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利用加權接觸數目衍生出蛋白質的動力學特性 

研 究 生：林志鵬     指導教授：黃鎮剛博士 

國立交通大學 生物資訊所 博士班 

摘        要 

最近的研究顯示了蛋白質上的原子的平均平方位移(或稱之為 B 因子, B-factor)

與該原子周圍接觸的原子數目(contact number)以及其到蛋白質的質量重心(center 

of mass)的平方距離有關。這樣的關係允許我們可以直接的藉由原子接觸數目和原

子與質量重心的平方距離去計算 B 因子側寫(B-factor profile)。這兩種方法我們稱

之為蛋白質接觸數目模型(contact number model)和蛋白質固定點模型(protein fixed-

point model)，因為此兩種方法不僅不需要使用分子模擬來獲得原子軌跡整合，也

不需要針對矩陣去做對角化，而使得這兩種方法變得相當具有吸引力。因此，蛋

白質接觸數目模型和蛋白質固定點模型能夠應用在大體積且結構複雜的蛋白質，

並且可作為一種高通量(high throughput)的計算工具去計算蛋白質內原子的擾動。

在這個研究裡，我們展示藉由融合這兩種模型的特性所產生的加權蛋白質接觸數

目模型，來使得計算蛋白質內部的原子運動的準確性能夠被更進一步的提昇。我

們藉由除以兩個原子接觸的平方距離來作為加權的方法，並且分析將蛋白質的接

觸距離加上不同的切斷半徑(cut-off radius)之後的計算結果。此外我們也展示了這

樣的模型也可以被用來計算原子運動的交互相關性(cross-correlation)。實際上，B

因子就是原子運動的自我相關性(auto-correlation)。我們使用了一個序列相關性小

於 25%的非同源性的資料組，其包含了 972 條具有解析度小於 2.0 Å 的高解析度
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X 射線結晶結構。針對這樣的資料組，經由 X 射線所得到的 B 因子與藉由加權蛋

白質接觸數目模型去計算所得到的 B 因子，兩者之間的平均相關係數可達 0.61，

比起原始的蛋白質接觸數目模型(0.51)或是其他的方法要來得更好。針對一些例

子，我們的研究結果也顯示了經由加權蛋白質接觸數目模型計算所得到的交互關

係圖像以及特徵值和特徵向量，與藉由正模分析法(normal mode analysis)和高斯

網路模型(Gaussian Network Model)所得到結果，具有全面性的相似度。我們的結

果不僅強調了蛋白質的動力特性與蛋白質集結特性有關之外，我們也相信這樣的

方法對於研究蛋白質的結構和動力學之間的相關性有相當大的幫助。 
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Deriving protein dynamical properties from weighted protein contact 
number 

Student: Chih-Peng Lin    Advisor: Dr. Jenn-Kang Hwang 

Institute of Bioinformatics 

National Chiao Tung University 

ABSTRACT 

 It has recently been shown that in proteins the atomic mean-square displacement 

(or B-factor) can be related to the number of the neighboring atoms (or protein contact 

number) and the square distance from the center of mass of a protein. This relationship 

allows one to compute the B-factor profiles directly from protein contact number and 

the square distance from center of mass. The two methods, referred to as the protein 

contact number model and the protein fixed-point model, are appealing, since they 

require neither trajectory integration nor matrix diagonalization. As a result, the protein 

contact number model and the protein fixed-point model can be applied to very large 

proteins and can be implemented as a high-throughput computational tool to compute 

atomic fluctuations in proteins. Here, we show that the properties of the two models can 

be integrated and further refined to that between the atomic mean-square displacement 

and the weighted protein contact-number, the weight being the square of the reciprocal 

distance between the contacting pair. In addition, we show that this relationship can be 

utilized to compute the cross-correlation of atomic motion (the B-factor is essentially 

the auto-correlation of atomic motion). For a nonhomologous dataset comprising 972 

high-resolution X-ray protein structures (resolution < 2.0 Å and sequence identity < 

25%), the mean correlation coefficient between the experimental and computed B-
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factors based on the weighted protein contact-number model is 0.61, which is better 

than those of the original contact-number model (0.51) and other methods. We also 

show that the computed cross-correlation maps, eigenvalues and eigenvectors based on 

the weighted contact-number model are globally similar to those computed through 

Gaussian Network Model and normal model analysis for some selected cases. Our 

results underscore the relationship between protein dynamics and protein packing. We 

believe that our method will be useful in the study of the protein structure-dynamics 

relationship. 
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INTRODUCTION 

Protein dynamics is dictated by protein structure. The dynamic properties of 

proteins result from a network of complex interactions like covalent bonding and 

nonbonded electrostatic or van der Waals interactions. To compute the dynamical 

properties of proteins, one usually resorts to molecular dynamics simulation1-5, which 

consists of integrating long time trajectories of protein structure using empirical force 

field. Though molecular dynamics is a powerful method, it is computationally 

expensive.  A recent study3 show that a massive molecular dynamics simulations of 30 

proteins using four different force fields in aqueous solution reportedly took 

computational time equivalent to around 50 years of CPU.  

Due to the recent progress of structural biology research, the number of protein 

structures deposited in Protein Data Bank has nearly quadrupled since 2000. Hence, 

there is an increasing interest in developing efficient methods to compute protein 

dynamic properties from protein structures in a high-throughput fashion. For example, 

some studies have shown that simple energy functions that include the two most 

important characteristics of amino acids, mainly hydrogen bond formation capacity and 

hydrophobicity, may well account for the prediction of some supersecondary structures 

or tertiary folds in small proteins 6,7. From the above point of view, the question “Is it 

possible to find a novel characteristic of a given protein to study protein dynamics with 

or even without the development of a new simple energy function based on the 

characteristics?” is interesting and valuable. 

 In 1996, Tirion developed a single-parameter Hookean potential and made it 

suitable for the contact interaction of all atoms in X-ray protein structures in a normal 
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mode analysis (NMA) of large-amplitude (low frequency) vibrations in elastic motions8. 

This approximation is based on a Gaussian distribution of interatomic distances about 

their equilibrium values. The simplicity of the postulated single-parameter Gaussian 

model and its success in predicting results for a complex system may have far-reaching 

consequences in understanding protein structures. Based on this theory, Bahar et al.9 

analyzed the connectivity matrix of nonbonded interactions in proteins and developed 

the elastic network model. The Elastic Network Model (ENM) or Gaussian Network 

Model (GNM)8-10 provides an alternative for molecular dynamics in computing average 

dynamical properties. In the GNM, each Cα atom is connected through a single-

parameter harmonic potential to its neighboring atoms that are within a certain cut-off 

distance, usually in the range of 7 to 10 Å.  The elastic network model then builds a 

connectivity matrix (or called the Kirchhoff matrix), from which cross-correlations and 

auto-correlations of fluctuations of residues can be obtained through matrix 

diagonalization. Micheletti and co-workers11 have developed a model based on a mean 

field theory11-13 to study the dynamics of a protein. The shape of the protein is specified 

by the locations of the Cα atoms with 2 types of interactions: simple harmonic potential 

functions describing bonded interactions and Go-like functions describing nonbonded 

interactions. This model was applied to protein-protein interactions12. Zhou and co-

workers13 later extended this Cα-based model protein to a model based on all heavy 

atoms and they were able to make a more accurate prediction of the atomic mean-square 

displacement (or B-factor) using this extended model. 

All of these methods mentioned above all supposed a complex or simple energy 

function in interresidue. But recent studies14,15 showed that the B-factor is closely 

related to the number of noncovalent neighboring atoms or the atoms lying on the same 
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shell centered at the fixed point tend to have similar thermal fluctuations. For 

convenience, we will refer to the two methods as the protein contact number (CN) 

model and protein fixed point (PFP) model. The CN model and PFP model are 

appealing, since they predict the B-factor profiles directly form protein structures 

without either trajectory integration or matrix diagonalization. However, despite theirs 

simplicity, the CN model has been shown to be superior to the GNM for a small set of 

38 structures14 and the PFP model has been comparable with GNM for a large set of 

972 structures16. Besides, when observing the contact numbers of residues and centers 

of mass in the proteins for the nonhomologous dataset (see Methods), we found the 

frequencies of residue contact numbers tend to have a normal distribution and the 

frequencies of center of mass tend to have larger contact numbers (a more crowded 

space environment). Figure 1 shows the frequencies of the residue contact numbers and 

figure 2 shows the frequencies of center of mass contact numbers of the centers of mass 

in proteins. This implies we may can combine the characteristics of the CN model and 

the PFP model to develop a new model which calculate the contact numbers within the 

effect of distances for every point (atom) of a protein instead of just using one point (the 

center of mass) of a protein to predict the B-factor. Here, we show that the CN model, 

which relates the B-factors to protein contact number, can be further improved if the 

protein contact number is scaled down by the square of the distance between the 

contacting pair and we call this model as weight contact number (WCN) model.  

Large conformational transitions contain the relative movement of almost rigid 

structural regions in many proteins. The domain motions are important for various 

protein functions such as catalysis and regulation of activity. Besides, some proteins 

have at least two different conformations in functionally distinct states. The transition 
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from one to another form must be a major mode of internal motion. For example, in 

citrate synthase, this is a two-domain protein and have been shown17,18  that coenzyme 

A binding induces the small domain to rotate around an axis which is close to the 

residue 274 and get a conclusion of this motion is the closure of the cleft between two 

domains in which the substrate binding site puts in. One of the best suited theoretical 

methods for studying motions in proteins is normal mode analysis 19-23(NMA) and the 

other one is GNM. Both methods can decompose the protein dynamics into a collection 

of motions which include large amplitude (low frequency) and small amplitude (high 

frequency) motions. Here, we show that cross-correlation between residues, vibration 

frequency and amplitudes with phases of collective motions can also be computed in the 

framework of the weighted contact number model. By diagonalizing the cross-

correlation matrix computed by WCN, we can get the similar inverse of eigenvalues 

(vibration frequencies) and eigenvectors (vibration amplitudes and phases) within 3 

lowest modes to those from NMA or GNM. It is surprising to directly link not only 

protein structures and thermal fluctuations but also protein structures and collective 

motions. 
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METHODS 

Protein contact number model and weighted contact number model  

 The contact number ν i  of the  residue is defined as the number of the 

neighboring residues whose Cα atoms are within a cut-off radius 

ith

r0  of that of the i  

residue.  

th

ν i = H (r0 − rij )
j≠i

N

∑         (1) 

where rij  is the distance between Cα atoms of residue i  and , and j H (x) =1 if x ≥ 0 

and H (x) = 0  if x < 0 . Eq. 1 defines an integral contact number and gives an equal 

unitary weight to every contacting atom regardless of its distance to the central atom. 

Figure 3 schematically illustrates the contact number (or CN) model.  

To improve the CN model, we must think about PFP model first as what was 

mentioned in the introduction section. In the PFP model, the predicted B-factor values 

will increase by the main effect of the square of the distance between a Cα atom and the 

center of mass. In other words, the ability of the center of mass to stabilize atomic 

fluctuations will decrease squarely by the distance. So, we make an assumption that the 

contact effect between atoms may have similar property to affect atomic fluctuations as 

PFP model. In this way, the distance-dependent contact number ′ ν i  of the  residue is 

defined as    

ith

′ ν i = H (r0 − rij ) / rij
2

j≠i

N∑  

which defines a real-valued contact number, i.e., the integral contact number weighted 

by the square of the reciprocal distance between the contact pair. Due to the influence of 
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the cut-off radius r0   (see results) and the fast decay of the factor 1  at large 

separation 

/rij
2

rij , the real-valued contact number can be simplified to  

∑
≠

=′
N

ij ij
i r 2

1ν          (2) 

Figure 4 schematically illustrates the weighted contact number (or WCN) model. We 

will refer to ν  as the CN, while ν ′  (Eq. 2) as the WCN.  

Assessment of profiles comparisons with statistical analysis  

 The CN (or WCN) profile of a protein of N  residues is defined as 

w = (ω1,ω2,…ωN )        (3) 

where ωi  is defined as the reciprocal contact number, i. e., ωi =1/ν i  or ωi =1 ′ ν i . The 

X-ray B-factor profile is denoted as  

b = (b1,b2,…bN )

i

        (4) 

where b  is the B-factor of the Cα atom of the  residue taken from the PDB file. ith

For the purpose of easy comparison, we will normalize both the CN (or WCN) 

and the B-factor profiles to the corresponding z-scores:  

zxi
= (xi − x ) /σ x          (5) 

where x  and σ x  are the mean and standard deviation of x . Here x  designates  or b ω . 

The normalized CN (or WCN) and the B-factor profiles are denoted by the vectors zω  

and , respectively. In the CN model, the cut-off distance is set to 7.35Å, which 

corresponds to the second minimum of the average contact-pair distribution of protein 

zb
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structures14. For the prediction assessment, we use two types of correlation coefficients 

between the profiles. One is the Pearson’s linear correlation coefficient,  

( )( )
( ) ( )∑ ∑

∑
−−

−−
=

22
wwbb

wwbb

zzzz

zzzz
c

ii

ii       (6) 

if , two profiles are perfectly correlated; if , two profiles are strongly 

correlated; if , two profiles are weakly correlated; if c , they are 

completely independent of each other; if 0

c =1 5.01 ≥> c

5.0

05.0 >> c = 0

−>> c , two profiles are weakly anti-

correlated; if , two profiles are strongly anti-correlated; if c , they are 

perfectly anti-correlated. But we think the extreme values in profiles may affect 

Pearson’s linear correlation coefficient results. To solve this problem, the other one is 

Spearman’s rank correlation coefficient, ρ, which is based on the rank order of z-scores 

in profiles rather than its actual value,  

15.0 −>≥− c = −1

( )
( )1

6
1 2

2

−

−
−= ∑

nn
ZZ

ii WBρ        (7) 

where n is the number of values in the dataset, Bi and Wi denote the ranks of 

corresponding values z  and b zω . Four indices of prediction assessment are used to 

compare the global performances of different methods for a data set:  c , the average 

Pearson’s linear correlation coefficient, , the fraction of number of structures with 

, 

5.0c

c ≥ 0.5 ρ , the average Spearman’s rank correlation coefficient, and 5.0ρ , the fraction 

of number of structures with 5.0≥ρ . 

 To know if the performances of correlation coefficients have significant 

differences between the models, we use Student t-test to check, 
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NS
Z

t
D

D 0μ−
=          (8) 

where DZ  is the average and  is the standard deviation of differences in correlation 

coefficients produced by two of the models. The constant 

DS

0μ  is set to 0 because we 

want to know whether the average of the difference is significantly different than 0. N  

is the sample size. Once a t value is determined, a p-value can be found using a table of 

values from Student's t-distribution. If the p-value is lower than 0.05, it indicates that 

the distributions of the results are significantly different from each other. 

Cross-correlation between residues by WCN model 

The normalized correlation between fluctuations of atom i  and j  is defined as 

  Cij =
δri ⋅δrj

δri ⋅δri δrj ⋅δrj

       (9) 

where δri  and δrj  are the fluctuations of the atom  i  and j , respectively, around their 

equilibrium positions. In the framework of the WCN model, we formulate the 

correlation term W  between residue  and residue ij i j   as 

∑∑
≠

−

≠

⋅⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+
=

N

jik
jkik

N

jik ijjkik
ij rerr

W
,

1

,

ˆˆ
)log(

1 xx     (10) 

where  and  are the unit vectors in the direction of  and , 

respectively. See Figure 5 for a schematically representation of Eq. 10. Note that when 

ikx̂ jkx̂ ki rr − kj rr −

i = j ,  reduces to Wii ωi
−1 . Then we denote the cross-correlation matrix as 
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),...,...,,( 1131211 NNn wwwwwC =

1−Λ= UUC

U Λ

when the protein size is N. It must be noted that we WC 

model provides a straightforward way to computed the cross-correlation matrix directly 

from protein structure without the use of the Hessian matrix, whereas other method like 

the NMA or GNM needs to first diagonalize the Hessian matrix in order to obtain the 

cross-correlation matrix.  

The WCN model also provides a way to compute the normal modes of protein 

motion. At first, the cross-correlation matrix C  is diagonalized,  

         (11) 

where and  is the eigenvectors and eigenvalues respectively. Since the cross-

correlation matrix is the inverse of the Hessian matrix, the eigenvectors U are the 

amplitudes and phases and the inverse of eigenvalues 1−Λ are the frequencies of the 

residues motion vibration for each corresponding modes. 

 To compare the cross-correlation matrix generated by WCN model with the ones 

generated by NMA and GNM, we normalize the cross-correlation matrix 

 by the following equation: ),...,...,,( 1131211 NNN wwwwwC =

jjii

ij
ij

WW

W
W =′         (12) 

Dataset 

We selected from PDB-REPRDB24 972 protein chains of length ≥ 60. Their 

structures are solved by X-ray crystallography with resolution ≤ 2.0 Å and R-

factors ≤0.2. All chains are of pair-wise sequence identity ≤ 25%. The chains of the data 
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set are listed in the appendix. In the data set, the protein size ranges from 60 to 1520 

with an average protein size around 300 residues. The resolution of the X-ray structures 

ranges from 0.73 Å to 2.0 Å with an average structural resolution 1.57 Å. The 

distribution of protein size (i.e., the number of residues) and structural resolution of the 

data set are shown in Figure 6. 
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RESULTS 

Comparison of CN model and WCN model based on different cut-off distances 

At first, to search which cut-off distance is suitable for WCN model and realize the 

influence of the cut-off distance on B-factor prediction, we use two definitions for cut-

off distances to see the performance of average correlation coefficient in CN and WCN 

model. One definition is to set the cut-off distance from 3Å to 30Å; the other is to set 

the cut-off distance based on the percentage of a protein size which was calculated by 

the maximum Cα-Cα distance between residues in a protein.  

Figure 7-10 show the curves of the Pearson’s linear correlation coefficients and 

Spearman’s rank correlation coefficients between the X-ray B-factors of Cα atoms and 

those computed by the CN model and the WCN model. In CN model, the curves of 

average correlation coefficients ascend when the cut-off distance increases at beginning, 

and they achieve the highest point at 15Å (the value is in contrast with the previous 

study14 that the cut-of distance of CN model is 7.35 Å) or 25% protein size. After the 

highest point, the curves will descend if the cut-off distance still increases (see Figure 7 

and Figure 8). In WCN model, the curves of the average correlation coefficients will 

ascend when the cut-off distance increases and reach a plateau (see Figure 9 and Figure 

10). It implies that we don’t need to worry which cut-off distance is appropriate when 

using WCN model to analyze protein dynamics. Finally, we don’t set any cut-off 

distance as a default parameter for WCN model due to its property. 
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Comparison of CN model and WCN model based on all atoms and entire residue 

The results of the above section are based on only Cα atoms. Under this criteria, in 

the WCN model with no cut-off distance, the average correlation coefficient are 

61.0=c  and 63.0=ρ . The fraction of structures with a correlation coefficient ≥ 0.5 

are  and %795.0 =c %825.0 =ρ . The CN model with the cut-off distance 7.35 Å, which 

is bases on previous study14, yields poorer results: c = 0.51, 49.0=ρ ,  and %545.0 =c

%505 =.0ρ . The effect of the term  1 , which is missing in the CN model, on the 

results is significant. But, if the average X-Ray B-factors for the entire residue are used, 

the WCN model yields 

/rij
2

c = 0.60 , 63.0=ρ , %795.0 =c  and  %835.0 =ρ . The CN 

model yields c = 0.50 , 50.0=ρ , %0 545. =c  and  %535.0 =ρ . These results are not 

much different from those based on the Cα atoms. These results are shown as a 

histogram of the Pearson’s linear correlation coefficients and Spearman’s rank 

correlation coefficients in Figure 12.  To rely on this conclusion, we can simply use Cα 

atoms to represent entire residues. 

To study the effects of all atoms on the computed B-factors, we calculate the WCN 

and CN B-factor profiles using all non-hydrogen atoms (i.e., C, N, O and S atoms) of 

proteins. If all heavy atoms are included in calculation in WCN model, the results are 

62.0=c , 65.0=ρ ,  and %855.0 =c %875.0 =ρ , while the all-atom CN model yields 

56.0=c , 58.0=ρ ,  and %775.0 =c %795.0 =ρ . Both results are better than those 

based on only Cα atoms. These results are shown as a histogram in Figure 11. 
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The computed B-factor profiles using CN model, GNM model and WCN model  

The currently available GNM program25 uses only Cα atoms for proteins in the 

calculation of the B-factors, therefore, for the sake of comparison, the following 

calculated results are based on the Cα atoms in both the WCN and CN models. 

Figure 13 shows the histogram of the Pearson’s linear correlation coefficients and 

Spearman’s rank correlation coefficients between the X-ray B-factors of Cα atoms and 

those computed by the WCN model, the CN model and the GNM model. The GNM 

yields c = 0.56 , 57.0=ρ ,  and %695.0 =c %735.0 =ρ . This is in contrast with the 

previous study14 that the CN model performs better than the GNM. It should be noted 

that, however, the previous study was conducted on a much smaller data set of 38 

structures. Though the correlation-coefficient distributions of these models seems to 

look quite different, we perform additional Student t-test to check these distributions 

using the statistical package R26. The p-values of the WCN-GNM, GNM-CN and 

WCN-CN are all smaller than 2.20 ×10−16 , indicating that the distributions are 

significantly different from each other. On the other hand, we notice that a better 

correlation between the WCN model and the GNM ( 86.0=c , 91.0=ρ ) than that 

between the WCN and the CN model ( 67.0=c , 7.0 3=ρ ). These results are shown in 

Figure 14. Thought both the CN model and the GNM consider the contributions from 

any atoms to be identical as long as they are within the cut-off distance, the CN model 

completely ignores those atoms that are out of the cut-off range, while the GNM takes 

them into account implicitly through the network. The WCN model considers the 

contributions from any atoms with a weighting factor 1 . In Figure 15 and Figure 16, 

we compare the B-factor profiles of flavocytochrome c3 (1Y0P:A)  and human 

/rij
2
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ppGalNAcT-2 (2FFU:A) computed by 3 methods with each compared with the X-ray 

B-factor profile. The WCN and the GNM B-factor profiles agrees relatively well with 

the X-ray B-factors, but the CN B-factor profile appears to be much more rugged, 

probably due to the artificial cut-off effect. 

The breakdown analysis for the accuracy of CN model, GNM model and WCN 

model 

Classified in terms of the SCOP classes, the structures in the dataset has 111 all-α 

proteins, 181 all-β proteins, 245 α/β proteins, 193 α+β proteins, 15 multi-domain 

proteins, 11 membrane and call surface proteins and peptides, 22 small proteins, 5 

coiled coil proteins, 1 designed protein and 188 undefined in SCOP. In Table 1 and 

Table 2, we compare the statistics of the performances of different models for the 4 

major SCOP classes: all- α proteins, all- β proteins, α/β proteins and α+β proteins, 

since the other classes have much smaller sample size (1-22). All 3 models perform 

worst for the all-α proteins and perform better when the protein structure has β-sheets, 

especially for all-β proteins. In general, the trends of the performance of these methods 

appear to be similar. We compare the performance of all 3 methods as a function of 

protein size, X-ray resolution and R-factor in Figure 17, Figure 18 and Figure 19. We 

remove the proteins in the marginal regions (for example, protein size 600-1550) due to 

the smaller size in those regions. One notices that, while the average performance of the 

CN model shows slightly downward trend for proteins of larger size or lower resolution, 

the average performances of the WCN model and the GNM appear to be relatively 

unchanged in the range of protein properties studied. 
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Case studies for the discrepancy of B-factor profiles between theory and 

experiments at specific regions in some proteins 

 We note that WCN model doesn’t always accurately reproduce the experimental 

B-factor profiles in some proteins, and even they have negative correlation with WCN 

predictions. For example, we show in Figure 20 the case with one of the bad correlation 

( , 011.0−=c 0.0=ρ ): 1GK8:I, the small chain of Rubisco from the green alga 

Chlamydomonas reinhardtii. On close inspection, we found that this structure is in fact 

part of a larger biological unit27 (Figure 21A) and, if the complete biological unit is 

included in calculation, the WCN correlation of 1GK8:I is improved to and 75.0=c

79.0=ρ  (Figure 21B). We show two more examples in Figure 22 and Figure 23, 

comparing WCN profiles with and without including biological units in calculation. By 

this inspection, we know some proteins in our data set are in fact part of larger 

biological units, which are the assumed functional form of the macromolecule. In the 

PDB, the biological units are built from the crystallographic space group using 

symmetry operation.  Currently, the coordinates of biological units can be obtained 

from either PDB or PQS28. The PDB and PQS biological units agree on 82% of entries29. 

In this work, we use the PDB biological units for computation. We computed the WCN 

B-factor profiles of the same proteins of the data set with other parts of the whole 

biological units (if any) taken into consideration. The Figure 24 shows the histogram 

WCN model yields c = 0.65 , 69.0=ρ , %865.0 =c , and 89.05.0 =ρ  which are better 

than the previous results.  
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Applications to large proteins 

The WCN model can be readily applied to large proteins, since its memory 

requirement is of the order O(N ), where N  is the size of protein. An example is the 

50S ribosomal subunit (1YJW) comprising 3774 residues. Figure 25 shows its structure 

and computed B-factor profile using the WCN model. On the other hand, the oGNM25 , 

the web version of the GNM, is unable to return the B-factor profile of 1YJW. 

The effect of the exponential value of the reciprocal distance between contact pair 

for weighting the contact number 

According to the results which WCN model has a better performance than CN 

model, we think the “weight” plays an important role when we compute the protein B-

factors. To verify the “weight” effect of WCN model on the B-factor prediction, we 

have a test using different exponential values for the weight in WCN model and try to 

find out which exponential value has the best performance in average correlation 

coefficients. From the Figure 26, we find WCN model reach the best performance when 

the exponential value is 2.3 in Pearson’s linear correlation coefficient evaluation and 1.9 

Spearman’s rank correlation coefficient evaluation. This result is similar to the classical 

physical phenomenon which the effect of force always decays in the square of the 

reciprocal distance between the two objects. To keep the physical meaning, we still 

choose 2 as the exponential value. 

The cross-correlation of fluctuations between residues 

The knowledge of cross-correlated motion between residues is useful in understanding 

long-range communication30,31 and large domain movements relevant to protein 
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function32,33. The cross-correlation matrix can be computed through the normal mode 

analysis (NMA)19-21. In this method, i.e. NMA, the protein structure must be first 

optimized through energy minimized. The second derivative matrix of the total potential 

function (also called the Hessian matrix) is computed from the optimized structure. The 

cross-correlation between atom fluctuations is computed from the eigenvalues (i.e. 

vibration frequencies) and the eigenvectors (i.e. vibration amplitudes and phases) of the 

Hessian matrix using δri ⋅δrj ~ UikU jk /λk
k

∑ , where λk  is the eigenvalue of the k  

mode and U  is the  component of the eigenvector of the 

th

ik i th k th  mode. Instead of going 

through procedures of energy minimization and matrix diagonalization as in the case of 

NMA, we can compute the cross-correlation map directly from protein structure using 

Eq. 10. We eliminated those proteins whose residue sizes are larger than 1000 amino 

acids in the dataset because of the computational limit of the NMA program, or those 

ones whose structures can’t be optimized through the energy minimization process. 

Finally, we get 961 proteins and calculate the correlation coefficients of the cross-

correlation maps, eigenvalues and eigenvectors generated from WCN, GNM and NMA. 

Again, we use both of Pearson’s linear correlation coefficients and Spearman’s rank 

correlation coefficients to see if they have different results or conclusions. 

In Table3, the results show the cross-correlation matrices computed by WCN 

correlates well with those by GNM or NMA, but the correlation between WCN and 

NMA are slightly better than WCN and GNM. Figure 27 shows the normalized cross-

correlation map of 1RWH:A whose cross-correlation map was computed by WCN; and 

compares it with those of GNM and NMA. Currently, there is no "experimental" 

correlation map (except for the diagonal terms, which correspond to the X-ray B-factors) 
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as a reference standard. However, the similarity of these types of computed correlation 

maps indicates that the WCN model provides a quick alternative to GNM or NMA to 

compute the correlation of motions in proteins. For 1RWH:A, Pearson’s linear 

correlation coefficient between WCN and NMA is 85.0=−NMAWCNc

85.0

; WCN and GNM, 

; and GNM and NMA, 79.0=−GNMWCNc =−GNMc NMA . Spearman correlation 

coefficients are 88.0=−NMAWCNρ , 79.0=−GNMWCNρ and 87.0=−NMAGNMρ .We also show 

more cross-correlation maps as examples in Figure 28-31.  

The inverse of the eigenvalues, i.e., vibration frequencies, is equal to the 

eigenvalues of Hessian matrix, Table 4 only shows the Pearson’s correlation coefficient 

because the inverse of eigenvalues (vibration frequencies) have been ranked and 

Spearman correlation coefficient will be 1. We find WCN has very high correlation 

coefficients with GNM ( 99.0=c ) and NMA ( 96.0=c ) when considering all modes. 

From the equation δri ⋅δrj ~ UikU jk /λk
k

∑ , the correlation between atom fluctuations 

is affected more when λk  (vibration frequencies) is smaller. Therefore, we also consider 

the first 20 slowest modes to see the correlation, and the results of the first 20 slowest 

modes are slightly lower than the ones of all modes. Figure 32-35 show the inverse of 

eigenvalues of all modes and the first slowest 20 modes of 1CVR:A and 1ARB 

respectively.  

Finally, we focus on the 3 sets of eigenvectors of modes with first 3 slowest modes. 

These eigenvector values represent amplitudes and the eigenvector phases represent the 

relative directions of slow vibration motions which can be regard as global scale 

motions. Table 5 shows the correlation coefficients of the eigenvectors generated from 
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WCN, GNM and NMA in first mode, second mode and third mode. WCN correlates 

well with GNM and NMA in the first mode, but the other two modes reveal more 

differences. Figure 36-38 show the ribbon diagrams which are colored by the positive 

(blue) and negative (red) phases and the eigenvectors distributions in first mode, second 

mode and third mode of 1CVR:A. Previous study33 shows that the catalytic residues are 

usually immobilized in order to maintain the delicate arrangement of functional group. 

For 1CVR:A, Figure 39 shows the protein consists of the catalytic domain subdivided 

into A-subdomains (yellow) and B-subdomains (green), and the IgSF domain (purple)34. 

The subdomains of catalytic domain almost can be indentified by the phases of 

eigenvectors in first mode and second mode. The other example is 1ARB. Figure 40-42 

show the eigenvectors distributions of 1ARB. For 1ARB, Figure 43 shows the catalytic 

triad comprises His57, Asp113, and Ser194 (green)35. The three residues lie on the 

interfaces of the phases in first mode, second mode. 
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DISCUSSION 

A simulation of a polypeptide chain folding into a native structure must include  

many and complicated molecular force fields1,2,4 . If people get protein dynamics 

directly from native protein structure properties, they will be able to avoid the 

complicated molecular simulation computation. Previous studies show CN model and 

PFP model can derive protein dynamics simply from protein structures (i.e., without the 

knowledge of protein sequences) and have good performance in B-factor prediction. In 

advance, we find the more close relationship between the thermal fluctuations of 

proteins and the distance-dependent protein contact number allows one to compute 

dynamic properties of proteins more accurately than CN model and PFP model. This 

method, i.e., the WCN model, does not presuppose a mechanical model8-10 as well as 

the potential functions associated with that model as other methods:  molecular 

dynamics is based on sophisticated molecular force field1,2,4, while the GNM assumes a 

harmonic oscillator model for proteins with their structures described in terms of a 

collection of masses connected to each other through a spring of a uniform force 

constant. Besides, GNM or other methods based on molecular force field all need one or 

more parameters to perform a matrix creation or a molecular simulation.  

We showed that the WCN model can produce more accurate B-factor profiles than 

other methods and just need the topological structure of proteins but without any 

parameter. Because of its simplicity, this method is very efficient when proteins have 

large sizes and is convenient to study the linkage between protein function and 

dynamics. From the study of biological units, we noted that the predicted B-factor will 

fall above the experimental B-factor at the regions of protein-protein interfaces because 
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of the lack of contacting effect between atoms. We think this may be a possible way to 

investigate protein-protein or protein-ligand interaction. 

Traditionally, one who wants to use protein contact number as a feature to analyse 

protein structure dynamics or functions will need to decide an optical cut-off distance to 

catch appropriate neighboring atom information and assume these nightboring atoms 

contribute contact effect equally9,14. In WCN model, we don’t need to find an optical 

cut-off distance but include all atoms contact effect which is scaled down by the square 

of the distance between atoms. In addition, we show for the first time that cross-

correlation between residues can be computed directly from weighted protein contact 

number and correlates well with the ones computed by GNM or NMA. By directly 

computing eigenvalues and eigenvectors from the cross-correlation matrix, it suggests 

that it is possible to skip the Hessian matrix creation and obtain the normal mode 

motion from correlation maps computed by any method. 

By inverting the Hessian matrix, (in GNM, it is the Kirchhoff matrix), one can 

obtain the cross-correlation matrix, and the diagonal elements of the matrix will 

correspond to the X-ray B-factors, from which the information of protein dynamics can 

be derived. On the other hand, the WCN model computes the correlation matrix (Eq. 10) 

directly from the protein structure without first computing the Hessian matrix, thus 

avoiding assuming any explicit form of the potential functions. In this way, the WCN 

model can be seen as complementary to the GNM.  

Shih et al.15  have recently showed that the atoms in proteins lying on the same 

spherical shell centered at the fixed point tend to have similar thermal fluctuations. We 

will refer to this model as the protein fixed-point (PFP) model. The PFP model assumes 
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that the protein centroid in the simple single-domain protein is the position of the 

smallest fluctuations, i.e., the fixed point. The PFP model, like the WCN model, 

provides a simple way to compute both auto-correlation and cross-correlation between 

residues in reasonable accuracy. It is not hard to show that the WCN model can reduce 

to the PFP model; the diagonal term of Eq. 10 reduces to the following form 

1
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where Ri  is the distance of the i  Cα atom from the protein centroid. We obtain from 

Eq. 12 W , which is the PFP B-factor15.  But, if protein has multi-domains, the B-

factor prediction results between the two models will have obvious difference because 

the protein may have more than one centroid16 when the PFP model assumes a protein 

has only one centroid. 

th

ii = Ri
2

 

 

 

 

 

 22



 

REFERENCES 

1. Levitt M, Warshel A. Computer simulation of protein folding. Nature 
1975;253(5494):694-698. 

2. McCammon JA, Gelin BR, Karplus M. Dynamics of folded proteins. Nature 
1977;267(5612):585-590. 

3. Rueda M, Ferrer-Costa C, Meyer T, Perez A, Camps J, Hospital A, Gelpi JL, 
Orozco M. A consensus view of protein dynamics. Proc Natl Acad Sci U S A 
2007;104(3):796-801. 

4. Warshel A. Bicycle-pedal model for the first step in the vision process. Nature 
1976;260(5553):679-683. 

5. Warshel A. Molecular dynamics simulations of biological reactions. Acc Chem 
Res 2002;35(6):385-395. 

6. Srinivasan R, Rose GD. LINUS: a hierarchic procedure to predict the fold of a 
protein. Proteins 1995;22(2):81-99. 

7. Yue K, Dill KA. Folding proteins with a simple energy function and extensive 
conformational searching. Protein Sci 1996;5(2):254-261. 

8. Tirion MM. Large Amplitude Elastic Motions in Proteins from a Single-
Parameter, Atomic Analysis. Phys Rev Lett 1996;77(9):1905-1908. 

9. Bahar I, Atilgan AR, Erman B. Direct evaluation of thermal fluctuations in 
proteins using a single-parameter harmonic potential. Fold Des 1997;2(3):173-
181. 

10. Ming D, Kong Y, Lambert MA, Huang Z, Ma J. How to describe protein motion 
without amino acid sequence and atomic coordinates. Proc Natl Acad Sci U S A 
2002;99(13):8620-8625. 

11. Micheletti C, Banavar JR, Maritan A. Conformations of proteins in equilibrium. 
Phys Rev Lett 2001;87(8):088102. 

12. Canino LS, Shen T, McCammon JA. Changes in flexibility upon binding: 
Application of the self-consistent pair contact probability method to protein-
protein interactions. J Chem Phys 2002;117(21):9927-9933. 

13. Pandey BP, Zhang C, Yuan X, Zi J, Zhou Y. Protein flexibility prediction by an 
all-atom mean-field statistical theory. Protein Sci 2005;14(7):1772-1777. 

14. Halle B. Flexibility and packing in proteins. Proc Natl Acad Sci U S A 
2002;99(3):1274-1279. 

 23



 

15. Shih CH, Huang SW, Yen SC, Lai YL, Yu SH, Hwang JK. A simple way to 
compute protein dynamics without a mechanical model. Proteins 2007;68(1):34-
38. 

16. Lu CH, Huang SW, Lai YL, Lin CP, Shih CH, Huang CC, Hsu WL, Hwang JK. 
On the relationship between the protein structure and protein dynamics. Proteins 
2008;72(2):625-634. 

17. Remington S, Wiegand G, Huber R. Crystallographic refinement and atomic 
models of two different forms of citrate synthase at 2.7 and 1.7 A resolution. J 
Mol Biol 1982;158(1):111-152. 

18. Wiegand G, Remington SJ. Citrate synthase: structure, control, and mechanism. 
Annu Rev Biophys Biophys Chem 1986;15:97-117. 

19. Brooks B, Karplus M. Harmonic dynamics of proteins: normal modes and 
fluctuations in bovine pancreatic trypsin inhibitor. Proc Natl Acad Sci U S A 
1983;80(21):6571-6575. 

20. Kidera A, Go N. Normal mode refinement: crystallographic refinement of 
protein dynamic structure. I. Theory and test by simulated diffraction data. J Mol 
Biol 1992;225(2):457-475. 

21. Levitt M, Sander C, Stern PS. Protein normal-mode dynamics: trypsin inhibitor, 
crambin, ribonuclease and lysozyme. J Mol Biol 1985;181(3):423-447. 

22. Go N, Noguti T, Nishikawa T. Dynamics of a small globular protein in terms of 
low-frequency vibrational modes. Proc Natl Acad Sci U S A 1983;80(12):3696-
3700. 

23. Ichiye T, Karplus M. Collective motions in proteins: a covariance analysis of 
atomic fluctuations in molecular dynamics and normal mode simulations. 
Proteins 1991;11(3):205-217. 

24. Noguchi T, Akiyama Y. PDB-REPRDB: a database of representative protein 
chains from the Protein Data Bank (PDB) in 2003. Nucleic Acids Res 
2003;31(1):492-493. 

25. Yang LW, Rader AJ, Liu X, Jursa CJ, Chen SC, Karimi HA, Bahar I. oGNM: 
online computation of structural dynamics using the Gaussian Network Model. 
Nucleic Acids Res 2006;34(Web Server issue):W24-31. 

26. Team R. R: A language and environment for statistical computing. Vienna, 
Austria: R Foundation for Statistical Computing;2007. 

27. Taylor TC, Backlund A, Bjorhall K, Spreitzer RJ, Andersson I. First crystal 
structure of Rubisco from a green alga, Chlamydomonas reinhardtii. J Biol 
Chem 2001;276(51):48159-48164. 

 24



 

28. Henrick K, Thornton JM. PQS: a protein quaternary structure file server. Trends 
Biochem Sci 1998;23(9):358-361. 

29. Xu Q, Canutescu A, Obradovic Z, Dunbrack RL, Jr. ProtBuD: a database of 
biological unit structures of protein families and superfamilies. Bioinformatics 
2006;22(23):2876-2882. 

30. Budiman ME, Knaggs MH, Fetrow JS, Alexander RW. Using molecular 
dynamics to map interaction networks in an aminoacyl-tRNA synthetase. 
Proteins 2007;68(3):670-689. 

31. Zheng W, Liao JC, Brooks BR, Doniach S. Toward the mechanism of 
dynamical couplings and translocation in hepatitis C virus NS3 helicase using 
elastic network model. Proteins 2007;67(4):886-896. 

32. Ming D, Kong Y, Wakil SJ, Brink J, Ma J. Domain movements in human fatty 
acid synthase by quantized elastic deformational model. Proc Natl Acad Sci U S 
A 2002;99(12):7895-7899. 

33. Yang LW, Bahar I. Coupling between catalytic site and collective dynamics: a 
requirement for mechanochemical activity of enzymes. Structure 
2005;13(6):893-904. 

34. Eichinger A, Beisel HG, Jacob U, Huber R, Medrano FJ, Banbula A, Potempa J, 
Travis J, Bode W. Crystal structure of gingipain R: an Arg-specific bacterial 
cysteine proteinase with a caspase-like fold. Embo J 1999;18(20):5453-5462. 

35. Tsunasawa S, Masaki T, Hirose M, Soejima M, Sakiyama F. The primary 
structure and structural characteristics of Achromobacter lyticus protease I, a 
lysine-specific serine protease. J Biol Chem 1989;264(7):3832-3839. 

36. Lee FS, Chu ZT, Warshel A. Microscopic and Semimicroscopic Calculations of 
Electrostatic Energies in Proteins by the POLARIS and ENZYMIX Programs. J 
Comp Chem 1993;14(2):161-185. 

37. Fan Z-Z, Hwang J-K, Warshel A. Using simplified protein representaion as a 
reference potential for all-atom calculations of folding free energy. Theor Chem 
Acc 1999;103:77-80. 

 

 

 

 

 

 

 25



 

FIGURES AND TABLES 

All Ca Atoms

0

0.03

0.06

0.09

0.12

0.15

0.18

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Contact Number

Fr
eq

ue
nc

y

 

Figure 1. The distribution of the frequencies of residue contact numbers in proteins for 

the nonhomologous dataset which selected from PDB-REPRDB24. 
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Figure 2. The distribution of the frequencies of centers of mass contact numbers in 

proteins for the nonhomologous dataset which selected from PDB-REPRDB24. 
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Figure 3. The schematic illustration of the CN model of a hypothetical 6-atom protein. 

We must define a cut-off distance r0 first as the radius of contact sphere region of atom i. 

When the contact distance rij is smaller than r0, we will think the atom j contacts atom i. 

In addition, the atoms in the contact sphere region contribute equally no matter how 

long the distance between atom i and atom j (rij) is. 
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Figure 4. The schematic illustration of the WCN model of a hypothetical 6-atom 

protein. We don’t need to define a cut-off distance r0 (i.e, to regard r0 as infinity) as the 

radius of contact sphere region of atom i but calculate weighted contact number of all 

atoms based on the results of cut-off distances effect screening. We think every atom 

will contact atom i but the contact effect is scaled down by the square of the distance 

between the contacting pair. The thickness of the arrow means the contact effect, and 

the thicker is the stronger. 
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Figure 5. The structure of the human hyperplastic discs protein (1I2T:A) is presented in 

the cartoon putty representation, where the color is ramped by residue from blue at the 

lowest B-factor value to red at the highest B-factor value. This figure illustrates the 

cross-correlation between residues by WCN model. The balls represent the residues i, j 

and k.  and  are the unit vectors in the direction of  and , 

respectively. 

ikx̂ jkx̂ ki rr − kj rr −
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Figure 6. The distribution of (A) protein size and (B) structural resolution of the 

nonhomologous data set comprising 972 protein structures with resolution ≤ 2.0 Å and 

R-factors ≤0.2 selected from PDB-REPRDB.  
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Figure 7. The performances of the correlation coefficients are in different cut-off radius 

values in CN model for the nonhomologous data set. The upper part is Pearson’s linear 

correlation coefficients and the lower part is Spearman’s rank correlation coefficients.  
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Figure 8. The performances of the correlation coefficients are in different percentage 

values of the protein size for the cut-off radius in CN model for the nonhomologous 

data set. The upper part is Pearson’s linear correlation coefficients and the lower part is 

Spearman’s rank correlation coefficients. 
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Figure 9. The performances of the correlation coefficients are in different cut-off radius 

values in WCN model for the nonhomologous data set. The upper part is Pearson’s 

linear correlation coefficients and the lower part is Spearman’s rank correlation 

coefficients. 
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Figure 10. The performances of the correlation coefficients are in different percentage 

values of the protein size for the cut-off radius in WCN model for the nonhomologous 

data set. The upper part is Pearson’s linear correlation coefficients and the lower part is 

Spearman’s rank correlation coefficients. 
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Figure 11. Comparison of the correlation coefficients between experimental and the 

computed B-factor profiles bases on the CN model (white), the all-atom CN mode

(grey), the WCN model (spot) and all-atom WCN model (black) for the nonhomologous 

data set.  
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Figure 12. Comparison of the correlation coefficients between experimental and the 

computed B-factor profiles bases on the CN model (white), the CN model vs. average 

B-factor (grey), the WCN model (spot) and WCN model vs. average B-factor (black) 

for the nonhomologous data set.  
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Figure 13. Comparison of the correlation coefficients between experimental and the 

computed B-factor profiles bases on the CN model (white), the GNM (grey) and the 

WCN model (black) for the nonhomologous data set.  
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Figure 14. The correlation of model predictions (A) between the WCN model and the 

GNM, and (B) between the WCN model and the CN model for the nonhomologous data 

set.  
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(A) 

(B) 

 

Figure 15. (A) The structure of the flavocytochrome c3 (1Y0P:A) which is presented in 

the cartoon putty representation. (B) The X-ray B-factor profile (dotted line) of 

compared with the computed B-factor profile (solid line) by the WCN model 

( c = 0.85 , 87.0=ρ )  
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(C) 

 

 
(D) 

 

Figure 15. The X-ray B-factor profile (dotted line) of flavocytochrome c3 (1Y0P:A) 

compared with the computed B-factor profile (solid line) by (C) the GNM 

) and (D) the CN model ( c = 0.51, 51.0=ρ( c = 0.69 , 72.0=ρ ).  
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(A) 

 

(B) 

Figure 16. (A) The structure of the chain A of human ppGalNAcT-2 (2FFU:A) which is 

presented in the cartoon putty representation.. (B) The X-ray B-factor profile (dotted 

line) of compared with the computed B-factor profile (solid line) by the WCN model 

( 78.0=c , 84.0=ρ ).  

 

 



 

 

 

 

 

Figure 16. The X-ray B-factor profile (dotted line) of the chain A of human 

ppGalNAcT-2 (2FFU:A) compared with the computed B-factor profile (solid line) by 

(C) the GNM ( 136.0=c , 7.0=ρ ) and (D) the CN model ( 60.0=c , 6.0= 0ρ ) which 

are shown in upper and lower part, respectively.  

 

 

 

 
  

(C) 

 

(D) 
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Table 1. The performance breakdown of the WCN model, the CN model and the GNM 

by Pearson’s linear correlation coefficient for the structures classified according to the 

SCOP classes  

  WCN CN GNM 

 c  5.0c  c  5.0c  c  5.0c  SCOP classes 

All-α proteins  0.59 73% 0.47 43% 0.54 68% 

All-β proteins  0.64 82% 0.51 58% 0.58 73% 

α/β proteins  0.62 82% 0.49 51% 0.57 75% 

α+β proteins  0.60 7% 0.49 51% 0.54 % 

 

 

 

 

 7  65
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Table 2. The performance breakdown of the WCN model, the CN model and the GNM 

by Spearman’s rank correlation coefficient for the structures classified according to the 

SCOP classes  

  WCN CN GNM 

SCOP classes  ρ  5.0ρ  ρ  5.0ρ  ρ  5.0ρ  

All-α proteins  0.60 76% 0.45 30% 0.53 63% 

All-β proteins  0.66 84% 0.50 54% 0.59 78% 

α/β proteins  0.65 86% 0.48 45% 0.60 76% 

α+β proteins  0.63 0.49 48% 0.58 

 

 

 

 

80% 72% 
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Figure 17.  The correlation coefficient between the computed and the X-ray B-factors 

for the WCN model (dotted line), the CN model (solid line) and the GNM (grey line) as 

a function of the protein residue number. The upper part is Pearson’s linear correlation 

coefficients and the lower part is Spearman’s rank correlation coefficients. 
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2

Figure 18.  The correlation coefficient between the computed and the X-ray B-factors 

for the WCN model (dotted line), the CN model (solid line) and the GNM (grey line) as 

a function of the protein X-ray structure resolution in Å. The upper part is Pearson’s 

linear correlation coefficients and the lower part is Spearman’s rank correlation 

coefficients. 
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Figure 19.  The correlation coefficient between the computed and the X-ray B-factors 

for the WCN model (dotted line), the CN model (solid line) and the GNM (grey line) as 

a function of the protein R-factor. The upper part is Pearson’s linear correlation 

coefficients and the lower part is Spearman’s rank correlation coefficients. 
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(A) 

(B) 

 

Figure 20. (A) The structure of the chain I of Rubisco from the green alga, 

Chlamydomonas reinhardtii (1GK8:I) which is presented in the cartoon putty 

representation. (B) The X-ray B-factor profile (dotted line) of 1GK8:I compared with 

the computed B-factor profile (solid line) by the WCN model ( 06.0−=c , 00.0=ρ ). 
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(A) 

 

(B) 

Figure 21. (A) The biological unit of the Rubisco (1GK8) in the surface representation. 

The chain I is colored in orange, while other chains are colored in magenta. (B) The X-

ray B-factor profile (dotted line) of 1GK8:I compared with the WCN profile (solid line) 

when the biological units are included in WCN computation ( 77.0=c , 79.0=ρ ). 
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(A) 

 

 

(B) 

Figure 22. (A) The structure of the chain C of phosphocarrier protein (1Y5I:C) which is 

presented in the cartoon putty representation. (B) The X-ray B-factor profile (dotted line) 

of 1Y5I:C compared with the WCN profile (solid line) ( 09.0−=c , 06.0−=ρ ). 
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(C) 

(D) 

Figure 22. (C) The biological unit of phosphocarrier protein (1Y5I) in the surface 

representation. The chain C is colored in orange, while other chains are colored in 

magenta. (D) The X-ray B-factor profile of 1Y5I:C compared with the WCN prof

when the biological units are included in WCN computation (

ile 

76.0=c , 82.0=ρ ). 
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Figure 23. (A) The structure of the chain C of little finger fragment of DNA polymerase 

IV (1UNN:C) which is presented in the cartoon putty representation. (B) The X-ray B-

factor profile (dotted line) of 1UNN:C compared with the computed B-factor profile 

(solid line) by the WCN model ( 16.0−=c , 3.0 9=ρ ). 

 

(A) 

(B) 
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(C) 

(D) 

Figure 23. (C) The biological unit of little finger fragment of DNA polymerase IV 

(1UNN) in the surface representation. The chain C is colored in orange, while other 

chains are colored in magenta. (D) The X-ray B-factor profile of 1UNN:C compared 

with the WCN profile when the biological units are included in WCN computation 

( 64.0=c , 67.0=ρ ).  
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Figure 24. Comparison of the correlation coefficients between the experimental and the 

computed B-factor profiles bases on the WCN model (white) and the WCN model 

taking other parts of the whole biological units into consideration (black) for the 

n lo a seonhomo gous dat t.  
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(A) 

(B) 

 

Figure 25. (A) The structure of the 50S ribosomal subunit (1YJW) which is presented 

in the cartoon putty representation. The gray parts are DNA structures. (B) The X-ray 

B-factor profile (dotted line) of compared with the computed B-factor profile (solid 

line). The correlation coefficient between the X-ray and the computed B-factors is 

and 60.0=c 49.0=ρ . 
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Figure 26. The performances of the correlation coefficients are in different exponent 

values of the reciprocal distance in WCN model. The upper part is Pearson’s linear 

correlation coefficients and the lower part is Spearman’s rank correlation coefficients. 

 

 57



 

Table 3. The correlation coefficients of cross-correlation maps between the WCN 

model, the GNM and the NMA. 

  GNM  NMA 

  c  ρ   c  ρ  

WCN  0.79 0.80  0.83 0.82 

GNM  - -  0.76 0.81 

 

 

 

 

 

 

 

 

 

 

 

 

 58



 

 

Figure 27. The cross-correlation maps for the chain A of Arg-specific cysteine 

roteinase gingipain R (1CVR:A). The map on the upper right is computed by Eq. 10 

alized by Eq. 12, the map on the lower left by GNM and the map on the lower 

right by the NMA. The colors of the map ramp from red (positive correlation) to blue 

egative correlation). NMA was performed using the simplified force field of 

NZYMIX36,37. For 1RWH:A, Pearson’s linear correlation coefficient between WCN 

and NMA is ; WCN and GNM is 

p

and norm

(n

E

85.0=−NMAWCNc 79.0=−GNMWCNc

 are 

; GNM and NMA is 

n correlation coefficients85.0 . Spearma=−NMAGNMc 88.0=−NMAWCNρ , 

79.0=−GNMWCNρ and 87−NMAGNM .0=ρ . 
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Figure 28. The cross-correlation maps for the achromobacter lyticus protease I (1ARB). 

The map on the upper right is computed by Eq. 10 and normalized by Eq. 12, the map 

on the lower left by GNM and the map on the lower right by the NMA. The colors of 

the map ramp from red (positive correlation) to blue (negative correlation). NMA was 

performed using the simplified force field of ENZYMIX36,37. For 1ARB, Pearson’s 

linear correlation coefficient between WCN and NMA is 80.0=−NMAWCNc ; WCN and 

GNM, −GNMWCNc  GNM and NMA, 83.0= ; and 69.0=−NMAGNMc pearman correlation 

83.0=−NMACN

. S

coefficients are Wρ , 90.0=−GNMWCNρ and 0 86. . =−NMAGNMρ
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Figure 29. The cross-correlation maps for the chain A of toluene 4-monooxygenase 

catalytic effector protein (2BF5:A). The map on the upper right is computed by Eq. 10 

and normalized by Eq. 12, the map on the lower left by GNM and the map on the lower 

right by the NMA. The colors of the map ramp from red (positive correlation) to blue 

(negative correlation). NMA was performed using the simplified force field of 

ENZYMIX36,37. For 2BF5:A, Pearson’s linear correlation co n WCN and 

NMA i 1

efficient betwee

s 8.0=−NMAWCNc ; WCN and GNM, 87.0=−GNMCN ;Wc  and GNM and NMA, 

71.0=−NMAGNMc −. Spearman correlation coefficients are 84.0=NMAWCNρ , 

84.0=−GNMWCNρ and 82.0=−NMAGNMρ . 
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Figure 30. The cross-correlation maps for the chain A of major capsid protein of group 

A rotavirus  (1QHD:A). The map on the upper right is computed by Eq. 10 and 

normalized by Eq. 12, the map on the lower left by GNM and the map on the lower 

right by the NMA. The colors of the map ramp from red (positive correlation) to blue 

(negative correlation). NMA was performed using the simplified force field of 

ENZYMIX36,37. For 1QHD:A, Pearson’s linear correlation coefficient between WCN 

and NMA 88. ; WCN and GNM 7 is , 0=−NMAWCNc  8.0=−GNMWCNc ; and GNM and NMA, 

. Spearman correlation coefficients are 94.0=−NMAGNMc 90.0=−NMAWCNρ , 

and 95.0=−NMAGNMρ . 88.0=−GNMWCNρ
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Figure 31. The cross-correlation maps for the chain A of E. Coli manganese(II) 

superoxide dismutase (1IXB:A). The map on the upper right is computed by Eq. 10 and 

normalized by Eq. 12, the map on the lower left by GNM and the map on the lower 

right by the NMA. The colors of the map ramp from red (positive correlation) to blue 

(negative correlation). NMA was performed using the simplified force field of 

ENZYMIX36,37. For 1IXB:A, Pearson’s linear correlation coefficient between WCN and 

NMA is 77.0=−NMA ;WCNc CN and GNM,  W 81.0=−GNMCN ;Wc and GNM and NMA, 

. Spearman correlation coefficients are 

 

73.0=−NMAGNMc 77.0=−NMAWCNρ , 

and 85.0=−NMAGNMρ . 85.0=−GNMWCNρ
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Table 4. The correlation coefficients of the inverse of eigenvalues in all modes and first 

20 slowest modes between the WCN model, the GNM and the NMA. 

  GNM  NMA 

 
 all modes first 20 

slowest modes  all modes first 20 
slowest modes

WCN  0.99 0.93  0.96 0.85 

GNM  - -  0.95 0.97 
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Figure 32. The inverse of eigenvalues of all modes for the chain A of Arg-specific 

cysteine proteinase gingipain R (1CVR:A). The upper one is plotted by diagonalizing 

the cross-correlation map from WCN, the middle one from GNM and the low one from 

NMA. 
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Figure 33. The inverse of eigenvalues of the first 20 slowest modes for the chain A of 

Arg-specific cysteine proteinase gingipain R (1CVR:A). The upper one is plotted by 

diagonalizing the cross-correlation map from WCN, the middle one from GNM and the 

low one from NMA. 
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Figure 34. The inverse of eigenvalues of all modes for the achromobacter lyticus 

protease I (1ARB). The upper distribution is plotted by diagonalizing the cross-

correlation map from WCN, the middle one from GNM and the low one from NMA. 
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Figure 35. The inverse of eigenvalues of the first 20 slowest modes for the 

achromobacter lyticus protease I (1ARB). The upper distribution is plotted by 

diagonalizing the cross-correlation map from WCN, the middle one from GNM and the 

low one from NMA. 
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Table 5. The correlation coefficients of eigenvectors in first mode, second mode and 

third mode between the WCN model, the GNM and the NMA. 

 GNM NMA 

 First Mode Second Mode Third Mode First Mode Second Mode Third Mode 

c  ρ  c  ρ  c  ρ  c  ρ  c  ρ  c  ρ   

WCN 0.81 0.83 0.61 0.61 0.46 0.46 0.82 0.83 0.63 0.64 0.59 0.61

GNM - - - - - - 0.76 0.77 0.52 0.53 0.41 0.43
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(C) 

Figure 36. The regions subject to opposite direction displacements and the distribution 

of displacements along the first mode computed by (A) the WCN model for the chain A 

f Arg-specific cysteine proteinase gingipain R (1CVR:A). Regions colored in blue and 

red correspond to positive and negative displacements respectively. The diagram shows 

the vibration amplitudes and phases (positive or negative). The same illustrations of 

gure and diagram show the results by (B) the GNM and (C) the NMA.  

o

fi
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Figure 37. The regions subject to opposite direction displacements and the distribution 

of displacements along the second mode computed by (A) the WCN model for the chain 

A of Arg-specific cysteine proteinase gingipain R (1CVR:A). Regions colored in blue 

and red correspond to positive and negative displacements respectively. The diagram 

shows the vibration amplitudes and phases (positive or negative). The same illustrations 

of figure and diagram show the results by (B) the GNM and (C) the NMA. 
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Figure 38. The regions subject to opposite direction displacements and the distribution 

of displacements along the third mode computed by (A) the WCN model for the chain 

A of Arg-specific cysteine proteinase gingipain R (1CVR:A). Regions colored in blue 

and red correspond to positive and negative displacements respectively. The diagram 

shows the vibration amplitudes and phases (positive or negative). The same illustrations 

of figure and diagram show the results by (B) the GNM and (C) the NMA. 
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Figure 39. The chain A of Arg-specific cysteine proteinase gingipain R (1CVR:A) 

consists of the catalytic domain subdivided into A-subdomains (yellow) and B-

subdomains (green), and the IgSF domain (purple). Each subdomain comprises a central 

β-sheet and a few additional hairpins flanked by helices on either side, as characteristic 

 

 

for α/β open-sheet structures34.  
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Figure 40. The regions subject to opposite direction displacements and the distribution 

of displacements along the first mode computed by (A) the WCN model for the 

achromobacter lyticus protease I (1ARB). Regions colored in blue and red correspond 

to positive and negative displacements respectively. The diagram shows the vibration 

mplitudes and phases (positive or negative). The same illustrations of figure and 

iagram show the results by (B) the GNM and (C) the NMA. 
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Figure 41. The regions subject to opposite direction displacements and the distribution 

of displacements along the second mode computed by (A) the WCN model for the 

achromobacter lyticus protease I (1ARB). Regions colored in blue and red correspond 

to positive and negative displacements respectively. The diagram shows the vibration 

amplitudes and phases (positive or negative). The same illustrations of figure and 

diagram show the results by (B) the GNM and (C) the NMA. 
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Figure 42. The regions subject to opposite direction displacements and the distribution 

of displacements along the third mode computed by (A) the WCN model for the 

achromobacter lyticus protease I (1ARB). Regions colored in blue and red correspond 

to positive and negative displacements respectively. The diagram shows the vibration 

amplitudes and phases (positive or negative). The same illustrations of figure and 

diagram show the results by (B) the GNM and (C) the NMA. 
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Figure 43. The structure of achromobacter lyticus protease I (1ARB). The catalytic 

triad comprises His57, Asp113, and Ser194 are colored in green and shown by the ball 

 

and stick model35.  
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APPENDIX 

The 972 protein chains of length ≥ 60 and their structures solved by X-ray 

crystallography with resolution ≤ 2.0 Å and R-factors ≤0.2 are selected from PDB-

REPRDB24. 

1A1IA 1A53_ 1A6M_ 1A8D_ 1A8I_ 1A9XA 1ADEA 1ADOA 

1AF7_ 1AGJA 1AGQD 1AH7_ 1AJSA 1AMM_ 1AOCA 1AOP_ 

1APYA 1ARB_ 1AW7A 1AY7B 1AYOA 1B3AA 1B5QA 1B65A 

1B6TA 1B8EA 1BF2_ 1BGF_ 1BGVA 1BHTA 1BIF_ 1BSLB 

1BXEA 1C0PA 1C1KA 1C48A 1C5EA 1C7KA 1C7SA 1C9OA 

1CB0A 1CC8A 1CCWA 1CCWB 1CCZA 1CFB_ 1CHD_ 1CMBA 

1CQXA 1CQYA 1CRUB 1CSH_ 1CV8_ 1CVRA 1CZ9A 1CZFA 

1D0DA 1D4OA 1D7PM 1D8DA 1DBFA 1DC1B 1DDT_ 1DFMA 

1DG6A 1DGWX 1DJ0A 1DJEA 1DJTA 1DLJA 1DMR_ 1DOZA 

1DQAA 1DQZA 1DS1A 1DUN_ 1DUPA 1DXRM 1DY5A 1E1HA 

1E4CP 1E6PB 1E6UA 1E7LA 1E9EA 1E9GB 1EB6A 1EBLA 

1ECFB 1EDG_ 1EDQA 1EEOA 1EEXA 1EH7A 1EJBA 1EJDA 

1EKGA 1EKXA 1EL4A 1ELKA 1EPFB 1EQCA 1ES9A 1ESGB 

1EU8A 1EUVA 1EX2A 1EXRA 1EXTA 1F1XA 1F20A 1F24A 

1F4NA 1F86A 1F8EA 1FCQA 1FEHA 1FIUA 1FK5A 1FKMA 

1FLTX 1FN9A 1FO8A 1FP3A 1FS7A 1FSGC 1FUPA 1G1TA 

1G2BA 1G3P_ 1G60A 1G61A 1G66A 1G8AA 1G8KA 1G9GA 

1GBS_ 1GCQC 1GCVB 1GD0A 1GK8I 1GK9A 1GK9B 1GKPA 

1GMXA 1GNLA 1GNUA 1GOF_ 1GQIA 1GQYB 1GTED 1GUIA 

1GUQA 1GVKB 1GWEA 1GWMA 1GX5A 1GXMB 1GXUA 1H16A 



 

1H1IB 1H2CA 1H32A 1H4GB 1H4YA 1H6FB 1H6KC 1H6KX 

1HBNA 1HBNB 1HBNC 1HDKA 1HDOA 1HF8A 1HFES 1HG7A 

1HH8A 1HP1A 1HPI_ 1HQSA 1HS6A 1HT6A 1HYOB 1HZ4A 

1HZ5B 1HZTA 1I19A 1I1DD 1I1NA 1I2TA 1I4UA 1I6TA 

1I7QB 1I8OA 1I9ZA 1IAB_ 1IC6A 1IDPA 1IFC_ 1IIBA 

1IPCA 1IQZA 1ITUA 1IU8A 1IUQA 1IV8A 1IV9A 1IXBA 

1J0HA 1J0PA 1J2RA 1J34A 1J79B 1J8BA 1JAKA 1JBEA 

1JD5A 1JDW_ 1JEVA 1JG9A 1JIXA 1JM1A 1JNDA 1JNRA 

1JPC_ 1JPUA 1JRLA 1JU2A 1JUBA 1JZ7A 1JZTA 1K0EA 

1K0MB 1K12A 1K3YA 1K4IA 1K55A 1K6ZA 1K7CA 1K7HA 

1KAPP 1KBLA 1KD0A 1KEIA 1KG2A 1KHBA 1KHIA 1KJQB 

1KNLA 1KOE_ 1KPHB 1KQFA 1KQFB 1KQFC 1KQPA 1KS8A 

1KT7A 1KUFA 1KV7A 1KVEA 1KWGA 1KWNA 1KYFA 1KZKB 

1KZQA 1L2HA 1L3KA 1L6RA 1L7AA 1L8AA 1L9LA 1LAM_ 

1LATB 1LFWA 1LJ8A 1LK2A 1LK2B 1LKI_ 1LKKA 1LL2A 

1LLFA 1LML_ 1LNIB 1LOVA 1LQVB 1LTM_ 1LTSA 1LTZA 

1LV7A 1LWBA 1LY2A 1LYVA 1LZJA 1M0KA 1M1NA 1M1NB 

1M2DA 1M2XA 1M3KA 1M4IB 1M55A 1M65A 1M6JA 1M7YA 

1M9XC 1M9ZA 1ME3A 1MG7B 1MIXA 1MJUL 1MK0A 1MKAA

1MKKA 1MN8D 1MOOA 1MPXA 1MQDA 1MQKH 1MRP_ 1MTYB 

1MTYD 1MUWA 1MXRA 1N0WA 1N13B 1N1BB 1N45A 1N62B 

1N7SA 1N7SC 1N83A 1NC5A 1NKGA 1NKIA 1NLNA 1NOFA 

1NOX_ 1NQEA 1NQJA 1NSUB 1NTYA 1NU0A 1NV0A 1NVMG

1NWAA 1NWZA 1NYCA 1NYMA 1NYTA 1O08A 1O29A 1O4YA 

1O6VA 1O7IA 1O7NB 1O83A 1O8XA 1O98A 1OAOC 1OBBB 
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1ODNA 1OE4A 1OEN_ 1OEWA 1OFDA 1OFLA 1OFWA 1OGQA 

1OGSA 1OI6B 1OI7A 1OJJA 1OJRA 1OK0A 1OLRA 1ON9D 

1OOHA 1OOYB 1OR7C 1ORRA 1OWLA 1OX0A 1OZ2A 1P0KB 

1P1JA 1P1MA 1P6OB 1PA7A 1PBJA 1PBYA 1PBYB 1PI1A 

1PK6A 1PL3A 1PM1X   1PM4A 1PMHX 1PMI_ 1PN0C 1POC_ 

1PSRB 1PSWA 1PT6B 1PV5A 1PVMB 1PWMA 1PX5B 1PXZA 

1PYOC 1Q0NA   1Q0QA 1Q16A 1Q2OA 1Q33A 1Q40B 1Q63A 

1Q6ZA 1Q7FB 1Q7LA 1Q7LB 1QB5D 1QF8B 1QFMA 1QFTA 

1QGWB  1QGXA 1QH4A 1QH5A 1QHDA 1QHOA 1QIPA 1QKRB 

1QKSA 1QMGA 1QNRA 1QOPB 1QOYA 1QR9A 1QSAA 1QTWA 

1QUK_ 1QV9A 1QW2A 1QW9A  1QWNA 1QWOA 1QWZA 1QX2A 

1QXMA 1QXYA 1R0MA 1R1DA 1R29A 1R2QA 1R3DA 1R3SA 

1R4PA 1R4XA 1R5LA 1R6JA 1R6XA 1R89A 1R8SA 1RA0A 

1RA9_ 1RC9A 1RCQA 1RG8A 1RGYA 1RHS_ 1RIE_ 1RJDC 

1RKIA 1RKYA 1RLID 1RP0A 1RQHA 1RRO_ 1RTQA 1RU4A 

1RUTX 1RV9A 1RVAA 1RWHA 1RX0A 1RXQB 1RY9A 1RYAA 

1RYIA 1S0AA 1S0IA 1S3EB 1S4BP 1S4KA 1S67L 1S7FA 

1S7ZA 1S95B 1S99A 1S9RA 1SAUA 1SFSA 1SG4C 1SG6B 

1SJWA 1SMBA 1SQEB 1SQSA 1SR4B 1ST0A 1SU8A 1SVB_ 

1SVFA 1SWXA 1T06A 1T0BH 1T0TV 1T1GA 1T1UA 1T2DA 

1T46A 1T4BA 1T61D 1T6CA 1T6GA 1T7RA 1T92A 1T9HA 

1TA3A 1TBFA 1TG5A 1TG7A 1TJYA 1TKEA 1TL2A 1TN6B 

1TO2I 1TQ4A 1TQGA 1TT8A 1TU1A 1TU9A 1TUKA 1TWDB 

1TXJA 1TXQB 1TZPA 1TZVA 1U07B 1U11B 1U3WA 1U5UA 

1U69D 1U7GA 1U7IA 1U8FO 1U8VA 1U9DA 1UA4A 1UALA 
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1UASA 1UCDA 1UF5A 1UG6A 1UGHI 1UGNA 1UGPA 1UIRB 

1UKUA 1UMGA 1UMKA  1UMZB 1UNNC 1UNQA 1UOHA 1UOWA

1UPGA 1UQ5A 1USCA 1UV4A 1UW1A 1UWCA 1UWFA 1UWKB

1UX6A  1UXZA 1UYLA 1UZKA 1V0EA 1V0LA 1V0WA 1V3EA

1V54A 1V54B 1V5FA 1V5IB 1V5VA 1V6PA 1V70A 1V7WA 

1V82A 1VAJA 1VBKA 1VBLA 1VCLA 1VFYA 1VH5A 1VIYA 

1VKPA 1VL9A 1VLBA 1VLS_ 1VPSB 1VR7A 1VYBA 1VYIA 

1VYKA 1VYRA  1VZIA 1W0HA 1W0NA 1W0OA 1W27A 1W2FA 

1W2YA 1W4RA 1W5FA 1W66A 1W6GA 1W7LA 1W8OA 1W94A 

1W96C 1WAKA 1WAPA 1WB4A 1WC2A 1WC3B 1WD3A 1WDCA

1WDDA 1WDPA 1WHI_ 1WKQA 1WLDA 1WM3A 1WOFA 1WOYA

1WPNA 1WQ3A 1WRIA 1WS8A 1WT4B 1WU4A 1WUAA 1WUIL 

1WUIS 1WV3A 1WVFA   1WWCA 1WY1A 1WYBA 1WYXB 1WZAA

1WZZA 1X09A 1X0CA 1X0JA 1X0RA 1X1NA 1X2JA 1X54A 

1X6IB 1X6VA 1X82A 1XCLA 1XDNA 1XDZA 1XEOA 1XER_ 

1XFFA 1XFIA 1XG4A 1XGKA 1XH8A 1XHDA 1XJJA 1XKPB 

1XKPC 1XOVA 1XQHA   1XQOA 1XSZA 1XTTA 1XUBA 1XWWA

1XZZA 1Y0EA 1Y0PA 1Y2TA 1Y3NA 1Y43B 1Y5IB 1Y5IC 

1Y63A 1Y7BA 1Y8AA 1Y93A 1Y9GA 1Y9WA 1YB6A 1YDIA 

1YFQA 1YGE_ 1YGTA 1YHLA 1YI9A 1YIIA 1YJ1C 1YKDA 

1YKUA  1YMIA 1YMTA 1YN9A 1YNPA 1YO3A 1YPHC 1YPHE 

1YPQB 1YQZA 1YRKA 1YS1X 1YT3A 1YTBA 1YU8X 1YVIA 

1Z05A 1Z0WA 1Z10A 1Z1SA 1Z2NX 1Z32X 1Z7XW 1Z84B 

1ZCEA 1ZCJA 1ZCXA 1ZI9A 1ZJYA 1ZKPA 1ZL0B 1ZNDA 

1ZO4B 1ZR6A 1ZUWC 1ZY7A 1ZZWA 2A14A 2A50A 2A50B 

 81



 

2A65A 2A6ZA 2AB0A 2AC7A 2ACFB 2ACVA 2AD6A 2AD6B 

2AE0X 2AENB 2AEXA 2AFWA 2AGKA 2AGYD 2AHFA 2AIBA 

2AIJX 2AJCA 2AKAA 2APXA 2AQ2B 2AQ5A 2AQ6A 2AQJA 

2ARPF 2ARRA 2AUWB 2AVDA 2AWGA 2AWKA 2AXQA 2AXWA

2AYH_ 2B06A 2B0TA 2B3FA 2B4HA 2B58A 2B5HA 2B61A 

2B6DA 2B82A 2B97A 2BCGG 2BEMA 2BF5A 2BF6A 2BFDA 

2BFDB 2BG1A 2BHUA 2BIBA 2BIIA 2BJFA 2BJKA 2BJRA 

2BKFA 2BKXA 2BMOA 2BMWA 2BO9B 2BOGX 2BOPA 2BOQA 

2BPTA 2BR6A 2BRAA 2BRFA 2BSWA 2BSYA 2BT9A 2BW3B 

2BW4A 2BWQA 2BWVA 2BZUA 2C0NA 2C15A 2C1IA 2C1LA 

2C1VA 2C2UA 2C3MA 2C4IA 2C4XA 2C5AA 2C6QB 2C71A 

2C78A 2C9VA 2CARA 2CB2A 2CB5B 2CCAA 2CDBA 2CFUA 

2CGLA 2CI1A 2CITA 2CIWA 2CJTC 2CK3D 2CK3G 2CKLA 

2CKLB 2CL3A 2CN3B 2CNQA 2CTC_ 2CVCA 2CVIA 2CWGA

2CXAA 2CXNA 2CXXC 2CYGA 2CZ1B 2D0OA 2DBBB 2DDSA 

2DECA 2DKOB 2DQ6A 2ETGA 2EUTA 2EXVC 2F01B 2F2HA 

2F2QA 2F4MA 2F4MB 2F5VA 2F5XB 2F6UA 2FA8C 2FBAA 

2FBQA 2FE8A 2FFCA 2FFUA 2FH1B 2FHA_ 2FHFA 2FHZA 

2FIMB 2FL7A 2FP7B 2FPEA 2FRGP 2FSAA 2FSQA 2FSRA 

2FWGA 2FY7A 2FYGA 2FYQA 2FZVB 2G29A 2G2WB 2G7CB 

2G7OA 2G8OB 2GAGA 2GAGD 2GAIA 2GAKA 2GBAA 2GDQA 

2GFOA 2GK4B 2GKEA 2GRHA 2GRRA 2GRRB 2GS5A 2GSOA 

2GUDB 2H29A 2H6NB 2H7GX 2H88A 2H88D 2HALA 2HFT_ 

2HTS_ 2IU1A 2IU4B 2IU5A 2IUWA 2IWAA 2IXMA 2KINA 

2LISA 2MHR_ 2NACA 2PGD_ 2PTD_ 2SQCA 2TGI_ 3CHBF 
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3GRS_ 3VUB_ 4EUGA 4LZT_ 4UBPC 7AHLB 7ATJA 7FABH 

7FD1A 8A3HA 8ACN_ 9GAFC     
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