing bonded interactions and Go-like functions describing nonbonded
interactions. This model was applied to protein-protein interactions'>. Zhou and co-
workers'® later extended this Co-based model protein to a model based on all heavy

atoms and they were able to make a more accurate prediction of the atomic mean-square

displacement (or B-factor) using this extended model.

All of these methods mentioned above all supposed a complex or simple energy

14,15

function in interresidue. But recent studies showed that the B-factor is closely

related to the number of noncovalent neighboring atoms or the atoms lying on the same



shell centered at the fixed point tend to have similar thermal fluctuations. For
convenience, we will refer to the two methods as the protein contact number (CN)
model and protein fixed point (PFP) model. The CN model and PFP model are
appealing, since they predict the B-factor profiles directly form protein structures
without either trajectory integration or matrix diagonalization. However, despite theirs
simplicity, the CN model has been shown to be superior to the GNM for a small set of
38 structures'* and the PFP model has been comparable with GNM for a large set of
972 structures'®. Besides, when observing the contact numbers of residues and centers
of mass in the proteins for the nonhomologous dataset (see Methods), we found the
frequencies of residue contact numbers tend to have a normal distribution and the
frequencies of center of mass tend to have larger contact numbers (a more crowded
space environment). Figure 1 shows the frequencies of the residue contact numbers and
figure 2 shows the frequencies of center of mass contact numbers of the centers of mass
in proteins. This implies we may can combine the characteristics of the CN model and
the PFP model to develop a new model which calculate the contact numbers within the
effect of distances for every point (atom) of a protein instead of just using one point (the
center of mass) of a protein to predict the B-factor. Here, we show that the CN model,
which relates the B-factors to protein contact number, can be further improved if the
protein contact number is scaled down by the square of the distance between the

contacting pair and we call this model as weight contact number (WCN) model.

Large conformational transitions contain the relative movement of almost rigid
structural regions in many proteins. The domain motions are important for various
protein functions such as catalysis and regulation of activity. Besides, some proteins

have at least two different conformations in functionally distinct states. The transition



from one to another form must be a major mode of internal motion. For example, in

. .. . . 17.1
citrate synthase, this is a two-domain protein and have been shown'”'®

that coenzyme
A binding induces the small domain to rotate around an axis which is close to the
residue 274 and get a conclusion of this motion is the closure of the cleft between two
domains in which the substrate binding site puts in. One of the best suited theoretical
methods for studying motions in proteins is normal mode analysis P2B(NMA) and the
other one is GNM. Both methods can decompose the protein dynamics into a collection
of motions which include large amplitude (low frequency) and small amplitude (high
frequency) motions. Here, we show that cross-correlation between residues, vibration
frequency and amplitudes with phases of collective motions can also be computed in the
framework of the weighted contact number ‘model. By diagonalizing the cross-
correlation matrix computed by WCN, we can get the similar inverse of eigenvalues
(vibration frequencies) and eigenvectors (vibration ‘amplitudes and phases) within 3
lowest modes to those from NMA lor GNM. It is surprising to directly link not only

protein structures and thermal fluctuations but also protein structures and collective

motions.



METHODS
Protein contact number model and weighted contact number model

The contact number v, of the i" residue is defined as the number of the
neighboring residues whose Co. atoms are within a cut-off radius r, of that of the i"
residue.

Vi:ZN:H(ro_rij) (1)

j#i

where r; is the distance between Ca atoms of residue i and j, and H(x)=1if x>0

and H(X)=0 if x<0. Eq. 1 defines an integral contact number and gives an equal
unitary weight to every contacting atom regardless of its distance to the central atom.

Figure 3 schematically illustrates the contact number (or CN) model.

To improve the CN model, we must think about PFP model first as what was
mentioned in the introduction section. In the PFP model, the predicted B-factor values
will increase by the main effect of the square of the distance between a Ca atom and the
center of mass. In other words, the ability of the center of mass to stabilize atomic
fluctuations will decrease squarely by the distance. So, we make an assumption that the
contact effect between atoms may have similar property to affect atomic fluctuations as
PFP model. In this way, the distance-dependent contact number v/ of the i" residue is

defined as
V=2 HO,-)/g

which defines a real-valued contact number, i.e., the integral contact number weighted

by the square of the reciprocal distance between the contact pair. Due to the influence of



the cut-off radius r, (see results) and the fast decay of the factor 1/ rij2 at large

separation I;, the real-valued contact number can be simplified to

vi=) — (2)
Figure 4 schematically illustrates the weighted contact number (or WCN) model. We

will refer to v as the CN, while v' (Eq. 2) as the WCN.

Assessment of profiles comparisons with statistical analysis

The CN (or WCN) profile of a protein of N residues is defined as
W=(@,,®,,...0y) (3)

where @, is defined as the reciprocal contact number, i..c., @, =1/v, or @, =1/v{. The

X-ray B-factor profile is denoted as

b=(b,b,....1,) 4)

where b, is the B-factor of the Cow atom of the i" residue taken from the PDB file.

For the purpose of easy comparison, we will normalize both the CN (or WCN)

and the B-factor profiles to the corresponding z-scores:
z, =(x,—X)/o, (5)

where X and o, are the mean and standard deviation of X. Here X designates b or w.
The normalized CN (or WCN) and the B-factor profiles are denoted by the vectors z
and z,, respectively. In the CN model, the cut-off distance is set to 7.35A, which

corresponds to the second minimum of the average contact-pair distribution of protein



structures'®. For the prediction assessment, we use two types of correlation coefficients

between the profiles. One is the Pearson’s linear correlation coefficient,

. Z(zbi _bezwi —ZW)
\/Z:(Zbi _7b)22(zwi _zw)z

(6)

if c=1, two profiles are perfectly correlated; if 1 >¢>0.5, two profiles are strongly
correlated; if 0.5>c¢>0, two profiles are weakly correlated; if c=0, they are
completely independent of each other; if 0>c>—-0.5, two profiles are weakly anti-
correlated; if —0.5>c > —1, two profiles are strongly anti-correlated; if ¢ =—1, they are
perfectly anti-correlated. But we think the extreme values in profiles may affect
Pearson’s linear correlation coefficient results. To solve this problem, the other one is
Spearman’s rank correlation coefficient, p, which is based on the rank order of z-scores

in profiles rather than its actual value,

o 6Xzs -2, )
p=1- n(n? 1) @

where n is the number of values in the dataset, B and W; denote the ranks of

corresponding values z, and z,. Four indices of prediction assessment are used to
compare the global performances of different methods for a data set: C, the average

Pearson’s linear correlation coefficient, C,, the fraction of number of structures with
c>0.5, p, the average Spearman’s rank correlation coefficient, and p,;, the fraction

of number of structures with p >0.5.

To know if the performances of correlation coefficients have significant

differences between the models, we use Student t-test to check,



Zy— 1,

S, AN

t (8)

where Z, is the average and S, is the standard deviation of differences in correlation
coefficients produced by two of the models. The constant g, is set to 0 because we

want to know whether the average of the difference is significantly different than 0. N
is the sample size. Once a t value is determined, a p-value can be found using a table of
values from Student's t-distribution. If the p-value is lower than 0.05, it indicates that

the distributions of the results are significantly different from each other.
Cross-correlation between residues by WCN model

The normalized correlation between fluctuations of atom i and j is defined as

o (or,-or;)

! \/<§ri O, ><§rj : 5rj>

)

where dF; and or; are the fluctuations of the atom i and j, respectively, around their

equilibrium positions. In the framework of the WCN model, we formulate the

correlation term W;; between residue i and residue j as

4
N 1 N
Wi' = >A(i )A( (10)
: [k#zi,jrikrjk/log(eJrrij)] <k¢i,j ‘ Jk>

where X and X; are the unit vectors in the direction of r,—r, and r,—r,,

respectively. See Figure 5 for a schematically representation of Eq. 10. Note that when

- - 71 . .
i=], W; reduces to @ . Then we denote the cross-correlation matrix as



C=(w,,W,,,W,;,..W,,,...Wy, ) when the protein size is N. It must be noted that we WC
model provides a straightforward way to computed the cross-correlation matrix directly
from protein structure without the use of the Hessian matrix, whereas other method like
the NMA or GNM needs to first diagonalize the Hessian matrix in order to obtain the

cross-correlation matrix.

The WCN model also provides a way to compute the normal modes of protein

motion. At first, the cross-correlation matrix C is diagonalized,
C=uUAU" (11)

where U and A is the eigenvectors:and eigenvalues respectively. Since the cross-
correlation matrix is the inverse of the Hessian matrix, the eigenvectors U are the
amplitudes and phases and the inverse of eigenvalues A~ are the frequencies of the

residues motion vibration for each corresponding modes.

To compare the cross-correlation matrix generated by WCN model with the ones
generated by NMA and GNM, we normalize the cross-correlation matrix

C=(W,,W,,W;,,..W,,..Wy, ) by the following equation:

W, = — (12)

Dataset

We selected from PDB-REPRDB?** 972 protein chains of length > 60. Their
structures are solved by X-ray crystallography with resolution < 2.0 A and R-

factors <0.2. All chains are of pair-wise sequence identity < 25%. The chains of the data



set are listed in the appendix. In the data set, the protein size ranges from 60 to 1520
with an average protein size around 300 residues. The resolution of the X-ray structures
ranges from 0.73 A to 2.0 A with an average structural resolution 1.57 A. The
distribution of protein size (i.e., the number of residues) and structural resolution of the

data set are shown in Figure 6.

10



RESULTS
Comparison of CN model and WCN model based on different cut-off distances

At first, to search which cut-off distance is suitable for WCN model and realize the
influence of the cut-off distance on B-factor prediction, we use two definitions for cut-
off distances to see the performance of average correlation coefficient in CN and WCN
model. One definition is to set the cut-off distance from 3A to 30A; the other is to set
the cut-off distance based on the percentage of a protein size which was calculated by

the maximum Ca-Ca distance between residues in a protein.

Figure 7-10 show the curves of the Pearson’s linear correlation coefficients and
Spearman’s rank correlation coefficients between the X-ray B-factors of Ca atoms and
those computed by the CN model and the WCN meodel. In CN model, the curves of
average correlation coefficients ascend when the cut-off distance increases at beginning,
and they achieve the highest point at 15A (the value is in contrast with the previous
study'® that the cut-of distance of CN model is 7.35 A) or 25% protein size. After the
highest point, the curves will descend if the cut-off distance still increases (see Figure 7
and Figure 8). In WCN model, the curves of the average correlation coefficients will
ascend when the cut-off distance increases and reach a plateau (see Figure 9 and Figure
10). It implies that we don’t need to worry which cut-off distance is appropriate when
using WCN model to analyze protein dynamics. Finally, we don’t set any cut-off

distance as a default parameter for WCN model due to its property.

11



Comparison of CN model and WCN model based on all atoms and entire residue

The results of the above section are based on only Ca atoms. Under this criteria, in
the WCN model with no cut-off distance, the average correlation coefficient are
€ =0.61 and p =0.63. The fraction of structures with a correlation coefficient > 0.5
are C,; = 79% and p,; = 82% . The CN model with the cut-off distance 7.35 A, which

is bases on previous study'®, yields poorer results: €=0.51,p = 0.49, C,s =54% and

Dos = 50%. The effect of the term 1/r;

i » which is missing in the CN model, on the
results is significant. But, if the average X-Ray B-factors for the entire residue are used,

the WCN model yields €=0.60, p=0.63, ¢,s =79% and p,; =83% . The CN
model yields ©=0.50, p =0.50y €, =54% and" g, = 53% . These results are not

much different from those based.on the Co-atoms. These results are shown as a
histogram of the Pearson’s” linear 'correlation: coefficients and Spearman’s rank
correlation coefficients in Figure 12:. To rely on this conclusion, we can simply use Co

atoms to represent entire residues.

To study the effects of all atoms on the computed B-factors, we calculate the WCN
and CN B-factor profiles using all non-hydrogen atoms (i.e., C, N, O and S atoms) of

proteins. If all heavy atoms are included in calculation in WCN model, the results are

ol
Il

0.62, p=0.65,c,; =85% and p,; =87%, while the all-atom CN model yields

ol
I

056, p=0.58, c,s =77% and p,; =79% . Both results are better than those

based on only Coa atoms. These results are shown as a histogram in Figure 11.

12



The computed B-factor profiles using CN model, GNM model and WCN model

The currently available GNM program™ uses only Co atoms for proteins in the
calculation of the B-factors, therefore, for the sake of comparison, the following

calculated results are based on the Co atoms in both the WCN and CN models.

Figure 13 shows the histogram of the Pearson’s linear correlation coefficients and
Spearman’s rank correlation coefficients between the X-ray B-factors of Co atoms and
those computed by the WCN model, the CN model and the GNM model. The GNM
yields €=0.56, p =0.57, ¢c,;, =69% and p,; =73% . This is in contrast with the
previous study'® that the CN model performs better than the GNM. It should be noted
that, however, the previous study was conducted-on a much smaller data set of 38
structures. Though the correlation-coefficient distributions of these models seems to
look quite different, we perform additional Student t-test to check these distributions
using the statistical package R*®. The p-values of the WCN-GNM, GNM-CN and
WCN-CN are all smaller than 2.20x107'°), indicating that the distributions are
significantly different from each other. On the other hand, we notice that a better
correlation between the WCN model and the GNM (¢ =0.86, p=0.91) than that
between the WCN and the CN model (¢ =0.67, p =0.73). These results are shown in
Figure 14. Thought both the CN model and the GNM consider the contributions from
any atoms to be identical as long as they are within the cut-off distance, the CN model
completely ignores those atoms that are out of the cut-off range, while the GNM takes
them into account implicitly through the network. The WCN model considers the

contributions from any atoms with a weighting factor 1/ I’”2 In Figure 15 and Figure 16,

we compare the B-factor profiles of flavocytochrome c3 (1YOP:A) and human

13



ppGalNAcT-2 (2FFU:A) computed by 3 methods with each compared with the X-ray
B-factor profile. The WCN and the GNM B-factor profiles agrees relatively well with
the X-ray B-factors, but the CN B-factor profile appears to be much more rugged,

probably due to the artificial cut-off effect.

The breakdown analysis for the accuracy of CN model, GNM model and WCN

model

Classified in terms of the SCOP classes, the structures in the dataset has 111 all-a
proteins, 181 all-B proteins, 245 o/ proteins, 193 o+ proteins, 15 multi-domain
proteins, 11 membrane and call surface proteins and peptides, 22 small proteins, 5
coiled coil proteins, 1 designed protein and 188 undefined in SCOP. In Table 1 and
Table 2, we compare the statistics of the ‘performances of different models for the 4
major SCOP classes: all- a proteins, all- 3 proteins, o/ proteins and o+ proteins,
since the other classes have much smaller sample size (1-22). All 3 models perform
worst for the all-a proteins and perform better when the protein structure has -sheets,
especially for all-B proteins. In general, the trends of the performance of these methods
appear to be similar. We compare the performance of all 3 methods as a function of
protein size, X-ray resolution and R-factor in Figure 17, Figure 18 and Figure 19. We
remove the proteins in the marginal regions (for example, protein size 600-1550) due to
the smaller size in those regions. One notices that, while the average performance of the
CN model shows slightly downward trend for proteins of larger size or lower resolution,
the average performances of the WCN model and the GNM appear to be relatively

unchanged in the range of protein properties studied.

14



Case studies for the discrepancy of B-factor profiles between theory and

experiments at specific regions in some proteins

We note that WCN model doesn’t always accurately reproduce the experimental
B-factor profiles in some proteins, and even they have negative correlation with WCN
predictions. For example, we show in Figure 20 the case with one of the bad correlation

(c=-0.11, p=0.00 ): 1GKS&:I, the small chain of Rubisco from the green alga

Chlamydomonas reinhardtii. On close inspection, we found that this structure is in fact
part of a larger biological unit®’ (Figure 21A) and, if the complete biological unit is
included in calculation, the WCN correlation of 1GKS8:I is improved to ¢ =0.75 and

p =0.79 (Figure 21B). We show two imorerexamples in Figure 22 and Figure 23,

comparing WCN profiles with and without including biological units in calculation. By
this inspection, we know some"proteins in our data set are in fact part of larger
biological units, which are the assumed functional form.of the macromolecule. In the
PDB, the biological units are <built from the crystallographic space group using
symmetry operation. Currently, the coordinates of biological units can be obtained
from either PDB or PQS®. The PDB and PQS biological units agree on 82% of entries®.
In this work, we use the PDB biological units for computation. We computed the WCN
B-factor profiles of the same proteins of the data set with other parts of the whole
biological units (if any) taken into consideration. The Figure 24 shows the histogram

WCN model yields €=0.65, p =0.69, ¢,; =86%, and p,; =0.89 which are better

than the previous results.

15



Applications to large proteins

The WCN model can be readily applied to large proteins, since its memory
requirement is of the order O(N), where N is the size of protein. An example is the
50S ribosomal subunit (1YJW) comprising 3774 residues. Figure 25 shows its structure
and computed B-factor profile using the WCN model. On the other hand, the oGNM?’

the web version of the GNM, is unable to return the B-factor profile of 1YJW.

The effect of the exponential value of the reciprocal distance between contact pair

for weighting the contact number

According to the results which WCN model has a better performance than CN
model, we think the “weight” plays an important role when we compute the protein B-
factors. To verify the “weight” effect of WCN model on the B-factor prediction, we
have a test using different exponential values for the weight in WCN model and try to
find out which exponential value.has the best performance in average correlation
coefficients. From the Figure 26, we find WCN model reach the best performance when
the exponential value is 2.3 in Pearson’s linear correlation coefficient evaluation and 1.9
Spearman’s rank correlation coefficient evaluation. This result is similar to the classical
physical phenomenon which the effect of force always decays in the square of the
reciprocal distance between the two objects. To keep the physical meaning, we still

choose 2 as the exponential value.
The cross-correlation of fluctuations between residues

The knowledge of cross-correlated motion between residues is useful in understanding

30,31

long-range communication and large domain movements relevant to protein
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function®***. The cross-correlation matrix can be computed through the normal mode
analysis (NMA)'*?!". In this method, i.e. NMA, the protein structure must be first
optimized through energy minimized. The second derivative matrix of the total potential
function (also called the Hessian matrix) is computed from the optimized structure. The
cross-correlation between atom fluctuations is computed from the eigenvalues (i.e.

vibration frequencies) and the eigenvectors (i.e. vibration amplitudes and phases) of the

Hessian matrix using <5|’i -5rj>~ZUikU i/ A » where 4, is the eigenvalue of the k"
k

mode and U, is the i"" component of the eigenvector of the k™ mode. Instead of going
through procedures of energy minimization and matrix diagonalization as in the case of
NMA, we can compute the cross-correlation map directly from protein structure using
Eq. 10. We eliminated those proteins-whose -residue sizes are larger than 1000 amino
acids in the dataset because of the computational limit of the NMA program, or those
ones whose structures can’t be optimized through the-energy minimization process.
Finally, we get 961 proteins and<calculate-the correlation coefficients of the cross-
correlation maps, eigenvalues and eigenvectors generated from WCN, GNM and NMA.
Again, we use both of Pearson’s linear correlation coefficients and Spearman’s rank

correlation coefficients to see if they have different results or conclusions.

In Table3, the results show the cross-correlation matrices computed by WCN
correlates well with those by GNM or NMA, but the correlation between WCN and
NMA are slightly better than WCN and GNM. Figure 27 shows the normalized cross-
correlation map of IRWH:A whose cross-correlation map was computed by WCN; and
compares it with those of GNM and NMA. Currently, there is no "experimental"

correlation map (except for the diagonal terms, which correspond to the X-ray B-factors)
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as a reference standard. However, the similarity of these types of computed correlation
maps indicates that the WCN model provides a quick alternative to GNM or NMA to
compute the correlation of motions in proteins. For 1RWH:A, Pearson’s linear

correlation coefficient between WCN and NMA is Cycy_nua = 0.85; WCN and GNM,
Coeneenv =0.79 5 and GNM and NMA, Cgyy_nwa =0.85 . Spearman correlation
coefficients are pycy_nva = 0-88, Owen_onm = 0-79 and pgyy _nua = 0.87 .We also show

more cross-correlation maps as examples in Figure 28-31.

The inverse of the eigenvalues, i.e., vibration frequencies, is equal to the
eigenvalues of Hessian matrix, Table 4 only shows the Pearson’s correlation coefficient
because the inverse of eigenvalues (vibration frequencies) have been ranked and
Spearman correlation coefficient will-be . . We find WCN has very high correlation

coefficients with GNM (C =0.99) and NMA (€ = 0.96 ) when considering all modes.

From the equation <5ri -5rj>~ ZUikU i« /A » the correlation between atom fluctuations
k

is affected more when A, (vibration frequencies) is smaller. Therefore, we also consider
the first 20 slowest modes to see the correlation, and the results of the first 20 slowest
modes are slightly lower than the ones of all modes. Figure 32-35 show the inverse of
eigenvalues of all modes and the first slowest 20 modes of 1CVR:A and 1ARB

respectively.

Finally, we focus on the 3 sets of eigenvectors of modes with first 3 slowest modes.
These eigenvector values represent amplitudes and the eigenvector phases represent the
relative directions of slow vibration motions which can be regard as global scale

motions. Table 5 shows the correlation coefficients of the eigenvectors generated from

18



WCN, GNM and NMA in first mode, second mode and third mode. WCN correlates
well with GNM and NMA in the first mode, but the other two modes reveal more
differences. Figure 36-38 show the ribbon diagrams which are colored by the positive
(blue) and negative (red) phases and the eigenvectors distributions in first mode, second
mode and third mode of ICVR:A. Previous study> shows that the catalytic residues are
usually immobilized in order to maintain the delicate arrangement of functional group.
For ICVR:A, Figure 39 shows the protein consists of the catalytic domain subdivided
into A-subdomains (yellow) and B-subdomains (green), and the IgSF domain (purple)34.
The subdomains of catalytic domain almost can be indentified by the phases of
eigenvectors in first mode and second mode. The other example is 1 ARB. Figure 40-42
show the eigenvectors distributions of TARB. For 1ARB, Figure 43 shows the catalytic
triad comprises His57, Aspll3, and Ser194 (green)*: The three residues lic on the

interfaces of the phases in first mode, second mode.
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DISCUSSION

A simulation of a polypeptide chain folding into a native structure must include

many and complicated molecular force fields'**

. If people get protein dynamics
directly from native protein structure properties, they will be able to avoid the
complicated molecular simulation computation. Previous studies show CN model and
PFP model can derive protein dynamics simply from protein structures (i.e., without the
knowledge of protein sequences) and have good performance in B-factor prediction. In
advance, we find the more close relationship between the thermal fluctuations of
proteins and the distance-dependent protein contact number allows one to compute
dynamic properties of proteins more accurately than CN model and PFP model. This

1310 as well as

method, i.e., the WCN model, does not presuppose a mechanical mode
the potential functions associated with that model as other methods: molecular
dynamics is based on sophisticated molecular force field"**, while the GNM assumes a
harmonic oscillator model fotr proteins with their structures described in terms of a
collection of masses connected to each other through a spring of a uniform force

constant. Besides, GNM or other methods based on molecular force field all need one or

more parameters to perform a matrix creation or a molecular simulation.

We showed that the WCN model can produce more accurate B-factor profiles than
other methods and just need the topological structure of proteins but without any
parameter. Because of its simplicity, this method is very efficient when proteins have
large sizes and is convenient to study the linkage between protein function and
dynamics. From the study of biological units, we noted that the predicted B-factor will

fall above the experimental B-factor at the regions of protein-protein interfaces because
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of the lack of contacting effect between atoms. We think this may be a possible way to

investigate protein-protein or protein-ligand interaction.

Traditionally, one who wants to use protein contact number as a feature to analyse
protein structure dynamics or functions will need to decide an optical cut-off distance to
catch appropriate neighboring atom information and assume these nightboring atoms

contribute contact effect equally”'*

. In WCN model, we don’t need to find an optical
cut-off distance but include all atoms contact effect which is scaled down by the square
of the distance between atoms. In addition, we show for the first time that cross-
correlation between residues can be computed directly from weighted protein contact
number and correlates well with the.ones' computed by GNM or NMA. By directly
computing eigenvalues and eigenvectors from the cross-correlation matrix, it suggests

that it is possible to skip the Hessian matrix-creation and obtain the normal mode

motion from correlation maps'computed by any method.

By inverting the Hessian matrix, (in-GNM, it is the Kirchhoff matrix), one can
obtain the cross-correlation matrix, and the diagonal elements of the matrix will
correspond to the X-ray B-factors, from which the information of protein dynamics can
be derived. On the other hand, the WCN model computes the correlation matrix (Eq. 10)
directly from the protein structure without first computing the Hessian matrix, thus
avoiding assuming any explicit form of the potential functions. In this way, the WCN

model can be seen as complementary to the GNM.

Shih et al."” have recently showed that the atoms in proteins lying on the same
spherical shell centered at the fixed point tend to have similar thermal fluctuations. We

will refer to this model as the protein fixed-point (PFP) model. The PFP model assumes
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that the protein centroid in the simple single-domain protein is the position of the
smallest fluctuations, i.e., the fixed point. The PFP model, like the WCN model,
provides a simple way to compute both auto-correlation and cross-correlation between
residues in reasonable accuracy. It is not hard to show that the WCN model can reduce

to the PFP model; the diagonal term of Eq. 10 reduces to the following form

k=1, Nk rjk/log(e+ ) k=i Mk

Using the approximation,

-1
LA |
[2_2] ~ R}
k=i Tk

where R is the distance of the i" Ca atom from the protein centroid. We obtain from

Eq. 12 W, = R?, which is the PEP, B-factor". - But, if protein has multi-domains, the B-
factor prediction results between the two models will have obvious difference because
the protein may have more than one centroid'® when the PFP model assumes a protein

has only one centroid.
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Figure 1. The distribution of the frequencies of residue contact numbers in proteins for

the nonhomologous dataset which selected from PDB-REPRDB*.
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proteins for the nonhomologous dataset which selected from PDB-REPRDB*.
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Fy
—,

Figure 3. The schematic illustration of the CN model of a hypothetical 6-atom protein.
We must define a cut-off distance ry first as the radius of contact sphere region of atom i.
When the contact distance rijis smallerthan ro, we will think the atom j contacts atom i.
In addition, the atoms in the contact sphere region contribute equally no matter how

long the distance between atom | and atom j (Fj) is.
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Figure 4. The schematic illustration of the WCN model of a hypothetical 6-atom
protein. We don’t need to define a cut-off distance rp (i.e, to regard rpas infinity) as the
radius of contact sphere region of atom 1 but calculate weighted contact number of all
atoms based on the results of ‘cut-off distances effect screening. We think every atom
will contact atom i but the contact effect is scaled down by the square of the distance
between the contacting pair. The thickness of the arrow means the contact effect, and

the thicker is the stronger.
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Figure 5. The structure of the-human hyperplastic discs protein (112T:A) is presented in
the cartoon putty representation, where the color is ramped by residue from blue at the
lowest B-factor value to red at the highest B-factor value. This figure illustrates the
cross-correlation between residues by, WEN-model. The balls represent the residues i, j

and k. X; and X; are the unit vectors in the direction of r,—r, and r;-r.,

respectively.
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Figure 7. The performances of the correlation coefficients are in different cut-off radius
values in CN model for the nonhomologous data set. The upper part is Pearson’s linear

correlation coefficients and the lower part is Spearman’s rank correlation coefficients.
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Figure 9. The performances of the correlation coefficients are in different cut-off radius
values in WCN model for the nonhomologous data set. The upper part is Pearson’s
linear correlation coefficients and the lower part is Spearman’s rank correlation

coefficients.

34



0.7

05

0.4

03

Correlation Coefficient

0.0

10 30 50 70 90
The perecntage of protein size for the cut-off radius(%)

0.7

0.6

0.5

0.4

0.3

0.2

Correlation Coefficient

0.1

10 30 50 70 90
The percentage of protein size for the cut-off radius (%)

Figure 10. The performances of the correlation coefficients are in different percentage
values of the protein size for the cut-off radius in WCN model for the nonhomologous
data set. The upper part is Pearson’s linear correlation coefficients and the lower part is

Spearman’s rank correlation coefficients.

35



0.40

0.35

0.30

0.25

0.20

Frequency

0.15

0.10

0.05

0.00

0.40

0.35

0.30

0.25

0.20

Frequency

0.15

0.10

0.05

0.00

-0.1 0 01 02 03 04 05 06 07 08 09 1
Pearson's linear correlation coefficient
-1 0 01 02 03 04 05 06 07 08 09 1

Spearman's rank correlation coefficient

OCN

O all-atom CN
B WCN

M all-atom WCN

OCN

O all-atom CN
B WCN

M all-atom WCN

Figure 11. Comparison of the correlation coefficients between experimental and the

computed B-factor profiles bases on the CN model (white), the all-atom CN model

(grey), the WCN model (spot) and all-atom WCN model (black) for the nonhomologous

data set.

36



0.40

0.35 r

0.30 r
> 025 ¢ OCN
c

O .

S 020 | CNvs. ave B
g B B WCN
L 015 t B WCNvs. ave B

0.10

0.05

0.00 - -

-0.1 0 01 02 03 04 05 06 07 08 09 1
Pearson's linear correlation coefficient

0.40

0.35 | B

0.30 _—
o 0.25 OCN
g o
2 020 | CNvs. ave B
f": _ BWCN

0.15 r BWCNvs. ave B

0.10

0.05

0.00
-1 0 01 02 03 04 05 06 07 08 09 1

Spearman's rank correlation coefficient

Figure 12. Comparison of the correlation coefficients between experimental and the
computed B-factor profiles bases on the CN model (white), the CN model vs. average
B-factor (grey), the WCN model (spot) and WCN model vs. average B-factor (black)

for the nonhomologous data set.

37



0.35

0.30 |

o

N

o1
T

OCN
O GNM
_ | WCN

o

N

o
T

o©

=

o
T

Frequency
|

o

[EY

o
T

0.05 r

0.00 _A_A_D_J_.__L.:I:LJ_EEEJ_DL_L_ L L L

-03-02-01 0 01 02 03 04 05 0.6 0.7 08 09 1
Pearson's linear correlation coefficient

0.35

0.30 | -

o

N

(6}
T

OCN
| O GNM
m WCN

©

N

o
T

Frequency

o

[EEN

a1
T

o

[EEN

o
T

0.05 [

-04-03-02-01 0 0.1 0.2 0.3 04 05 0.6 0.7 0.8 09 1

Spearman's rank correlation coefficient

0.00 \_.—._\._I_I_\|_|'I-\ | | | |

Figure 13. Comparison of the correlation coefficients between experimental and the
computed B-factor profiles bases on the CN model (white), the GNM (grey) and the

WCN model (black) for the nonhomologous data set.

38



1.00

0.80

0.60

0.40

GNM

020 | BEEES
0.00

-0.20 . L . L . J
-0.20 0.00 0.20 0.40 0.60 0.80 1.00

WCN

1.00 —— —
0.80
0.60

0.40

CN

0.20

0.00

-0.20 : - : - : :
020 000 020 040 060 080 1.00

WCN

Figure 14. The correlation of model predictions (A) between the WCN model and the
GNM, and (B) between the WCN model and the CN model for the nonhomologous data

set.

39



W s M N - O -

l10]joe)-g pazi|euwloN

—~
m
~

501

401

301
Residue

201

1

10

Figure 15. (A) The structure of the flavocytochrome ¢3 (1YOP:A) which is presented in

ray B-factor profile (dotted line) of

the cartoon putty representation. (B) The X-

compared with the computed B-factor profile (solid line) by the WCN model

0.85,p=0.87)

(c

40



(©)

5
. 4
e ¥
R |
ch .
pe] 2 I} ¢
ﬁ 1 ; ;~". 1\; AF . }\I | ; o
®© AN s i ¥ ;
g 0 3 r I', 0 i ; r a' b I H i
o s ( 1
S TV Y i WM
o .
-2
1 101 201 301 401 501
Residue
(D)
5
_ 4
5 !
8 3 [ ¥ .
B .t |
2 il ] X :
§ 1 .:, id i { q ‘ , |
g 0 | l i Rtk ; | iln ’I II
[e) ! * | | (
=z -1 " y ) | 11
N e
-2
1 101 201 301 401 501
Residue
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presented in the cartoon putty representation.. (B) The X-ray B-factor profile (dotted
line) of compared with the computed B-factor profile (solid line) by the WCN model

(c=0.78, p =0.84).
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Figure 16. The X-ray B-factor profile (dotted line) of the chain A of human
ppGalNACcT-2 (2FFU:A) compared with the computed B-factor profile (solid line) by

(C) the GNM (¢ =0.36,0=0.71) and (D) the CN model (¢ = 0.60, p =0.60) which
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Table 1. The performance breakdown of the WCN model, the CN model and the GNM

by Pearson’s linear correlation coefficient for the structures classified according to the

SCOP classes
WCN CN GNM
SCOP classes () Cos () Cos ) Cos
All-a proteins 0.59 73% 0.47 43% 0.54 68%
All-B proteins 0.64 82% 0.51 58% 0.58 73%
o/P proteins 0.62 82% 0.49 51% 0.57 75%
o+f proteins 0.60 T7% 0.49 51% 0.54 65%
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Table 2. The performance breakdown of the WCN model, the CN model and the GNM

by Spearman’s rank correlation coefficient for the structures classified according to the

SCOP classes
WCN CN GNM
SCOP classes p Po.s P Pos P Pos
All-a proteins 0.60 76% 0.45 30% 0.53 63%
All-B proteins 0.66 84% 0.50 54% 0.59 78%
o/ proteins 0.65 86% 0.48 45% 0.60 76%
o+f proteins 0.63 80% 0.49 48% 0.58 72%
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Figure 17. The correlation coefficient between the computed and the X-ray B-factors
for the WCN model (dotted line), the CN model (solid line) and the GNM (grey line) as
a function of the protein residue number. The upper part is Pearson’s linear correlation

coefficients and the lower part is Spearman’s rank correlation coefficients.
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Figure 18. The correlation coefficient between the computed and the X-ray B-factors
for the WCN model (dotted line), the CN model (solid line) and the GNM (grey line) as
a function of the protein X-ray structure resolution in A. The upper part is Pearson’s

linear correlation coefficients and the lower part is Spearman’s rank correlation
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Figure 19. The correlation coefficient between the computed and the X-ray B-factors
for the WCN model (dotted line), the CN model (solid line) and the GNM (grey line) as
a function of the protein R-factor. The upper part is Pearson’s linear correlation

coefficients and the lower part is Spearman’s rank correlation coefficients.
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Figure 20. (A) The structure of the chain I of Rubisco from the green alga,
Chlamydomonas reinhardtii (1GK8:I) which is presented in the cartoon putty

representation. (B) The X-ray B-factor profile (dotted line) of 1GK8:I compared with
the computed B-factor profile (solid line) by the WCN model (¢ =—-0.06, o =0.00).
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Figure 21. (A) The biological unit of the Rubisco (1GKS) in the surface representation.
The chain I is colored in orange, while other chains are colored in magenta. (B) The X-
ray B-factor profile (dotted line) of 1GKS8:I1 compared with the WCN profile (solid line)

when the biological units are included in WCN computation (¢ = 0.77, p = 0.79).
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Figure 22. (A) The structure of the chain C of phosphocarrier protein (1Y51:C) which is

presented in the cartoon putty representation. (B) The X-ray B-factor profile (dotted line)
of 1Y5I:C compared with the WCN profile (solid line) (¢ = -0.09, p = —-0.06).
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Figure 22. (C) The biological unit of phosphocarrier protein (1Y5I) in the surface
representation. The chain C is colored in orange, while other chains are colored in

magenta. (D) The X-ray B-factor profile of 1Y5I:C compared with the WCN profile
when the biological units are included in WCN computation (¢ = 0.76, p = 0.82).
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Figure 23. (A) The structure of the chain C of little finger fragment of DNA polymerase
IV (1UNN:C) which is presented in the cartoon putty representation. (B) The X-ray B-

factor profile (dotted line) of 1TUNN:C compared with the computed B-factor profile
(solid line) by the WCN model (¢ =—-0.16, p =0.39).

53



6
S
Q
8 3
oM
~
[¢}]
N
©
£ 0
o
Z
-3 L | 1
0 25 50 75 100
Residues

Figure 23. (C) The biological unit of little finger fragment of DNA polymerase IV
(1UNN) in the surface representation. The chain C is colored in orange, while other
chains are colored in magenta. (D) The X-ray B-factor profile of TUNN:C compared
with the WCN profile when the biological units are included in WCN computation

(c=0.64,p=0.67).
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Figure 24. Comparison of the correlation coefficients between the experimental and the
computed B-factor profiles bases on the WCN model (white) and the WCN model
taking other parts of the whole biological units into consideration (black) for the

nonhomologous data set.
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Figure 25. (A) The structure of the 50S ribosomal subunit (1YJW) which is presented
in the cartoon putty representation. The gray parts are DNA structures. (B) The X-ray
B-factor profile (dotted line) of compared with the computed B-factor profile (solid
line). The correlation coefficient between the X-ray and the computed B-factors is

c=0.60and p=0.49.
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Figure 26. The performances of the correlation coefficients are in different exponent
values of the reciprocal distance in WCN model. The upper part is Pearson’s linear

correlation coefficients and the lower part is Spearman’s rank correlation coefficients.



Table 3. The correlation coefficients of cross-correlation maps between the WCN

model, the GNM and the NMA.

GNM NMA
c P c P
WCN 0.79 0.80 0.83 0.82
GNM - - 0.76 0.81
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Figure 27. The cross-correlation maps.for the chain® A of Arg-specific cysteine
proteinase gingipain R (1CVR:A). The map on the upper right is computed by Eq. 10
and normalized by Eq. 12, the map on the'lower left by GNM and the map on the lower
right by the NMA. The colors of the map ramp from red (positive correlation) to blue
(negative correlation). NMA was performed using the simplified force field of
ENZYMIX?*Y. For 1RWH:A, Pearson’s linear correlation coefficient between WCN

and NMA is Cycp_nwa = 0.85; WCN and GNM 1S Cyey_oum = 0.79; GNM and NMA is
Conmnma =0.85 . Spearman correlation coefficients are  pyen_nwa = 0-88

Puen-onm = 079 and poyy s = 0.87.
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Figure 28. The cross-correlation maps for the achromobacter lyticus protease I (1ARB).
The map on the upper right is computed by Eq. 10-and normalized by Eq. 12, the map
on the lower left by GNM and the map on'the lower right by the NMA. The colors of
the map ramp from red (positive correlation) to blue (negative correlation). NMA was
performed using the simplified force field of ENZYMIX***’. For 1ARB, Pearson’s

linear correlation coefficient between WCN and NMA is Cycy_ywa = 0.80; WCN and
GNM, Cyen_onv = 0.83; and GNM and NMA, Cgypy_nwa = 0.69 . Spearman correlation

coefficients are Py _ava = 0-83, Puen_onw = 0-90and oy s = 0.86.
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Figure 29. The cross-correlation maps for the chain A-of toluene 4-monooxygenase
catalytic effector protein (2BF57A)..The map on the upper right is computed by Eq. 10
and normalized by Eq. 12, the map on the'lower left by GNM and the map on the lower
right by the NMA. The colors of the map ramp from red (positive correlation) to blue
(negative correlation). NMA was performed using the simplified force field of
ENZYMIX***, For 2BF5:A, Pearson’s linear correlation coefficient between WCN and

NMA is Cyeny_nwa = 0.81; WCN and GNM, Cyepy_onw = 0.87 5 and GNM and NMA,

Conv_nwa =0.71 . Spearman correlation coefficients are  pycy_yua = 0.84

M

pch_GNM = 0.84 and pGNM—NMA = 0'82 .
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Figure 30. The cross-correlation maps for the chain A of'major capsid protein of group
A rotavirus (1QHD:A). The map. on the upper. tight is computed by Eq. 10 and
normalized by Eq. 12, the map on the lower left by GNM and the map on the lower
right by the NMA. The colors of the map ramp from red (positive correlation) to blue
(negative correlation). NMA was performed using the simplified force field of
ENZYMIX*®**". For 1QHD:A, Pearson’s linear correlation coefficient between WCN

and NMA is Cycy_ywa = 0.88; WCN and GNM, Cpcn_onv = 0.87 ; and GNM and NMA,

Conv_nwa =0.94 . Spearman correlation coefficients are  pycy_yua =0.90

Pucn-onm = 0-88and poyy s =0.95.
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Figure 31. The cross-correlation maps for the chain-A of E. Coli manganese(II)
superoxide dismutase (11XB:A): The map on the upper right is computed by Eq. 10 and
normalized by Eq. 12, the map on the lower left by GNM and the map on the lower
right by the NMA. The colors of the map ramp from red (positive correlation) to blue
(negative correlation). NMA was performed using the simplified force field of
ENZYMIX*®**". For 11XB:A, Pearson’s linear correlation coefficient between WCN and

NMA is Cyey_nwa = 0.77; WCN and GNM, Cyeoy_onu = 0.81; and GNM and NMA,

Conv_nwa =0.73 . Spearman correlation coefficients are pycy_wua =0.77

Pucn-onu = 0-85and peyy_ywa = 0.85.
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Table 4. The correlation coefficients of the inverse of eigenvalues in all modes and first

20 slowest modes between the WCN model, the GNM and the NMA.

GNM NMA
all modes first 20 all modes first 20
slowest modes slowest modes
WCN 0.99 0.93 0.96 0.85
GNM - - 0.95 0.97
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Figure 32. The inverse of eigenvalues of all modes for the chain A of Arg-specific
cysteine proteinase gingipain R (ICVR:A). The upper one is plotted by diagonalizing
the cross-correlation map from WCN, the middle one from GNM and the low one from

NMA.
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Figure 33. The inverse of eigenvalues of the first 20 slowest modes for the chain A of
Arg-specific cysteine proteinase gingipain R (ICVR:A). The upper one is plotted by
diagonalizing the cross-correlation map from WCN, the middle one from GNM and the

low one from NMA.
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Figure 34. The inverse of eigenvalues of all modes for the achromobacter lyticus
protease I (1ARB). The upper distribution is plotted by diagonalizing the cross-

correlation map from WCN, the middle one from GNM and the low one from NMA.
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Figure 35. The inverse of eigenvalues of the first 20 slowest modes for the

achromobacter lyticus protease I (IARB). The upper distribution is plotted by

diagonalizing the cross-correlation map from WCN, the middle one from GNM and the

low one from NMA.
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Table 5. The correlation coefficients of eigenvectors in first mode, second mode and

third mode between the WCN model, the GNM and the NMA.

GNM

NMA

First Mode Second Mode

Third Mode

First Mode Second Mode Third Mode

9 p c p c

P

c p T p T p

WCN 0.81 0.83 0.61 0.61 046 0.46

GNM - - - - -
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0.82 0.83 0.63 0.64 0.59 0.61

0.76 0.77 0.52 0.53 041 0.43
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Figure 36. The regions subject to opposite direction displacements and the distribution
of displacements along the first mode computed by (A) the WCN model for the chain A
of Arg-specific cysteine proteinase gingipain R (1CVR:A). Regions colored in blue and
red correspond to positive and negative displacements respectively. The diagram shows
the vibration amplitudes and phases (positive or negative). The same illustrations of

figure and diagram show the results by (B) the GNM and (C) the NMA.
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Figure 37. The regions subject to opposite direction displacements and the distribution
of displacements along the second mode computed by (A) the WCN model for the chain
A of Arg-specific cysteine proteinase gingipain R (1CVR:A). Regions colored in blue
and red correspond to positive and negative displacements respectively. The diagram
shows the vibration amplitudes and phases (positive or negative). The same illustrations

of figure and diagram show the results by (B) the GNM and (C) the NMA.
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Figure 38. The regions subject to opposite direction displacements and the distribution
of displacements along the third mode computed by (A) the WCN model for the chain
A of Arg-specific cysteine proteinase gingipain R (1ICVR:A). Regions colored in blue
and red correspond to positive and negative displacements respectively. The diagram
shows the vibration amplitudes and phases (positive or negative). The same illustrations

of figure and diagram show the results by (B) the GNM and (C) the NMA.
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Figure 39. The chain A of "Arg-specific” cysteine proteinase gingipain R (1CVR:A)
consists of the catalytic domain subdivided into" A-subdomains (yellow) and B-
subdomains (green), and the IgSF domain (purple). Each subdomain comprises a central

B-sheet and a few additional hairpins flanked by helices on either side, as characteristic

for o/ open-sheet structures™”.
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Figure 40. The regions subject to opposite direction displacements and the distribution
of displacements along the first mode computed by (A) the WCN model for the
achromobacter lyticus protease I (1ARB). Regions colored in blue and red correspond
to positive and negative displacements respectively. The diagram shows the vibration
amplitudes and phases (positive or negative). The same illustrations of figure and

diagram show the results by (B) the GNM and (C) the NMA.
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Figure 41. The regions subject to opposite direction displacements and the distribution
of displacements along the second mode computed by (A) the WCN model for the
achromobacter lyticus protease I (1ARB). Regions colored in blue and red correspond
to positive and negative displacements respectively. The diagram shows the vibration

amplitudes and phases (positive or negative). The same illustrations of figure and
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of displacements along the third mode computed by (A) the WCN model for the

achromobacter lyticus protease I (1ARB).
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Figure 43. The structure of’ 2 otease 1 (1ARB). The catalytic

triad comprises His57, Asp113; d in green and shown by the ball

and stick model™.
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APPENDIX

The 972 protein chains of length > 60 and their structures solved by X-ray

crystallography with resolution < 2.0 A and R-factors <0.2 are selected from PDB-

REPRDB*.

1A1IA | 1A53 | 1A6M_ | 1A8D | 1IA8I | IA9XA | IADEA | 1ADOA
1AF7 | 1AGJA | 1AGQD |1AH7 | 1AJSA |1AMM_|1AOCA |1AOP
IAPYA | 1ARB_ | IAW7A | 1AY7B | IAYOA | IB3AA | IB5QA | IB65A
IB6TA | IBS8EA |1BF2_ |1BGF_ | IBGVA | IBHTA |IBIF_ | 1BSLB
IBXEA | ICOPA | ICIKA |1C48A |I1C5EA |1C7KA | IC7SA | 1C90A
1ICBOA | 1CC8A | 1CCWA | 1ICCWB: {/1CCZA |1CFB_ | ICHD | 1CMBA
1CQXA | ICQYA | ICRUB [JCSH .| 1CV8 < |I1CVRA |1CZ9A |1CZFA
IDODA | ID40A | ID7PM. [ 1D8DA | IDBFA |1DCIB | 1DDT | 1DFMA
IDG6A | IDGWX | IDJOA. | IDJEA~ | IDJTA | IDLJA | IDMR | 1DOZA
IDQAA | IDQZA | IDSIA “[1DUN {1DUPA |1DXRM | IDY5A | 1EIHA
1EACP | IE6PB | IE6UA | 1IE7TLA | IE9EA |1E9GB | IEB6A | 1EBLA
IECFB | IEDG | IEDQA | IEEOA | IEEXA | IEH7A | IEJIBA | IEIDA
1IEKGA | IEKXA | 1EL4A | 1ELKA | 1EPFB | 1EQCA | 1ES9A | 1ESGB
IEUSA | IEUVA | IEX2A | 1IEXRA | IEXTA | IFIXA |1F20A | 1F24A
IFANA | IF86A | IFSEA |1FCQA | IFEHA |1FIUA |1FK5A |1FKMA
IFLTX | 1FN9A | IFO8A | 1FP3A | 1FS7A | IFSGC |1FUPA |I1GITA
1G2BA | 1G3P_ | 1G60A |1G61A | 1G66A | 1G8AA | IGS8KA | 1GIGA
1IGBS | 1GCQC | 1GCVB | 1IGDOA | 1GK8I |1GK9A |1GK9B | 1GKPA
IGMXA | IGNLA | IGNUA | 1GOF_ | 1GQIA |1GQYB | IGTED |1GUIA
1IGUQA | IGVKB | IGWEA | IGWMA | IGX5A | IGXMB | IGXUA | 1HI6A
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IHIIB | 1H2CA | 1H32A |1H4GB | 1H4YA |1H6FB | 1H6KC | 1H6KX
IHBNA | IHBNB | IHBNC | IHDKA | IHDOA | IHFSA | IHFES |1HG7A
IHHSA | 1HPIA | 1HPI | 1HQSA |1HS6A |1HT6A |1HYOB | 1HZ4A
1HZ5B | 1HZTA |1119A |[11IDD | 1IINA |1I2TA |114UA | 1I6TA
117QB | 1I80A | 119ZA | 1IAB_ | 1IC6A |1IDPA |1IFC_ | 1IIBA
1IPCA | 1IQZA | 1IITUA |1IUSA |1IUQA |1IV8A |1IV9A | 1IXBA
1JOHA | 1JOPA | 1J2RA [ 1J34A | 1J79B | 1J8BA | 1JAKA | 1JBEA
1JD5A | 1JDW_ | 1JEVA | 1JG9A | 1JIXA |1JMI1A | 1IJNDA | 1JNRA
1JPC_ | 1JPUA | 1JRLA | 1JU2A | 1JUBA |1JZ7A | 1JZTA | 1KOEA
IKOMB | IK12A | IK3YA |IK4IA |1K55A |1K6ZA |1K7CA |1K7HA
IKAPP | IKBLA | IKDOA | IKEIA {1KG2A |I1KHBA | IKHIA |1KJQB
IKNLA | IKOE_ | IKPHB“{ IKQFA | IKQFB' ['IKQFC | IKQPA | 1KS8A
IKT7A | IKUFA | IKV7A | IKVEA | IKWGA | IKWNA | IKYFA | 1KZKB
1IKZQA | IL2HA | IL3KA~ | IL6RA | IL7AA /| 1L8AA | ILOLA | 1LAM
ILATB | ILFWA | ILJSA [ILK2A |I1LK2B ‘| ILKI | 1LKKA |1LL2A
ILLFA |1LML_ | ILNIB |I1LOVA |1LQVB |ILTM | ILTSA |I1LTZA
ILV7IA | ILWBA | ILY2A |ILYVA |I1LZJA |IMOKA | IMINA | IMINB
IM2DA | IM2XA | IM3KA | IM4IB | IM55A | IM65A | IM6JA | IM7YA
IM9XC | IM9ZA | IME3A | IMG7B | IMIXA |IMJUL | IMKOA | IMKAA
IMKKA | IMN8D | IMOOA | IMPXA | IMQDA | IMQKH | IMRP | IMTYB
IMTYD | IMUWA | IMXRA | INOWA | INI3B | INIBB | IN45A | IN62B
IN7SA | IN7SC | IN83A |INC5A | INKGA | INKIA | INLNA | INOFA
INOX_ | INQEA |INQJA | INSUB |[INTYA | INUOA | INVOA | INVMG
INWAA | INWZA | INYCA | INYMA | INYTA | 1008A | 1029A |104YA
106VA | 107IA | 107NB | 1083A | 108XA | 1098A | 10AOC | 10BBB
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IODNA | IOE4A | I0EN_ | IOEWA | 10FDA | IOFLA | IOFWA | 10GQA
10GSA | 10I6B | 10I7A | 10JJA | 10JRA | IOKOA |IOLRA | 1ON9D
100HA | 1I00YB | IOR7C | IORRA | 1OWLA | I0X0A |10Z2A | 1POKB
IPIJA | IPIMA | IP60B |1PA7A |1PBJA |IPBYA | IPBYB | IPIIA
IPK6A | IPL3A | IPMIX | IPM4A | 1PMHX | IPMI_ | IPNOC | 1POC_
IPSRB | IPSWA | IPT6B | IPV5A | IPVMB | IPWMA | IPX5B | IPXZA
IPYOC |I1QONA |1QOQA |1QI6A |1Q20A |1Q33A |1Q40B |1Q63A
1Q6ZA | 1Q7FB | IQ7LA | 1Q7LB | 1QB5D | IQFSB | IQFMA | IQFTA
IQGWB | IQGXA | IQH4A | IQHSA | 1QHDA | IQHOA | IQIPA | 1QKRB
IQKSA | IQMGA | IQNRA | 1QOPB | 1IQOYA | IQR9A | IQSAA | 1QTWA
IQUK_ | IQV9A | IQW2A | IQW9A | 1QWNA | IQWOA | IQWZA | 1Q0X2A
1QXMA | IQXYA | IROMA“| IRIDA | 1R29A " ['IR2QA | IR3DA | IR3SA
IR4PA | IR4XA | IRSLA" | IR6JA | IR6XA | IR89A | IR8SA | IRAOA
IRA9 | IRC9A | IRCQA" | IRG8A | IRGYA /| 1RHS | IRIE_ | IRJDC
IRKIA | IRKYA |IRLID [IRPOA |IRQHA ‘| IRRO | IRTQA | IRU4A
IRUTX | IRV9A | IRVAA | IRWHA | IRX0A | IRXQB | IRY9A | IRYAA
IRYIA | ISOAA |1SOIA |1S3EB | 1S4BP |1S4KA |1S67L | 1S7FA
1S7ZA | 1S95B | 1S99A | ISORA | ISAUA | ISFSA |1SG4C | 1SG6B
ISTWA | ISMBA | ISQEB | 1SQSA | 1SR4B | ISTOA |ISUSA |1SVB_
ISVFA | ISWXA | 1TO6A |1TOBH |I1TOTV |ITIGA |ITIUA |I1T2DA
IT46A | IT4BA |IT6ID |1T6CA |I1T6GA |IT7RA |1T92A | I1T9HA
ITA3A |ITBFA |I1TG5A |I1TG7A |I1TJYA |ITKEA |I1TL2A |1TN6B
ITO21 | ITQ4A |ITQGA | ITTSA |I1TUIA |ITU9A |ITUKA | ITWDB
ITXJA |ITXQB |ITZPA |I1TZVA |1U07B |1UlIB | 1U3WA | IUSUA
1U69D | IUTGA | 1U7IA | 1USFO | 1USVA | IU9DA | IUA4A | IUALA

80




IUASA | IUCDA | IUF5A | 1UG6A | 1UGHI | 1TUGNA | lUGPA | 1UIRB
IUKUA | IUMGA | IUMKA | ITUMZB | ITUNNC | IUNQA | IUOHA | IUOWA
IUPGA | IUQ5SA | IUSCA | 1UV4A | 1UWIA | IUWCA | IUWFA | IUWKB
1UX6A | IUXZA | IUYLA | IUZKA |1VOEA |1VOLA | IVOWA | IV3EA
1V54A | 1V54B IV5FA | 1VS5IB IV5VA | IV6PA | 1V70A | 1VIWA
1V82A | IVAJA | 1VBKA |1VBLA |1VCLA |1VFYA | IVH5A | IVIYA
IVKPA | IVL9A | IVLBA | 1VLS_ IVPSB | IVR7A | IVYBA | IVYIA
IVYKA | IVYRA | IVZIA | IWOHA | IWONA | IWOOA | 1IW27A | IW2FA
IW2YA | IW4RA | IWSFA | IW66A | IW6GA | IWTLA | IWSOA | IW94A
IW96C | IWAKA | IWAPA | IWB4A | IWC2A | 1IWC3B | IWD3A | IWDCA
IWDDA | IWDPA | IWHI | IWKQA-1TWLDA | IWM3A | IWOFA | IWOYA
IWPNA | IWQ3A | IWRIA | 1WS8A | IWT4B [[1WU4A | IWUAA | IWUIL
IWUIS | IWV3A | IWVFA | TWWCA | IWY1A | IWYBA | IWYXB | IWZAA
IWZZA | 1X09A I1X0CA" | 1X0JA IXORA /| IXINA | 1X2JA | 1X54A
1X6IB IX6VA | 1X82A [1XCLA | 1XDNA | 1XDZA | 1XEOA | 1XER _
IXFFA | IXFIA IXG4A | 1XGKA | 1XH8A | 1XHDA | IXJJA 1XKPB
IXKPC | IXOVA | IXQHA | 1XQOA | 1XSZA | 1IXTTA | 1XUBA | IXWWA
1XZZA | 1YOEA | 1YOPA |1Y2TA |1Y3NA |1Y43B |1YS5IB 1YSIC
1Y63A | 1Y7BA | 1YSAA | 1Y93A IYOGA | IYOWA | 1YB6A | 1YDIA
IYFQA | 1YGE | IYGTA | 1YHLA | 1YI9A 1YIIA 1YJIC 1YKDA
IYKUA | IYMIA | IYMTA | 1YN9A | 1YNPA | 1YO3A |1YPHC |1YPHE
IYPOB | IYQZA | IYRKA |1YSIX |1YT3A |1YTBA |1YUSX | 1YVIA
1Z05A | IZ0OWA | 1Z10A | 1Z1SA 1Z2NX | 1Z32X | 1Z7TXW | 1Z84B
1ZCEA | 1ZCJA 1ZCXA | 1ZI9A 1ZJYA | 1ZKPA | 1ZL0B | 1ZNDA
1Z04B | 1ZR6A | 1ZUWC | 1ZYTA | 1ZZWA | 2A14A | 2A50A | 2A50B
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2A65A | 2A6ZA |2ABOA |2AC7A |2ACFB |2ACVA |2AD6A |2AD6B
2AE0X |2AENB |2AEXA |2AFWA |2AGKA | 2AGYD |2AHFA | 2AIBA
2AIUX | 2AJCA |2AKAA |2APXA |2AQ2B |2AQ5A |2AQ6A |2AQJA
2ARPF |2ARRA |2AUWB | 2AVDA | 2AWGA | 2AWKA | 2AXQA | 2AXWA
2AYH_ |2B06A |2BOTA |2B3FA |2B4HA |2BS58A |2BSHA |2B61A
2B6DA |2B82A |2B97A |2BCGG |2BEMA |2BF5A |2BF6A | 2BFDA
2BFDB |2BGIA |2BHUA |2BIBA |2BIIA |2BJFA |2BJKA |2BIRA
2BKFA |2BKXA |2BMOA | 2BMWA |2B0O9B | 2BOGX |2BOPA |2BOQA
2BPTA |2BR6A |2BRAA |2BRFA |2BSWA |2BSYA |2BT9A |2BW3B
2BW4A | 2BWQA |2BWVA | 2BZUA |2CONA |2CI5A |2CIIA |2CILA
2CIVA |2C2UA |2C3MA |2C4IA [ 2C4XA |2CS5AA | 2C6QB |2CT71A
2C78A | 2C9VA | 2CARA“|20B2A | 2CB5B" {2CCAA |2CDBA | 2CFUA
2CGLA |2CI1A |2CITA~ |2CIWA [2CITC |2CK3D |2CK3G |2CKLA
2CKLB |2CL3A |2CN3B- | 20NQA | 2CTC /| 2CVCA |2CVIA |2CWGA
2CXAA |2CXNA |2CXXC [2CYGA |2CZIB'|2D00A |2DBBB |2DDSA
2DECA |2DKOB |2DQ6A |2ETGA |2EUTA |2EXVC |2F01B |2F2HA
2F2QA |2F4AMA |2F4AMB |2F5VA | 2F5XB | 2F6UA | 2FASC | 2FBAA
OFBQA |2FESA |2FFCA |2FFUA |2FHIB |2FHA_ |2FHFA |2FHZA
OFIMB |2FL7A |2FP7B |2FPEA |2FRGP |2FSAA |2FSQA |2FSRA
2FWGA | 2FY7A |2FYGA |2FYQA |2FZVB |2G29A |2G2WB |2G7CB
2G70A |2G8OB |2GAGA |2GAGD |2GAIA | 2GAKA |2GBAA |2GDQA
2GFOA |2GK4B |2GKEA |2GRHA |2GRRA |2GRRB |2GS5A |2GSOA
2GUDB |2H29A |2H6NB |2H7GX |2HSS8A |2HSSD |2HALA |2HFT_
QHTS | 2IUIA |2IU4B |2IUSA |2IUWA |2IWAA |2IXMA |2KINA
2LISA |2MHR_ |2NACA |2PGD_ |2PTD  |2SQCA |2TGI | 3CHBF
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3GRS_

3VUB_

4EUGA

ALZT

4UBPC

7AHLB

TATIA

TFABH

TFD1A

8A3HA

8ACN

9GAFC
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