Figure 1. A diagram of the RDHSP homology recognition algorithm. The broken ar- rows indicate the calculation of environment-specific amino substitution tables. The continuous arrows indicate the generation of the profile library, which represents all known protein structures, from individual structures using environment specific substitution tables and structure-dependent gap penalties. The dash-dot arrows show the flow of the alignment and homology recognition procedure using multiple sequence/structure information.

Figure 2. JOY – protein structure and alignment analysis (Overington et al, 1990; Mizuguchi et al., 1998)

solvent inaccessible	UPPER CASE	Х
solvent accesible	lower case	х
positive \$	italic	x
cis-peptide	breve	ž
hydrogen bond to other sidechain	tilde	ñ
hydrogen bond to mainchain amide	bold	x
hydrogen bond to mainchain carbonyl	underline	X
disulphide bond	cedilla	ç
α-helix	red	x
β–strand	blue	x
3 ₁₀ -helix	maroon	x

laqt	(2)	s <u>tyhl</u>	dVv <mark>S</mark> ae	qqMfs	glV e kI	qV<u>t</u>Gse g	y <mark>elgI</mark> yp	ghap <mark>llta</mark> I	kpgmIr
				bbb	bbbb	bbbbl	bbbbbb	bbb	bbbb	bbbbb	bbbb
					60		70		80	90	100
laqt	(52)	Ivkqh	gheefI	YL <u>s</u> gg	iLeVqp	gnVtV1 <i>i</i>	Adt <mark>Air</mark> (Gqdl dearAm	eakrkA
				bbb	bbbbb	bb bl	bbbbb	bbbbbł	bbb3	333 aaaaa	aaaaaa
					11	0	120		130		
laqt	(102)	eehis	<u>ss</u> hgd <mark>v</mark>	dyaqA:	saelak	Aia <u>q</u> lr\	/iel <u>t</u> k	Σ.	
				aaaa	а		aaaaaa	aaaaaaa	aaaaa		

Figure 3 Solvent accessibility – buried surface area

Figure 5 Calculation of environment-specific amino acid Scoring matrix

Observations frequencies probabilities

		w	F	Y	L	I	v	M	A	G	P	с	т	s	Q	N	E	D	н	K	R
-helix(A)	ECnlCel	-0.2	0.16	-0.2	0.16	0.29	+2.01	1.1	-1.01	0.09	1.04	-1.76	-2.15	-2.48	-2.04	-0.44	-1.13	0.16	0.09	1.04	-1.74
-helix(A)	ECnlCe2	-1.12	0.65	0.56	+0.11	+1.33	0.16	0.84	-0.71	0.32	+0.4	+2.18	-1.59	-1.8	+0.17	+0.82	0.09	0.49	0.32	+0.4	+2.18
-helix(A)	ECnlCe3	+0.41	0.34	0.16	-0.41	-0.82	-0.79	0.71	-0.61	0.01	+1.25	+2.61	-2.01	-2.63	-0.64	+0.07	0.61	0.16	0.01	-1.25	+2.6
-helix(A)	ECnlCe4	+1.59	0.41	0.49	+0.44	+1.23	+0.87	-0.2	0.16	+0.79	+1.66	+0.71	0.52	+0.33	+0.42	+1.11	0.8	0.65	-0.79	-1.66	+0.7
-helix(A)	ECnlCe5	+2.01	+0.48	0.56	1.1	+1.01	0.16	-1.12	0.65	+0.87	+1.38	+2.01	-1.13	-1.01	+0.46	+0.01	1.04	0.34	-0.87	+1.38	+2.0
-helix(A)	ECnlCe6	+0.58	-1.59	0.35	0.84	+0.71	0.52	-0.8	-2.36	0.16	0.16	0.16	0.84	0.16	+0.2	0.16	0.29	0.41	0.16	0.16	0.16
-helix(A)	ECnlCe7	0.71	-0.61	0.1	-2.63	+0.81	+0.2	-1.52	-0.2	+0.41	+0.82	+0.79	0.71	0.65	0.56	-0.11	-1.33	-0.48	-0.41	+0.82	+0.75
-helix(A)	ECn2Ce1	+0.2	0.16	0.29	+0.33	-0.44	+1.13	-0.81	-1.12	+0.44	+1.23	+0.87	-0.2	0.34	0.16	+0.41	+0.82	-0.07	-0.44	+1.23	-0.87
-helix(A)	ECn2Ce2	+1.12	0.65	-0.12	0.09	+0.82	0.09	-1.01	-0.41	+0.82	0.09	0.09	0.74	-0.54	0.49	+0.44	-1.23	-0.48	1.1	+1.01	0.16
-helix(A)	ECn2Ce3	+0.41	0.34	-0.03	0.32	0.6	+0.33	-0.71	-0.44	-1.23	+0.33	+0.58	-0.8	-2.36	0.56	1.1	+1.01	-1.59	0.84	+0.71	0.53
-helix(A)	ECn2Ce4	+1.59	0.41	-0.5	0.01	+0.37	0.09	-0.61	1.1	-1.01	0.09	+2.04	-1.52	-0.8	-2.36	0.16	0.01	-1.25	0.84	0.16	-0.4
-helix(A)	ECn2Ce5	+2.01	+0.48	+0.58	0.41	0.04	0.32	0.16	0.84	+0.71	0.32	0.83	-0.8	-1.52	+0.2	+0.41	-0.79	-1.66	0.71	0.65	0.05
-helix(A)	ECn2Ce6	0.59	-0.07	0.09	0.74	-0.54	0.01	0.65	0.71	-0.61	0.01	-1.52	1.1	-0.33	-0.58	-0.8	+0.87	-1.38	+0.2	0.34	+1.51
-helix(A)	ECn2Ce7	+2.01	-0.48	-0.58	-0.8	-2.36	+0.79	0.34	-0.2	0.16	-0.79	0.56	0.83	0.09	-2.04	-1.52	0.84	-0.71	0.74	+0.54	+0.03
-helix(A)	ECn3Ce1	+0.58	-1.59	-2.04	-1.52	+2.22	+0.87	0.41	-1.12	0.65	+0.87	0.32	-0.4	0.32	0.83	+0.8	-2.63	-0.81	+0.8	+2.36	-0.5
-helix(A)	ECn3Ce2	+0.2	0.56	0.83	-0.8	-2.36	0.16	0.83	+ 0.8	-2.36	0.16	0.01	-1.25	0.01	-1.52	1.1	+0.33	-0.44	+1.52	+2.22	+0.58
-helix(A)	ECn3Ce3	+1.13	0.16	-1.52	1.1	-1.01	+0.41	-0.4	-1.52	-0.2	-0.41	+0.79	-1.66	-0.79	-0.81	0.84	0.09	-0.82	+0.8	+2.36	+2.0
-helix(A)	ECn3Ce4	0.09	0.49	-0.81	0.84	-0.71	+0.44	-1.23	-0.33	-0.58	-0.8	+0.87	-1.38	-0.87	-0.44	0.71	+0.61	1.1	1.1	-1.01	0.34
-helix(A)	ECn3Ce5	-2.48	+2.04	-0.44	0.71	-0.61	1.1	-1.01	0.09	-2.04	+1.52	0.84	-0.71	0.16	+0.82	+0.2	0.16	0.84	0.83	+0.8	0.4
-helix(A)	ECn3Ce6	-1.8	+0.17	-0.81	+0.2	-1.52	+0.2	-0.41	-0.82	0.83	-0.8	+2.63	-0.81	-0.41	-0.07	-1.12	0.65	0.71	-0.4	-1.52	-0.48
-helix(A)	ECn3Ce7	-2.63	-0.64	-0.44	-1.13	-0.81	-1.12	-0.44	-1.23	-1.52	1.1	+0.33	-0.44	-0.44	-1.25	+0.41	0.34	+0.2	+1.25	+0.81	+0.07
-helix(A)	ECn4Ce1	-0.8	-2.36	-0.82	0.09	-1.01	+0.41	-0.82	0.09	-0.81	0.84	0.09	-0.82	-0.8	-2.36	+0.58	-0.8	-1.59	+0.44	+1.23	+0.48
-helix(A)	ECn4Ce2	0.16	-0.87	0.6	+0.33	-0.71	-0.44	-1.23	-0.33	-0.44	0.71	-0.61	1.1	1.1	-1.01	-0.41	1.1	-1.01	1.1	-1.01	-1.51
-helix(A)	ECn4Ce3	-0.48	+0.58	+0.37	0.09	+0.61	1.1	-1.01	0.09	+0.82	+0.2	0.16	0.84	0.83	+0.8	+2.36	0.16	-0.71	0.52	+0.33	-0.44
-helix(A)	ECn4Ce4	+0.03	0.41	0.04	0.32	0.16	0.84	-0.71	0.32	-0.07	+1.12	0.65	0.71	-0.4	-1.52	-0.2	+0.41	-2.01	+0.8	+1.59	-1.4
-helix(A)	ECn4Ce5	+0.5	0.74	-0.54	0.01	0.65	0.71	-0.61	0.01	-1.25	-0.41	0.34	-0.2	-1.25	-0.81	-1.12	-0.44	0.16	+0.33	-0.87	-0.2
-helix(A)	ECn4Ce6	+0.58	+0.8	-2.36	-0.79	0.34	+0.2	0.16	-0.79	+0.58	+1.59	0.41	-1.12	0.84	0.09	+0.82	-2.01	-1.13	-1.01	0.16	-1.13
-helix(A)	ECn4Ce7	0.09	+1.52	+2.22	+0.87	0.41	+1.12	0.65	-0.87	+0.2	0.56	0.83	-0.8	0.71	+0.61	1.1	0.16	0.84	0.16	0.52	-0.4

3D-1D Scoring Table

AECn1CelAECn2Ce4AECn3Ce6AECn3Ce6AECn1Ce1AECn3Ce6AEMWTTSASCTSPAGEWFYRIStructure 2AECn4Ce3AECn1Ce5AECn2Ce3AECn1Ce1AECn2Ce2LIVMIVKHDENQStructure 3 :AECn2Ce6AECn3Ce3AECn1Ce1AECn3Ce4QNEDHKS
AEMWTTSASCTSPAGEWFYRStructure 2AECn4Ce3AECn1Ce5AECn2Ce3AECn1Ce3AECn2Ce2LIVMIVKHDENQStructure 3:AECn2Ce6AECn3Ce3AECn1Ce1AECn3Ce4AECn1Ce1QNEDHKS
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
GEWFYRStructure 2AECn4Ce3AECn1Ce5AECn2Ce3AECn1Ce1AECn1Ce3AECn2Ce2LIVMIVKHDENQStructure 3:AECn2Ce6AECn3Ce3QNEDHKS
Structure 2AECn4Ce3AECn1Ce5AECn2Ce3AECn1Ce1AECn1Ce3AECn2Ce2LIVMIVKHDENQStructure 3 :AECn2Ce6AECn3Ce3AECn1Ce1AECn2Ce4AECn3Ce4AECn1Ce1AECn1Ce4QNEDHKS
AECn4Ce3AECn1Ce5AECn2Ce3AECn1Ce1AECn1Ce3AECn2Ce2LIVMIVKHDENQStructure 3 :AECn2Ce6AECn3Ce3QNEDHKSDHKS
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
KHDENQStructure 3 :AECn2Ce6AECn3Ce3AECn1Ce1AECn2Ce4AECn3Ce4AECn1Ce1AECn1Ce4QNEDHKS
Structure 3 : AECn2Ce6 AECn3Ce3 AECn1Ce1 AECn2Ce4 AECn3Ce4 AECn1Ce1 AECn1Ce4 Q N E D H K S
Structure 3 : AECn2Ce6 AECn3Ce3 AECn1Ce1 AECn1Ce4 AECn3Ce4 AECn1Ce1 AECn1Ce4 Q N E D H K S
AECn2Ce6AECn3Ce3AECn1Ce1AECn2Ce4AECn3Ce4AECn1Ce1AECn1Ce4QNEDHKS
Q N E D H K S
-
L I V F Y V A
M M A S T Y L

Figure 6 Example to calculation of environment-specific amino acid Scoring matrix

Explame:

A residue type was counted only once per position.

The probability of finding an amino acid of type "A" in the environment of type "AECn1Ce1": 2/4=0.5

The probability of finding an amino acid of type A in any environment: 4/20 = 0.2

Z(A, AECn1Ce1)=-ln[P(i,m)/P(i)] = -ln(0.5/0.2)= -0.92

Figure 7 Generation of a position-dependent comparison matrix known as the 3D profile

Environment				(1.3*5	Si)			Gap Pe	nalties
Class	w	F	Y		н	к	R	ωO	ω
AECn3Ce4	0.117	0.637	-1.053		1.452	0.453	-1.123	1.2	0.7
AFCnl Ce3	1.143	-0.554	2.453		-3.456	1.234	2.234	1.2	0.7
BECn2Ce3	0.315	0.123	3.234		1 <i>5</i> 43	-3.234	0.543	1.2	0.7
AECn2Ce2	2.345	1.456	-5.126		0.543	3.235	-3.245	1.2	0.7

1D – 3D profile

Figure 8 A sequence profile alignment method using a global dynamic programming algorithm was employed to find the minimum of the total score that aligns the query sequence with a template in the template library.

1hda-B

Figure 12 A specificity-sensitivity curve at fold level

Table 1 The 387 proteins for training set. Those consisting of sequences varying in length from 44 to 1017, with low sequence homology and covering many different three-dimensional-folds according to the Structure Classification of Protein (SCOP) classification [3]. Additional criteria used in selecting the proteins in the training set were follows:

(1)The protein structure was obtained through x-ray crystallography

(2)The structures were monomeric.

(3)The determined structures missed no more than two amino acid

100	1KCW	4HB1	1DHX	1BLE	1800	1484	1PKP	1 ETV	18/35	17701	1857	ST DH	61CD
1420	1 4 3 7 1	COTTO	1400	1040	1810	1000	12221	1010	172.4.1	1.462	11 21/	2000	1000
IMER	196.99	JP1D	1000	1005	1000	1000	18.40	1000	10,40	1 ADF	1LAV	2010	ICB1
ILXA	1914	1005	TAUP	TOHK	DON	IPIK	14/1	TAUA	IGEN	TIMP	IHLB	IZAP	2517
1417	IRDR	IRLW	TUBY	28A8	IBCO	TASY	TAXS	2LIV	TANS	ZOMF	1A41	1C25	TAKS
1AQT	1AJ6	2FXB	1BOB	IINP	ICYX	1XSM	1 BIA	1CPT	10PR	IFLQ	1 AUQ	IKIT	1CTN
1DHR	10BR	1RCB	1A26	1CIY	1GPC	1PFO	1 GRJ	1BY9	1MAZ	1LBA	1KTE	1AM2	1BB9
1HTP	1BIX	1TUL	1DRW	1AQE	2GSQ	1DHS	SEAU	1CFR	1GEN	1BR9	1ACC	1YG5	1B5L
11AM	1A32	1RMD	1PEA	1SEK	1KLO	10XA	1CRB	2TCT	1ESC	1 TFR	ZNGI	ILCI	1PHT
1ALY	1 VIN	1A6Q	1A76	1A1X	1CSN	1 TIG	1 ASH	1BTN	1CDY	1CFB	1MSC	1AMX	1HOE
1UOX	2PGD	IBVI	2PLC	4MT2	1SRA	1DDT	INSJ	1UOK	1FOC	1SUR	1GOX	1GSA	1MJC
2PIA	ILKI	1BY2	1SKF	1 BIF	1FBV	1ALO	1RMG	211 B	1DPE	1 A J 2	4PAH	1FCE	1FNE
1BF2	1AZ9	1A53	3TDT	7TAA	1OPC	1PTQ	1BEA	1FUC	1FUA	1RSS	1ECL	1SKZ	1NEU
1ALU	1CUK	1CA1	1MAI	1AD2	10PY	1EDT	1BHE	1 JDW	1FHM	IDXY	1VOM	1CEO	1ASL
1TMY	1SVB	1AIL	1WHO	LIDC	1SFP	3755	1DUN	110W	1PBE	1GPR	1A48	4ENL	2PII
3GCB	1BG7	IVLS	1FUD	2ABK	1MDL	1RKD	1EUR	1DMR	1 GND	1UCH	1BG2	1AK0	IUXY
2GAR	1LCL	1MML	1POT	1QNF	1NFK	1AYL	1 TIF	1BDS	1BDO	1BG6	1C3D	1HYP	2POR
IUAE	1BJ7	1TML	1TYV	IHCL	2SAK	1FNA	1AL3	2TGI	2ACY	ILST	1LBU	1AMP	1NAR
1FAS	2CBP	1FMB	1AXN	1TUD	1FDA	1HA1	1CV8	1CHD	1 AMF	IUSH	1CPQ	1BM8	1XWL
1BGC	1AJJ	1TFE	1NKR	1IDO	11/35	1BHP	1WAB	1VIE	1VHH	1GCA	1FDO	1FDR	1FMI
1SBP	1GOF	1AKO	1MOF	2GDM	1FXD	1FNC	1 GAI	2HFT	10SA	1VNS	3CHY	1ERV	1DHN
1AQB	1CNV	119L	1CEM	1CXC	IVCC	1 GVP	2DRI	1MBA	1A3C	1EDG	1PHF	16PK	451C
1B6A	1BKF	1RZL	5NUL	1AOP	1ASE	1CVL	1 ARV	INF	3CYR	1MRJ	1ZIN	1LAM	1CSH
1KUH	1PTF	1BFG	1BFD	3PTE	2AYH	2MYR	1NOX	1AKR	2.A0B	1ASD	1MOQ	1HFC	1RA9
1TCA	3GRS	2CBA	1KFF	SICB	1 AIE	1KOE	1WHI	1 RIE	1MLA	1HKA	10PD	1FLP	2MCM
1CYO	1POA	IBRT	2HBG	28N5	1XNB	2RN2	3SEE	1BGF	2END	1YGE	3VUB	2CTC	1HMT
1FFT	1BQK	IUTG	1FLC	1BK0	1DCS	1C52	7RSA	10AA	1MSI	1YCC	2PTH	2SN3	1AMM
1BX7	LATG	2KNT	1MUN	1A7S	1CTJ	1859	21GD	1NKD	3SIL	2ERL	1A6M	1CEX	11XH
1BYI	1AHO	INLS	2FDN	3LZT	1RB9	3FYP	1CBN	1 GCI					

Table 2 The environment-specific substitution tables (-helix). The environme-

nt scores for each amino acid. Large negative values indicate a strong preference for the particular environment whereas large positive values indicate an aversion.

		W	F	Y	L	I	V	М	Α	G	P	с	т	s	Q	Ν	Ε	D	н	K	R
G-helix(A)	ECnlCel	-0.2	0.16	-0.2	0.16	0.29	-2.01	1.1	-1.01	0.09	1.04	-1.76	-2.15	-2.48	-2.04	-0.44	-1.13	0.16	0.09	1.04	-1.76
Chelix(A)	ECn1Ce2	-1.12	0.65	0.56	-0.11	-1.33	0.16	0.84	-0.71	0.32	-0.4	-2.18	-1.59	-1.8	-0.17	-0.82	0.09	0.49	0.32	-0.4	-2.18
∝-helix(A)	ECn1Ce3	-0.41	0.34	0.16	-0.41	-0.82	-0.79	0.71	-0.61	0.01	-1.25	-2.61	-2.01	-2.63	-0.64	-0.07	0.61	0.16	0.01	-1.25	-2.61
G-helix(A)	ECn1Ce4	-1.59	0.41	0.49	-0.44	-1.23	-0.87	-0.2	0.16	-0.79	-1.66	-0.71	0.52	-0.33	-0.42	-1.11	0.8	0.65	-0.79	-1.66	-0.71
(L-helix(A)	ECn1Ce5	-2.01	-0.48	0.56	1.13	-1.01	0.16	-1.12	0.65	-0.87	-1.38	-2.01	-1.13	-1.01	-0.46	-0.01	1.04	0.34	-0.87	-1.38	-2.01
∝ helix(A)	ECalCe6	-0.58	-1.59	0.35	0.84	-0.71	0.52	-0.8	-2.36	0.16	0.16	0.16	0.84	0.16	-0.2	0.16	0.29	0.41	0.16	0.16	0.16
G-helix(A)	ECnICe7	0.71	-0.61	0.1	-2.63	-0.81	-0.2	-1.52	-0.2	-0.41	-0.82	-0.79	0.71	0.65	0.06	-0.11	-1.33	-0.48	-0.41	-0.82	-0.79
(L-helix(A)	ECn2Cel	-0.2	0.10	0.29	-0.33	-0,44	-1.13	-0.81	-1.12	-0.44	-1.23	-0,87	-0.24	0.34	0.10	-0.41	-0.82	-0.07	-0,44	-1.23	-0.87
(C helin(A)	ECn2Ce2	-1.14	0.05	-0.12	0.09	-0.62	0.09	-1.01	-0.41	1.22	0.09	0.09	0.74	3.26	0.46	1.44	1.01	1.50	0.94	-1.01	0.10
G. helix(A)	ECn2Ced	-1.59	0.41	-0.03	0.32	-0.37	0.00	-0.61	1.45	-1.01	0.00	-2.04	-1.52	-2.30	-2.36	0.16	0.01	-1.35	0.84	0.16	-0.41
(C-helix(A)	ECn2Ce5	-2.01	-0.42	-0.52	0.01	0.04	0.07	0.16	0.24	-0.71	0.02	0.23	-1.72	-0.0	-2.30	.0.41	.0.70	-1.66	0.24	0.10	0.041
(G-helix(A)	ECn2Ce6	0.59	-0.07	0.09	0.74	-0.54	0.01	0.65	0.71	-0.61	0.01	-1.52	1.15	-0.33	-0.58	-0.8	-0.87	-1.38	-0.2	0.34	-1.59
(L-helix(A)	ECn2Ce7	-2.01	-0.48	-0.58	-0.8	-2.36	-0.79	0.34	-0.2	0.16	-0.79	0.56	0.83	0.09	-2.04	-1.52	0.84	-0.71	0.74	-0.54	-0.03
(C-helix(A)	ECn3Ce1	-0.58	-1.59	-2.04	-1.52	-2.22	-0.87	0.41	-1.12	0.65	-0.87	0.32	-0.4	0.32	0.83	-0.8	-2.63	-0.81	-0.8	-2.36	-0.5
G-helix(A)	ECn3Ce2	-0.2	0.56	0.83	-0.8	-2.36	0.16	0.83	-0.8	-2.36	0.16	0.01	-1.25	0.01	-1.52	1.85	-0.33	-0.44	-1.52	-2.22	-0.58
Chelix(A)	ECn3Ce3	-1.13	0.16	-1.52	1.73	-1.01	-0.41	-0.4	-1.52	-0.2	-0.41	-0.79	-1.66	-0.79	-0.81	0.84	0.09	-0.82	-0.8	-2.36	-2.04
(C-helix(A)	ECn3Ce4	0.09	0.49	-0.81	0.84	-0.71	-0.44	-1.23	-0.33	-0.58	-0.8	-0.87	-1.38	-0.87	-0.44	0.71	-0.61	1.84	1.39	-1.01	0.34
66-helix(A)	ECn3Ce5	-2.48	-2.04	-0.44	0.71	-0.61	1.86	-1.01	0.09	-2.04	-1.52	0.84	-0.71	0.16	-0.82	-0.2	0.16	0.84	0.83	-0.8	0.41
(X-helix(A)	ECn3Ce6	-1.8	-0.17	-0.81	-0.2	-1.52	-0.2	-0.41	-0.82	0.83	-0.8	-2.63	-0.81	-0.41	-0.07	-1.12	0.65	0.71	-0.4	-1.52	-0.48
04 helix(A)	ECn3Ce7	-2.63	-0.64	-0.44	-1.13	-0.81	-1.12	-0.44	-1.23	-1.52	1.1	-0.33	-0.44	-0.44	-1.25	-0.41	0.34	-0.2	-1.25	-0.81	-0.07
G-helix(A)	ECn4Ce1	-0.8	-2.36	-0.82	0.09	-1.01	-0.41	-0.82	0.09	-0.81	0.84	0.09	-0.82	-0.8	-2.36	-0.58	-0.8	-1.59	-0.44	-1.23	-0.48
(A) (A)	ECn4Ce2	0.16	-0.87	0.6	-0.33	-0.71	-0.44	-1.23	-0.33	-0.44	0.71	-0.61	1.21	1.64	-1.01	-0.41	1.78	-1.01	1.94	-1.01	-1.59
∝ helix(A)	ECn4Ce3	-0.48	-0.58	-0.37	0.09	-0.61	1.1	-1.01	0.09	-0.82	-0.2	0.16	0.84	0.83	-0.8	-2.36	0.16	-0.71	0.52	-0.33	-0.44
G-helix(A)	ECn4Ce4	-0.03	0.41	0.04	0.32	0.16	0.84	-0.71	0.32	-0.07	-1.12	0.65	0.71	-0.4	-1.52	-0.2	-0.41	-2.01	-0.8	-1.59	-1.8
(C-helix(A)	ECn4Ce5	-0.5	0.74	-0.34	0.01	0.65	0.71	-0.61	0.01	-1.25	-0.41	0.34	-0.2	-1.25	-0.81	-1.12	-0.44	0.16	-0.33	-0.87	-0.2
(C-helix(A)	ECn4Ce0	-0.58	-0.8	-2.30	-0.79	0.34	-0.2	0.10	-0.79	-0.58	-1.59	0.41	-1.12	0.84	0.09	-0.82	-2.01	-1.13	-1.01	0.10	-1.12
G helin(A)	ECA4Ce7	0.09	-1.32	-2.22	-0.07	0.46	-1.12	1.50	-0.01	-0.2	0.36	0.65	-0.8	0.71	-0.01	0.71	1.01	0.41	0.10	1.52	-0.41
a - ne un (n)	20	-0.05	0.54	0.0	-0.55	-9.71	-2.04		0.04	-9.71	0.74	-0.54	0.52	0.10	0.04	-0.71	-1.01	-0.41	-0,4	-1.56	-0.2
					= 1	-				5 1											
(L-helix(A)	FCnlCel	-0.5	0.01	-0.37	0.09	-0.61	0.83	-0.8	-2.63	-0.81	-0.8	-2.36	0.01	0.65	0.71	-0.61	-0.71	-0.44	-1.23	-0.81	-1.12
∝ helix(A)	FCn1Ce2	-0.58	0.41	0.04	0.32	0.16	-1.52	1.1	-0.33	-0.44	-1.52	-2.22	-0.79	0.34	-0.2	0.16	-0.61	1.15	-1.01	-1.01	-0.41
G-helix(A)	FCnICe3	0.09	0.74	-0.54	0.01	0.63	-0.82	-0.79	0.71	0.63	0.06	-0.11	-0.87	0.41	-1.12	0.65	-1.52	-0.2	-0.41	-0.71	-0.44
(C. helix(A)	FCalCe4	-0.56	-0.0	-2.30	-0.79	0.34	-1-22	-0.87	-0.2	0.54	0.10	-0.41	0.10	0.85	-0.0	-2.30	-0.01	-1.12	-0.99	-0.01	1.17
(C. helix(A)	FCn1Ce6	0.23	-1.74	-2-22	0.07	0.91	.0.33	-0.52	-0.2	.0.24	0.56	1.1	-0.44	-1.22	-1.74	-0.2	.0.71	-0.44	-0.62	0.10	0.24
G. helix(A)	FCp1Ce7	-1.52	1.94	-1.01	-0.41	.0.4	0.09	-2.04	-1.52	.0.8	-2.36	0.16	2.54	-1.01	0.09	-2.04	-0.61	1.36	-1.01	0.34	-0.2
Chelix(A)	FCn2Ce1	-0.81	0.24	-0.71	-0.44	-1.23	0.32	0.83	-0.8	-1.52	-0.2	-0.41	-0.2	-0.41	-0.82	0.83	0.16	0.24	-0.71	0.41	-1.12
G-helix(A)	FCn2Ce2	-0.44	0.71	-0.61	1.42	-1.01	0.01	-1.52	1.08	-0.33	-0.58	-0.8	-1.12	-0.44	-1.23	-1.52	0.65	0.71	-0.61	-0.71	-2.04
(L-helix(A)	FCn2Ce3	-0.81	-0.2	-1.52	-0.2	-0.41	-0.79	0.56	0.83	0.09	-2.04	-1.52	-0.41	-0.82	0.09	-0.81	0.34	-0.2	0.16	-0.79	-0.33
Chelix(A)	FCn2Ce4	0.74	-0.54	0.49	-0.71	0.16	-0.44	-1.23	-0.4	0.32	0.83	-0.8	-0.61	1.85	-1.01	0.09	0.41	-1.12	0.65	-0.87	0.09
G-helix(A)	FCn2Ce5	-0.8	-2.36	0.56	-0.81	-0.41	1.53	-1.01	-1.25	0.01	-1.52	1.66	0.16	0.84	-0.71	0.32	0.83	-0.82	-2.01	-1.13	0.32
Chelix(A)	FCn2Ce6	-1.52	-0.8	-2.36	-0.44	-0.44	0.16	0.01	0.09	-2.04	-1.52	0.16	-0.82	0.71	-0.61	0.01	-1.52	1.88	0.16	0.84	0.01
∝ helix(A)	FCn2Ce7	-0.8	-1.52	-0.2	0.32	0.6	0.32	-0.4	0.32	0.83	-0.8	-0.41	-0.07	-0.2	0.16	-0.79	0.56	-0.71	-1.01	-0.41	-0.79
G-helix(A)	FCn3Cel	1.17	-0.33	-0.58	0.01	-0.37	0.01	-1.25	0.01	-1.52	1.1	-0.44	-1.25	-1.12	0.65	-0.87	0.32	-0.61	-0.71	-0.44	-0.87
C-helix(A)	FCn3Ce2	0.83	0.09	-2.04	0.41	0.04	-0.79	-1.66	-0.79	-0.11	-1.33	-0.8	-2.36	-0.8	-2.36	0.16	0.01	0.16	-0.61	1.76	0.84
(L-helix(A)	FCn3Ce3	-0.4	0.32	0.83	0.74	-0.54	-0.87	-1.38	-0.87	-0.41	-0.82	1.70	-1.01	-1.23	0.49	-0.71	0.10	-0.2	-0.82	0.09	-1.01
(C. helix(A)	FCn3Ce4	-1.20	0.01	-1.52	-0.8	-2.30	0.84	-0.71	0.10	-0.44	-1.23	1.50	-0.8	-1.01	0.50	-0.81	-0.41	0.14	0.0	-0.33	-0.71
G halis(A)	FCn3Ce5	-1.00	-0.19	-0.61	-1.52	-6.66	-6.03	-0.61	-0.44	0.16	-1.01	-1.39	0.04	-0.71	-6.30	-0.44	-0,44	0.10	-0.37	0.09	-0.01
(C-helix(A)	FCn3Ce7	-1.36	0.07	-0.92	1.43	-1.01	0.00	-0.92	-0.44	-0.41	.0.79	-1.66	0.24	0.65	-0.4	0.01	.0.32	0.01	-0.54	0.02	0.10
(G-helix(A)	FCn4Ce1	-0.81	-0.41	-0.02	0.84	.0.71	-0.61	1.86	1.1	-0.8	-0.87	-1 38	.0.2	0.34	-1.50	-0.81	-0.41	0.16	.2.36	.0.79	0.34
G.helix(A)	FCn4Ce2	0.32	0.83	-0.44	0.71	-0.61	1.1	-2.04	-1.52	-0.8	-0.79	0.71	0.65	0.56	-0.11	-0.44	.0.44	0.32	.0.4	0.32	-0.2
Chelix(A)	FCn4Ce3	0.41	-1.12	0.65	-0.87	0.32	-0.2	0.83	-0.8	-1.52	-0.87	-0.2	0.34	0.16	-0.41	0.32	0.6	0.01	-1.25	0.01	-0.58
G-helix(A)	FCn4Ce4	0.83	-0.8	-2.36	0.16	0.01	-1.12	-1.52	1.18	-0.33	0.09	0.74	-0.54	0.49	-0.44	0.01	0.84	-0.71	0.16	-0.79	-2.04
C .helix(A)	FCn4Ce5	-0.4	-1.52	-0.2	-0.41	-0.79	-0.41	0.56	0.83	0.09	-0.58	-0.8	-2.36	0.56	1.62	-0.44	-2.63	-0.81	-0.41	-0.87	0.83
A helix(A) A	FCn4Ce6	-1.23	-0.33	-0.58	-0.8	-0.58	0.01	-0.37	0.01	-1.25	-2.04	-1.52	-0.8	-2.36	0.16	1.18	-0.33	-0.44	-0.44	0.16	-1.52
@-helix(A)	FCn4Ce7	-1.01	0.09	-2.04	-1.52	-2.04	0.41	0.04	-0.79	-1.66	0.83	-0.8	-1.52	-0.2	-0.41	-0.2	0.09	-0.82	-0.8	-1.32	-1.52
01-helix(A)	FG	0.49	-0.71	0.16	-0.2	-0.82	0.84	0.56	1.23	-0.44	-1.23	0.49	-0.71	0.16	-0.44	-1.23	-0.4	0.32	0.83	1.63	0.16

Table 3 The environment-specific substitution tables (-sheet). The environment scores for each amino acid. Large negative values indicate a strong preference for the particular environment whereas large positive values indicate an aversion.

		W	F	Y	L	I	V	М	Α	G	P	С	Т	S	Q	N	E	D	Н	ĸ	R
β-sheet (B)	ECulCel	1.11	1.28	0.27	1.3	1.11	0.74	1.26	-0.77	-2.22	-1.56	-0.43	-1.72	-2.43	-1.38	-1.76	-2.15	-2.48	-0.34	-1.37	-1.8
β-sheet (B)	ECn1Ce2	0.92	0.96	0.17	1.07	1.5	1.18	0.51	-1.05	-2.35	-0.77	-0.45	-1.27	-2.56	-2.03	-218	-1.59	-1.8	-2.26	-3.04	-1.52
β-sheet (B)	ECn1Ce3	0.96	1.4	0.52	1.06	0.93	-1.48	0.91	-0.54	-2.78	0.59	-0.59	-1.41	-2.99	-0.84	-2.61	-2.01	-2.63	-0.61	-2.78	-2.35
B-sheet (B)	ECn1Ce4	1.01	0.87	0.86	0.71	0.55	0.41	1.02	-0.65	-2.04	-0.97	0.15	-0.67	-1.33	0.16	-0.48	-0.58	-0.8	0.82	-0.94	-0.11
β-sheet (B)	ECalCe5	0.83	1.32	1.3	0.36	1.07	0.71	0.49	-1.52	-2.22	-0.86	-0.72	-1.14	-0.82	-0.79	-0.26	-0.2	-2.08	-0.05	-0.83	-0.41
β-sheet(B)	ECn1Ce6	1.62	1.4	1.14	0.77	0.81	0.66	-0.15	-0.81	-1.71	-0.07	-0.62	-1.03	-1.23	-0.87	-0.56	-1.13	-1.7	0.54	-2.12	-0.44
β-sheet (B)	ECnlCe7	0.86	-0.22	0.5	0.16	0.02	-0.29	0.87	-0.44	-1.09	-1.11	-1.38	-0.69	-1.01	0.16	-0.07	0.09	-0.43	0.61	0.56	1.1
β-sheet(B)	ECn2Ce1	0.07	0.37	1.09	0.14	0.26	0.16	-0.68	-1.08	-2.29	-0.01	-0.79	-0.1	-0.71	0.52	-0.33	-0.42	-0.76	0.8	0.35	0.84
β-sheet(B)	ECn2Ce2	1.12	0.71	1.25	0.29	-0.54	-0.4	0.23	-0.87	-0.61	-0.11	-0.98	-0.48	-0.61	0.1	0.09	-0.46	-0.83	1.04	80.0	0.71
β-sheet (B)	ECn2Ce3	-1.26	-1.81	-1.7	-1.37	-2.36	-1.25	-0.9	0.44	0.63	0.05	-0.17	-0.2	0.16	0.29	0.32	0.6	0.44	-0.06	0.07	-0.2
β-sheet(B)	ECn2Ce4	0.81	-0.83	-0.03	-1.6	-1.39	-1.66	-0.62	0.14	1.75	-0.88	-0.04	-0.17	0.65	-0.12	0.01	-0.37	-0.3	-0.76	-1.54	-1.12
β-sheet (B)	ECn2Ce5	-2.06	-1.63	-1.04	-1.14	-1.63	-0.8	-1.3	0.16	1.1	0.25	-0.35	80.0	0.34	-0.03	0.41	0.04	0.23	-0.41	-0.1	-0.41
β-sheet(B)	ECn2Ce6	-1.29	0.07	1.81	1.81	4.32	-0.83	3.63	-1.24	0.49	-0.85	-1.24	3.63	0.12	0.69	-1.55	-0.1	-1.63	0.12	0.47	0.3
β-sheet (B)	ECn2Ce7	-0.9	-0.35	2.33	2.33	1.37	-0.5	1.51	-0.26	0.74	-0.28	-0.26	1.51	0.56	-0.19	0.17	0.65	0.13	0.56	0.79	0.76
β-sheet (B)	ECn3Ce1	0.41	0.32	1.64	1.64	1.67	-1	-1.02	0.57	82.0	0.5	0.75	-1.02	-0.18	0.27	-0.23	0.11	-1.71	0.59	0.74	0.57
β-sheet(B)	ECn3Ce2	-0.5	-0.27	0.38	0.38	0.94	0.39	0.61	-1.05	-0.47	0.56	-1.05	0.61	1.06	0.87	0.34	80.0	-0.11	0.65	-0.25	0.46
β-sheet(B)	ECn3Ce3	0.42	0.06	-0.12	-0.12	1.32	-0.64	0.89	-0.28	0.41	0.74	-0.28	0.89	0.11	0.54	-1.62	0.95	0.91	-0.74	-0.46	1.1
β-sheet(B)	ECn3Ce4	-0.26	-0.36	0.65	0.65	0.55	0.71	1.26	-0.24	-1.06	-0.95	-0.24	1.26	0.93	0.14	0.15	0.12	-1.59	0.7	1.18	0.47
β-sheet (B)	ECn3Ce5	-0.33	-0.16	0.09	0.09	0.48	0.83	-0.76	-0.54	0.63	0.08	-0.54	-0.76	0.65	0.23	0.48	-0.11	-1.3	1.32	0.89	0.63
β-sheet(B)	ECn3Ce6	0.36	1.16	0.73	0.73	1.22	0.16	0.14	-0.49	-0.25	0.35	-0.49	0.14	0.47	2.23	-1.13	0.6	-1.01	0.11	0.12	0.6
β-sheet (B)	ECa3Ce7	0.13	0.83	0.82	-0.06	0.62	-1.88	-0.23	0.23	-0.57	-0.08	0.23	-0.23	0.43	1.15	-1.64	0.57	-1.64	0.35	0.75	0.73
β-sheet(B)	ECn4Ce1	-0.4	-0.05	2.23	-0.13	0.27	0.5	-0.15	0.59	-1.17	-0.99	2.38	-0.15	0.72	0.74	-0.97	1.02	-1.26	-0.45	-0.14	0.7
β-sheet(B)	ECn4Ce2	1.05	-0.6	1.74	0.82	0.32	0.56	0.14	2.38	-0.1	-0.32	1.82	-1.91	-0.31	1.59	-0.39	-0.5	-1.13	-0.25	0.32	0.27
β-sheet(B)	ECn4Ce3	-0.29	-0.79	0.67	1.24	-0.42	0.93	1.32	1.82	-0.48	-0.34	1.6	-1.35	-0.18	1.24	0.32	0.64	-0.3	1.06	1.99	0.2
B-sheet (B)	ECn4Ce4	-0.31	-0.01	0.8	0.85	0.25	0.78	-0.75	1.6	-13	-0.48	1.32	-0.67	-0.38	0.81	-1.26	-0.47	-1.88	0.29	0.83	0.48
B-sheet (B)	ECn4Ce5	0.8	0.49	1.53	0.91	-1.48	-0.5	-1.91	1.32	-1.61	-0.62	-1.02	-1.04	-0.46	-1.04	-1.16	-0.32	-1.84	-0.83	0.03	0.62
B-sheet(B)	ECn4Ce6	0.67	-0.66	2.34	-0.66	1.18	0.6	-1.35	-1.02	-1.35	0.13	0.55	-1.35	-0.87	-0.68	-1.2	-0.42	-0.57	-0.44	-0.11	-0.41
B-sheet (B)	ECn4Ce7	2.35	-0.28	1.31	-0.46	-1.78	1.43	-0.67	0.32	-0.77	-0.32	0.74	-197	-0.57	-0.56	-0.34	-0.28	0.23	-0.03	0.79	-0.6
P-sheet(B)	EG	0.32	0.0	0.44	-0.06	0.07	-1.29	0.07	1.81	1.81	4.32	-0.83	0.34	-0.03	0.41	0.04	0.23	-0.41	-0.1	-0.41	1.51
					5 /h	and in case	- 138	5	2		1										
β -sheet (B)	FCnlCel	0.01	-0.37	-0.3	-0.76	-1.54	-0.9	-0.35	2.33	2.33	1.37	-0.5	0.12	0.69	-1.55	-0.1	-1.63	0.12	0.47	0.3	-1.02
β-sheet (B)	FCn1Ce2	0.41	0.04	0.23	-0.41	-0.1	0.41	0.32	1.64	1.64	1.67	-1	0.56	-0.19	0.17	0.65	0.13	0.56	0.79	0.76	0.61
β-sheet (B)	FCn1Ce3	-1.55	-0.1	-1.63	0.12	0.47	-0.5	-0.27	0.38	0.38	0.94	0.39	-0.18	0.27	-0.23	0.11	-1.71	0.59	0.74	0.57	0.89
β-sheet (B)	FCn1Ce4	0.17	0.65	0.13	0.56	0.79	0.42	0.06	-0.12	-0.12	1.32	-0.64	1.06	0.87	0.34	0.08	-0.11	0.65	-0.25	0.46	1.26
β-sheet (B)	FCn1Ce5	0.74	-0.28	-0.26	1.51	0.56	-0.26	-0.36	0.65	0.65	0.55	0.71	0.11	0.54	-1.62	0.95	0.91	-0.74	-0.46	1.1	-0.76
β-sheet (B)	FCnlCe6	0.58	0.5	0.75	-1.02	-0.18	-0.67	-0.38	0.27	0.5	-0.15	0.59	0.93	0.14	0.15	0.12	-1.59	0.7	1.18	0.47	0.14
β-sheet (B)	FCnlCe7	-0.47	0.56	-1.05	0.61	1.06	-1.04	-0.46	0.32	0.56	0.14	2.38	0.65	0.23	0.48	-0.11	-1.3	1.32	0.89	0.63	-0.23
β-sheet (B)	FCn2Ce1	0.41	0.74	-0.28	0.89	0.11	-1.35	-0.87	-0.42	0.93	1.32	1.82	-0.48	-0.34	1.6	-1.35	-0.18	1.07	0.71	0.49	-0.15
β-sheet (B)	FCn2Ce2	-1.06	-0.95	-0.24	1.26	0.93	-1.97	-0.57	0.25	0.78	-0.75	1.6	-1.3	-0.48	1.32	-0.67	-0.38	0.81	0.66	-0.15	-0.81
β-sheet (B)	FCn2Ce3	0.63	0.08	-0.54	-0.76	0.65	0.34	-0.03	-1.48	-0.5	-1.91	1.32	-1.61	-0.62	-1.02	-1.04	-0.46	0.02	-0.29	0.87	-0.44
₿-sheet(B)	FCn2Ce4	-0.4	0.23	-0.87	-0.61	-0.11	0.12	0.69	1.18	0.6	-1.35	-1.02	-1.35	0.13	0.55	-1.35	-0.87	0.26	0.16	-0.68	-1.08
p-sheet (B)	FCn2Ce5	-1.25	-0.9	0.44	0.63	0.05	0.06	-0.19	-1.78	1.43	-0.67	0.32	-0.77	-0.32	0.74	-1.97	-0.57	-0.54	-0.4	0.23	-0.87
p-sheet (B)	FCn2Ceb	-1.00	-0.62	0.14	1.0	-0.88	-0.04	-0.79	-0.1	-0.71	0.52	-0.47	-1.88	0.00	0.41	1.02	-0.62	-2.30	-1.25	-0.9	0.44
p-sheet (B)	FCn2Ce/	-0.8	-1.3	0.16	1.1	0.25	-0.35	-0.98	-0.48	-0.61	0.1	-0.32	-1.84	1.07	0.71	0.49	-1.52	-1.39	-1.00	-0.62	0.14
p-sheet (B)	FCn3Cel	-0.83	3.03	-1.24	0.49	C8.U-	-1.24	-0.17	-0.2	0.16	0.29	-0.42	-0.57	0.81	0.00	-0.15	-0.04	-0.79	-0.1	-0.71	-0.20
p-sneet(B)	FCn3Ce2	-0.5	1.01	-0.20	0.74	-0.28	-0.26	-0.04	-0.17	0.65	-0.12	-0.28	0.23	0.02	-0.29	0.87	-0.32	-0.98	-0.48	-0.61	0.41
p-sneet(B)	FCn3Ce3	-1	-1.02	1.05	0.08	0.5	1.05	1.24	2.62	0.34	-0.03	1.42	-0.41	0.20	0.10	-0.08	-1.24	-0.17	-0.2	0.10	-1.55
p-sneet(B)	FCn3Ce4	0.39	0.01	-1.05	-0.47	0.20	-1.05	-1.24	1.51	0.12	0.09	-1.03	0.12	-0.04	1.05	0.23	-0.20	-0.04	-0.17	1.49	0.17
B sheet (B)	FCh3Ce5	-0.04	1.36	-0.26	1.04	0.04	-0.26	-0.20	1.04	0.50	-0.19	0.15	0.50	-2.50	-1.20	-0.9	0.44	0.54	-0.05	-1.46	-0.25
B sheet (B)	FCn3Ce0	0.71	1.20	-0.24	-1.00	-0.95	-0.24	-0.04	0.54	0.87	0.54	1.05	-0.11	0.5	1.05	-1.02	-0.16	0.12	0.09	1.10	-0.04
B chec+(D)	FCnJCe/	-0.40 0.4	-0.65	1.04	-0.67	-0.00	-1.13	-1.7	0.24	-4.12	0.01	0.10	-0.47	0.00	0.10	0.01	0.11	0.00	-0.19	-1.76	1.14
B sheet (D)	FCn4Ce1	0.0	0.44	-0.00	0.10	-0.07	0.09	-0.45	0.01	0.00	1.09	-0.26	-1.04	-0.05	-0.26	1.09	0.11	-0.04	-0.79	-0.1	-1.24
B -sheet (B)	FCn4Ce2	10.07	-0.5 0.32	-0.70	0.52	0.00	-0.42	-0.70	1.04	0.02	-0.76	-0.24	-1.00	-0.92	-0.24	-0.76	0.65	-0.52	-0.96	-0.46	-0.20
B -sheet (B)	FCn4Ce3	_0.04	-1.62	0.41	0.1	0.09	04.0- 0.6	-0.03 N. M. N	_0.04	0.08	0.14	-0.94	-0.03	0.08	-0.54	0.70	0.00	-0.05	-0.04	-0.07	-0.00
B -sheet (B)	FCn4Ce5	0.65	0.13	0.12	-0.12	0.02	-0.37	-0.3	-0.00	-1.54	-0.23	0.47	-0.57	-0.02	0.13	0.55	-1.35	-0.3	-0.00	0.10	-0.07
B-sheet (B)	FCn4Ce6	0.11	-1.71	0.50	-0.03	0.41	0.04	0.23	-0.41	-0.1	-0.15	0.59	-1.17	-0.00	-0.32	0.74	-1.97	0.23	-0.41	0.54	0.00
B-sheet (B)	FCn4Ce7	0.02	-0.11	0.65	-0.28	0.23	-0.03	0.65	0.23	0.48	-0.11	-13	1 32	0.89	432	-0.83	0.34	-0.71	0.52	-0.47	-1.88
β-sheet (B)	FG	0.95	0.91	-0.74	0.23	-0.41	-0.1	0.47	2.23	-1.13	0.6	-1.01	0.11	0.12	4.32	-0.83	0.34	-0.03	0.41	0.04	0.23

Table 4 The environment-specific substitution tables $(3_{10}$ -helix). The environment scores for each amino acid. Large negative values indicate a strong preference for the particular environment whereas large positive values indicate an aversion.

		W	F	Y	L	Ι	V	М	Α	G	Р	С	Т	S	Q	N	E	D	Н	K	R
3 ₁₀ -helix (C)	ECnlCel	0.65	0.65	0.55	0.71	1.26	0.74	1.26	-0.77	-2.22	-1.56	-0.43	-1.72	-2.43	-1.38	-1.76	-2.15	-2.48	-0.34	-1.37	-1.8
310-helix (C)	ECn1Ce2	0.09	0.09	0.48	0.83	-0.76	1.18	0.51	-1.05	-2.35	-0.77	-0.45	-1.27	-2.56	-2.03	-2.18	-1.59	-1.8	-2.26	-3.04	-1.52
3 ₁₀ -helix (C)	ECn1Ce3	0.73	0.73	1.22	0.16	0.14	1	0.91	-0.54	-2.78	0.59	-0.59	-1.41	-2.99	-0.84	-2.61	-2.01	-2.63	-0.61	-2.78	-2.35
310-helix (C)	ECnlCe4	0.82	-0.06	0.62	-0.81	-1.71	-0.07	-0.62	-1.03	-1.23	-0.87	0.15	-0.67	-1.33	0.16	-0.48	-0.58	-0.8	0.82	-0.94	-0.11
3 ₁₀ -helix (C)	ECnlCe5	2.23	-0.13	0.27	-0.44	-1.09	-1.11	-1.38	-0.69	-1.01	0.16	-0.72	-1.14	-0.82	-0.79	-0.26	-0.2	-2.08	-0.05	-0.83	-0.41
3 ₁₀ -helix (C)	ECnlCe6	1.74	0.82	0.32	-1.08	-2.29	-0.01	-0.79	-0.1	-0.71	0.52	-0.62	-1.03	-1.23	-0.87	-0.56	-1.13	-1.7	0.54	-2.12	-0.44
3 ₁₀ -helix (C)	ECnlCe7	0.67	1.24	-0.42	-0.87	-0.61	-0.11	-0.98	-0.48	-0.61	0.1	-1.38	-0.69	-1.01	0.16	-0.07	0.09	-0.43	0.61	0.56	1.1
3 ₁₀ -helix (C)	ECn2Ce1	0.8	0.85	0.25	0.44	0.63	0.05	-0.17	-0.2	0.16	0.29	-0.79	-0.1	-0.71	0.52	-0.33	-0.42	-0.76	0.8	0.35	0.84
3 ₁₀ -helix (C)	ECn2Ce2	1.12	0.71	1.25	0.14	1.75	-0.88	-0.04	-0.17	0.65	-0.12	-0.98	-0.48	-0.61	0.1	0.09	-0.46	-0.83	1.04	0.08	0.71
3 ₁₀ -helix (C)	ECn2Ce3	-1.26	-1.81	-1.7	0.16	1.1	0.25	-0.35	0.08	0.34	-0.03	-0.17	-0.2	0.16	0.29	0.32	0.6	0.44	-0.06	0.07	-0.2
3 ₁₀ -helix (C)	ECn2Ce4	0.81	-0.83	-0.03	-1.24	0.49	-0.85	-1.24	3.63	0.12	0.69	-0.04	-0.17	0.65	-0.12	0.01	-0.37	-0.3	-0.76	-1.54	-1.12
3 ₁₀ -helix (C)	ECn2Ce5	-2.06	-1.63	-0.42	0.93	1.32	1.82	-0.48	-0.34	0.56	-0.19	-0.35	0.08	0.34	-0.98	-0.48	-0.61	0.1	-0.32	-1.84	-0.41
3 ₁₀ -helix (C)	ECn2Ce6	-0.11	-0.98	-0.48	0.78	-0.75	1.6	-1.3	-0.48	-0.18	0.27	-1.52	0.84	-0.71	0.16	-0.82	0.16	0.29	1.96	0.93	1.32
310-helix (C)	ECn2Ce7	0.05	-0.17	-0.2	-0.5	-1.91	1.32	-1.61	-0.62	1.06	0.87	-0.8	-2.63	-0.81	-0.41	-0.07	0.65	-0.12	0.84	0.78	-0.75
3 ₁₀ -helix (C)	ECn3Cel	-0.88	-0.04	-0.17	0.6	-1.35	-1.02	-1.35	0.13	0.11	0.54	1.1	-0.33	-0.44	-0.44	-1.25	0.34	-0.03	0.84	-0.5	-1.91
3 ₁₀ -helix (C)	ECn3Ce2	0.25	-0.35	0.08	1.43	-0.67	0.32	-0.77	-0.32	0.02	-0.29	0.87	-0.35	-0.98	-0.8	-2.36	0.12	0.69	0.71	0.6	-1.35
3 ₁₀ -helix (C)	ECn3Ce3	-0.85	-1.24	3.63	-1.29	0.07	1.81	1.81	4.32	0.26	0.16	-0.68	-1.24	-0.17	1.64	-1.01	0.56	-0.19	-0.2	1.43	-0.67
3 ₁₀ -helix (C)	ECn3Ce4	-0.28	-0.26	1.51	-0.9	-0.35	2.33	2.33	1.37	-0.54	-0.4	0.23	-0.26	-0.04	0.83	-0.8	0.87	0.34	0.74	-0.71	0.52
3 ₁₀ -helix (C)	ECn3Ce5	0.5	0.75	-1.02	-1.13	-0.81	1.64	1.64	1.67	-2.36	-1.25	-0.9	0.44	0.34	-0.4	-1.52	-2.12	0.61	-0.8	-0.61	0.1
3 ₁₀ -helix (C)	ECn3Ce6	0.56	-1.05	0.61	0.09	-1.01	0.38	0.38	0.94	0.5	0.75	-1.02	-0.18	0.12	-1.25	-0.81	0.56	0.89	-1.52	0.16	0.29
3 ₁₀ -helix (C)	ECn3Ce7	0.74	-0.28	0.89	-0.33	-0.71	0.41	0.04	0.32	0.56	-1.05	0.61	1.06	0.56	0.84	0.09	0.35	1.26	-0.8	0.65	-0.12
3 ₁₀ -helix (C)	ECn4Ce1	-0.95	-0.24	1.26	0.09	-0.61	0.74	-0.54	0.01	0.74	-0.28	0.89	0.11	-0.04	0.71	-0.61	1.32	1.82	1.39	0.34	-0.03
3 ₁₀ -helix (C)	ECn4Ce2	-0.03	0.41	0.04	0.32	0.16	-0.8	-2.36	-0.79	-0.95	-0.24	1.26	0.93	-0.35	0.16	0.84	-0.75	1.6	-1.3	0.12	0.69
3 ₁₀ -helix (C)	ECn4Ce3	-U.S	0.74	-0.54	0.01	0.60	-1.52	-2.22	-0.87	0.08	-0.54	-0.76	0.60	-0.83	-1.48	-U.S	-1.91	1.32	-1.61	0.00	-0.19
3 ₁₀ -helix (C)	ECn4Ce4	-0.58	-0.8	-2.36	-0.79	0.34	-0.8	-2.36	0.16	0.35	-0.49	0.14	0.47	0.44	1.18	0.0	-1.35	-1.02	-1.35	0.87	0.34
J_{10} -helix (C)	ECn4Ce5	0.09	-1.52	-2.22	-0.87	0.41	1.73	-1.01	-0.41	-0.08	0.13	0.55	-1.32	-0.3	-1.78	1.43	-0.07	1.01	-0.77	-0.18	0.27
J_{10} -helix (C)	ECn4Ce0	-0.03	0.32	0.0	-0.33	-0.71	0.84	-0.71	-0.44	-0.44	-1.22	-0.41	0.34	-0.2	0.07	-1.29	0.07	1.81	1.81	1.00	0.87
J_{10} -nelix (C)	ECR4Ce/	-0.2	1.45	-0.37	0.09	-0.01	-0.41	0.34	-0.82	-0.8	-2.30	-0.58	-0.8	-1.09	-1.04	-0.9	-0.32	2.00	2.55	0.11	0.04
310-HEIX(C)	10	-0.01	1.45	-1.01	0.09	-0.56	-1.55	0.41	1.21	1.04	-1.01	-0.41	1.70	-1.01	-0.1	0.41	0.52	1.04	1.04	0.95	0.14
3 _{1s} -helix (C)	FCalCel	0.16	0.84	-0.71	0.32	-0.2	0.56	0.83	0.84	0.83	-0.8	-2.36	0.16	-0.71	0.52	-1.33	0.16	0.84	-0.71	0.65	0.23
3 _{1s} -helix (C)	FCalCe2	0.65	0.71	-0.61	0.01	-0.71	0.74	-0.54	0.71	-0.4	-1.52	-0.2	-0.41	-2.01	-0.8	-0.82	-0.79	0.71	-0.61	-0.48	-0.34
3 ₁₁ -helix (C)	FCn1Ce3	0.34	-0.2	0.16	-0.79	-0.81	-0.8	-2.36	-0.2	-1.25	-0.81	-1.12	-0.44	0.16	-0.33	-1.23	-0.87	-0.2	0.16	-1.3	-0.48
3 ₁₁ -helix (C)	FCn1Ce4	0.41	-1.12	0.65	-0.87	0.87	0.34	80.0	-0.11	0.5	0.75	-0.82	-2.01	-1.13	-1.01	-1.01	0.16	-1.12	0.65	-1.61	-0.62
3 ₁₁ -helix (C)	FCnICe9	0.83	-0.8	-2.30	0.16	-2.12	0.61	-1.05	-0.47	0.00	-1.05	1.24	0.10	0.84	0.10	-0.71	0.52	-0.8	-2.30	-1.32	0.13
3 ₁₈ -helix (C)	FCalCe0	-0.4	-1.22	-0.2	-0.41	0.20	1.26	-0.28	1.06	0.74	-0.28	-0.71	-1.01	-0.41	-0.4	-0.81	-0.2	-1.52	-0.2	-0.77	-0.32
3 ₁₁ -nelix (C)	FCa2Ca1	0.10	1.22	0.49	0.10	0.32	0.26	-0.24	-1.00	0.092	-0.24	-0.01	-0.71	1.15	-1.01	-0.44	-1.13	1.01	-1.12	-1.00	1.07
311-melix (C)	FCa2Ca2	-0.41	-1.33	-0.07	-0.44	0.00	0.14	-0.49	-0.25	0.00	-0.49	0.65	-1.52	-0.2	-0.41	-0.6	-0.33	-0.71	-0.44	-1.04	0.01
3helix(C)	FCn2Ce3	-0.44	-1.23	.0.48	1.96	-1.54	-0.23	0.23	-0.57	.0.08	0.13	0.65	.0.87	-1.32	-2.01	-0.37	0.09	-0.61	1.45	0.74	-0.28
3u-helix(C)	FCn2Ce4	1.65	-1.01	-1.59	0.84	-0.1	-0.15	0.59	-1.17	.0.99	-0.32	-2.36	0.16	0.16	0.16	-0.33	-0.58	-0.8	-0.87	0.58	0.5
3u-helix(C)	FCn2Ce5	0.16	0.01	-1.25	0.84	0.48	-0.11	-1.3	1.32	0.89	4.32	-0.2	-0.41	-0.82	-0.79	0.09	-2.04	-1.52	0.84	-0.47	0.56
311-helix (C)	FCn2Ce6	-0.41	-0.79	-1.66	0.71	1.02	-0.65	-2.04	-0.97	0.15	-0.67	-1.12	-0.44	-1.23	-0.87	-0.82	0.83	-0.8	-2.63	0.41	0.74
311-helix (C)	FCn2Ce7	-0.8	-0.87	-1.38	-0.2	0.49	-1.52	-2.22	-0.86	-0.72	-1.14	-0.41	-0.82	0.09	0.09	-1.23	-1.52	1.1	-0.33	-1.06	-0.95
311-helix (C)	FCn3Ce1	-1.52	0.84	-0.71	0.74	-0.15	-0.81	-1.71	-0.07	-0.62	-1.03	-0.44	-1.23	-0.33	-0.58	0.09	-0.81	0.84	0.09	-0.87	-0.56
311-helix(C)	FCn3Ce2	-0.8	-2.63	-0.81	-0.8	0.87	-0.44	-1.09	-1.11	-1.38	-0.69	1.45	-1.01	0.09	-2.04	-0.33	-0.44	0.71	-0.61	0.16	-0.07
311-helix (C)	FCn3Ce3	1.85	-0.33	-0.44	-1.52	-0.68	-1.08	-2.29	-0.01	-0.79	-0.1	0.84	-0.71	0.32	0.83	0.09	-0.82	-0.2	0.16	0.52	-0.33
311-helix (C)	FCn3Ce4	0.84	0.09	-0.82	-0.8	0.23	-0.87	-0.61	-0.11	-0.98	-1.62	0.95	0.91	-0.74	-0.46	0.32	-0.07	-1.12	0.65	0.1	0.09
311-helix (C)	FCn3Ce5	0.71	-0.61	1.84	1.39	-0.9	0.44	0.63	0.05	-0.17	0.15	0.12	-1.59	0.7	1.18	0.01	-1.25	-0.41	0.34	0.29	0.32
311-helix (C)	FCn3Ce6	0.09	-0.82	-0.8	-2.36	-2.04	0.14	1.75	-0.88	-0.04	0.48	-0.11	-1.3	1.32	0.89	-0.79	-0.58	-1.59	0.41	-0.12	0.01
311-helix (C)	FCn3Ce7	-0.61	1.84	1.39	-1.01	0.34	0.16	1.1	0.25	-0.35	-1.13	0.6	-1.01	0.11	0.12	-0.87	-0.2	0.56	0.83	-0.03	0.41
311-helix (C)	FCn4Ce1	0.16	0.84	0.83	-0.8	0.41	-1.24	0.49	-0.85	-1.24	-1.64	0.57	-1.64	0.35	0.75	0.84	-0.71	0.74	-0.54	-1.52	0.84
3 ₁₀ -helix (C)	FCn4Ce2	0.65	0.71	-0.4	-1.52	-0.48	-0.26	0.74	-0.28	-0.26	-0.97	1.02	-1.26	-0.45	-0.44	-1.23	-0.87	-0.2	0.34	-0.8	-2.63
3 ₁₈ -helix (C)	FCn4Ce3	0.34	-0.2	-1.25	-0.81	-0.07	0.57	0.58	0.5	0.75	-0.39	-0.5	-1.13	-0.25	-0.82	0.09	0.09	0.74	-0.54	1.1	-0.33
311-helix (C)	FCn4Ce4	-0.8	-1.59	-0.44	-1.23	-0.48	-1.05	-0.47	0.56	-1.05	0.32	0.64	-0.3	1.06	-1.23	-0.33	-0.58	-0.8	-2.36	0.84	0.09
311-helix (C)	FCn4Ce5	1.78	-1.01	1.94	-1.01	-1.59	-0.28	0.41	0.74	-0.28	-1.26	-0.47	-1.88	0.29	-1.01	0.09	-2.04	-1.52	-0.8	0.71	-0.61
311-helix (C)	FCn4Ce6	0.16	-0.71	0.52	-0.33	-0.44	-0.24	-1.06	-0.95	-0.24	-1.16	-0.32	-1.84	-0.83	-0.71	0.32	0.83	-0.8	-1.52	-0.2	0.16
311-helix (C)	FCn4Ce7	-0.41	-2.01	-0.8	-1.59	-1.8	-0.54	0.63	0.08	-0.54	-1.2	-0.42	-0.57	-0.44	-0.61	0.01	-1.52	1.13	-0.33	-2.63	0.23
311-helix (C)	FG	-0.44	0.16	-0.33	-0.87	-0.2	-0.49	-0.25	0.35	-0.49	-0.34	-0.28	0.23	-0.03	0.16	-0.79	0.56	0.83	0.09	-0.71	-0.9

Table5 The environment-specific substitution tables (random coil). The environment scores for each amino acid. Large negative values indicate a strong preference for the particular environment whereas large positive values indicate an aversion.

		W	F	Y	L	I	V	М	Α	G	Р	С	Т	S	Q	N	E	D	Н	ĸ	R
random coil (D)	ECulCel	-0.94	0.69	1.18	0.6	-1.35	-1.02	0.84	-0.71	0.32	0.83	-0.8	0.16	-0.41	-0.82	1.1	-1.01	0.09	-0.82	-0.2	0.16
random coil (D)	ECn1Ce2	0.56	-0.19	-1.78	1.43	-0.67	0.32	0.71	-0.61	0.01	-1.52	1.15	0.49	-0.44	-1.23	0.84	-0.71	0.32	-0.07	-1.12	0.65
random coil (D)	ECnlCe3	0.59	-0.79	-0.1	-0.71	0.52	-0.47	-0.2	0.16	-0.79	0.56	0.83	0.56	1.65	-1.01	0.71	-0.61	0.01	-1.25	-0.41	0.34
random coil (D)	ECnICe4	0.66	-0.98	-0.48	-0.61	0.1	-0.32	-1.12	0.65	-0.87	0.32	-0.4	-2.36	0.16	0.01	-0.2	0.16	-0.79	-0.58	-1.59	0.41
random coll (D)	EChICes	-1.75	-0.17	-0.2	0.16	0.29	-0.42	-0.8	-2.50	0.16	0.01	-120	-0.2	-0.41	-0.79	-1.12	0.65	-0.87	-0.2	0.34	0.83
random coll (D)	ECRICe0	0.33	-0.04	-0.17	0.00	-0.12	-0.28	-1.52	-0.2	-0.41	-0.79	-1.00	-0.38	-0.8	-0.87	-2.04	-1.52	0.84	-0.71	0.74	-0.34
random coil (D)	ECalCal	-0.4	-1.24	3.63	0.34	0.05	-1.63	0.00	-0.36	4 32	-0.07	0.34	-0.03	0.41	.2.63	-0.77	-0.32	0.00	-0.36	-0.0	1.32
random coil (D)	ECn2Ce2	0.75	-0.26	1.51	0.56	-0.19	0.13	0.02	-1.59	1.32	-0.05	0.12	0.69	1.85	-0.33	1.81	432	0.32	0.23	0.65	0.55
random coil (D)	ECn2Ce3	-1.99	-0.64	1.06	0.87	0.34	0.08	-0.11	-1.3	1.67	-1.22	0.56	-0.19	0.84	0.09	2.33	1.37	0.01	-1.52	0.5	-0.15
random coil (D)	ECn2Ce4	-2.02	0.12	0.69	-1.55	-0.1	-1.63	0.6	-1.01	0.94	0.39	-0.18	0.27	0.71	-0.61	1.64	1.67	-2.04	-1.52	0.56	0.14
random coil (D)	ECn2Ce5	0.6	0.56	-0.19	0.17	0.65	0.13	0.57	-1.64	1.32	-0.64	1.06	0.87	-0.2	0.16	0.38	0.94	0.83	-0.8	0.93	1.32
random coil (D)	ECn2Ce6	-1.54	-0.18	0.27	-0.23	0.11	-1.71	1.02	-1.26	0.55	0.71	0.11	0.54	-1.12	0.65	0.04	0.32	-1.52	1.1	0.78	-0.75
random coil (D)	ECn2Ce7	-2.12	1.06	0.87	0.34	0.08	-0.11	-0.5	-1.13	-0.15	0.59	0.93	0.14	-0.41	0.34	-0.54	0.01	-0.11	-1.33	-0.5	-1.91
random coil (D)	ECn3Ce1	-1.74	0.11	0.54	-1.62	0.95	0.91	0.64	-0.3	0.14	2.38	0.65	0.23	-1.02	-0.18	-2.36	-0.79	-0.41	-0.82	0.6	-1.35
random coil (D)	ECn3Ce2	-0.89	0.93	0.14	0.15	0.12	-1.59	-0.47	-1.88	0.04	0.32	0.56	-1.05	0.61	1.06	0.56	0.16	-0.44	-1.23	1.43	-0.67
random coil (D)	ECn3Ce3	0.12	0.65	0.23	0.48	-0.11	-1.3	-0.32	-1.84	-0.54	0.01	0.74	-0.28	0.89	0.11	-0.04	-0.41	0.09	-2.12	-0.71	0.52
random coil (D)	ECn3Ce4	0.98	-0.48	-0.34	1.6	-1.35	-0.18	-0.42	-0.57	-2.36	-0.79	-1.95	-0.24	1.26	0.93	-0.35	0.16	-0.82	0.83	-0.61	0.1
random coil (D)	ECn3Ce5	0.69	0.65	0.34	-0.03	-1.48	-0.5	-0.28	0.23	-2.22	-0.87	80.0	-0.54	-0.76	0.65	-0.83	-1.48	-1.23	-1.52	0.16	0.29
random coil (D)	ECn3Ce6	0.9	-0.11	0.12	0.69	1.18	0.6	-0.5	-0.27	-2.36	0.16	0.35	1.64	1.64	1.67	-1.43	0.56	0.09	-0.81	0.65	-0.12
random coil (D)	ECn3Ce7	-0.83	0.05	0.00	-0.19	-1.78	0.21	0.42	0.06	-0.12	-0.12	1.32	0.38	86.0	1.20	0.39	-0.18	-1.01	0.09	0.34	-0.03
random coll (D)	ECn4Ce2	-0.22	-0.00	-0.04	-0.19	-0.1	-0.71	-0.20	-0.30	0.65	0.65	0.00	-0.12	22.0-	0.55	-0.04	0.11	-0.71	0.32	0.12	0.09
random coil (D)	ECn4Ce3	-0.22	.0.25	-1.24	-0.50	1.34	0.16	-1.04	-0.36	0.27	0.56	0.14	0.00	0.00	.0.15	0.59	0.11	0.16	-0.79	0.64	-0.03
random coil (D)	ECn4Ce4	0.5	-0.28	-0.26	-0.04	-0.17	0.65	-1.35	-0.87	-0.42	0.93	1.32	0.32	0.56	0.14	2.38	0.65	0.65	-0.87	-0.2	-1.25
random coil (D)	ECn4Ce5	-0.41	0.5	0.75	-0.35	0.08	0.34	-1.97	-0.57	0.25	0.78	-0.75	-0.28	-0.26	1.51	0.56	-0.19	0.13	0.56	-0.11	0.5
random coil (D)	ECn4Ce6	-0.21	0.56	-1.05	-1.24	3.63	0.12	0.34	-0.03	-1.48	-1.78	1.43	-0.24	-0.64	1.06	0.87	0.34	80.0	-0.11	-0.47	0.56
random coil (D)	ECn4Ce7	0.23	-0.48	-0.34	1.6	-1.35	-0.18	1.07	-0.67	0.32	-0.1	-0.71	-1.13	-1.7	0.54	-2.12	0.61	-1.05	-0.47	0.41	0.74
						1/10			-	1	1										
random coil (D)	EG	1.18	-1.3	-0.48	1.32	-0.67	-0.38	0.81	0.52	-0.47	-0.48	-0.61	0.1	-0.32	-1.84	1.07	0.71	-0.44	-1.25	-1.06	-0.95
random coil (D)	FCnlCel	0.2	-1.61	-0.62	-1.02	-1.04	-0.46	0.02	0.1	-0.32	-0.2	0.16	0.29	-0.42	-0.57	0.81	0.66	-0.8	-2.36	0.63	80.0
random coil (D)	FCn1Ce2	0.54	-1.35	0.13	0.55	-1.35	-0.87	0.26	0.29	-0.42	-0.17	0.65	-0.12	-0.28	0.23	0.02	-0.29	1.64	-1.01	-0.25	0.35
random coil (D)	FCnICe3	-0.04	-0.77	-0.32	0.74	-1.97	-0.57	-0.54	-0.12	-0.28	80.0	0.34	-0.03	0.23	-0.41	0.26	0.16	0.83	-0.8	-0.57	-0.08
random coll (D)	FCalCaf	0.24	0.38	1.20	0.59	0.00	-1.00	-0.41	-0.03	1.42	3.03	0.12	0.09	-1.03	0.12	-0.34	-0.4	-0.4	-1.52	1.22	-0.99
random coil (D)	FCalCef	0.24	0.12	0.55	0.21	1.26	-0.20	-1.06	.0.19	0.13	1.04	0.20	0.17	0.15	-0.11	-2.30	0.35	0.24	0.01	.0.92	0.65
random coil (D)	FCn1Ce7	0.47	0.02	0.48	0.83	-0.76	-0.54	0.63	0.34	0.08	0.54	.2.12	0.61	-1.05	-0.47	0.56	-1.05	0.71	-0.61	-0.86	-0.72
random coil (D)	FCn2Ce1	0.12	0.73	1.22	0.16	0.14	-0.49	-0.25	0.35	0.16	0.84	-0.71	-0.11	0.65	-0.25	0.46	-1.04	-0.46	0.32	-0.07	-0.62
random coil (D)	FCn2Ce2	-0.25	-0.06	0.62	-1.88	-0.23	0.23	-0.57	-0.08	0.65	0.71	-0.61	0.91	-0.74	-0.46	1.1	-1.35	-0.87	-0.27	-1.11	-1.38
random coil (D)	FCn2Ce3	0.75	-0.13	0.27	0.5	-0.15	0.59	-1.17	-0.99	0.34	-0.2	0.16	-1.59	0.7	1.18	0.47	-1.97	-0.57	0.06	-0.01	-0.79
random coil (D)	FCn2Ce4	0.65	0.82	0.32	0.56	0.14	2.38	-0.1	-0.32	0.41	-1.12	0.65	-1.3	1.32	0.89	0.63	1.02	-0.65	-0.36	-1.52	-2.22
random coil (D)	FCn2Ce5	1.75	1.24	-0.42	0.93	1.32	1.82	-0.48	-0.34	0.83	-0.8	-2.36	-0.18	1.07	0.71	0.49	0.49	-1.52	-0.38	-0.8	-2.36
random coil (D)	FCn2Ce6	0.05	0.85	0.25	0.78	-0.75	1.6	-1.3	-0.48	-0.4	-1.52	-0.2	-0.38	0.81	0.66	-0.15	-0.15	-0.04	-0.46	1.73	-1.01
random coil (D)	FCn2Ce7	-0.65	-2.18	-1.59	-1.8	-1.91	1.32	-1.61	-0.62	-1.23	-0.33	-0.58	-0.46	0.02	-0.29	0.87	0.87	-0.35	-0.87	0.84	-0.71
random coil (D)	FCn3Cel	-0.03	-2.61	-201	-2.63	-0.44	0.71	-0.61	1.86	-1.01	0.09	-2.04	-0.87	0.26	0.16	-0.68	-0.68	-1.24	-0.57	0.71	-0.61
random coil (D)	FCn3Ce2	0.74	-0.71	0.52	-0.33	-0.87	-1.38	-0.38	-0.04	-0.17	-0.64	-0.44	-0.57	-0.54	-0.4	0.23	0.23	-0.20	-0.03	-0.2	-1.52
random coll (D)	FCn3Ce4	0.11	-2.01	-1.13	-1.01	0.84	-0.71	0.25	-0.35	3.63	-2.30	-0.84	0.09	-1.01	-0.44	-0.82	-0.9	0.44	0.09	-1.13	-0.81
random coil (D)	FCn3Ce5	0.11	.0.20	0.34	0.10	-2.03	-0.61	1.82	-1.24	.0.34	-0.07	.0.32	0.00	-0.71	1.1	-1.01	0.61	1.06	-0.79	-0.33	-1.01
random coil (D)	FCn3Ce6	-0.45	-0.27	-0.2	0.34	-0.12	-0.98	-0.48	-0.61	0.1	0.41	0.04	0.32	0.16	0.84	-0.71	0.89	0.11	-0.98	0.09	-0.61
random coil (D)	FCn3Ce7	-0.25	0.09	0.74	-0.54	-0.03	-0.17	-0.2	0.16	0.29	0.74	-0.54	0.01	0.65	0.71	-0.61	1.26	0.93	-0.17	0.32	0.16
random coil (D)	FCn4Ce1	1.06	-0.58	-0.8	-2.36	0.69	-0.04	-0.17	0.65	-0.12	-0.8	-2.36	-0.79	0.34	-0.2	0.16	-0.76	0.65	-2.63	0.01	0.65
random coil (D)	FCn4Ce2	0.29	-2.04	-1.52	-0.8	-0.19	-0.35	0.08	0.34	-0.98	-1.52	-2.22	-0.87	0.41	-1.12	0.65	0.14	0.47	0.74	-0.79	0.34
random coil (D)	FCn4Ce3	-0.41	0.83	-0.8	-1.52	0.27	-1.52	0.84	-0.71	0.16	0.32	0.6	-0.33	-0.71	-2.04	-1.52	0.55	-1.35	0.58	-0.87	0.41
random coil (D)	FCn4Ce4	0.45	-1.52	1.15	-0.33	0.87	-0.8	-2.63	-0.81	-0.41	0.01	-0.37	0.09	-0.61	0.83	-0.8	0.74	-1.97	-0.47	-0.33	-0.71
random coil (D)	FCn4Ce5	0.3	0.56	0.83	0.09	0.54	1.1	-0.33	-0.44	-0.44	0.71	0.65	0.56	-0.11	-0.87	0.41	-0.83	0.34	-0.82	0.83	-0.8
random coil (D)	FCn4Ce6	-0.28	0.32	-0.4	0.32	0.84	-0.71	0.74	-0.54	0.32	0.16	0.84	-0.44	-1.13	-0.81	-1.12	-1.88	-0.37	0.09	-0.61	1.45
random coil (D)	FCn4Ce7	-0.07	0.01	-1.25	0.01	-2.63	-0.81	-0.8	-2.36	0.01	0.65	0.71	-0.82	0.09	-1.01	-0.41	-1.84	-0.33	-0.58	-0.8	-0.87
random coil (D)	FG	-0.18	-0.79	-1.66	-0.79	-0.33	-0.44	-1.52	-2.22	-0.79	0.34	-0.2	0.6	-0.33	-0.71	-0.44	-0.57	0.09	-2.04	-1.52	0.84

Table 6 Evaluation of the method and other published potentials on decoy sets from ProStar

Decoy set	Size	TUNE	RKBP	KBP	CDF	RDHSP
ifu	24	31	22	32	21	23
misfold	41	24	24	24	19	39
asilomar	44	31	35	39	35	42
Total	109	86	81	93	75	94
		79.0%	74.3%	85.3%	68.8%	86.24%

109 structure-decoy pairs in three different set

TUNE : Threading using neural network, Kuang Lin (2002)

RKBP : The residue contact potential from Lu and Skolnick (2001)

- KBP: The atomic potential from Lu and Skolnick (2001)
- CDF : The residue-based potential from Samudrala and Moult (1998)

1896

mun
 Table 7
 Performance of different methods for fold recognition in Lindahl and
 Elofsson recognition benchmark

	Family	y only	Superfan	nily only	Fold	only
Method	TOP1	TOP5	TOP1	TOP5	TOP1	TOP5
THREADER	49.2%	58.9%	10.8%	24.7%	14.6%	37.7%
HMMER-PSIBLAST	67.7%	73.5%	20.7%	31.3%	4.4%	14.6%
SAMT98-PSIBLAST	70.1%	75.4%	28.3%	38.9%	3.4%	18.7%
BLASTLINK	74.6%	78.9%	29.3%	40.6%	6.9%	16.5%
SSEARCH	68.6%	75.5%	20.7%	32.5%	5.6%	15.6%
PSI-BLAST	71.2%	72.3%	27.4%	27.9%	4.0%	4.7%
FUGUE	82.2%	85.8%	41.9%	53.2%	12.5%	26.8%
RDHSP	75.8%	80.6%	45.6%	62.5%	22.6%	39.7%

109 structure-decoy pairs in three different set						
Decoy set	Size	S	S+ASA	S+ASA+Ce	S+ASA+Cn	S+ASA+Ce+Cn
misfold	24	9	11	15	13	22
asilomar	41	19	20	28	22	34
ifu	44	15	24	30	27	32
Total	109	43	55	73	62	88
			50.5%	67.0%	56.9%	81.0%
S : Secondary structure ASA : Residue Accessibility						
Cn : Contact residue numbers Ce : Contact energy						

Table 8 Performance of different term on decoy sets from Prostar

Reference

- 1.Overington, J., Johnson, M. S., Sali, A. & Blundell, T. L. (1990). Tertiary structural constraints on protein evolutionary diversity: templates, key residues and structure prediction. *Proc. Roy. Soc. London s- er.* B, 241, 132-145.
- 2.Gonnet, G. H., Cohen, M. A. & Benner, S. A. (1992). Exhaustive matching of the eentire protein sequence database. *Science*, 256, 1443-1445.
- 3.Dayhoff, M. O., Schwartz, R. M. & Orcutt, B. C.(1978). A model for evolutionary change. In Atlas of Protein Sequence and Structure (Dayhoff, M. O., ed), vol. 5, pp. 345-358, National Biomedical Research Foundation, Washington, DC.
- 4.Jones, D. T., Taylor, W. R. & Thornton, J. M. (1992). The rapid generation of mutation data matrices from protein sequences. *Comput. Appl. Biosci.* 8, 275-282.
- Henikoff, S. & HENIKOFF, J. G. (1992). Amino acid substitution matrices from protein blocks. *Proc. Natl Acad. Sci. USA*, 89, 10915-10919.
- 7.Mehta, P. K., Heringa, J. & Argos, P. (1995). A simple and fast approach to prediction of protin secondary structure from multiply aligned sequences with accuracy above 70 %. Protein Sci. 4, 2517-2525.
- 8.Berman, H. m., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N.&Bourne, P.E.(2000) *Nucleic Acids Res.* 28, 235-242.
- 9. Hobohm, U. & Sander, C.(1994) Protein Sci. 3, 522-524
- Murzin, A. G., Brenner, S. E., Hubbard, T. & Chothia, C. (1995) *J.Mol. Biol.* 247, 536-540.
- Fischer D, Eisenberg D. Protein fold recognition using sequence-derived predictions, *Protein Sci* 1996;5:937-955.

- 12.Shi et al. (2001) FUGUE: Sequence-Structure Homology recognition using environment-specific substitution tables and structure-dependent gap Penalties. *J Mol Biol.* 310:243-257.
- 13.Iksoo et al. (2001) Protein threading by learning. Proteins. 98:14350-14355.
- 14. Williams et al. (2001) Sequence Structure Homology Recognition by Iterative Alignment and Comparative Modeling. *Proteins* 5:92-97.
- 15.Overington, et al. (1992) Environment-specific amino acid substitution tables: Tertiary templates and prediction of protein folds. *Prot Sci* 1:216-226
- 16.Kenji, et al. (1998) JOY : protein sequence-structure representation and analysis.*Bioinformatics* 14:617-623.
- 17.Daniel J et al. (1999) Protein Fold Recognition Score Functions: Unusual Construction Strategies. *Proteins* 36:454-461.
- 18.Burkhard Rost et al. (1997) Protein Fold Recognition by Prediction-based Threading. *JMB* 270:471-480.
- Bowie et al. (1991) A method to identify protein sequences thatfold into a known three-dimensional structure. *Science*, 253:164-169.

20.Proteins: Structure, Function, and Genetics, Volume 40, Issue 3, Pages 343 - 354

 D. Kim, D. Xu, J. Guo, K. Ellrott, Y. Xu, Prospect II: Protein Structure Prediction Program for the Genome-Scale Application, Protein Engineering, , vol. 16 no. 9 pp. 641-650, 2003.