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摘要 

隨著網際網路的快速發展，網路學習(E-Learning)系統已廣為流行。為了解決

教材無法在不同網路學習系統間分享與再利用之問題，國際組織已提出許多的國

際標準格式，包含:ADL的SCORM、IMS的CP與QTI、IEEE LTSC的LOM、AICC

的CMI等等。而SCORM在近幾年已成為最受廣泛使用的標準。SCORM為因應隨時

隨地學習之需求，而提供可發展、包裝與傳遞高品質教育及訓練教材的教材標準。

雖然SCORM具有分享、再利用、及重新組裝之優點，但對於製作、擷取與管理具

個人化學習導引機制的SCORM教材來說，仍是相當困難。此外，如提供所有學習

者，相同的學習課程與策略，則學習成效將無法有效提升。於是近幾年來，可根

據不同學習者的學習能力與評量結果來提供不同學習課程的適性化學習環境便漸

受重視。故對於基於SCORM標準的智慧型網路學習系統而言，如何有效地建立與

管理具客製化學習導引與教學策略的SCORM課程、如何根據個人的學習歷程資

訊、學習能力及教學策略，自動化提供學習者適當的學習活動、與如何評估及分

析學習歷程資料來了解學習者的迷失概念等，便是本論文所關心的研究問題。目

前IEEE LTSC組織提出一稱為學習科技系統架構(Learning Technology System 

Architecture, LTSA)的參考模型，用來定義學習科技系統中的關鍵互操作性介面。

而為了支援分散式網路學習系統的互操作性 (Interoperability) 與延伸性

(Scalability)，IMS 抽象架構(Abstract Framework, AF)與網路學習架構(E-Learning 
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Framework, ELF)規劃出具分層概念的網路學習系統模型，其每ㄧ層皆根據網路學

習系統不同的需求來定義其不同的功能。 

此外，基於知識管理的概念，如何有效管理適性化網路學習系統中的各種資

源與資訊，就如同於有效的管理不同的知識。因此，基於知識管理與具分層概念

的 LTSA 架構，在此論文中，提出了智慧型學習內容管理系統(Intelligent Learning 

Content Management System, ILCMS)，來智慧地管理大量的學習內容與提供學習

者適性化的學習策略，並藉由有效地學習歷程分析，做進ㄧ步的策略精練。ILCMS

的分層架構具備 6 個知識模組: (1)知識表示(KR):使用 SCORM 標準、本論文提出

的教學活動模型(IAM)與物件導向活動模型(OOLA)來表示與管理學習內容及活

動、(2)知識資源(KRes):儲存學習活動、學習物件、試題、應用程式與學習歷程等

學習資源於所屬之資源庫中、(3)知識管理(KM):應用叢集(Clustering)技術與負載平

衡策略，提出階層式內容管理機制(Level-wise Content Management Scheme, LCMS)

來有效管理大量的學習物件、(4)知識擷取(KA):提供教師有用的工具來製作

SCORM 與 OOLA 相容的課程與活動，其包含應用高階派翠網路(High Level Petri 

Nets, HLPN)來分析 SCORM 導引規則而提出的物件導向課程朔模(Object Oriented 

Course Modeling, OOCM)機制、(5)知識控制(KC):智慧地根據學生的學習成效來提

供客製化的學習內容、服務、與試題，以進行適性學習、及(6)知識探勘(KMin):

應用資料探勘技術來分析學習歷程資料以建構適性化學習課程與自動地建構學習

概念圖。最後，為評估 ILCMS，針對每ㄧ知識模組，發展各個相對應的系統功能

與實際進行實驗驗證。而藉由實驗結果可證實 ILCMS 所架構的知識模組確實是可

行的，且有益於學習者與教師進行有效的學習與教學。 

 
 
關鍵字: 共享內容物件參考模型(SCORM)、網路學習、知識管理、學習內容管理、

適性化學習環境、資料探勘、學習物件、學習歷程分析、概念圖建立。 
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Abstract 

With the vigorous development of the Internet, e-learning systems have become 

more and more popular. Currently, in order to solve the issue of sharing and reusing 

teaching materials in different e-learning systems, several standard formats, including 

SCORM of ADL, CP and QTI of IMS, LOM of IEEE LTSC, CMI of AICC, etc., have 

been proposed by international organizations. Among these international standards, the 

Sharable Content Object Reference Model (SCORM) has become the most popular 

standard in recent years. 

SCORM is a set of specifications for developing, packaging and delivering 

high-quality education and training materials whenever and wherever they are needed. 

Although SCORM has many advantages of reusing, sharing, and recombining teaching 

materials among different standards, it is difficult to create, retrieve, and manage the 

SCORM compliant course with personalized learning sequences. Moreover, if the same 

teaching materials are provided to all learners based on predefined strategies, the 

leaning efficiency will be diminished. Thus, in recent years, adaptive learning 
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environments have been proposed to offer different teaching materials for different 

students in accordance with their aptitudes and evaluation results. Therefore, for the 

intelligent e-learning system based upon SCORM standard, how to efficiently create 

and manage the SCORM compliant learning contents with desired learning sequencing 

and teaching strategies, how to automatically generate appropriate learning activity for 

learners according to individual learning portfolio, personal aptitude, and teaching 

strategies, and how to evaluate the historical learning portfolio for understanding the 

mis-concept of learners are our concerns.  

Currently, the IEEE’s LTSC proposed a Learning Technology System Architecture 

(LTSA) which is as a reference model and identifies the critical interoperability 

interfaces for learning technology systems. In addition, in order to support the 

interoperability and scalability of distributed e-learning system, IMS Abstract 

Framework (AF) and E-Learning Framework (ELF) propose the e-learning system 

models with layering concept, each layer of which defines different functionalities 

according to the different requirements of an e-learning system.  

Furthermore, based on the Knowledge Management concept, how to efficiently 

manage the different resources and information in an adaptive e-learning system is 

similar to efficiently manage diverse knowledge. Therefore, based on this concept and 

LTSA with layering concept, in this dissertation, an Intelligent Learning Content 

Management System (ILCMS) is proposed to intelligently manage a large number of 

learning contents and offer learners an adaptive learning strategy which can be refined 

by means of efficient learning portfolio analysis.  

The layered architecture of ILCMS consists of six knowledge modules: 1) 

Knowledge Representation (KR), which uses SCORM standard, and proposed 

Instructional Activity Model (IAM) and Object Oriented Learning Activity (OOLA) 

model to represent and manage the learning content and activity, 2) Knowledge 
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Resources (KRes), which stores related learning resources including Learning Activity, 

Learning Object, Test Item, Application Program, and Learning Portfolio in respective 

repositories, 3) Knowledge Manager (KM), which includes a Level-wise Content 

Management Scheme (LCMS), applying clustering approach and load balancing 

strategies, to efficiently manage a large number of learning resources, 4) Knowledge 

Acquirer (KA), which provides teachers with useful tools to create the SCORM and 

OOLA compliant learning content and activity by means of proposed Object Oriented 

Course Modeling approach based on High Level Petri Nets and OOLA model, 5) 

Knowledge Controller (KC), which intelligently delivers the desired learning contents, 

services, test sheet to learners according to her/his learning results and performance, and 

6) Knowledge Miner (KMin), which applies data mining techniques to analyze the 

learning portfolio for constructing the adaptive learning course and the learning concept 

map automatically. Finally, in order to evaluate ILCMS, system implementations and 

experiments have been done for each knowledge module. Also, the experimental results 

shows that proposed knowledge modules of ILCMS are workable and beneficial for 

learners and teachers.  

 

Keywords: Sharable Content Object Reference Model (SCORM), E-Learning, 

Knowledge Management, Learning Content Management, Adaptive Learning 

Environment, Data Mining, Learning Object, Learning Portfolio Analysis, Concept Map 

Construction. 
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Chapter 1  Introduction 
As internet usage becomes more and more popular over the world, e-learning 

system including online learning, employee training courses, and e-book in the past ten 

years has been accepted globally  [6] [13] [20] [52] [53] [61] [69] [86] [88] [99] [130] 

[131] [138] [143]. In 2000, Urdan et al. [128] considered that e-learning is defined more 

narrowly than distance learning and defined it as “the delivery of content via all 

electronic media, including the Internet, intranets, extranets, satellite broadcast, 

audio/video tape, interactive TV, and CD-ROM“. E-learning system can make learner 

conveniently study at any time and any location. However, because the teaching 

materials in different e-learning systems are usually defined in specific data format, the 

sharing of the materials among these systems becomes difficult, resulting in increasing 

the cost of creating teaching materials. In order to solve the issue of the uniform 

teaching materials format, several standard formats including SCORM (Sharable 

Content Object Reference Model) of ADL [100], CP (Content Packaging) and QTI 

(Question & Test Interoperability) of IMS [56], CMI (Computer-Managed Instruction) 

of AICC [1], LOM (Learning Objects Metadata) of IEEE LTSC [79], etc. have been 

proposed by international organizations. By these standard formats, the teaching 

materials in different learning management systems can be shared, reused, and 

recombined. 

SCORM is a set of specifications for developing, packaging and delivering 

high-quality education and training materials whenever and wherever they are needed. 

SCORM-compliant courses leverage course development investments by ensuring that 

compliant courses are Reusable, Accessible, Interoperable, and Durable (RAID). 

Although SCORM has many advantages of reusing, sharing, and recombining teaching 

materials among different standards, it is difficult to create, retrieve, and manage the 
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SCORM compliant course with personalized learning sequences based on the 

pedagogical theory. For example, the work to create the SCORM compliant teaching 

materials is still hard, even using the authoring tools. This leads to that teachers or 

editors may be unwilling to use it.  

As we know, if the same teaching materials are provided to all learners based on 

the predefined strategies or the predefined learning maps, the leaning efficiency will be 

diminished. Thus, in recent years, adaptive learning environments [22] [43] [98] [111] 

[113] [122] [123] [140] have been proposed to offer different teaching materials for 

different students in accordance with their aptitudes and evaluation results. After 

students learn the teaching materials through the adaptive learning environment, the 

teachers can further analyze the historical learning records and then refine or reorganize 

the teaching materials and tests if needed. Therefore, more and more attention has been 

paid to the research of personalized instruction in computer education environment.  

Moreover, because sequencing can help to generate teaching materials which can 

match the learner’s needs, (semi-)automatic sequencing of course materials also 

becomes an important research issue. However, although the personalized instruction 

scheme has been emphasized in most of existing e-learning systems, these systems, 

unfortunately, may not show good personalized and intelligent abilities.  

Therefore, to sum up above, for the intelligent e-learning system, the following 

issues are needed to be solved. 

 How to propose a scheme to efficiently create and manage the SCORM compliant 

learning contents with the desired learning sequencing. 

 How to propose a scheme to efficiently create and manage the teaching strategies.  

 How to propose an intelligent approach which can automatically generate 

appropriate learning activity for learners according to the individual learning 

portfolios, personal aptitudes, and teaching strategies. 
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 How to propose an efficient approach to evaluate the historical learning portfolio 

for understanding the mis-concept of learners. 

 

At present, the international organization, IEEE LTSC, analyzed the basic 

requirements of e-learning system to propose a Learning Technology System 

Architecture (LTSA) [80] which is as a reference model and identifies the critical 

interoperability interfaces for the learning technology systems. LTSA, including 4 

processes and 2 stores, that is, Learner Entity, 2) Coach, 3) Delivery, 4) Evaluation, 5) 

Learner Record, and 6) Learning Resource, can provide learners with an adaptive 

learning environment.  

In addition, in order to support the interoperability and scalability of distributed 

e-learning system, IMS Abstract Framework (AF) [55] proposes a layered model, which 

defines the interface definition set. Also, E-Learning Framework (ELF) [35] also 

proposes a layered model, each layer of which defines different functionalities 

according to the different requirements of an e-learning system. Therefore, based on the 

layered models of IMS AF and ELF, LTSA reference model can be reorganized into 4 

layers: Resources, Common Services, Learning Services, and Application, according 

to the functions of its components.  

Besides, because IEEE LTSA is as a reference model of building an e-learning 

system in support of adaptive learning, it does not clearly specify and define the data 

format of learning content and activity. Therefore, in order to solve the issue of uniform 

data format among e-learning systems, how to define the data representation format of 

learning content and activity is a very important issue.  

Furthermore, based on the Knowledge Management concept [39], how to efficiently 

manage the different resources and information in an adaptive e-learning system is 

similar to efficiently manage diverse knowledge. Therefore, based on this concept and 
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IEEE LTSA [80] with layering concept, in this dissertation, an Intelligent Learning 

Content Management System (ILCMS) is proposed to intelligently manage a large 

number of learning contents and offer learners an adaptive learning strategy which can 

be refined by means of efficient learning portfolio analysis. The layered architecture of 

ILCMS consisting of six knowledge modules in corresponding layer respectively, i.e., 1) 

Knowledge Representation (KR), which uses SCORM standard, and new proposed 

Instructional Activity Model (IAM) [115] and Object Oriented Learning Activity 

(OOLA) model to represent and manage the learning content and activity, 2) 

Knowledge Resources (KRes), which stores all related learning resources in 

repositories, 3) Knowledge Manager (KM), which efficiently manage a large number 

of learning resources in repositories, 4) Knowledge Acquirer (KA), which provide 

teachers with useful tools to create the SCORM and OOLA compliant learning content 

and activity, 5) Knowledge Controller (KC), which intelligently deliver the desired 

learning contents, services, test sheet to learners according to her/his learning results 

and performance, and 6) Knowledge Miner (KMin), which analyzes the learning 

portfolio to analyze the learning portfolio for constructing the adaptive learning course 

and the learning concept map automatically. 

As mentioned above, the relationship of six knowledge modules in ILCMS are 

described as follows. First of all, KRes Module consists of five types of learning 

resources, i.e., Learning Activity, Learning Object, Test Item, Application Program, 

and Learning Portfolio, which are described by data formats: SCORM and OOLA 

model defined in KR Module and stored in their respective repositories. Then, KA 

module includes a Learning Content Editor (LCE) and an Object Oriented 

Learning Activity (OOLA) authoring tool [81]. In LCE, for reusing the existing 

traditional teaching materials, such as HTML and PPT file format, a Content 

Transformation Scheme (CTS) [114] has also been proposed. CTS approach can 
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divide a traditional teaching material into separate learning objects with SCORM 

metadata and then package them into one SCORM course. Moreover, in order to edit 

SCORM 2004 compliant learning contents, an Object Oriented Course Modeling 

(OOCM) [117] approach based upon High Level Petri Nets (HLPN) theory [59] [60] 

[62] [70] [71][73] [82] [84] has been proposed. OOCM can provide teachers or editors 

with an authoring tool to efficiently construct the SCORM compliant course with 

desired sequencing behaviors. Furthermore, OOLA authoring tool can help teachers 

construct an OOLA learning activity with desired teaching strategy. Moreover, KM 

module includes a Learning Object Repository (LOR) Manager, where we apply 

clustering approach and load balancing strategies to propose a management approach, 

called Level-wise Content Management Scheme (LCMS) [116], to efficiently 

maintain, search, and retrieve the learning contents in SCORM compliant LOR. When 

learners initiate a learning activity, the Learning Activity Controller (LAC) in KC 

module will retrieve the appropriate learning objects in LOR, testing sheets in Testing 

Item Bank (TIB), or application program (AP) in AP Repository (APR)  according to 

the personalized learning activity in Learning Activity Repository (LAR) for learners. 

As mentioned above, the learning contents, test sheet, and AP will be retrieved and 

triggered according to the specific learning strategy. Those strategies are created by 

teachers using the authoring tools in KA module. Furthermore, KMin module includes 

a Learning Portfolio Analyzer (LPA), which consists of Learning Portfolio Mining 

(LPM) [118] and Two-Phase Concept Map Construction (TP-CMC) [110] 

algorithms. According to learners’ characteristics, the former applies the clustering and 

decision tree approach to analyze the learning behaviors of learners with high learning 

performance for constructing the adaptive learning course. The latter applies Fuzzy Set 

Theory and Data Mining approach to automatically construct the concept map by 

learners’ historical testing records. Therefore, after the learners finished the learning 
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activities, teachers can use LPA module to analyze the learning portfolios of learners for 

refining their teaching strategies and contents. 

The rest of this dissertation is organized as follows. Chapter 2 surveys the 

background knowledge of this work. Chapter 3 describes the layered architecture of 

LTSA and introduces the six modules of ILCMS. From Chapter 4 to Chapter 7, the 

details of Knowledge Representation (KR), Knowledge Acquirer (KA), Knowledge 

Manager (KM), Knowledge Controller (KC), and Knowledge Miner (KMin), are 

described. The system implementation and experimental results of ILCMS are shown in 

Chapter 9, and finally conclusion and future work are given in Chapter 10. 
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Chapter 2  Related Works 
2.1 Intelligent Tutoring System and Adaptive Learning 

Environment 

In 1989, Johnson et al. [61] proposed a software design and development research 

program called Microcomputer Intelligence for Technical Training (MITT). In order to 

organize system knowledge and operational information for enhancing the operator 

performance, Vasandani et al. also developed an intelligent tutoring system [130] [131]. 

Furthermore, Hwang proposed an intelligent tutoring environment to detect the on-line 

behaviors of students [52]. Afterward, many related articles had also been proposed to 

develop the tutoring systems and learning environments [53] [69] [88][138] [143].  

In adaptive learning environment, Shang [111] proposed an intelligent environment 

for active learning to support the student-centered, self-paced, and highly interactive 

learning approach. The learning environment can use the related learning profile of 

student, e.g., learning style and background knowledge, to select, organize, and present 

the customized learning materials for students. Trantafillou [122] also proposed an 

adaptive learning system, called AHS, in which Learners can be divided into two groups 

with Field Independence (FI) and Field Dependence (FD) respectively according to 

their cognitive styles. Then, the AHS system can provide appropriate strategy and 

learning materials for different groups. Moreover, according to learning styles and 

learning experience of learners, Gilbert [43] applied the Case Based Reasoning (CBR) 

technique to assign a new learner to the most similar one of four groups. Based upon the 

learning experience in group selected by CBR, the proposed system can offer the new 

learner an adaptive learning material. However, in all systems mentioned above, the 

information and approaches used to represent and group learners respectively are too 

easy to provide learners with personalized learning materials. 
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Carchiolo et al. [22] had proposed adaptive formative paths for e-learning 

environments. They constructed a domain database and student profiles to obtain 

personalized learning paths. During the learning process, the learning paths can be 

dynamically modified according to student needs and capabilities. Although this system 

has some advantages, including consideration of each student’s prior knowledge and 

generation of an adaptive learning path, it does not take pedagogical theory into account, 

and it is not yet compatible with the SCORM standard. Sheremetov and Arenas [98] 

also proposed a system, called EVA, for developing a virtual learning space at the 

National Technical Institute in Mexico. EVA consists of five virtual learning spaces: 1. 

the Knowledge Space, in which all necessary information exists; 2. the Collaborative 

Space, in which real or virtual companions get together to learn; 3. the Consulting 

Space, in which the teachers or tutors (also real or virtual) guide learning and provide 

consultation; 4. the Experimentation Space, in which the practical work is done by the 

students in the virtual environment; and 5. the Personal Space, in which records of users 

are stored. The model of knowledge is represented in the form of graph, where each 

node, the basic element of the knowledge structure, is a unit of learning material (ULM). 

ULMs with a related knowledge concept can be grouped into a POLIlibro (or 

Multi-Book) along the learning trajectory (path), depending on the students. However, 

the relations between ULMs are not sufficient to express the structure of the knowledge 

model, and the attributes of a ULM are insufficient for mining the behaviors of students. 

The authors also proposed some methods for planning trajectories and scheduling 

learning activities based on the agent technology. However, how to generate a learning 

path was not discussed. 

Therefore, the development of intelligent tutoring system (ITS) or adaptive learning 

system (ALE) has become an important issue in both computer science and education. 
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2.2 International Standards in E-Learning System 

However, most existing e-learning systems represent student profile, learning 

management data, test bank and subject contents with different formats, which results in 

the difficulties of sharing, reusing, and recombining those e-learning resources. 

Therefore, several international organizations have proposed teaching material 

standards, such as SCORM proposed by IMS, Simple Sequencing Specification and 

Content Packaging proposed by IMS, and LOM proposed by IEEE LTSC.  

 

2.2.1 IMS (Instructional Management System)  

In 1997, the IMS Project [56], which is part of the nonprofit EDUCAUSE [33], 

started its work and developed open, market-based standards including specifications of 

learning resource metadata for online learning. In the same year, the NIST (National 

Institute for Standards and Technology) and the IEEE P.1484 group, which now is the 

IEEE Learning Technology Standards Committee (LTSC) [79], also started to do a 

similar effort. Then, the IMS collaborated with NIST and ARIANDE project [3]. In 

1998, IMS and ARIADNE submitted a joint proposal and specification to the IEEE, 

which is the basis of current IEEE Learning Object Metadata (LOM) base document. 

Currently, the IMS project have proposed many standard specifications including 

learning metadata specification, content packaging specification, learner profiles 

specification, question and test interoperability, and simple sequence specification, etc.   

 

2.2.2 IEEE LTSC  

 The international organization, IEEE LTSC [79], proposed the Learning 

Technology System Architecture (LTSA) and Learning Objects Metadata (LOM), 

described as follows. 
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LOM (Learning Objects Metadata): 

The IEEE’s Learning Objects Metadata (LOM) [79] describes the semantics of 

learning object metadata. Here, a learning object is defined as any entity, including 

multimedia content, instructional content, and instructional software, which can be used, 

reused, shared, and recombined. To allow learning objects to be managed, located, and 

evaluated, the LOM standard makes efforts in the minimal set of properties needed. 

The LOM describes learning resources by using the following categories. 

 General: describe the general information of learning resource. 

 LifeCycle: describe the history and current state of learning resource and its 

evolution information. 

 Meta-MetaData: describe the specific information about the metadata record 

itself, e.g., who created this metadata record, etc. 

 Technical: describe the technical requirements and characteristics of learning 

resource. 

 Educational: describe the key educational or pedagogic characteristics of 

learning resource.  

 Rights: describe the intellectual property rights and conditions of use for 

learning resource. 

 Relation: define the relationships among this resource and other targeted 

resource. 

 Annotation: provide comments on the educational use of learning resource, e.g., 

who created this annotation. 

 Classification: describe classification criteria and hierarchy of learning 

resource. 

 

 10



Learning Technology System Architecture (LTSA): 

IEEE LTSC analyzed the basic requirements of e-learning system to propose a 

Learning Technology System Architecture (LTSA) [80] which identify the critical 

interoperability interfaces for learning technology systems. LTSA mainly includes 4 

processes and 2 stores, described as follows: 

(1) Learner Entity: learners receive the multimedia learning contents delivered by 

system and the learning progress of learners will be tracked and recorded. 

(2) Coach: teachers provide learning system with teaching materials and evaluate 

the learning performance of learners. 

(3) Delivery: it is responsible for delivering the learning contents Coach indicates 

to learners. 

(4) Evaluation: it evaluates the learning performance of learners and diagnoses the 

mis-concept.  

(5) Learner Record: it records the learning behavior of learners, which can be 

used to analyze and track. 

(6) Learning Resource: it stores the learning resources which were created by 

teachers and can be used to learn for learners. 

Figure 2.1 illustrates the components of LTSA system. 

 

Figure 2.1: The LTSA System Components 
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2.2.3 SCORM (Sharable Content Object Reference Model) 

Among those existing standards for learning contents, SCORM [100], which was 

proposed by the U.S. Department of Defense’s Advanced Distributed Learning (ADL) 

organization in 1997, is currently the most popular one. The SCORM specifications are 

a composite of several specifications developed by international standards organizations, 

including the IEEE LOM [79], IMS [56], AICC [1] and ARIADNE [3]. In a nutshell, 

SCORM is a set of specifications for developing, packaging and delivering high-quality 

education and training materials whenever and wherever they are needed. 

SCORM-compliant courses leverage course development investments by ensuring that 

compliant courses are "RAID:" Reusable: easily modified and used by different 

development tools, Accessible: can be searched and made available as needed by both 

learners and content developers, Interoperable: operates across a wide variety of 

hardware, operating systems and web browsers, and Durable: does not require 

significant modifications with new versions of system software [58]. The details of 

SCORM and its Sequencing & Navigation (SN) [109] will be described in Chapter 4. 

 

2.3 The SCORM Compliant Authoring System   

Recently, although many SCORM authoring tools have been developed by 

commercial companies, unfortunately, these tools support SCORM 1.2 only, for 

example, the Authorware 7 of Macromedia [64], Click2learn Unveils SCORM 1.2 

Resource Kit [23], Seminar Author of Seminar Learning System [105], Elicitus Content 

Publisher [31], and more other SCORM 1.2 compliant authoring tools found in [32]. 

Because the complicated sequencing rule definitions of SN in SCORM 2004 make 

the design and creation of course hard, the article in [76] has proposed several document 

templates to construct SCORM compliant course according to the sequencing 
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definitions of SN. Teachers/authors can design their desired learning activities by 

modifying the sequencing definitions in document templates. Then, the SCORM course 

with sequencing definitions can be created by programming. However, for 

teachers/authors, creating the SCORM course with sequencing behavior rules by 

document templates is still hard. Moreover, it is time consuming and high cost to create 

SCORM course by programming.  

Moreover, an open source tool, called Reload Editor, developed by [94] can be used 

to create the SCORM 2004 course. For setting the learning guidance, users have to edit 

the sequencing rules by clicking in the comboBox of sequencing rules. Although it 

offers the graphical user interface (GUI) to create SCORM course, the sequence of final 

course is hard to image and creating course is also time-consuming. Shih et al. [103] 

also proposed a collaborative courseware authoring tool to edit the SCORM compliant 

course which can support collaborative authoring and suggest an optimal learning 

sequence. They analyzed the metadata of SCA in SCORM 1.3 to design the activity 

rules which can be used to generate lecture sequencing. This tool also offers users the 

sequencing rules definition page to define the sequencing behavior of courseware. 

Besides, Yang et al. [144] developed a web-based authoring tool, called Visualized 

Online Simple Sequencing Authoring Tool (VOSSAT), to provide an easy-to-use 

interface for editing existing SCORM-compliant content packages with sequencing 

rules. Nevertheless, the disadvantages in [103][144] are the same as Reload Editor [94]. 

 

2.4 Applying Petri Nets in E-Learning System  

Lin [70] applied Petri Nets theory to model online instruction knowledge for 

developing online training systems. Two-level specialized Petri nets including TP-net, 

which represents goal-oriented training plans, and TS-net, which represents 
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task-oriented training scenarios, are proposed. A Goal-Oriented Training Model Petri 

net (GOTM-net), which is combined by a TP-net and all TS-nets, is converted as a set 

of “if-then” rules representing the behaviors a learner may perform and the 

corresponding responses. However, GOTM-net may not be compatible with SCORM 

standard. Based on SCORM 1.2, Liu et al. [71] discussed meta-data structure which 

makes a base for reusing and aggregating learning resources in e-learning, and provided 

an aggregation model, called Teach net, based on High-Level Petri Nets (HLPN). 

Several routing constructs in workflow are also modeled by HLPN for flexible 

navigation. However, the Teach net is mainly used to model the content aggregation 

without considering course sequencing. Besides, the modeled routing constructs may be 

not sufficient for modeling sequencing definition in SCORM 2004. 
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2.5 Structured Document Management  

For fast retrieving the information from structured documents, Ko et al. [63] proposed 

a new index structure which integrates the element-based and attribute-based structure 

information for representing the document. Based upon this index structure, three 

retrieval methods including 1) top-down, 2) bottom-up, and 3) hybrid are proposed to 

fast retrieve the information from the structured documents. However, although the 

index structure takes the element and attribute information into account, it is too 

complex to be managed for the huge amount of documents.  

How to efficiently manage and transfer document over wireless environment has 

become an important issue in recent years. The articles [75] [142] have addressed that 

retransmitting the whole document is expensive in faulty transmission. Therefore, for 

efficiently streaming generalized XML documents over the wireless environment, Wong 

et al. [133] proposed a fragmenting strategy, called Xstream, for flexibly managing the 

XML document over the wireless environment. In the Xstream approach, the structural 

characteristics of XML documents has been taken into account to fragment XML 

contents into an autonomous units, called Xstream Data Unit (XDU). Therefore, the 

XML document can be transferred incrementally over a wireless environment based 

upon the XDU. However, how to create the relationships between different documents 

and provide the desired content of document have not been discussed. Moreover, the 

above articles [63] [75] [133] [142] didn’t take the SCORM standard into account yet. 

 

2.6 Learning Portfolio Analysis  

In addition, for learning portfolio analysis, Chen [15][16] applied decision tree and 

data cube techniques to analyze the learning behaviors of students and discover the 

pedagogical rules on students’ learning performance from web logs including the 
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amount of reading article, posting article, asking question, login, etc. According to their 

proposed approach, teachers can easily observe learning processes and analyze the 

learning behaviors of students for pedagogical needs. However, although their proposed 

approaches can observe and analyze the learning behavior of students, they don’t apply 

education theory to model the learning characteristics of learners. Therefore, the 

learning guidance can not be provided automatically for the new learner. For providing 

the personalized recommendation from historical browser behavior in e-learning system, 

Wang [140] proposed a personalized recommendation approach which integrates user 

clustering and association-mining techniques. Based upon a specific time interval, they 

divided the historical navigation sessions of each user into frames of sessions. Then, a 

new clustering method, called HBM (Hierarchical Bisecting Medoids Algorithm) was 

proposed to cluster users according to the time-framed navigation sessions. In the same 

group, the association-mining technique was used to analyze those navigation sessions 

for establishing a recommendation model. Thus, this system can offer the similar 

students personalized recommendations. However, in this approach, the learning 

characteristics and sequential learning sequence of students were not considered, so that 

the personalized recommendation may be not appropriate. Of course, it doesn’t support 

SCORM 2004 standard yet. 

 

 16



2.7 Concept Map Construction 

In 1984, Novak [85] proposed Concept Map to organize or represent the 

knowledge as a network consisting of nodes (points/vertices) as concepts and links 

(arcs/edges) as the relations among concepts. Thus, a wide variety of different forms of 

concept maps have been proposed and applied in various domains [8][45][46]. In the 

adaptive learning environment, the Concept Map can be used to demonstrate how the 

learning status of a concept can possibly be influenced by learning status of other 

concepts and give learners adaptive learning guidance. Thus, Appleby proposed an 

approach to create the potential links among skills in math domain [5]. The direction of 

a link is determined by a combination of educational judgment, the relative difficulty of 

skills, and the relative values of cross-frequencies. Moreover, a harder skill should not 

be linked forwards to an easier skill. As shown in Table 2.1, f BA
 represents the 

amount of learners with wrong answers of skill A and right answers of skill B. If 

BABA ff 〉 , a skill A could be linked to a harder skill B, but backward link is not 

permitted.  

 
Table 2.1: Relative Skills Frequency 

 A is right A is wrong 
B is right f AB

 f BA
 

B is wrong f BA
 f BA

 

 

Hsu also proposed a conceptual map-based notation, called Concept Effect 

Relationships (CER), to model the learning effect relationships among concepts [51]. In 

brief, for two concepts, Ci and Cj, if Ci is the prerequisite for efficiently learning the 

more complex and higher level concept Cj, then a CER Ci  Cj exists. A single concept 
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may have multiple prerequisite concepts, and can also be a prerequisite concept of 

multiple concepts. Thus, based upon CER, the learning guidance of necessary concepts 

to enhance their learning performance can be derived by analyzing the test results of 

students. Later, based upon statistical prediction and approach of Hsu [51], a CER 

Builder was proposed by Hwang [49]. Firstly, CER Builder finds the test item that most 

students failed to answer correctly and then collects the other test items failed to answer 

by the same students. Thus, CER Builder can use the information to determine the 

relationships among the test items. Though the CER Builder is easy to understand, only 

using single rule type is not enough to analyze the prerequisite relationship among 

concepts of test items, which may decrease the quality of concept map.  

Tsai proposed a Two-Phase Fuzzy Mining and Learning Algorithm [126]. In the 

first phase, Look Ahead Fuzzy Mining Association Rule Algorithm (LFMAlg) was 

proposed to find the embedded association rules from the historical learning records of 

students. In the second phase, the AQR algorithm was applied to find the misconcept 

map indicating the missing concepts during students learning. The obtained misconcept 

map as recommendation can be fed back to teachers for remedy learning of students. 

However, because the creating misconcept map, which is not a complete concept map of 

a course, only represents the missing learning concepts, its usefulness and flexibility are 

decreased. In addition, their approaches generate many noisy rules and only use single 

rule type to analyze the prerequisite relationship among learning concepts. 
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Chapter 3  Intelligent Learning 
Content Management System 

(ILCMS) 
 

3.1 The Layered Model of IEEE LTSA 

In order to provide learners with an adaptive learning environment, the Learning 

Technology System Architecture (LTSA) of IEEE LTSC [80] as a reference model 

identifies the critical interoperability interfaces for learning technology systems. In 

addition, in order to support the interoperability and scalability of distributed e-learning 

system, IMS Abstract Framework (AF) [55] proposes a layered model, which defines 

the interface definition set. Also, E-Learning Framework (ELF) [35] also proposes a 

layered model, each layer of which defines different functionalities according to the 

different requirements of an e-learning system. Therefore, based on the layered models 

of IMS AF and ELF, LTSA reference model can be reorganized into 4 layers: resources, 

common services, learning services, and application, according to the functions of its 

components. Figure 3.1 illustrates the layered LTSA model, where the module in higher 

layer will use the service provided from lower layer to offer more powerful and specific 

service. For example, the Delivery module in Common layer uses the resources in 

Resources layer to deliver to the learners. 

Furthermore, based on the knowledge management concept [39], how to efficiently 

manage the different resources and information in an adaptive e-learning system is 

similar to efficiently manage diverse knowledge. Accordingly, each module in LTSA 

can be classified into five knowledge types according to its function, i.e., Knowledge 

Resources including learning resources and records, Knowledge Manager including the 

 19



Delivery, Knowledge Controller and Knowledge Acquirer including the Coach, and 

Knowledge Miner including the Evaluation, as shown in Figure 3.2.  

 

 
Figure 3.1: The Layered Model of IEEE LTSA 

 

 
Figure 3.2: Applying Knowledge Management Concept to Layered Model of LTSA 
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3.2 The Architecture of ILCMS 

As mentioned above, LTSA can be layered into 4 layers according to the service 

function of each layer and classified into 5 knowledge types based on knowledge 

management concept. However, because IEEE LTSA is as a reference model of building 

an e-learning system in support of adaptive learning, it does not clearly specify and 

define how to represent the learning content and activity. Therefore, in order to solve the 

issue of uniform data format among e-learning systems, how to define the data 

representation format of learning content and activity is a very important issue.  

Therefore, in this dissertation, based on Knowledge Management concept [39] and 

layered IEEE LTSA [80], an Intelligent Learning Content Management System 

(ILCMS) is proposed to intelligently manage a large number of learning contents and 

offer learners an adaptive learning strategy which can be refined by means of efficient 

learning portfolio analysis. Figure 3.3 shows the layered architecture of ILCMS 

consisting of six knowledge modules in corresponding layer respectively, i.e., 1) 

Knowledge Representation, which uses SCORM standard, and new proposed 

Instructional Activity Model (IAM) and Object Oriented Learning Activity (OOLA) 

model to represent and manage the learning content and activity, 2) Knowledge 

Resources, which stores all related learning resources in repositories, 3) Knowledge 

Manager, which efficient manages a large number of learning resources in repositories, 

4) Knowledge Acquirer, which provides teachers with useful tools to create the 

SCORM and OOLA compliant learning content and activity, 5) Knowledge Controller, 

which intelligently delivers the desired learning contents, services, test sheet to learners 

according to her/his learning results and performance, and 6) Knowledge Miner, which 

analyzes the learning portfolio for constructing the adaptive learning course and the 

learning concept map automatically.      
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Figure 3.3: The Layered Architecture of Intelligent Learning Content Management 

System (ILCMS) 

 

Each knowledge module of ILCMS can be described in details as follows: 

1. Knowledge Representation (KR): it includes 3 data models: SCORM, 

Instructional Activity Model (IAM) [115], and Object Oriented Learning 

Activity (OOLA) [81], to represent the learning content and activity, respectively. 

As state previously, in order to share and reuse the contents among various learning 

systems, we use the popular SCORM standard to represent the teaching materials 

so that the issue of uniform content format can be solved. Moreover, in order to 
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efficient manage and reuse the large-scale Activity Tree (AT) with complex 

sequencing rules in SCORM. Therefore, we propose an Instructional Activity 

Model (IAM), which extends and modularizes the structure of AT with 

inter-relation attributes by means of Pedagogical Theory and the concept of the 

Object Oriented Methodology, respectively. Furthermore, based on the 

modularized AT of IAM and object oriented concept, we further propose a model 

with sequencing rule definition, called Object Oriented Learning Activity 

(OOLA), to efficiently model a adaptive learning activity by means of three basic 

elements, that is, Content, Interaction, and Assessment. Thus, an adaptive 

learning activity can be easily created and offered to learners with a personalized 

learning contents, services, and assessment. 

2. Knowledge Resources (KRes): it includes five types of learning resources, i.e., 

Learning Activity, Learning Object, Test Item, Application Program, and 

Learning Portfolio, which are stored in their respective repositories and can be 

managed, reused, delivered, and analyzed by the sub-module of ILCMS in higher 

layers.    

3. Knowledge Manager (KM): it includes a Learning Object Repository (LOR) 

Manager, in which we analyze the content structure of SCORM and then apply 

clustering technique and load balancing strategies to propose a Level-wise Content 

Management Scheme (LCMS)[117]. LCMS can automatically analyze the 

SCORM compliant contents, group these related objects into a cluster, and then 

create the relation links among different clusters. Therefore, by means of LCMS, 

LOR manager can efficiently maintain, search, and retrieve the desired learning 

objects from the SCORM compliant LOR with a large number of learning objects. 

4. Knowledge Acquirer (KA): it includes a Learning Content Editor (LCE) and an 

OOLA authoring tool [81]. The former proposes a Content Transformation 
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Scheme (CTS)[114], which can efficiently transform the traditional teaching 

materials, e.g., HTML and PPT file format, into SCORM compliant learning 

contents, and an SCORM 2004 compliant authoring tool with Object Oriented 

Course Modeling (OOCM) [117] approach based upon High Level Petri Nets 

(HLPN) theory [59] [60] [62] [70] [71] [73] [82] [84], which can help teachers or 

editors efficiently create the course with desired learning sequencing guidance of 

SCORM standard. These created SCORM compliant learning content will be 

stored in Learning Object Repository (LOR). In addition, in order to construct 

OOLA compliant learning activity, the latter is a user-friendly GUI authoring tool, 

by which teachers can efficiently edit desired learning activity with associated 

SCORM compliant course in LOR, test sheet in TIB, and application program (AP) 

in APR. AP like an interaction tool, e.g., chat room, browser, messenger, etc., offer 

learners to interact with other learners and teachers. These edited OOLA learning 

activities will be transformed into rule format and then stored in Learning Activity 

Repository (LAR). 

5. Knowledge Controller (KC): includes a Learning Activity Controller (LAC), 

which includes a System Coordinator (SC) and an Inference Engine (IE) to 

provide learners with personalized learning contents, exercises, and test sheets 

according to different learner’s portfolios and teaching strategies. 

6. Knowledge Miner (KMin): includes a Learning Portfolio Analyzer (LPA), 

which consists of Learning Portfolio Mining (LPM) [118] and Two-Phase 

Concept Map Construction (TP-CMC) [110] algorithm. According to learners’ 

characteristics, the former applies the clustering and decision tree approach to 

analyze the learning behavior of learners with high learning performance for 

constructing the adaptive learning course. The latter applies Fuzzy Set Theory and 

Data Mining approach to automatically construct the concept map by learners’ 
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historical testing records. Therefore, after the learners finished the learning 

activities, teachers can use LPA module to analyze the learning portfolios of 

learners for refining their teaching strategies and contents. 

 

After the explanation above, the relationship of five knowledge module in ILCMS 

are described as follows. First, LCE and OOLA authoring tool in KA module can offer 

teachers or editors to edit the new SCORM compliant learning contents or transforms 

existing traditional teaching materials into SCORM compliant ones, and construct an 

OOLA learning activity, respectively. Then, LOR Manager in KM module applies 

clustering approach and load balancing strategies to efficiently manage a large number 

of learning objects in LOR. When learners initiate a learning activity, the LAC in KC 

module will retrieve the appropriate learning objects in LOR, testing sheets in Testing 

Item Bank (TIB), or application program (AP) in APR according to the personalized 

learning activity in LAR for learners. As mentioned above, the learning contents, test 

sheet, and AP will be retrieved and triggered according to the specific learning strategy. 

Those strategies are created by teachers using the authoring tool in KA module. Besides, 

after the learners finished the learning activities, teachers can use the LPA in KMin 

module to analyze the learning portfolios of learners for refining their teaching 

strategies and contents.  

The topics in this dissertation mentioned above will be detailedly discussed in 

following Sections. 
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Chapter 4  Knowledge Representation 
(KR) 

In this chapter, we describe the data format used to represent the learning resources 

in ILCMS. In order to share and reuse the contents among various learning systems, the 

popular SCORM standard is used to represent the teaching materials so that the issue of 

uniform content format can be solved. Moreover, in order to efficient manage and reuse 

the large-scale Activity Tree (AT) with complex sequencing rules in SCORM. 

Therefore, we propose an Instructional Activity Model (IAM), which extends and 

modularizes the structure of AT with inter-relation attributes by means of Pedagogical 

Theory and the concept of the Object Oriented Methodology, respectively. Furthermore, 

based on the modularized AT of IAM and object oriented concept, we further propose a 

learning activity model with sequencing rule definition, called Object Oriented 

Learning Activity (OOLA), to efficiently model a adaptive learning activity by means 

of three basic elements, that is, Content, Interaction, and Assessment. Thus, an 

adaptive learning activity can be easily created and offered to learners with a 

personalized learning contents, services, and assessment. The details of SCORM, IAM, 

and OOLA model will be described below. 

 

4.1 Sharable Content Object Reference Model (SCORM) 

In SCORM specification, content packaging scheme is proposed to package the 

learning objects into standard teaching materials, shown in Figure 4.1. The content 

packaging scheme defines a teaching materials package consisting of 4 parts, that is, 1) 

Metadata: describes the characteristic or attribute of this learning content, 2) 

Organizations: describe the structure of this teaching material, 3) Resources: denote 

the physical file linked by each learning object within the teaching material, and 4) (Sub) 
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Manifest: describes this teaching material consists of itself and another teaching 

material. In Figure 4.1, the organizations define the structure of whole teaching material, 

which consists of many organizations containing arbitrary number of tags, called item, 

to denote the corresponding chapter, section, or subsection within physical teaching 

material. Each item as a learning activity can be also tagged with activity metadata 

which can be used to easily reuse and discover within a content repository or similar 

system and to provide descriptive information about the activity. Hence, based upon the 

concept of learning object and SCORM content packaging scheme, the teaching 

materials can be constructed dynamically by organizing the learning objects according 

to the learning strategies, students' learning aptitudes, and the evaluation results. Thus, 

the individualized teaching materials can be offered to each student for learning, and 

then the teaching material can be reused, shared, recombined. 

 

 
Figure 4.1: SCORM Content Packaging Scope and Corresponding Structure of 

Teaching Materials 
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4.1.1 Sequencing and Navigation (SN) of SCORM  

At present, Sequencing and Navigation (SN) [109] in SCORM 1.3 (also called 

SCORM 2004) adopts the Simple Sequencing Specification of IMS [56] based on the 

concepts of learning activities, each of which may be described as an instructional event, 

as an event embedded in a content resource. The content in SN is organized into a 

hierarchical structure, namely, an activity tree (AT) as a learning map. An example of 

an AT is shown in Figure 4.2. Each learning activity, including one or more child 

activities, includes two data models: Sequencing Definition Model (SDM) including an 

associated set of desired sequencing behaviors of content designer and Tracking Status 

Model (TSM) including the information about a learner’s interaction with the learning 

objects within associated activities. SN uses information in SDM and TSM to control 

the sequencing, selection, and delivery of activities to the learner. 

The sequencing behaviors describe how the activity or how the children of the 

activity are used to create the desired learning experience. SN places no restrictions on 

the structure, organization, or instruction of the activity tree. The tree and the associated 

sequencing definitions may be statically or dynamically created. Therefore, how to 

create, represent, and maintain the activity tree and associated sequencing definition, 

which is not specified, is an important issue. SN enables us to share not only learning 

contents but also intended learning experiences. It also provides a set of widely used 

sequencing methods so that the teacher could do sequencing efficiently. Accordingly, in 

this dissertation, SCORM standard is used to represent the learning contents associated 

with related learning object and sequencing rules.  
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Figure 4.2: An Example of Activity Tree (a) with Clusters (b) 
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4.2 Instructional Activity Model (IAM)  

As mentioned above, in addition to describe the learning contents associated with 

learning objects, SCORM standard also defines a hierarchical structure, namely, an 

Activity Tree (AT), used to sequence the delivery of learning content to the learner. By 

defining the sequencing behavior rules within an AT, we can develop an intelligent 

approach to (semi-)automatic course and exercise sequencing. Therefore, how to create, 

represent, and maintain the Activity Tree and associated sequencing definition is our 

concern. For a large-scale learning activity, the Activity Tree will become too complex 

to be managed and reused. Besides, it is hard to reuse and integrate ATs without 

knowing the inter-relations among ATs. This implies that the scalability and flexibility 

of an adaptive learning system will be limited. Moreover, for modern personalized 

learning, many researches have used Pedagogical Theory [19] [40] [87] [122] to 

enhance the evaluation of the personal learning characteristic. 

Hence, in this dissertation, we first define the interrelation attributes of an AT, e.g., 

capability, weight, etc. Then, we extend and modularize the structure of AT by means of 

Pedagogical Theory and the concept of the Object Oriented Methodology, respectively. 

As shown on the right side of Figure 4.3, a large AT is divided into three small AT 

nodes with interrelation attributes. Therefore, by means of the interrelation attributes, 

the small AT nodes can be integrated and further connected with other AT nodes; e.g., 

AT1 connects AT4 and AT5. Thus, we propose a novel model, the Instructional Activity 

Model (IAM) [115], which is composed of related Activity Tree nodes. Based upon 

Pedagogical Theory, each AT node in IAM is modularized as a learning unit with 

inter-relations and specific attributes, which can be easily managed, reused, and 

integrated. We also propose an AT Selection algorithm with a pedagogical strategy used 

to traverse IAM in order to generate dynamic learning content for the learner. In this 
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section, we describe the Instructional Activity Model, including its properties, and the 

AT Selection algorithm. 

 

 
Figure 4.3: The Concept of Modularizing an AT 

 

4.2.1 Instructional Activity Model 
In Sequencing and Navigation (SN), we can create an AT on the fly. As mentioned 

above, in a large AT, its organization and sequencing rules are hard to manage and 

reuse. However, a large number of ATs will also make the management of AT nodes 

and rules complicated. Therefore, to strengthen the scalability and flexibility of AT, we 

must define a suitable unit of an AT. According to Bloom’s Mastery Theory [10], a 

suitable unit of learning content is a chapter or a section for learning. Thus, in IAM, we 

define the unit of an AT as a chapter or a section. 

Assume there are n ATs. We define an AT set as ATset = {AT1, AT2, …, ATn}. 

According to the formulation of Gagne [42], “A capability is a knowledge unit stored in 

a person’s long term memory that allows him/her to succeed in the realization of 

physical, intellectual or professional activity.” Suppose there are m capabilities; we can 

obtain Cset = {c1, c2, …, cm}. Before learning an AT, students are supposed to possess 

some capabilities, called Prerequisites. Similarly, after learning an activity tree, 
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students can acquire further capabilities, called Contributions. Every prerequisite or 

contribution has its own weight representing the significance of learning capabilities 

before and after learning. Therefore, in IAM, the Cset can be regarded as the union of all 

prerequisites and contributions, and an AT, thus, has several capabilities. 

A learning activity or a course is composed of several ATs with input/output 

capabilities. The student learns a suitable AT and gains further capabilities, which 

enable the student to learn another advanced AT. This learning process is repeated until 

the student has finished all the learning objectives predefined by teachers. Then, every 

student will have an individual value of Cset. Figure 4.4 shows a diagram of IAM. 

In Table 4.1, we define the related attributes of interrelations, measure functions, 

AT selecting criteria, etc. in IAM as shown in Figure 4.4 

 

 

 

Figure 4.4: The Diagram of IAM 
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Table 4.1: The Definitions of Related Symbols in IAM 
Symbols Description 

eij 
The edge from ci to ATj, called “prerequisite edge”, means that before learning ATj, the 

student is supposed to possess this ability ci. 

e'ij The edge from ATi to cj, called “contribution edge”, means that after learning ATi, the 
student will gain the ability cj. 

w(eij) The weight of eij denotes the significance of ci before learning ATj where the sum of w(eij) 
of an AT is 1, i.e., ∑ ∀=

i
j 1,)w(eij . 

w(e'ij) The weight of e'ij denotes the significance of cj after learning ATi where the sum of w(e'ij) 
of an AT is 1, i.e., ∑ ∀=

j
i 1,)w(e'ij . 

mReqij The minimum requirement of ci for learning ATj is used to determine whether the student 
is qualified to learn ATj or not. 

grade(e'ij) The learning grade after learning ATi. 

val(cm) 
The evaluation function of a capability, i.e., val(cm) = ∑

∑ ×

j

j

)w(e'

)grade(e')w(e'

jm

jmjm

 

 

Table 4.1: (Cont’d) The Definitions of Related Symbols in IAM 
The Related Measure Functions of AT 

Acquired Capability (AC) It records student’s learning results. AC=∪(ci, val(ci)), 

Course Objectives (CO) It records student’s learning objectives. CO=∪(ci). 

Potential Capability List 
(PCL) 

Each AT has a PCL recording all the contribution capabilities which can be 

reached from this AT via edges in IAM. It can be formulated as PCLATk=∪(ci), 

where ci can be reached from ATk by connecting edges, e.g., in Figure 7.2 the 

PCLAT1 equals {c2, c3, c4, c5, c6}. 

Student’s Grade 
Prediction (SGP) 

SGP denotes the performance prediction of the specific student related to the 

AT, i.e., SGPk=Σi (val(ci)×w(eik)). 

Normalized Objective 
Weight (NOW) 

NOW denotes the relativity between an AT and the student’s CO. Higher 

objective weight implies better learning efficiency. Empirically, selecting 

function tends to select the AT with higher SGP and higher NOW for students. 

( )
( )ATji

iATji

PCLc
COcPCLc

NOW
∈

∈∈
=

i

i

c ofnumber  the
&c ofnumber  the

 

Chosen Factor (CF) 
CF, a linear combination of selecting criteria, is used to select a suitable AT for 

learner. For example, for ATi, CFi=αNOWi + βSGPi , where α+β=1, 0≤ α, β ≤1.

 

In brief, the Instructional activity model (IAM), a graphical representation of a 

learning activity or course, contains a set of ATs; Capabilities, including prerequisites 
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and contributions; a set of Relations Edges, including eij with mReqij and e'ij; and a set 

of Measure Functions. Assume IAM has n ATs and m capabilities. Then, it can be 

formulated as a quadruple, IAM = (ATset, Cset, Eset, E'set), 

where 

 ATset = {AT1, AT2,…, ATn}. 

 Cset = {c1, c2,…, cm}. 

 Eset = ∪(Ej), where Ej = ∪i (eij, mReqij), eij∈ATj. 

 Eset is the set of all prerequisite edges with minimum requirement value in an IAM.  

 E'set =∪(E'j), where E'j = ∪j (e'jk), e'jk∈ATj. 

 E'set is the set of all contribution edges in an IAM.  

 

4.2.2 Basic Functionalities 

Based upon the structure of IAM described above, we can develop several 

approaches to provide students with a learning environment for a dynamic and adaptive 

course. The learning process can be simply considered as the sequencing of activity 

trees in IAM in order to enable students to satisfy the learning objectives. The flowchart 

and algorithm of AT Selection is shown in Figure 4.5 and Algorithm 4.1, respectively. 

 

 
Figure 4.5: The Flowchart of AT Selecting Process 
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Here, we will explain the AT Selection algorithm of IAM. First, we initialize the 

learning status by loading AC and CO, evaluate the PCLAT of every AT (Setp1), and 

then enter the loop of the learning activity (Step2). During the AT selection process, we 

mark each AT with Candidate or Blocking after comparing the mReq(eij) with val(ci) 

(Step2.1). Candidate indicates that this AT will be selected later, and Blocking indicates 

the opposite. Before delivering AT to the learner, we have to execute the selection 

process to choose a suitable AT. In general, we only use the CF value to choose one 

suitable AT (Step 2.2.2). However, to meet specific needs, e.g., to apply Pedagogical 

Theory, we can define other selection criteria and a strategy in the extended selection 

scheme, which will be described later in Section 4.2.3 (Step 2.2.1). After completing the 

AT selection process, we choose a suitable AT marked candidate and deliver it to the 

learner (Step 2.2). However, if no AT marked candidate exists, the AT selection 

process proceeds to the Remedy Course Process (Step 2.2.3-Step 2.2.7). In the 

Remedy Course Process, we select an AT with the largest value of cm ∈ CO (Step 

2.2.3-Step 2.2.4) and then find a ci with the smallest, largest, or medium value of 

(mReq(eij)－val(ci)), according to the type of SelectingPolicy (Step 2.2.5). In this 

algorithm, we use three policies to select different capabilities for adaptive learning. The 

policy “Easiest First” tends to select a ci in which the learner has earned a high grade, 

but the policy “Hardest First” does the opposite. After selecting a ci, we can decide 

which AT connected with ci to deliver to the learner by computing MAX((mReq(eij)－

grade(e'ki))×w(e'ki)), which implies that the progress of the learner is the largest (Step 

2.2.6). Figure 4.6 shows in detail the Remedy Course Process. Finally, when the learner 

has finished and satisfied all the course objectives (CO), the AT selection process stops. 
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Algorithm 4.1: AT Selection Algorithm 

Input: IAM, AC and CO of learner, and SelectingPolicy = {Easiest First, Medium First, Hardest First}.  

Output: the new AC after learner has finished learning activity. 

 

Step1: Evaluate the PCLAT of every AT in IAM.  

Step2: while(CO⊄AC) //start the learning activity 

// decide whether the type of AT is Candidate or Blocking state 

2.1: for each ci with eij in AC 

{ if (mReq(eij) > val(ci)) 

then mark the ATj with Blocking 

else if (ATj has not been learned yet)  

then (compute CFj )and (mark the ATj with Candidate) } 

//select a suitable AT to be learned 

2.2: if (∃AT with Candidate mark) // select the AT with Candidate mark 

then  

2.2.1: if ∃ extended selecting scheme of AT then do it. // for specific needs 

2.2.2: Select an AT with the highest CF and deliver it to the learner. 

else if (∃AT with Blocking mark) 

then //go to Remedy Course Process & select a suitable AT 

2.2.3: for each ATj with Blocking mark 

{Count the amount of cm∈CO which is connected by e'jm.} 

2.2.4: Select the ATj with the largest amount of cm∈CO. 

2.2.5: for all ci with eij 

{ if SelectingPolicy = ”Easiest First”, ”Medium First” or ”Hardest First”  

then Find the ci with the smallest, medium, largest value of (mReq(eij)-val(ci)), 

respectively.} 

2.2.6: for all e'ki∈Ei in ci, 

Select the ATk with MAX( (mReq(eij)–grade(e'ki))×w(e'ki)). 

2.2.7: Clear the mark of ATj and deliver the ATk to the learner. 

2.3: if learner passes the selected AT 

then mark this AT with Learned. 

2.4: update AC after the learner learns selected AT. 

Step3: return new AC. 
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Figure 4.6: The Diagram of Remedy Course Process 

 

Example 4.1: 

This IAM in Figure 4.7 can be represented as follows:  

IAM = ({AT1, AT2 AT3, AT4, AT5,}, {c1, c2, c3, c4, c5, c6, c7, c8, c9}, {(e11,0.8), (e22,0.7) , 

(e23,0.8), (e33,0.8) , (e44,0.8) , (e55,0.8) , (e65,0.6)}, {e'14, e'15, e'25, e'36, e'47, e'48, e'58, 

e'59}). 

 

 
Figure 4.7: The Example of IAM 
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Case 1: We assume that AC={(c1, 0.82), (c2, 0.75) } and CO={c4, c7, c8}. Note that the 

value in parenthesis is the val(ci). 

The PCLAT has been evaluated as shown in Figure 4.7. After the first iteration of 

the While loop of Algorithm 4.1, we can get results as shown in Table 4.2. Thus, AT1 

will be delivered to the learner because it has the highest CF value. 

 

Case 2: we assume that AC={ (c1, 0.82), (c2, 0.75), (c4, 0.75), (c5, 0.6), (c6, unknown) }, 

CO={c4, c7, c8}, and Blocking AT={AT3, AT4, AT5}. The AT selecting process has 

moved into Remedy Course Process. 

Before Step 2.2.5, because AT5 has one cm∈ CO, AT5 is selected. If the 

Selection-Policy is “Easiest First,” the c5 with the smallest value, 0.2, of (mReq(e55)－

val(c5)) is selected. Then, by computing (mReq(e55) － grade(e'15))×w(e'15)) and 

(mReq(e25)－grade(e'25))×w(e'25)), we can decide to deliver the AT2 with a value of 0.26 

to the learner. 

 

Table 4.2: The Related Values of AT1 and AT2 
 SGP NOW CF 

AT1

SGP1= 

val(c1) ×w(e11) 

=0.82×1 

=0.82 

6.0
5
3

}c ,c ,c ,c ,c{ ofnumber  the
}c ,c,c{ ofnumber  theNOW

98754

874
1

==

=

71.0
6.05.082.05.0

111

=
×+×=

×+×= NOWSGPCF β

 

α

 

AT2 SGP2=0.45 NOW2=0.33 CF2=0.39 

 

 

4.2.3. Applying Pedagogical Theories in IAM 
As mentioned above, the Instructional Activity Model (IAM), which is composed 

of related AT nodes with inter-relations and specific attributes, can be easily managed, 

reused, and integrated. Our proposed AT Selection Algorithm can then generate the 

dynamic learning content for the learner by traversing the IAM. In addition, due to 
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strengthened the scalability and flexibility of IAM, appropriate pedagogical theories can 

be selected and applied to provide personalized learning guidance according to 

extension schemes for specific needs. Therefore, in this section, we will show how 

well-known pedagogical theories can be applied in IAM by means of extension 

schemes. 

 

Extension Scheme of IAM: 

We can consider three aspects of pedagogical theories: 1. the Capability 

Taxonomy, 2. the Learning Style, and 3. the Organization of Teaching Material. We 

can describe these three aspects as follows. 

 Capability Taxonomy: By learning different Learning content, the learner will 

acquire different knowledge or capabilities. Thus, Gagne [40] considered that the 

learning outcomes of learners can be classified into five types: Verbal Information, 

Intellectual Skills, Cognitive Strategies, Motor Skills, and Attitude. Accordingly, 

we can categorize the learning capabilities in IAM into five types and define each ci 

in Cset = {c1,c2, …,cm} as having five dimensions: <vci, ici, cci, mci, aci>, where vci 

denotes verbal capability, ici denotes intellectual capability, cci denotes cognitive 

capability, mci denotes motor capability, and aci denotes attitude capability. 

 Learning Style: The learner’s learning style is the way s/he prefers to learn. 

Therefore, learners have individual learning preferences during learning activities 

designed for specific instructional approaches or teaching materials. Many articles 

[26] [72] [107] [111] [120] [122] have proved that learners can achieve excellent 

learning performance if we can give them instruction and teaching materials 

according to their individual learning styles. Sternberg [102] also collected many 

taxonomies of learning style based upon different criteria. Thus, we apply three 

features of learning styles, Visual, Auditory, and Kinesthetic, in IAM to generate 
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adaptive learning guidance. To provide a learner with suitable learning contents, we 

have to define not only the learning style of the learner, but also the learning content 

of AT. Therefore, we need to select a suitable AT whose learning style is similar to 

that of the learner. Moreover, we can use existing questionnaires [50][102] to extract 

the values of individual learning styles of learners. 

 Organization of Teaching Material: It is essential to organize suitable teaching 

materials for students. According to Bassing [7], we can categorize the organization 

of teaching materials into three types: (1) Logical Organization, where the teaching 

materials are ordered in a systematical fashion as traditional teaching strategies, e.g., 

teaching the mathematics from basic to advanced concept in a fixed order; (2) 

Psychological Organization, where emphasis is placed on the student’s own 

interest, ability, and needs; and (3) Eclectic Organization, which takes both 

Logical Organization and Psychological Organization into consideration. Therefore, 

in IAM, the learning guidance and selected AT have to be based on the concepts of 

Logical Organization and Psychological Organization, respectively. Table 4.3 shows 

the related symbol definitions used when applying Pedagogical Theory in IAM. 

 

Table 4.3: The Symbol Definitions of Pedagogical Theory in IAM 
Symbols Description 

LgOrgi 
This denotes the Logical Organization of ATi. The value of LgOrgi is mapped to the difficulty 

of ATi.  

LnStyi 

This denotes the value of Learning Style, including Visual, Auditory, and Kinesthetic in ATi. 

The LnSty is represented as a vector, i.e., <VATi, AATi, KATi>, where the value is between 0 and 

1. 

SLS 

This denotes the Student Learning Style (SLS) for representing the learning style of the 

student. SLS is represented as a vector like LnStyi, i.e., <Vs, As, Ks>, where the value is between 

0 and 1. 

 

Based upon the symbols shown in Table 4.3, we can define the Similarity Factor, SF, 
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and redefine the Chosen Factor, CF, for ATi as follows: 

 SFi = SLS‧LnStyi, where the symbol “• ” represents the dot product. 

 CFi = αNOWi + βSGPi +γLgOrgi, where α+β+γ=1. 

The SF is used to compute the similarity of the learning style between the learner 

and ATs. Thus, we can filter out ATs with low SF values and then select the AT with 

the highest CF value. Although we have defined the selection formula and strategy 

according to Pedagogical Theory, teachers also can redefine them by themselves. 

 

AT Selection Process Using Pedagogical Theories: 

Therefore, in the AT Selection Algorithm, we can compute CF and SF to acquire 

the psychological organization and logical organization characteristics of every AT 

(Step 2.1). The SF, which is computed as the dot product of the student’s learning style 

vector (SLS) and the AT’s learning style vector (LnSty), can denote the similarity of the 

learning style between the AT and Learner. Thus, using the value of SF, we can get a 

suitable AT form IAM (Step 2.2.1). Finally, the CF can be used to determine the most 

suitable AT for the learner (Step 2.2.2). 

 

Example 4.2: Learning in IAM using pedagogical theories 

We present a simple example of learning in IAM using pedagogical theories. First, 

we define IAM and the related attributes of each AT, and then we demonstrate the 

process of the AT Selection Algorithm for a specific student. An example of IAM is 

shown in Figure 4.8. 
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Figure 4.8: An Example of IAM with Pedagogical Theories. 

 

IAM in Figure 4.8 is represented as follows: 

IAM=({AT1, AT2, AT3, AT4, AT5}, {vc1, cc2, mc3, vc4, ic5, vc6, mc7, ic8, cc9, ic10}, 

{(e11,0.3), (e12,0.6), (e22,0.5), (e33,0.4), (e44,0.5), (e55,0.6), (e65,0.5)}, {e'14, e'15, e'25, e'26, 

e'36, e'37, e'48, e'49, e'5,10}) 

 

Table 4.4: Learning style and logical organization of each AT. 
 AT1 AT2 AT3 AT4 AT5 

LnSty <0.8, 0.1, 0.1> <0.1, 0.8, 0.1> <0.6, 0.1, 0.3> <0.2, 0.1, 0.7> <0.1, 0.2, 0.7>

LgOrg 0.3 0.3 0.5 0.3 0.7 

 

The Learning Style and Logical Organization used in the AT Selection Algorithm 

are shown in Table 4.4. Because the value of LgOrg is mapped to the difficulty of AT, 

the difficulty of the metadata in SCORM can be used to define the value range, e.g., 

{Very Easy, Easy, Medium, Difficult, Very Difficult} corresponding to {0.1, 0.3, 0.5, 0.7, 

0.9}. Suppose there is a learner who is learning in this IAM; her/his personal 

information is as follows: 
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 AC = {(vc1, 0.5), (cc2, 0.8), (mc3, 0.1), (vc4, 0.6), (ic5, 0.43)},  

 SLS= <0.1, 0.2, 0.7>, 

 CO = {ic5, vc6, mc7, ic8, cc9, ic10}. 

 

Since s/he has learned AT1, the AT Selection Algorithm will choose the next AT 

for her/his learning. CFi and SFi are defined as follows: 

 CFi=0.25×NOWi+0.25×SGPi+0.5×LgOrgi, 

 SFi= SLS‧LnStyi . 

 

The related results obtained by the AT Selection algorithm are shown in Table 4.5. 

 

Table 4.5: Selecting Criteria for Each Activity Tree. 
 AT2 AT3 AT4 

PCL {ic5,vc6,ic10} { vc6,mc7,ic10} {ic8, cc9} 

NOW 1 1 1 

SGP 0.5×0.4+0.8×0.6=0.68 0.1×1=0.1 0.6×1=0.6 

LgOrg 0.3 0.5 0.3 

SFi 0.24 0.29 0.53 

CFi 0.57 0.525 0.55 

 

Then, we can use the following selection strategy: for smart students, select the AT 

with the highest CFi value; for other students, select the AT with the highest SFi value. 

With this strategy, we select AT2 for smart students, and AT4 for other students. In 

addition, we can revise CFi and SFi for specific purposes. For example, some teachers 

believe that learning style of a student is related to student’s grade, and they can modify 

CFi and SFi as CFi = 0.5 × NOWi + 0.5 × LgOrgi, SFi = 0.5 × SGPi + 0.5 × 

(SLS‧LnStyi). If the selection strategy remains the same, we will provide AT3 for 

smart students and AT4 for other students. 
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Evaluating of the Expressive Power of IAM: 

We have shown that it is possible to apply pedagogical theories in IAM for specific 

need. How many pedagogical theories can be applied in IAM? In this section, we will 

evaluate that how many different structures IAM can support to meet pedagogical needs. 

Educational researchers have proposed various types of course structures to facilitate 

learning. Posner [90] proposed three types of structures including discrete structure, 

linear structure, and hierarchical structure. Bruner [12] proposed the concept of a spiral 

curriculum. Efland [34] also proposed the lattice curriculum. Each structure satisfies 

certain kinds of pedagogical needs. IAM can be applied to these course structures, as 

shown in Figures 4.9 and 4.10. 

 

 
Figure 4.9: IAM Mapping to Discrete Structure, Linear Structure, and Hierarchical 

structure 
 

 
Figure 4.10: IAM Mapping to Spiral Curriculum and Lattice Curriculum. 
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4.2.4 The Construction of IAM 
As mentioned in previous sections, based upon the OO Methodology and SCORM 

standard, we have proposed an Instruction Activity Model (IAM) which is composed of 

related AT components with inter-relations and specific attributes designed to meet 

pedagogical needs. However, for teachers and authors, how to apply IAM in real 

learning environments is also an important issue. Therefore, in this section, we propose 

a systematic approach to fast and easily construct IAM using traditional course 

resources. First, the teacher has to create the Content-Contribution Relationship Table 

denoting the potential concept which will be acquired by learning the learning content. 

For example, assume that a course, Introduction to Computers, includes three chapters 

as shown in Table 4.6. According to the content of Chapter A, the teacher can write 

down its possible contributions, including the related w(e'ij) and difficulty level; e.g., 

A1(0.5, 1) indicates that the contribution, called Hardware, has w(e'ij) = 0.5 and 

difficulty level = 1. Then, we use the concept of the Adjacency Matrix to create the 

Weight Matrix of Contribution as shown in Tables 4.7 and 4.8. Thus, assuming that 

there is an m 　n Weight Matrix (M), the weight of mij in M denotes the significance of 

ci before learning cj. Hence, the teacher can write down the value of mij to define the 

related weight between contribution ci and cj using the following formula: 

 

⎩
⎨
⎧

=
otherwise

x
ijm

,0
1≦x≦0  where),(cDifficulty≦)(cDifficulty if, ji

 

 

For example, in Table 4.7, A1(1) indicates that the Contribution A1 has difficulty 

level = 1. The m11 between A1 and B1 can be written as 0.3 by teachers because the 

Difficulty(A1) ≦ Difficulty(B1). After finishing the Weight Matrix, the teacher can 

compute the value of w(eij) of every contribution using the following equation (the 
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equation will normalize w(eij)): 

∑ ∑
∑
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≤≤=
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1)(  

Table 4.6: The Content-Contribution Relationship Table of Course 
 Contributions (w(e'ij), difficult level) 

 1  2 3 

Chapter A: 

Introduction 

A1 (0.5, 1) 

(Hardware) 

A2 (0.3, 1) 

(Software) 

A3 (0.2, 1) 

(Application) 

Chapter B: 

Hardware 

B1 (0.2, 3) 

(CPU) 

B2 (0.4, 3) 

(Main Memory) 

B3 (0.4, 3) 

(Auxiliary Memory) 

Chapter C: 

Software System 

C1 (0.5, 4) 

(System Software) 

C2 (0.5, 2) 

(Application Software)
 

 

Table 4.7: The weight matrix of contribution B 
 B1(3) B2(3) B3(3) w(eij) of B 

A1(1) 0.3 0.3 0 0.67 
A2(1) 0 0 0.3 0.33 
A3(1) 0 0 0 0 
C1(4) 0 0 0 0 
C2(2) 0 0 0 0 

 
Table 4.8: The weight matrix of contribution C 

 C1(4) C2(2) w(eij) of C 
A1(1) 0 0 0.0 
A2(1) 0.8 0.3 0.5 
A3(1) 0.2 0.5 0.32 
B1(4) 0.2 0 0.09 
B2(2) 0.2 0 0.09 
B3(2) 0 0 0 

 
 

Finally, based upon the Weight Matrix, w(e'ij), and w(eij), the teacher can construct IAM 
as shown in Figure 4.11. 
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Figure 4.11: The Design of IAM in Part of “Introduction to Computer” 
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4.3 Object Oriented Learning Activity (OOLA) Model 

As stated previously, the Instructional Activity Model (IAM) is composed of 

related AT nodes. Each AT node in IAM is modularized as a learning unit with 

inter-relations and specific attributes, which can be easily managed, reused, and 

integrated. Accordingly, based on the IAM concept, an Object Oriented Learning 

Activity (OOLA) [81] model is proposed to efficiently represent an adaptive learning 

activity, which can provide learners with Content, Interaction, and Assessment. 

 

6.2.1 The Definition of Object Oriented Learning Activity (OOLA)  

As stated previously, in order to provide teachers with an efficient adaptive 

learning activity model which can be used to design desired learning activity based on 

pedagogical theory, reuse the existing learning resources, and share the instructional 

experiences. Therefore, based on the modularized AT of IAM and object oriented 

concept, we propose a model, called Object Oriented Learning Activity (OOLA), 

according to the three basic elements in a learning activity, that is, Content, Interaction, 

and Assessment. The OOLA Model represents the learning activity with learning 

content, interaction activity and assessment activity. The directed graph representation 

and object oriented property can improve the flexibility of constructing an adaptive 

learning activity. The definition of OOLA is as follows: 

 

Definition 4.1: OOLA is a directed graph, OOLA = (V, E), where 

 V={N1, N2,…, Nn}. It denotes a Learning Unit (LU) in a Learning Activity (LA).  

The node of OOLA can be divided into the following three types: 

(1) NLA: denotes a SCORM or IAM compliant learning activity or a single course. 

(2) NAP: denotes an Application Program (AP), such as Chat Room, Searching Engine 
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(SE), etc.  

(3) NEA: denotes an Exam Activity (EA).  

In addition, every node has an attribute, Learning Duration, which can be used to 

control the learning progress by teachers.  

 E={e1, e2,.., en}. It is a finite set of directed edge.  

In E set, some edges∈E have Condition Attribute (α) which can be used to set the 

learning rule for controlling the learning sequencing. In the definition of OOLA, the 

edges from NEA to other three nodes, NLA、NAP、NEA, have the Condition Attribute, i.e., 

LAEANN , 
APEANN , and 

EAEANN . The Rule Conditions is represented as “if condition then 

action” format. Therefore, if the condition is satisfied, the specified action will be 

performed and next activity will be triggered for the learner. 

 

Figure 4.12 shows the OOLA model. NLA will be associated with a SCORM or 

IAM compliant LA or single course to provide learners with a learning content. NAP will 

be linked to a specific AP. Thus, the AP will be executed by system to offer learner to 

use while learner is studying the NAP node. While the NEA node in a LA is triggered, the 

system will display a test sheet for learner. The testing results will be evaluated by 

assessment scheme to decide whether the learner will go to next advance course or the 

remedial course. The directed edges denote the learning flow in a LA. These edges from 

node NEA have Condition Attribute, α. After the examination, the concept achievement 

variables representing the assessment result can be referred by the OOLA to decide the 

next activity for the learner based on the satisfaction of the rule conditions. If the 

concept achievement value is lower than a predefined threshold, the remedial course 

will be provided to the learner. Otherwise, if the achievement value is satisfied, the 

activity of next step will be provided. In OOLA model, these three nodes can be 

combined arbitrarily. Therefore, teachers or instructional designers can design their 
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desired learning activity with applying pedagogical theory for providing an adaptive 

learning environment.   

 
Figure 4.12: The Diagram of OOLA Model 

  

Figure 4.13 shows an example of using OOLA model to represent an adaptive 

learning activity, which can provide learners with SCORM compliant courses with 

sequencing rules, learning services, e.g., Chat Room and Searching Engine, and 

Examines. Also, the remediation will be given according to learners’ learning results. 

Therefore, the learning path will be intelligently guided according to the rule definitions 

of OOLA model and learners’ capabilities.  

 
Figure 4.13: An Example of Representing an Adaptive Learning Activity by OOLA 
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Chapter 5  Knowledge Acquirer (KA) 
How to create the standard teaching materials is an important issue. Although most 

of approaches usually offer an authoring tool to help users, authoring standard teaching 

materials is still time-consuming, even though to often practice it. In addition, the 

traditional teaching material without concept of learning object is difficult to offer 

appropriate teaching materials for students in accordance with their aptitudes. Therefore, 

in this dissertation, in Knowledge Acquirer (KA) module of ILCMS, a Learning 

Content Editor (LCE) and an OOLA authoring tool [81] are developed. The former 

proposes a Content Transformation Scheme (CTS) [114], which can efficiently 

transform the traditional teaching materials, e.g., HTML and PPT file format, into 

SCORM compliant learning contents, and a SCORM 2004 compliant authoring tool 

with Object Oriented Course Modeling (OOCM) [117] approach based upon High 

Level Petri Nets (HLPN) theory, which can help teachers or editors efficiently create the 

course with desired learning sequencing guidance of SCORM standard. In addition, in 

order to construct OOLA compliant learning activity, the latter is a user-friendly GUI 

authoring tool, by which teachers can efficiently edit desired learning activity with 

associated SCORM compliant course in LOR, test sheet in TIB, and application 

program (AP) in APR. The details of KA module are described below. 

  
5.1 Transformation of Traditional Teaching Material  

Based upon the concept of learning object, the Content Transformation Engine 

segments the traditional teaching materials into several learning objects. The original 

teaching materials are divided into several objects according to the instructional 

objectives defined by teachers or educational experts. Moreover, we adopt the SCORM 

standard to present and package the learning object with Extensible Markup Language 

 51



(XML) format in each teaching material for achieving the reusing, sharing, and 

interoperability of these learning objects. In this section, we will present whole 

transformation process of traditional teaching material.   

 

5.1.1 Concept of Learning Object 
The concept of learning object is to define a meaningful learning content, including 

multimedia content or instructional content, which can be used, reused, shared, and 

recombined. The learning object model can be presented as independent chunks of 

educational content which can be created to provide an educational experience or 

teaching strategy. Like the concept of object-oriented programming (OOP), the learning 

objects are self-contained, and they can contain references to other learning objects and 

may be combined or sequenced to form longer educational units. By the concept 

learning object, we can develop an individualized tutoring system to offer appropriate 

teaching materials for students in accordance with their aptitudes. 

Unfortunately, at present, the most popular teaching materials, e.g., either the 

PowerPoint or HTML, are the traditional teaching materials. How to distinguish 

whether the teaching material is traditional or not? In accordance with our definition, if 

a teaching material without concept of learning object, we categorize it into traditional 

teaching material. As shown in Figure 5.1(a), the traditional teaching material usually 

arranges the learning content and quizzes in sequence monotonously. It means that all 

the students learn the same teaching materials sequentially without allowing skipping 

the subsections they have learned. In this way, without appropriate segmenting and 

labeling the teaching materials, it is difficult for an individualized tutoring system to 

offer learner an appropriate teaching material.  

Therefore, how to create a teaching material with concept of learning object has 

become an important issue. Therefore, in this dissertation, we propose an approach 
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based upon the idea of segmenting the original teaching materials into several objects, 

called learning objects as mentioned above. Figure 5.1(b) shows the object-oriented 

teaching material based upon this idea, and the original teaching materials are divided 

into several learning objects according to the instructional objectives defined by 

teachers or educational experts.  

In addition, to be able to use learning objects in an intelligent content management 

system, we have to tag or label learning object with metadata to describe that what they 

contain, communicate, and require. Thus, how to reliably tag or label these learning 

objects is necessary. For the reason of reusing, sharing, and interoperability, we adopt 

the SCORM 2004 standard to present and package the learning object with Extensible 

Markup Language (XML) [132] [141] format in each teaching material. 

 

Chapter

Section Section

Traditional Teaching Material Object-Oriented Teaching Material

Constructed  in
Sequential & Monotonous Way

Constructed in
Individualized & Intelligent Way

(a) (b)

Section

Chapter

Section Section Section

Learning Object Quizzes

 

Figure 5.1: Traditional Teaching Material and Concept of Learning Object. 
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5.1.2 Content Transformation Scheme (CTS) 
Currently, most of existing teaching materials without characteristics of learning 

object are sequential format and presented by the PowerPoint or HTML file format. For 

this reason, if we can transform the traditional teaching materials into a type of learning 

object with SCORM standard, the creating time will be considerably decreased. 

Therefore, how to fast and easily create SCORM complaint teaching materials from 

traditional teaching materials becomes an interesting and important issue. Thus, in this 

dissertation, we develop a transformation scheme to divide the sequential teaching 

material into separate learning objects with SCORM metadata tags.  

For content transformation scheme, Figure 5.2 offers the diagram of three 

approaches which help teachers or editors create the SCORM complaint teaching 

materials and their explanations are described as follows: 

 User Definition Mode: As shown in Figure 5.2(a), this mode provides teachers or 

editors to define the learning content of each chapter or section, which consists of 

some related file, by themselves. Then, they can upload these files onto server 

through the content transformation engine. The content transformation engine will 

tag every learning-content, i.e. chapter or section, and then package the each 

learning object including related resources into SCORM compliant teaching 

material by the content packaging scheme. 

 PPT Transformation Mode: We also propose an (semi-)automatically extracting 

scheme to transform a single PowerPoint file into several learning objects. As 

shown in Figure 5.2(b), our proposed scheme can automatically extract each 

chapter or section from uploaded PowerPoint files and package learning objects 

into SCORM compliant teaching materials.    

 Authoring Mode: Not only transforming traditional teaching materials into 

SCORM standard is important, but also offering the authoring tool to edit SCORM 
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compliant teaching material is necessary. Accordingly, we also develop a browser 

based authoring tool to help teachers or editors edit standard teaching materials, as 

shown in Figure 5.2 (c). 

 

 
Figure 5.2: Diagram of Three Modes for Standardized Transformation Scheme of 

Traditional Teaching Material. 

Figure 5.2 presents the whole concept of transformation scheme. Now, we will 

precisely explain the process of content transformation scheme in more detail.  As 

shown in Figure 5.3, the content transformation scheme consists of following five steps: 

Step 1: Tagging the SCORM Metadata: in this step, teachers or editors have to fill 

the related metadata information of learning content, which can easily and 

fast use, search, and manage the learning content. 

Step 2: Defining the Section Unit: how to define a meaningful learning object is a 

difficult issue, so we consider that the teachers or editors themselves are the 

most appropriate person to determine the coverage of each learning object, 

i.e., section or chapter. For this reason, in this step, the teachers or editors 

have to define the coverage of learning object and then the teaching 

material will be segmented accordingly.  
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Step 3: Extracting Section Unit: extract each learning object into independent form 

original teaching material and then each separate meaningful leaning object 

can be placed at appropriate location and tagged with SCORM metadata. 

However, in the user definition mode, this step will be passed since the 

independent files of learning object have been offered by authors. 

Step 4: Generating Organization of Learning Content: In accordance with the 

defined coverage of learning object, automatically generate the organization 

of whole teaching material with XML language. 

Step 5: Packaging the Tailored Courseware: After the former four steps, we can use 

the SCORM content packaging scheme to integrate the metadata, 

organization, and learning resource into SCORM compliant courseware 

package. 

 

By these methods mentioned above, we believe that teachers or editors can easily 

and fast transform the existing traditional teaching materials into SCORM compliant. 
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Figure 5.3: Flowchart of Content Transformation Scheme (CTS) 

 56



5.2 Object Oriented Course Modeling (OOCM) 

The structures with complicated sequencing rules of activity tree in SCORM make 

the design and creation of course sequences hard. Therefore, how to provide a 

user-friendly authoring tool, which can represent the course as a graph and transform it 

into SCORM compliant course file automatically, to efficiently construct SCROM 

compliant course becomes an important issue. However, before developing this kind of 

authoring tools, how to provide a systematic approach to analyze the sequencing rules 

and transform the created course into SCORM compliant are our concerns. Therefore, in 

this dissertation, we apply the High-Level Petri Nets (HLPN) [59] [60] [62] [70] [71] 

[73] [82] [84], which is a powerful language for system modeling and validation, to 

model the basic sequencing components as the middleware, called Object-Oriented 

Activity Tree (OOAT), for constructing the SCORM course with complex sequencing 

behaviors. Thus, according to these OOATs, we can model a complex structure of 

course with different learning guidance. Then, two transformation algorithms are also 

proposed to transform the created course into SCORM compliant one described by 

XML language. The Figure 5.4 shows the idea of Object Oriented Course Modeling 

(OOCM) approach.  

 

 

Figure 5.4: The idea of Object Oriented Course Modeling (OOCM) 
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5.2.1 The Scheme of OOCM 

Based upon the concept of object-oriented methodology (OOM) and High-Level 

Petri Nets (HLPN) theory, we can model several basic sequencing components with 

specific sequencing behaviors in SN, which can be easily used to model complex 

structure of course. Therefore, in Figure 5.5, the OOCM process includes four processes 

as follows:  

(1) OOAT Modeling with HLPN: apply HLPN to model five basic sequencing 

components as the middleware with corresponding structure of AT and specific 

basic sequencing behaviors, called Object-Oriented Activity Tree (OOAT). 

(2) Course Construction with OOAT: use these basic sequencing components (OOAT) 

to model complex structure of course with different learning guidance based upon 

the HLPN theory. 

(3) PN2AT Process: transform the modeled course structure into tree-like 

SCORM-compliant AT with sequencing definition of SN. 

(4) AT2CP Process: package the transformed AT structure with corresponding physical 

learning resources and then generate the content packaging course of SCORM. 

 

 

Figure 5.5: The Flowchart of Object Oriented Course Modeling (OOCM) 
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5.2.2 The OOAT Modeling with High Level Petri Nets (HLPN) 

As shown in Figure 4.2, an AT in SCORM 2004 is structured by a set of clusters. A 

cluster, the basic sequencing building block, is an organized aggregation of activities 

consisting of a single parent activity and its first level children, but not the descendants 

of its children. The parent activity of a cluster will contain the information about the 

sequencing strategy for the cluster. The status information of all child activities will be 

collected and used to sequence these activities in the structure. Each cluster has a 

Sequencing Definition Model (SDM) to define a set of elements that can be used to 

describe and affect various sequencing behaviors. In this dissertation, we only take six 

out of ten rule definitions in SDM into account, that is, 1) Sequencing Control Modes, 

2) Sequencing Rules, 3) Rollup Rules, 4) Objectives, 5) Objective Map, and 6) 

Delivery Controls, because these six rule definitions can perform the most of 

sequencing behaviors in SN. Therefore, we apply HLPN to model several basic 

sequencing components as a cluster with corresponding structure of AT and specific 

basic sequencing behaviors, called OOAT, which can be used to model a complex 

structure of a course. Thus, based upon these OOATs and OOCM approach, the 

remaining rule types in SDM could be analyzed and modeled in a similar way. Here, an 

OOAT can be represented as a Chapter or Section. For modeling the sequencing 

behaviors in SN, firstly, the OOAT in HLPN is defined as follows: 

 

Definition 5.1: The HLPN of Object-Oriented Activity Tree (OOAT) is a 6-tuple,  

OOAT = (P, T, Σ, A, G, E), where 

1. P = {p1, p2,…, pm} is a finite set of places. P includes five types of places: PG 

denotes the global objectives, PL denotes the local objectives, PM denotes the 

connector between transitions, PR checks whether the transition executes the Rollup 

process or not, and PW checks whether the transition defines the global objective 
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(PG) or not. Besides, in connective places (PM), we use Pin and Pout to represent the 

starting place and ending place of an OOAT component. PG and PL contain tokens 

recording the information in Tracking Status Model (TSM). 

2. T = {t1, t2,…, tn} is a finite set of transitions (P∩T=0). T includes four types of 

transitions: TA denotes a learning activity or a sub-OOAT component, TM denotes 

the connector between OOAT components, TR rolls up all learning status of its 

children, and TO will set the global objective (PG) of an activity according to its 

local objective (PL). 

3. Σ = <CTSM, CO> is the non-empty finite color sets of tokens. CTSM represents the 

Tracking Status Model (TSM) in SN, which records the learning information of 

Activity Progress Information, Attempt Progress Information and Objective Progress 

Information of learners. CO denotes the ordinary color, corresponding tokens 

without information, which is applied to initialize or trigger a learning process.  

4.  is a finite set of directed arcs. )()( PTTPA ×∪×⊆ PT is the arc from a place to a 

transition; TP  is the arc from a transition to a place. 

5. G: is a guard function. The firing rule G(t) of a transition (t∈T) is defined as 

“if-else” form in SDM. The guard function can generate specific sequencing 

behaviors. In OOAT, we define the following guard functions: 

 G(TA): define the sequencing rules of SDM and specify whether a learner is ready 

or not to learn the activity according to her/his learning results in previous 

activity. 

 G(TR): control the rollup process of an activity based upon the Rollup rules 

definition of SDM.  

 G(TO): set the learning status of the global objective according to local objective 

of activity (TA). In SDM, teachers can define how to read/write a global 

objective for different course sequencing. 
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6. E: is an arc expression function. E(a), Aa∈∀ , denotes the information that how many 

and which kinds of token colors should be removed from the input places and added 

to the output places. In OOAT, we define the expression functions as shown in Table 

5.1.  

 

In addition, Figure 5.6 shows the basic diagram of HLPN of OOAT. As mentioned 

in Definition 5.1, the connectors, PM and TM, pass the token only, TR enabled by PR with 

ordinary token <CO> executes the rollup process according to the token <CTSM> 

carrying the learning information. Besides, in the right part of Figure 5.6, TO will 

change the type of a place, e.g., Pout, into PG if PW has ordinary token <CO>. 

 

Table 5.1: The Arc Expression Function E(a) and its Related Token Color. 
Arc Expression Function Token 

E(
AGTP ), E(

MGTP ) <CO+CTSM>

E(
LAPT ), E(

LRPT ), (
RLTP ), E(

RMTP ), E(
MRPT ), E(

GOPT ), E(
OLTP ), E(

ALTP ) <CTSM> 

E(
MAPT ), E(

AMTP ), E(
GAPT ), E(

GM PT ), E(
MMTP ), E(

MMPT ), E(
OWTP ), E(

RRTP ) <CO> 

 

 
Figure 5.6: The Diagram of HLPN of OOAT 

 

 

 61



According to the sequencing behaviors in SN specification, we propose five OOAT 

components, 1.Linear, 2.Choice, 3.Condition, 4.Loop, and 5.Exit, to model different 

learning strategies. Figure 5.7 shows these five basic sequencing components of OOATs 

with its corresponding structures of courses and related definitions of Guard functions, 

and Table 5.2 shows their related Sequencing Definition Model (SDM) including 

Sequencing Control Mode (SCM) which controls the navigation behaviors, Objective 

which defines the requirements of evaluated conditions, and Sequencing Rules which 

define the evaluated conditions of course sequencing during learning activity. Here, 

every guard function of OOAT can be mapped to corresponding sequencing rules in 

SDM, which record the sequencing behaviors of learning activity in SCORM AT. In 

Figure 5.7, the Linear OOAT (5.7.a) denotes that the learners can learn the activity 

(transition) straightforward. Therefore, “Sequencing Control Flow” in SCM is set as 

true. The Rollup transition (TRollup) will collect the status information of related local 

objective places (PL) in included child transitions (activities) to evaluate the value of PL 

in parent transition. The Condition OOAT includes Conditional Linear (5.7.c) and 

Conditional Choice (5.7.d). The former is a Linear OOAT with conditional criteria (α) 

that checks whether an activity will be assigned to a learner or not according to his/her 

learning result in previous activity. For example, in Figure 5.7.c, the token, <CTSM>, 

will be delivered to the local objective (PL1) after learning the activity (TA1). Then, 

according to the activity’s tracking information (TSM) and related guard function in TA2, 

the next transition (TA2) may be accessible (fired) if the condition α1 is true. The latter is 

similar to the Choice component. According to the previous learning status stored in 

global objective PG, an activity (TAi) can be selected by learners if its conditional 

criterion (αi) is true. Figure 5.7.e shows the Loop OOAT which can control the learners 

to study continuously the same activity or previous one according to the conditional 

criteria (α1 and α2). In addition, in Figure 5.7.f, the Exit OOAT controls the termination 
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of learning process. For example, after learning the TA1, the token, <CTSM>, will be 

delivered to PL1. Then, according to the tracking information of TA1, learners will finish 

the component if the condition α is true. 

 

Table 5.2: The Related SDM definition of OOAT. 
OOAT 
Types 

Sequencing 
Control Mode Objective Sequencing Rules 

Linear 
Flow = true 
Forward Only = true 
Choice Exit=true 

 
 
 

 

Choice 
Choice = true 
Choice Exit = true 

 
 

 

Conditional 
Linear 

Flow = true 
Forward Only = true 
Choice Exit=true 

Objective: 
 Satisfied by Measure = true 
 Minimum Satisfied Normalized 

Measure = iα  

 
Postcondition Rule: 

 if iα =true then continue else retry, 1≦i≦n-1. 

Conditional 
Choice 

Flow = true 
Choice = true 
Choice Exit = true 

Objective: 
 Satisfied by Measure = true 
 Target Objective ID = OBJ PG 
 Read Satisfied Status = true 
 Read Normalized Measure 

Precondition Rule: 
 TAi: Read OBJ PG (Global Objective) 
 if iα ≠true then hiddenFromChoice, 1≦i≦n. 

Loop 
Flow = true 
Choice Exit=true 

Objective: 
 Satisfied by Measure = true 
 Minimum Satisfied Normalized 
Measure = 1α / 2α  

Postcondition Rule: 
 TA2: if 1α / 2α =true then previous / retry else 

continue  

Exit 
Flow= true 
Forward Only = true 
Choice Exit= true 

 
 
 

Postcondition Rule: 
 TA1: if α =true then Exit Parent / exitAll 
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Figure 5.7: The Five Sequencing Components of OOATs 
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5.2.3 Sequencing Rules Modeling of SDM 

In SDM, each Sequencing Rule consists of a set of conditions and a corresponding 

action in if [condition_set] then [action] format. A sequencing behavior of activity 

associated with the rule’s action will be executed if the rule’s condition-set evaluates to 

True. Thus, different definition of sequencing rules will result in different learning 

guidance. However, how to define the appropriate sequencing rules within course is an 

important issue. Therefore, in this section, we define these sequencing conditions as 

tokens used to determine whether an activity is accessible or not, e.g., symbol ”αi” in 

Figure 5.7. Besides, the OOATs are used to model the rule’s actions for modeling the 

sequencing behaviors of SCORM course. The structure of a sequencing rule is shown in 

Figure 5.8. 

In SN specification, the sequencing rules of SDM include the following rule’s 

actions: 

(1) Precondition Actions: decide whether an activity will be selected or not for 

learning. These actions will be executed while an activity will be selected. Its action 

elements and corresponding OOATs are shown in Table 5.3. 

(2) Postcondition Actions: control the sequencing flow according to learning result of 

learners after learning an activity. These actions will be executed while an activity 

has been finished. Its action elements and corresponding OOATs are shown in Table 

5.4. 

(3) Exit Actions: This action will be executed after a descendant activity has been 

finished or some condition is satisfied. It is controlled by a SCORM complaint 

learning management system (LMS). Thus, we can set the system commend, Exit, 

to inform LMS for finishing the whole course. 
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Figure 5.8: The Structure of Sequencing Rules  

 

Figure 5.9 shows the example of Skip action modeled by Conditional Choice OOAT, 

which represents that if the rule condition α is false, the activity TA1 will be skipped and 

then the TA2, which doesn’t execute any learning activity, will be triggered according to 

the definition of guard function. The Disabled Action can also be modeled by 

Conditional Linear OOAT as shown in Figure 5.7.c. In postcondition actions, the Exit 

Parent action can be modeled by Exit component shown in Figure 5.7.f. For Retry 

action in Figure 5.7.e, the token <CTSM> of TAn is delivered to PLn. Then, TAn will be 

relearned if condition α2 is true according to its learning status of local objective (PLn). 

 

 

Table 5.3: The Action Types and Corresponding OOATs of Precondition in Sequencing 
Rules. 

Action Element Description OOATs 
Skip this action will omit an activity to be learned. Conditional Choice 

Disabled this action will block an activity to be learned. Conditional Linear 
Stop Forward 

Traversal 
this action will terminate learners to 
continuously navigate learning activity forward.

Conditional Linear 

Hidden From Choice this action will stop the choice of activity 
Conditional Choice with “Sequencing 

Control Choice” is false. 

 

 

Table 5.4: The Action Types and Corresponding OOATs of Postcondition in 
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Sequencing Rules. 
Action Element Description OOAT 

Exit Parent this action terminates a activity  Exit 
Exit All this action terminates whole activity tree (course)  Exit 

Retry 
this action makes learner to relearn some previous 
activities if its condition is evaluated as true. 

Loop 

Retry All 
this action makes learners to relearn all previous 
activities if its condition is evaluated as true. 

Loop 

Continue & Previous 
this action makes learners to learn next or previous 
activity respectively. 

Conditional Linear & Loop 

 

 

Figure 5.9: An Example of modeling Skip Action in Sequencing Rules by Conditional 
Choice OOAT 

 

5.2.4 Objective Modeling 

In SN, each activity has many associated learning objectives which include two 

types: local objectives and global objectives. The local objective which can only be 

referred by its associated activity and the global objective which can be shared between 

activities for the more complex instructional designs define how to evaluate an 

activity’s objective progress information. Therefore, in OOATs, each transition (activity) 

has one local objective (PL) and global objective (PG) which will be defined if necessary. 

As shown in Figure 5.10, in general, the transition (TA1) only has one local objective (PL) 

and no global objective. Here, the “Minimum Satisfied Normalized Measure = 0.6” 

means that the score of learner must exceed 0.6. After learning TA1, a Token <CTSM> 

with Objective Progress Information of TA1 is delivered to PL for recording the related 
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learning information. Then, if Pw is assigned an ordinary Token <CO>, the TO will set 

the connector transition (PM) as a global transition (PG) for sharing the learning results 

with another transition (TA2). Then, according to guard function G(TO), the PG will be 

set as satisfy because the score (0.7) is greater than 0.6. 

 

 

Figure 5.10: The Process of Objective Reference 

 

5.2.5 Rollup Rule and Delivery Control Modeling 

In SN, cluster activity, which is the basic sequencing building block, can be applied 

with a set of zero or more Rollup Rules which are evaluated during the overall Rollup 

Process. Each Rollup Rule is defined as “if [condition_set] True for [child activity set] 

then [action]” format, which denotes that if the set of conditions (condition_set) 

evaluates to True from the tracking information of included child activities (child 

activity set), corresponding action (action) will set the cluster’s tracking status 

information. Figure 5.11 shows the structure of a Rollup Rule. 
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Figure 5.11: The Structure of Rollup Rules  

 

As mentioned above, in OOATs, we use the TRollup transition to process the Rollup 

rules for evaluating the learning results of learners in a cluster. The TRollup transition can 

be modeled by HLPN as shown in Figure 5.12. Here, in TRollup, each TR transition will 

evaluate the learning status recorded in associated local objective (PL) if its PR transition 

is marked by an ordinary token <CO>, where PR transition enables or disables the 

Delivery Controls, which is used to manage the activity’s tracking status information, in 

SDM. For example, in Figure 5.12, because the PR1 of TA1 isn’t marked by a token 

<CO>, TA1 won’t be triggered but others with Tokens will be triggered to execute the 

rollup process. Moreover, according to the definition of Rollup Rules, the learning 

status of OOAT will be set as satisfied in PL if at least two activities (transitions) within 

it are satisfied. 

 

 

Figure 5.12: The Rollup Model in OOATs 
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5.2.6. Activity Tree Transformation Process 

As mentioned above, we have described how to model the HLPN model of course 

sequences in SCORM by our proposed OOATs. Therefore, in this section, how to 

transform the HLPN model into SCORM compliant course will be described. In this 

dissertation, we propose two algorithms, called PN2AT (Petri Nets to Activity Tree) 

and AT2CP (Activity Tree to Content Package), to do the activity tree transformation 

process. 

 

PN2AT Process: 

In OOAT, each transition with included child transitions can be represented as a 

cluster of AT in SCORM. Thus, an algorithm, called PN2AT, transforms each 

non-terminated transition into a cluster with associated sequencing definitions in SDM 

and integrates them to construct the structure of AT. For example, in Figure 5.13, an 

HLPN model of course can be decomposed as a hierarchical structure. In every level, a 

non-terminated transition, e.g., TA1, will be represented as a root-node (AA) and 

included sub-transitions (TA'1 and TA'2) will be represented as the child nodes (AA and 

AB), which form a tree-like structure as a cluster with associated sequencing definition 

of SDM in AT. Then, we can recursively transform all non-terminated transitions by the 

same process. 
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Figure 5.13: An Example of PN2AT and AT2CP Process 

 

Algorithm 5.1: PN2AT Algorithm 
Definition of Symbols: 

ATF: denote the final AT with XML code. 

Ci : denote a tree-like cluster. 

 

Input: The HLPN model of a course 

Output: ATF  

 

Step 1:  for each Ti  HLPN model ∈

1.1: if Ti is a non-terminated transition  

then create a tree-like cluster Ci  

1.2: insert Ti as root node and its included sub-transitions Tk as child nodes into Ci 

1.3: generate the corresponding XML codes according to its structure type of OOAT and 

sequencing definitions including Sequencing Control Mode, Sequencing Rules, Rollup 

Rules, and Objective definitions in SDM for Ci into appropriate position of ATF. 

1.4: if ∃Tk∈Ci is a non-terminated transition  

    then execute recursively the same processes as Step 1.1. 

Step 2:  Output the ATF 
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AT2CP Process: 

After transforming the HLPN model of a course by PN2AT process, the structure 

and sequencing definitions of SCORM course without physical learning resources can 

be generated. Therefore, according to content packaging scheme of SCORM, an 

algorithm, called AT2CP, will be used to package the structure of AT and its related 

physical learning resources into a SCORM compliant course file described by XML 

language. The AT2CP process is also shown in right side of Figure 5.13. 

 

Algorithm 5.2: AT2CP Algorithm 
Definition of Symbols: 

PF: denote a temporary place which collects related physical learning resources of AT.  

CP: denote the content package file of SCORM. 

 

Input: Activity Tree (AT) generated by PN2AT algorithm. 

Output: Content Package (CP). 

 

Step 1:  For each leaf node in AT 

1.1: retrieve the related physical learning content to store in PF according to its information of 

learning resource. 

1.2: generate the corresponding XML code including <resource>, <file>, etc. to integrate the 

leaf node and its learning resources.  

Step 2: Generate the manifest file which describes the structure of course and related learning 

resources. 

Step 3:  Package the manifest file and PF into the CP; 

Step 4:  Output the CP 
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5.2.7 Example of Object Oriented Course Modeling (OOCM) 

In this dissertation, we use the course “Photoshop” as experimental example, which 

is released by ADL SCORM organization, to show the process of Object Oriented 

Course Modeling (OOCM).  

Figure 5.14.a is the HLPN Model of Photoshop course created by 6 OOATs and 

Figure 5.14.b shows its corresponding AT structure transformed by PN2AT and AT2CP 

processes. Its creating steps are described as follows: 

Step 1: Select a Linear OOAT1 for creating a course structure with 4 learning activities 

(node). 

Step 2: Insert a Linear OOAT2 into Node 1 and Linear OOAT3 into Node 2 in OOAT1 

for creating the Course A and B, respectively. 

Step 3: Insert a Choice OOAT4 into Node 3 in OOAT1 for creating the Course C and 

then set that the Test2 node will write its testing result into Global Objective PG 

so the PW with token CO enables the TO to set PG according to the learning result 

in PLC.. 

Step 4: Insert a Linear OOAT5 into Node 4 in OOAT1 and then insert a Conditional 

Linear OOAT6 into OOAT5 for creating the Course D-1. The OOAT6 will read 

Global Objective PG and then select different learning activities (TA8 or TA9) for 

learners according to the testing result of Course C. 
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Figure 5.14: The HLPNs Model and AT Structure of Course “PhotoShop” 
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5.3 Object Oriented Learning Activity Authoring Tool 

Based on OOLA model, in this dissertation, we develop an OOLA authoring tool 

with user-friendly GUI interface. As shown in Figure 5.15, OOLA authoring tool can 

provide teachers with an efficient learning design environment to create, retrieve, and 

edit the learning activity, learning objects, application programs, and test sheet. Teachers 

can use the GUI interface to design the desired learning activity and then the Rule 

Transformer (RT) will transform the created LA into rule format stored in Learning 

Activity Repository (LAR). The rules in LAR will be used by Inference Engine (IE), 

called DRAMA [78], in Knowledge Controller (KC) module to control the learning 

guidance during the period of learning activity.  

Figure 5.15 illustrates the details of OOLA authoring tool which consists of four 

types of resources in ILCMS, that is, Learning Object Repository (LOR), Testing Item 

Bank (TIB), Application Program Repository (APR), and Learning Activity Repository 

(LAR). Therefore, User can upload or edit a SCORM compliant content through LOR. 

The SCORM standard transformation module can transform the ordinary PowerPoint or 

HTML files to SCORM compliant content packages [114], the SCORM content 

uploading module can reuse and share the SCORM compliant contents in the repository, 

and the learning object manager can provide efficient content searching and browsing 

services [116]. Moreover, a variety of application programs of ILCMS such as chat 

room or the URL of existing search engines stored in APR can be provided for learners 

to enhance the interactive learning and discussions. Regarding the TIB, each testing 

item stored in TIB is associated to several related learning concepts. Therefore, the 

learner’s learning achievement can be detected. Accordingly, the appropriate learning 

activity or remedial activity can be provided according learners’ learning results. These 

edited learning activities will be transformed into rule formats by means of the Rule 
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Transformer (RT) and then stored in LAR. 

 

Figure 5.15: The Diagram of OOLA Authoring Tool 

 
5.3.1 Rule Transformation of OOLA Model 

Due to the pedagogical needs, the teachers can use OOLA model to edit the 

learning activity as directed graph that includes learning object, application and 

assessment quiz. The OOLA is a rule-based model and the rule representation of OOLA 

model is based on the New Object oriented Rule Model (NORM) architecture [78] 

[123] [124] [125] [139] which modularizes the rules as rule classes [11] [92]. While the 

rule set of specific domain is acquired, the rule classes are instantiated as rule objects 

and can be executed on the NORM inference engine, DRAMA [78]. The “if condition 

then action” rule format is compliant with rule format of SCORM Sequencing & 

Navigation. Therefore, we proposed an OOLA2NORM Algorithm (OOLA Model to 
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NORM Rule) implemented in Rule Transformer (RT) to transform OOLA model to 

NORM architecture. The learning achievements are represented as facts and rule 

conditions are inferred to choose an appropriate activity for student. The transformation 

algorithm is shown in Algorithm 5.3. 

Algorithm 5.3: OOLA Model to NORM Rule (OOLA2NORM) 

Definition of Symbols: 
Cik: The k-th associated concept of the i-th NEA node 
Factnow: The name of current node being studied. 
Eij: The edge from Ni to Nj 
FactNj: The next node to be studied, if Nj is satisfied. 
FactCik: The score of Cik 
<OP>: The relational operator, i.e., =, >, <, ≦, ≧ and ≠  

Input: The XML file of OOLA model 
Output: The XML file with a Rule Class of DRAMA Inference Engine 

Step 1: Create a Factnow 

Step 2: For each Eij∈OOLA model 

2.1: Create a Fact for Nj, called FactNj, which denotes that if FactNj = true, then Nj 
is the next node. 

2.2: If Ni∈NLA or NAP 

   Then create a rule type: “if (Factnow =’Ni’) then FactNj = true” 

   else if Ni∈NEA 

then (1) Acquire all concepts Cik of Ni and conditional threshold (α)  
          which are included in Eij 

(2) Create the FactCik for Cik. 

(3) Create a rule type: “if (Factnow =’Ni’) and (∑FactCik<OP>α) then 
FactNj = true” 

Step 3: Output the XML file of DRAMA 
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Chapter 6  Knowledge Manager 
(KM) 

In e-learning system, teaching materials are usually stored in database, called 

Learning Object Repository (LOR). Because the SCORM standard has been accepted 

and applied popularly, its compliant teaching materials are also created and developed. 

Therefore, in LOR, huge amount of SCORM teaching materials including associated 

learning objects (LO) will result in the issues of management. Recently, SCORM 

international organization has focused on how to efficiently maintain, search, and 

retrieve desired learning objects in LOR for users. Therefore, in this dissertation, , we 

propose a new approach, called Level-wise Content Management Scheme (LCMS) 

[116], to efficiently maintain, search, and retrieve the learning contents in SCORM 

compliant LOR and it is implemented within a Learning Object Repository (LOR) 

Manager in Knowledge Manager (KM) of ILCMS. 

 

6.1 Level-wise Content Management Scheme (LCMS) 

6.1.1 The Processes of LCMS 

As shown in Figure 6.1, the scheme of LCMS is divided into Constructing Phase and 

Searching Phase. The former creates the content tree form SCORM content package by 

CP2CT process, and then creates and maintains a multistage graph as Directed Acyclic 

Graph (DAG) with relationships among LOs, called Level-wise Content Clustering 

Graph (LCCG), by applying clustering techniques. The latter traverses the LCCG by 

LCCG Content Searching Algorithm (LCCG-CSAlg) to retrieve desired learning 

content with general and specific LOs according to the query of users over wire/wireless 

environment.   
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Constructing Phase includes the following three processes: 

 Content Package to Content Tree (CP2CT) Process: it transforms the content 

structure of SCORM teaching materials (Content Package) into tree-like structure 

with the representative feature vector and the same depth, called Content Tree (CT), 

for representing each teaching materials. 

 Level-wise Content Clustering Process: it clusters LOs according to content trees 

(CTs) to establish the level-wise content clustering graph (LCCG) for creating the 

relationships among LOs .  

 LCCG Maintaining Process: it monitors the condition of each node within LCCG 

and to rebuild the LCCG if necessary.  

 

Searching Phase includes the following two processes: 

 SCORM Metadata Searching: it first searches the desired whole teaching 

materials by the associated SCORM metadata for addressing the related nodes as 

entries of LCCG. 

 Level-wise Content Searching: it then traverses the LCCG from these entry nodes 

to retrieve the more precise learning objects in LOR and to deliver these for 

learners. 
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Figure 6.1: The Flowchart of Level-wise Content Management Scheme (LCMS) 

 

6.1.2 Content Package to Content Tree (CP2CT) Process 

Because we want to create the relationships among LOs according to the content 

structure of teaching materials, the organization information in SCORM content 

package will be transformed into a tree-like representation with representative feature 

vector, called Content Tree (CT). For clustering process conveniently, the depth of 

every CT is the same. Its definition is described as follows. 

 

Definition 6.1: Content Tree (CT) = (N, E), where 

 N = { n0, n1,…, nm }.  

 E = { 1+iinn  | 0≦i< the depth of CT }. 

In CT, each node is called “Content Node (CN)” containing a feature vector V  

which denotes the representative feature of learning contents within this node. E 

denotes the link edges from node ni in upper level to ni+1 in next lower level. 
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In this dissertation, we apply the Vector Space Model (VSM) approach [24] [96] to 

represent the learning contents in CN. Thus, based upon the Term Frequency - Inverse 

Document Frequency (TF-IDF) weighting scheme [2] [30] [68] [106] [136], each CN 

can be represented by an N dimensions vector as <tf1×idf1, tf2×idf2,…, tfn×idfn>, where 

tfi is the frequency of the i-th term (keyword) and idfi=log(m/df(t)) is the Inverse 

Document Frequency (IDF) of the i-th term in the document (where m is total number 

of documents and df(t) is the number of documents that contains the term).  

For conveniently creating the relationships among learning objects according to the 

content structure, we assume that every content tree (CT) transformed from content 

package will have the same depth of tree. However, in many teaching materials, the 

depths of content structures are different. Therefore, in CT, if the depth of a leaf CN is 

too short, the Virtual Node (VN) will be repeatedly inserted as its child node until the 

difference of the desired depth has been filled. The feature vector of every VN is the 

same as its parent CN or VN. Besides, if the depth of a leaf CN is too long, its parent 

CN in the desired depth will merge the information of all included child nodes into one 

new CN whose feature vector is generated by averaging these included child nodes. 

The Example 6.1 shows the process of transforming the organization information of 

SCORM content package into Content Tree (CT) with the feature vector V  and the 

same depth. 
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Example 6.1: 

Given a SCORM content package shown in the left side of Figure 6.2, we take 

TF-IDF as weighting scheme to create the feature vector V  in each CN node. Because 

the depth of CN, “Chapter 1”, is too short, the VN named “1.1” is inserted and its 

feature vector 21V =<3, 2, 2> is the same as 11V . Moreover, the CN, “3.1”, is too long, 

so that its included child nodes, i.e., “3.1.1” and “3.1.2”, are merged into one CN, “3.1”, 

and their feature vector 24V  is the average of <1,0,1> and (<2,1,0>+<0,1,2>)/2 after 

the rolling up process. Then, The CT after CP2CT Process is shown in the right part of 

Figure 6.2. 

 

 

Figure 6.2: The Corresponding Content Tree (CT) of the Content Package (CP) by 

CP2CT process 
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Algorithm 6.1: Content Package to Content Tree Algorithm (CP2CTAlgo) 
Symbols Definition: 

CP: denote the SCORM content package. 

CT: denote the Content Tree transformed the CP. 

CN: denote the Content Node in CT. 

CNleaf: denote the leaf node CN in CT. 

DCT: denote the desired depth of CT. 

DCN: denote the depth of a CN 

Input: SCORM content package (CP) 

Output: Content Tree (CT) with feature vector 

 

Step 1: For each element <item> in CP  

      1.1: Create a CN with feature vector based upon TF-IDF weighting scheme. 

      1.2: Insert it into the corresponding level in CT. 

Step 2: For each CNleaf in CT 

      If the depth of CNleaf < DCT  

Then a VN will be repeatedly inserted as its child node until the depth of CNleaf = DCT. 

Else If the depth of CNleaf > DCT 

Then its parent CN in depth = DCT will merge the information of all included child nodes and 

run the rolling up process to average their feature vectors. 

Step 3: Content Tree (CT) with feature vector 
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6.1.3 Level-wise Content Clustering Process 

After transforming the organization information of content package into content 

tree (CT), the clustering technique can be applied to create the relationships among 

content nodes (CNs) in CT. Thus, in this dissertation, we propose a Level-wise Content 

Clustering Graph, called LCCG, to store the related information of each cluster. 

Based upon the LCCG, the desired learning content including general and specific LOs 

can be retrieved for users. 

 

Level-wise Content Clustering Graph (LCCG): 

LCCG is a multistage graph with relationships information among LOs, e.g., 

Directed Acyclic Graph (DAG). Its definition is described as follows: 

 

Definition 6.2: Level-wise Content Clustering Graph (LCCG) = (N, E), where 

 N={(CF0,CL0), (CF1,CL1),…, (CFm,CLm)}. It stores the related information, Cluster 

Feature (CF) and Child List (CL), in a cluster, called LCC-Node. The CL stores 

the CF value of included child LCC-Nodes in next stage. 

 E={ 1+iinn  | 0≦i<the depth of LCCG}. It denotes the link edge from node ni in 

upper stage to ni+1 in next lower stage. 

 

For the purpose of content clustering, the number of the stages of LCCG is equal to 

the depth of CT, and each stage handles the clustering result of these CNs in the 

corresponding level of different CTs. That is, the top/ lowest stage of the LCCG stores 

the clustering results of the root/leaf nodes in the CTs, respectively. In addition, in 

LCCG, the Cluster Feature (CF) stores the related information of a cluster. It is similar 

with the Cluster Feature proposed in the Balance Iterative Reducing and Clustering 
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using Hierarchies (BIRCH) [145] clustering algorithm and defined as follows. 

 

Definition 6.3: The Cluster Feature (CF) of a cluster is defined as a triple:  

CF=(N, VS , CS), where 

 N: it denotes the number of the content nodes (CNs) in a cluster. 

 VS =∑=

N

i iV
1

v
. It denotes the sum of feature vectors (V ) of CNs. 

 CS= |/||/|
1

NVSNVN

i i =∑ =

v
. It denotes the average value of the feature vector sum in 

a cluster. The | | denotes the Euclidean distance of the feature vector. The (VS /N) 

can be seen as the Cluster Center (CC) of a cluster. 

 

Moreover, during content clustering process, if a content node (CN) in content tree 

(CT) with feature vector (V ) is inserted to the cluster CFA=(NA, AVS , CSA), the new 

CFA=(NA +1, VVS A

r
+ , |( VVS A

r
+ )/(NA+1)| ). An example of Cluster Feature (CF) and 

Child List (CL) is shown in Example 6.2. 

 

Example 6.2: 

Assume a cluster C0 stores in the LCC-Node NA with (CFA, CLA) and contains four 

CNs, which include four feature vectors, <3,3,2>, <3,2,2>, <2,3,2> and <4,4,2>, 

respectively. Then, the VS =<12,12,8>, the CC= VS /4=<3,3,2>, and the 

CS= 69.4499 =++ . Thus, the CFA = (4, <12,12,8>, 4.69). Moreover, assume the 

CLA = <CF1, CF2>. A new Content Node CN B with feature vector BV  = <8,3,2> is 

inserted to the cluster C0 in NA. The child nodes of CN B belong to the clusters C3 and 

C4 respectively. Then, the new CFA = (5, <20,15,10>, 5.385) and CLA = <CF1, CF2, CF3, 

CF4>. 
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Level-wise Content Clustering Algorithm (LCCAlg): 

Based upon the definition of LCCG, we propose a Level-wise Content Clustering 

Algorithm, called LCCAlg, to create the LCCG according to the CTs transformed from 

CPs. The LCCAlg includes three phases: 1) Single Level Clustering Phase, 2) Content 

Cluster Refining Phase, and 3) Concept Generalizing Phase. Figure 6.3 illustrates the 

flowchart of LCCAlg. 

 

 

Figure 6.3: The Flowchart of Level-wise Content Clustering Algorithm (LCCAlg) 

 

(1) Single Level Clustering Phase: 

In this phase, the content nodes (CNs) of CT in each tree level can be clustered by 

different similarity threshold. The content clustering process is started from the lowest 

level to the top level in CT. All clustering results are stored in the LCCG. In addition, 

during content clustering process, the similarity measure between two CNs is defined by 

the cosine function which is the most common for the document clustering [101] [134]. 

It means that, given two CN NA and NB, the similarity measure is calculated by  

BA

BA
BA VV

VVVVSimilarity •
== ),cosine(  

, where VA and VB are the feature vectors of NA and NB respectively. The larger the 

value is, the more similar two vectors are. For example, two CNs are most similar, the 

cosine value of their feature vectors is equal to 1. The Single Level Clustering Algorithm 

(SLCAlg) is shown in Algorithm 6.2. 
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Algorithm 6.2: Single Level Clustering Algorithm (SLCAlg) 
Symbols Definition: 

CNset: the content nodes (CNs) in the same level (L) of content trees (CTs). 

T   : the similarity threshold for clustering process. 

Input: CNset and T. 

Output: The set of LCC-Nodes storing the clustering results of CTs. 

 

Step 1: insert a CN node n0∈ CNset into a cluster in the LCC-Node.  

Step 2:  ni  CNset. ∀ ∈
     2.1: If  a cluster with similarity value > T  ∃

Then insert the ni into this cluster and update the related CF and CL in LCC-Node.  

         Else insert the ni into a new cluster stored in a new LCC-Node. 

Step 3: Return the set of the LCC-Nodes. 

 

(2) Content Cluster Refining Phase: 

Due to the SLCAlg algorithm which runs the clustering process by inserting the 

content trees (CTs) incrementally, the content clustering results are influenced by the 

inputs order of CNs. In order to reduce the effect of input order, the Content Cluster 

Refining Phase is necessary. Given the content clustering results of SLCAlg, Content 

Cluster Refining Phase utilizes the cluster centers of original clusters as the inputs and 

runs the single level clustering process again for modifying the accuracy of original 

clusters. Moreover, the similarity of two clusters can be computed by the Similarity 

Measure as follows: 
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After computing the similarity, if the two clusters have to be merged into a new 

cluster, the new CF of this new cluster is: CFnew= (NA+NB, AVS + BVS , 

|( AVS + BVS )/(NA+NB)| ). 
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(3) Concept Generalizing Phase: 

The concept generalization phase is used to make the feature vectors of CNs of 

internal LCC-Nodes in LCCG more objective and representative. Thus, we propose a 

roll-up operation to compute the feature vectors of CNs by averaging the cluster centers 

of the content clusters which their included child CNs belong to.  

The Level-wise Content Clustering Algorithm (LCCAlg) is shown in Algorithm 

6.3. Moreover, an example of creating Level-wise Content Clustering Graph (LCCG) is 

also described in Example 6.3. 

 

Example 6.3: 

As shown in the left part of Figure 6.4, assume that there are two content trees CTA and 

CTB. The content nodes CN A and CN B belong to the cluster C01, and their included 

child CNs belong to the C11, C12, and C13. After Level-wise Content Clustering Process, 

the LCCG is showed in the right part of Figure 6.4. The LCCG-Node C01 in stage S0 

contains two CNs (CN A and CN B) and three included child LCCG-Nodes, C11, C12, 

and C13, in stage S1. Moreover, in Figure 6.4, the CN A with feature vector <1, 1, 2> 

contains 2 child CNs where A0 in cluster C11 and A1 in cluster C12. The cluster centers 

(CC) of C11 and C12 are <3, 3, 2> and <3, 2, 4>, respectively. Then, after running roll-up 

operation, the new feature vector of the CN A is: 

Average( (<3,3,2>+<3,2,4>)/2+<1,1,2>) = <2, 7/4, 5/2>. 
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Figure 6.4: An Example of Creating Level-wise Content Clustering Graph (LCCG) 

 

Algorithm 6.3: Level-wise Content Clustering Algorithm (LCCAlg) 
Symbols Definition: 

D: is the depth of the content tree (CT). 

L0~LD-1: denote the levels of CT descending from the top level to the lowest level. 

S0~SD-1 : denote the stages of LCCG. 

T0~TD-1: denote the similarity thresholds for clustering the CNs in the level L0~LD-1 respectively. 

CTset: the set of content trees (CTs) with the same depth (D). 

CNset: the content nodes (CNs) in the same tree level (L). 

Input: CTset 

Output: LCCG which holds the clustering results in every content tree level. 

 

Step 1: For i = LD-1 to L0, do the following Step 2 to Step 4. 

Step 2: Single Level Clustering:  

Step 2.1: CNset = the CNs  CTset in Li. ∈

Step 2.2: Run Single Level Clustering Algorithm (SLCAlg) for CNset with threshold Ti. 

Step 3: Content Cluster Refining: 

Step 3.1: Execute the following sub-Steps (3.2-3.4) repeatedly until there is no difference between two 

iterations. 

Step 3.2: CNset= the nodes with cluster center (CC) ∈ the set of LCC-Nodes in Si. 

Step 3.3: Run the SLCAlg for CNset with threshold Ti. 

Step 3.4: Store the resulted clusters in LCC-Nodes of LCCG in stage Si. 

Step 4: Concept Generalizing: 

Step 4.1: If i≠L0  

Then Run roll-up operation to compute the feature vectors of CNs from the level Li-1 

Step 5: Output the LCCG 
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6.1.4 LCCG Maintaining Process 

As mentioned above, every SCORM Content Package (CP) will be transformed 

into Content Tree (CT) with the representative feature vector for representing each 

teaching materials. Because the feature vector is computed based upon the Term 

Frequency - Inverse Document Frequency (TF-IDF) weighting scheme [2] [30] [106], a 

set of all keywords, called KeywordSet, has to be integrated from the activity metadata 

of item in content package. However, for incrementally updating the learning content in 

LOR, the keywords within the new SCORM content package may be Partially or Not 

included in the KeywordSet, which results in their feature vectors are not accurate.  

Therefore, in this dissertation, we propose LCCG Maintaining Algorithm 

(LCCG-MAlg), which rebuilds the LCCG if necessary by monitoring the condition of 

each node within LCCG, to solve above issue. In LCCG-MAlg, a content node (CN) is 

defined into three types: 1) CN: denotes its keywords which are all in KeywordSet, and 

2) Partial CN (PCN): denotes its keywords which are partial in KeywordSet, and 3) 

New CN (NCN): denotes its keywords which are not in KeywordSet. During 

Level-wise Content Clustering Process, the CN and PCN can be inserted into a 

suitable cluster stored in LCC-Node but the NCN will be inserted in a new cluster 

stored in LCC-Nodenew. Moreover, we also define a cluster type call “Saturation” to 

denote that the amount of PCNs is larger than that of CNs in the same cluster.  

For checking when to recreate the KeywordSet and LCCG, we define the 

following two rebuilding conditions: 

(1) The amount of clusters with “Saturation Tag” is larger than that of clusters. 

(2) The amount of new clusters stored in LCC-Nodenew is larger than that of clusters. 

 

Therefore, for every stage in LCCG, if any of two rebuilding conditions is satisfied, 

the KeywordSet and LCCG will be recreating. An example is given to illustrate the 
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LCCG Maintaining Process in Figure 6.5. The CN A1 and CN A2 in new CTA are 

inserted into the C1 in LCC-Node and C2 in LCC-Nodenew, respectively. Thus, the 

inserted CN A1 results in that the C1 is marked with the Saturation Tag and the 

num(LCC-Node with Saturation Tag) is larger than num(LCC-Node) in stage S1. 

 

 

Figure 6.5: An Example of LCCG Maintaining Process 
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Algorithm 6.4: LCCG Maintaining Algorithm  
Symbols Definition: 

KeywordSet: the set of keywords in original LCCG used to create feature vector. 

CTset: the set of content trees (CTs) with the same depth D. 

CN:  the content node in CT whose keywords are all in KeywordSet. 

PCN: the partial content node in CT whose keywords are partial in KeywordSet. 

NCN: the new content node in CT whose keywords are not in KeywordSet. 

LCC-Nodenew: it stores the NCN. 

 

Input:  CTset 

Output: A new LCCG. 

 

Step 1: during Content Tree Transforming Process, mark the content nodes in CTset as CN, PCN, or NCN. 

Step 2: during Level-wise Content Clustering Process,  

2.1: For each node in CT 

If node= CN or PCN Then insert it into a suitable cluster stored in LCC-Node. 

If node= NCN Then insert it into a cluster stored in LCC-Nodenew. 

 2.2: If num(NPN) > num(CN) in a LCC-Node 

Then mark the LCC-Node with Saturation Tag. 

Step 3: for every stage in LCCG,  

3.1: If (num(LCC-Node with Saturation Tag) >num(LCC-Node) ) or  

(num(LCC-Nodenew ) > num(LCC-Node)) 

Then re-execute the Constructing Phase in LCMS for creating new KeywordSet and new LCCG. 

 

 

6.2 Searching Process of LCMS 

In this section, we describe the searching process of LCMS, which includes SCORM 

Metadata Searching and LCCG Content Searching, shown in the right part of Figure 

6.1. 
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6.2.1 SCORM metadata Searching 

As mentioned in Chapter 4, the SCORM compliant teaching materials include 4 

parts: 1) Metadata, 2) Organizations, 3) Resources, and 4) (Sub) Manifest. Here, 

Metadata, which is referred from the IEEE’s Learning Objects Metadata (LOM), 

describes the characteristic or attribute of the teaching materials. The LOM describes 

learning resources including nine categories: 1) General: describes the general 

information of learning resource, 2) LifeCycle: describes the history and current state of 

learning resource and its evolution information, 3) Meta-MetaData: describes the 

specific information about the metadata record itself, 4) Technical: describes the 

technical requirements and characteristics of learning resource, 5) Educational: 

describes the key educational or pedagogic characteristics of learning resource, 6) 

Rights: describes the intellectual property rights and conditions of use for learning 

resource, 7) Relation: defines the relationships among this resource and other targeted 

resource, 8) Annotation: provides comments on the educational use of learning 

resource, and 9) Classification: describes classification criteria and hierarchy of 

learning resource.  

Therefore, as shown in Figure 6.6, the desired whole teaching materials in learning 

object repository (LOR) can be retrieved by the associated SCORM metadata first for 

addressing the related LCC-Nodes as entries of LCCG and then according to the entry 

LCC-Nodes, e.g., C0m, the more precise learning objects (LOs) of retrieved teaching 

materials will be further searched by LCCG Content Searching (described later) based 

upon LCCG. 

 

 93



 

Figure 6.6: The Searching Process in LCMS 

 

6.2.2 LCCG Content Searching 

In LCCG, every LCC-Node contains several similar content nodes (CNs) in 

different content trees (CTs) transformed from content package of SCORM compliant 

teaching materials. The content within LCC-Nodes in upper stage is more general than 

the content in lower stage. Therefore, based upon the LCCG, users can get their 

interesting learning contents which contain not only general concepts but also specific 

concepts. The interesting learning content can be retrieved by computing the similarity 

of cluster center (CC) stored in LCC-Nodes and the query vector. If the similarity of 

LCC-Node satisfies the query threshold users defined, the information of learning 

contents recorded in this LCC-Node and its included child LCC-Nodes are interested 

for users. Moreover, we also define the Near Similarity Criterion to decide when to stop 

the searching process. Therefore, if the similarity between the query and the LCC-Node 
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in the higher stage satisfies the definition of Near Similarity Criterion, it is not 

necessary to search its included child LCC-Nodes which may be too specific to use for 

users. The Near Similarity Criterion is defined as follows: 

 

Definition 6.4: Near Similarity Criterion 

Assume that the similarity threshold T for clustering is less than the similarity 

threshold S for searching. Because similarity function is the cosine function, the 

threshold can be represented in the form of the angle. The angle of T is denoted as 

 and the angle of S is denoted as . When the angle between the 

query vector and the cluster center (CC) in LCC-Node is lower than 

TT
1cos−=θ SS

1cos−=θ

TS θθ − , we define 

that the LCC-Node is near similar for the query. The diagram of Near Similarity is 

shown in Figure 6.7. 

 

 

 

Figure 6.7: The Diagram of Near Similarity According to the Query Threshold Q and 

Clustering Threshold T 
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In other words, Near Similarity Criterion is that the similarity value between the 

query vector and the cluster center (CC) in LCC-Node is larger than )( TSCos θθ − , so 

that the Near Similarity can be defined again according to the similarity threshold T and 

S. 
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By the Near Similarity Criterion, the algorithm of the LCCG Content Searching 

Algorithm (LCCG-CSAlg) is proposed as follows. 

 

Algorithm 6.5: LCCG Content Searching Algorithm (LCCG-CSAlg) 
Symbols Definition: 

Q: is the query vector whose dimension is the same as the feature vector of content node (CN) 

D: is the number of the stage in an LCCG. 

S0~SD-1: denotes the stage of an LCCG from the top stage to the lowest stage. 

ResultSet, DataSet, and NearSimilaritySet: denote the sets of LCC-Nodes. 

Input: The query vector Q, search threshold T and the destination stage SDES where S0≤ SDES≤ SD-1. 

Output: the ResultSet contains the set of similar clusters stored in LCC-Nodes. 

 

Step 1: Initiate the DataSet=φ  and NearSimilaritySet =φ . 

Step 2: For each stage Si LCCG, repeatedly execute the following steps until Si≧SDES ∈
2.1: DataSet = DataSet  LCC-Nodes in stage Si, and ResultSet=∪ φ .  

2.2: For each Nj  DataSet,  ∈
{ If Nj is near similar with Q  

Then insert Nj into NearSimilaritySet. 

Else If (the similarity between Nj and Q)  T  ≥
Then insert Nj into ResultSet. } 

    2.3: DataSet = ResultSet. //for searching more precise LCC-Nodes in next stage in LCCG 

Step 3: Output the ResultSet = ResultSet  NearSimilaritySet. ∪
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Chapter 7  Knowledge Controller 
(KC) 

When the learners login to start learning, the Knowledge Controller Module of 

ILCMS is responsible for initiating a learning activity from the LAR and delivering the 

suitable learning contents and activities to learners according to their learning results. 

Therefore, a Learning Activity Controller (LAC) module implemented in KC module, 

including System Coordinator (SC) and Inference Engine (IE) [78], will retrieve the 

appropriate learning objects in LOR, testing sheets in Testing Item Bank (TIB), or 

application programs (AP) in APR according the personalized learning activity in LAR. 

Then, it delivers them to learners for adaptive learning with teaching strategy. 

 

7.1 The Rule Inference Process in KC Module 

Due to the pedagogical needs, the teachers can use OOLA model to edit the 

learning activity as directed graph that includes learning objects, applications and 

assessment quizzes. The OOLA is a rule-based model and the rule representation of 

OOLA model is based on the New Object oriented Rule Model (NORM) architecture 

[78] [123] [124] [125] [139] which modularize the rules as rule classes [11] [92]. While 

the rule set of specific domain is acquired, the rule classes are instantiated as rule 

objects and can be executed on the NORM inference engine, DRAMA [78]. 

Figure 7.1 illustrates a leaning process and associated rule inference process. While 

an OOLA based leaning activity starts, System Coordinator (CO) in LAC will load a 

suitable OOLA model and then Inference Engine (IE) will infer a suitable learning node 

as next node for learning according to the rule definitions within OOLA and learners’ 

learning results after learners finished each node or time of node ran out. The SC will 

give learners a learning content or test sheet, or run an application program as learning 
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service according to different node types which is selected by IE.  

 

 

 

Figure 7.1: The Diagram of Rule Inference Process in KC Module 

 

 

7.2 The Learning Process of OOLA based Learning Activity 

As stated previously, in KA, System Coordinator (SC) is responsible for 

communicating with IE and controlling all related system modules to execute their jobs, 

such as displaying learning content or running application program. Accordingly, in this 

dissertation, we propose a learning process algorithm of running OOLA, as shown in 

Figure 7.2. 
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Figure 7.2: The Learning Process of Running OOLA Model 
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Chapter 8  Knowledge Miner (KMin) 
Knowledge Miner Module includes a Learning Portfolio Analyzer (LPA), which 

consists of Learning Portfolio Mining (LPM) [118] and Two-Phase Concept Map 

Construction (TP-CMC) [110] algorithm. According to the learners’ characteristics, 

the former applies the clustering and decision tree approach to analyze the learning 

behaviors of learners with high learning performance. The latter applies Fuzzy Set 

Theory and Data Mining approach to automatically construct the concept map by 

learners’ historical testing records. Therefore, after the learners finished the learning 

activities, teachers can use LPA to analyze the learning portfolios of learners for refining 

their teaching strategies and contents. 

 

8.1 Learning Portfolio Analysis Using Data Mining Approach 

Several articles [9] [36] [65] [112] [140] have proposed that a new learner will get 

the similar learning performance if providing the learning guidance extracted from 

previous similar learners. The concept is the same as the adage of Chinese, “Good 

companions have good influence while bad ones have bad influence.” Therefore, we 

conclude that a new learner could get the high learning performance if s/he follows the 

effective learning experience of similar learners. However, this conclusion results in the 

following three issues should be solved: (1) how to acquire the learning characteristics 

of learners, (2) how to group learners into several groups according to her/his individual 

learning characteristics, and (3) how to assign a new learner to a suitable group for 

offering her/him personalized learning materials. 
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8.1.1 The Process of Learning Portfolio 

During learning activity, learning behaviors of learners can be recorded in the 

database, called learning portfolio, including the learning path, preferred learning 

course, grade of course, and learning time, etc., in the e-learning environment. Articles 

[4] [15] [29] [95] [104] [108] have proved that the information of learning portfolio can 

help teacher analyze the learning behaviors of learners and discover the learning rules 

for understanding the reason why a learner got high or low grade. 

Therefore, based upon the learning portfolio with the predefined data format, we can 

apply sequential pattern mining approach to extract frequent learning patterns of 

learners. Then, according to these mined learning patterns, these learners can be 

grouped into several groups with the similar learning behaviors using clustering 

approach. By using the questionnaires including the Learning Style Indicator [77], 

Group Embedded Figures Test (GEFT) [137], etc. to acquire the learning characteristics 

of learners, we can acquire the learning characteristics of learners as learner profile 

which can be used to create a decision tree to predict which group a new learner belongs 

to. 

Thus, in this dissertation, we propose a four phase Learning Portfolio Mining (LPM) 

Approach using sequential pattern mining, clustering approach, and decision tree 

creation sequentially. Then, in the last Phase, we also propose an algorithm to create 

personalized activity tree which can be used in SCORM compliant learning 

environment. 
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The Framework of Learning Portfolio Mining (LPM): 

As mentioned above, we propose a Learning Portfolio Mining (LPM) approach to 

extract learning features from learning portfolio and then adaptively construct 

personalized activity tree with associated sequencing rules for learners. 

 

 

Figure 8.1: The Flowchart of LPM 

 

As shown in Figure 8.1, LPM includes four phases described as follows:  

1. User Model Definition Phase: we define firstly the learner profile including 

gender, learning style, and learning experience, etc. based upon existing articles 

and pedagogical theory, and the definitions of what we are going to discover in 

database. 

2. Learning Pattern Extraction Phase: we apply sequential pattern mining 

technique to extract the maximal frequent learning patterns from the learning 

sequence within learning portfolio. Thus, original learning sequence of a learner 
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can be mapped into a bit vector where the value of each bit is set as 1 if the 

corresponding learning pattern is contained, and distance based clustering approach 

can be used to group learners with good learning performance into several clusters. 

3. Decision Tree Construction Phase: after extraction phase, every created cluster 

will be tagged with a cluster labels. Thus, two third of the learner profiles with 

corresponding cluster label are used as training data to create a decision tree, and 

the remainings are the testing data which can be used to evaluate the created 

decision tree. 

4. Activity Tree Generation Phase: finally, each created cluster including several 

learning patterns as sequencing rules can be used to generate personalized activity 

tree with associated sequencing rules of Sequencing and Navigation (SN). 

 

8.1.2 The Clustering Process of Learner 

In this section, we will describe the User Model Definition Phase and Learning 

Pattern Extraction Phase in LPM. 

 

User Model Definition Phase: 

Before extracting the learning features, we have to define a user model as learner 

profile, which will be recorded in database, to represent every learner. The definition is 

described as follows: 

Learner L= (ID, LC, LS), where 

 ID: denotes the unique identification of a learner. 

 LC = <c1c2…cm>: denotes the sequence of learning characteristics of a learner. 

 LS = <s1s2…sn>: denotes the learning sequence of a learner during learning 

activity, where si is an item of learning content. 

In this dissertation, how to efficiently apply the existing pedagogical theories and 
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how to further propose an efficient approach to solve personalized learning problem are 

our main concerns. Therefore, we only survey several related articles [9] [25] [29] [43] 

[66] [65] [83] [93] [104] [108] [135] [137], which investigated about 1) Learner Model, 

2) Learning Style and Motivation, 3) course module category, 4) Learning Style, 5) 

Cognitive Styles, 6) Gender Difference, and 7) Student Characteristics, and then define 

the frequent learning characteristics for representing a learner by integrate their 

proposed leaning characteristics. The defined user model can also be extended if 

necessary. As shown in Table 8.1, the values of Gender, Age, Education Status, 

Computer Experience, and Media Preference can be inputted by learners directly and 

the values of Learning Motivation, Cognitive Style, Learning Style, and Social Status 

can be acquired by questionnaire, where we use the Learning Style Indicator [77] and 

Group Embedded Figures Test (GEFT) [137] to acquire the Kolb's Learning Style [66] 

and the information about field dependence/independence in Cognitive style, 

respectively. Here, the numeric value of Age can be transformed into symbolic with {L, 

M, H}. The transformation principle is described as follows: 

 

In all learners, and l μ are the minimal and maximal values of age, respectively. 

Let =( -Δ l μ )/3, and then a numeric value of age can be mapped into symbolic value 

with L in [ , + ), M in [ +l l Δ l Δ , +2l Δ ), and H in [ l+2Δ , +3 ].  l Δ

 

For example, LC = <F, M, S Y, H, FD, D, T, H> denotes that a learner is a Female, 

Age is Medium among all learners, Education Status is Senior, and etc. Nevertheless, 

the learning characteristics in user model can be modified for the real needs. In addition, 

LS denotes a learning sequence of a learner. For example, in Figure 2.2a, LS = <A, AA, 

AAA, AAB, AB> denotes that a learner studies the learning content A first and then 

studies the learning content AB. Therefore, based upon the user model, the learner can 
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be represented as L=(35, <F, M, S Y, H, FD, D, T, H>, < A, AA, AAA, AAB, AB>). 

 

Table 8.1: The Learning Characteristics of Learners 
Attribute Value 

Gender F: Female, M: Men 

Age L: [ , +l l Δ ), M: [ l +Δ , l +2Δ ), H: [ l +2Δ , +3 ] l Δ
Education Status E: Elementary, J: Junior, S: Senior, U: Undergraduate, G: Graduate  

Computer Experience Y: Yes, N: No 

Learning Motivation L: Low, M: Medium, H: High 

Cognitive Style FD: Field Dependence, FI: Field Independence 

Learning Style D: Doer (Concrete Experience & Active Experimentation) 

W: Watcher (Reflective Observation & Concrete Experience) 

T: Thinker (Abstract Conceptualization & Reflective Observation) 

F: Feeler (Active Experience & Abstract Conceptualization) 

Media Preference A: Audio, V: Video, T: Text, P: Picture, M: Picture & Text 

Social Status L: Low, M: Medium, H: High 

 

 

Learning Pattern Extraction Phase: 

After defining the user model, we can apply sequential pattern mining technique to 

extract the maximal frequent learning patterns from the learning sequence within 

learning portfolio. Because we want to provide the new learner with effective learning 

guidance, we collect the learning sequences of learners with high learning performance, 

e.g., testing grade, from database, as shown in Table 8.2. For extracting the frequent 

learning pattern, the Learning Pattern Extraction Phase includes three processes shown 

in Figure 8.2: (1) Sequential Pattern Mining Process, (2) Feature Transforming Process, 

and (3) Learner Clustering Process. 

 
 
 
 

Table 8.2: The Learning Sequences of 10 Learners 
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ID Learning Sequence (LS) 

1 <B, C, A, D, E, F, G, H, I, J> 

2 <A, B, H, D, E, F, C, G, I, J> 

3 <A, D, F, G, H, B, C, I, J> 

4 <A, B, D, E, C, F, G, H> 

5 <A, C, J, F, B, H, D, E, G> 

6 <B, H, F, D, E, A, G, C, I> 

7 <A, J, E, H, B, C, I, D, G> 

8 <B, C, G, E, A, H, D, J, F> 

9 <C, E, G, F, J, B, H, A, D> 

10 <B, C, A, J, D, E, G, H, F> 

 

 

 
Figure 8.2: Learning Pattern Extraction Phase 

 

Sequential Pattern Mining Process: 

In this dissertation, we modify a sequential pattern mining approach, called GSP 

algorithm [4] [97], to extract the frequent learning patterns from learning portfolio 

because we use the maximal frequent learning pattern to represent the learning features 

of learners, shown in Figure 8.3. 
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Algorithm 8.1: Modified GSP Algorithm 
Symbol Definition: 
α: The minimum support threshold. 

lC : The -Candidate itemset. l

lL : The -large itemset l

support(x) : it estimates the number of x in . 
lC

Input:Learning Sequence(LS) of learner, Minimal Support (α) 
Output: The set of maximal frequent learning patterns (MF). 
Step1: Generate and insert the 1-itemset into C1 
Step2: L1={x |support(x)≧α, for x∈C1} 
Step3: Repeatedly execute this step until  = NULL. 

lC

3.1: = JOIN  
lC 1−lL 1−lL

3.2: ={x |support(x)≧α, for x
lL ∈

lC } 
3.3: Insert x∈  into MF, if 

lL ∃ subsequence y⊂ x in MF then delete it. 
Step5: output the MF 

Figure 8.3: Maximal frequent sequential pattern mining algorithm 

 

In Figure 8.3, the subsequence definition and JOIN process (Step 3.1) which are 

borrowed from GSP algorithm are described as follows. A sequence s1 joins with s2 if 

the subsequence obtained by dropping the first item of s1 is the same as the subsequence 

obtained by dropping the last item of s2. The candidate sequence generated by joining s1 

with s2 is the sequence s1 extended with the last item of s2. For example, in , 

sequence <A, B, C> joins with <B, C, D> to generate <A, B, C, D> for generating the 

C4. In addition, in MF, a subsequence <A, B> and <B, C> will be deleted if a sequence 

<A, B, C> is generated in  and <A, B, C> is the maximal frequent learning patterns 

(Step 3.3). Figure 8.4 shows the mining process of Modified GSP Algorithm with 

minimal support threshold α=6. Therefore, after applying the Modified GSP Algorithm 

for the learning sequences in Table 8.2, we can get the maximal frequent learning 

patterns as shown in Table 8.3. 

3L

3L
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Figure 8.4: Mining process of modified GSP algorithm withα= 6 

 

Table 8.3: The set of maximal frequent learning patterns (MF) 
Large 

Itemset 
Maximal Frequent Learning Patterns 

L2 A F A H A J B H C D C F C H E F F G G H

L3 A D G B C G         

L4 B D E G          

 

Feature Transforming Process: 

The generated maximal frequent learning patterns can be used to represent learning 

features of learners, which denotes that a learner would get high learning performance if 

s/he follows these learning patterns. Thus, based upon maximal learning patterns in 

Table 8.3, the original learning sequences of every learner can be mapped into a bit 

vector where the value of each bit is set as 1 if the mined maximal learning pattern is a 

subsequence of original learning sequence. For example, in Table 8.3, the frequent 

learning pattern <B D E G> is a subsequence of learning sequence <A, B, H, D, E, 

 108



F, C, G, I, J> of second learner and the <C D> is not. Therefore, we can get the bit 

vector of every learner according to feature transforming process [44] as shown in Table 

8.4. 

Table 8.4: The result of feature transforming process 
TID B D E G A D G B C G A F A H A J B H C D C F C H E F F G G H

1 1 1 1 1 1 1 1 1 1 1 1 1 1 

2 1 1 1 1 1 1 1 0 0 0 1 1 0 

3 0 1 0 1 1 1 0 0 0 0 0 1 1 

4 1 1 1 1 1 0 1 0 1 1 1 1 1 

5 1 1 0 1 1 1 1 1 1 1 0 1 0 

6 1 0 0 0 0 0 1 0 0 0 0 1 0 

7 0 1 1 0 1 1 0 1 0 0 0 0 0 

8 0 0 1 1 1 1 1 1 1 1 1 0 1 

9 0 0 0 0 0 0 1 1 1 1 1 0 1 

10 1 1 1 1 1 1 1 1 1 1 1 0 1 

 

Learner Clustering Process: 

As mentioned above, every learner can be represented by mined frequent patterns. 

Therefore, we can apply clustering algorithm to group learners into several clusters 

according to learning features of learners. In the same cluster, every learner with high 

learning performance has the similar learning behaviors. However, it is difficult to 

determine the number of clusters for applying clustering approach like K-means 

algorithm. A clustering algorithm, called ISODATA [48], can dynamically change the 

number of clusters by lumping and splitting procedures and iteratively change the 

number of clusters for better result. Therefore, in this paper, we apply the ISODATA 

clustering approach to group learners into different clusters. The Table 8.5 shows the 

result after applying ISODATA Clustering Algorithm for Table 8.4. The bit vector in 

Cluster Centroid Field denotes the representative learning patterns set in a cluster, 

which will be used to generate the sequencing rules of SCORM later. 
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Table 8.5: The result of applying ISODATA clustering algorithm 
Cluster Label ID of Learner Cluster Centroids 

1 {1, 4, 5, 8, 10} <1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1> 

2 {7} <0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0> 

3 {2, 3, 9} <1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0> 

4 {6} <1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0> 

 

8.1.3 The Prediction and Construction of Learning Guidance: 

In this section, we will describe the Decision Tree Construction Phase and Activity 

Tree Generation Phase in LPM. 

 

Decision Tree Construction Phase: 

After learner pattern extraction phase, every created cluster will be tagged with a 

cluster label as shown in Table 8.5. However, how to assign a new learner to a suitable 

cluster according to her/his learning characteristics and capabilities is an issue to be 

solved. Fortunately, the decision tree approach can solve this issue. Thus, based upon 

the Learner Profiles with cluster labels in Table 8.6, we can apply decision tree 

induction algorithm, ID3 [95], to create a decision tree. In this paper, two third of the 

learner profiles with associated cluster label are used as training data to create a decision 

tree, and the remainings are the testing data. The result of applying ID3 algorithm is 

shown in Figure 8.5. 
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Table 8.6: The learner profiles with cluster labels 

ID Gender Age
Education 

Status 

Computer

Experience

Learning 

Motivation

Cognitive 

Style 

Learning 

Style 

Preferred 

Media 

Social 

Status

Cluster

Label

1 F M U Y M FI D A H 1 

2 F L S N H FI W A M 3 

3 M L U N L FI D T M 3 

4 M M S Y H FI W G L 1 

5 F M U Y H FI T A M 1 

6 M M U N L FD W G L 4 

7 F H S Y H FI W T M 2 

8 M L S N M FD T T H 1 

9 F M H Y H FI F G M 3 

10 M H H Y L FD D G M 1 

 
 

 
Figure 8.5: The decision tree based upon the learner profiles in Table 6 

 

Activity Tree Generation Phase: 

Finally, based upon the created decision tree, we can assign a new learner to a 

suitable cluster which contains several learning guidance. Each cluster contains a cluster 

centroid which corresponds to several learning patterns as sequencing rules in 

sequencing and navigation (SN) of SCORM 2004. Therefore, in this dissertation, we 

propose an algorithm to transform learning patterns of cluster into sequencing rules and 

then create the personalized activity tree, as shown in Figure 8.6. 
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Algorithm 8.2: Personalized Activity Tree Creation (PATC) Algorithm 
Symbol Definition: 
LI: The set of learning items in a learning activity. 
CC: The corresponding learning patterns in Cluster Centroid 
LP: The set of Learning Patterns 
VA: Virtual Aggregation Node 
SCO: The Sharable Content Object (SCO) of SCORM standard 
Input: Learning Items (LI) and corresponding learning patterns (CC) 
Output: Personalized Activity Tree (PAT) 
Step 1: LP = { lp | for lp∈CC}  
Step 2: For each lpi  

1. Create a VA with sequencing rules: “Flow=true”, “Forward Only=true”, and 
“Rollup Rule=All”. 

2. The VA links every item as SCO in lpi in order. 
3. Set All SCOs with Rule,”if NOT complete, Deny Forward Process”. 

Step 3: If the same SCO in different VA, ∃

Then create a Learning Objective to link these SCOs. 
Step 4: ItemSet = { x | for (x∈LI)∩(x∉CC)} 
Step 5: Create a VA with sequencing rules, “choice=true” and “choice exit=True”, to 

link all items as SCO in ItemSet. 

Step 6: Create a Root Aggregation node with sequencing rule, “Flow=true” and 

“Choice=true”, to link all VAs. 

Figure 8.6: The algorithm of personalized activity tree creation (PATC) 

 

For the data of Cluster 2 in Table 8.5, the results of PATC algorithm are shown in 

Figure 8.7. Firstly, in Step 1, the LP will be inserted five learning patterns according to 

the centroid of cluster 2, i.e., LP={A D G, B C G,C D, A H, A J}. In Step 2, 

because a learning pattern, which contains several items as SCO in SCORM, e.g., the 

item A in pattern A H, represents an effective learning sequence, we can create a 

virtual aggregation node as a sub-activity to aggregate all items in learning pattern in 

order. Here, A Sharable Content Object (SCO) denotes “a set of related resources that 

comprise a complete unit of learning content compatible with SCORM run-time 
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requirements” (SCORM, 2004). Moreover, in each SCO, we set its sequencing rule 

with “if NOT complete, Deny Forward Process” for controlling the navigation order. In 

order to make learners complete all learning objects (SCO) and satisfy the pass 

condition, we set the Rollup rule as “All”. The rules, Flow=true” and “Forward 

Only=true”, can forbid learners to learn backward. In addition, a learning objective is 

created to link the same items appeared in different learning patterns. By setting the 

value of learning objective, we can forbid to learn an item repeatedly. For example, in 

Figure 8.7, the learning objective, called OBJ-A, links the SCO A in Aggregations 1, 3, 

and 4. After learner satisfied the SCO A, the OBJ-A is set and then the SCO A in 

Aggregations 3 and 4 will be skipped. In addition, the frequent learning patterns may 

not contain all learning items in the learning activity. Thus, we also create an 

aggregation node as referable learning activity to link these items which are not 

contained in learning patterns, e.g., in Figure 8.7, the Aggregation 6 contains {E, F, I} 

and rules, “choice=true” and “choice exit=True”, for free navigation. Finally, the root 

aggregation node is used to link all aggregation nodes. 

 

 

Figure 8.7: The result of PATC algorithm based upon cluster 2 
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8.2 Two-Phase Concept Map Construction (TP-CMC) 

In the last five years, many adaptive learning and testing systems have been 

proposed to offer learners customized courses in accordance with their aptitudes and 

learning results [5] [21] [22] [38] [41] [49] [51] [54] [122] [126]. For achieving the 

adaptive learning, a predefined concept map of a course, which provides teachers for 

further analyzing and refining the teaching strategies, is often used to generate adaptive 

learning guidance. However, it is difficult and time consuming to create the concept 

map of a course. Thus, how to automatically create a correct concept map of a course 

becomes an interesting issue. 

 Therefore, in this dissertation, we propose a Two-Phase Concept Map 

Construction (TP-CMC) algorithm to automatically construct a concept map of a course 

by historical testing records. In TP-CMC, the Test item-Concept Mapping Table records 

the related learning concepts of each test item. As shown in Table 8.7, five quizzes 

contain these related learning concepts A, B, C, D and E, where “1” indicates the quiz 

contains this concept, and “0” indicates not. Moreover, a concept set of quiz i is denoted 

as CSQi, e.g., CSQ5={B, D, E}. The main idea of our approach is to extract the 

prerequisite relationships among concepts of test items and construct the concept map. 

Based upon assumptions, for each record of learners, each test item has a grade. 

 

Table 8.7: Test Item–Concept Mapping Table 
 
 

A B C D E

Q1 0 0 0 1 0
Q2 1 0 1 0 0
Q3 1 0 0 0 0
Q4 0 1 1 0 0
Q5 0 1 0 1 1
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As shown in Figure 8.8, our Concept Map Construction includes two phases: 

Grade Fuzzy Association Rule Mining Process Phase and Concept Map Constructing 

Process Phase. The first phase applies fuzzy theory, education theory, and data mining 

approach to find four fuzzy grade association rule types, L-L, L-H, H-H, H-L, among 

test items. The second phase further analyzes the mined rules based upon our 

observation in real learning situation. Even based upon our assumptions, constructing a 

correct concept map is still a hard issue. Accordingly, we propose a heuristic algorithm 

which can help construct the concept map. 

 

 

Figure 8.8: The Flowchart of Two-Phase Concept Map Construction (TP-CMC) 

 

8.2.1 Grade fuzzy association rule mining process 

In [126], the Look Ahead Fuzzy Association Rule Miming Algorithm (LFMAlg) 

has been used to find the associated relationship information embedded in the testing 

records of learners. In this phase, we propose an anomaly diagnosis process to improve 

LFMAlg and reduce the input data before the mining process. 
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1. Grade Fuzzification: 

Firstly, because the numeric testing data are hard to analyze by association rule 

mining approach, we apply Fuzzy Set Theory to transform these into symbolic. Thus, 

after the fuzzification, the grade on each test item will be labeled as high (H), middle 

(M), and low (L) degree, which can be used as an objective judgment of learner’s 

performance.  

 

2. Anomaly diagnosis: 

 Based upon Item Analysis for Norm-Referencing of Educational Theory [89], the 

discrimination of item can tell us how good a test item is, i.e., item with high degree of 

discrimination denotes that the item is well designed. If the discrimination of the test 

item is too low (most students get high score or low score), this item as redundant data 

will have no contribution to construct the concept map. For decreasing the redundancy 

of test data, we propose a fuzzy item analysis, called Anomaly Diagnosis, to refine the 

test data.  

 

3. Fuzzy Data Mining: 

Then, we can apply LFMAlg [126] to find the grade fuzzy association rules of test 

items from the historical testing data. In this dissertation, we analyze the prerequisite 

relationships among learning concepts of quizzes according to 4 association rule types, 

L-L, L-H, H-L, H-H, generated from Large 2 Itemset. Qi.L notation denotes that the ith 

question (Q) was tagged with low (L) degree, e.g., Q2.L→Q3.L means that learners get 

low grade on Q2 implies that they may also get low grade on Q3. 

 

 

 

 116



8.2.2 Concept map constructing process 

1. Concept map constructor: 

Firstly, the result of analyzing four association rule types, L–L, L–H, H–H, and 

H–L, are used to construct the prerequisite relationships between concept sets, which 

are used to define the edge between nodes of concept set and provide teachers with 

information for further refining the test sheet, of learning concepts of test items. Then, 

based on the prerequisite relationships of concept set and the Test item-Concept 

Mapping Table, we propose a Concept Map Constructing (CMC) Algorithm to find the 

corresponding learning concepts of concept set to construct the concept map according 

to the join principles of concept-pair. 

 

8.2.3 Grade fuzzy association rule mining process 

1. Grade fuzzification: 

As described in Section 8.2.1, we apply fuzzy concept to transform numeric grade 

data into symbolic, called Grade Fuzzification. Three membership functions of each 

quiz’s grade are shown in Figure 8.9. In the fuzzification result, “Low”, ”Mid”, and 

“High” denote “Low Grade”, “Middle Grade”, and “High Grade” respectively. Qi.L, 

Qi.M, and Qi.H denote the value of LOW fuzzy function, MIDDLE fuzzy function, and 

HIGH fuzzy function for the quiz i, respectively. By given membership functions, the 

fuzzification of testing records is described in Example 8.1.  

 

Example 8.1: 

In Figure 8.10, assume there are 10 testing records with 5 quizzes of learners and 

the highest grade on each quiz is 20. 
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Figure 8.9: The given membership functions of each quiz’s grade. 

 

 

 

Figure 8.10: The Fuzzification of Learners’ Testing Records 

 
 

2. Anomaly diagnosis: 

For refining the input testing data, we propose the anomaly diagnosis, called Fuzzy 

Item Analysis for Norm-Referencing (FIA-NR) by applying Item Analysis for 

Norm-Referencing of Educational Theory, shown in Figure 8.11. A test item will be 

deleted if it has low discrimination. 
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Figure 8.11: Fuzzy Item Analysis for Norm-Referencing (FIA-NR) 

 

Example 8.2:  

Table 8.8 shows the fuzzified testing grades of learners on Q4 sorted in the 

descending order of each learner’s total score in the test sheet. For example, in Figure 

8.10, because the result of fuzzification of learner ID 4 is (0.3, 0.5, 0.0), her/his Grade 

Level can be tagged with M by the Max(L, M, H) function. 

 

Table 8.8: Sorted Fuzzified Testing Grade on Q4 
Group High Middle Low 

Learner ID 1 2 3 4 6 5 7 8 9 10
Total (100) 77 54 53 48 44 36 35 28 26 21

Grade Level 

=Max(L,M,H) 
H L L M L L L L L L

 
 

Then, by applying FIA-NR algorithm, we can get the Difficulty and Discrimination 

of every quiz. For example, the P4H and P4L of Q4 are 
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Thus, learners’ grade on Q4 will be deleted because its Discrimination is too low to use 

during the mining process and the construction of the concept map. Accordingly, the test 

sheet can be redesigned. All evaluated results are shown in Table 8.9. 

 

Table 8.9: Difficulty and Discrimination Degree of Each Quiz 

 Q1 Q2 Q3 Q4 Q5 
Difficulty (0 to 1) 0.25 0.42 0.42 0.83 0.75 

Discrimination (-1 to 1 ) 0.5 0.83 0.83 0.33 0.5 

 

 

3. Fuzzy Data Mining: 

After filtering out these useless quizzes, we can apply Look Ahead Fuzzy 

Association Rule Mining Algorithm [126] as shown in Figure 8.12 to find the fuzzy 

association rules of test items. In LFMAlg Algorithm, the support value of every itemset 

x in candidate  can be evaluated by the support(x) function, where x={A, B} , 

A∩B=

lC ⊆ 1−lC

φ . Then, the support(x) = support(A∪B) = Min(A, B), where n is the number 

of learners. For example, in Figure 8.10, support(Q1.L, Q3.H)=Min(1.0, 0.7)+Min(1.0, 

0.7) =1.4. 

n
1∑
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Figure 8.12: Look ahead Fuzzy Association Rule Mining Algorithm (LFMAlg) 

 
 

Example 8.3: 

For the data shown in Examples 8.1 and 8.2, Figure 8.13 shows the process of 

finding the association rules with large 2 itemset by LFMAlg algorithm.  

 

 

Figure 8.13: The Mining Process of Large 2 Itemset 

 

Thus, Table 8.10 shows the grade fuzzy association rules with minimum confidence 

0.8 generated from large 2 itemset into L-L, L-H, H-H, and H-L types. The Confi 

(Confidence) is used to indicate the important degree of ith mined association rule. For 
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example, the Confidence (Conf1) of rule Q2.L→Q3.L can be obtained as follows. 

 

95.0
.

)..:..
2

32
32 =∪=→

)support(

support(

LQ
LQLQConfidenceLQLQ

  

 

Table 8.10: The Mining Results (Confi > 0.8) 

Rule Types Mined Rules Confi 
Q2.L Q3.L 0.95 
Q3.L Q2.L 1.00 
Q2.L Q5.L 0.86 

L-L 

Q3.L Q5.L 0.90 
Q1.L Q5.H 0.90 

L-H 
Q5.L Q1.H 0.82 

H-H Q2.H Q3.H 0.91 
H-L Q5.H Q1.L 1.00 
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8.2.4 Concept Map Constructing Process 

1. Concept Map Constructor: 

Before constructing the concept map, we can get the prerequisite relationship 

among concepts of quiz from analyzing four association rule types, L-L, L-H, H-L, and 

H-H, based upon our observation obtained by interviewing the educational experts, in 

real learning situation. Therefore, we can conclude the Heuristic 1: given two quizzes 

Q1 and Q2, if concepts of Q1 are the prerequisite of concepts of Q2, Learner gets low 

grade on Q1 implies that s/he may also get low grade on Q2 or Learner gets high grade 

on Q2 implies that her/his grade on Q1 is high. As shown in Table 8.11, for each rule 

type, we use Heuristic 1 to get its prerequisite relationships among concept sets of 

quizzes with parameterized possibility weight, which are used to construct the concept 

map. The definition of the symbols used in Table 8.11 is described as follows. 

 

Symbol Definition: 

QiCS  : indicate concept set of quiz i 

Wi  : indicate the possibility of the possible scenario of the rule 

 

Table 8.11: Prerequisite Relationship of Association Rule 

Rule Wi
Prerequisite 
Relationship 

Qi.L Qj.L 1.0 CSCS QjQi ⎯→⎯pre.  

Qi.L Qj.H 0.8 CSCS QiQj
pre⎯⎯→⎯ .  

Qi.H Qj.H 1.0 CSCS QjQi ⎯→⎯pre.  

Qi.H Qj.L 0.8 CSCS QjQi ⎯→⎯pre.  

  

In this dissertation, association rules generated from Large 2 Itemset are firstly 

used to analyze the prerequisite relationships between learning concepts of quizzes. 
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Therefore, by looking up Table 8.11, we can obtain the prerequisite relationships of 

concept set of quizzes with the possibility weight (Wi) for each mined rule in Table 8.10. 

The possibility Wi is a heuristic parameter of CMC algorithm because it can be modified 

according to different domains and learners’ background. Moreover, the related 

explanations of the analysis in Table 8.11 are shown in Table 8.12. Table 8.13 shows 

the result of transforming association rules in Table 8.10 by analyzing the prerequisite 

relationships in Table 8.11. 

 

Table 8.12: The Explanations of Rule Types 
Rule  Description of Learning Scenario 

L L 

If the association rule Qi.L Qj.L is mined, it means that the CSQi is the 

prerequisite of CSQj, represented as . That is why getting low 

grade on Qi might imply getting low grade on Qj. 

CSCS QjQi ⎯→⎯pre.

H H 
If the association rule Qi.H Qj.H is mined, it means that the CSQi is the 
prerequisite of CSQj.  

L H 
 

If the association rule Qi.L Qj.H is mined, it means that the CSQj is the 
prerequisite of CSQi because CSQi may be not learned well resulting from 
CSQj. 

H L 
If the association rule Qi.H Qj.L is mined, it means that the CSQi is the 
prerequisite of CSQj. 

 

Table 8.13: Result by Analyzing the Prerequisite Relationships in Table 8.11 

Rule Type 
Association rules of 

quiz  
Prerequisite relationship of 

Concept Set 
Conf i Wi

Q2.L Q3.L CSCS QQ 32
pre.⎯→⎯  0.95 1.0

Q3.L Q2.L CSCS QQ 23
pre.⎯→⎯  1.00 1.0

Q2.L Q5.L CSCS QQ 52
pre.⎯→⎯  0.86 1.0

L-L 

Q3.L Q5.L CSCS QQ 53
pre.⎯→⎯  0.90 1.0

Q1.L Q5.H CSCS QQ 15
pre.⎯→⎯  0.90 0.8

L-H 
Q5.L Q1.H CSCS QQ 51

pre.⎯→⎯  0.82 0.8
H-H Q2.H Q3.H CSCS QQ 32

pre.⎯→⎯  0.91 1.0
H-L Q5.H Q1.L CSCS QQ 15

pre.⎯→⎯  1.00 0.8
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For example, in Figure 8.14, the mined rules, Q1.L Q2.H and Q1.H Q2.L, can be 

transformed into corresponding prerequisite relationship of concept set, resulting in a 

confused relation as a cycle between concept sets, called circularity. That is to say, 

concepts of Q1 and concepts of Q2 are prerequisite of each other, which is a conflict in 

our analysis. Therefore, during creating the concept map, we have to detect whether a 

cycle exists or not, e.g., CSQ1 CSQ2 CSQ1. 

 

 

Figure 8.14: The Transforming of Association Rules. 

 

Because each concept set may contain one or more learning concepts, we further 

define a principle of joining two concept sets and then generate corresponding 

concept-pair, (Ci, Cj), that is, if CSQ1=  and CSQ2= , the set of concept-pair 

is CSQ1 JOIN CSQ2 = , where 

}{ 1 i
n aU }{ 1 j

m bU

)},({ 1 ji
k baU ji ba ≠  and k≦n×m. For example, if 

CSQ1={a1,a2} and CSQ2={b1,b2}, CSQ1 JOIN CSQ2 ={(a1,b1),(a1,b2),(a2,b1)}, where a2=b2 

is deleted. The related definition used in creating the concept map is given as follows: 

Concept Map CM = (V, E), where
 

 V = {Ci | the node is unique for each i} 

 E = { jiCC  | i ≠ j } 
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The node, Ci, denotes the learning concept and the edge, jiCC , which connects Ci 

and Cj, denotes that Ci is the prerequisite of Cj. The jiCC  has an Influence Weight, IWk, 

denotes the degree of relationship between learning concepts. The formulation of IWk is 

, 1≦k≦n, where n is the amount of k/)ConfWIW) 1k(( kk1-k ×+×− jiCC . 

The proposed Concept Map Constructing (CMC) algorithm is shown in Figure 

8.15. 

 

 

Figure 8.15: Concept Map Constructing (CMC) Algorithm 

 

For the CMC algorithm shown in Figure 8.15, the main purpose of Cycle Detection 

Process is to detect the unreasonable prerequisite relationship as a cycle among concept 

sets. It should be noted that the prerequisite relationship in the concept set map also 
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fulfills the indicator 2121 ff >  in Table 8.14, which is an extension of [5] after cycle 

detection. The indicator denotes that if concepts of Q1 are prerequisite of concepts of Q2, 

it is reasonable that 2121 ff > , where )..( 2121 LQHQCountf ∩=  and 

)..( 2121 HQLQCountf ∩= . In addition, the Influence Weight, IWk, denotes the degree 

how the learning status of concept Ci influences Cj. Therefore, the number of jiCC  

will enhance the value of Influence Weight. In the formulation of influence weight, the 

Wi denotes the possibility of the learning scenario of the association rule in our analysis. 

Thus, the educational experts can assign different value of Wi to the algorithm according 

to different domains and learner’s backgrounds. 

 
Table 8.14: Relative Quizzes Frequency 
 (Q1) Higher (Q1) Lower
(Q2) Higher f 12

 f 21
 

(Q2) Lower f 21
 f 21

 

 

For the association rules given in Table 8.13, the process of CMC algorithm is 

shown in Figure 8.16. In Figure 8.16b, the edges drawn as dash line have the lowest 

confidences in cycles will be deleted in Cycle Detection Process. Moreover, Table 8.15 

shows the example of computing the Influence Weight of Concept-Pair (B, E) in Figure 

8.16f. Because the Concept-Pair (B, E) has two edges between CSQ5 and CSQ1, we have 

to compute the Influence Weight twice. 

 

Table 8.15: The Result of Computing the Influence Weight of Concept-Pair (B, D) in 
Figure 8.16.f 

Rule Prerequisite Relationship Confi Wi iIW  

Q1.L Q5.H CSQ5 CSQ1 0.90 0.8 72.080.0*9.0 11 ≅=×ConfW  

Q5.H Q1.L CSQ5 CSQ1 1.00 0.8
76.0

2
00.1)8.0(0.72(1)

)12( 221

≅
×+×

=
×+×−

n
ConfWIW
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Figure 8.16: The Process of Concept Map Constructing Algorithm 

 

 

8.2.5 Evaluating the redundancy and circularity of concept map 

In this dissertation, creating a concept map without Redundancy and Circularity is 

our concern. As shown in Figure 8.17, we create three concept maps by using different 

approaches and evaluate their difference in terms of Redundancy and Circularity. Thus, 

we use three processing steps including anomaly diagnosis, the prerequisite relationship 

based upon analyzing L-L or L-L, L-H, H-L, H-H rule types, and cycle detection to 

create different concept maps. As shown in Figure 8.17, the prerequisite relationship 

between concept sets in Figure 8.17a is created based upon analyzing L-L rule type only, 

and Figure 8.17c is created based upon analyzing L-L rule type and anomaly diagnosis 
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we proposed. Then, the concept maps as Figure 8.17b and d are transformed according 

to the Test Item-Concept Mapping Table. Figure 8.17e and f are created by our 

proposed approach. 

 

 

 
Figure 8.17: The (a) and (b) created based up analyzing L-L rule type only. The (c) 

and (d) are created based upon Anomaly Diagnosis and analyzing L-L rule type only. 
The (e) and (f) created by our approach. 

 

 

Based upon these results of different approaches, the characteristics of approach 

are concluded as follows. 

 Non-redundancy: the anomaly diagnosis can filter many useless test items with 

low discrimination for refining the input data. For example, in Figure 8.17a, the 

Q4 with low discrimination results in generating many co-prerequisite links as a 
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cycle in Figure 8.17b. 

 Non-circularity: the cycle detection process can delete these cycles, e.g., the cycle 

between A and C in Figure 8.17d, to make the concept map un-ambiguous. 

Moreover, analyzing association rule with L-L, L-H, H-L, and H-H types can 

refine the concept map, e.g., the edges ED  and BD  connect the node D only in 

Figure 8.17f. 
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Chapter 9  Implementation and 
Experimental Results 

In order to evaluate proposed ILCMS, several system implementations and 

experiments have been done in terms of each knowledge module. Also, the experimental 

results shows that proposed knowledge modules of ILCMS are workable and beneficial 

for learners and teachers. Thus, the details of implementation and experimental results 

will be described in following sections. 

 

9.1 Learning Content Editor (LCE) in KA Module 

9.1.1 Implementation of Content Transformation Scheme (CTS) 
Our content transformation engine was developed based upon the Client/Server 

architecture, and the related softwares including FreeBSD, MySQL, and Apache server. 

The index page of our proposed system is shown in Figure 9.1. This system provides 

teaching material transformation, searching, authoring, management and personal 

information management. Here, only the transformation result of PowerPoint file is 

shown in Figure 9.2. As stated previously, first, the authors have to fill the related 

information of SCORM metadata, and then they need to define the coverage of each 

section unit (learning object). After the author confirms the definition, the system will 

extract the learning objects from original PPT file and package these into SCORM 

compliant teaching material. As shown in the bottom of Figure 9.2, it displays the final 

teaching material including metadata, table of content (organization), and learning 

content. Besides, because we have segmented the single PPT file into several learning 

objects, we can easily retrieve the related media file, including image, audio, video, and 

hyperlink, etc., of every learning object as shown in right bottom corner of Figure 9.2.   

 

 131



 

 
Figure 9.1: The Index Page of CTS System 

 
 

 

Figure 9.2: The Process of PowerPoint File Transformation. 
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9.1.2 The Implementation and Evaluation of OOCM Authoring Tool 

In this section, based upon the OOCM scheme, a prototypical authoring tool is 

developed. It can provide users with graphical user interface (GUI) to efficiently 

construct the learning activity structure with desired sequencing behaviors and then 

transform learning activity into SCORM compliant course. 

 

The Prototypical Framework of OOCM Authoring Tool: 

As shown in Figure 9.3, for constructing a SCORM compliant course, the OOCM 

authoring tool including 3 functional components, an OOATs Library, and a Learning 

Object Pool are described as follows: 

(1) Learning Object Importer: import the existing learning resource within SCORM 

course or user-defined learning objects into the learning object pool. 

(2) Course Sequencing Constructor: provide the teacher/instructional designer to 

construct a complex graph based course structure by inserting OOAT selected from 

OOATs Library. 

(3) SCORM Content Package Transformer: transform the graph based course 

structure into Activity Tree with related sequencing rules and then package its 

related learning resources into SCORM compliant course, based upon PN2AT and 

AT2CP algorithms.  
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Figure 9.3: The Prototypical Architecture of OOCM Authoring Tool 

 

Here, we describe and show the screenshot of OOCM authoring tool for 

constructing a SCORM compliant course by OOATs. The Authoring Tool is developed 

based on Java language and JGraph graphic tool [57] running on Windows operation 

system. The Figure 9.4 is the screenshot of OOCM authoring tool. The example course 

of “Photoshop” described in Section 4.2.7 was created by this OOCM authoring tool 

and executed on the SCORM RTE 1.3 as shown in Figure 9.5. As we see, the table of 

content in the left side of Figure 9.5 is consistent with the sequencing definition of 

HLPN in Figure 4.14.a. For example, the Course D (section 3) can not be selected until 

the test result in Course C satisfies the objective measure in Global Objective PG. 
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Figure 9.4: The Screenshot of the OOCM Authoring Tool 
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Figure 9.5: The Screenshot of Course “PhotoShop” Executed on SCORM RTE 1.3. 

 

 

The Evaluation of OOCM approach: 

For evaluating the efficiency of the OOCM approach compared with Reload Editor 

[94], an experiment has been done. The participants of experiment are eight Master 

students in educational college, which were divided into two groups: one (Experiment 

Group) used the OOCM authoring tool and the other (Comparison Group) used the 

Reload Editor. To begin with, everyone in two groups was given 30 minutes to be 

familiar with these tools and then given the same learning activity with desired 

sequencing behaviors to create the SCORM course by assigned tool for evaluating the 

time cost. Finally, two groups interchanged the assigned tool to create the same 

SCORM course for evaluating the satisfaction degree by questionnaire. The evaluation 

results are shown in Figure 9.6. The average time of using OOCM authoring tool is 14 

minutes while the average time of using Reload Editor is 32 minutes. Moreover, 

according to the questionnaire, 1) learning the tool easily, 2) constructing the course 

without setting the complicated sequencing rules and 3) imagining the final course 

structure easily are the main advantages of OOCM authoring tool compared with 

Reload Editor. This shows that the OOCM approach is workable and beneficial for 

 136



teachers/instructional designers.   
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Figure 9.6: The Histogram of the Time Cost 
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9.2 OOLA Authoring Tool in KA Module  

9.2.1 The Implementation of OOLA  

The OOLA model is implemented as a user-friendly authoring tool which has 

several functions, such as adding course, editing rule, editing the item concept, editing 

item, etc. The learning system is implemented by JAVA and JSP platform. Each student 

needs to login the system when entering the OOLA system at the first time. Figure 9.7 

shows the screenshots of OOLA authoring tool, which is been using to construct a 

learning activities, including login process, reading learning contents, searching data by 

the browser, having an examination, and discussing at the chat room. In addition, Figure 

9.8 shows that OOLA authoring tool can be used to construct a complex learning 

activity. 
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Figure 9.7: The Implementation of OOLA Authoring Tool 
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Figure 9.8: The Screenshot of Constructing a complex learning activity by OOLA Tool 
 

9.2.2 The Experimental Results of OOLA  

In order to evaluate OOLA model, the teaching strategy of Scaffolding Instruction 

[91] has been implemented. The scaffolding teaching strategy provides individualized 

support based on the learner’s zone of proximal development (ZPD). “The zone of 

proximal development is the distance between what children can do by themselves and 

the next learning that they can be helped to achieve with competent assistance” [17] 

[91]. Experiments about learning topic “The evaporation, condensation and boil of 

water” among 4th, 5th, and 6th graders are investigated. 

 
The OOLA design for Scaffolding Instruction: 

The OOLA system replicates the actions of a teacher. Its role is to determine the 

learning achievement level of students by quizzes. With the assessment results, the 
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OOLA can give them the appropriate learning objects as Scaffolding Instruction. An 

example of learning activity is shown in Figure 9.9. For each learning concept, e.g., C1, 

C1-1, C1-2 and C2, the Scaffolding Instruction learning activity is starting with the exam 

assessment activity (NEA) as a pretest. If the student passes the quiz, the OOLA system 

will guide him/her to learn the next concept. Once the student failed in some exam 

assessment activities, s/he will receive the corresponding remedial learning object as 

Scaffolding Instruction. The online courses of the subject “The evaporation, condensation, 

and boil of water” are provided to 62 elementary students in Taiwan. 

 

 
Figure 9.9: Scaffolding Instruction by OOLA 

 

The Analysis of Experimental Results: 

To evaluate the effectiveness of OOLA system, we apply the one-group 

pretest-posttest design for 62 students of 5th graders in a Taiwan elementary school. 

Firstly, the pretest examination score of concepts of “The evaporation, condensation, and 

boil of water” is the covariate variable. After one month learning with OOLA system, the 
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posttest examination score of the same scope is the dependent variable. Referring to the 

pretest result, the students are partitioned into high grade group and low grade group. 

The pairwise t-test and discussion of all students, high grade group and low grade group 

are as follows. 

 

The pairwise t-test of all students: 

Table 9.1: The pretest-posttest of learning achievement 

Student Group Mean Size Standard Deviation Mean difference

Learning 

Achievement

pretest 

posttest 

25.7419 

28.1290 

62 

62 

3.1516 

4.1429 

.4002 

.5261 

 

Table 9.2: The one-group pretest-posttest t-test 

Variance of Paired Difference 
Pairwise 

t-test Mean 
Standard 
Deviation 

Standard Error of 
Mean 

t value 
Sig. 

(2-tailed)

pretest-postt
est 

2.3871 3.9187 .4977 4.797 .000* 

*P < .05 

 

In Tables 9.1 and 9.2, the value t = 4.797 (p value = .000 < .05) shows that the 

pretest-posttest has significant difference. It deduced that the Scaffolding Instruction 

designed by OOLA system is effective for students. 
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The pairwise t-test of High Grade group: 

Furthermore, referring to the pretest result, the students are partitioned into high 

grade group and low grade group. The pairwise t-test in each group is also investigated 

to analyze the pretest-posttest of learning achievement. 

 

Table 9.3: The pretest-posttest of learning achievement of high grade group 

Student Group Mean Size Standard Deviation Mean difference 

Learning 

Achievement

pretest 

posttest 

28.3548 

29.1290 

31 

31 

1.5822 

3.5846 

.2842 

.6438 

 

Table 9.4: The one-group pretest-posttest t-test of high grade group 

Variance of Paired Difference 
Pairwise 
t-test Mean 

Standard 
Deviation 

Standard Error of 
Mean 

t value 
Sig. 
(2-tailed)

pretest-postt
est 

.7742 3.5657 .6404 1.209 .236 

*P < .05 

 

In Tables 9.3 and 9.4, the value t = 1.209 (p value = .236 > .05) shows that the 

pretest-posttest doesn’t have significant difference. It deduced that the Scaffolding 

Instruction is not effective for high grade students. 
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The pairwise t-test of Low Grade group: 

Table 9.5: The pretest-posttest of learning achievement of low grade group 

Student Group Mean Size Standard Deviation Mean difference 

Learning 

Achievement

pretest 

posttest 

23.1290 

27.6452 

31 

31 

1.8928 

3.3221 

.3400 

.5967 

 

Table 9.6: The one-group pretest-posttest t-test of low grade group 

Variance of Paired Difference 
Pairwise 
t-test Mean 

Standard 
Deviation 

Standard Error of 
Mean 

t value 
Sig. 
(2-tailed)

pretest-postt
est 

4.5161 3.6503 .6556 6.888 .000＊ 

*P < .05 

In Tables 9.5 and 9.6, the value t = 6.888 (p value = .000 < .05) shows that the 

pretest-posttest has significant difference. It deduced that the Scaffolding Instruction 

designed by OOLA system is effective for low grade students. 

After further discussion with students, we found that the high grade students tend 

to learning by interaction with other students or teachers. Therefore, the lack of 

instructor to discuss may cause their unobvious learning improvement. On the contrary, 

the low grade students tend to find the solutions from learning objects. It results in that 

the Scaffolding Instruction of OOLA system can assist them in finding the learning 

objects based on their misconception. Therefore, the Scaffolding Instruction of OOLA 

system is effective especially for low grade students. In the near future, we will enhance 

OOLA system to be able to support the Scaffold instruction for high grade students. 
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9.3 Learning Object Repository Manager in KM Module 

For evaluating the performance of Level-wise Content Management Scheme 

(LCMS) of LOR Manager in KM Module, in this section, several experiments using 

synthetic and real SCORM compliant teaching materials have been done.  

 

9.3.1 Synthetic Teaching Materials and Evaluation Criterion 

Firstly, we use synthetic teaching materials (TM) to evaluate the performance of 

our proposed algorithms. All synthetic teaching materials are generated by three 

parameters: 1) V: The dimension of feature vectors in teaching materials (TM), 2) D: 

the depth of the content structure of TM, 3) B: the upper bound and lower bound of 

included sub-section for each section in TM.  

In Level-wise Content Clustering Algorithm (LCCAlg), the Single Level 

Clustering Algorithm (SLCAlg) can be seen as a kind of traditional clustering 

algorithms. To evaluate the performance, we compare the performance of LCCAlg with 

SLCAlg which uses the leaf-nodes as input in CTs and doesn’t run the concept 

generation process. The resulted cluster quality is evaluated by the F-measure [67] 

which combines the precision and recall from the information retrieval. The F-measure 

is formulated as follows: 

RP
RPF

+
××

=
2  

, where P and R are precision and recall respectively. The range of F-measure is [0,1]. 

The higher the F-measure is, the better the clustering result is. 

 

9.3.2 Experimental Results of Synthetic Teaching Materials 

There are 500 synthetic teaching materials with V=15, D=3, and B = [5, 10] are 
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generated. The clustering thresholds of LCCAlg and SLCAlg are 0.92. After clustering 

without refinement, there are 101, 104 and 2529 clusters generated from 500, 3664 and 

27456 content nodes in the level L0, L1, and L2 of content trees (CTs), respectively. Then, 

30 queries generated randomly are used to compare the performance of two clustering 

algorithms. The F-measure of each query with threshold 0.85 is shown in Figure 9.10. 

Moreover, this experiment is run on AMD Athlon 1.13GHz processor with 512 MB 

DDR RAM under the Windows XP operating system. 
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Figure 9.10: The F-measure of Each Query 
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Figure 9.11: The Executing Time Using LCCG-CSAlg 
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As shown in Figure 9.10, the differences of the F-measures between LCCAlg and 

SLCAlg are small in most cases. Moreover, in Figure 9.11, the execution time using 

LCCG-CSAlg in LCCAlg is far less than the time needed in SLCAlg. Figure 9.12 

shows that the clustering with clustering refinement can improve the accuracy of 

LCCG-CSAlg search. 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

SLCAlg LCCAlg(with Cluster Refining)

 

Figure 9.12: The Comparison of SLCAlg and LCCAlg with Cluster Refining 

 

9.3.3 Experiment of Real SCORM Compliant Teaching Materials 

As mentioned above, the performance of LCMS scheme evaluated using synthetic 

teaching materials is efficient. Besides, for evaluating the Satisfied Degree of searching 

results, we also do an experiment using the real SCORM compliant teaching materials. 

Therefore, we implement a prototype system of LCMS. As shown in Figure 9.13(1), 

users can first set the searching conditions to retrieve the desired learning contents. 

Then, all searching results with hierarchical relationships will be shown in Figure 

9.13(2). Users can select the link to display the desired learning content as shown in 

Figure 9.13(3). 
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Figure 9.13: The Screenshot of LCMS Prototypical System in KM Module 

 

Then, in this experiment, there are 100 articles with 5 specific topics: concept 

learning, data mining, information retrieval, knowledge fusion, and intrusion detection, 

where every topic contains 20 articles. Every article is transformed into SCORM 

compliant teaching materials and then imported into the prototype system of LCMS.  

In addition, 15 participants, who are graduate students of Knowledge Discovery 

and Engineering Lab of NCTU, used the prototype system of LCMS to query the 

desired learning contents. Finally, a questionnaire is used to evaluate the performance of 

LCMS system for these participants. This questionnaire includes the following two 

questions: 1) Accuracy degree: “Are these learning objects desired?”, 2) Relevance 

 148



degree: “Are the obtained learning objects with different topics related to your query?”. 

As shown in Figure 9.14, we can conclude that the LCMS scheme is workable and 

beneficial for users according to the results of questionnaire. 
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Figure 9.14: The Results of Accuracy and Relevance in Questionnaire (10 is the 

highest) 
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9.4 Learning Portfolio Analyzer (LPA) in KMin Module 

 
9.4.1 The Implementation and Evaluation of LPM approach 

For evaluating the LPM approach, we implement the LPM system and a training 

system developed by Java language to gain the training data of LPM system. As shown 

in Figure 9.15, the training system can let teachers import their learning contents which 

were organized into hierarchical structure and then display the index of learning 

contents for learners. 

During learning, the training system will display the learning content and the index 

of its sub-learning contents after each learner chooses an interested content, where the 

index order is random because learners are apt to choose the top learning content in the 

index list. Afterward, according to the learning records obtained by training system, we 

can use the LPM system to generate several personalized SCORM compliant learning 

course. Figure 9.16 illustrates an example of generated SCORM learning course 

executed on SCORM Run Time Environment (RTE). In Figure 9.16, the right part 

shows the learning content and the left part shows the index of contents which a learner 

can select according to her/his current learning results. Namely, SCORM RTE will 

automatically control the display of contents according to the associated sequencing 

rules within the SCORM compliant course. Besides, learners can use the button in the 

top part to continue, suspend, or quit the learning activity. For example, in Figure 9.16, 

learners can choice any aggregation in left part to study because of the root aggregation 

with sequencing rules, “Forward Only=false” and “Choice=true”. For an aggregation 

with sequencing rules, “Forward Only=true” and “Choice= false”, its included content 

indexes will be hidden, such as aggregations 1 to 5. In other words, learners have to 

follow the personalized learning guidance and use the continue button to study next 

course. In addition, the included contents of aggregation 6 as stated in Activity Tree 
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Generation Phase can be viewed by learners in any order. 

 

Figure 9.15: The learning process of training system to acquire learners’ learning 

behavior 

 

Figure 9.16: The SCORM learning course executed on SCROM run time environment 

(RTE) 
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The Experimental Results and Analysis: 

To evaluate the efficacy of the LPM approach, an experiment was conducted from 

September 2004 to November 2004 on the Equation of a Straight Line course at a high 

school in Taiwan. The participants of the experiment are the Ninety students from two 

equal-sized classes, one is the control group A and the other is the experimental group 

B, taught by the same teacher. Before learning, the students in two groups filled out the 

questionnaire for acquiring their learning characteristics. Then, in Group A, the students 

use the training system to learn for gathering the training data. Thus, the learning 

sequences of students with high learning performance in Group A were used to extract 

the learning patterns, create the decision tree, and generate the activity trees by LPM 

system. Thus, we gained a decision tree with 5 clusters and 5 personalized activity trees 

in SCORM compliant course. In Group B, all students were partitioned into 5 groups by 

the created decision tree and then each group leaned the corresponding SCORM course 

in SCORM RTE 1.3 as shown in Figure 9.16. Finally, the testing results in Group B 

were analyzed by t-test approach. 

The t-test values of the testing results are listed in Table 9.7. According to the 

mean value of the testing results, Group B performed better than Group A. By 

performing the t-test, it is deduced t=3.64, which implies a significant difference 

between the performance of Groups B and A in the testing Results (where the t-value of 

‘‘Equal’’ variances is adopted because the ‘Pr>F ’’ value is 0.4302). Therefore, we can 

conclude that Group B achieved a significant improvement compared with Group A 

after receiving learning guidance by the personalized SCORM courses. 
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Table 9.7: t-Test of the test results (α=0.05) 
Classes N Mean S.D. (Standard Deviation) 
Group A 45 66.11 10.86 
Group B 45 75 12.24 

Improvement (B-A)  8.89  
     

t-test      
Variable Variances df t Value  

Grade  Equal 88 3.64  
Grade Unequal 86 3.64  

     
Equality of 
variances 

    

Variable F Value Pr>F   
Grade 1.27 0.4302   
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9.4.2 The Experiment of TP-CMC in Physics Course 

In this section, we describe our experiment results of the Two-Phase Concept Map 

Construction (TP-CMC) approach. 

 

Experimental Results: 

The participants of experiment are the 104 students of junior high school in Taiwan 

and the domain of examination is the Physics course. The related statistics of testing 

results and related concepts of testing paper are shown in Tables 9.8 and 9.9. 

The prototype system of TP-CMC is developed based on PHP4 web language, 

MySQL database, and JGraph web graphic tool [57]. As shown in Figure 9.17a-c, the 

concept maps with Discrimination 0.0 and 0.3, and 0.5 are created by TP-CMC 

approach respectively. As mentioned in Section 8.2.3, Anomaly Diagnosis process in 

TP-CMC can refine the test data for decreasing its redundancy. As we see, the concept 

maps with low discrimination criteria in Figure 9.17a and b shows that the prerequisite 

relationships between learning concepts are very disordered and confused. However, 

with increasing the value of discrimination, the test data can be refined such that the 

clarity of concept map can be heightened, shown in Figure 9.17c. Moreover, the created 

concept map can provide the embedded learning information of students during learning 

Physics. For example, the relationship of concept-pair (6, 9) in Figure 9.17c represents 

that if students do not learn concept 6 (Speed and direction of motion) well, their 

learning performance of concept 9 (Change of speed and direction) are most likely bad. 

Therefore, teachers can modify their teaching strategies to enhance students_ learning 

performance of concept 6 for getting high performance of concept 9. 

 

 

 

 154



 

Table 9.8: The Related Statistics of Testing Results in Physics Course. 
Subject Information 

Educational Degree Junior High School 
The Number of Students 104 
Average Score of Exam 61.06 

Standard deviation of scores 18.2 
The Number of Test Items 50 
The Number of Concepts 17 

 
 

Table 9.9: Concepts List of Testing Paper in Physics Course 

Concept 
ID 

Learning Concept 

1 Tools and Theories for Timing 
2 Unit of Time 
3 Isochronism of Pendulum 
4 Change of Position 
5 Movements 
6 Speed and Direction of Motion 
7 Average and  Instant Speed 
8 X- t Diagram 
9 Change of Speed and Direction 
10 Acceleration 
11 Uniform Acceleration 
12 Free Fall 
13 V- t Diagram 
14 The Resultant of Forces 
15 Balance of Forces 
16 Torque 
17 Balance of Rotation 
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Figure 9.17: The concept maps (a), (b), and (c) with Discrimination 0.0, 0.3, and 0.5 are 
created by TP-CMC approach respectively. (Support=50, Confidence=0.85) 
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Chapter 10: Conclusion and Future 
Work 

In this dissertation, based on Knowledge Management concept and LTSA with 

layering concept, an Intelligent Learning Content Management System (ILCMS) is 

proposed to intelligently manage a large number of learning contents and offer learners 

an adaptive learning strategy which can be refined by means of efficient learning 

portfolio analysis. The layered architecture of ILCMS consisting of six knowledge 

modules: 1) Knowledge Representation (KR), which uses SCORM standard, and new 

proposed Instructional Activity Model (IAM) and Object Oriented Learning Activity 

(OOLA) model to represent and manage the learning content and activity, 2) 

Knowledge Resources (KRes), which stores all related learning resources in 

repositories, 3) Knowledge Manager (KM), which efficiently manages a large number 

of learning resources in repositories, 4) Knowledge Acquirer (KA), which provides 

teachers with useful tools to create the SCORM and OOLA compliant learning content 

and activity, 5) Knowledge Controller (KC), which intelligently delivers the desired 

learning contents, services, test sheet to learners according to her/his learning results 

and performance, and 6) Knowledge Miner (KMin), which analyzes the learning 

portfolio for constructing the adaptive learning course and the learning concept map 

automatically. 

The relationships of six knowledge modules in ILCMS are described as follows. 

First, KRes Module consists of learning resources: Learning Activity, Learning 

Object, Test Item, Application Program, and Learning Portfolio, which are 

described by data formats: SCORM and OOLA model defined in KR Module. Then, 

KA module includes a Learning Content Editor (LCE) and an Object Oriented 

Learning Activity (OOLA) authoring tool. In LCE, a Content Transformation 
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Scheme (CTS) has been proposed to divide a traditional teaching material into separate 

learning objects with SCORM metadata and then package them into one SCORM 

course. Moreover, an Object Oriented Course Modeling (OOCM) approach based 

upon High Level Petri Nets theory has been proposed to provide teachers to efficiently 

construct the SCORM compliant course with desired sequencing behaviors. 

Furthermore, OOLA authoring tool can help teachers construct an OOLA learning 

activity with desired teaching strategy. Moreover, KM module includes a Learning 

Object Repository (LOR) Manager, where we apply clustering approach and load 

balancing strategies to propose a Level-wise Content Management Scheme (LCMS) 

to efficiently maintain, search, and retrieve the learning contents in SCORM compliant 

LOR. When learners initiate a learning activity, the Learning Activity Controller in 

KC module will retrieve the appropriate learning objects, testing sheets, or application 

program (AP) according to the personalized learning activity in Learning Activity 

Repository (LAR) for learners. Furthermore, KMin module includes a Learning 

Portfolio Analyzer (LPA), which consists of Learning Portfolio Mining and 

Two-Phase Concept Map Construction algorithm. According to learners’ 

characteristics, the former applies the clustering and decision tree approach to analyze 

the learning behavior of learners with high learning performance. The latter applies 

Fuzzy Set Theory and Data Mining approach to automatically construct the concept 

map by learners’ historical testing records. Therefore, after learners finished the learning 

activities, teachers can use LPA to analyze learning portfolios for refining teaching 

strategies and contents.  

Finally, In order to evaluate ILCMS, several system implementations and 

experiments have been done for each knowledge module. Also, the experimental results 

shows that proposed knowledge modules of ILCMS are workable and beneficial for 

learners and teachers.   
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Regarding the future work, it can be described in terms of each knowledge module 

of ILCMS as follows. First of all, for Knowledge Representation (KR), at present, 

although we have used SCORM to represent the learning content with associated 

learning objects, proposed a novel model, Instructional Activity Model (IAM), to 

efficiently manage the activity tree of SCORM, and proposed an Object Oriented 

Learning Activity (OOLA) model to describe a adaptive learning activity based on IAM 

concept, it is insufficient to represent the test item in test item bank and learners’ 

information and portfolio in terms of standardization and interoperability. Therefore, in 

order to share and reuse these data information among different e-learning system, IMS 

also proposes Question & Test Interoperability (QTI) and Learner Information Package 

(IMS LIP) specification to support the interoperability of test item and learner 

information, respectively. In addition, IMS Learning Design (LD) is proposed to 

describe and design the standardized adaptive learning activity in support 

interoperability as well. However, although these standards can represent respective 

learning resource, e.g., QTI for quiz, SOCRM for learning content, LD for learning 

activity, LIP for learners’ information, how to integrate these specifications into 

complete standard is an important issue. Accordingly, in the future, we can try to design 

and propose a complete data representation model which can efficiently integrate QTI, 

SCORM, LD, and LIP. Then, for, Knowledge Acquirer (KA), the functionalities of 

Learning Content Editor and OOLA authoring tool will be continuously enhanced so 

that user can use them more efficient and user-friendly. Furthermore, if we want to 

propose a complete data representation model mentioned above, it is necessary to 

develop a more powerful and user-friendly authoring tool in support of editing quiz, 

content, learning activity, learner information in standardized format. For Knowledge 

Manager (KM), in the future, when the number of learning activities grows quickly and 
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become very large, how to efficiently manage the learning activity repository will 

become an important issue. Thus, to propose an efficient management scheme of 

learning activity will be our concerns. Furthermore, for Knowledge Controller (KC), 

how to propose a more powerful coordination scheme, which can efficiently control and 

coordinate a large number of concurrent system events and learning requests from 

system and learners, will get our much attention. Last but not least, for Knowledge 

Miner (KMin), we will deeply analyze the learning portfolio to find some interesting 

issues, e.g., learning behavior in collaborative learning environment, the relationship 

among concept, content, quiz, and teaching strategy, and then propose useful approach 

or algorithm to solve them. In addition, the layered architecture of ILCMS will be 

developed based on CORDRA (Content Object Repository Discovery and 

Registration/Resolution Architecture) of SCORM [27], IMS TIF (Tools Interoperability 

Framework) [121], and IMS GWS Base Profile (General Web Service Base Profiles) 

[47] in order to support the interoperability and web services. 
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